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Abstract

This thesis focuses on using techniques from probability to solve problems from extremal and structural

combinatorics.

The main topic in Chapter 2 is determining the typical structure of t-intersecting families in various

settings and enumerating such systems. The analogous sparse random versions of our extremal results are

also obtained. The proofs follow the same general framework, in each case using a version of the Bollobás

Set-Pairs Inequality to bound the number of maximal intersecting families, which then can be combined with

known stability theorems. Following this framework from joint work with Balogh, Das, Liu, and Sharifzadeh,

similar results for permutations, uniform hypergraphs, and vector spaces are obtained.

In 2006, Barát and Thomassen conjectured that the edges of every planar 4-edge-connected 4-regular

graph can be decomposed into disjoint copies of S3, the star with three leaves. Shortly afterward, Lai

constructed a counterexample to this conjecture. Following joint work with Postle, in Chapter 3 using the

Small Subgraph Conditioning Method of Robinson and Wormald, we find that a random 4-regular graph

has an S3-decomposition asymptotically almost surely, provided we have the obvious necessary divisibility

conditions.

In 1988, Thomassen showed that ifG is at least (2k−1)-edge-connected thenG has a spanning, bipartite k-

connected subgraph. In 1989, Thomassen asked whether a similar phenomenon holds for vertex-connectivity;

more precisely: is there an integer-valued function f(k) such that every f(k)-connected graph admits a

spanning, bipartite k-connected subgraph? In Chapter 4, as in joint work with Ferber, we show that every

1010k3 log n-connected graph admits a spanning, bipartite k-connected subgraph.
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Chapter 1

Introduction

One will not get anywhere in graph theory by sitting in an armchair and trying to understand

graphs better. Neither is it particularly necessary to read much of the literature before tackling

a problem: it is of course helpful to be aware of some of the most important techniques, but the

interesting problems tend to be open precisely because the established techniques cannot easily be

applied. – W. T. Gowers, The Two Cultures of Mathematics

1.1 Overview

For the three main topics in this thesis, the common underlying thread is that the standard techniques

from each area do not apply directly; in each case, insights from probability are key to finding solutions to

challenging problems from extremal combinatorics and structural graph theory. In general, the probabilistic

method is a powerful technique for proving the existence of combinatorial objects with specified properties.

The tremendous growth of combinatorics over the last century is due in part to its close relationship to

probability theory, number theory, and theoretical computer science; results in each have applications and

lead to breakthroughs in one another. Developing new techniques motivated by recent work in these areas

produces some of the most beautiful results and most important contributions in combinatorics.

1.2 Viewing Extremal Problems through a Probabilistic Lens

The field of extremal combinatorics encompasses a wide variety of results. Fundamentally speaking, extremal

combinatorics is the study of finite objects, such as graphs, sets, etc., that are extremal, meaning that they

are maximal (or minimal) with respect to a certain property. In extremal graph theory, for instance, many

classical results focus on finding how many edges a graph forbidding a fixed subgraph can have. One of the

first extremal results is a theorem by Mantel [58] from 1907:

Theorem 1.2.1 (Mantel’s Theorem). For any K3-free graph G on n vertices, e(G) ≤ n2

4 .

Turán [67] generalized this result in 1941 as follows:

Theorem 1.2.2 (Turán’s Theorem). For any Kr+1-free graph G on n vertices, e(G) ≤ (1− 1
r )n

2

2 .

1



Consider the complete multipartite graph T (n, r) formed by partitioning n vertices into r parts, with

sizes as equal as possible and connecting two vertices with an edge if and only if they belong to different

parts. This graph, referred to as the Turán graph, contains no copy of Kr+1 and has a total of (1 − 1
r )n

2

2

edges, provided that r divides n. For Mantel’s Theorem in particular this corresponds to a complete bipartite

graph with parts of size
⌊
n
2

⌋
and

⌈
n
2

⌉
; this graph has a total of

⌊
n2

4

⌋
edges but no K3. The extremal function

ex(n,H) is defined as the maximum number of edges in a graph on n vertices not containing a subgraph

isomorphic to the graph H. In this notation, we see from above that ex(n,Kr+1) = (1 − 1
r )n

2

2 , provided

that r divides n. The Erdős–Stone–Simonovits Theorem [31], [32] explores forbidding any fixed subgraph;

note that for complete graphs, the chromatic number χ(Kr+1) = r + 1:

Theorem 1.2.3 (Erdős–Stone–Simonovits Theorem). For any graph H and any ε > 0, there exists n0 so

that for any n ≥ n0,
(

1− 1
χ(H)−1 − ε

)
n2

2 ≤ ex(n,H) ≤
(

1− 1
χ(H)−1 + ε

)
n2

2 .

Once extremal results have been established, counting problems such as enumerating systems and de-

scribing their “typical structure” as the size of the underlying ground set tends to infinity are studied.

Building on Mantel’s Theorem, Erdős, Kleitman, and Rothschild [29] described typical K3-free graphs:

Theorem 1.2.4. Let B(n) denote the set of bipartite graphs on n labeled vertices and F (n) denote the set

of all K3-free graphs. Then |F (n)| = ((1 + o (1)) |B(n)|. Thus, almost all K3-free graphs are bipartite.

Erdős, Frankl, and Rödl [28] more generally were concerned with the asymptotic number of graphs without a

fixed subgraph. More precisely, if fn(H) denotes the number of labeled H-free graphs on n labeled vertices,

then Erdős, Frankl, and Rödl [28] showed that fn(H) = 2ex(n,H)+o(n2). More recently Balogh, Bollobás, and

Simonovits [8] improved this to fn(H) = 2ex(n,H)+O(n2−c(H)) where c(H) is a positive constant depending

on H; furthermore Balogh, Bollobás, and Simonovits determined the typical structure of graphs without a

fixed subgraph (and in fact determined the typical structure without fixed finite families of subgraphs).

A recent line of investigation is extending classical results to the so-called “sparse random setting”. If

fn,m(H) is the number of labeled H-free graphs on n labeled vertices with precisely m edges, then the

following theorem, shown by  Luczak [53] and later by Balogh, Morris, and Samotij [10] using hypergraph

containers, is a sparse version of the results above:

Theorem 1.2.5. For every graph H and every positive δ, there exists a positive constant c such that the

following holds. For every n ∈ N, if m ≥ c · n2−
v(H)−2
e(H)−1 , then

(
ex(n,H)

m

)
≤ fn,m(H) ≤

(
ex(n,H) + δn2

m

)
.

2



In extremal set theory, for k ≥ 2 a k-uniform hypergraph H on vertex set [n] is said to be intersecting if

every pair of hyperedges shares at least one vertex; we say furthermore that a family is trivial if every edge

in H contains some fixed vertex. The following result by Erdős, Ko, and Rado [30] shows that the trivial

families are extremal:

Theorem 1.2.6 (Erdős–Ko–Rado Theorem). If n ≥ 2k and H is an intersecting k-uniform hypergraph on

n vertices, then e(H) ≤
(
n−1
k−1
)
. Furthermore, for n > 2k equality holds above only if H is trivial.

As outlined here and appearing in Chapter 2, in joint work with Balogh, Das, Liu, and Sharifzadeh [9],

we show that for intersecting families of k-uniform hypergraphs almost all intersecting families are trivial.

We also enumerate such systems and explore the sparse random setting. As demonstrated in this thesis for

permutations and vector spaces, this work fits into a more general framework that could be adapted for a

variety of other settings provided the required extremal results are established.

Trivial Intersecting Families of Permutations

Let Sn denote the symmetric group on [n]. A family of permutations F ⊆ Sn is said to be t-intersecting if

any two permutations in F agree on at least t indices; that is, for any σ, π ∈ F ,

|σ ∩ π| = |{i ∈ [n] : σ(i) = π(i)}| ≥ t.

When t = 1, we simply call such families intersecting. A natural example of a t-intersecting family F ⊆ Sn is

a trivial t-intersecting family, where there is a fixed t-element subset I ⊆ [n] and values {ji : i ∈ I} such that

for every σ ∈ F and i ∈ I, σ(i) = ji. Ellis, Friedgut, and Pilpel [27] proved that the extremal intersecting

families are trivial:

Theorem 2.3.4. For n sufficiently large with respect to t, a t-intersecting family F ⊆ Sn has size at most

(n− t)!, with equality only if F is trivial.

In joint work with Balogh, Das, Liu, and Sharifzadeh [9], we determine the typical structure of t-intersecting

families in Sn, showing that trivial families are not just extremal but also typical.

Theorem 2.3.6. For any fixed t ≥ 1 and n sufficiently large, almost all t-intersecting families of permuta-

tions in Sn are trivial, and there are
((
n
t

)2
t! + o(1)

)
2(n−t)! t-intersecting families.

Additionally, we prove two results in the sparse random setting. First we obtain the following sparse

extension of Theorem 2.3.4. Let (Sn)p denote the p-random subset of Sn, where each permutation in

3



Sn is included independently with probability p. Provided p is not too small, we show that with high

probability the largest t-intersecting family in (Sn)p is trivial. Note that the work by Ellis, Friedgut, and

Pilpel corresponds to the case when p = 1.

Theorem 2.3.8. For fixed t ≥ 1, n sufficiently large, and p = p(n) ≥ c · n
(n−t)! · 2

2(n−t) · log n, with high

probability every largest t-intersecting family in (Sn)p is trivial.

In the second extension, we consider t-intersecting families of permutations of size m. Note that each

trivial t-intersecting family contains
(
(n−t)!
m

)
subfamilies of size m. The following result shows that, provided

m is not too small, the number of non-trivial t-intersecting families of m permutations is a lower-order term.

Theorem 2.3.7. For any fixed t ≥ 1, n sufficiently large, and n · 22n−2t+2 · log n ≤ m ≤ (n− t)!, almost all

t-intersecting families of m permutations in Sn are trivial.

Trivial Intersecting Families of Hypergraphs

For k ≥ 2 and 1 ≤ t < k, a k-uniform hypergraph H on vertex set [n] is t-intersecting if every pair of edges

shares at least t vertices. A family is trivial if every edge in H contains a fixed set of t vertices. The following

is one of the most important results in the area of extremal combinatorics Erdős, Ko, and Rado [30]:

Theorem 2.4.1. For n ≥ t+ (k − t)
(
k
t

)3
, the largest t-intersecting k-uniform hypergraphs on [n] have size

at most
(
n−t
k−t
)
.

The classic Erdős–Ko–Rado Theorem [30] and as well as the following result of Wilson [73] from 1984

(shown for t > 14 by Frankl [33] in 1978) demonstrate that the largest t-intersecting k-uniform hypergraphs

are the trivial ones with
(
n−t
k−t
)

edges.

Theorem 2.4.2. For n ≥ (t + 1)(k − t + 1), the largest t-intersecting k-uniform hypergraphs on [n] have

size at most
(
n−t
k−t
)
.

We show that just beyond this bound, the trivial t-intersecting k-uniform hypergraphs are typical.

Theorem 2.4.3. Let n, k = k(n) ≥ 3 and t = t(n) ≥ 1 be integers such that n ≥ (t + 1)(k − t + 1) + ηk,t,

where

ηk,t =



k + 8 ln k for t = 1,

12 ln k for t = 2 and k − t ≥ 3,

1 for t ≥ 3 and k − t ≥ 3

31 for t ≥ 2 and k − t = 2,

18k for t ≥ 2 and k − t = 1.

4



Almost all t-intersecting k-uniform hypergraphs on [n] are trivial, and there are
((
n
t

)
+ o(1)

)
2(n−t

k−t)

t-intersecting k-uniform hypergraphs.

For ηk,t = 1 (the value for which we have for most values of t and k) this is the best possible result. When

n = (t + 1)(k − t + 1), the largest non-trivial t-intersecting hypergraphs are actually as large as the trivial

t-intersecting hypergraphs, and there are many more of them. For n = (t + 1)(k − t + 1) almost every

t-intersecting hypergraph is non-trivial.

The most natural, and arguably the most interesting, case to focus on is when t = 1. Theorem 2.4.3

gives the asymptotic number of intersecting hypergraphs when n ≥ 3k + 8 ln k.

Theorem 2.1.4. Let n and k = k(n) ≥ 3 be integers such that n ≥ 3k+8 ln k. Then there are (n+ o(1)) 2(n−1
k−1)

intersecting k-uniform hypergraphs on [n]. Thus, almost all intersecting k-uniform hypergraphs are trivial.

On the other hand, it is known that the trivial hypergraphs are the largest when n ≥ 2k, and uniquely

so when n ≥ 2k+ 1. The following theorem, which we prove using spectral methods and the theory of graph

containers, provides a slightly weaker result that covers the entire range.

Theorem 2.4. For k ≥ 3 and n ≥ 2k+1, let I(n, k) denote the number of intersecting k-uniform hypergraphs

on [n]. Then

log I(n, k) = (1 + o(1))

(
n− 1

k − 1

)
.

Let Hk(n, p) denote the p-random k-uniform hypergraph on [n], in which every edge in
(
[n]
k

)
is included

independently at random with probability p. Balogh, Bohman, and Mubayi [7] initiated the study of

intersecting hypergraphs in the sparse random setting. Among other results, they determined the size of the

largest intersecting subhypergraph of Hk(n, p) when k < n1/2−ε.

Similarly to the results for permutations, we are able to obtain a sparse version of the Erdős–Ko–Rado

Theorem; this is a highly active area of study. Recently, Gauy, Hàn, and Oliveira [37] determined the

asymptotic size of the largest intersecting family for all k and almost all p. Hamm and Kahn [46] obtained

an exact result for k < ( 1
4 − c)(n log n)1/2 for some small constant c and p �

(
n−k
k

)−1
, showing that with

high probability every largest intersecting subhypergraph of Hk(n, p) is trivial. We prove that the same

holds for k as large as linear in n, provided p is somewhat larger.

Theorem 2.4.4. For 3 ≤ k ≤ n
4 , if

p = p(n) ≥ c · n ·
(
2k
k

)(
n
k

)(
n−k
k

)2 · log
(ne
k

)
,

then with high probability every largest intersecting subhypergraph of Hk(n, p) is trivial.

5



Hamm and Kahn [40] also studied the case n = 2k + 1 and p = 1− c for some constant c > 0.

Trivial Intersecting Families of Vector Spaces

Let V be an n-dimensional vector space over a finite field Fq. In this context, a family F of k-dimensional

subspaces of V is intersecting if dim(F1 ∩ F2) ≥ 1 for all pairs of subspaces F1, F2 ∈ F . The number of

k-dimensional subspaces in V is given by the Gaussian binomial coefficient

[
n

k

]
q

:=

k−1∏
i=0

qn−i − 1

qk−i − 1
.

Hsieh [42] proved an Erdős–Ko–Rado-type Theorem for vector spaces:

Theorem 2.5.1. For n ≥ 2k + 1, any intersecting family F of k-dimensional subspaces of V has size at

most
[
n−1
k−1
]
q
; and equality holds only if F is trivial.

Furthermore, the only constructions achieving the maximum size consisting of all k-dimensional subspaces

through a given 1-dimensional subspace, the natural notion of trivial in this context.

Here we determine that the typical structure of intersecting families of subspaces is trivial as well.

Theorem 2.5.2. If k ≥ 2, and either q = 2 and n ≥ 2k+ 2 or q ≥ 3 and n ≥ 2k+ 1, almost all intersecting

families of k-dimensional subspaces of Fnq are trivial, and there are
([
n
1

]
q

+ o(1)
)

2
[n−1
k−1]q intersecting families.

1.3 Viewing Structural Problems through a Probabilistic Lens

Structural graph theory is the study of when graphs have certain structural properties. As observed above,

moving extremal problems to a random environment can be a natural further direction; the same can be

said about certain structural problems.

Star Decompositions of Random Regular Graphs

As Barát and Thomassen [11] note, decompositions of the edges of a graph G into copies of a small fixed

subgraph can be related to orientations with certain requirements. For instance, given a 4-regular planar

graph G, an orientation in G with out-degrees 0 or 3 corresponds to an S3-decomposition of G (a decomposi-

tion of the edges of G into copies of S3). A graph is d-edge-connected if one must remove at least d edges in

order to disconnect the graph. Barát and Thomassen [11] asked if every 4-edge-connected, 4-regular graph

has an orientation with out-degrees 0 or 3. Barát and Thomassen observed that the answer is no and posed

the following conjecture:

6



Conjecture 3.1.7. Every 4-edge-connected, 4-regular planar graph has an orientation with out-degrees 0 or

3.

Interestingly, a typical d-regular graph is d-edge-connected [14]. We translate this structural problem to

the setting of random d-regular graphs:

Theorem 3.1.8. A random 4-regular graph on n vertices has an orientation with out-degrees 0 or 3

asymptotically almost surely, provided that 2n is divisible by 3.

Although this appears to be a straightforward application of the second moment method [4], standard

probabilistic techniques do not work here; if Y = Y (n) is the number of orientations of a random 4-regular

graph on n vertices with out-degrees 0 or 3, then E[Y 2]
E[Y ]2 ∼

√
3
2 > 0. Instead we use the Small Subgraph

Conditioning Method [61] to show Y > 0 asymptotically almost surely. When this powerful method works,

by conditioning on the small subgraph counts, we are able to alter E[Y ] by a constant factor and conclude

that Y > 0 asymptotically almost surely.

Highly Connected, Spanning, Bipartite Subgraphs

A graph is said to be k-edge-connected if one must remove at least k edges in order to disconnect the graph.

A related concept is graph G is said to be k vertex-connected if one must remove at least k vertices from

V (G) in order to disconnect the graph (or to remain with one single vertex). We also let κ(G) denote the

minimum integer k for which G is k-connected.

In 1988 Thomassen [66] observed that highly edge-connected graph contain large a highly edge-connected

bipartite subgraph:

Theorem 4.1.2. If G is a graph which is at least (2k − 1)-edge-connected, then G contains a spanning,

bipartite subgraph H ⊆ G such that k-edge-connected.

He conjectured that the same should hold for vertex-connectivity; the following appears as Conjecture 7

in Thomassen’s [65] survey paper from 1989:

Conjecture 4.1.3. For all k, there exists a function f(k) such that for all graphs G, if the vertex-connectivity

κ(G) ≥ f(k), then there exists a spanning, bipartite subgraph H ⊆ G such that κ(H) ≥ k.

We show that this conjecture is true up to a log n factor by carefully constructing an auxiliary digraph.

Theorem 4.3.1. For all k and n, and for every graph G on n vertices the following holds. If κ(G) >

1010k3 log n, then there exists a spanning, bipartite subgraph H ⊆ G such that κ(H) ≥ k.

7



1.4 Basic Definitions

A graph G is a pair (V (G), E(G)) consisting of a set V (G) of vertices along with a set E(G) of edges which

consists of 2-element subsets of V (G); the pair of vertices in each edge are unordered. The order of a graph

G is the cardinality of the vertex set |V (G)| denoted here as v(G). Similarly the size of a graph G is the

cardinality of the edge set |E(G)| denoted here as e(G). Two vertices u, v ∈ V (G) are said to be adjacent,

denoted u ∼ v, uv, or vu, if {u, v} ∈ E(G). An edge and a vertex on that edge are said to be incident. The

type of graph defined above is referred to in the literature as a simple graph because there are no loops (a

loop is an edge u ∼ u) or multiple edges (several edges u ∼ v). A graph allowing loops or multiple edges is

referred to as a multigraph.

The adjacency matrix of G, say A, is an v(G)× v(G) matrix where element Aij is the number of edges

between vertex vi and vertex vj . Note that the adjacency matrix of G is an v(G)× v(G) symmetric matrix

with all real entries (in fact this matrix is Hermitian) and therefore this matrix has v(G) real eigenvalues.

The eigenvalues of the adjacency matrix of G are often referred to as the eigenvalues of the graph G. An

isomorphism from a graph G to a graph H is a bijection f : V (G)→ V (H) preserving the adjacency relation.

Note that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). Two graphs G1 and G2 with adjacency matrices A1

and A2 respectively are said to be isomorphic if and only if there exists a permutation matrix P such that

PA1P
−1 = A2.

The degree of a vertex is the number of edges incident to that vertex (for multigraphs we count loops

twice). An isolated vertex has degree 0. A graph is said to d-regular if all vertices have the degree d. The

average degree of a graph is the sum of all the degrees divided by the number of vertices. A path is a

graph whose vertices may be linearly ordered so that two vertices are adjacent if and only if they appear

consecutively in the ordering. A graph is said to be connected is there is a path between any pair of vertices.

A graph H is said to be a subgraph of a graph G, denoted H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G).

A maximal connected subgraph is referred to as a component of the graph. A graph G is said to be k-

vertex-connected if one must remove at least k vertices in order to disconnect the graph (or to remain with

one single vertex). A graph is said to be k-edge-connected if one must remove at least k edges in order

to disconnect the graph. A vertex cover is a subset S ⊆ V (G) such that every edge in G is incident to

at least one vertex in S. The minimum number of vertices whose deletion disconnects a graph G is the

vertex-connectivity, denoted κ(G). A separating set is a subset of the vertex set whose deletion makes the

graph disconnected.

An a independent set I, sometimes known as a stable set, in a graph G is a subset of V (G) that forms no

edges. The independence number of a graph G, denoted α (G), is number of vertices in a largest independent
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set of G. Likewise, a matching M in a graph G is a subset of E(G) that share no vertices. A matching is

said to be perfect if every vertex is incident with an edge of M .

