
c© 2016 Anirudh Jayakumar

ADAPTIVE BATCHING OF STREAMS TO ENHANCE THROUGHPUT
AND TO SUPPORT DYNAMIC LOAD BALANCING

BY

ANIRUDH JAYAKUMAR

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Professor Tarek F. Abdelzaher

ABSTRACT

As data permeates all disciplines, the role of big data becomes increasingly

important. Sensors, IoT devices, social networks, and online transactions are

all generating data that can be monitored constantly to enable a business

to identify opportunity to enhance customer service and increase revenue.

This need for real-time processing of big data has led to the development

of frameworks for distributed stream processing in clusters. It is impor-

tant for such frameworks to be resilient against variable operating conditions

such as server load variation, changes in data ingestion rates, and workload

characteristics. In this thesis, we explore the effects of the batch size on

the performance of streaming workloads by developing an adaptive batching

framework and building load-balancing algorithms on top of this framework.

We explore the idea of using a combination of adaptive batching of tuples and

dynamic tuple dispatching to improve the throughput and load-distribution

of the workload. We show through experiments that the system is able to be

resilient and robust under varying operating conditions.

ii

To my mother, Shobhana.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Tarek Abdelzaher, for letting me

explore different research ideas. He was patient with me and gave me invalu-

able insights throughout my MS program. He also provided me with all the

support needed to achieve my goals. I would also like to thank my mentor,

Dr Shen Li for his invaluable and continuous guidance during the thesis right

from its conception and for suggesting many ideas to overcome the problems

I encountered along the way. My parents and family have made me the per-

son I am today and I cannot thank them enough for being supportive of all

my endeavors. Finally, I would like to thank Banu, Ankita, Varsha, Avinash

and Aashik for making my life infinitely more interesting in the otherwise

quiet town of Urbana.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 4
2.1 Spark Streaming . 4
2.2 Apache Storm . 5

CHAPTER 3 EFFECT OF BATCHING ON PERFORMANCE . . . 8
3.1 Context Switches . 8
3.2 CPU Usage . 9
3.3 Latency and Throughput . 10

CHAPTER 4 ADAPTIVE BATCHING FRAMEWORK 13
4.1 Metric Collector . 13
4.2 Adaptive Tuple Batching . 14
4.3 Adaptive Stream grouping . 14

CHAPTER 5 LOAD BALANCING ALGORITHMS 17
5.1 Data Rate Aware Load-Balancer 17

CHAPTER 6 EXPERIMENTS AND RESULTS 21
6.1 Data Rate Aware Load-Balancer 22

CHAPTER 7 RELATED WORK . 29

CHAPTER 8 CONCLUSION . 31

REFERENCES . 32

v

CHAPTER 1

INTRODUCTION

Distributed stream-processing system (DSPS) such as Apache Storm [1],

Apache Flink [2], Spark Streaming [3], Samza [[4] are getting popular for

their ability to process massive amount of real-time data in parallel with

low latency on commodity hardware. Such an infrastructure can aid orga-

nizations that need to quickly assess large volumes of incoming information

to make business decisions. In the past decade, Hadoop has been the de

facto open-source tool for most big data processing. Hadoop was designed

primarily as a batch processing system implementing the MapReduce frame-

work and can have a high latency when deployed to process high-volume,

high-velocity workloads.

Most DSPS define the data model as a directed-acyclic graph (DAG), with

vertices representing processing elements (PEs) and edges representing the

flow of data. The Some DSPS like Apache Storm also support cycles in

the graph. For scalability, the streams are partitioned into sub-streams and

executed by multiple instances of a processing element - processing element

instance (PEI). The current parallel stream processing systems are geared

towards low-latency processing resulting events generated for each element

in the stream. For example, in Apache Storm, each tuple (infinite tuples

constitute a stream) is transported to the next PEI immediately in order

to reduce the end-to-end processing latency for each tuple. Sending these

tuples in the aforementioned manner can result in huge overheads. A major

slice of the CPU is spend context-switching and waking up threads that are

responsible for data transfer between PEIs. This scheme works well for high

latency-sensitive applications, but reduces the throughput considerably.

As with any distributed data processing system, running in a multi-tenant

environment, stream processing systems are also prone to load imbalance. It

is well known that load-imbalance can happen due to various causes. In a

typical production cluster, there could be multiple applications running using

1

a resource scheduler like YARN [5] or Mesos [6]. Multiple PEIs belonging to

different applications share the same physical node due to which performance

of each PEI is dependent on the load on other PEIs in the node. To add

more complexity, schedulers like YARN can manage applications of different

types. So there could be a cluster running Hadoop jobs, storm topologies

and even a NoSQL database like Cassandra, all sharing the resources of the

cluster. This can create CPU, memory and network resource contention.

Load imbalance could also be due to the nature of the application. Big-data

applications [7, 8] in data mining and machine learning require gathering and

storing state during the life time of the application. The data is partitioned

based on key and all the data (streams) with the same key are processed

by the same PEI. This represents a single choice paradigm as it does not

consider the popularity of the key. The workload might be skewed towards

few keys leading to some PEIs being more loaded than others.

Load distribution is a classical problem in distributed and parallel systems.

Traditionally, most systems handle load distribution by intelligently allocat-

ing replica tasks to processing units statically [9]. Dynamic load distribution

is achieved by migrating processing units and the associated state to less

loaded nodes [10, 11]. This can be an expensive operation as the execution

will have to be paused while the migration is taking place. Other popular

techniques include speculative execution in Hadoop where the system moni-

tors the progress of the task and may assign a replica task for any stragglers

in the system. In this scheme both the processing units continue to process

the data till one among them completes the execution.

