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ABSTRACT

A geomagnetic disturbance (GMD) can result in severe damage to the power

grid by inducing quasi-dc currents called geomagnetically induced current

(GIC). Protection against GMD therefore necessitates the accurate estima-

tion of GIC. GIC estimation is challenging because it depends on substation

grounding resistances, which 1) depend more on the local soil and earth con-

ditions than the construction of the substations themselves and 2) can vary

by more than an order of magnitude, from 0.05 to 1.5 ohms. Substation

grounding resistances are not contained in standard power system models,

and approximate values are often used in GIC studies. This motivates the

study in this thesis, which proposes a method to calculate the sensitivity of

GIC at any substation due to both the substation being studied and neigh-

boring substations’ grounding resistances. The work provides an algorithm

to quantify the degree of dependence of the GICs at any given substation.

The effectiveness of the method is illustrated using parameters from a real-

world power system. The case study results using the 20-bus GIC test system

and a model of the North American Eastern Interconnect indicate that the

substation GICs can be quite dependent on the assumed local substation

grounding values. Subsequently, the same systems were studied to include

neighboring substation grounding resistances. Although a few cases were

dependent on the neighboring values, the local substation grounding resis-

tances were more significant overall. These methods and results are further

discussed and analyzed in this work.
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CHAPTER 1

INTRODUCTION

Power systems can suffer heavily from disturbances in the Earth’s magnetic

field. Changes in the magnetic field induce quasi-DC currents (those with

frequency less than 1 Hz) in high voltage, AC transmission lines [6]. As

mentioned in [7], this causes half-cycle saturation in the transformers, caus-

ing harmonics and increase in reactive power demand. The loss of reactive

power support can lead to voltage collapse and/or transformer overheating,

potentially resulting in equipment damage.

The effect of such catastrophic disturbances on power systems needs to

be understood before preventative measures can be proposed. It is well-

known that the geomagnetically induced current (GIC) in a power system

can be modeled using elementary current sources [8, 9, 10, 11] as follows.

The electric field induced by geomagnetic disturbance (GMD) generates DC

currents in the system that can be modeled as DC current sources, denoted

by I. Let G denote the admittance matrix that can be used to find the nodal

voltages V of the system (see Eq. (1.1)).

V = G−1I (1.1)

Then the GIC at each substation s can be calculated by dividing the corre-

sponding voltage over the substation grounding resistances as shown in Eq.

(1.2).

IGIC,s =
Vs
Rs

(1.2)

The main contribution of this work is the study of GIC sensitivity with

respect to the substation grounding resistance. The rest of the document

is organized as follows. Chapter 2 presents the prior work on GIC and the

necessary modeling tools needed to study GIC. Chapter 3 presents the GIC

model used in this work and Chapter 4 proposes our methods to quantify

the sensitivity of GIC with respect to substation grounding resistance, both
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for local only and local and neighboring cases. Several case studies illustrate

the effectiveness of the proposed approach in Chapter 5. Finally, conclusions

are given in Chapter 6.
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CHAPTER 2

BACKGROUND

2.1 Geomagnetic disturbance

Geomagnetic disturbance (GMD) is a phenomenon where the Earth’s mag-

netic field changes due to the coronal mass ejection (CME) of the solar wind.

The solar wind, or solar flare, is a stream of solar energetic particles (SEPs),

i.e. electrons and protons, which is emitted from the corona of the sun to a

large distance (see Figure 2.1). Low energy SEPs in solar wind are deflected

by the electromagnetic field of the Earth because of not having enough en-

ergy. CME is a burst of solar wind and magnetic field and contains high

energy SEPs. These SEPs are captured by the Earth’s magnetic field, hence

disturbing it and creating GMDs. The capturing time is from 20 to 40 hours

after the flare occurs and the duration of the change in the magnetic field is

about 5 minutes. The solar cycle is 11 years and more severe storms come

toward the end of the cycle. The severity of a solar storm is measured in

nT/min and classified by Kp-level which ranges from 0 to 9. Any storm

Figure 2.1: Solar storm and its effects on the Earth, adapted from [2]
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that is higher than 500 nT/min is considered as Kp level 9 and needs special

attention. In one GMD event, the storm polarity and direction can change

many times.

2.2 Geomagnetically induced current and its negative

impacts on the power system

The change of the Earth’s magnetic field creates a geoelectric field at the

planet’s surface and in the ground, leading to the presence of low frequency

(less than 1 Hz) currents in the power system. The current is called geomag-

netically induced current (GIC). Because its frequency is very low compared

to the system frequency, the current is considered as quasi-DC and is cal-

culated almost like DC current with only conductance values in the electric

grid. Since the voltage difference is in the ground and the resistivity of the

grounded wire is much lower than that of the soil, the entry point of GICs into

the grid is through the grounded neutral wire of wye connected transform-

ers. Similarly, the low resistivity of the high voltage connections compared

to the low voltage connections makes them easier for GICs to enter. That is

why high voltage transformers are usually the ones with most damage after

a GMD event (see Figure 2.2).

The GIC has a significant impact on the operation and stability of many

power systems on earth. The most well-known evidence of this impact is the

Hydro-Quebec case on March 13, 1989, in which tens of millions of dollars

were lost due to a massive blackout that lasted for nine hours [12]. It was

reported that the root cause for the collapse of a system with 21,500 MW

generation and 2,000 kilometers of power lines was due to the tripping of

7 static VAR compensators (SVCs) in 59 seconds, leading to 9,460 MW

output lost from Hydro-Quebec’s La Grande Hydroelectric Complex. The

balance between the loads connected to the power grid was restored by the

load-reduction system’s disconnected regions in Quebec. Twenty-five seconds

later the entire Quebec power grid collapsed.

GIC can cause voltage instability, and consequently system collapse, through

the loss of reactive power in power systems. The DC flux created by GIC

in the core power transformer shifts its operating point on the magnetizing

curve. The shift causes flux saturation in half of the 60 Hz cycle, creating a
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Figure 2.2: Transformer damage, adapted from [3]

burst in the magnetizing current magnitude (compare Figures 2.3 and 2.4),

which is referred as the half-cycle saturation phenomenon in the transformer.

During this saturation, the transformer consumes a significant amount of re-

active power of the system, leading to reactive power loss in the network.

In severe cases it can lead to system failure because of the voltage collapse.

In addition, the half-cycle saturation introduces harmonics to the power line

currents, which results in increase in the eddy-current loss and core loss in

transformers and generators. These losses subsequently cause heating and

severe damage in those components. Because of the sensitivity of electrome-

chanical relays to current harmonics, the harmonics also cause the power

protections to improperly operate, which leads to the tripping of capacitor

banks and static VAR compensations (SVCs). This results in the significant

loss of reactive power support when the system is in need of it the most and

drives the system closer to a collapse.