A coloring of a graph G is an assignment of labels to the vertices of G such no two adjacent vertices

receive the same label. By definition, every color class in a valid coloring must be an independent set. A

k-coloring of a graph G is a coloring using k-colors. The chromatic number of a graph G, denoted χ(G), is

the minimum value k such that G has a valid k-coloring.

The complete graph on n vertices, denoted Kn, is the graph where every pair of distinct vertices is

connected by exactly one edge. A cycle on n edges, denoted Cn, has n edges and there is a cyclic order

of the vertices so that two vertices are adjacent if and only if they appear consecutively in this ordering.

Bipartite graphs are the graphs with chromatic number at most 2. A graph is bipartite if and only if it does

not contain an odd cycle. The vertices of a bipartite graph can be partitioned into two disjoint sets such

that no two vertices within the same set are adjacent. A complete bipartite graph is a bipartite graph such

that every pair of graph vertices in the two parts of the partition are adjacent; this graph is denoted K`,k

where ` and k are the number of vertices in the two disjoint parts. A bipartite connected graph with no

cycles is said to be a tree. In a tree, the vertices of degree 1 are called leaves. The graph Sk ' K1,k is an

example of a tree and is referred to as the star with k leaves in the literature. A subgraph F ⊆ G is said to

be spanning if V (F ) = V (G). For a fixed subgraph F ⊆ G, an F -decomposition is a partition of E(G) into

disjoint copies of F . The degree of a vertex v ∈ V (G) in a subgraph H ⊆ G is denoted dH(v).

A hypergraph H is a pair (V (H), E(H)) consisting of a set V (H) of vertices along with a set E(H) of

hyperedges which consists of subsets of V (H). Similarly, the order of a hypergraph H is the cardinality of

the vertex set |V (H)| denoted here as v(H), and the size of a hypergraph H is the cardinality of the edge set

|E(H)| denoted here as e(H). The vertex set is sometimes referred to as the ground set and [n] := {1, 2, . . . n}

will be the ground set of many hypergraphs in this thesis. If all of the hyperedges have exactly k elements

from V (H), then H is referred to as k-uniform. Here the notion of a graph above corresponds with 2-

uniform hypergraphs. The k-uniform hypergraph on n having all possible k-element edges is denoted
(
[n]
k

)
;

this hypergraph has size
(
n
k

)
:= n!

k!(n−k)! , where the factorial n! := 1 · 2 · . . . · n. On the other hand, we define

the falling factorial [n]k := n · (n − 1) · . . . · (n − (k − 1)). We let Hk(n, p) denote the p-random k-uniform

hypergraph on [n] in which every edge in
(
[n]
k

)
is included independently with probability p.

As before, an independent set I in a hypergraph H is a subset of V (H) that forms no edges. The

independence number of a hypergraph H, denoted α (H), is number of vertices in a largest independent set

of H. Likewise, the degree of a vertex in a hypergraph is the number of hyperedges incident to that vertex,

and a hypergraph is said to d-regular if all vertices have the degree d.
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An orientation of a graph is an assignment of exactly one direction to each of the edges. A directed graph

or digraph, on the other hand, allows bidirectional edges in addition. For a directed graph D and a vertex

v ∈ V (D) we let d+D(v) denote the out-degree of v. We let U(D) denote the underlying graph of D, that is

the graph obtained by ignoring the directions in D and merging any multiple edges. For both digraphs and

orientations, for a vertex v, δ+(v) denotes the set of edges out of v whereas δ−(v) denotes the set of edges

into v.

A planar graph is a graph that can be embedded in the plane without crossings. A particular planar

embedding is referred to as a plane graph. The dual graph of a plane graph G is the graph with a vertex

for every face of G and an edge between two vertices when the corresponding faces are separated from each

other by an edge.

For a set S, the power set of S, denoted P(S), is the set of all subsets of S, including the empty

set ∅ and S itself. Let ϕ(n) be a positive function. Little-o notation, denoted o(x), is a Landau symbol

describing the asymptotic behavior of a function, and o(f) = {g : |g(x)|/|f(x)| → 0}. Whereas with big-

O notation, O(f) = {g : ∃c, a ∈ R such that |g(x)| ≤ c · |f(x)| for x > a}. Big-Ω notation is the inverse of

big-O notation:

f(n) ∈ O(g(n)) if and only if g(n) ∈ Ω(f(n)).

Throughout this thesis,

e :=

∞∑
n=0

1

n!

is the constant referred to as Euler’s number, and ln denotes the natural logarithm, the logarithm to the

base e. Unless otherwise stated, here log denotes the logarithm to the base 2.

For standard graph theory definitions and background see Diestel [23] or West [70], [71], and [72]. For an

exposition on random graphs see Bollobás [14]. The classical text for introducing the probabilistic method

is Alon and Spencer [4].
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Chapter 2

The Typical Structure of Intersecting
Families

2.1 Introduction

A fundamental question in extremal combinatorics asks: how large can a system be under certain restrictions?

Once resolved, this can be strengthened by enumerating such systems and describing their “typical structure”

as the size of the underlying ground set tends to infinity. In extremal graph theory, for instance, this study

was initiated by Erdős, Kleitman, and Rothschild [29] in 1976. Their results, explained in further detail

below, have inspired a great deal of research over the years by motivating the extension of classical theorems

from many areas in this manner; e.g., see [8] and [28]. A core topic explored in this thesis is determining

the typical structure of intersecting families of discrete systems in various settings1.

2.1.1 Triangle-Free Graphs

One of the most fundamental results in extremal graph theory is this theorem by Mantel [58] from 1907:

Theorem 2.1.1 (Mantel’s Theorem). If a graph G on n vertices contains no triangle (cycle on three

vertices), then it has at most n2

4 edges.

To see that this is best possible, consider partitioning n isolated vertices into two disjoint sets, one of size
⌊
n
2

⌋
and the other of size

⌈
n
2

⌉
, and adding all possible edges from one set to the other. This complete bipartite

graph has a total of
⌊
n2

4

⌋
edges but no triangle.

Erdős, Kleitman, and Rothschild [29] describe what a typical triangle-free graph looks like:

Theorem 2.1.2. Let B(n) denote the set of bipartite graphs on n labeled vertices and F (n) denote the set of

all triangle-free graphs. Then |F (n)| = ((1 + o (1)) |B(n)|. Thus, almost all triangle-free graphs are bipartite.

Therefore, counting the number of bipartite graphs (an easy problem) actually helps to count the total

number of triangle-free graphs (a harder problem) because the cardinality of these two classes of graphs is

asymptotically equal.

1Some of this work appeared in the Journal of Combinatorial Theory, Series A in 2015; see [9].
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2.1.2 Trivial Intersecting Families

The study of intersecting families of various discrete structures is a central and very active area of research

in extremal set theory. A k-uniform hypergraph on n vertices is said to be intersecting if any two hyperedges

share at least one vertex and is said furthermore to be trivial if all hyperedges share at least one vertex.

A natural question in this setting is: how many hyperedges can an intersecting k-uniform hypergraph on

n vertices have? A large intersecting k-uniform hypergraph on [n] can be constructed by designating one

vertex as special and forming hyperedges by selecting all possible k-element subsets containing that vertex.

After fixing one vertex, there are n−1 other vertices from which to pick the remaining k−1 vertices for each

hyperedge; thus, these maximal trivial intersecting k-uniform hypergraphs on [n] have
(
n−1
k−1
)

hyperedges in

total.

One of the oldest and most influential results in extremal combinatorics appears in the seminal 1961

paper of Erdős, Ko, and Rado [30] and shows for n > 2k that the construction above is extremal:

Theorem 2.1.3 (Erdős–Ko–Rado Theorem). If n ≥ 2k and H is an intersecting k-uniform hypergraph on

n vertices, then e(H) ≤
(
n−1
k−1
)
. Furthermore, for n > 2k equality holds above only if H is trivial.

In the case when n = 2k another intersecting k-uniform hypergraph with 1
2

(
2k
k

)
=
(
2k−1
k−1

)
=
(
n−1
k−1
)

hyperedges

can be constructed by taking exactly one hyperedge from each complementary pair E and Ec in
(
[2k]
k

)
. When

n < 2k, any two k-element subsets must share at least one element so the maximum number of hyperedges

in an intersecting k-uniform hypergraph on n vertices is
(
n
k

)
.

In joint work with Balogh, Das, Liu, and Sharifzadeh [9], we show that the trivial intersecting k-uniform

hypergraphs are typical:

Theorem 2.1.4. Let n and k = k(n) ≥ 3 be integers such that n ≥ 3k+8 ln k. Then there are (n+ o(1)) 2(n−1
k−1)

intersecting k-uniform hypergraphs on [n]. Thus, almost all intersecting k-uniform hypergraphs are trivial.

A great deal of modern research is still devoted to proving analogous versions of the Erdős–Ko–Rado

Theorem in other settings, e.g. [22], [27], [39], [42], [73]. Our proof that the typical structure of intersecting

uniform hypergraphs is trivial provides a general framework that works in a variety of other settings. The

remainder of this chapter is organized as follows. First is an outline of the proof method which holds for a

number of similar problems, followed by the proofs of related results for permutations, uniform hypergraphs,

and vector spaces, including both the versions for t-intersecting families as well as an exploration of the

sparse random setting. The chapter concludes with an exposition of an alternate approach using graph

containers followed by some open questions.
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2.2 General Framework

The general framework for analyzing the typical structure of intersecting families of discrete systems in

various settings consists of two stages. An intersecting family is said to be maximal if it is intersecting and

is not contained in a larger intersecting family. First we obtain a strong upper bound on the number of

maximal intersecting families. Next we combine this upper bound with known extremal and stability results

in order to bound the number of non-trivial intersecting families; in each setting, this allows us to conclude

that the trivial intersecting families are typical.

This section outlines the main ideas behind these steps, using intersecting k-uniform hypergraphs on

[n] as a running example. Section 2.3 will explore the setting of intersecting families of permutations,

Section 2.4 will return to intersecting k-uniform hypergraphs, and Section 2.5 will discuss analogous results

for intersecting families of vector spaces. In subsequent sections, we will also generalize these results by

proving analogous results for t-intersecting families and study what happens when we shift into the sparse

random setting.

For the sake of clarity, many calculations will be omitted from this section and carried out in greater

detail in Section 2.4.

2.2.1 Maximal Intersecting Families

Given a family of sets F ⊆
(
[n]
k

)
, we introduce the notion of the family of all sets intersecting every set in F ,

I(F) :=

{
G ∈

(
[n]

k

)
: ∀F ∈ F , G ∩ F 6= ∅

}
.

This family has some useful properties. We note that F is an intersecting family if and only if F ⊂ I(F),

and furthermore, F is a maximal intersecting family if and only if F = I(F). Given a maximal intersecting

family F , we refer to G ⊆ F as a generating set if F = I(G).

Let F be a maximal intersecting family and F0 = {F1, F2, . . . , Fs} ⊂ F be a minimal generating set of F .

This is well defined as F = I(F) and therefore F generates itself. Observe that, by the minimality of F0, we

have F = I (F0) ( I (F0 \ {Fi}) for each 1 ≤ i ≤ s because I (F0) ⊆ I (F0 \ {Fi}) but F 6= I (F0 \ {Fi}).

Hence for each i we can find some set Gi ∈ I (F0 \ {Fi})\F . Because Gi ∈ I (F0 \ {Fi}), we have Gi∩Fj 6= ∅

for all Fj ∈ F0 \{Fi}, and therefore Gi∩Fj 6= ∅ for all i 6= j; on the other hand, because Gi /∈ F = I(F0), we

must have that Gi ∩ Fi = ∅ for all i. To bound the size of F0, we may now apply Frankl’s skew version [34]

of the celebrated Bollobás Set-Pairs Inequality [15]:
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Theorem 2.2.1 (Skew-Symmetric Bollobás Set-Pairs Inequality). Let A1, . . . , Am be sets of size a and

B1, . . . , Bm be sets of size b such that Ai ∩ Bi = ∅ and Ai ∩ Bj 6= ∅ for every 1 ≤ i < j ≤ m. Then

m ≤
(
a+b
a

)
.

Given the collections of k-element subsets {F1, F2, . . . , Fs} and {G1, G2, . . . , Gs} from above, we construct a

system of set-pairs {(Ai, Bi)}2si=1 as follows. For 1 ≤ i ≤ s, let Ai = Fi and Bi = Gi, and for s+ 1 ≤ i ≤ 2s,

let Ai = Gi−s and Bi = Fi−s. From the argument above Gi ∩ Fi = ∅, and thus, Ai ∩ Bi = ∅ for every

1 ≤ i ≤ 2s. Furthermore, for all 1 ≤ i, j ≤ s with i 6= j, we know that Gi ∩ Fj 6= ∅. Therefore, Ai ∩Bj 6= ∅

for all 1 ≤ i, j ≤ s with i 6= j, and likewise Ai ∩ Bj 6= ∅ for all s + 1 ≤ i, j ≤ 2s with i 6= j. Because F is

intersecting then so is F0 ⊆ F and Ai ∩Bj 6= ∅ for all 1 ≤ i ≤ s and s+ 1 ≤ j ≤ 2s because Fi ∩ Fj−s 6= ∅.

Thus, Ai ∩ Bj 6= ∅ for every 1 ≤ i < j ≤ 2s. Thus, the set pairs {(Ai, Bi)} satisfy the conditions of

Theorem 2.2.1, and we may deduce that 2s ≤
(
2k
k

)
. Thus, |F0| = s ≤ 1

2

(
2k
k

)
.

The fact that every maximal intersecting family admits a small generating set allows us to bound the

number of maximal intersecting families.

Proposition 2.2.2. The number of maximal intersecting k-uniform hypergraphs on [n] is at most

1
2 (2k

k )∑
i=0

((n
k

)
i

)
≤
(
n

k

) 1
2 (2k

k )
.

Proof. We map each maximal intersecting k-uniform hypergraph F to a minimal generating set F0 ⊂ F .

Although F0 may not be unique, because F = I(F0), this map from F to F0 is injective. Using the Skew-

Symmetric Bollobás Set-Pairs Inequality as above, we see that |F0| ≤ 1
2

(
2k
k

)
, and hence, a bound for the

number of maximal intersecting k-uniform hypergraphs is provided by the number of sets of at most 1
2

(
2k
k

)
edges. This is precisely the summation above.

2.2.2 Non-trivial Intersecting Families

We now would like to combine our upper bound on the number of maximal families with other known

results in order to bound the total number of non-trivial intersecting families. We can then conclude that

the trivial intersecting families are typical. The crux of the argument relies on two simple observations.

The first point to observe is that any subset of a trivial intersecting family is also in fact itself a trivial

intersecting family. The second observation is that every non-trivial intersecting family must be a subset of

some maximal non-trivial family.

As follows, obtaining results that show both that the trivial intersecting families are the largest inter-

secting families and bounds the size of the largest non-trivial family away from the size of the largest trivial
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intersecting families is crucial. Fortunately this has been studied for a variety of discrete structures. The

following lemma gives sufficient conditions for the trivial families to be typical and will be applicable in all

of our settings:

Lemma 2.2.3. Let N0 denote the size of the largest trivial intersecting family, and let N1 denote the size

of the largest non-trivial intersecting family. Suppose further that there are at most M maximal intersecting

families. Provided

logM +N1 −N0 → −∞, (2.1)

almost all intersecting families are trivial. Moreover, if m is such that

logM −m log

(
N0

N1

)
→ −∞, (2.2)

then almost all intersecting families of size m are trivial.

Proof. Because a largest trivial intersecting family has size N0, and all of the subfamilies of the family

are also trivial intersecting families, there must be at least 2N0 trivial families. On the other hand, every

non-trivial intersecting family is a subset of a maximal non-trivial intersecting family. Each maximal non-

trivial intersecting family has size at most N1, and thus at most 2N1 subfamilies. Because there are at

most M maximal intersecting families, the number of non-trivial intersecting families is at most M2N1 . The

proportion of non-trivial families is thus at most M2N1/2N0 , which tends to 0 by (2.1). Hence, given (2.1),

almost all intersecting families are trivial.

For the second claim, observe that the number of trivial intersecting subfamilies of size m is at least(
N0

m

)
by considering all possible subfamilies of one fixed trivial intersecting family. On the other hand, each

non-trivial intersecting family has at most
(
N1

m

)
subfamilies of size m, and hence there are at most M

(
N1

m

)
non-trivial intersecting families of size m. We can thus bound the proportion of intersecting families of size

m that are non-trivial by

M

(
N1

m

)
/

(
N0

m

)
≤M

(
N1

N0

)m
,

which tends to 0 by (2.2); thus, almost all intersecting families of size exactly m are trivial as well.

As mentioned before in Theorem 2.1.3, the Erdős–Ko–Rado Theorem [30] states that for n > 2k, the

largest intersecting k-uniform hypergraphs over [n] are trivial, having size
(
n−1
k−1
)
. A natural next question

is: if we throw out the trivial families, then how large can an intersecting family be? A stability result was

given for intersecting k-uniform hypergraphs over [n] by Hilton and Milner [41] in 1967:
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Theorem 2.2.4 (Hilton–Milner Theorem). If n > 2k and H is a non-trivial intersecting k-uniform hyper-

graph on n vertices, then e(H) ≤
(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1.

These two results provide the values of N0 and N1 respectively, whereas M is given by Proposition 2.2.2.

Finally, having determined that almost all intersecting families are trivial, we still must count the number

of such families. The following lemma shows when the union bound over all maximal trivial families gives

an asymptotical correct result.

Lemma 2.2.5. Let T denote the number of maximal trivial intersecting families, and suppose they all have

the same size N0. Suppose further that two distinct maximal families can have at most N2 members in

common. Provided

2 log T +N2 −N0 → −∞, (2.3)

the number of trivial intersecting families is (T + o(1)) 2N0 .

Proof. Suppose F1, . . . ,FT are the maximal trivial intersecting families. Every trivial family is a subset of

some Fi, and hence the collection of trivial families is given by
⋃T
i=1 P(Fi). The Bonferroni Inequalities

state that, for any sets G1, . . . ,Gm,

m∑
i=1

|Gi| −
∑
i<j

|Gi ∩ Gj | ≤

∣∣∣∣∣
m⋃
i=1

Gi

∣∣∣∣∣ ≤
m∑
i=1

|Gi| .

Applying these inequalities with Gi = P(Fi) for 1 ≤ i ≤ m = T , we have |Gi| = |P(Fi)| = 2N0 and

|Gi ∩ Gj | = |P(Fi ∩ Fj)| ≤ 2N2 . This gives

∑
i

|Gi| = T · 2N0 and
∑
i<j

|Gi ∩ Gj | ≤ 2N2

(
T

2

)
< 22 log T+N2−N0 · 2N0 = o

(
2N0
)
,

from which the result follows.

This general framework, combined with the appropriate extremal and stability theorems, allows us to

obtain our results, although minor modifications are required in the various settings. In many settings,

these required extremal and stability results are well studied and what remains is to obtain a strong upper

bound on the number of maximal intersecting families. In the following sections in this chapter we present

calculations and describe the necessary changes needed to apply Lemmas 2.2.3 and 2.2.5 for permutations,

uniform hypergraphs, and vector spaces.
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2.3 Permutations

Let Sn denote the symmetric group on [n]. A family of permutations F ⊆ Sn is said to be intersecting if

any two permutations in F agree on some index; that is, for any σ, π ∈ F ,

|σ ∩ π| = |{i ∈ [n] : σ(i) = π(i)}| ≥ 1.

A example of a family of permutations F ⊆ Sn that is intersecting can be obtained by fixing i ∈ [n] and

(some not necessarily distinct value) j ∈ [n] such that for every σ ∈ F , σ(i) = j; this a trivial intersecting

family in the setting of permutations.

Deza and Frankl [22] proved an Erdős–Ko–Rado–type result (recall Theorem 2.1.3) for intersecting fam-

ilies of permutations in 1977:

Theorem 2.3.1. For n sufficiently large, an intersecting family F ⊆ Sn has size at most (n− 1)!.

In 2003 Cameron and Ku [17] and independently Larose and Malvenuto [52] showed that here equality holds

only if F is trivial. Ellis [25] showed a Hilton–Milner–type result (recall Theorem 2.2.4) for intersecting

families of permutations:

Theorem 2.3.2. For n sufficiently large, the largest non-trivial intersecting family F ⊆ Sn has size at most(
1− 1

e + o(1)
)

(n− 1)!.

We determine the typical structure of intersecting families in Sn using the general framework outlined in

Section 2.2, showing that trivial intersecting families are not just extremal but also typical:

Theorem 2.3.3. For n sufficiently large, almost all intersecting families of permutations in Sn are trivial,

and there are
(
n2 + o(1)

)
2(n−1)! intersecting families.

A family of permutations F ⊆ Sn is said to be t-intersecting if any two permutations in F agree on at

least t indices; that is, for any σ, π ∈ F ,

|σ ∩ π| = |{i ∈ [n] : σ(i) = π(i)}| ≥ t.