In this work we explore the idea of using a combination of Adaptive batch-

ing of tuples at the PEI level and dynamic tuple dispatching to improve the

throughput and load-distribution of the workload. In the adaptive batching

scheme, the system can control the batch size of each PEI and the processing

starts only when the batch size is full. For dynamic tuple dispatching, the

system can set an outgoing load-proportion which the tuple forwarder can

read and send a proportional amount of tuples to the receiving PEI. This way

the infrastructure provides a mechanism to vary the data rates at each PEI.

From previous work on batching at middleware-level [12] and application-

level [13], we know that batching can improve throughput by several folds.

The concept of tuple batching has not been studied in the context of load-

balancing as per our knowledge. With our technique we foresee no downtime

2

during load balancing and also believe that a range of algorithms related

to various topics like load-balancing, throughput and latency improvement

and energy optimization can be developed on top of our adaptive batching

framework.

The rest of the thesis is organized as follows: We look at the architecture of

Apache Storm and Spark Streaming in Chapter 2 and investigate the effects

of batching on performance in Chapter 3. We present the design of our

adaptive batching framework in Chapter 4. The load balancing algorithms

are presented in Section 5 with experimental results in Section 6. We outline

the related work in Section 7 and conclude in Section 8.

3

CHAPTER 2

BACKGROUND

There are a multiple stream processing systems, both production systems

as well as research systems [1, 2, 3, 4, 14, 15]. The most popular stream

processing systems are Apache Spark with its new Streaming API [3] and

Apache Storm [1], which was initially developed at Twitter Inc. As of this

writing, Apache Flink [16] is also gaining a lot of momentum in the stream

processing space especially due to its higher-level APIs and native support for

batch processing. For our work, we implement the adaptive batching scheme

within Apache Storm. Our decision was based on the fact that Storm is a pure

stream processing system, unlike Spark Streaming, which is an abstraction

build on top of its batch-processing engine. In the below sub-section we very

briefly discuss the internal architecture of Spark Streaming and discuss in

detail the architecture of Apache Storm.

2.1 Spark Streaming

Spark streaming represents a continuous stream of input data as a discretized

stream, or DStream[3]. Internally, Spark stores and processes DStream as a

sequence of Resilient Distributed Datasets (RDD). RDD is one of the main

abstraction of Spark. RDD is a collection of elements partitioned across the

nodes of the cluster that can be operated in parallel. Each of these RDDs

in a streaming setup is a snapshot of all the data ingested during a specified

time period. This allows Sparks existing processing capability to operate on

the data. This model of chopping the stream into chunks is called micro-

batching. The batch interval generally ranges from as little as 500ms to

about 5000ms (can be higher). The batch interval is static and cannot be

changed while the application is running. Reducing the time interval will

bring the system closer to real-time, but will result in more overhead due to

4

Figure 2.1: Tweet word count topology

a large number of RDDs. Spark Streaming is an excellent choice for users

who require both streaming and batching capabilities in the same system

and users who do not mind higher-latencies.

2.2 Apache Storm

Apache Storm is a real-time distributed stream data processing engine that

was originally developed at Twitter. Various companies power their crit-

ical real-time data management tasks using Storm. Storm is designed to

be scalable, resilient, extensible, efficient and easy to administer. The ba-

sic Storm data processing architecture consists of streams of tuples flowing

through topologies. Topologies in Storm are directed graphs where vertices

represent the processing elements and the edges represent the stream of data

flowing between processing elements. There are two kinds of processing el-

ements in Storm Spouts and Bolts. Spouts are the source of data. They

are responsible for injecting tuples into the topology. Spouts often pull data

from queues such as Kafka [17] or Kestrel [16]. Bolts form the main pro-

cessing component comprising of the business logic of the application. Bolts

process the incoming tuples from spout or other bolts and passes new set

of tuples to downstream bolts. Figure 2.1 shows an example topology that

counts words occurring in a stream of tweets and reports that stats every 5

minutes. The TweetSpout injects tweets into the topology using Twitter’s

APIs, ParseTweetBolt tokenizes the tweets and emits a tuple <word,1>for

each word and WordCountBolt receives these tuples and maintains a table of

word counts. After every 5 minutes, the WordCountBolt reports the statistics

and clears its internal state.

Figure 2.2 shows the high level execution architecture of storm. The execu-

tion architecture of Storm consists of a master node called Nimbus. Nimbus

5

Figure 2.2: Apache Storm Architecture

is responsible for distributing and coordinating the execution of the topology.

The actual work is done on worker nodes. Each worker node runs a Super-

visor that connects with Nimbus and sends periodic heartbeat, advertising

topologies that are currently running and any resource availability to run

more topologies. The supervisor manages one or more worker process, with

each worker mapped to a single topology. All coordination between Nimbus

and Supervisor is done using Zookeeper. Each worker runs a JVM, inside

which there are executor threads. Each executor runs one or more tasks.

The user defined spouts and bolts are mapped to the tasks. By default,

each executor only runs one task. Thus, tasks provide intra-bolt/intra-spout

parallelism, and the executors provide intra-topology parallelism.