2.3 Challenges in measuring time-varying grounding

resistances

Substation grounding resistance represents the interconnected impedance of

the grounding system of a substation. The impedance is usually measured in

terms of resistance because the reactance is generally negligible with respect

to the resistive component. The reactive component is only needed when the
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Figure 2.3: Transformer magnetic flux in normal operation

Figure 2.4: Saturation of power transformer magnetic flux due to GIC

6



Figure 2.5: Four-terminal method of measuring earth resistivity, adapted
from [1]

analysis involves surge or impulse currents. The grounding resistance consists

of the grounding mat that covers a large area of many buried grounding

electrodes and the ground paths emanating out from the substation such as

those due to shield wire grounding. It primarily depends on the resistivity

of the soil and the size and construction of the ground grid [4].

Earth resistivity, measured in Ω-cm, is the resistance of the soil with re-

spect to an electrode system. A common method to measure the earth resis-

tivity is called the four-terminal method, which is illustrated in Figure 2.5.

In this figure, four small electrodes are driven down to the same depth (B)

and equal distances (A) apart in a straight line, and four separate lead wires

connect the electrodes to the four terminals on the instrument.

As shown by Dr. Frank Wenner of the U.S. Bureau of Standards in 1915,

for B sufficiently smaller than A, i.e. 20 times, the following formula can be

applied:

ρ = 2πAR (2.1)

In the equation, ρ is the average soil resistivity to depth A in Ω-cm, A

is the distance between the electrodes in cm, and R is the earth resistivity

tester reading in ohms. In the example, if the distance between the electrodes

is 4 ft and the reading on the tester is 20 Ω, the average earth resistivity to

a depth of 4 ft is calculated as

ρ = 2× 3.1416× (4× 30.48)× 20 = 15, 320 Ω-cm (2.2)
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Table 2.1: Resistivity of different soil types, adapted from [1]

Resistivity (Ω-cm)
Soil Avg Min Max

Fills: ashes, cinders, brine wastes 2,370 590 7,000
Clay: shale, gumbo, loam 4,060 340 16,300

Varying proportions of sand/gravel 15,800 1,020 135,000
Gravel, sand, stones with little clay/loam 94,000 59,000 458,000

The centimeter unit can be converted to meters or miles when needed.

The result above is equal to 153.2 Ω-m and is about the resistivity of topsoil.

The type of soil affects the value of the earth resistivity tremendously

whether it is largely clay or very sandy. Table 2.1 shows average, min, and

max values for different types of soil. At a given location, the soil can be

composed of various combinations of dry soil, clay, gravel, slate, and sand-

stone. It can be moderately homogeneous over a large area, or it can be

layered in granite, sand, or other high-resistivity materials. Hence we cannot

say that a given soil has a resistivity of so many Ω-cm, but must measure it.

The soil resistivity decreases with moisture and dissolved salts because of

the electrolytic characteristic of the current. The amount of water in the soil

and its salt content vary with the weather, time of year, and the nature of

the subsoil. In fact, pure water has nearly infinitely high resistivity and the

dissolved naturally occurring salts in the earth lower the resistivity. Only a

small amount of salt can significantly change the soil resistivity. In addition,

the increase of temperature also decreases the resistivity of the soil. From

the effects of the moisture, the salt content, and the temperature, it is clear

that the earth resistivity will vary considerably over the course of a year.

Therefore, the grounding resistance will also vary with time.

Devices are physically grounded by having a conductor in physical contact

with the ground. Grounding resistance can be calculated with the knowledge

of the earth resistivity and the conductor/electrode parameters. To deter-

mine the resistance R of the ground, we can treat it with Ohm’s law like any

other resistive material as:

R =
ρ× conductor length

cross sectional area
(2.3)

The average resistivity of good conductors like aluminum and copper is
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Figure 2.6: Setup of the fall-of-potential method, adapted from [4]

about 2× 10− 8 Ω-m while the average resistivity of topsoil is 160 Ω-m and

sand/gravel is 900 Ω-m. However, because of its vast cross sectional area,

the earth is actually a good conductor. A circular wire made of topsoil with

radius of 500 m, 1 mile long, has a resistance of about 0.3 Ω.

In reality, the grounding resistance is not calculated based on the resistivity

of the soil and the structure of the ground grid, but measured using meters

and testers. Two main reasons are the inadequacy of the analytical methods

used in the calculations of the resistance and the possibility of a change in

the soil resistivity. Many methods have been used to obtain this resistance:

two-point method, three-point method, fall-of-potential method (see Figure

2.6), ratio method, slope method, staged fault tests, and resistance measure-

ments by clamp-on method. The fall-of-potential is more commonly used and

can provide an accurate result if properly conducted. The method involves

passing a current between a ground electrode (G) and a current probe (CP),

and then measuring the voltage between G and a potential probe (PP).

The current probe is generally placed at a substantial distance from the

ground electrode under test to minimize interelectrode influences due to mu-

tual resistances. This distance should be at least five times the largest di-

mension of the ground electrode under test. In addition, the location of the

potential probe plays an important role in measuring the resistance of the

ground electrode since it needs to be free from any influence by both the

ground electrode and the current probe. In practice, the distance for the po-

tential probe is often chosen to be 65% of the distance to the current probe,

provided that they are in the same direction. This 65% rule is based on a

theoretical calculation by Curdts in [13]. The main advantage of the fall-of-

potential method is that it produces an accurate measurement even when the
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potential and current electrodes have a substantially higher resistance than

the ground being tested.

Although the fall-of-potential method gives highly reliable results, it also

comes with some inevitable problems. First, it is extremely time-consuming

and labor intensive; the nature of substation and power station grounding

systems makes the testing far more complicated than on a simple ground

electrode. Secondly, the large area of a substation and power station ground

system results in a large resistance area and therefore long distances to the

test probes. The current test probe should be placed 10 times the maximum

distance on the ground system to find the flat portion of the characteris-

tic resistance curve. Third, the typical grounding resistance is from 0.1 Ω

to 1 Ω, and if the test instrument resolution is not sufficiently small then

it will lead to reading error. To solve this problem, the instrument used

should have 1 mΩ measurement resolution. Also it has to be specifically

designed to overcome the noise from power utility and switching. Last but

not least, individual ground electrodes must be disconnected from the system

to be measured, and, in reality, there are situations where disconnection is

not possible. These problems make the measuring procedure for substation

grounding resistance too difficult to conduct regularly.