This is a natural generalization of intersecting; consider t = 1. The notion of trivial intersecting families

can also be generalized; a trivial t-intersecting family has a fixed t-element subset I ⊆ [n] and values

{ji : i ∈ I} such that for every σ ∈ F and i ∈ I, σ(i) = ji. In 2011 Ellis, Friedgut, and Pilpel [27] proved an

Erdős–Ko–Rado–type result for t-intersecting families of permutations:
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Theorem 2.3.4. For n sufficiently large with respect to t, a t-intersecting family F ⊆ Sn has size at most

(n− t)!, with equality only if F is trivial.

Ellis [25] showed an analogous Hilton–Milner–type result:

Theorem 2.3.5. For n sufficiently large with respect to t, a largest non-trivial t-intersecting family F ⊆ Sn

has size (1− 1/e+ o(1)) (n− t)!.

Our general framework extends to t-intersecting families in Sn as well, showing that trivial t-intersecting

families are typical in this setting.

Theorem 2.3.6. For any fixed t ≥ 1 and n sufficiently large, almost all t-intersecting families of permuta-

tions in Sn are trivial, and there are
((
n
t

)2
t! + o(1)

)
2(n−t)! t-intersecting families.

Theorem 2.3.3 follows as a corollary.

Additionally, we prove two extensions of Theorem 2.3.6 in the sparse setting. In the first we consider

t-intersecting families of permutations of size m. Note that each trivial t-intersecting family contains
(
(n−t)!
m

)
subfamilies of size m. The following result shows that, provided m is not too small, the number of non-trivial

t-intersecting families of m permutations is a lower-order term.

Theorem 2.3.7. For any fixed t ≥ 1, n sufficiently large, and n22n−2t+2 log n ≤ m ≤ (n − t)!, almost all

t-intersecting families of m permutations in Sn are trivial.

Secondly we obtain the following sparse extension of the result of Ellis, Friedgut, and Pilpel [27]. Let (Sn)p

denote the p-random subset of Sn, where each permutation in Sn is included independently with probability

p. Provided p is not too small, we show that with high probability the largest t-intersecting family in (Sn)p

is trivial. Note that Theorem 2.3.4 of Ellis, Friedgut, and Pilpel corresponds to the case when p = 1.

Theorem 2.3.8. For fixed t ≥ 1, n sufficiently large, and p = p(n) ≥ 800n22n−2t logn
(n−t)! , with high probability

every largest t-intersecting family in (Sn)p is trivial.

Following the framework introduced in Section 2.2, we first bound the number of maximal t-intersecting

families of permutations, and then deduce from this Theorems 2.3.6, 2.3.7, and 2.3.8.

Proposition 2.3.9. For any n ≥ t ≥ 1, the number of maximal t-intersecting families in Sn is at most

1
2 (2n−2t+2

n−t+1 )∑
i=0

(
n!

i

)
< nn2

2n−2t+1

.
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Proof. Following the proof of Proposition 2.2.2, for a maximal t-intersecting family F ⊂ Sn, we define

I(F) = {π ∈ Sn : ∀σ ∈ F , |π ∩ σ| ≥ t} .

Let F0 = {σ1, . . . , σs} ⊂ F be a minimal generating set. By the minimality of F0, for each 1 ≤ i ≤ s we

have F = I (F0) ( I (F0 \ {σi}) because I (F0) ⊆ I (F0 \ {σi}) but F 6= I (F0 \ {σi}). Therefore, for each

1 ≤ i ≤ s we can find some permutation τi ∈ Sn such that τi ∈ I (F0 \ {σi}) \ F , and thus, |σj ∩ τi| < t for

all i 6= j. On the other hand, because τi /∈ F = I(F0), we must have that |τi ∩ σi| ≥ t for all i.

We can think of families of permutations in Sn as n-uniform hypergraphs on [n]× [n] by assigning a set

Hπ of n ordered pairs to each permutation π ∈ Sn as follows

Hπ = {(1, π(1)), . . . , (n, π(n))}.

Observe that for any two permutations π and π′, |Hπ ∩Hπ′ | = |π ∩ π′|. We require this t-intersecting version

of the Bollobás Set-Pairs Inequality, proven by Füredi [36] to bound |F0|:

Theorem 2.3.10. Let A1, . . . , Am be sets of size a and B1, . . . , Bm be sets of size b such that we have

|Ai ∩Bi| < t and |Ai ∩Bj | ≥ t for 1 ≤ i < j ≤ m. Then m ≤
(
a+b−2t+2
a−t+1

)
.

We apply this to the sets {(Ai, Bi)}2si=1, where for 1 ≤ i ≤ s we take Ai = Hσi and Bi = Hτi , and for

s + 1 ≤ i ≤ 2s we set Ai = Hτi−s
and Bi = Hσi−s

. Hence, from the discussion above for 1 ≤ i, j ≤ s

we have that
∣∣Hσi

∩Hτj

∣∣ = |σi ∩ τj | < t if and only if i = j. Likewise for s + 1 ≤ i, j ≤ 2s we have that∣∣Hσi−s ∩Hτj−s

∣∣ = |σi−s ∩ τj−s| < t if and only if i = j. Because F is intersecting then so is F0 ⊆ F and∣∣Hσi
∩Hσj−s

∣∣ ≥ t for all 1 ≤ i ≤ s and s + 1 ≤ j ≤ 2s because |σi ∩ σj−s| ≥ t. Thus, the conditions of

Theorem 2.3.10 are satisfied, and hence we deduce that 2s ≤
(
2n−2t+2
n−t+1

)
. Thus, |F0| ≤ 1

2

(
2n−2t+2
n−t+1

)
.

Thus, to every maximal t-intersecting family F we may assign a distinct generating set of at most

1
2

(
2n−2t+2
n−t+1

)
permutations, giving the above sum as a bound on the number of maximal t-intersecting families.

The upper bound follows since n! ≤ nn and
(
2n−2t+2
n−t+1

)
≤ 22n−2t+2.

Given this bound, we apply Lemmas 2.2.3 and 2.2.5 to prove our enumerative results. Proposition 2.3.9

shows that we may take M = nn2
2n−2t+1

. Each trivial t-intersecting family, on the other hand, has to fix the

images of t indices. There are
(
n
t

)
ways to choose the indices,

(
n
t

)
ways to choose their images, and t! ways

to assign the images to the indices, and thus T =
(
n
t

)2
t! maximal trivial t-intersecting families. The required

extremal result is due to Ellis, Friedgut, and Pilpel [27], who showed that for n sufficiently large with respect

to t, the largest t-intersecting families in Sn are the trivial ones, with size N0 = (n− t)!. Moreover, note that
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there are at least t+1 fixed indices in the intersection of two trivial t-intersecting families, and so two distinct

maximal t-intersecting families can have at most N2 = (n− t−1)! members in common. The stability result

obtained by Ellis [25] shows that when t is fixed and n tends to infinity, the largest non-trivial t-intersecting

family has size N1 = (1− 1/e+ o(1)) (n − t)!. Combining these ingredients, we now prove Theorems 2.3.6

and 2.3.7.

Proof of Theorem 2.3.6. We first apply Lemma 2.2.3 to show that almost all t-intersecting families are trivial.

We have

logM +N1 −N0 = n22n−2t+1 log n− (1/e+ o(1)) (n− t)!→ −∞,

and so (2.1) is satisfied. This shows that the number of non-trivial t-intersecting families is o
(
2(n−t)!

)
.

We use Lemma 2.2.5 to count the number of trivial t-intersecting families. We see that (2.3) holds, since

2 log T +N2 −N0 = 2 log

((
n

t

)2

t!

)
+ (n− t− 1)!− (n− t)! ≤ 4t log(nt)− (n− t− 1)(n− t− 1)!→ −∞.

Hence the number of trivial t-intersecting families is
((
n
t

)2
t! + o(1)

)
2(n−t)!. As the non-trivial t-intersecting

families constitute a lower-order term, this completes the proof.

Proof of Theorem 2.3.7. To prove that almost every t-intersecting family of m permutations is trivial, we

show that (2.2) is satisfied. Indeed, for m ≥ n22n−2t+2 log n,

logM −m log

(
N0

N1

)
= n22n−2t+1 log n−m log

(
(n− t)!

(1− 1/e+ o(1)) (n− t)!

)
≤ n22n−2t+1 log n− 0.6m→ −∞.

Finally, we seek to prove Theorem 2.3.8, showing that when p ≥ 800n22n−2t logn
(n−t)! , with high probability

the largest t-intersecting family in the p-random set of permutations (Sn)p is trivial. Let T ⊂ Sn be a fixed

maximal trivial t-intersecting family, and let F1, . . . ,FM be all of the maximal non-trivial t-intersecting

families. Then the largest trivial t-intersecting family in (Sn)p has size at least |(T )p|, while the largest non-

trivial t-intersecting family has size maxi |(Fi)p|. In expectation, E [|(T )p|] = p |T | > p |Fi| = E [|(Fi)p|],

and our bound on M is strong enough for a union bound calculation to go through. We require the following

version of Hoeffding’s Inequality that is derived from [59, Theorem 2.3].
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Theorem 2.3.11 (Hoeffding). Let the random variables X1, X2, . . . , Xn be independent, with 0 ≤ Xk ≤ 1

for each k. Let X =
∑n
k=1Xk, let µ = E[X]. Then, for any ε > 0,

P (X ≥ (1 + ε)µ) ≤ exp

(
−1

2
ε2µ

)
and P (X ≤ (1− ε)µ) ≤ exp

(
−1

2
ε2µ

)
.

Proof of Theorem 2.3.8. Let (T )p = T ∩ (Sn)p, let (Fi)p = Fi ∩ (Sn)p, and set ε = 1/10. Let E0 be the

event that |(T )p| < (1 − ε)p |T | = (1 − ε)pN0, and let Ei be the event that |(Fi)p| > (1 + ε)pN1. Since

N0 = (n− t)! and N1 = (1− 1/e+ o(1)) (n− t)!, we have (1 + ε)pN1 < (1− ε)pN0. If there is a non-trivial

largest t-intersecting family in (Sn)p, we must have maxi |(Fi)p| ≥ |(T )p|, and so at least one of the events

Ej , 0 ≤ j ≤M , must hold.

Now |(T )p| ∼ Bin(N0, p), and so applying Theorem 2.3.11 with µ = pN0, we have P(E0) ≤ exp
(
−pN0

200

)
.

Similarly, for 1 ≤ i ≤ M , |(Fi)p| ∼ Bin(|Fi| , p), where |Fi| ≤ N1. Let X ∼ Bin(N1, p). Applying

Theorem 2.3.11 to X with µ = pN1, we have

P(Ei) = P(|(Fi)p| ≥ (1 + ε)pN1) ≤ P(X ≥ (1 + ε)pN1) ≤ exp

(
−pN1

200

)
.

Hence, by the union bound,

P

(
M⋃
i=0

Ei

)
= exp

(
−pN0

200

)
+Mexp

(
−pN1

200

)
≤
(
nn2

2n−2t+1

+ 1
)
· exp

(
−pN1

200

)
= o(1)

when p ≥ 800n22n−2t logn
(n−t)! ≥ 200

N1
n22n−2t+1 log n. Thus, for such p, the largest t-intersecting families in (Sn)p

are trivial with high probability.

2.4 Hypergraphs

For k ≥ 2 and 1 ≤ t < k, a k-uniform hypergraph H on vertex set [n] is t-intersecting if every pair of

edges shares at least t vertices. As before, in the case when t = 1, we call such families intersecting. A

t-intersecting family H is said to be trivial if every edge in H contains a fixed set of t vertices. In a classical

paper from 1961, Erdős, Ko, and Rado [30] proved the following analogue of Theorem 2.1.3 for t-intersecting

k-uniform hypergraphs on [n].

Theorem 2.4.1. For n ≥ t+ (k − t)
(
k
t

)3
, the largest t-intersecting k-uniform hypergraphs on [n] have size

at most
(
n−t
k−t
)
.

The following generalization of Theorem 2.4.1 was shown by Frankl [33] in 1978 for t > 14 and completed
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for all values of t in a result by Wilson [73] in 1984:

Theorem 2.4.2. For n ≥ (t + 1)(k − t + 1), the largest t-intersecting k-uniform hypergraphs on [n] have

size at most
(
n−t
k−t
)
.

Note that n ≥ (t+ 1)(k− t+ 1) is the best possible strengthening of the original result, Theorem 2.4.1, and

for intersecting families, when t = 1, this gives Theorem 2.1.3 when n ≥ 2k.

We show just beyond this bound that additionally the trivial t-intersecting k-uniform hypergraphs on [n]

are actually typical.

Theorem 2.4.3. Let n, k = k(n) ≥ 3 and t = t(n) ≥ 1 be integers such that n ≥ (t + 1)(k − t + 1) + ηk,t,

where

ηk,t =



k + 8 ln k for t = 1,

12 ln k for t = 2 and k − t ≥ 3,

1 for t ≥ 3 and k − t ≥ 3

31 for t ≥ 2 and k − t = 2,

18k for t ≥ 2 and k − t = 1.

Almost all t-intersecting k-uniform hypergraphs on [n] are trivial, and there are
((
n
t

)
+ o(1)

)
2(n−t

k−t)

t-intersecting k-uniform hypergraphs.

Observe that for ηk,t = 1, which we have for most values of t and k, this is the best possible result; when

n = (t + 1)(k − t + 1) the largest non-trivial t-intersecting hypergraphs on [n] are as large as the trivial

t-intersecting hypergraphs on [n]. In fact, there are many more of them, and hence for this n almost every

t-intersecting hypergraph on [n] is non-trivial.

However, there is no doubt that the case when t = 1 is the most natural and interesting to study.

Theorem 2.4.3 gives the asymptotic number of intersecting hypergraphs when n ≥ 3k+ 8 ln k. On the other

hand, it is known that the trivial hypergraphs are the largest when n ≥ 2k, and uniquely so when n ≥ 2k+1.

The following theorem, which we prove using spectral methods and the theory of graph containers, provides

a slightly weaker result that covers the entire range. The proof, along with an exposition of the graph

containers method, appears in Section 2.6.

Theorem 2.6.1. For k ≥ 3 and n ≥ 2k + 1, let I(n, k) denote the number of intersecting k-uniform

hypergraphs on [n]. Then

log I(n, k) = (1 + o(1))

(
n− 1

k − 1

)
.

Similarly to permutations, we are able to obtain a sparse version of the Erdős–Ko–Rado Theorem.

Let Hk(n, p) denote the p-random k-uniform hypergraph on [n], in which every edge in
(
[n]
k

)
is included
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independently with probability p. Balogh, Bohman, and Mubayi [7] initiated the study of intersecting

hypergraphs in the sparse random setting; among other results, they determined the size of the largest

intersecting subhypergraph of Hk(n, p) when k < n1/2−ε. Recently, Gauy, Hàn, and Oliveira [37] determined

the asymptotic size of the largest intersecting family for all k and almost all p. Hamm and Kahn [46] obtained

an exact result for k < ( 1
4−c)(n log n)1/2 for some small constant c and p�

(
n−k
k

)−1
, showing that with high

probability every largest intersecting subhypergraph of Hk(n, p) is trivial. We prove that the same holds for

k as large as linear in n, provided p is somewhat larger. Independently Hamm and Kahn [40] studied the

case n = 2k + 1 and p = 1− c for some constant c > 0.

Theorem 2.4.4. For 3 ≤ k ≤ n
4 , if

p = p(n) ≥
9n log

(
ne
k

) (
2k
k

)(
n
k

)(
n−k
k

)2 , (2.4)

then with high probability every largest intersecting subhypergraph of Hk(n, p) is trivial.

Observe that the lower bound on p in (2.4) is at most 9n log
(
ne
k

) (
2kn

(n−k)2

)k
, and is thus exponentially small

with respect to k log
(
n
k

)
.

We now return our attention to proving Theorems 2.4.3 and 2.4.4. The proof of Theorem 2.6.1 uses

a different method, and will be given in Section 2.6. We begin with a bound on the number of maximal

t-intersecting hypergraphs:

Proposition 2.4.5. The number of maximal t-intersecting k-uniform hypergraphs on [n] is at most

(2(k−t)+1
k−t )∑
i=1

((n
k

)
i

)
≤
(
n

k

)(2(k−t)+1
k−t )

.

Proof. The proof of this proposition follows the proof of Proposition 2.2.2, except we must replace The-

orem 2.2.1 with its t-intersecting version Theorem 2.3.10. This shows that every maximal t-intersecting

hypergraph yields a minimal generating set of at most 1
2

(
2(k−t)+2
k−t+1

)
=
(
2(k−t)+1
k−t

)
edges. Similar to before, the

number of maximal t-intersecting hypergraphs is bounded above by the number of sets of at most
(
2(k−t)+1
k−t

)
edges, giving the resulting upper bound above.

We shall now use Lemma 2.2.3 to show that almost every t-intersecting hypergraph is trivial. Propo-

sition 2.4.5 supplies us with the value of M required. The Erdős–Ko–Rado theorem [30] states that for n

sufficiently large, the largest t-intersecting hypergraphs are the trivial ones, which have size N0 =
(
n−t
k−t
)
.

Frankl [33] for t > 14 showed that n ≥ (t + 1)(k − t + 1) was the correct bound and Wilson [73] extended
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this result to all values of t.

Stability results for the Erdős–Ko–Rado Theorem have a long history, beginning with the Hilton–Milner

Theorem [41], which resolved the t = 1 case. After much incremental progress, Ahlswede and Khachatrian [5]

completely determined the largest non-trivial intersecting hypergraphs for all ranges of parameters. In our

range of interest, n ≥ (t+ 1)(k − t+ 1), there are two possible largest non-trivial hypergraphs:

H1 = {F : |F ∩ [t+ 2]| ≥ t+ 1} , and

H2 = {F : [t] ⊂ F, F ∩ [t+ 1, k + 1] 6= ∅} ∪ {[k + 1] \ {i} : 1 ≤ i ≤ t} .

Theorem 2.4.6 (Ahlswede–Khachatrian). Suppose n ≥ (t+1)(k−t+1). If k ≤ 2t+1, then the largest non-

trivial t-intersecting k-uniform hypergraph over [n] has size |H1|. If k ≥ 2t+ 2, then the largest non-trivial

hypergraph has size max {|H1| , |H2|}.

This theorem provides the value of N1 needed for Lemma 2.2.3. Before we proceed, we evaluate |H1|

and |H2|, making use of Pascal’s identity for binomial coefficients.

|H1| = (t+ 2)

(
n− t− 2

k − t− 1

)
+

(
n− t− 2

k − t− 2

)
=

(
n− t
k − t

)
−
(

1− (t+ 1)(k − t)
n− t− 1

)(
n− t− 1

k − t

)
. (2.5)

|H2| =
(
n− t
k − t

)
−
(
n− k − 1

k − t

)
+ t. (2.6)

In light of Theorem 2.4.6, we have N1 ≤ max {|H1| , |H2|}, which we estimate by

N1 ≤ max {|H1| , |H2|}

=

(
n− t
k − t

)
−min

{(
1− (t+ 1)(k − t)

n− t− 1

)(
n− t− 1

k − t

)
,

(
n− k − 1

k − t

)
− t
}

≤
(
n− t
k − t

)
−
(

1− (t+ 1)(k − t)
n− t− 1

)(
n− k − 1

k − t

)
+ t ≤

(
n− t
k − t

)
− 1

n

(
n− k − 1

k − t

)
+ n, (2.7)

where the last inequality holds for n ≥ (t+ 1)(k − t+ 1) + 1. We shall also use the following inequality for

a ≥ b ≥ r: (
a
r

)(
b
r

) =

r−1∏
j=0

a− j
b− j

≥
(a
b

)r
. (2.8)

Finally, to count the number of trivial families, we use Lemma 2.2.5. Since each trivial family fixes t

elements, there are T =
(
n
t

)
maximal trivial families. The intersection of any two such families must fix at

least t+ 1 elements, and so can have size at most N2 =
(
n−t−1
k−t−1

)
. With these preliminaries in place, we now

prove Theorem 2.4.3.
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Proof of Theorem 2.4.3. We will first prove that, for n, k and t as in the statement of the theorem, almost

all t-intersecting hypergraphs are trivial. To this end, we verify that (2.1) of Lemma 2.2.3 holds.

We start with the case t = 1. The Hilton–Milner Theorem states that when n > 2k, the largest non-trivial

intersecting hypergraph is H2, and so N1 = |H2| =
(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1. Recall that the trivial hypergraphs

have size N0 =
(
n−1
k−1
)
. Finally, since

(
n
k

)
≤ 2n, Proposition 2.4.5 shows that we may use logM ≤

(
2k−1
k−1

)
n.

Hence, using (2.6) and (2.8), we have

logM +N1 −N0 ≤
(

2k − 1

k − 1

)
n−

(
n− k − 1

k − 1

)
+ 1 ≤

(
n−

(
n− k − 1

2k − 1

)k−1)(
2k − 1

k − 1

)
+ 1.

For t = 1, we have n ≥ (t+ 1)(k − t+ 1) + ηk,t = 2k + ηk,1 = 3k + 8 ln k. We may bound

(
n− k − 1

2k − 1

)k−1
=

(
n− k − 1

2k − 1

)2(
n− k − 1

2k − 1

)k−3
≥ n2

16k2

(
1 +

8 ln k

2k − 1

)k−3
.

Since 1 + x ≥ exp(6x/11) for x ≤ 1, when k is large we have

k−2
(

1 +
8 ln k

2k − 1

)k−3
≥ k−2exp

(
48(k − 3) ln k

22k

)
≥ k−2exp(2 ln k) = 1.

