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ABSTRACT

Emulations of network services are more accurate than simulated models.

However this is achieved at an increased computational cost. Combining

emulation with simulation allows more accurate, controllable and repeatable

evaluation of applications but such hybrid systems are generally not scalable.

Virtual time systems attempt to provide a feasible solution by defining and

controlling a virtual clock to alter an experiment’s notion of time.

Previous works have motivated and explored the benefits of virtual time sys-

tems in improving the scalability of combined emulation-simulation testbeds.

One such endeavor resulted in the development of TimeKeeper, an open

source virtual time system for Linux. TimeKeeper has been integrated with

popular network simulators ns-3, CORE and S3FNet. In this thesis, we ex-

tend it further by integrating TimeKeeper with the Extensible Mobile AdHoc

Network Emulator (EMANE). We also demonstrate the broad applicability

of TimeKeeper by implementing a Programmable Logic Controller (PLC)

network emulation tool which can be used to emulate industrial Supervisory

Control and Data Acquisition (SCADA) systems. Over the course of the

design of these two case studies, we unearthed and fixed a subtle design flaw

in TimeKeeper’s scheduling mechanism which could potentially starve some

processes of CPU time during execution. The purpose of this thesis is twofold

(1) to describe improvements to TimeKeeper’s design including the logic to

ensure fair scheduling and (2) to describe two case studies which demon-

strate the scalability and fidelity benefits of running emulations/simulations

in close virtual synchrony under the control of TimeKeeper.
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CHAPTER 1

INTRODUCTION

Large-scale network services are often provided by complex and intercon-

nected computing devices which need to function cohesively and reliably

with each other. Planning and design of such services typically require huge

monetary investment and long development cycles leading to implementation

issues in software, hardware and deployment. Testing, therefore becomes a

necessary pre-requisite prior to live deployment of any new technology and

application services. There have been several instances in the recent past

like the critical outages in NASDAQ and VISA [1], which underline the dan-

gers of inadequate testing and rushed product deployments. Yet, it is still

viewed as one of the areas which can be marginalized to cut production costs.

There are several challenges which need to be overcome to perform effective

testing of large and complex computing systems and services. To analyse

the expected behavior of the system subject to different stress levels, the test

environment has to be of a similar scale and be capable of simulating massive

and dynamic loads. Furthermore, if the service needs to be bench marked

for comparison with other variants, the testbed evaluations must be repro-

ducible and controllable. Building replicas of the system for testing purposes

is not cost effective or scalable and it may be difficult to produce repeat-

able evaluations under similar work conditions. Thus, designing a scalable,

cost-effective, flexible and tractable testing framework could aid in effective

testing and evaluation of large-scale applications and services prior to de-

ployment.
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Virtual time systems, which are a recent foray into this space, aim to combine

the benefits of simulation and emulation and introduce a notion of virtual

time to build a scalable and cost-effective testing environment. Simulators

offer control over experiment conditions which are necessary to perform re-

producible evaluations. Parallel discrete event network simulators like ns-3

[2], CORE [3], EMANE [4] and S3Fnet [5] can precisely simulate link char-

acteristics, delays and traffic patterns to re-create specified workloads and

exploit available parallelism to reduce execution time. However, writing sim-

ulation models of individual components in the system is often difficult and

error prone and needs extensive validation. With the advancement of virtual-

ization technologies, this problem can be addressed by emulating components

of the system. Unlike simulated models, emulations are more detailed and

mimic the exact functionality of their target components. The expanse in the

level of detail and improvement in fidelity however comes at a computation

cost which limits the scalability of large-scale emulations. Hybrid systems

combine the benefits of simulation and emulation by simulating the links

between interconnected emulated components to create a controllable and

realistic testing environment but they still suffer from lack of scalability.

As shown is subsequent sections, constraints on computational resources

available to hybrid systems could affect the fidelity of experimental results.