Because of the variation with time of year and the difficulty in obtaining

updated measuring values, the substation grounding resistance, a key piece

of information needed to construct G and so to obtain the GIC values in the

system, is usually not accurately available. That is why a method to indicate

which grounding resistance concrete values are most needed is helpful in

predicting the GICs that will occur in the system under an incoming GMD

event.

2.4 Prior work on the effect of grounding resistances

on GIC

Pirjola [14] is among the earliest authors to investigate the effect of ground-

ing resistance on GIC. Through a series of case-study computations, Pirjola

showed that, for sufficiently small uncertainties in the grounding resistance,

their impacts are insignificant in practical applications (where only the level

of GIC, rather than its precise values, is needed). In addition, it was also
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shown that the interactions between different stations, i.e. the effects of off-

diagonal elements in the earthing impedance matrix, are modest. However,

these conclusions are based on macro-adjustments to all grounding resis-

tances simultaneously. In contrast, our research takes a different approach

where only one (either local or neighboring) grounding resistance is adjusted

at a time. Namely, the sensitivity of the GIC with respect to a grounding

resistance is explicitly quantified. With this approach, it is discovered that

the change in a GIC with respect to a grounding resistance is nontrivial.

The proposed method is presented in Chapter 4. The method itself relies

heavily on the celebrated sparse vector/Tinney technique, which is briefly

reviewed in the Section 2.5.

2.5 Sparse vector/Tinney method

Sparse vector method, originally proposed by Tinney et al. [15], is an efficient

algorithm for solving sparse linear inverse problems. The general form of a

linear inverse problem is given as follows:

Ax = b (2.4)

where A is a nonsingular (square) matrix of dimension N , b is the vector of

measurements, and x is the unknown. Since A is nonsingular, x is given by

x = A−1b (2.5)

The matrix A can be further decomposed into a product of matrices with

special structures. Namely,

A = LDU (2.6)

where L,U are unit triangular matrices whose elements above/below the

diagonal are all zeros, respectively, and D is a diagonal matrix. The special

structures of L,D,U simplify the procedure in (2.5) into simple operations

of forward and backward substitutions. Namely,

w = D−1L−1b (forward substitution)

x = U−1w (backward substitution)
(2.7)
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The following example is used to illustrate Eq. (2.7). Let

A =



1 0 0 2 2 0 0

0 1 0 0 0 0.5 1

0 0 1 0 0 0 2

2 0 0 5 6 0 0

2 0 0 6 9 3 0

0 0.5 0 0 3 10.25 5.5

0 1 2 0 0 5.5 31


, b =



0

0

2

0

0

0

0


(2.8)

Then with LDU composition,

L =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

2 0 0 1 0 0 0

2 0 0 2 1 0 0

0 0.5 0 0 3 1 0

0 1 2 0 0 5 1


U = LT

D = I

(2.9)

The auxiliary vector w can therefore be obtained using elementary opera-

tions as follows:

w =



b1

b2

b3

b4 − 2w1

b5 − 2w1 − 2w4

b6 − 0.5w2 − 3w5

b7 − w2 − 2w3 − 5w6


=



0

0

2

0

0

0

−4


(2.10)

where the subscripts are used to index elements in a vector. Notice that each

element of w is only a function of elements with lower indices, hence the

name forward substitution. From w, the solution x can be obtained using
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(backward) substitutions as follows:

x =



w1 − 2x4 − 2x5

w2 − 0.5x6 − x7

w3 − 2x7

w4 − 2x5

w5 − 3x6

w6 − 5x7

w7


=



−120

−6

10

120

−60

20

−4


(2.11)

Again, notice that each element of x is only a function of elements with

higher indices, hence the name backward substitution.

The above forward/backward substitution algorithm is computationally

intensive, i.e. O(N3). Fortunately, a more efficient algorithm, first discovered

by Tinney et al. [15], exists. The algorithm works by exploiting the fact that

there are very few non-zero elements in both A and b in Eq. (2.8), and if only

a subset of the unknown vector x is desirable, i.e. the linear inverse problem

is sparse, then the algorithm relies on the core concept of a factorization

graph.

A factorization graph is a graph whose nodes represent column/row indices

of the matrix A. The connections between nodes form a factorization path

that defines an ordered list of columns/rows on which forward/backward

substitutions shall be executed. The motivation behind the construction

of a factorization graph is the observation that, for sparse linear inverse

problems, only a few forward/backward operations are needed to produce

the result. Hence, Tinney’s algorithm reduces the computational complexity

by executing only those non-trivial operations, i.e. fast forward (FF) and

backward (FB), which are identified by factorization paths.

To illustrate the usefulness of a factorization graph, it is assumed that one

is given (see Figure 2.7) for the inverse problem in Eq. (2.8). b3 is the only

non-zero element in b so according to Figure 2.8, FF substitution consists of
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Figure 2.7: Example factorization graph

Figure 2.8: Example factorization graph with the forward path {3,7}

only operations at indices 3 and 7; therefore, it follows that

L



0

0

w3

0

0

0

w7


=



0

0

2

0

0

0

0


⇔

w3 = 2

w7 = −2w3 = −4
(2.12)

Now if x2 is desirable, then FB substitution consists of only operations at
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Figure 2.9: Example factorization graph with the backward path {7,6,2}

indices 7, 6, and 2 (see Figure 2.9). Namely,

U



x2

x6

x7


=



0

0

2

0

0

0

−4


⇔


x7 = w7 = −4

x6 = −5x7 = 20

x2 = −0.5x6 − x7 = −6

(2.13)

Similarly, if x5 is desirable, then the backward path {7,6,5} can be used.

U

x5

x6

x7


=



0

0

2

0

0

0

−4


⇔


x7 = w7 = −4

x6 = −5x7 = 20

x5 = −3x6 = −60

(2.14)

The construction of the factorization graph in Figure 2.7 is discussed next.

Consider the L matrix in Eq. (2.6). For the column 1, since the lowest index

of a non-zero element below the diagonal is 4, Tinney’s algorithm dictates

that node 1 connects to node 4. Next, the algorithm proceeds to column 4

and finds that the lowest index of a non-zero element below the diagonal is 5.
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Hence the algorithm dictates that node 4 connects to node 5. Similarly, node

5 connects to node 6, and node 6 connects to node 7. Now the nodes that

have not yet been considered are 2 and 3. Repeating the above procedure for

column 2 reveals that node 2 connects to node 6. Similarly, analyzing column

3 shows that node 3 connects to node 7. Once all nodes are considered, the

factorization graph in Figure 2.7 is complete.