Thus there is some constant c > 0 such that k−2
(

1 + 8 ln k
2k−1

)k−3
≥ c for all k, and thus

(
n−k−1
2k−1

)k−1
= Ω(n2).

Hence it follows that

(
n−

(
n−k−1
2k−1

)k−1)(
2k−1
k−1

)
− 1→ −∞.

We next handle the case k − t = 1. In this setting, we have k ≤ 2t + 1, and hence by Theo-

rem 2.4.6, the largest non-trivial hypergraph has size N1 = |H1|. Using
(
n
k

)
≤
(
ne
k

)k
, we may use

logM ≤ k log
(
ne
k

) (
2(k−t)+1
k−t

)
. Using (2.5) gives

logM +N1 −N0 ≤ k log
(ne
k

)(2(k − t) + 1

k − t

)
−
(

1− (t+ 1)(k − t)
n− t− 1

)(
n− t− 1

k − t

)
= 3k log

(ne
k

)
− (n− 2k) = 3k log

(ne
k

)
+ 2k − n.

This expression is increasing in k. Since we are assuming n ≥ (t+ 1)(k − t+ 1) + ηk,t = 2k + ηk,k−1 = 20k,

we substitute k = n/20 to obtain logM +N1 −N0 ≤ (3 log(20e)− 18)n/20→ −∞, since 3 log(20e) < 18.

Similar calculations show that when t ≥ 2 and k − t = 2, ηk,k−2 = 31 suffices. In this setting, we still

have N1 = |H1|. Using logM ≤ n
(
2(k−t)+1
k−t

)
and n ≥ (t+ 1)(k − t+ 1) + ηk,k−2 > 3k,

logM +N1 −N0 ≤ (10− ηk,k−2/3)n→ −∞.
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We now consider the remaining cases, when t ≥ 2 and k − t ≥ 3. In this range, the largest non-trivial

hypergraph has size N1 = max{|H1| , |H2|}. Using
(
n
k

)
≤ 2n, we have logM ≤ n

(
2(k−t)+1
k−t

)
≤ 2n

(
2(k−t)
k−t

)
.

By (2.7) and (2.8), and observing that n− k − 1 ≥ t(k − t) + ηk,t, we have

logM +N1 −N0 ≤ 2n

(
2(k − t)
k − t

)
− 1

n

(
n− k − 1

k − t

)
+ n

≤

(
3n− 1

n

(
n− k − 1

2(k − t)

)k−t)(
2(k − t)
k − t

)

≤

(
3n− n2

64(k − t)3

(
t(k − t) + ηk,t

2(k − t)

)k−t−3)(
2(k − t)
k − t

)
. (2.9)

If t = 2, then ηk,t = 12 ln k, and
t(k−t)+ηk,t

2(k−t) = 1 + 6 ln k
k−2 . Using 1 + x ≥ exp(6x/11) again, we find that

for large k,

(k − 2)−3
(

1 +
6 ln k

k − 2

)k−5
≥ (k − 2)−3exp

(
36(k − 5) ln k

11k

)
≥ k−3exp(3 ln k) = 1.

It follows that there is some constant c > 0 such that (k − 2)−3
(

2(k−2)+ηk,2

2(k−2)

)k−5
≥ c for all k.

If instead t ≥ 3, then (k − t)−3
(
t(k−t)+ηk,t

2(k−t)

)k−t−3
> (k − t)−3( 3

2 )k−t−3 → ∞ as k − t → ∞, and

thus there is some c > 0 such that (k − t)−3
(
t(k−t)+ηk,t

2(k−t)

)k−t−3
≥ c for all k > t. Hence, in either case,

n2

64(k−t)3

(
t(k−t)+ηk,t

2(k−t)

)k−t−3
= Ω(n2), and so from (2.9) it follows that logM +N1 −N0 → −∞.

Thus our choice of ηk,t ensures that for all k > t we have logM + N1 − N0 → −∞, satisfying (2.1) of

Lemma 2.2.3, thus showing that almost all t-intersecting k-uniform hypergraphs are trivial. To complete the

proof of Theorem 2.4.3, we need only count the number of trivial hypergraphs. By Lemma 2.2.5, it suffices

to verify (2.3). We have

2 log T +N2 −N0 = 2 log

(
n

t

)
+

(
n− t− 1

k − t− 1

)
−
(
n− t
k − t

)
≤ 2t log

(ne
t

)
−
(
n− t− 1

k − t

)
→ −∞

for k − t ≥ 2 or k − t = 1 and n ≥ 20t. It follows that there are
((
n
t

)
+ o(1)

)
2(n−t

k−t) t-intersecting k-uniform

hypergraphs on [n], as claimed.

We conclude this section with the proof of Theorem 2.4.4, showing that even in sparse random hyper-

graphs, when the edge probability is as given in (2.4) the largest intersecting subhypergraphs are trivial.

Proof of Theorem 2.4.4. The proof follows that of Theorem 2.3.8. Let T denote a fixed maximal trivial

hypergraph, and let (T )p = T ∩ Hk(n, p) be those edges of T selected in Hk(n, p). Let F1,F2, . . . ,FM be
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the maximal non-trivial hypergraphs, where by Proposition 2.4.5 we have M <
(
n
k

)(2k−1
k−1 )

< 2k log(ne
k )(2k−1

k−1 ),

and let (Fi)p = Fi ∩Hk(n, p) denote the corresponding random subhypergraphs.

Observe that |T | = N0 =
(
n−1
k−1
)
, while by the Hilton–Milner Theorem [41], |Fi| ≤ N1 =

(
n−1
k−1
)
−(

n−k−1
k−1

)
+ 1. Setting τ = p

(
n−k−1
k−1

)
/3, define events E0 = {|(T )p| ≤ pN0 − τ} and Ei = {|(Fi)p| ≥ pN1 + τ}

for 1 ≤ i ≤M . By our choice of τ , if none of the events {Ei}Mi=0 occur then |(T )p| > maxi {|(Fi)p|}, and so

the largest intersecting subhypergraphs in Hk(n, p) are trivial.

Applying Theorem 2.3.11, we find

P(E0) ≤ exp

(
− τ2

2pN0

)
and P(Ei) ≤ exp

(
− τ2

2pN1

)
≤ exp

(
− τ2

2pN0

)
.

Hence, by the union bound,

P
(
∪Mi=0Ei

)
≤ (M + 1)exp

(
− τ2

2pN0

)
≤
(

2k log(ne
k )(2k−1

k−1 ) + 1
)

exp

−p(n−k−1k−1
)2

18
(
n−1
k−1
)
→ 0

when p ≥ 9n log(ne
k )(2k

k )(n
k)

(n−k
k )

2 ≥ 18k log(ne
k )(2k−1

k−1 )(n−1
k−1)

(n−k−1
k−1 )

2 , giving the bound in (2.4).

As proven in [7], when k �
√
n log log n and logn

(n−1
k )
� p� ek

2/2n

(n
k)

, a simple first moment argument shows

that the largest intersecting subhypergraph of Hk(n, p) is non-trivial with high probability. This holds for

p considerably smaller than in (2.4), and it would be very interesting to determine the threshold at which

trivial hypergraphs become the largest intersecting subhypergraphs of Hk(n, p).

2.5 Vector Spaces

Let V be an n-dimensional vector space over a finite field Fq. The number of k-dimensional subspaces in V

is given by the Gaussian binomial coefficient

[
n

k

]
q

:=

k−1∏
i=0

qn−i − 1

qk−i − 1
.

A family F of k-dimensional subspaces of V is intersecting if dim(F1 ∩ F2) ≥ 1 for all pairs of subspaces

F1, F2 ∈ F . Taking all k-dimensional subspaces through a given 1-dimensional subspace yields a trivial

intersecting family in this context. Hsieh [42] proved an Erdős–Ko–Rado-type Theorem for vector spaces:

Theorem 2.5.1. For n ≥ 2k + 1, any intersecting family F of k-dimensional subspaces of V has size at

most
[
n−1
k−1
]
q
; and equality holds only if F is trivial.
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The results we obtain for permutations and hypergraphs can be extended to vector spaces as well, and

we determine here the typical structure of intersecting families of subspaces.

Theorem 2.5.2. If k ≥ 2, and either q = 2 and n ≥ 2k+ 2 or q ≥ 3 and n ≥ 2k+ 1, almost all intersecting

families of k-dimensional subspaces of Fnq are trivial, and there are
([
n
1

]
q

+ o(1)
)

2
[n−1
k−1]q intersecting families.

This result is related to algebraic geometry as the Grassmannian is the set of all k-dimensional subspaces in

an n-dimensional vector space.

In this section we prove Theorem 2.5.2, showing that almost all intersecting families of subspaces of a

finite vector space are trivial. We begin, as always, with a bound on the number of maximal families.

Proposition 2.5.3. The number of maximal intersecting families of k-dimensional subspaces of Fnq is at

most
(2k−1

k−1 )∑
i=0

([n
k

]
q

i

)
≤
[
n

k

](2k−1
k−1 )

q

.

Proof. Once again, we follow the strategy of Proposition 2.2.2, seeking to show that every maximal inter-

secting family of subspaces contains a minimal generating set of at most 1
2

(
2k
k

)
=
(
2k−1
k−1

)
subspaces. We

must replace Theorem 2.2.1 with its vector space analogue, proven by Lovász [55] and appearing in the form

below in [6].

Theorem 2.5.4 (Lovász). Let U1, . . . , Um be a-dimensional and V1, . . . , Vm be b-dimensional subspaces of a

vector space W over a field F such that Ui∩Vi = {0} and Ui∩Vj 6= {0} for 1 ≤ i < j ≤ m. Then m ≤
(
a+b
a

)
.

This gives a map from maximal intersecting families of subspaces to sets of at most
(
2k−1
k−1

)
subspaces,

resulting in the above bound.

This proposition gives a value for M to be used when applying Lemma 2.2.3. As stated above, the

corresponding extremal result was proven by Hsieh [42], who showed that when n ≥ 2k + 1, the largest

intersecting families are trivial, with sizeN0 =
[
n−1
k−1
]
q
. Each trivial intersecting family fixes a one-dimensional

subspace, and hence there are T =
[
n
1

]
q

maximal trivial intersecting families. The intersection of any two

fixes a two-dimensional subspace, and thus has size N2 =
[
n−2
k−2
]
q
. A stability result was obtained by Blokhuis,

Brouwer, Chowdhury, Frankl, Mussche, Patkós, and Szőnyi [13]:

Theorem 2.5.5. For q ≥ 3 and n ≥ 2k + 1 or q = 2 and n ≥ 2k + 2, the size of a largest non-trivial

intersecting family is
[
n−1
k−1
]
q
− qk(k−1)

[
n−k−1
k−1

]
+ qk.

We set N1 =
[
n−1
k−1
]
q
− qk(k−1)

[
n−k−1
k−1

]
+ qk when q ≥ 3 and n ≥ 2k+ 1 or q = 2 and n ≥ 2k+ 2. With these

results in hand, we prove Theorem 2.5.2.
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Proof of Theorem 2.5.2. We shall first verify that (2.1) of Lemma 2.2.3 holds, thus showing that almost all

intersecting families are trivial. Since either q ≥ 3 and n ≥ 2k + 1 or q = 2 and n ≥ 2k + 2, the extremal

and stability results hold, and thus M ≤
[
n
k

](2k−1
k−1 )

q
, N0 =

[
n−1
k−1
]
q

and N1 =
[
n−1
k−1
]
q
− qk(k−1)

[
n−k−1
k−1

]
q

+ qk.

This gives

logM +N1 −N0 = log

([
n

k

]
q

)(
2k − 1

k − 1

)
+ qk − qk(k−1)

[
n− k − 1

k − 1

]
q

. (2.10)

We bound the Gaussian binomial coefficients above and below by

q(n−k)k ≤
[
n

k

]
q

=

k−1∏
i=0

qn−i − 1

qk−i − 1
≤ (2qn−k)k

and use the fact that
(
2k−1
k−1

)
< 4k to show that the right-hand side of (2.10) is at most

k(n− k)4k log (2q) + qk − qk(k−1) · q(n−2k)(k−1) ≤ n24k log (2q) + qk − q(n−k)(k−1). (2.11)

If k = 2, then the right-hand side of (2.11) is 16n2 log(2q) + q2 − qn−2 → −∞ as n→∞. On the other

hand, if 3 ≤ k < n/2 then (n − k)(k − 1) ≥ 2(n − 2), so the right-hand side of (2.11) is bounded above by

n22n log (2q) + qn/2 − q2(n−2) →∞, since q2 > 2. In either case, we have logM +N1 −N0 → −∞, and, by

Lemma 2.2.3, almost all intersecting families are trivial.

Now we need only show that there are
([
n
1

]
q

+ o(1)
)

2
[n−1
k−1]q trivial families, which will follow by verify-

ing (2.3) and applying Lemma 2.2.5. We have

2 log T +N2 −N0 = 2 log

([
n

1

]
q

)
+

[
n− 2

k − 2

]
q

−
[
n− 1

k − 1

]
q

≤ 2n log q −
(

1− qk−1 − 1

qn−1 − 1

)[
n− 1

k − 1

]
q

≤ 2n log q − 1

2
qk(n−k) → −∞,

as required. This completes the proof.

2.6 Exposition with Containers

Classical problems from a number of different areas can be reformulated into questions concerning inde-

pendent sets in carefully constructed auxiliary hypergraphs. For intersecting families of k-element subsets

of the ground set [n] := {1, 2, . . . , n}, for example, the appropriate auxiliary graph has the vertex set con-

sisting of all k-element subsets of [n] with two vertices adjacent if and only if they are disjoint. Known as

the Kneser graph KG(n, k) in the literature, this graph has the property that subsets of vertex set corre-
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spond to k-uniform hypergraphs on [n]. Independent sets in the Kneser graph are of particular interest as

they correspond directly to intersecting hypergraphs. Thus, the problem of counting intersecting k-uniform

hypergraphs on [n] reduces to counting the number of independent sets in KG(n, k).

Figure 2.1: Independent Sets in Kneser Graphs

Independent sets in the Kneser graph, KG(n, k), correspond to intersecting k-uniform hypergraphs on [n]. Note that
the Petersen graph is isomorphic to the Kneser graph KG(5, 2).

Let i(H) denote the number of independent sets in hypergraph H. Every subset of a fixed independent

set is also an independent set; this is true for a largest independent set in H so there must be at least 2α(H)

independent sets where the independence number, denoted α(H), is the size of a largest independent set in

H. On the other hand, an upper bound for i(H) can be obtained by enumerating all possible candidates for

an independent set of H, namely any possible subset of the vertex set of size at most α(H). Thus, trivial

bounds for i(H) are

2α(H) ≤ i(H) ≤
α(H)∑
i=0

(
v(H)

m

)
.

For hypergraphs meeting certain technical conditions Balogh, Morris, and Samotij and independently

Saxton and Thomassen show the correct value of i(H) is closer to the trivial lower bound as

2α(H) ≤ i(H) ≤ 2(1+o(1))α(H).

For a number of hypergraphs corresponding to nice problems, this so called “containers method” applies.

For graphs, 2-uniform hypergraphs, the situation is more easily stated. Inspired by the work of Kleitman

and Winston [47], this approach was first used by Alon, Balogh, Morris, and Samotij [1] to count sum-free

subsets of abelian groups.

Although Theorem 2.4.3 provides very sharp results, it is somewhat incomplete in the case t = 1, as

we require n ≥ 3k + 8 ln k instead of the Erdős–Ko–Rado threshold n ≥ 2k + 1. In this section we prove
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Theorem 2.6.1, which fills in the gap with a slightly weaker result, providing the asymptotics of the logarithm

of the number of intersecting hypergraphs. We prove the following result using graph containers.

Theorem 2.6.1. For k ≥ 3 and n ≥ 2k + 1, let I(n, k) denote the number of intersecting k-uniform

hypergraphs on [n]. Then

log I(n, k) = (1 + o(1))

(
n− 1

k − 1

)
.

To prove this, we consider the following formulation of graph containers, appearing in the form below in a

paper by Kohayakawa, Lee, Rödl, and Samotij [48].

Theorem 2.6.2. Let G be a graph on N vertices, let R and ` be integers, and let β > 0 be a positive real.

Then, provided

e−β`N ≤ R, (2.12)

and, for every subset S ⊂ V (G) of at least R vertices, we have

e(S) ≥ β
(
|S|
2

)
, (2.13)

there is a collection of sets Ci ⊂ V (G), 1 ≤ i ≤
(
N
`

)
, such that |Ci| ≤ R + ` for every i and, for every

independent set I ⊂ V (G), there is some i satisfying I ⊂ Ci.

The condition of (2.13) in Theorem 2.6.2 requires large vertex subsets to induce subgraphs of positive

density; this is referred to as supersaturation in the literature. For hypergraphs supersaturation is rather

technical and can be difficult to show, but for graphs in particular this boils down to a checking a local

density condition. If a graph G satisfies this condition, then the “containers method” shows that each

independent set I in G can be labeled with a small subset S ⊂ I of size ` such that all independents sets

labeled with S ∈
(
[n]
`

)
are essentially contained in a single set Ci ⊂ V (G) that has few edges of G.

In the case at hand, namely the auxiliary graph in question is the Kneser graph KG(n, k), supersaturation

can be confirmed using spectral techniques; a similar approach is used by Gauy, Hàn, and Oliveira in [37].

A convenient way to relate the eigenvalues of a graph to the distribution of edges is the Expander Mixing

Lemma, of Alon and Chung [2].

Theorem 2.6.3 (Expander Mixing Lemma). Let G be a D-regular graph on N vertices, and let λ be its

second-largest eigenvalue in absolute value. Then for all S ⊆ V (G),

e(G[S]) ≥ D

2N
|S|2 +

λ

2N
|S| (N − |S|) .
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By definition, the Kneser graph KG(n, k) is a regular graph on N =
(
n
k

)
vertices because there are

(
n
k

)
ways to pick all possible k-element subsets from [n]. The degree of any vertex in KG(n, k) is D =

(
n−k
k

)
because the neighborhood of a vertex should consist of all k-element subsets that do not contain any elements

of the k-element set of the original vertex. Fortunately all of the eigenvalues of the Kneser graph are well-

known, they were determined in a seminal paper of Lovász [56].

Theorem 2.6.4. The eigenvalues of the Kneser graph KG(n, k) are

(−1)i
(
n− k − i
k − i

)
,

where i = 0, . . . , k.

Thus, the second largest eigenvalue (in absolute value) of the Kneser graph KG(n, k) is

λ := −
(
n− k − 1

k − 1

)
= − k

n− k

(
n− k
k

)
= − k

n− k
D.

Combined with Theorem 2.6.3, this gives the following supersaturation bound.

Proposition 2.6.5. Given ε > 0, any set S of at least (1 + ε)
(
n−1
k−1
)

vertices in the Kneser graph KG(n, k)

induces at least
(

1− 1
1+ε

)
Dn

N(n−k)
(|S|

2

)
edges.

Proof. Given a vertex set S with |S| ≥ (1 + ε)
(
n−1
k−1
)

= (1 + ε) kNn , we apply Theorem 2.6.3 and the fact

that the second largest eigenvalue is λ = − k
n−kD to obtain that

e(G[S]) ≥ D

2N
|S|2 +

λ

2N
|S| (N − |S|) ≥

(
D − λ
N

+
λ

|S|

)(
|S|
2

)
≥
(

1− 1

1 + ε

)
Dn

N(n− k)

(
|S|
2

)
.

Having established supersaturation, we may now apply Theorem 2.6.2 to find a small set of containers

of independent sets in the Kneser graph, from which we shall derive Theorem 2.6.1.

Proposition 2.6.6. For ε > 0 and 2 ≤ k ≤ n−1
2 , let R = (1 + ε)

(
n−1
k−1
)

and

` =
1 + ε

ε
·

(n− k)
(
n
k

)
n
(
n−k
k

) ln

(
n

(1 + ε)k

)
.

Then there exist k-uniform hypergraphs Fi over [n], 1 ≤ i ≤
((n

k)
`

)
, each of size at most R + `, such that

every intersecting k-uniform hypergraph F over [n] is a subhypergraph of Fi for some i.
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Proof. We apply Theorem 2.6.2 to the Kneser graph KG(n, k). By Proposition 2.6.5, Condition (2.13) is

satisfied by taking

β =

(
1− 1

1 + ε

)
Dn

N(n− k)
,

where D =
(
n−k
k

)
and N =

(
n
k

)
. In order to satisfy (2.12), we take

` =
1

β
ln

(
N

R

)
=

1

β
ln

(
n

(1 + ε)k

)
=

1 + ε

ε
·

(n− k)
(
n
k

)
n
(
n−k
k

) ln

(
n

(1 + ε)k

)
.

Applying Theorem 2.6.2, the result follows by taking Fi to be the hypergraph with edges Ci ⊂
(
[n]
k

)
, since

every intersecting k-uniform hypergraph is an independent set of KG(n, k).

From this we derive Theorem 2.6.1.