Buffering of tuples in Storm happen at two levels inter-worker trans-

fer queues and intra-worker LMAX disruptor queues [18]. The inter-worker

buffering happens again at two places. The first place is at the client side

where messages are buffered to be transferred across the wire and second

place is at the server-side where a dedicated thread forwards the tuples to

downstream components. There are two pairs (send/receive) queues at the

executor level, which forms the basis for intra-worker tuple transfer. A re-

6

Figure 2.3: Overview of a workers internal message queues in Storm

cent patch[19] added static batching of tuples at the disruptor queue level

using two parameters – batch size and batch interval. Batch size is the total

tuples that can be accumulated before being processed and batch interval is

the time period after which he accumulated tuples will be processed. Either

of these parameters can trigger the message flush depending on which event

happens first (either batch size getting filled or batch interval ending).

7

CHAPTER 3

EFFECT OF BATCHING ON
PERFORMANCE

In this section we look at the effect of batching on critical performance pa-

rameters like latency, throughput and CPU usage. We begin by looking at

the the variation in context-switches while batching tuples before process-

ing. All the experiment in this section was done on one node with the same

configuration as mentioned in Section 6 running the word count topology as

shown in 2.1. The topology is run with one worker and two instances for

each of the PEs (TweetSpout, ParseTweetBolt and WordCountBolt).

Figure 3.1: The effect of batch size on context-switches

3.1 Context Switches

In Storm, the usual behavior is to process an incoming tuple right away

by one of the thread in the disruptor queue thread pool. Hence, when the

data rate is high, large number of thread are waiting for the CPU to process

the tuple. There is also a system overhead of waking up, context switching

8

and book-keeping the threads which can use up a significant portion of the

CPU, especially when the data rate is high. In our batching scheme, a

thread is woken up only when the batch is filled to the configured size, hence

reducing the number of active threads in the system and reducing the thread

maintaining overhead.

In Figure 3.1 we look at the effect of batching on the total context switches

in the application. There is a significant drop in the context-switch count

when batching is introduced. When we set the batch size to 10, we see a

decrease of 80%, 74%, 65% and 52% for incoming data-rate of 10k, 20k, 30k

and 40k tuples per seconds respectively. The decrease in context-switched

saturates when the batch size increase. We don’t see a significant decrease

when moving from batch size 40 to 50. What is also interesting is the higher

context-switches when the date-rate is high. So, for every system, there is

a data rate limit above which the system is not capable of handling the

incoming data without dropping some of the traffic.

3.2 CPU Usage

The decrease in the context-switch means that the amount of CPU time

spend by the kernel to schedule the threads and also the additional overhead

of data movement to and from the cache can be avoided. This should result

in lesser CPU usage by the application. We look at this in more detail

by plotting the CPU time spend by the application for every 30 seconds of

wall time. Figure 3.2 shows the variation in CPU times as the batch size

changes. As expected, the CPU time variation has a similar pattern to the

context switch count variation. The CPU time decreases drastically on the

introduction of batching but saturates around batch size of 30. This CPU

time that is saved can be used to either process more tuples hence, increasing

the throughput of the system or can be used to schedule other jobs by the

scheduler.

9

Figure 3.2: The effect of batch size on CPU time

3.3 Latency and Throughput

Now we look at the impact on latency. In the context of this work, we define

latency as the time difference between the spout emitting a tuple and the

spout receiving an ack from storm for the same tuple. When the tuple gets

sent to consuming bolts, Storm tracks the tree of messages that are created.

If Storm detects that a tuple is fully processed, Storm will call the ack method

on the originating Spout task with the message id that the Spout provided to

Storm. This is how Storm guarantees message processing. Storm developers

are working to bring more accurate latency measurements within storm, but

as of this writing such metrics don’t exist.

10

Figure 3.3: The effect of batch size latency

Figure 3.3 shows the impact of batching on latency. There is a multifold

increase in latency when we introduce batching. We see a 10x increase in

latency when increasing the batch size from 1 to 10. Similarly, there is a 37x,

74x, 99x and 106x increase for batch size 20, 30, 40 and 50 respectively when

the data rate is 10k tuples/second. This is a significant increase considering

that some of the streaming applications expects sub-second latencies. The

other observation is that when the data-rate is high, the latency decreases.

This is because, the batch is filled faster and the frequency of thread waking

up to service the batch increases.

There are two other important takeaways from this plot. The first is the

anomaly in the latency of the 20k data-rate job when there is no batching.

This is surprising because all the reasoning till now suggested that batching

increases the latency, but in the case of the 20k data-rate job, the latency

decreased when the batch size was increased to 10. The reason for such

behavior is that the system is unable to handle such a high data rate with

no batching. Due to the high over head of processing each tuple, the threads

wait for the CPU. If the incoming tuple count exceed the number of threads

in the pool, then the tuples are stored in the disruptor queue till some thread

is free to process it. Due to this, there is a delay in processing tuples. If this

job was run for a longer time, the JVM would have hit the memory wall and

the process would have crashed. The second major observation is the absence

of any latency numbers for higher tuple rates at certain smaller batch sizes.

11

This is because of the same reason that the system was unable to handle

the speed of the data injection in to the system. These jobs failed within 30

seconds from the start time due to which no metrics could be collected.

In our work, we use the advantages of batching, like higher-throughput and

less CPU usage to adaptively load-balance the system. In the next chapter we

describe the design and implementation of the adaptive batching framework.

In chapter 5 we look at the various load-balancing schemes that we build on

top of our batching infrastructure.