The improvement of the FF and FB method proposed by Tinney et al. over

the standard forward and backward substitutions depends on the sparsity

structure of the matrix A, the measurement vector b, and the requirement

on the unknown vector x. In particular, the improvement of FF depends on

the sparsity structure of L and b, while the improvement of FB depends on

the sparsity structure of U and x, i.e. the number of elements in x that is

desirable. To precisely measure the improvement of Tinney’s sparse vector

method, one can use the ratio of the number of multiply-and-add operations

used in FF and FB to that of the standard forward and backward procedure,

i.e.

R =
mult-adds in FF and FB

mult-adds in standard forward and backward
(2.15)
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CHAPTER 3

MODELING GEOMAGNETICALLY
INDUCED CURRENT

3.1 Geoelectric field and GMD-induced voltage source

Many methods have been proposed to model the impact of solar storms on

the power system, two of which are presented in [16] and [17]. The ultimate

goal of the modeling is to give an accurate mapping from the storm profile to

geoelectric fields to use in calculation of GICs. A non-uniform geomagnetic

storm profile is characterized by the rate of change of the magnetic field den-

sity vector B in units of nT/min, which data is recorded from magnetometer

stations. The interaction between the storm and the Earth’s magnetic field

can be approximated by Faraday’s law.∫
∂B

∂t
dA =

∂ΦB

∂t
= ε (3.1)

The geoelectric field is calculated as an integral of the rate of change of

the magnetic field density B over an area A. The field also depends on the

Earth’s varying ground conductivity, so the conductivity model is an impor-

tant part in obtaining the electric field. Fortunately, for basic study of power

systems in GMD events, a uniform geoelectric field for which the conductivity

model is not needed is good enough because GMDs are continental in scope.

On the other hand, for a big power grid spread over a large geographic area,

it is critical to know the ground conductivity in order to map the magnetic

disturbance to the geoelectric field. The modeling result is judged based on

historical data of GMD events.

The effect of the geoelectric field on the power system is represented as volt-

age sources in the system. A voltage source is the voltage difference between

geographical locations due to the induced electric field and is calculated as:
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Vdc =

∮
E · dl (3.2)

where Vdc is the voltage source, E is the electric field vector, and l is the

vector of the path. There are two methods to integrate this voltage in the

system: either as DC voltage source in the ground or as DC voltage source

in series with the transmission lines. However, only the transmission line

approach works for the realistic non-uniform geoelectric field. The reason is

that only a uniform electric field is “conservative”, meaning its integration

along any path depends not on the path itself but on the distance between

the start and the end points. Hence, the integral around a closed loop is

zero. However, this rule does not apply to non-uniform fields, so modeling

the voltage source in the ground is not valid in general cases.

The dot product in Eq. (3.2) shows that the voltage depends greatly on the

direction of the electric field vector with respect to the transmission line. If

they are perpendicular to each other, then there is no voltage induced on the

line at all. This means that power systems can be vulnerable to geoelectric

fields with particular orientations and identifying them can be important in

protecting the systems.

As mentioned above, a uniform field is a good starting point for studying

power systems under GMD events. With the assumption that the geolectric

field is constant over the length of the transmission line, the dc voltage source

on the line can be calculated as:

V = ENLN + EELE (3.3)

In the case of non-uniform field, by diving the line into small segments

and applying the uniform assumption on each of them, the voltage source is

approximated as the sum of the induced voltages on those segments.

The induced voltage sources then are represented as Norton equivalent

current injections into buses. In example, the DC voltage source in series

with line (a,b) Vab (with the positive polarity on the a side) is converted to

a Norton equivalent DC current source on the line as

Iab = Vab/Rab (3.4)

where Rab is the series resistance of the transmission line (a,b). From Kir-
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Figure 3.1: GIC flow and voltage source placement, adapted from [5]

choff’s law, the overall current injection to bus a is calculated as the sum

of all Norton equivalent DC currents entering or leaving bus a through all

transmission lines connected to it.

3.2 GICs calculation

Figure 3.1 demonstrates how GICs flow in the system; they enter and exit

through the grounded neutral of the wye connected transformer. With the

knowledge of the network topology and parameters, induced transmission

line voltage sources, transformers parameters and power systems substation

grounding resistance, the GICs in the system can be calculated by solving

the equation:

V = G−1I (3.5)

where vector I is the vector of all Norton equivalent DC current injections

which are derived in Section 3.1. G is a matrix with structure similar to

that of the power system bus admittance matrix except 1) it is a real ma-

trix with just conductance values, 2) conductance values are determined by

the parallel combination of the three individual phase resistances, 3) G is
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Figure 3.2: A two-substation, four-bus GIC example

augmented to include the substation neutral buses and substation grounding

resistance values, 4) transmission lines with series capacitive compensation

are omitted since series capacitors block DC flow, and 5) transformers are

modeled with their winding resistance to the substation neutral in the case

of autotransformers.

When solved, the voltage vector V contains entries for the s substation

neutral DC voltages and the m bus DC voltages. Throughout this thesis it

is assumed that the s substations are ordered as the first entries in V, and

the m buses are ordered as the s+ 1 to s+m entries. The V vector can be

used to calculate all the GICs in the system. The GIC flow at a substation

A can be obtained by Ohm’s law, as given by

IGIC,A = VA/RA (3.6)

where RA is the substation grounding resistance of substation A. Note that

this GIC is not the same as the DC current injection in the previous section.

For demonstration, consider the simple network in Figure 3.2 with two

generators and four buses: Bus 1 and its generator (Bus 3) in Substation

A, and Bus 2 with its generator (Bus 4) in Substation B. The high voltage

generator step-up transformers are grounded wye on their high sides. Buses

1 and 2 are connected by a 765 kV line that has a per phase resistance of 3 Ω;

the per phase resistance of the high side coil of each of the two transformers

is 0.3 Ω, a grounding resistance of 0.2 Ω for Substation A and 0.3 Ω for

Substation B. Assume the substations are at the same latitude, separated by

150 km in the east-west direction, with a given electric field of 1 V/km in the

east-west direction. This gives an induced voltage in the transmission line of
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Figure 3.3: Augmented dc network, adapted from [5]

Table 3.1: G matrix (in Siemens) for the four bus system

Sub A Sub B Sub C Sub D
Sub A 15.00 0.00 -10.00 0.00
Sub B 0.00 13.33 0.00 -10.00
Bus 1 -10.00 0.00 11.00 -1.00
Bus 2 0.00 -10.00 -1.00 11.00

150 V.

The GICs in the system are calculated by solving Eq. (3.5) and then Eq.