Proof of Theorem 2.6.1. Since there is an intersecting hypergraph of size
(
n−1
k−1
)
, and each of its subhyper-

graphs is also intersecting, we have a lower bound log I(n, k) ≥
(
n−1
k−1
)
. We therefore need to show that

log I(n, k) ≤ (1 + o(1))
(
n−1
k−1
)
. Using Proposition 2.6.6, we will show that for any ε > 0, log I(n, k) ≤

(1 + 2ε)
(
n−1
k−1
)
, provided n ≥ 2k + 1 is sufficiently large with respect to ε.

We know that every intersecting hypergraph is contained in one of
(
N
`

)
containers, each of size at most

R+ `, where R and ` are as in the statement of the proposition. By a simple union bound, the total number

of intersecting hypergraphs is at most
(
N
`

)
2R+`. Therefore, since N =

(
n
k

)
,

log I(n, k) ≤ R+ `+ ` log

(
Ne

`

)
= R+ ` log

(
2e
(
n
k

)
`

)
.

Because R = (1 + ε)
(
n−1
k−1
)
, it is enough to show that ` log

(
2e(n

k)
`

)
≤ ε
(
n−1
k−1
)
. We have

` =
1 + ε

ε
·

(n− k)
(
n
k

)
n
(
n−k
k

) ln

(
n

(1 + ε)k

)
≤

2
(
n
k

)
lnn

ε
(
n−k
k

) =
2k lnn

εn
(
n−k
k

) · (n− 1

k − 1

)
≤ lnn

ε
(
n−k
k

) · (n− 1

k − 1

)
,

and hence

` log

(
2e
(
n
k

)
`

)
≤ ` log

(
2εne

(
n−k
k

)
(1 + ε)(n− k)

)
≤
(
n−1
k−1
)

lnn

ε
(
n−k
k

) · log

(
4εe

(
n− k
k

))
≤ ε
(
n− 1

k − 1

)
, (2.14)

provided that ln(n) log
(

4εe
(
n−k
k

))
≤ ε2

(
n−k
k

)
. However, since n ≥ 2k + 1, we have

(
n−k
k

)
=
(
n−k
n−2k

)
≥(

n−k
1

)
= n − k = Ω(n), and so lnn · log

(
4εe
(
n−k
k

))
/
(
n−k
k

)
→ 0 as n → ∞. Thus (2.14) holds for n

sufficiently large. Letting ε→ 0, we have log I(n, k) ≤ (1 + o(1))
(
n−1
k−1
)
, as desired.
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We conclude this section by observing that the n ≥ 2k + 1 bound in Theorem 2.6.1 is best possible.

When n = 2k, the k-sets in [n] come in 1
2

(
n
k

)
=
(
n−1
k−1
)

complementary pairs, and a hypergraph is intersecting

if and only if it does not contain both edges from a single pair. We thus have I(n, k) = 3(n−1
k−1) when n = 2k.

For n < 2k, the complete hypergraph
(
[n]
k

)
is itself intersecting, and thus I(n, k) = 2(n

k).

Permutations

For t-intersecting families of permutations, the auxiliary graph is called the derangement graph Γt. The

vertex set of Γt is Sn and two permutations σ, τ ∈ Sn are adjacent in Γt if and only if |σ ∩ τ | < t. Thus,

t-intersecting families of permutations correspond to independent sets in Γt.

Let G be a group and S be a generating set. The Cayley graph Γ = Γ(G,S) has a vertex set G and edge

set
{
gh : gh−1 ∈ S

}
. Alternatively one can think of Γt as the Cayley graph on Sn generated by the set

FPFt = {σ ∈ Sn : σ has less than t fixed points} .

For example, for intersecting families, Γ1 is the Cayley graph on Sn generated by the set of fixed point free

permutations, i.e. {σ ∈ Sn : σ(i) 6= i ∀i ∈ [n]}. We note that Γt is a D-regular graph with

D = |FPFt| = n!

t−1∑
i=0

1

i!

n−i∑
j=0

(−1)j

j!
=

(
1

e
+ o(1)

)
n!

t−1∑
i=0

1

i!

on N = n! vertices.

Ellis, Friedgut, and Pilpel [27] calculate all of the eigenvalues of Γt; in particular the eigenvalue of interest

in applying the Expander Mixing Lemma. the second largest eigenvalue in absolute value, is the smallest

eigenvalue of Γt:

Theorem 2.6.7. For n sufficiently large, the least eigenvalue of Γt is

λ =

t−1∑
i=0

(
n

i

)
i− 1

n− 1
dn−i =

t−1∑
i=0

(
n

i

)
i− 1

n− 1

n−i∑
j=0

(−1)j
n− i!
j!

= n!

t−1∑
i=0

1

i!

i− 1

n− 1

n−i∑
j=0

(−1)j

j!
=

(
1

e
+ o(1)

)
n!

t−1∑
i=0

1

i!

i− 1

n− 1

=

(
1

e
+ o(1)

)
n!

n− 1

t−2∑
i=−1

i

(i+ 1)!
= −

(
1

e
+ o(1)

)
n!

n− 1

(
1−

t−2∑
i=1

i

(i+ 1)!

)

where dn−i denotes the number of derangements of Sn−i.
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Figure 2.2: Independent Sets in Derangement Graphs

Independent sets in the derangement graph on Sn, correspond to intersecting families in Sn. Here is the derangment
graph Γ1 for n = 3.

The analogous main result for permutations is:

Theorem 2.6.8. For n sufficiently large, the number of intersecting t-intersecting families of permutations

in Sn is

2(1+o(1))(n−t)!.

Invoking Theorem 2.6.3, we get the following supersaturation bound.

Proposition 2.6.9. Given ε > 0 and n sufficiently large, any set S of at least (1 + ε)(n− t)! vertices in the

derangment graph Γt induces at least 1
n−1

(
1
e + o(1)

) (∑t−1
i=0

n−i
i! + nt

(1+ε)

∑t−1
i=0

i−1
i!

) (|S|
2

)
edges.

Proof. Given a vertex set S with |S| ≥ (1 + ε)(n− t)!, we apply Theorem 2.6.3 and the fact that the second

largest eigenvalue in absolute value is λ = −
(
1
e + o(1)

)
n!
n−1

(
1−

∑t−2
i=1

i
(i+1)!

)
to obtain that

e(S) ≥
(
D − λ
N

+
λ

|S|

)(
|S|
2

)
≥
(

1

e
+ o(1)

)(t−1∑
i=0

1

i!

n− i
n− 1

+
n!

|S|

t−1∑
i=0

1

i!

i− 1

n− 1

)(
|S|
2

)

≥ 1

n− 1

(
1

e
+ o(1)

)(t−1∑
i=0

n− i
i!

+
n · . . . · (n− t+ 1)

(1 + ε)

t−1∑
i=0

i− 1

i!

)(
|S|
2

)

≥ 1

n− 1

(
1

e
+ o(1)

)(t−1∑
i=0

n− i
i!

+
nt

(1 + ε)

t−1∑
i=0

i− 1

i!

)(
|S|
2

)
.

We can combine this supersaturation result with Theorem 2.6.2 in order to find a small set of containers

of independent sets in the derangement graph. From this, we will be able to derive the main result, namely

Theorem 2.6.8.
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Proposition 2.6.10. For ε > 0 and n sufficiently large, let R = (1 + ε) (n− t)! and

` =
1

β
ln

(
n!

(1 + ε)(n− t)!

)
,

where β = 1
n−1

(
1
e + o(1)

) (∑t−1
i=0

n−i
i! + nt

(1+ε)

∑t−1
i=0

i−1
i!

)
. Then there exist families Fi ⊂ Sn, 1 ≤ i ≤

(
n!
`

)
,

each of size at most R+ `, such that every intersecting family F ⊂ Sn is a subfamily of Fi for some i.

Proof. We apply Theorem 2.6.2 to the derangement graph Γt. By Proposition 2.6.5, condition (2.13) is

satisfied by taking

β =
1

n− 1

(
1

e
+ o(1)

)(t−1∑
i=0

n− i
i!

+
nt

(1 + ε)

t−1∑
i=0

i− 1

i!

)
,

where D =
(
1
e + o(1)

)
n!
∑t−1
i=0

1
i! and N = n!. In order to satisfy (2.12), we take

` =
1

β
ln

(
N

R

)
=

1

β
ln

(
n!

(1 + ε)(n− t)!

)
≤ 1

β
ln
(
nt
)
≤ 1

β
t ln (n) .

Applying Theorem 2.6.2, the result follows by taking Fi to be the family Ci ⊂ Sn, since every t-intersecting

family of permutations is an independent set of Γt.

2.7 Further Directions and Open Questions

Inspired by this work, in a preprint from 2017 Frankl and Kupavskii [35] showed analogous results for pairs

of cross-intersecting families of hypergraphs; this work improves Theorem 2.1.4.

Two families of uniform hypergraphs F ⊆
(
[n]
k

)
and G ⊆

(
[n]
`

)
are said to be cross-intersecting if for

all F ∈ F and G ∈ G, then F ∩ G 6= ∅. Note F is a k-uniform hypergraph on [n] and G is an `-uniform

hypergraph on [n] with k not necessarily equal to `. Note that in this context, we do not stipulate that F

and G themselves be intersecting hypergraphs; we only care about pairs with one edge from F and the other

from G as well as that F and G live on the same ground set [n].

We will denote the number of pairs of cross-intersecting families of hypergraphs A ⊆
(
[n]
a

)
and B ⊆

(
[n]
b

)
with |A| = t by CI(n, a, b, t), and we define CI(n, a, b) :=

∑
t CI(n, a, b, t). Note that CI(n, a, b, 0) is simply

2(n
b) because if |A| = 0 then B can be any b-uniform hypergraph on [n]. Furthermore, we denote the number

of pairs of cross-intersecting families A ⊆
(
[n]
a

)
and B ⊆

(
[n]
b

)
with t1 ≤ |A| ≤ t2 by CI(n, a, b, [t1, t2]).

Using the Bollobás Set-Pairs Inequality [15], Frankl and Kupavskii [35] obtain an upper bound on the

number of maximal pairs of cross-intersecting families:
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Theorem 2.7.1. Choose a, b, n ∈ N and put c := max {a, b} , T :=
(
n−a+b−1
n−a

)
. For

n ≥ a+ b+ 2
√
c log c+ 2 max {0, a− b} ,

a, b→∞, and b� log a we have

CI(n, a, b) = (1 + δab + o(1)) 2(n
c), and

CI(n, a, b, [1, T ]) = (1 + o(1))

(
n

a

)
2(n

b)−(n−a
b ),

where δab = 1 if a = b and 0 otherwise.

Using this result, they are able to improve Theorem 2.1.4 as follows. As before, let I(n, k) denote the total

number of intersecting families F ⊆
(
[n]
k

)
. For a family F ⊆

(
[n]
k

)
the diversity γ(F) is defined as |F|−∆(F)

where ∆(F) := maxi∈[n] | {F : i ∈ F ∈ F} |. Let I(n, k,≥ t) denote the number of intersecting families with

diversity at least t and I(n, k, t) denote the number of intersecting families with diversity exactly t. Here

I(n, k,≥ 1) also counts the number of non-trivial intersecting families.

Theorem 2.7.2. For n ≥ 2k + 2 + 2
√
k log k and k →∞ we have

I(n, k) = (n+ o(1))2(n−1
k−1), and

I(n, k,≥ 1) = (1 + o(1))n

(
n− 1

k

)
2(n−1

k−1)−(n−k−1
k−1 ).

In this theorem,

n

(
n− 1

k

)
2−(n−k−1

k−1 ) ≤ 2n+1−(n−k
k )

k−1

≤ 2n+1−2n−2k

= o(1).

We see that I(n, k,≥ 1) = o
(

2(n−1
k−1)

)
whereas I(n, k, 0) = (n + o(1))2(n−1

k−1). Do analogous results hold in

other settings?

Two families of uniform hypergraphs F ⊆
(
[n]
k

)
and G ⊆

(
[n]
`

)
are said to be cross-t-intersecting if for all

F ∈ F and G ∈ G, then |F ∩ G| ≥ t. As is to be expected, when t = 1 the notion of cross-t-intersecting

families of uniform hypergraphs coincides the cross-intersecting families of uniform hypergraphs introduced

above.

Question 2.7.3. Does a similar result hold for cross-t-intersecting families of uniform hypergraphs?

Ellis, Friedgut, and Pilpel [27] studied a similar concept in the setting of permutations. More precisely,
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two families of permutations F ,G ⊆ Sn are said to be cross-t-intersecting if for all F ∈ F and G ∈ G, then

|F ∩G| ≥ t.

Question 2.7.4. Does the corresponding result hold for cross-t-intersecting families of permutations?

One can pursue these ideas for various other extremal problems in discrete mathematics. For example,

we say that a family of permutations of [n] is t-set-intersecting if for every pair of permutations σ, π there

is some t-set X ⊂ [n] such that σ(X) = π(X). Ellis [26] proved that for n sufficiently large, the biggest

t-set-intersecting families are trivial; namely, they send a fixed set of t indices to a fixed set of t images.

Question 2.7.5. In the setting of t-set-intersecting families of permutations, can we show that these trivial

families are also typical?

Question 2.7.6. In what other settings (for what other discrete structures) can we show that the trivial

families are also the typical ones?

Numerous other open problems remain. One of the motivating problems behind these results was the

sparse analogue of the Erdős–Ko–Rado Theorem. We show that for 3 ≤ k ≤ n/4 and p not too small, the

largest intersecting subhypergraphs of the random hypergraph Hk(n, p) are trivial with high probability.

This extends previous results, which held for k = O
(√
n log n

)
. However, there is a considerable gap

between our lower bound on p in Theorem 2.4.4 and the upper bound for which it is known that the sparse

Erdős–Ko–Rado theorem is false.

Question 2.7.7. What happens in this intermediate range of probabilities?

Different techniques will also be required to study the problem for larger k; in this direction, Hamm and

Kahn [40] recently established the sparse result for n = 2k + 1 and p = 1− c for some c > 0.

There is also the question of obtaining the sharp asymptotics on the number of intersecting k-uniform

hypergraphs, I(n, k). Theorem 2.4.3 gives these asymptotics for n ≥ 3k + 8 ln k, showing that almost all

intersecting hypergraphs are trivial. For n ≥ 2k+1, Theorem 2.6.1 provides a slightly weaker result, showing

log I(n, k) ≈
(
n−1
k−1
)
. New methods will be required to obtain the asymptotics of I(n, k) itself for the complete

range, as our bounds on the maximal intersecting families are not strong enough to apply when n ≤ 3k. It

is worth noting that when n = 2k + 1, the typical intersecting families are non-trivial, as the Hilton–Milner

families outnumber the trivial ones. However, we suspect that n ≥ 2k+ 2 may already suffice for the trivial

families to become typical.

The problem of enumerating maximal intersecting structures is interesting in its own right. Here we

provide reasonably sharp upper bounds through the use of the Bollobás set-pairs inequality and its variants.
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We can also obtain lower bounds of a similar nature. For instance, we construct t-intersecting k-uniform

hypergraphs in the following manner; for each bipartition of the form [2(k− t) + 2] = X1 ∪X2, we selecting

one of either X1 ∪ [2(k− t) + 3, 2k− t+ 1] or X2 ∪ [2(k− t) + 3, 2k− t+ 1] to be an edge in our hypergraph.

This procedure gives 2(2(k−t)+1
k−t ) total t-intersecting k-uniform hypergraphs, each of which can be ex-

tended to a distinct maximal t-intersecting k-uniform hypergraph over [n], while Proposition 2.4.5 gives an

upper bound of 2n(2(k−t)+1
k−t ). By using related constructions, we find similar lower bounds in the settings of

permutations and vector spaces. We believe the lower bounds to be closer to the truth, and more refined

arguments would be required in order to bridge the gap.
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Chapter 3

Star Decompositions of Random
Regular Graphs

3.1 Introduction

An orientation of a graph is an assignment of exactly one direction to each of the edges. A flow on a graph

G is a pair (D, f) where D is an orientation of G and f is a weight function on E(G) satisfying

∑
e∈δ+(v)

f(e) =
∑

e∈δ−(v)

f(e)

for all v ∈ V (G), where δ+(v) is the set of edges out of v and δ−(v) is the set of edges into v. For integer

valued k, a nowhere-zero k-flow on G is a flow using weights from the set

{−(k − 1),−(k − 2), . . . ,−2,−1, 1, 2, . . . , k − 2, k − 1} .

In particular, a nowhere-zero 3-flow on G is a flow using weights from the set {−2,−1, 1, 2}.

Recall that a graph is said to be d-edge-connected if one must remove at least d edges in order to disconnect

the graph. One of the most famous open problems in structural graph theory is the Nowhere-Zero 3-Flow

Conjecture by Tutte [69] from 1966:

Conjecture 3.1.1. Every 4-edge-connected graph has a nowhere-zero 3-flow.

A planar graph is a graph that can be embedded in the plane without crossings. A particular planar

embedding is referred to as a plane graph. The dual graph of a plane graph G is the graph with a vertex for

every face of G and an edge between two vertices when the corresponding faces are separated from each other

by an edge. Tutte [68] showed that there is a close relationship between nowhere-zero flows and colorings of

planar graphs. He observed that a nowhere-zero k-flow on a plane graph corresponds to a k-coloring in the

dual graph and vice-versa.

In 1959 Grötzsch [38] proved:

Theorem 3.1.2. Every triangle free (and loopless) planar graph G is 3-colorable.
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By the duality of coloring and nowhere-zero flows, this is equivalent to the following statement.

Theorem 3.1.3. Every 4-edge-connected planar graph has a nowhere-zero 3-flow.

Theorem 3.1.2 therefore shows that the Nowhere-Zero 3-Flow Conjecture is true for planar graphs.

A major breakthrough came in 2013 by L. M. Lovász, Thomassen, Wu, and Zhu [54]:

Theorem 3.1.4. Every 6-edge-connected graph has a nowhere-zero 3-flow.

However, the full conjecture still remains unsolved. As observed in [63], a graph G admits a nowhere-

zero 3-flow if and only if G has an orientation in which the difference between the out-degree and in-degree

of any vertex is divisible by 3. Furthermore, it is known that it is enough to prove the Nowhere-Zero 3-

Flow Conjecture for 5-regular graphs; e.g., see [18] or [3]; as mentioned in [3], an equivalent statement to

Conjecture 3.1.1 is:

Conjecture 3.1.5. Every 4-edge-connected, 5-regular graph has an orientation with in-degrees 4 or 1.

Despite some recent breakthroughs, this problem still seems intractable. In 2006 Barát and Thomassen [11]

introduced a natural, related question:

Question 3.1.6. Does every 4-edge-connected, 4-regular graph have an orientation with in-degrees 4 or 1?

Barát and Thomassen observed that the answer in general is no (e.g., see Figure 3.1) and posed the following:

Conjecture 3.1.7. Every 4-edge-connected, 4-regular planar graph has an orientation with in-degrees

4 or 1 (equivalently with out-degrees 0 or 3).

An interesting observation from Bollobás’s [14] book on random graphs, a typical d-regular graph is

d-edge-connected; thus, translating structural problems involving d-edge-connected, d-regular graphs to the

setting of random d-regular graphs is a natural idea. Thinking of results in this context provides additional

machinery and helps to shed light on these problems 2. The main result in this section, from joint work with

Postle, is as follows:

Theorem 3.1.8. A random 4-regular graph on n vertices has an orientation with out-degrees 0 or 3 asymp-

totically almost surely, provided that 2n is divisible by 3.

Although at first glance this appears to be a straightforward application of the second moment method, see

for instance Alon and Spencer [4]; however, this technique does not work here. Instead we use the Small

Subgraph Conditioning Method of Robinson and Wormald [61]. The remainder of this chapter consists of a

brief history of decomposing graphs into stars, the proof of the main result, and concludes with some open

questions.

2Some of this work was submitted in 2016; see [21].
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3.2 Orientations and Decomposing Graphs Stars

For a fixed subgraph F ⊆ G an F -decomposition of G is a partition of the edges of G into disjoint copies of

F . As Barát and Thomassen [11] note, decompositions of the edges of a graph G into copies of a small fixed

subgraph can be related to orientations with certain requirements. For instance, given a 4-regular planar

graph G, an orientation in G with out-degrees 0 or 3 corresponds to an S3-decomposition of G.

A question that has garnered much study is whether the edges of a graph G can be decomposed into

copies of a small fixed subgraph, say F . Of course, some natural divisibility conditions arise for such a

decomposition, namely that e(F ) must divide e(G). Here we are primarily interested when F is isomorphic

to a star. In 1957 Kotzig [50] observed that if G is connected and e(G) is even, then G decomposes into

copies of S2, the star with 2 leaves. What happens for larger stars? In particular, are there also natural

conditions as to if G decomposes into copies of F when F is isomorphic to the S3, the star with 3 leaves?

Not much was known about this problem until Thomassen’s [64] breakthrough results on the Weak 3-Flow

Conjecture. In particular, we note the following theorem which follows from a more general theorem of

L. M. Lovász, Thomassen, Wu, and Zhu [54].

Theorem 3.2.1. If F ' Sk, the star with k leaves, and G is a d-edge-connected graph such that k divides

e(G) and k ≤ dd/2e, then the edge set of G decomposes into copies of F .