12

CHAPTER 4

ADAPTIVE BATCHING FRAMEWORK

The overall working of the Adaptive Batching Framework (ABF) is shown

in Figure 4.1. The framework consists of three major components: 1) Metric

Collector, 2) Adaptive Tuple Batching and 3) Adaptive grouping. The below

sections explain each of these components in detail. The load-balancing

schemes that we develop are build on this framework.

Figure 4.1: The Adaptive Batching Framework

4.1 Metric Collector

The Metric Collector (MC) is responsible collecting live metrics from the

system. These metrics are of two types: a) topology statistics and b) node

statistics. Topology statistics include metrics that define the performance of a

topology. These include latency, throughput, input data rate and failed tuple

count. All these statistics are gathered from Nimbus, the master component

of Storm. The MC periodically polls Nimbus to get these statistics. Node

13

Statistics are metrics that are specific to each computing node. We run a

Thrift service called NodeStatServer on each of the worker nodes to which

the MC connects and periodically gather metrics from all the worker nodes

in the system. The metrics gathered are memory usage, cpu usage, network

usage and power consumed by the node. All these metrics are stored by MC

and a set of APIs are provided to access various statistical information about

the metrics.

4.2 Adaptive Tuple Batching

Tuple batching can be achieved by two mechanism, one using batch size

other using a batch interval. ABF support both these mechanisms. The

batch size/interval is updated by exploiting the callback scheme in Zookeeper

/ref. Zookeeper is already used extensively in Storm for coordination. Every

executor creates znodes with path “/dynamic-batching/ <topology-id >/

<exec-id >/interval” and “/dynamic-batching/ <topology-id >/ <exec-id

>/size” for batch interval and batch size respectively. Each executor also

registers a callback (also called watches) with the zookeeper, which gets trig-

gered when the data in the znode is updated. There is separate call back for

each of the two znodes per executor. On receiving this trigger, the disruptor

queue is updated with either the size or the interval parameter. In the dis-

ruptor queue, the batch size is checked when a new tuple arrives and if the

size reaches the limit, the tuples are forwarded for processing. A thread also

is woken up every batch interval time and flushes out the tuples for process-

ing. The tuples are flushed by either one of these techniques depending on

the size, interval and data-rate values. If the data rate is high the batch fills

up to the set size. The interval setting is a good way to enforce the minimum

latency for processing. The components that are build on top of the ABF is

expected to connect to Zookeeper and update the required fields.

4.3 Adaptive Stream grouping

The other important infrastructure feature to leverage adaptive batching is

to have the flexibility to change the data-rate of tuple between instances of

14

the same component. Part of defining a topology is specifying for each bolt

which streams it should receive as input. A stream grouping defines how

that stream should be partitioned among the bolt’s tasks. Storm provide

a number of grouping options out of which the most popular are shuffle

grouping and fields grouping. We add some minimal changes to shuffle and

fields grouping to make it forward tuples in different proportions so that

framework can control the data rates on each of the PEIs.

4.3.1 Adaptive Shuffle Grouping

Shuffle grouping (SG) routes messages independently in a round-robin man-

ner. SG tries to load balance the outgoing tuples among the processing

instances by assigning almost equal number of messages to each instance.

To make the shuffle grouping more dynamic we introduce Adaptive Shuffle

Grouping (ASG) which routes the messages to different instances based on a

custom proportional distribution. The distribution can be updated dynam-

ically, enabling ASG to route messages based on the current proportional

distribution. In the word count topology, if the ParseTweetBolt has five in-

stances, then using ASG we can control the proportion of tuples going into

each instance. For example, we can configure instance 0 to receive 50% of

the the incoming tuples and other instances to receive 10% each.

4.3.2 Adaptive Partial Key Grouping

Fields Grouping (FG) ensures that messages with the same key are han-

dled by the same processing instance. This is similar to message passing in

MapReduce. The stream is partitioned by the fields specified in the group-

ing. For example, if the stream is grouped by the ”user-id” field, tuples with

the same ”user-id” will always go to the same task, but tuples with different

”user-id”’s may go to different tasks. It is very challenging to build adap-

tive fields grouping techniques due to the extensive use of fields grouping

in state-full operations. Sending tuple with the same key to different PEI

can decrease the accuracy of data mining/machine learning algorithms and

also requires additional aggregator elements to consolidate the results. In

our approach we build on the “power of both choices” approach studied in

15

[20]. The authors of this work use two downstream instances and route the

message to the least loaded instance among the two based on local load esti-

mate. The authors call this method partial-key grouping (PKG). We tweak

this method by removing the local load estimator and replacing it with the

custom proportional distribution technique use in ASG. Here, the choice is

always between two instances as opposed to ASG, where the number of down-

stream instances depends on the parallelism of the component. We call this

method adaptive partial key grouping (APKG). The limitations of PKG are

detailed in [20]. The same limitations apply to APKG.

16

CHAPTER 5

LOAD BALANCING ALGORITHMS

In this section we look at the load balancing algorithms that can be build

on top on our Adaptive Batching Framework (ABF). For this thesis we look

at a data aware load balancing algorithm which exercises the dynamic batch

size update feature of ABF. Also, as a continuation of this work we are

implementing load-aware and energy-aware LB techniques which will exercise

both the dynamic batch size update and the adaptive grouping techniques.

More details about these algorithms are provided in the end of this chapter.

In this chapter we look at DataRateLB in detail.