(3.6). For the construction of the G matrix in Table 3.1, the system is

augmented as in Figure 3.3 to include substation neutral buses (buses A and

B). Since the low-side generator buses (Buses 3 and 4) are delta-connected,

they have no any impact on the GICs and are omitted in the equation. This

rule is applied to all low-side generator buses in bigger and more complex

networks like those in Chapter 5. By discarding them, the values of the

generator resistances are no longer needed.
15 0 −10 0

0 13.33 0 −10

−10 0 11 −1

0 −10 −1 11



VA

VB

V1

V2

 =


0

0

Vdc/Rline

−Vdc/Rline

 (3.7)
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V =


VA

VB

V1

V2

 =


17.6

−26.5

26.5

−35.3

V (3.8)

From the values of the dc voltage at substation neutral bus A, the GIC

flow through Substation A to the ground can be calculated as follows:

IGIC,A =
VA
RA

=
17.6V

0.2Ω
= 88A (3.9)

Similarly, Substation Bs GIC can be obtained with the values of VB and

RB and equal to -88 A. It can be explained that an 88 A quasi-dc current

results from the GMD flows from the ground through Substation B grounding

resistance into the high side coil of the Substation B transformer, down the

765 kV line into the high voltage coil in Substation A and back into the

ground through Substation A grounding resistance. In Figure 3.2 which

comes from PowerWorld simulation, the direction and size of the arrows are

used to visualize the direction and magnitude of the GIC flow.
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CHAPTER 4

PROPOSED METHODS

4.1 Sensitivity to local substation grounding resistance

(method 1)

Method 1 is employed at the beginning of this study about GIC sensitivity

to substation grounding resistance because it is simple and straightforward.

However, it only works for the grounding resistance of the substation whose

GIC is being studied; that leads to the creation of method 2, which can solve

for the sensitivities to resistances of both local and neighboring substations.

Regardless, the first method still gives a good idea about how the uncer-

tainty of the values of grounding resistances can affect the reliability of the

calculated values of GICs.

We use the same example in Section 3.2, but this time directly calculate

the GICs by solving a simple DC circuit. From a GIC perspective, the three

phases of the transmission line and transformers are in parallel, so the total

three-phase resistance for the 765 kV line is (3/3) Ω = 1 Ω, and (0.3/3) Ω =

0.1 Ω for each of the transformers. These resistance values are then in series

with the Substation A and B grounding resistance, which leads to

IGIC =
150 V

(1 + 0.1 + 0.1 + 0.2 + 0.3) Ω
= 88.26 A (4.1)

The 88.26 A result gives the total current in all three phases (i.e., 29.4

A per phase). Using Eq. (4.1), it is possible to obtain the sensitivity of

IGIC to each of the model parameters. Focusing on the sensitivity of IGIC

with respect to the Substation A grounding resistance, RA, Eq. (4.1) can be

rewritten as

IGIC,A =
150V

(1 + 0.1 + 0.1 + 0.3 +RA)Ω
=

VTH,A

RA +RTH,A

(4.2)
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where VTH,A is the Thevenin equivalent voltage looking into the network from

Substation A, and RTH,A is the corresponding Thevenin equivalent resistance.

For this example, their values are 150 V and 1.5 Ω respectively; IGIC,A is the

current flowing into the ground through the Substation A resistance. The

sensitivity of IGIC,A to the variation in the assumed value for RA is calculated

by differentiating Eq. (4.2) with respect to RA,

∂IGIC,A

∂RA

=
−VTH,A

(RA +RTH,A)2
(4.3)

which shows that IGIC,A can be changed equally by a variation in either RA

or in RTH,A.

However, these quantities are often known with potentially vastly different

degrees of accuracy. The substation grounding resistance is often an ap-

proximation with a high degree of uncertainty. In contrast, RTH,A is mostly

based on values known with a relatively high degree of precision, includ-

ing the transmission line and transformer resistances. While [18] makes the

important observation that wire resistance is temperature dependent, this

variation of about 0.4% per degree C is known and therefore can be included

in a study by using an approximate temperature profile. Also, it is apparent

in this simple example that RTH,A depends upon the assumed resistance of

the other substation.

Using Eq. (4.3) we can obtain the sensitivity of the substation GIC to

variation in assumed substation resistance in terms of a normalized variation,

that is, the percent variation in the current in terms of the percent variation

in the grounding resistance. For the general case of an arbitrary substation

i, this can be expressed as

∂(%IGIC,i)

∂(%Ri)
=

∂IGIC,i

IGIC,i

∂Ri

Ri

=
−Ri

Ri +RTH,i

(4.4)

Note that this sensitivity is always negative since an increase in assumed

resistance will always result in a decrease in the magnitude of the current.

Hence, it is convenient to define the absolute of this ratio as

<i =
Ri

Ri +RTH,i

(4.5)

If the <i is small (i.e. the Thevenin resistance is substantially larger than
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the substation resistance), as in this example, then an accurate estimate of

substation resistance is less important. Conversely, if <i approaches unity

then the value of the substation resistance dominates in the determination

of IGIC,i.

Returning to the four-bus example,

<A =
0.2

0.2 + 1.5
= 0.1176 (4.6)

which indicates that a 1.0% error in Ri results in a 0.1176% error in IGIC,A.

So if the assumed value of RA is increased by say 10% (from 0.2 to 0.22 Ω)

the magnitude of IGIC,A decreases by about (0.1176)*(10%) = 1.176%. Of

course, this is only a linearization about the current estimate of Ri. For

example, if the value of RA were assumed to increase by 100% (changing to

0.4 Ω) the value of IGIC,A would only decrease by about 10.6% (to 78.9 A).

Since the Thevenin equivalence resistance can be obtained for any substa-

tion in a network by calculating the diagonal element of G−1 corresponding

to the substation, this approach can be generalized to systems of any size.

Define the resistance matrix as

R = G−1 (4.7)

Then, with the assumption that the s substations are ordered as the first

s entries in G, the driving point resistance for the i-th substation is Rii.

Since for large systems G is quite sparse, the diagonal elements of R can be

calculated with great computational efficiently using sparse vector methods

(see Section 2.5). It is important to emphasize that the entire matrix G is

never explicitly inverted.

Since the substation resistances are directly connected to ground, the driv-

ing point resistance is the parallel combination of substation resistance and

the Thevenin resistance, given by

Rii =
1

1
Ri

+ 1
RTH,i

(4.8)

where Ri is the grounding resistance of the i-th substation, and RTH,i is

the Thevenin resistance looking into the network from the same substation.

Solving (4.8) for RTH,i gives
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RTH,i =
1

1
Rii
− 1

Ri

(4.9)

Before demonstrating the matrix approach on the four-bus system and

moving on to larger systems, several observations are warranted. First, the

Thevenin voltages are dependent upon the I vector used in (3.5), which

means they do depend upon the particular GMD scenario under considera-

tion. Second and conversely, the Thevenin resistance values are independent

of I, depending only upon G. Third, the substations for which accurate re-

sistance values are most needed are those that have both high GIC values

and high ratio values (<).