We note that in fact Theorem 3.2.1 is actually tight. To see this, consider k > dd/2e copies of Kd

with edges added so that the resulting graph G is d-regular and d-edge-connected. If there existed an Sk-

decomposition of G, then because k > d/2, such a decomposition would naturally partition the vertices into

d
2kv(G) = d2

2 centers of the stars and 2k−d
2k v(G) = d(2k−d)

2 non-centers. However, the non-centers must form

an independent set, and thus, there are at most k of them, the desired contradiction (because k < d(2k−d)
2

when 2k − d ≥ 2).

Thus, when F is isomorphic to S3, Theorem 3.2.1 implies that a d-regular d-edge-connected graph G has

an F -decomposition if d ≥ 5 and 3 divides e(G). For d = 3, it is easy to observe that a 3-regular graph has

an S3-decomposition if and only if it is bipartite.

As for the case when d = 4, the construction in Figure 3.1 on the left provides a non-planar example of

a 4-regular 4-edge-connected graph G where 3 divides e(G) but G does not have an S3-decomposition. This

led Barát and Thomassen [11], who knew of this example, to conjecture in 2006 that every planar 4-regular

4-edge-connected graph G where 3 divides e(G) should have an S3-decomposition. Unfortunately in the

following year, Lai [51] presented a clever counterexample (replicated in Figure 3.1 on the right) to their

nice conjecture.
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Figure 3.1: 4-Regular 4-Edge-Connected Graphs

On the left is a non-planar 4-regular 4-edge-connected graph with no S3-decomposition.
On the right is Lai’s planar construction.

Given that a typical d-regular graph is d-edge-connected, a natural setting in which to study these

questions is that of random regular graphs. We utilize the configuration model (also known as the pairing

model in the literature) introduced by Bollobás [16] in 1980. Let d ≥ 1 and dn be even; we take a total

of dn points and partition them into n cells each consisting of exactly d points. Any perfect matching of

dn
2 pairs of points is said to be a configuration, also known as a pairing. Each configuration corresponds

to a multigraph (possibly with loops) where the cells are vertices and the pairs are edges. We denote the

uniform probability space of configurations by Pn,d. In the configuration model, we choose an element of

Pn,d uniformly at random and discard the result if the corresponding d-regular multigraph has either loops

or parallel edges. This was shown to be equivalent to choosing a d-regular (simple) graph on n vertices

uniformly at random (c.f. Wormald’s [74] survey paper for more details).

We consider orientations of the edges of a configuration where the out-degree of every cell is 0 or 3, where

the out-degree of a cell is defined to be the number of points in the cell that are the tail of some edge in the

orientation. We call such an orientation a (3, 0)-orientation.

The main result is as follows.

Theorem 3.2.2. A configuration in Pn,4 has a (3, 0)-orientation asymptotically almost surely, provided that

2n is divisible by 3.

Any 4-regular (simple) graph G on n vertices corresponds to exactly (4!)n = 24n configurations in Pn,4.

Because each such graph corresponds to the same number of configurations, it follows that G is a (uniformly)

random 4-regular (simple) graph in the configuration model. The probability that a configuration in Pn,4 is

simple tends to a positive constant as n tends to infinity (c.f. Wormald’s [74] survey paper for more details).
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Thus, we have the following as a corollary.

Corollary 3.2.3. The edges of a random 4-regular (simple) graph on n vertices can be decomposed into

copies of S3 asymptotically almost surely, provided that 2n is divisible by 3.

Our proof uses the small subgraph conditioning method of Robinson and Wormald [61]. We outline the

proof of our main result before proving the remaining required individual lemmas in Subsections 3.3.1, 3.3.2,

and 3.3.3. However, first we note the connections between this problem and other interesting problems.

There are many connections between orientations and decompositions; of particular interest is the fol-

lowing conjecture of Jaeger [43] from 1984:

Conjecture 3.2.4 (Circular Flow Conjecture). Let k ≥ 3 be odd. Every (2k − 2)-edge-connected graph G

has a mod k-orientation, that is, an orientation of E(G) such that for every vertex the difference between

its out-degree and in-degree is 0 mod k.

In 1988 Jaeger [44] proved that his conjecture reduces to the special case of odd regular graphs as follows.

Conjecture 3.2.5 (Jaeger’s Conjecture). Let k ≥ 3 be odd. Every (2k− 2)-edge-connected, (2k− 1)-regular

graph has a mod k-orientation, that is, an orientation of E(G) in which every in-degree is either (3k− 1)/2

or (k − 1)/2.

Note that when k = 3, Conjecture 3.2.4 is actually equivalent to Tutte’s Nowhere-Zero 3-Flow Conjec-

ture [69], one of the most famous open problems in structural graph theory. When k = 5, Jaeger’s Conjecture

implies the equally famous Tutte’s Nowhere-Zero 5-Flow Conjecture [68]. Thomassen [64] proved Conjec-

ture 3.2.4 for multigraphs when the edge-connectivity is at least 2k2 + k. L. M. Lovász, Thomassen, Wu,

and Zhang [54] later improved this and proved Conjecture 3.2.4 for graphs with edge-connectivity at least

3k − 3.

Despite these massive breakthroughs, proving Jaeger’s Conjecture still seems difficult. Yet, as noted

before, a typical (2k− 1)-regular graph is (2k− 1)-edge-connected, and therefore, a natural idea is to study

Conjecture 3.2.5 instead in the setting of random (2k−1)-regular graphs. Using spectral techniques, Jaeger’s

Conjecture was confirmed to hold for random regular graphs provided that k is large enough by Alon and

Pra lat [3] in 2011 as follows.

Theorem 3.2.6. For large k, Jaeger’s Conjecture holds asymptotically almost surely for random (2k − 1)-

regular graphs.

The proof makes use of the Expander Mixing Lemma and does not apply when k is too small.
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Recently, utilizing the small subgraph conditioning method of Robinson and Wormald [61], Pra lat and

Wormald [60] were able to confirm Jaeger’s Conjecture (Conjecture 3.2.5) for the case when k = 3, namely

they proved the following theorem.

Theorem 3.2.7. Tutte’s nowhere-zero 3-flow conjecture holds asymptotically almost surely for random

5-regular graphs.

Given these results, we were inspired to consider decompositions of random regular graphs, in particular

whether the Barát–Thomassen Conjecture might hold in the random case. Given Theorem 3.2.1, it is

also natural to wonder more generally whether random d-regular graphs have Sk decompositions for some

k > dd/2e. We believe our methods could be applied to these questions.

As for other subgraphs F , Barát and Thomassen [11] conjectured in 2006 that for every tree T , there

exists cT such that every cT -edge-connected graph has a decomposition of its edges into copies of F ' T .

Theorem 3.2.1 confirmed this when T is a star and indeed gives the best possible value of cT in that case.

More recently, Bensmail, Harutyunyan, Le, Merker, and Thomassé [12] proved the conjecture for all trees T .

However, determining what the best possible edge-connectivity is or, in the case of random regular graphs,

what the best possible degree is, are still open problems.

3.3 Proof of Main Theorem

Let Y = Y (n) denote the number of (3, 0)-orientations of a random element of Pn,4. In Subsection 3.3.1, we

approximate E[Y ] using Stirling’s approximation as follows.

Lemma 3.3.1.

E[Y ] ∼ 3√
2

(
27

16

)n/3
> 0.

In order to show that configurations admit at least one (3, 0)-orientation, we need to show that asymp-

totically almost surely Y > 0. A natural first approach is to attempt to use the second moment method

(coming from Chebyshev’s inequality) which says that if Y is a non-negative random variable and E[Y 2]
E[Y ]2 → 0

as n → ∞, then asymptotically almost surely Y > 0. To that end, we approximate E[Y 2] in Subsection

3.3.2 using optimization, Taylor expansions, and multivariable integration to obtain the following.

Lemma 3.3.2.

E[Y 2] ∼ 2πn

9
· 81

4πn

√
3

2
·
(

27

16

)2n/3

=

√
3

2
· 9

2

(
27

16

)2n/3

.

Unfortunately, we see that the second moment method does not apply because E[Y ]2 and E[Y 2] are of

the same order, as the following corollary notes.

45



Corollary 3.3.3.

E[Y 2]

E[Y ]2
∼
√

3

2
> 0.

Here we will use the small subgraph conditioning method of Robinson and Wormald [61]. We slightly

reformulate the version appearing in the 1999 survey paper of Wormald [74], stated here as Theorem 3.3.4,

as a “black box” for our calculations.

Theorem 3.3.4. Let λj > 0 and δj > −1 be real numbers, for all j ≥ 1. Suppose for each n there are

non-negative random variables Xj = Xj(n), j ≥ 1, and Y = Y (n) (defined on the same probability space)

such that Xj is integer valued and E[Y ] > 0 (for n sufficiently large). Furthermore, suppose that

(1.) for each j ≥ 1, X1, X2, . . . , Xj are asymptotically independent Poisson random variables with

E[Xi]→ λi, for all i ∈ [j];

(2.)

E
[
Y [X1]`1 . . . [Xj ]`j

]
E[Y ]

→
j∏
i=1

(λi (1 + δi))
`i

for any fixed `1, . . . , `j where [X]` is the falling factorial;

(3.) ∑
i≥1

λiδ
2
i <∞; and

E[Y (n)2]

E[Y (n)]2
≤ exp

∑
i≥1

λiδ
2
i

+ o(1) as n→∞.

Then, asymptotically almost surely Y > 0.

Here the distribution of Y is affected by small but not too common (expected number is bounded)

subgraphs of the random 4-regular graph, namely short cycles. In such situations we can attempt to apply

the small subgraph conditioning method. When this method works, by conditioning on the small subgraph

counts, we are able to control the variance of Y and in so doing show that Y > 0 asymptotically almost

surely.

To understand how this works, consider partitioning the set of all 4-regular graphs on n vertices (with

2n divisible by 3) by the number of triangles. Within each partition class, the expected number of (3, 0)-

orientations may be smaller than E[Y ], though by at most a constant factor. Meanwhile the variance inside

each class is smaller than the variance of Y . Applying the second moment method to the classes individually

yields an increase in the probability that Y > 0, yet it still does not show that this probability tends to

1 asymptotically. So we further partition the classes by the number of 4-cycles, then by the number of

5-cycles, and so on. Surprisingly, by conditioning on the numbers of all cycles, it is possible to reduce the

46



variance of Y to any desired fraction of E[Y ]2. Intuitively, this seems plausible as graphs that have the same

number of triangles, 4-cycles, etc. tend to have a similar structure and so admit less variance in the number

of S3-decompositions. Thankfully we do not actually perform such an analysis, relying on the method of

Robinson and Wormald [61]; for a proof see Janson’s [45] paper.

As in most applications of this method in the literature, we let Xj denote the number of cycles of

length j in the multigraph corresponding to a random element of Pn,4. Here, for j ≥ 1, X1, X2, . . . , Xj are

asymptotically independent Poisson random variables and

E[Xj ]→ λj :=
3j

2 · j
.

This is an immediate consequence of the following theorem of Bollobás [16] from 1980:

Theorem 3.3.5. For d fixed, let Xj denote the number of cycles of length j in the random multigraph

resulting from a configuration in Pn,d. For j ≥ 1, X1, . . . , Xj are asymptotically independent Poisson

random variables with means λj = (d−1)j
2·j .

In Subsection 3.3.3, we compute E[Y Xj ] as follows by extending orientations of small cycles to orientations

of the entire graph.

Lemma 3.3.6.

E[Y Xj ]

E[Y ]
∼ 3j

2 · j

(
1 +

(
−1

3

)j)
= λj

(
1 +

(
−1

3

)j)
.

An easy observation from the first examinations of random graphs is that, for any fixed subgraph H with

more edges than vertices, a multigraph corresponding to a random element of Pn,4 asymptotically almost

surely contains no subgraph isomorphic to H. Informally speaking, we would not expect to have two cycles

sharing edges (or for that matter vertices). Therefore, we concentrate on disjoint cycles and roughly think

of them as being independent. These observations combined with Lemma 3.3.6 imply the following more

general form of Lemma 3.3.6, which computes the joint factorial moments.

Corollary 3.3.7.

E
[
Y [X1]`1 . . . [Xj ]`j

]
E[Y ]

→
j∏
i=1

(
3i

2 · i

(
1 +

(
−1

3

)i))`i
=

j∏
i=1

(
λi

(
1 +

(
−1

3

)i))`i

holds for any fixed `1, . . . , `j will from this.

From Lemma 3.3.6,
E[Y Xj ]
E[Y ] ∼ λj

(
1 +

(
− 1

3

)j)
; thus, we set δj := −

(
1
3

)j
> −1 and verify the following.
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Lemma 3.3.8. ∑
i≥1

λiδ
2
i <∞ and exp

∑
i≥1

λiδ
2
i

 =

√
3

2
∼ E[Y 2]

E[Y ]2
.

Proof. Recall that λi = 3i

2·i . Using that
∑
i≥1

xi

i = − ln(1− x) for all −1 < x < 1, we obtain that

∑
i≥1

λiδ
2
i =

∑
i≥1

3i

2 · i
·
(
−1

3

)2i

=
1

2

∑
i≥1

(
1
3

)i
i

=
1

2
(− ln(2/3)) <∞.

Thus,

exp

∑
i≥1

λiδ
2
i

 = exp

(
1

2
(− ln(2/3))

)
=

√
3

2
.

Modulo proofs of Lemma 3.3.1 (proved in Subsection 3.3.1), Lemma 3.3.2 (proved in Subsection 3.3.2),

and Lemma 3.3.6 (proved in Subsection 3.3.3), we see that Theorem 3.3.4 now immediately implies our main

result as follows.

Proof of Main Result (Theorem 3.2.3). Let 3 divide n and Y = Y (n) denote the number of (3, 0)-orientations

of a random element of Pn,4. Let Xj denote the number of cycles of length j in a random element of Pn,4.

We now can apply Theorem 3.3.4 to Y and Xj . Note that condition (1.) holds by Theorem 3.3.5, condition

(2.) holds by Corollary 3.3.7, and condition (3.) holds by Lemma 3.3.8. Thus Y > 0 asymptotically almost

surely, as desired.

3.3.1 Expected Number of Decompositions

We let Y = Y (n) denote the number of (3, 0)-orientations of a random element of Pn,4. We will make

use of the following definition. Given n cells each consisting of 4 points, a signature is a set of 2n/3 points

no two belonging to the same cell. We call these points the special points of the signature. We refer to a

cell as a center if it contains a special point and as a leaf otherwise. We say a point is an in-point if it is

special or in a leaf of the signature and say it is an out-point otherwise.

We say a configuration in Pn,4 extends a signature if the configuration forms a perfect matching between

the in-points and the out-points of the signature. We note that a (3, 0)-orientation extends exactly one

signature. In this signature, the centers correspond to the 2n/3 cells of out-degree 3 in the orientation (here

the special point in each center is the head of the only incoming edge) and the leaves correspond to the

remaining n/3 cells of out-degree 0 in the orientation.
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Figure 3.2: A Signature and the Corresponding (3, 0)-orientation

Signatures correspond to (3, 0)-orientations of a random element of Pn,4.

To prove Lemma 3.3.1 though, we switch the order of counting and instead count the number of config-

urations that extend a given signature. We are now prepared to prove Lemma 3.3.1 as follows.

Proof of Lemma 3.3.1. There are a total of
(

n
2n/3

)
42n/3 signatures for n cells of 4 points. Recall that a

configuration extends a given signature if and only if the configuration matches the in-points of the signature

with its out-points. Thus, there are ( 4n
2 )! = (2n)! configurations that extend a given signature to a (3, 0)-

orientation. Using Stirling’s approximation s! ∼
√

2πs
(
s
e

)s
, we see that

E[Y ] =

(
n

2n/3

)
42n/3(2n)!

M(4n)
= 45n/3

(
n

2n/3

)(
4n
2n

) ∼ 3√
2

(
33

24

)n/3
=

3√
2

(
27

16

)n/3
> 0,

where

M(4n) =
(4n)!(

4n
2

)
! · 2(4n)/2

=
(4n)!

(2n)! · 22n

is the number of perfect matchings of 4n points.

3.3.2 The Second Moment Method

In order to calculate E[Y 2] for Lemma 3.3.2, we should count the number of pairs of signatures that

a given configuration extends. As in the proof of Lemma 3.3.1, we invert this count by fixing a pair of

signatures S1 and S2 and then calculating how many configurations that they both jointly extend. To
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Figure 3.3: Pairs of Signatures

An example of two signatures S1 and S2 that jointly extend to the same configuration.

facilitate this count, we consider how the two signatures overlap. One might think that there would be

some necessary restriction on how the signatures overlap in order to guarantee the existence of even one

configuration that they jointly extend, but strangely this is not the case.

Lemma 3.3.9. For each A and B, there are

(
n

A,B, 2n3 −A−B,
2n
3 −A−B,A+B − n

3

)
· 42( 2n

3 −A−B) · 4A · (4 · 3)B

pairs of signatures such that the number of cells that are centers of both signatures with the same special

point is A and the number of cells that are centers of both signatures with different special points is B.

Furthermore, for each such pair of signatures, there are

(3A+ 2B)! · (2n− 3A− 2B)!

configurations extending both signatures.

Proof of Lemma 3.3.9. Let A denote the number of cells that are centers in both S1 and S2 and have the

same special point. Let B denote the number of cells that are centers in both S1 and S2 and have different

special points. Note that A + B is maximized when all centers in S1 are centers in S2 as well; thus,

n
3 ≤ A+B ≤ 2n

3 .

We see that we may write E[Y 2] in terms of n, A, and B as follows. Let C1 denote the centers of S1 and

C2 the centers of S2. Note that |C1 ∩C2| = A+B. Hence |C1 \C2| = 2n
3 −A−B = |C2 \C1|. There are a
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total of n− |C1 ∪ C2| = A+B − n
3 remaining cells.

Of the 4n total points, 3A+ 2B are out-points of both signatures with 3A contained in centers with the

same special point and 2B contained in centers with different special points. There are also 3A+ 2B points

that are in-points in both signatures with A contained in centers with the same special point in S1 and S2,

2
(
2n
3 −A−B

)
contained in a leaf of one signature and contained in a center as a special point of the other,

and 4
(
A+B − n

3

)
contained in leaves of both S1 and S2.

Note there are 2n − 3A − 2B points that are out-points in S1 and in-points in S2 with B contained in

centers with different special points and 3
(
2n
3 −A−B

)
contained in a leaf of S2 and contained in a center

but not as a special point of S1. Similarly there are B + 3
(
2n
3 −A−B

)
= 2n − 3A − 2B points that are

in-points of S1 but out-points of S2.

Hence, by the discussion above, we see that for each possible value of A and B, there are

(
n

A,B, 2n3 −A−B,
2n
3 −A−B,A+B − n

3

)

ways to partition the cells into these types. There are 42(
2n
3 −A−B) ways to pick points that are in a leaf in

one signature but a special point in the other signature. There are 4A choices of special points from the

centers in both S1 and S2 that have the same special point. Likewise, there are (4 · 3)B ways to choose

special points for the centers of both S1 and S2 with different special points. This proves the first assertion.

For the second assertion, note that when extending two signatures, we need to ensure that in the con-

figuration the points that are in-points of S1 and in-points of S2 get matched to points that are out-points

of both S1 and S2; there are (3A+ 2B)! ways to do this. Similarly, we need to ensure that the points that

are in-points of S1 and out-points of S2 get matched to points that are out-points of S1 but in-points of S2

(and vice versa); there are (2n− 3A− 2B)! ways to do this.

Corollary 3.3.10.

E[Y 2] =
∑
A,B

(2n)! · n! · 4 7n
3 · 3B · (3A+ 2B)! · (2n− 3A− 2B)!

(4n)! · 4A+B ·A! ·B! ·
(
2n
3 −A−B

)
! ·
(
2n
3 −A−B

)
! ·
(
A+B − n

3

)
!

where A and B are non-negative integers such that n
3 ≤ A+B ≤ 2n

3 .

Proof of Corollary 3.3.10. The computation goes as follows. We range over all possibilities of how two

signatures may overlap, i.e. we range over A and B. Using Lemma 3.3.9 and tidying the formula gives that
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E[Y 2] =
1

M(4n)

∑
#pairs of signatures

#configurations extending both

=
22n(2n)!

(4n)!

∑
A,B

(
n

A,B, 2n3 −A−B,
2n
3 −A−B,A+B − n

3

)
· 42( 2n

3 −A−B) · 4A · (4 · 3)B · (3A+ 2B)! · (2n− 3A− 2B)!

=
∑
A,B

(2n)! · n! · 4 7n
3 · 3B · (3A+ 2B)! · (2n− 3A− 2B)!

(4n)! · 4A+B ·A! ·B! ·
(
2n
3 −A−B

)
! ·
(
2n
3 −A−B

)
! ·
(
A+B − n

3

)
!

It is useful to normalize A and B by letting a = A/n and b = B/n. We let L denote the region

L :=

{(
A

n
,
B

n

)
∈ R2 : A,B ∈ Z ∩ [0, 2n/3] and

n

3
≤ A+B ≤ 2n

3

}
.

Thus the sum in Corollary 3.3.10 ranges over L. We will also need to consider points of L but without

the restriction of A and B being integral. Thus we let R denote the region

R :=

{
(a, b) ∈ R2 : 0 ≤ a, b ≤ 2

3
and

1

3
≤ a+ b ≤ 2

3

}
.