5.1 Data Rate Aware Load-Balancer

The Data Rate Aware Load Balancing algorithm (DataRateLB) helps Storm

to adaptively react to the fluctuations in the input data rates. When topolo-

gies are deployed, it is often deployed taking into account the maximum load

that the topology is expected to handle and as a result the resources are

over-provisioned. In spite of this, in some cases the allocated resources still

fall short. DataRateLB helps topologies to manage such fluctuations by al-

lowing higher throughput processing when the incoming tuple rate exceeds

the resources allocated to handle them as discrete streams. In a nutshell, the

algorithm monitors the lag between the tuple generated count and the tuple

completed count and increases the batch size of the PEs (executors) if the lag

is above a certain administrator defined threshold. Algorithm 1 shows the

complete algorithm followed by more detailed explanation. The description

of all the variables used in the algorithm is given in Table 5.1.

Lines 1-6 initializes the variables. diff max is initialized to START MAX

which is a administrator defined limit. Systems with more memory and

higher latency SLAs can have a higher diff max. diff min is always min p

17

times diff max. diff max and diff min are updated by the algorithm based

on the measured diff of the topology. If the diff goes above diff max then

the range is adjusted to values between the current diff. curr update value

fluctuates between [0,MAX UPDATE] and helps control the granularity of

batch size update. The batch size is always updated by adding or subtracting

the value 2curr update value from the current batch size. This helps in quickly

reacting to continuous increase/decrease in the input data rates hence help

Algorithm 1: Data Rate Aware Load Balancer

1 batch action← NONE
2 diff max← START MAX
3 diff min← min p ∗ diff max
4 curr batch size← 1
5 curr update value← 0
6 reading count← lb period/stats collection period
7 while true do
8 acked← stat collector.get ack count()
9 emitted← stat collector.get emit count()

10 diff ← emitted− acked
11 bSLA← sla satisfied()
12 if diff > diff max AND bSLA then
13 curr update value← (batch action ==

INC) ? min(curr update value+ 1,MAX UPDATE) : 0
14 curr batch size←

min(MAX BATCH, curr batch size+ 2curr update value)
15 diff max← diff ∗ inc p
16 diff min← min p ∗ diff max
17 batch action← INC
18 update batch size(curr batch size)

19 else if diff < diff min then
20 curr update value← (batch action ==

DEC) ? min(curr update value+ 1,MAX UPDATE) : 0

21 curr batch size← max(1, curr batch size+ 2curr update value)
22 diff max← max(START MAX, diff max ∗ dec p))
23 diff min← min p ∗ diff max
24 batch action← DEC
25 update batch size(curr batch size)

26 else
27 batch action← NONE
28 sleep(lb period)

in keeping the system stable. The system could go into an unstable state if the

batch size increase is constant while the data rates increase at a much higher

18

Table 5.1: Description of the variables defined in Algorithm 1

Variable Description

batch action
enum (NONE, INC, DEC) representing the action
performed on the batch size

diff max
the diff threshold above which the batch size
will be increased

diff min
the diff threshold below which the batch size
will be decreased

curr batch size
represents the current size of the
disruptor queue

curr update value
2currupdatevalue is the size added to or subtracted
from the batch size

reading count
number of previous stats reading to be considered
while making LB decisions

lb period the interval between each LB action
stats collection period the interval for statistics collection

acked
the total number of tuples that have finished
processing

emitted the total number of input tuples generated
diff emitted - acked
bSLA boolean value describing if the SLA is met or not

rate. This scheme helps maintain stability of the topology. Similarly, if there

is a quick drop in the data rate it would be better to get the system to process

the tuples discretely that in a batch. Having an exponential increase/decrease

in the batch size can help the system adapt faster to external changes. Line

7 starts an infinite loop that constantly monitors the topology and applies

batch size updates. At the end of the loop the algorithm sleeps for lb period

seconds before resuming to load balance again. In lines 8-11, the parameters

needed to take load balancing decisions are initialized. diff gives us the

difference between the total emitted and total acked tuples hence giving an

indication of the processing speeds of the topology relative to the input tuple

rate. bSLA tells us if the topology is meeting the latency SLA. The Metric

Collector provides three latency metrics a) mean, b) 99.9% latency and c)

99.99% latency. For all the experiments in this thesis we use the mean latency

as the SLA metric. sla satisfied() returns true if the mean latency is less than

the SLA provided to the job.

Lines 12-27 contains the core elements of the algorithm. Line 12 checks if

the diff is greater than diff max in which case the algorithm increases the

19

batch size so that PEs can catch up with the incoming tuples. But before we

do that we check if the SLA is met. We know from section 3.3 that the latency

increases on increasing the batch size, so we only increase the batch size if

the latency is met otherwise the algorithm does nothing during the current

iteration. In case where the SLA is not met, it is a good idea to drop tuples

to avoid memory being used up due to tuple queuing. For our experiments

we avoid dropping any tuples. In lines 13-14 we set the new batch size by

adding 2curr update value to the curr batch size. If the previous batch action

was also to increment (action INC) the size then the current increment will

be an exponential. In line 15, the diff max is adjusted to be slightly higher

than the current diff by multiplying diff with inc p. diff min is always min p

times diff max (lines 3,16 and 23). In line 19, the algorithm checks to see if

there is an opportunity to reduce the batch size by comparing with diff with

diff min. In lines 20-21 batch size is calculated similar to the INC operation

by checking if there has been a DEC operation in the previous iteration and

accordingly manipulating curr update value and curr batch size. If the diff

is between the diff min, diff max range then we avoid any batch action to

reduce the load on the zookeeper. This is algorithm is a simple heuristic and

can be configured and extended for various other scenarios.