4.2 Sensitivity to local and neighboring substation

grounding resistance (method 2)

Compared to method 1, method 2 is more complicated, but is capable of com-

puting the sensitivity of GIC to the grounding resistance of the substation

being studied and, most importantly, to the grounding resistance of other

substations in the network which is not possible using method 1. Equation

(4.2) of the two-substation, four-bus system example shows that GIC de-

pends not only on RA but also on RTH,A, which is the Thevenin resistance

from Substation A looking back into the system. Its value is mainly com-

posed of the resistances of the system’s transmission lines and transformers.

However, it is apparent that RTH,A also depends upon the assumed grounding

resistance of the other substations; as in the example, it includes RB which

is the grounding resistance of Substation B. Hence, the effect of variation

in the assumed grounding resistances of neighboring substations cannot be

neglected in this study of GIC sensitivity.

This section addresses the issue of sensitivity to grounding resistances by

proposing an algorithm to calculate the sensitivity of GIC on any substation

with respect to both local and other substations’ grounding resistances. With

this function, utility companies can identify the worst-case scenario without

updated and accurate grounding resistance values and can better prepare for

potential GMD events.

26



4.2.1 Sensitivity of GICs to local resistance

Consider a general system that has s substations and m buses. The variation

of the approximated grounding resistance Ri is interpreted as the variation

of the corresponding conductance gi, notated as g̃i.

g̃i = g′i − gi (4.10)

where gi is the assumed grounding conductance of substation i, gi is the new

gi, and g̃i denotes the change or variation. This change leads to the change

in the matrix G and is denoted as G′

G′ = G + gieie
T
i (4.11)

where ei is a n × 1 vector with the element in the i-th row being 1 and

0 otherwise; eTi is the transpose of ei. Using matrix inversion lemma, the

inverse of matrix G′ is given as

G′−1 = G−1 −G−1ei(g̃
−1
i + eTi G−1ei)

−1eTi G−1 (4.12)

Then, the GIC at substation i can be written in terms of conductance gi,

matrix G, and the current injection vector I.

IGIC,i = giVi = gie
T
i V = gie

T
i G−1I (4.13)

Now, the percentage variation of GIC in terms of the percentage variation

of grounding resistance is expressed as follows:

∆IGIC,i

IGIC,i

∆Ri

Ri

=
g2
i Rii − gi + gig̃iRii − g̃i

gi + Riigig̃i
(4.14)

In this equation, the driving point resistance Rii is the element at the i-th

row, i-th column of resistance matrix R. As stated in Section 4.1, matrix G

is usually a sparse matrix so R can be computed efficiently using the sparse

vector method [15].

From Eq. (4.14), the change of the GIC due to the change in its assumed

local substation resistance can be calculated precisely. Taking the limit of Eq.

(4.14) as the variation goes to 0 gives the desired sensitivity, which is the rate

of change of GICs with respect to the variation of the assumed resistances.
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Sii = lim
g̃ii→0

∆IGIC,i

IGIC,i

∆Ri

Ri

= giRii − 1 =
Rii

Ri

− 1 (4.15)

Using Eq. (4.9), Rii can be replaced by Ri and RTH,i and Eq. (4.15) can

be rewritten as

Sii =
−1

Ri +RTH,i

(4.16)

This equation is exactly the same as the GIC sensitivity to local substation

grounding resistance derived in method 1.

4.2.2 Sensitivity of GICs to neighboring resistances

Next, the sensitivity of GIC at substation i to the variation of substation j

grounding resistance, with j 6= i, is considered. This variation has an effect

on the admittance matrix G.

G′ = G + g̃jeje
T
j (4.17)

where g̃j is the variation of the grounding conductance at substation j. Reem-

ploying the matrix inversion lemma for this case, the inverse of matrix G′ is

given as

G′−1 = G−1 −G−1ej(g̃
−1
j + eTj G−1ej)

−1eTj G−1 (4.18)

Then, following the same procedure as in the derivation of local resistance

in the previous section, the sensitivity of GICs at substation i to grounding

resistance of substation j can be formulated as follows:

∆IGIC,i

IGIC,i

∆Rj

Rj

=
kgj + kg̃j
1 + Rjj g̃j

(4.19)

In this equation, Rjj is the element at row j, column j of resistance matrix

R, and k is a scalar number given by

k = Rij

eTj G−1I

eTi G−1I
= Rij

Vj
Vi

(4.20)

where Rij is the element at row j, column i of resistance matrix R, Vi and
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Vj are neutral DC voltages of substations i and j. Similar to Eq. (4.14), Eq

(4.19) is capable of providing the exact change of the GIC being studied given

the change of the resistance. Taking the limit of Eq. (4.19) as the variation

g̃j goes to 0 provides the rate of change of GICs at substation i with respect

to the variation of the assumed resistances at substation j. In contrast to

the local sensitivity, which is always negative, this sensitivity can be positive

or negative depending on the signs of Vi and Vj. If the sensitivity is positive,

an increase in the assumed grounding resistance leads to an increase in GIC

and vice versa.

Sij = lim
g̃j→0

∆IGIC,i

IGIC,i

∆Rj

Rj

= gjRij
Vj
Vi

=
Rij

Rj

Vj
Vi

(4.21)

As defined above, Rii and Rij are elements of matrix G−1. In a large

system, G is usually sparse because each bus is only connected to a few

other buses through the transmission lines. Hence the direct computation

of G−1 will be redundant. As a result, the sparse vector method [15] is

employed to obtain values of desired elements of matrix G−1. The idea is

that all the sensitivities of GICs at substation i are in the column i-th of

matrix G−1. Hence obtaining some particular sensitivity values of IGIC,i

is equivalent to calculating some particular elements of the i-th column of

G−1. In Equation (4.23), the i-th column of G−1 is denoted as x, and the

i-th column of unit matrix I is denoted as b. Hence b is a vector in which

all elements are 0 except the one at the i-th row. Using factorization, Eq.

(4.24) can be rewritten as the combination of Eqs. (4.27) and (4.28). To solve

for x, a forward substitution is first needed for Ly = b. Then a backward

substitution for Ux = y is carried out. Fortunately, because 1) b is a sparse

vector and 2) only few elements of x are needed, fast forward (FF) and fast

backward (FB) substitution techniques can be applied to solve these two

equations. To use these techniques, factorization paths are needed for both

L and U ; each path is executed in forward order for FF and backward order

for FB.