To prove Lemma 3.3.2, we will apply Stirling’s formula to the formula in Corollary 3.3.10. Doing so will

yield an exponential part and a polynomial part.

To that end, we introduce the two following functions. First for the exponential part, let us define

f(a, b) :=b(ln 3− ln 4) + (2− 3a− 2b) ln(2− 3a− 2b) + (3a+ 2b) ln(3a+ 2b)− a(ln a+ ln 4)

− b ln b− 2

(
2

3
− a− b

)
ln

(
2

3
− a− b

)
−
(
a+ b− 1

3

)
ln

(
a+ b− 1

3

)
− 2

3
ln 4,

and therefore,

ef(a,b) =
22 · 4 7

3 · 3b · (2− 3a− 2b)(2−3a−2b) · (3a+ 2b)(3a+2b)

44 · 4a+b · aa · bb ·
(
2
3 − a− b

)( 2
3−a−b) ·

(
2
3 − a− b

)( 2
3−a−b) ·

(
a+ b− 1

3

)(a+b− 1
3 )
.

Now for the polynomial part, let us define

g(a, b) :=
1

2π
·
√

(3a+ 2b) · (2− 3a− 2b)

2 · (a+ 1
6n ) · (b+ 1

6n ) ·
(
2
3 − a− b+ 1

6n

)2 · (a+ b− 1
3 + 1

6n

) .
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We are now ready to apply Stirling’s formula to Corollary 3.3.2, where recall that the formula is s! =(
1 +O

(
1
s

))√
2πs

(
s
e

)s
. In fact, we apply a variant Stirling’s formula known as Gosper’s formula which is

s! =
(
1 +O

(
1
s

))√
π(2s+ 1

3 )
(
s
e

)s
. We do this because Stirling’s formula approximates 0! as 0 instead of 1,

which is unwieldy for division.

Lemma 3.3.11.

E[Y 2] =
∑

(a,b)∈L

S(a, b) · g(a, b)

n
· ef(a,b)n

where S(a, b) is the error term arising from the applications of Gosper’s formula.

Proof of Lemma 3.3.11. Using Gosper’s formula s! =
(
1 +O

(
1
s

))√
2π(s+ 1

6 )
(
s
e

)s
, we have the following

(where S
(
A
n ,

B
n

)
denotes the error factor arising from using Gosper approximations in the calculation below).

Thus,

E[Y 2] =
∑

(A
n ,

B
n )∈L

(2n)! · n! · 4 7n
3 · 3B · (3A+ 2B)! · (2n− 3A− 2B)!

(4n)! · 4A+B ·A! ·B! ·
(
2n
3 −A−B

)
! ·
(
2n
3 −A−B

)
! ·
(
A+B − n

3

)
!

=
∑

(A
n ,

B
n )∈L

S
(
A
n ,

B
n

)
·
√

24·π4·(2n+ 1
6 )·(n+

1
6 )·(3A+2B+ 1

6 )·(2n−3A−2B+ 1
6 )

26·π6·(4n+ 1
6 )·(A+ 1

6 )·(B+ 1
6 )·(

2n
3 −A−B+ 1

6 )
2·(A+B−n

3 + 1
6 )
· ef(

A
n ,

B
n )n

∼
∑

(a,b)∈L

S (a, b) · 1
2πn ·

√
(3a+2b)·(2−3a−2b)

2·(a+ 1
6n )·(b+ 1

6n )·( 2
3−a−b+

1
6n )

2·(a+b− 1
3+

1
6n )
· ef(a,b)n

=
∑

(a,b)∈L

S (a, b) · g (a, b)

n
· ef(a,b)n.

Multivariate Calculus

In order to approximate E[Y 2], we first need to determine the global maximum of f on the region L and

since we use continuous techniques, we will instead find the global maximum of f on R. To approximate

the function f , we then will take the Taylor expansion of f around the point attaining the global maximum,

since the maximum value (as we will show) is unique. We extend the definition of f continuously to the

boundary to the boundary of R by defining x lnx := 0 when x = 0. We prove the following.

Lemma 3.3.12. The global maximum of f on the region R is 2 ln(3) − 4
3 ln(4). This value is uniquely

achieved at P0 = (a0, b0) =
(
1
9 ,

1
3

)
. Furthermore, the Hessian matrix, D2f(P0), has determinant 81 and is

negative definite.
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Proof of Lemma 3.3.12. To examine the stationary points, we start by computing the first partials of f :

∂f

∂a
= −3 ln(2− 3a− 2b) + 3 ln(3a+ 2b)− ln a− ln 4 + 2 ln

(
2

3
− a− b

)
− ln

(
a+ b− 1

3

)

and
∂f

∂b
= ln 3− ln 4− 2 ln(2− 3a− 2b) + 2 ln(3a+ 2b)− ln b+ 2 ln

(
2

3
− a− b

)
− ln

(
a+ b− 1

3

)
.

By setting ∂f
∂a = 0, exponentiating both sides, and rearranging, we obtain

(3a+ 2b)3
(

2

3
− a− b

)2

= 4a(2− 3a− 2b)3
(
a+ b− 1

3

)
. (3.1)

By setting ∂f
∂b = ∂f

∂a , exponentiating both sides, and rearranging we obtain 3a(2− 3a− 2b) = b(3a+ 2b); this

simplifies to

6a− 9a2 = 9ab+ 2b2. (3.2)

The only solutions in common to both equations (3.1) and (3.2) that lie in R are
(
1
9 ,

1
3

)
and

(
2
3 , 0
)
. We next

compute that f
(
1
9 ,

1
3

)
= 2 ln(3)− 4

3 ln(4) ≈ 0.348832 and f
(
2
3 , 0
)

= ln(3)− 2
3 ln(4) = 1

2 ·f
(
1
9 ,

1
3

)
≈ 0.174416.

Now we examine the boundary of R. Along the segment a = 0 and 1
3 ≤ b ≤ 2

3 , the maximum value

f(0, b) ≈ 0.253344 occurs when b ≈ 0.393226. Along the segment a = 1
3 − b and 0 ≤ b ≤ 1

3 , the maximum

value f(a, b) ≈ 0.245950 occurs when a ≈ 0.052556 and b ≈ 0.280776. Along the segment b = 0 and

1
3 ≤ a ≤ 2

3 , f is maximized when a = 2
3 ; as above, f

(
2
3 , 0
)
≈ 0.174416. Along the segment a = 2

3 − b and

0 ≤ b ≤ 2
3 , the maximum value of f occurs when b = 0; as above f

(
2
3 , 0
)
≈ 0.174416.

Therefore, the unique global maximum occurs at P0 = (a0, b0) =
(
1
9 ,

1
3

)
. This proves the first assertion.

Note that this corresponds to setting 3a+ 2b = 2− 3a− 2b and therefore 3A+ 2B = 2n− 3A− 2B = n. In

other words, the number of points that are in-points of one signature and out-points of the other is equal to

the number of points that are either in-points of both signatures or out-points of both signatures.

To compute the Hessian, first we take second partials of f and evaluate at P0:

∂2f

∂a2
=

9

2− 3a− 2b
+

9

3a+ 2b
− 1

a
− 2

2
3 − a− b

− 1

a+ b− 1
3

,

∂2f

∂a∂b
=

∂2f

∂b∂a
=

6

2− 3a− 2b
+

6

3a+ 2b
− 2

2
3 − a− b

− 1

a+ b− 1
3

,

and
∂2f

∂b2
=

4

2− 3a− 2b
+

4

3a+ 2b
− 1

b
− 2

2
3 − a− b

− 1

a+ b− 1
3

.
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Note that

∂f

∂a

∣∣∣
P0

= 0,
∂f

∂b

∣∣∣
P0

= 0,
∂2f

∂a2

∣∣∣
P0

= −9,
∂2f

∂a∂b

∣∣∣
P0

=
∂2f

∂b∂a

∣∣∣
P0

= −6, and
∂2f

∂b2

∣∣∣
P0

= −13.

Thus, Hessian matrix of f evaluated at P0 is

H := D2f(P0) =

−9 −6

−6 −13

 .

The determinant of H is 81 with eigenvalues −11 + 2
√

10 and −11− 2
√

10; thus, H is negative definite (this

also implies that P0 must be a local maximum).

Integrating

We are ready to prove Lemma 3.3.2. We use a Taylor expansion around P0 combined with multivariable

Gaussian integrals to calculate E[Y 2] more precisely.

Proof of Lemma 3.3.2. As before, we denote the Hessian matrix of f evaluated at P0 by

H := D2f(P0) =

−9 −6

−6 −13

 .

We denote the gradient vector of f evaluated at P0 by

D := Df(P0) =

[
∂f

∂a

∣∣∣
P0

,
∂f

∂b

∣∣∣
P0

]
= [0, 0].

We integrate near the maximum using a second-order Taylor series expansion. Let [P − P0] denote a row

vector with components [(a− a0), (b− b0)] = [(a− 1
9 ), (b− 1

3 )], and let [P −P0]T be the transpose, a column

vector. This gives that f(a, b) = f(P ) near P0 is

f(P ) = f(P0) +D[P − P0]T +
1

2
[P − P0]H[P − P0]T +O

(
‖P − P0‖3

)
= f(P0) +

1

2
[P − P0]H[P − P0]T +O

(
‖P − P0‖3

)
.

By Taylor’s Theorem, we note that the error is valid provided that ‖P − P0‖ = o(1). As below, we see
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that

E[Y 2] ∼ 2πn

9
· g(P0)

n
· ef(P0)n =

2πn

9
· 81

4πn
·
√

3

2
·
(

27

16

)2n/3

=

√
3

2
· 9

2

(
27

16

)2n/3

,

and therefore, E[Y 2]
E[Y ]2 ∼

√
3
2 .

By Lemma 3.3.11,

E[Y 2] =
∑

(a,b)∈L

S(a, b) · g(a, b)

n
· ef(a,b)n,

where S(a, b) is the error term arising from the applications of Gosper’s formula.

Let R′ =
{
P ∈ R : ‖P − P0‖ = o(n−1)

}
and L′ = L ∩ R′. Note that for all P ∈ R′, S(P )g(P ) ∼ g(P0)

because S (P ) ∼ 1 and ‖P − P0‖3 = o(n−3). Here

g(P0) =
1

2π
·
√

1 · 1
2 · 13 ·

1
9 ·
(
2
9

)2 · 19 =
1

2π
·
√

3 · 94
8

=
81

4π
·
√

3

2
.

Thus,

∑
P∈L′

S(P ) · g(P )

n
· ef(P )n ∼ g(P0)

n
·
∑
P∈L′

ef(P )n ∼ g(P0)

n
· ef(P0)n ·

∑
P∈L′

exp

(
1

2
[P − P0]H[P − P0]Tn

)

=

(
27

16

)2n/3

· 81

4πn
·
√

3

2
·
∑
P∈L′

exp

(
1

2
[P − P0]H[P − P0]Tn

)
.

We note then that if we divide the sum by a factor of n2, then this becomes a Riemann sum over R′.

That Riemann sum in turn approximates an integral as n→∞. Hence

∑
P∈L′

exp

(
1

2
[P − P0]H[P − P0]Tn

)
= n2 ·

∫ ∫
P∈R′

exp

(
1

2
[P − P0]H[P − P0]Tn

)
dP.

Now we change variables by letting x = (a− 1
9 )
√
n and y = (b− 1

3 )
√
n for P = (a, b). Note that the region

of x, y corresponding to R′ is the whole real plane. Thus, this change of variable transforms the integral into

∫ ∫
P∈R′

exp

(
1

2
[P − P0]H[P − P0]Tn

)
dP ∼ 1

n
·
∫ ∫

R2

exp

(
[x, y]

H

2
[x, y]T

)
dxdy,

where H is the Hessian matrix of f evaluated at P0. Diagonalizing and using the Gaussian integral, that

is
∫∞
−∞ e−x

2

dx =
√
π, we see that the integral evaluates to
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1

n
·

√
π2

|det H2 |
=

1

n
·

√
4 · π2

|detH|
=

2π

9n
,

since detH = 81 by Lemma 3.3.12. Therefore,

∑
P∈L′

S(P ) · g(P )

n
· ef(P )n ∼ 2π

9n
· 81n

4π
·
√

3

2
·
(

27

16

)2n/3

=

√
3

2
· 9

2

(
27

16

)2n/3

.

Because H is negative definite, the value of f on the boundary of R′ is f(P0) − Ω(n−2). However, f is

independent of n and P0 is a global maximum. Thus,

max
P∈R\R′

f(P ) = f(P0)− Ω(n−2) = 2 ln(3)− 4

3
ln(4)− Ω(n−2).

Observe that

E[Y 2] =
∑

(a,b)∈L

S(a, b) · g(a, b)

n
· ef(a,b)n

=
∑

(a,b)∈L\L′
S(a, b) · g(a, b)

n
· ef(a,b)n +

∑
(a,b)∈L′

S(a, b) · g(a, b)

n
· ef(a,b)n

∼
∑

(a,b)∈R\R′
S(a, b) · g(a, b)

n
· ef(a,b)n +

√
3

2
· 9

2

(
27

16

)2n/3

.

Now consider P = (a, b) ∈ L\L′. Since L\L′ ⊆ R\R′, we have that ef(a,b)n =
(
27
16

)2n/3 · exp
(
−Ω

(
n1/2

))
.

Yet S(a, b) = O(1) and g(a, b) = O(n5/2) as each of the terms in the denominator of g are O(n).

Thus for each (a, b) ∈ L\L′, we see that

S(a, b) · g(a, b)

n
· ef(a,b)n =

(
27

16

)2n/3

· exp
(
−Ω

(
n1/2

))
.

Note that as there are only a polynomial number of points in L\L′, namely at most n2, the sum over

points in L\L′ is also
(
27
16

)2n/3 · exp
(
−Ω

(
n1/2

))
. Therefore, E[Y 2] ∼

√
3
2 ·

9
2

(
27
16

)2n/3
, as desired.

3.3.3 Joint Factorial Moments

In this section, we prove Lemma 3.3.6. By definition,

E[Y Xj ] =
1

M(4n)

∑
j-cycle C

(# orientations of cycle C) · (# extensions of orientations of C).
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Note that this is equivalent to

E[Y Xj ] =
1

M(4n)

∑
oriented j-cycle C

# extensions of orientations of C.

By counting how many configurations extends such oriented cycles, we will prove the following.

Lemma 3.3.13. The number of oriented cycles with s sinks and sources is

[n]j
j

(
j

2s

)
(4 · 3)j ,

while the number of extensions to (3, 0)-orientations for any oriented cycle is

(
n− j

2n
3 − j + s

)
4

2n
3 −j+s · 2s (2n− j)!

Therefore, we have that

E[Y Xj ] =
[n]j

M(4n) · j
42n/33j

bj/2c∑
s=0

(
j

2s

)(
n− j

2n
3 − j + s

)
23s(2n− j)!

Proof. Any oriented cycle must have the same number of sources (vertices with out-degree equal to 2) and

sinks (vertices with out-degree equal to 0); an oriented cycle of length j can have s sources, s sinks and

j− 2s other vertices for some 0 ≤ s ≤
⌊
j
2

⌋
. The number of oriented cycles of length j with exactly s sources

and sinks is

[n]j
j

(
j

2s

)
(4 · 3)j .

To see this, choose a set of j vertices (
(
n
j

)
ways). The number of cyclic permutations of j entries is (j−1)!

2 ,

where we divide by 2 for reversing the cycle and we can pick sources and sinks in 2
(
j
2s

)
ways (the sources and

sinks must alternate around the cycle). Finally, every vertex in the cycle needs to pick two of its 4 points in

ordered fashion from the configuration for endpoints of edges in the cycle.

Let C be a cycle of length j; vertices that are sinks in C cannot have out-degree 3 and so are not centers.

All other vertices must be centers. Thus the number of leaves in C is s and the number of centers in C is

j − s. The number of extensions is then given by first completing the signature.

To this end, we choose 2n
3 − (j − s) of the n− j vertices outside of C to be centers and choose a special

point for each such center. For each source, for the non-cycle edges we must orient one edge out and one

edge in which gives 2s choices. The cycle is already matched so this gives that the number of extensions to
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(3, 0)-orientations for any oriented cycle is

(
n− j

2n
3 − j + s

)
4

2n
3 −j+s · 2s

(
4n− 2j

2

)
! =

(
n− j

2n
3 − j + s

)
4

2n
3 −j+s · 2s (2n− j)!

Therefore the whole expression is

E[Y Xj ] =
1

M(4n)

bj/2c∑
s=0

[n]j
j

(
j

2s

)
(4 · 3)j

(
n− j

2n
3 − j + s

)
4

2n
3 −j+s · 2s(2n− j)!

=
[n]j

M(4n) · j
42n/33j

bj/2c∑
s=0

(
j

2s

)(
n− j

2n
3 − j + s

)
23s(2n− j)!

Recall that

E[Y ] =

(
n

2n/3

)
42n/3(2n)!

M(4n)
.

We are now ready to prove Lemma 3.3.6 as follows.

Proof of Lemma 3.3.6. In the computation of
E[Y Xj ]
E[Y ] , we use the following approximation where y is a

constant and x goes to infinity,

x!

(x− y)!
∼

√
2πx

(
x
e

)x√
2π(x− y)

(
x−y
e

)x−y ∼ (xe)y ·
(

x

x− y

)x−y
=
(x
e

)y
·
(

1 +
y

x− y

)x−y
∼
(x
e

)y
· ey = xy.

Thus,

E[Y Xj ]

E[Y ]
=

n!

j · (n− j)!
3j
bj/2c∑
s=0

(
j

2s

)( n−j
2n
3 −j+s

)(
n

2n/3

) (2n− j)!
(2n)!

23s

=
3j

j

bj/2c∑
s=0

(
j

2s

) (
2n
3

)
!(

2n
3 − j + s

)
!

(
n
3

)
!(

n
3 − s

)
!

(2n− j)!
(2n)!

23s

∼ 3j

j

bj/2c∑
s=0

(
j

2s

)(
2n

3

)j−s (n
3

)s 23s

(2n)j
=

1

j

bj/2c∑
s=0

(
j

2s

)
22s.

Note that
(
j
2s

)
is the coefficient of x2s in q(x) := (1 + x)j , so
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E[Y Xj ]

E[Y ]
∼ 1

j

bj/2c∑
s=0

(
j

2s

)
22s =

1

j
· (q(2) + q(−2))

2
=

1

2 · j
(
3j + (−1)j

)
=

3j

2 · j

(
1 +

(
−1

3

)j)
= λj

(
1 +

(
−1

3

)j)
.

3.4 Further Directions and Open Questions

Our main result implies that a random 4-regular graph has an S3-decomposition asymptotically almost

surely. A natural question is: do random d-regular graphs (with the correct edge divisibility) have edge

decompositions into stars Sk?

Conjecture 3.4.1. A random d-regular graph has a Sk-decomposition asymptotically almost surely for

k < d
2 +O(log d), provided that dn is even and dn

2 is divisible by k.

In collaboration with Postle and Lidický, we were able to find partial evidence supporting our conjecture for

small values of d using a computer:

Theorem 3.4.2. For d ≤ 50, a random d-regular graph has a Sk-decomposition asymptotically almost surely

for k < d
2 + 2 log d− c, provided that dn is even and dn

2 is divisible by k.

For k ≤ dd2e, that d-edge connected graphs (with the correct edge divisibility) have Sk-decompositions follows

from a result of L. M. Lovász, Thomassen, Wu, and Zhu [54].

One could also study Jaeger’s Conjecture [44] from 1988 in the random setting; recall that:

Conjecture 3.4.3. Let k ≥ 3 be odd. Every (2k−2)-edge-connected (2k−1)-regular graph has an orientation

in which every out-degree is either 3k−1
2 or k−1

2 .

Using spectral methods, Alon and Pra lat showed for large k Jaeger’s Conjecture holds asymptotically almost

surely for random (4k + 1)-regular graphs [3]. Pra lat and Wormald showed using the small subgraph

conditioning method that Tutte’s 3-flow conjecture (Jaeger’s Conjecture for k = 3) holds asymptotically

almost surely for random 5-regular graphs [60]. For values of k in between, this question remains open.
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Chapter 4

Highly Connected, Spanning,
Bipartite Subgraphs

4.1 Introduction

In a survey paper from 1989, Thomassen [65] compiled a list of conjectures fundamental to structural graph

theory. Many of the problems listed are very natural and important lines of investigation. This chapter

focuses in particular on Conjecture 7 from this survey.

As mentioned in [66], Erdős made the following observation in 1976:

Theorem 4.1.1. Any graph G with minimum degree 2k− 1 contains a spanning, bipartite subgraph H ⊆ G

such that the minimum degree of H is at least k.

Proof. The proof for this fact is obtained by taking a maximal edge-cut, a partition of V (G) into two sets A

and B, such that the number of edges with one endpoint in A and one in B, denoted |E(A,B)|, is maximal.

Observe that if some vertex v in A does not have degree at least k in G[B], then by moving v to B, one

would increase |E(A,B)|, contrary to maximality. The same argument holds for vertices in B. In fact this

proves that for each vertex v ∈ V (G), by taking such a subgraph H, the degree of v in H, denoted dH(v),

is at least dG(v)/2.

This same simple idea will be utilized throughout this chapter.