As part of the ongoing work, we are implementing two additional load

balancing algorithms a) LoadAwareLB and b) EnergyAwareLB. Both these

algorithms will exercise the complete ABF including the adaptive grouping

schemes. LoadAwareLB will use the stats collector to monitor the load on

each machine and intelligently routing traffic using the adaptive grouping

schemes and dynamically updating the processing throughputs of PEs in

nodes by varying the batch size. Similarly, EnergyAwareLB monitors the

energy consumption of each node and routes the traffic such that the total

energy consumption of the cluster can be optimized. With this range of algo-

rithms implemented on top of ABF we showcase the versatility and flexibility

of ABF and we encourage readers to develop more advanced algorithms on

top of the ABF.

20

CHAPTER 6

EXPERIMENTS AND RESULTS

We evaluate the load balancing algorithms using two micro-benchmark ap-

plications [21] namely WordCount and RollingSort. Figure 6.1 shows the

topology of each of two benchmarks. The WordCount topology is composed

of one spout (FileReadSpout) and two bolts (SplitSentence, CountBoltNum).

FileReadSpout reads the contents of the input file and emits all the lines

in the file. For experiments we read infinitely the contents of the novel ’A

tale of two cities’. The SplitSentence bolt tokenizes each line into words

and emits them. The CountBoltNum counts the occurrence of each of the

word. WordCount is a CPU sensitive benchmark. The RollingSort topol-

ogy consists of one spout (RandomMessageSpout) and one bolt (SortBolt).

RandomMessageSpout selects a random string message from a given static

list and emits it to the topology. The SortBolt keeps a sorted list of all the

incoming messages. When the sorted message count reaches a specific value

the the list is emitted. RollingSort is a memory-sensitive benchmark.

Figure 6.1: Micro-benchmark topologies

The experiments are carried out in a cluster consisting of 20 nodes with

each node having 6-core Intel Xeon CPU with a clock speed of 2.0GHz and

21

16GB memory. The nodes are connected by a ToR switch with each node

connected with a 1000 Mbit/sec ethernet interface card. For our experiments

we use one node as Nimbus, 8-12 nodes as workers running the supervisor

daemon, 3 zookeeper nodes and 1 node running both the Stats Collector and

the Load-balancing algorithms.

(a) Workload D1 (b) Workload D2

Figure 6.2: Workload data-rates

6.1 Data Rate Aware Load-Balancer

Variable Value
period 30 secs
sla type mean
sla 750 ms
START MAX 10000
MAX BATCH 130
stat period 10 secs
min p 0.90
inc p 1.10
dec p 0.95

Table 6.1: DataRateLB
parameters

Variable Value
spout/worker 2
SortBolt/worker 2
msg size 1KB
chunk size 400
emit frequency 3 secs

Table 6.2: RollSort Topology
Parameters

We look at the experimental results for the DataRateLB described in Al-

gorithm 1. For the experiments we run the RollingSort topology with two

time-varying input data-rates. Figure 6.2 shows the workload data rates used

22

(a) Workload D1 on 9 workers without
DataRateLB

(b) Workload D1 on 9 workers with
DataRateLB

Figure 6.3: Workload D1 on 9 workers

in the experiments. D1 varies less as compared to D2 which fluctuates at a

much higher rate. For both the workloads the input rate varies from 240,000

tuples/sec to 480,000 tuples/sec. For the experiments in this section the

topologies are run for 2 hours. Table 6.1 shows the values of various param-

eters used by the algorithm and table 6.2 shows the values of the parameters

used by RollSort topology. All the following experiments use these values

unless specified otherwise.

23

(a) 11 workers (b) 12 workers

Figure 6.4: Workload D1 without DataRateLB

6.1.1 Effect on running topologies

In this section we look at how DataRateLB works when applied to a run-

ning topology. For this purpose we first run the RollSort topology with

workload D1 on 9 workers without DataRateLB enabled. Then we run the

same topology with the same workload but with DataRateLB enabled. Fig-

ure 6.3a shows how the topology progresses without DataRateLB. At around

1500 seconds the system starts to become unstable and the throughput starts

dropping drastically and reaches 0 around 1800 seconds. The failure rate of

the tuples also starts to go up around the same time as when the throughput

decreases. The job finally stops when the memory reaches the upper limit

as seen in the node statistics plot. The latency behavior is in line with the

observation in Section 3.3. The latency goes up when the system is unable to

keep pace with the input data rate due to resource unavailability to process

the tuples.

Figure 6.3b shows how the same topology behaves when DataRateLB is

enabled. In the tuple processing rates plot, you can see that the throughput

24

is able to keep up with the incoming tuple rate. The mean latency for the

job varies from 320ms to 450ms and doesn’t shoot up because the queuing

time is limited due to batching when the input rates are high. The batch

size increases to 16 during both the input rate peaks and comes down to

1 when the data rates come down and the system can now manage with a

smaller batch size. The system remains stable as the memory usage is always

less than 40%. As you can see the batch size update is only done once the

value of diff goes above 10000 as configured before the job was run. This

value of START MAX can be set by the administrator to be small enough so

that the latency doesn’t go up due to queuing and the memory doesn’t run

out and large enough for the load balancer to be exercised less frequently.

Such a scheme of increasing batch size to increase throughput and to keep

the system stable is very useful for production jobs that do not have a sub-

microsecond latency requirement thereby having a margin of latency large

enough to apply batching.