GG−1 = I (4.22)

G(G−1)i = ei (4.23)
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Gx = b (4.24)

G = LU (4.25)

LUx = b (4.26)

Ly = b (4.27)

Ux = y (4.28)
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CHAPTER 5

CASE STUDIES

5.1 EPRI 20-bus

Both algorithms from methods 1 and 2 are first demonstrated using the 20-

bus test system from [19]. The one-line diagram of the system is shown

in Figure 5.1. The arrows represent the flow of the GICs for the 1 V/km

eastward field, while the size of an arrow is proportional to the magnitude of

the GIC on each of the lines. The locations of the eight substations in the

case are labeled in the figure. The algorithms are applied to the two GMD

scenarios considered in [19], namely, a uniform 1 V/km eastward field and a

uniform 1 V/km northward field.

For convenience, the assumed substation grounding resistance values and

the calculated GIC flows for the two scenarios (from Tables I and VII of

[19]) are given in Table 5.1. Notice that Substation 1 is modeled with a

GIC blocking device so its grounding resistance is assumed to be infinite.

Substation 7 models a series capacitor location that has no connection to

ground.

Using the approach from Section 4.1 (method 1), the values for the 20-

Figure 5.1: 20-bus GIC test system one-line showing 1 V/km eastward
values
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Table 5.1: 20-bus substation resistances and GIC flows

Grounding
resistance (Ω)

Eastward
field GIC (A)

Northward
field GIC (A)

Sub. 1 0.2 (but
blocked)

0.00 0.00

Sub. 2 0.2 -189.29 115.63
Sub. 3 0.2 -109.49 139.85
Sub. 4 1.0 -124.58 19.98
Sub. 5 0.1 -65.46 -279.09
Sub. 6 0.1 354.52 -57.29
Sub. 7 No ground

path
0.00 0.00

Sub. 8 0.1 134.30 60.9

Table 5.2: 20-bus substation equivalent values

Driving
point re-
sistance
(Ω)

RTH (Ω) < VTH east-
ward (V)

VTH north-
ward (V)

Sub. 2 0.158 0.750 0.210 -179.88 109.90
Sub. 3 0.115 0.272 0.424 -51.61 65.95
Sub. 4 0.198 0.246 0.802 -155.28 24.90
Sub. 5 0.076 0.321 0.239 -27.53 -117.41
Sub. 6 0.075 0.302 0.249 142.50 -23.02
Sub. 8 0.093 1.365 0.068 196.69 89.20

bus system are given in Table 5.1 (since grounding resistance plays no role

for Substations 1 and 7, they are omitted from the table). Noted that the

sensitivity of GIC to its local grounding resistance is independent of the

GMD scenario, and depends only upon Ri and RTH,i (see Eq. 4.4); hence the

values of < in Table 5.2 are the same in two different scenarios here. The

relatively low < values for all the substations except 3 and 4 indicate that the

substation GICs are not particularly dependent on the assumed substation

resistance. In contrast, the GIC at Substation 4 is highly dependent on its

grounding resistance value.

For example, if the Substation 4 grounding resistance value is assumed to

decrease by 50% (from 1.0 to 0.5Ω), the new GIC for an eastward field would

change from -124.6 A to -208.1 A (the magnitude increases by 67.01%). In

contrast, at the less sensitive Substation 2, if its grounding resistance was also
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Table 5.3: 20-bus system’s sensitivity values for a uniform eastward field

IGIC,2 IGIC,3 IGIC,4 IGIC,5 IGIC,6 IGIC,8

R2 -0.210 0.121 0.028 0.250 -0.017 -0.004
R3 0.040 -0.424 0.031 0.226 -0.052 -0.012
R4 0.061 0.203 -0.802 0.691 -0.054 -0.013
R5 0.015 0.040 0.019 -0.238 -0.015 -0.004
R6 -0.030 -0.272 -0.044 -0.449 -0.249 0.133
R8 -0.001 -0.009 -0.002 -0.015 0.019 -0.068

Table 5.4: 20-bus system’s sensitivity values for a uniform northward field

IGIC,2 IGIC,3 IGIC,4 IGIC,5 IGIC,6 IGIC,8

R2 -0.210 0.058 0.107 -0.036 -0.066 0.006
R3 0.085 -0.424 0.249 -0.068 -0.410 0.035
R4 0.016 0.025 -0.802 -0.026 -0.054 0.005
R5 -0.104 -0.135 -0.507 -0.238 0.404 -0.035
R6 -0.008 -0.034 -0.044 0.017 -0.249 -0.047
R8 0.001 0.003 0.004 -0.002 -0.053 -0.068

reduced by 50% (from 0.2 to 0.1 Ω), the Substation 2 GIC for the eastward

field would only change from -189.3 to -211.6 A (the magnitude increases by

11.78%). The above sensitivity analysis confirms that the magnitude < is

indeed a sensitivity indicator.

Using the algorithm in method 2, the sensitivities of GICs to neighboring

substation grounding resistances for the 1 V/km eastward field scenario are

given in Table 5.3, and those for the 1 V/km northward field scenario are

given in Table 5.4. Substation 1 and Substation 7 are also omitted in those

tables. As mentioned above, the sensitivity to local grounding resistance does

not depend on GMD scenarios. In contrast, the sensitivity to neighboring

grounding resistances changes with the magnitude and direction of the solar

storm. It means for different GMD scenarios, the sensitivities of a particular

GIC to other substation resistances can be greatly different and need to be

recomputed for each course of events. This can be proved by comparing the

sensitivity values in Table 5.3 and Table 5.4.

From both tables, it is apparent that the absolute value of the sensitivity

of a GIC to the local resistance is usually greater than those of the sensitivi-

ties to neighboring substation grounding resistances. However, there are still

some cases in which the results are opposite. For convenience, the sensitivity
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of the GIC at substation i with respect to the grounding resistance of sub-

station j is denoted as Sij. In Table 5.3, S55, which is the sensitivity of GIC

at Substation 5 to its grounding resistance, is −0.238 but its sensitivities to

Substation 4 and Substation 6 resistances are 0.691 and −0.449, respectively.

The fact that the absolute values of S54 and S56 are greater than that of S55

means if the GIC value at Substation 5 is important then accurate values of

the resistances of Substation 4 and 6 are needed more than that of Substation

5. This situation also happens for GIC at Substation 6 in Table 5.4 where

the absolute value of S66 (−0.249) is smaller than those of S63 (−0.410) and

S65 (0.404). In addition, in the case of GIC at Substation 4, even though the

absolute value of S45 (−0.507) is not greater than that of S44 (−0.802), it is

still significant; hence the accuracy of the grounding resistance of Substation

5 should still be considered in calculating GIC4. This example shows that the

calculation of the sensitivity to neighboring substation grounding resistance

is not redundant but necessary.