Recall that a graph is said to be k-edge-connected if one must remove at least k edges in order to

disconnect the graph. Thomassen [66] observed that the same proof shows the following stronger statement:

Theorem 4.1.2. If G is a graph which is at least (2k − 1)-edge-connected, then G contains a spanning,

bipartite subgraph H ⊆ G such that k-edge-connected.

In fact, each edge-cut keeps at least half of its edges.

This observation led Thomassen to conjecture that a similar phenomenon also holds for vertex-connectivity.

Before proceeding to the statement of Thomassen’s Conjecture, we remind the reader that a graph G is said

to be k vertex-connected or k-connected if one must remove at least k vertices from V (G) in order to dis-

connect the graph (or to remain with one single vertex). We also let κ(G) denote the minimum integer k
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for which G is k-connected. Roughly speaking, Thomassen conjectured that any graph with high enough

connectivity also should contain a k-connected spanning, bipartite subgraph. The following appears as

Conjecture 7 in the survey paper by Thomassen [65]:

Conjecture 4.1.3. For all k, there exists a function f(k) such that for all graphs G, if the vertex-connectivity

κ(G) ≥ f(k), then there exists a spanning, bipartite subgraph H ⊆ G such that κ(H) ≥ k.

In joint work with Ferber3, we prove that Conjecture 7 holds up to a log n factor; the key idea is to

carefully construct an auxiliary digraph to show the following:

Theorem 4.3.1. For all k and n, and for every graph G on n vertices the following holds. If κ(G) ≥

1010k3 log n, then there exists a spanning, bipartite subgraph H ⊆ G such that κ(H) ≥ k.

4.2 Preliminary Results

This section introduces a number of preliminary results which will utilize in the proof of the main result in

the next section.

4.2.1 Mader’s Theorem

A useful tool for finding highly connected (but necessarily spanning or bipartite) subgraphs was developed

by Mader [57] in 1972.

Theorem 4.2.1. Every graph of average degree at least 4` has an `-connected subgraph.

Because we are interested specifically in finding bipartite subgraphs with high connectivity, the following

corollary will be helpful.

Corollary 4.2.2. Every graph G with average degree at least 8` contains a (not necessarily spanning)

bipartite subgraph H which is at least `-connected.

Proof. Let G be such a graph and let V (G) = A∪B be a partition of V (G) such that |E(A,B)| is maximal.

Observe that |E(A,B)| ≥ |E(G)|/2, and therefore, the bipartite graph G′ with parts A and B has average

degree at least 4`. Now, by applying Theorem 4.2.1 to the graph G′ we are able to obtain the desired

subgraph H.

3Some of this work appeared in the Electronic Journal of Combinatorics in 2015; see [20].
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4.2.2 Merging k-connected Graphs

We can use highly connected graphs as building blocks to create larger graphs which are also highly connected.

We will use the following easy expansion lemma.

Lemma 4.2.3. Let H1 and H2 be two vertex-disjoint graphs, each of which is k-connected. Let H be a graph

obtained by adding k independent edges between these two graphs. Then, κ(H) ≥ k.

Proof. Note first that by construction, one cannot remove all the edges between H1 and H2 by deleting

fewer than k vertices. Moreover, because H1 and H2 are both k-connected, each will remain connected after

deleting less than k vertices. From here, the rest of the proof follows easily.

Next we will show how to merge a collection of a few k-connected components and isolated vertices into

a larger k-connected component. Before stating the next lemma formally, we will need to introduce some

notation. Let G1, . . . , Gt be a collection of t vertex-disjoint k-connected graphs, let U = {ut+1, . . . , ut+s}

be a set consisting of a total of s isolated vertices which are disjoint to V (Gi) for 1 ≤ i ≤ t, and let R be a

k-connected graph on the vertex set [t+ s] := {1, . . . , t+ s}. Finally, we let X = (G1, . . . Gt, ut+1, . . . , ut+s)

be a (t+ s)-tuple where we use Xi to denote the ith element of tuple X. Finally, let FR := FR(X) denote

the family consisting of all graphs G which satisfy the following properties:

(i) the disjoint union of the elements of X is a spanning subgraph of G, and

(ii) for every distinct i, j ∈ V (R) if ij ∈ E(R), then there exists an edge in G between Xi and Xj , and

(iii) for every 1 ≤ i ≤ t, there is a set of k independent edges between V (Gi) and k distinct vertex sets

{V (Xj1), . . . , V (Xjk)}, where V (ui) = {ui}.

Lemma 4.2.4. Let G1, . . . , Gt be t vertex-disjoint graphs, each of which is k-connected, and let U =

{ut+1, . . . , ut+s} be a set of s vertices for which U ∩ V (Gi) = ∅ for every 1 ≤ i ≤ t. Let R be a k-

connected graph on the vertex-set {1, . . . , t + s}, and let X = {G1, . . . Gt, ut+1, . . . , ut+s}. Then, any graph

G ∈ FR(X) is k-connected.

Proof. Let G ∈ FR(X), and let S ⊆ V (G) be a subset of size at most k−1. We wish to show that the graph

G′ := G \ S is still connected. Let x, y ∈ V (G′) be two distinct vertices in G′; we show that there exists a

path in G′ connecting x to y. Towards this end, we first note that if both x and y are in the same Gi, then

because each Gi is k-connected, there is nothing to prove. Moreover, if both x and y are in distinct elements

of X which are also disjoint from S, then we are also finished, as follows. Because R is k-connected, if we
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R

Gi

G

Figure 4.1: Graphs in FR(X)

Here we let k = 3 and s = t = 4. If R is as above, u5, u6, u7, and u8 are isolated vertices, and
Gi ' G1 ' G2 ' G3 ' G4, then G ∈ FR(X), where X = (G1, G2, G3, G4, u5, u6, u7, u8).

delete all of the vertices in R corresponding to elements of X which intersect S, the resulting graph is still

connected. Therefore, one can easily find a path between the elements containing x and y which goes only

through “untouched” elements of X, and hence, there exists a path connecting x and y.

The remaining case to deal with is when x and y are in different elements of X, and at least one of them

is not disjoint with S. Assume x is in some such Xi (y will be treated similarly). Using Property (iii) of

FR, there is at least one edge between Xi and an untouched Xj . Therefore one can find a path between x

and some vertex x′ in an untouched Xj . This takes us back to the previous case.

4.3 Proof of Main Result

A directed graph or digraph is a set of vertices and a collection of directed edges; note that bidirectional

edges are allowed. For a directed graph D and a vertex v ∈ V (D) we let d+D(v) denote the out-degree of v.

We let U(D) denote the underlying graph of D, that is the graph obtained by ignoring the directions in D

and merging multiple edges.

The main result of this chapter is the following theorem:

Theorem 4.3.1. For all k and n, and for every graph G on n vertices the following holds. If κ(G) ≥

1010k3 log n, then there exists a spanning, bipartite subgraph H ⊆ G such that κ(H) ≥ k.
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In order to find the desired spanning, bipartite k-connected subgraph in Theorem 4.3.1, we look at

sub-digraphs in an auxiliary digraph.

The following is our main technical lemma and is the main reason why we fundamentally are left with a

log n factor in the main theorem:

Lemma 4.3.2. If D is a finite digraph on at most n vertices with minimum out-degree

δ+(D) > (k − 1) dlog ne ,

then there exists a sub-digraph D′ ⊆ D such that

1. For all v ∈ V (D′) we have d+D′(v) ≥ d+D(v)− (k − 1) dlog ne, and

2. κ(U(D′)) ≥ k.

Proof. If κ(U(D)) ≥ k, then there clearly is nothing to prove. So we may assume that κ(U(D)) ≤ k − 1.

Delete a separating set of size at most k− 1. The smallest component, say C1, has size at most n/2 and for

any v ∈ V (C1), every out-neighbor of v is either in V (C1) or in the separating set that we removed, and so

d+C1
(v) ≥ d+D(v)− (k − 1).

We continue by repeatedly applying this step, and note that this process must terminate. Otherwise,

after at most log n steps we are left with a component which consists of one single vertex and yet contains

at least one edge, a contradiction.

With the preliminaries out of the way, we are now ready to prove the main result, namely Theorem 4.3.1.

Proof. Let G be a finite graph on n vertices with

κ(G) ≥ 1010k3 log n.

In order to find the desired subgraph, we first initiate G1 := G and start the following process, finding a

sequence of disjoint highly connected large bipartite subgraphs.

As long as Gi contains a bipartite subgraph which is at least k-connected on at least 103k2 log n vertices,

let Hi = (Si ∪ Ti, Ei) be such a subgraph of maximum size, and let Gi+1 := Gi \ V (Hi). Note that H1 must

exist as

δ(G1) ≥ 1010k3 log n− 2k ≥ 8000k2 log n,
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and so by Corollary 4.2.2, we see that G1 must contain a k-connected bipartite subgraph of size at least

103k2 log n.

Let H1, . . . ,Ht be the sequence obtained in this manner, and note that all the Hi’s are vertex disjoint

with the properties that κ(Hi) ≥ k and |V (Hi)| ≥ 103k2 log n. In the event that at the first step H1

is spanning, then we are finished because we have found our desired spanning highly connected bipartite

subgraph of the graph G. Therefore, we proceed by supposing for a contradiction that H1 is not actually a

spanning subgraph.

Let V0 := V (Gt+1) = {v1, . . . , vs} be the subset of V (G) remaining after running this entire process;

note that it might be the case that V0 = ∅. Because each Hi is a bipartite, k-connected subgraph of Gi of

maximum size and G is 1010k3 log n connected, we show that the following are true:

(a) For every 1 ≤ i < j ≤ t, there are at least 4k independent edges between Hi and Hj , and

(b) for every j > i and v ∈ V (Gj), the number of edges in G between v and Hi, denoted by dG(v, V (Hi)),

is less than 2k, and

(c) for every 1 ≤ i ≤ t, there exists a set Mi consisting of exactly 103k2 log n independent edges, each of

which has exactly one endpoint in Hi.

Indeed, for showing (a), we note that if there are at least 4k independent edges between Hi to Hj , using

the pigeonhole principle, at least k of them are between the same part of Hi (say Si) and the same part

of Hj (say Sj). Therefore, the graph obtained by joining Hi to Hj with this set of at least k edges is a

k-connected (by Lemma 4.2.3) and bipartite graph that is larger than Hi; however, this is contrary to the

maximality of Hi.

For showing (b), note that if there are at least 2k between v and Hi then there are at least k edges

incident with v touch the same part of Hi, and let F be a set of k such edges. Second, we mention that

joining a vertex of degree at least k to a k-connected graph trivially yields a k-connected graph. Next, since

all the edges in F are touching the same part, the graph obtained by adding v to V (Hi) and F to E(Hi),

will also be bipartite. This contradicts the maximality of Hi.

For (c), note first that since H1 is not spanning, using (b) we conclude that in the construction of the

bipartite subgraphs H1, . . . ,Ht in the process above,

δ(G2) ≥ 1010k3 log n− 2k ≥ 8000k2 log n.

Therefore, using Corollary 4.2.2, it follows that G2 contains a bipartite subgraph of size at least 103k2 log n
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which is also k-connected.

We will make use of the following theorem proven independently in 1931 by both König [49] and

Egerváry [24]:

Theorem 4.3.3 (König–Egerváry Theorem). If G is a bipartite graph, then the maximum size of a matching

in G equals the minimum size of a vertex cover of G.

Therefore, the process does not terminate at this point, and H2 exists (that is, t ≥ 2). It also follows

that for each 1 ≤ i ≤ t we have |V (G) \ V (Hi)| ≥ 103k2 log n. Next, note that G is 1010k3 log n connected,

and that each Hi is of size at least 103k2 log n. For each i, consider the bipartite graph with parts V (Hi)

and V (G) \ V (Hi) and with the edge-set consisting of all the edges of G which touch both of these parts.

Using König’s Theorem, it follows that if there is no such Mi of size 103k2 log n, then there exists a set of

strictly fewer than 103k2 log n vertices that touch all the edges in this bipartite graph (a vertex cover). By

deleting these vertices, one can separate what is left from Hi and its complement, contrary to the fact that

G is 1010k3 log n connected.

In order to complete the proof, we wish to reach a contradiction by showing that one can either merge few

members of {H1, . . . ,Ht} with vertices of V0 into a k-connected component or find a k-connected component

of size at least 103k2 log n which is contained in V0. In order to do so, we define an auxiliary digraph, using

a special subgraph G′ ⊆ G, and use Lemmas 4.3.2 and 4.2.4 to achieve the desired contradiction. We first

describe how to find G′.

First, we partition V0 into two sets, say A and B, where

A =

{
v ∈ V0 : dG

(
v,

t⋃
i=1

V (Hi)

)
≥ 104k3 log n

}
,

and observe that, using (b), since A ⊆ V0, any vertex a ∈ A must send edges to more than

104k3 log n/(2k) = 5000k2 log n

distinct elements in X := {H1, . . . ,Ht, v1, . . . , vs}. For each 1 ≤ i ≤ t, let Mi be a set as described in (c).

Observe that, using (b), each such Mi touches more than

103k2 log n/(4k) = 250k log n

distinct elements of X\ {Hi}. Let M ′i ⊆ Mi be a subset of size exactly 250k log n such that each pair of
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edges in M ′i touches two distinct elements of X\ {Hi}, which of course are distinct from Gi. Recall that

Hi = (Si ∪ Ti, Ei) for every 1 ≤ i ≤ t.

For Y := {S1, . . . , St, T1, . . . , Tt, v1, . . . , vs}, let

Φ : Y → {L,R}

be a mapping, generated according to the following random process:

Let X1, . . . , Xt, Y1, . . . , Ys ∼ Bernoulli(1/2) be mutually independent random variables. For each 1 ≤

i ≤ t, if Xi = 1, then let Φ(Si) = L and Φ(Ti) = R. Otherwise, let Φ(Si) = R and Φ(Ti) = L. For every

1 ≤ j ≤ s, if Yj = 1, then let Φ(vj) = L, and otherwise Φ(vj) = R. Now, delete all of the edges between two

distinct elements of Y which receive the same label according to Φ.

Finally, define G′ as the spanning bipartite graph of G obtained by deleting all of the edges within A

and for distinct i and j, the edges between Hi and Hj which are not contained in M ′i ∪M ′j .

Recall by construction, using Φ we generated labels at random; therefore, by using Chernoff bounds (for

instance see [4]), one can easily check that with high probability the following hold:

(i) For every 1 ≤ i ≤ t, each set M ′i ∩ E(G′) touches at least (say) 120k log n other elements of X, and

(ii) for each b ∈ B, the degree of b into A ∪B is at least (say) dG′(b, A ∪B) ≥ 105k3 log n, and

(iii) for each vertex a ∈ A, there exist edges between a and ∪ti=1V (Hi) that touch at least (say) 2000k2 log n

distinct members of {H1, . . . ,Ht}.

Note that here we relied on the luxury of losing the log n factor for using Chernoff bounds, but it seems

like we could easily handle this “cleaning process” completely by hand.

Now we are ready to define our auxiliary digraph D. To this end, we first orient edges (again, bidirectional

edges are allowed, and un-oriented edges are considered as bidirectional) of G′ in the following way:

For every 1 ≤ i ≤ t, we orient all of the edges in E(G′) ∩M ′i out of Hi. We orient all of the edges

between A and ∪ti=1V (Hi) out of A. We orient edges between B and ∪ti=1V (Hi) arbitrarily, and we orient

the remaining edges within A ∪B in both directions.

Now, we define D to be the digraph with vertex set V (D) = X, and −→xy ∈ E(D) if and only if there exists

an edge between x and y in G′ which is oriented from x to y.

In order to complete the proof, we first note that with high probability D is a digraph on at most n

vertices with out-degree δ+(D) > (k − 1)dlog ne. This follows immediately from Properties (i)-(iii) as well

as the way we oriented the edges. Therefore, one can apply Lemma 4.3.2 to find a sub-digraph D′ ⊆ D such
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that

1. For all v ∈ V (D′) we have d+D′(v) ≥ d+D(v)− (k − 1) dlog ne, and

2. κ(U(D′)) ≥ k.

In fact, with high probability, δ+(D) ≥ 120k log n ≥ k+ (k−1) dlog ne . Note that by construction, every

pair of edges which are oriented out of some Hi must be independent and go to different components. Using

Property 1. above combined with the fact that δ+(D′) ≥ δ+(D)− (k− 1) dlog ne ≥ k, we may conclude that

the subgraph G′′ ⊆ G′ induced by the union of all the components in V (D′) satisfies G′′ ∈ FU(D′)(V (D′)).

Applying Lemma 4.2.4 with X = V (D′) and R = U(D′), it follows that κ(G′′) ≥ k.

In order to obtain the desired contradiction, we consider the following two cases:

Case 1: V (G′′) contains V (Hi) for some i. We note that this case is actually impossible because it

would contradict the maximality of Hi for the minimal index i such that V (Hi) ⊆ V (G′′).

Case 2: V (G′′) ⊆ A ∪ B. We note that in this case, there must be at least one vertex b ∈ B ∩ V (G′′).

Indeed, G′′ is k-connected, and there are no edges within A. Now, it follows from Properties 1. and (ii)

above that

d+D′(b) ≥ d
+
D(b)− (k − 1)dlog ne ≥ 104k3 log n.

Thus, it follows that |V (G′′)| ≥ 104k3 log n. Combining this observation with the facts that G′′ is k-connected

and V (G′′) ⊆ A ∪ B, we obtain a contradiction. This case can not arise at all because of the fact that G′′

should have been included as one of the bipartite subgraphs {H1, . . . ,Ht}.

This completes the proof.

4.4 Further Directions and Open Questions

Building on the ideas from Chapter 3 of this thesis a natural question to explore is: what can be said about

random f(k)-regular graphs?

As shown in [14] not only is a random f(k)-regular graph is typically f(k)-edge-connected but a random

f(k)-regular graph is typically f(k)-vertex-connected as well. Perhaps translating this problem to the setting

of random regular graphs and using the Small Subgraph Conditioning Method could help us to understand

in general what f(k) might look like. More precisely, the following question is of interest:

Question 4.4.1. For all k, does there exists a function f(k) such that an f(k)-regular random graph G has

a spanning, bipartite subgraph H ⊆ G such that κ(H) ≥ k asymptotically almost surely?
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Perhaps in this context eliminating the log n factor would be possible.

The following appears as Conjecture 14 in Thomassen’s [65] survey paper:

Conjecture 4.4.2. For all k, there exists a function g(k) such that for all digraphs D, if the vertex-

connectivity

κ(D) ≥ g(k), then there exists a (not necessarily spanning) k-vertex-connected bipartite sub-digraph.

This conjecture is still open, and it is a natural version of Conjecture 7 but for digraphs. Given that a key

idea in our proof was to construct a special auxiliary digraph, perhaps similar methods could be applied

here.
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[32] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946),
1087–1091.

[33] P. Frankl, The Erds-Ko-Rado theorem is true for n = ckt, Combinatorics, Proc. Fifth Hungarian Coll.
Combinatorics, Keszthely, 1976, North-Holland, Amsterdam, (1978), 365–375.

[34] P. Frankl, An extremal problem for two families of sets, Eur. J. Combin. 3 (1982), 125–127.

[35] P. Frankl and A. Kupavskii, Counting intersecting and pairs of cross-intersecting families,
arxiv:1701.04110 (2017).
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[40] A. Hamm and J. Kahn, On Erdős–Ko–Rado for random hypergraphs II, arXiv:1406.5793 (2014).

[41] A. J. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Q. J. Math. 18.1
(1967), 369–384.

[42] W. N. Hsieh, Intersection theorems for systems of finite vector spaces, Discrete Math. 12 (1975), 1–16.

[43] F. Jaeger, On circular flows in graphs, Finite and infinite sets, Vol. I, II (Eger, 1981), vol. 37 of Colloq.
Math. Soc. János Bolyai, North-Holland, Amsterdam, 1984, 391–402.

[44] F. Jaeger, Nowhere-zero flow problems, Selected topics in graph theory, 3, Academic Press, San Diego,
CA, 1988, 71–95.

[45] S. Janson, Random regular graphs: asymptotic distributions and contiguity, Combin. Probab. Comput.,
4 (1995), 369–405. 16

[46] J. Kahn, Personal communication.

[47] D. J. Kleitman and K. J. Winston, The asymptotic number of lattices, Ann. Discrete Math., 6 (1980),
243–249, Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin.
Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978).
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(1957), 76–92 (in Slovak).

[51] H.-J. Lai, Mod (2p+ 1)-orientations and K1,2p+1-decompositions, SIAM J. Discrete Math., 21 (2007),
844–850.

[52] B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type graphs, European Journal of
Combinatorics, 25 (2004) 657–673.

[53] T.  Luczak, On triangle-free random graphs, Random Structures Algorithms, 16 (2000), 260–276.

[54] L. M. Lovász, C. Thomassen, Y. Wu, and C.-Q. Zhang, Nowhere-zero 3-flows and modulo k-orientations,
J. Combin. Theory Ser. B, 103 (2013), 587–598.

[55] L. Lovász, Flats in matroids and geometric graphs, in Combinatorial Surveys (P. J. Cameron, ed.),
Academic Press, New York (1977), 45–86.

[56] L. Lovász, On the Shannon capacity of a graph, IEEE T. Inform. Theory 25.1 (1979), 1–7.

[57] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend grosser Kanten-
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