Now, to understand how much resources are needed to run the job without

DataRateLB, we run the same topology on 10, 11 and 12 workers. The jobs

fail on 10 and 11 workers but runs successfully on 12 workers. Figure 6.4

illustrates the behavior of the topology when run on 11 and 12 workers. As

expected, the memory usage for the failed run reached 100% before failing and

exiting. As compared to the 9 worker run, the throughput starts dropping

around 2000 seconds for the 11 worker job where as the throughput started

dropping around the 1500 seconds into the 9 worker job. The topology works

when run on 12 workers with the memory usage almost constant around 30%.

The significant advantage while running with 12 workers is the latency which

stays at an average of 10ms for the 2 hour run. As discussed earlier, the

batching approach is predominantly useful for higher order latency SLAs (

>500 ms) than lower latency SLAs (<10ms).

6.1.2 Understanding the behavior under varying SLAs

DataRateLB avoids increasing the batch size when the SLA is not met. We

look at the effect this decision has on the topologies under more strict latency

SLAs. The run in Fig 6.3a had an SLA of 750ms. We run the same topology

with 500ms and 350ms latency as the SLA to study the behavior of the

25

topology. The job with 500ms latency SLA behaves similar to the one with

750ms SLA. During no time during the run the mean latency goes above

500ms thereby allowing the load-balancer to apply batch size updated during

the complete life time of the topology. Fig 6.5a shows the execution of the

500ms latency job. It runs very similar to the 750ms latency job with the

batch size increasing during high input data-rates. Here we also notice that

there are some small batching (2-4 batch size) between the peaks. On the

other hand, for the job with 350ms latency the load-balancer stops applying

batch size updates after around 1500 seconds into the job because the latency

shoots above 350ms.

(a) Workload D1 on 9 workers with
DataRateLB and SLA 500ms

(b) Workload D1 on 9 workers with
DataRateLB and SLA 350ms

Figure 6.5: Workload D1 run under different SLAs

26

Once the algorithm is disabled, the diff goes up and the latency further

increases due to additional queuing. Fig 6.5b shows the complete execution

of the job. The job finally ends when the memory cannot hold all the pending

tuples and crashes. A possible way to avoid this scenario is to spawn new

workers and re-direct the load to these new workers. We wish to integrate

this feature as future work. In this work we avoid any migration of existing

PEs or creation of new PEs and look at only the use of ABF to find solutions

to load balancing problems.

6.1.3 Significance of the load balancing interval

In this section we look at how the load-balancing interval impact the execu-

tion of topologies under DataRateLB. For the experiments in this section we

run the D2 workload where the date-rate changes at a higher rate. We run

the workload with period of 30secs and 60secs. Fig 6.6a shows the complete

execution of topology with 30 second interval.

The throughput of the topology is able to keep up with the input data-

rate but as you can see the batch size increases considerably more than

the previous runs. The batch size goes up to 130 during peak data-rates

which is the set MAX BATCH value. The CPU and memory usage have as

expected gone slightly higher when compared with the D1 workload. Now,

when the same topology is run with an interval of 60 secs, the throughput

starts to drop around 1000 seconds into execution. DataRateLB is unable

to make adequate batch size adjustments to handle the fast increase in the

data rate. By the time DataRateLB increases the batch size a considerable

amount of tuples are already queued up for processing. In a few iterations of

the algorithm this lag ends up consuming the available memory and the job

crashes. From these results we understand that the load balancing interval

should be in tune with the expected data rates. As future work, we wish to

make the interval adaptive based on the value of diff. A higher value of diff

could mean a lower lb period.

27

(a) Workload D2 on 9 workers with
interval of 30secs

(b) Workload D2 on 9 workers with
interval of 60secs

Figure 6.6: Workload D2 with different intervals

28

CHAPTER 7

RELATED WORK

There have been limited work in the area of load balancing for stream pro-

cessing systems as this is a newer field. In this section we go through some

of the recent work in the load balancing and load distribution space in the

context of distributed stream processing systems. Resource aware scheduling

has been studied in a recent work by Peng et al. [22]. In this work, additional

functionality is added to the scheduler to be aware of the current available

resources in the cluster before scheduling the workers on specific nodes. In

our work the load balancer is aware of the dynamic changes in the resource

availability and hence is better equipped to make smarter choices than the

more static scheduling done by R-storm.

Aniello et al. in their paper [23] proposes two schedulers for Storm. The

first scheduler is used in an offline manner prior to executing the topology

and the second scheduler is used in on online fashion to potentially reschedule

after a topology has been running for a duration. The offline scheduler has

the same disadvantages as R-Storm but the online scheduler incorporates

dynamic changes to the resource availability. Our method is different because

the rebalancing does not include migrating PEs to other nodes which can

lead to downtimes or extra usage of resources during the migration to avoid

any downtimes. The method of “The Power of Two Choices” (PoTC) [20]

continuously defines two hash functions h1(x) and h2(x), such that each key

x can be sent to one of two alternative downstream operator instances. Each

operator instance tries to balance the amount of work sent downstream, such

that all operator instances downstream receives an even workload. In our we

work we build on this method but instead of using local estimation of load,

our load balancer has a more global understanding of the cluster and hence

can accommodate changes in resource usage due to the presence of other

systems in the cluster. Additionally, our work also balances shuffle grouped

components as well.

29

Das et al. in their work on stream processing using dynamic batching

[12] proposes a micro-batch solution for throughput improvements. Here, a

batch interval is selected and the incoming data is batched together and fed

to the Spark batch processing system. Since, the batch size is small, the

performance can be similar to steaming systems, but with higher latency.