Even though the 20-bus test case only has few substations, there are still

two remarks prompted by Tables 5.3 and 5.4. First, the absolute value of the

sensitivity of a GIC to the local resistance is frequently greater than most of

the sensitivities to other substation grounding resistances. This result implies

that, regularly, the accurate value of the local resistance has the largest share

in the calculation of GIC. Secondly, most of the external sensitivity values

in both tables are trivial (smaller than 0.1) and the non-trivial ones are

only a handful. In addition, all of them are sensitivity of GIC to grounding

resistances of substations that are directly connected or two hops away from

the substation being studied. This observation reveals that only grounding

resistances from nearby substations contribute significantly to the sensitivity

of GIC; this aspect will be examined further in the following section.

5.2 150-bus synthetic system

In studies of geomagnetic disturbances, there are only few realistic test cases

that are not restricted by data confidentiality. Since they are large, they

mostly contain critical infrastructure information that is restricted to use for

public validation of GMD analysis. Birchfield et al. [20] provide a method

to generate a completely synthetic transmission system. It utilizes public
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energy and census data to form the basis for generation, load, and geographic

substation placement. The approach is to build a large synthetic power

system which matches statistical characteristics of the actual transmission

line, like the Eastern Interconnect (EI) in North America.

Using the method presented, [20] introduces a 150-bus synthetic network

created based on the State of Tennessee’s power system, which is part of EI.

This test case that will be used for GIC sensitivity analysis in this section.

The power system of Tennessee contains 98 substations with a geographic

footprint covering approximately 35oN to 36.5oN latitude and 90oW to 82oW

longitude; the wide geographic area makes it better for GIC analysis. 500 kV

and 230 kV were chosen as the nominal voltage levels because of their low

resistance and long transmission distance. Since the most of the substation

grounding resistances in this system are not known, their values are assigned

based on the assumed size of the substations which includes the nominal

voltage level and the number of buses in them. The larger, higher voltage

substations have lower resistance values.

For this case study, consider a uniform 3 V/km eastward electric field

applied on the synthetic system being studied. The purpose of applying a

uniform electric field is not to imply such a field would represent a realistic

GMD storm scenario; rather it is used solely to generate example GICs.

Note that in this system, all 230 kV substations have only one voltage level

so they do not connect to any transformer and therefore do not have GIC

value. Hence, only 500 kV substations are examined for GIC sensitivity

analysis in this case. In Figure 5.2, all substations are presented as boxes

with the orange one being 500 kV and the blue one 230 kV. Among 98

substations in the network, there are twenty-seven 500 kV substations with

a GIC magnitude of 3.96 A to 461.6 A. Table 5.5 presents fifteen substations

with the highest GICs, and Figure 5.2 shows them marked on the one-line

diagram of the 150-bus system. Publishing these data in the case of an actual

grid like EI would violate data confidentiality; using a synthetic system helps

avoid that issue while still providing a realistic case study for GIC analysis.

According to Table 5.5, the sensitivities to local grounding resistance of

all fifteen substations are non-trivial (larger than 0.1), indicating that the

assumed resistance dominates in determining the GIC for a particular sub-

station. Moreover, more than half of them (8 out of 15) have sensitivity at

or above 0.4. To illustrate, consider Substation 78 which has an assumed
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Table 5.5: 150-bus system’s 15 substations with the largest GICs and their
local sensitivity values for a 3V/km eastward field

Sub # Assumed R(Ω) GIC(A) Sensitivity
44 0.18 461.6 -0.356
93 0.11 -460.45 -0.429
78 0.18 -419.61 -0.461
91 0.12 350.13 -0.366
42 0.18 303.7 -0.427
95 0.11 -273.18 -0.41
70 0.18 -214.76 -0.44
94 0.12 -206.53 -0.45
96 0.15 158.44 -0.227
85 0.18 -131.53 -0.402
97 0.11 128.8 -0.463
26 0.18 -124.12 -0.383
89 0.18 121.1 -0.361
21 0.18 117.92 -0.359
92 0.12 95.22 -0.369

Figure 5.2: One-line diagram of 150-bus GMD test case with marks on 15
substations with highest GICs
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Table 5.6: 150-bus system non-trivial external sensitivity values of 15
substations

Substation of GIC Substation of resistance Sensitivity # of hops
42 44 0.209 1
85 93 0.173 1
85 95 0.147 1
95 70 0.134 1
95 78 0.286 1
70 78 0.359 1
70 95 0.133 1
21 91 0.358 1
21 93 -0.183 1
92 42 0.489 1
92 44 0.546 2

grounding resistance of 0.18 Ω and sensitivity of -0.461; its GIC magnitude

of 419.61 A in this scenario indicates that it is highly susceptible to GIC

on its GSUs. If the assumed grounding resistance is increased from 0.18 to

0.5 Ω, then the magnitude would drop by half to 229.86 A. On the other

hand, if the limit of GIC value the substation can handle is 500 A and the

actual value of its grounding resistance is 0.1 Ω, the imprecise calculation of

GIC may lead to damage to transformers in the substation due to lack of a

protection scheme.

Besides the local grounding resistance, GICs in these substations are also

dependent on the assumed resistances of neighboring substations. Similar

to the 20-bus system case, most of the external sensitivities in this case are

very small and can be ignored. However, there are still a handful of values

that are non-trivial and are presented in Table 5.6. The result reaffirms that

the influence of external grounding resistances on the calculation of GIC at

a particular substation cannot be overlooked. In addition, the last column in

Table 5.6 shows the relative distance between the GIC’s substation and the

external resistance’s substation. If the value is 1 then the two substations are

directly connected to each other. If it is 2 then they are connected through

a substation in the middle. The values in this column indicate that a GIC

is only affected by the grounding resistances of nearby substations, which is

also acknowledged in the end of Section 5.1.
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CHAPTER 6

CONCLUSION

This thesis has addressed the issue of the sensitivity of the GICs to the

assumed (either local or neighboring) substation grounding resistance in the

system, providing an algorithm suitable for large system use to quantify this

sensitivity. The conclusion of the thesis is that the GICs can indeed be quite

dependent on these values, with example results provided for the 20-bus GIC

test system and the 150-bus synthetic system.

Another contribution of this thesis is a methodology for identifying the

substations that need accurate grounding resistance values: those substa-

tions that have high GICs and high sensitivity values. Ideally, utility engi-

neers would have easy access to data sets that provide accurate values for all

substations in a network. However, this can be difficult in practice as was

discussed in Section 2.3. The methodology introduced in this thesis can help

them focus on the locations in which accurate information is most needed.
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