The interval can change depending in the data-rate. In our work, there is no

micro-batching involved since the batching is not done to the incoming data,

instead batching is done at individual PEIs. In [12] once the data is batched,

the batch remains as one data entity throughout the life cycle of the program.

So, a tuple will always be part of the same batch whereas in our case the tuple

is only temporarily batched at each PEI giving flexibility to do more adaptive

configuration of the data movement. In [24], Gulisano et al. propose a

system called StreamCloud in which they describe a high scalable and elastic

stream engine with novel parallelization approaches and an effective resource

management approach. The resource management is based on provisioning

and decommissioning instances leading to smaller overheads.

30

CHAPTER 8

CONCLUSION

In this thesis, we have presented a novel framework for dynamically adapt-

ing the batch size and batch interval in stream processing systems. We then

implemented a data-rate aware algorithm which with minimal workload spe-

cific configuration is able to adapt to variations in input data rates. As part

of this work we also studied in detail the effect of batching on performance

of the system under various operating conditions. We additionally proposed

future work of implementing more advanced load-balancing algorithms using

the adaptive batching framework.

31

REFERENCES

[1] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@ twitter,”
in Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 2014, pp. 147–156.

[2] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl et al., “The strato-
sphere platform for big data analytics,” The VLDB Journal, vol. 23,
no. 6, pp. 939–964, 2014.

[3] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: an efficient and fault-tolerant model for stream processing on
large clusters,” in Proceedings of the 4th USENIX conference on Hot
Topics in Cloud CComputing, 2012.

[4] N. Ramesh, “Apache Samza, LinkedIns Framework for Stream Pro-
cessing,” http://thenewstack.io/apache-samza-linkedins-framework-for-
stream-processing/, 2015, [Online; accessed 29-Aug-2016].

[5] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th annual
Symposium on Cloud Computing. ACM, 2013, p. 5.

[6] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in NSDI, vol. 11, 2011, pp. 22–22.

[7] Y. Ben-Haim and E. Tom-Tov, “A streaming parallel decision tree al-
gorithm,” Journal of Machine Learning Research, vol. 11, no. Feb, pp.
849–872, 2010.

[8] R. Berinde, P. Indyk, G. Cormode, and M. J. Strauss, “Space-optimal
heavy hitters with strong error bounds,” ACM Transactions on Database
Systems (TODS), vol. 35, no. 4, p. 26, 2010.

32

[9] B. A. Shirazi, K. M. Kavi, and A. R. Hurson, Scheduling and load bal-
ancing in parallel and distributed systems. IEEE Computer Society
Press, 1995.

[10] Y. Xing, S. Zdonik, and J.-H. Hwang, “Dynamic duo distribution in the
borealis stream processor,” in 21st International Conference on Data
Engineering (ICDE’05). IEEE, 2005, pp. 791–802.

[11] K. Schloegel, G. Karypis, and V. Kumar, Graph partitioning for high
performance scientific simulations. Army High Performance Computing
Research Center, 2000.

[12] T. Das, Y. Zhong, I. Stoica, and S. Shenker, “Adaptive stream process-
ing using dynamic batch sizing,” in Proceedings of the ACM Symposium
on Cloud Computing. ACM, 2014, pp. 1–13.

[13] M. J. Sax, M. Castellanos, Q. Chen, and M. Hsu, “Performance opti-
mization for distributed intra-node-parallel streaming systems,” in Data
Engineering Workshops (ICDEW), 2013 IEEE 29th International Con-
ference on. IEEE, 2013, pp. 62–69.

[14] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Millwheel: fault-
tolerant stream processing at internet scale,” Proceedings of the VLDB
Endowment, vol. 6, no. 11, pp. 1033–1044, 2013.

[15] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu,
A. Reznichenko, D. Ryabkov, M. Singh, and S. Venkataraman, “Pho-
ton: fault-tolerant and scalable joining of continuous data streams,” in
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. ACM, 2013, pp. 577–588.

[16] “Apache Flink, Scalable Batch and Stream Data Processing,”
https://flink.apache.org/, [Online; accessed 29-Aug-2016].

[17] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, 2011, pp. 1–7.

[18] “LMAX Disruptor: High Performance Inter-Thread Messaging Library,”
https://lmax-exchange.github.io/disruptor/, [Online; accessed 29-Aug-
2016].

[19] “Batching in DisruptorQueue,” https://github.com/apache/storm/pull/765,
[Online; accessed 29-Aug-2016].

[20] M. A. U. Nasir, G. D. F. Morales, D. Garćıa-Soriano, N. Kourtellis, and
M. Serafini, “The power of both choices: Practical load balancing for
distributed stream processing engines,” in 2015 IEEE 31st International
Conference on Data Engineering. IEEE, 2015, pp. 137–148.

33

[21] “Storm Benchmark,” https://github.com/intel-hadoop/storm-
benchmark, [Online; accessed 29-Aug-2016].

[22] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm:
Resource-aware scheduling in storm,” in Proceedings of the 16th Annual
Middleware Conference. ACM, 2015, pp. 149–161.

[23] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling
in storm,” in Proceedings of the 7th ACM international conference on
Distributed event-based systems. ACM, 2013, pp. 207–218.

[24] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez,
“Streamcloud: A large scale data streaming system,” in Distributed
Computing Systems (ICDCS), 2010 IEEE 30th International Confer-
ence on. IEEE, 2010, pp. 126–137.

34