Virtual time systems seek to address the fidelity and scalability issues by run-

ning the emulations in virtual time which progresses at a slower rate than

real time. By slowing down the advancement of time, events injected into

the simulator are spaced out over larger time intervals which in turn gives

the simulator more time to process a larger number of events without falling

behind. However, slowing down the advancement of time in emulated com-

ponents, raises the challenge of maintaining synchrony in virtual time among

them to avoid causality violations. Thus to maintain causality and reduce

the overall execution time, virtual time systems would require an efficient
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control phase which directs advancement of virtual time in each individual

component with minimal overhead. With these objectives in mind, we de-

veloped TimeKeeper, a light-weight virtual time system for Linux [6].

The purpose of this thesis is to demonstrate the scalability and fidelity bene-

fits of integrating network simulators/emulators with TimeKeeper. We build

on our previous work which integrates TimeKeeper with ns-3, CORE and

S3FNet [7], and extend it further by integrating TimeKeeper with the popular

Mobile AdHoc Network Emulator EMANE [4]. Further we also substantiate

our claim that TimeKeeper is widely applicable under different contexts, by

designing a high fidelity industrial SCADA control Testbed which emulates

Networks of Programmable Logic controllers. We use an open source PLC

Emulator Awlsim [8] and integrate it with the TimeKeeper+S3FNet system

in such a way that emulations and simulation are advancing synchronously

in virtual time. Over the course of the design of these two case studies, we

also unearthed and fixed a subtle design flaw in TimeKeeper’s scheduling

mechanism which could potentially starve some processes of CPU time dur-

ing execution.

The thesis is organised as follows: Chapter 2 motivates the need for a tool

like TimeKeeper by discussing the impact of computational resource con-

straints on emulation results in the context of a routing protocol. Chapter

3 gives a brief overview of related works in this area and their implications.

Chapter 4 presents a brief overview of the design decisions in TimeKeeper

and subsequent modifications that were made. Chapter 5 presents the first

case study which describes and analyses the integration of EMANE with

TimeKeeper. Chapter 6 presents the second case study which describes the

construction of the PLC Network Emulation Testbed and demonstrates the

fidelity of the approach in capturing the operating behavior of a PLC network

under varied network conditions and stress levels.
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CHAPTER 2

MOTIVATION

In this chapter, we demonstrate the effect of computational resource con-

straints on the fidelity of experiment results and cite a motivating example

to support our claim on the benefits of shifting to virtual time systems.

Ideally, one would expect non-relevant external experimental conditions like

the speed of the underlying hardware or other background processes in the

system to have negligible impact on the observed experimental results. But

this may not always be the case. We demonstrate this claim on an emulation

of a simple semi-linear topology running a routing protocol by developing an

effective stressing technique to interfere with normal routing path computa-

tions.

For this experiment, we chose EMANE [4] (Extensible Mobile AdHoc Net-

work Emulator) which is one of the most widely used wireless network em-

ulators. We constructed a static semi-linear topology resembling a chain of

nodes where each node is within the range of two neighbors on either side.

Each node in the experiment is emulated by a distinct Linux Container (LXC)

running EMANE processes, applications and a routing protocol. Individual

LXCs have a fully virtualized network stack and every LXC in EMANE is

connected to every other LXC. Each LXC can broadcast messages to every

other LXC but the receiver EMANE process decides to process or drop the

message depending on the distance and other simulated characteristics of the

link between the sender and receiver.
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A node at one end of the topology runs a client application which sends

UDP packets at a constant rate to the node at the other end running a

server application. The server simply echos and logs all received packets

locally. EMANE’s IEEE 802.11b/g model was used to simulate all wireless

links in the topology. All nodes run an instance of OLSRD (Optimized link

state routing) protocol [9] to route messages. OLSRD works by periodically

exchanging link state updates with neighbors to construct a global view of

the network. If a routing update from a particular neighbor does not ar-

rive on time, the neighbor is assumed to have failed and the routing table

is altered/flushed. Thus, under the absence of any enforced experimental

conditions, the network simulator must ensure that the keep-alive messages

get delivered on time to avoid incorrect routing updates.

We impose additional stress on EMANE’s ability to deliver these link state

messages between nodes by running a high priority background process on

alternate nodes. The Linux scheduler allots larger time slices to higher pri-

ority processes which can starve other processes on the container. OLSRD

processes running on the stress induced LXCs will be starved of CPU time

which will interfere with the best effort delivery of link update messages to

neighbors. We can furthermore increase the stress by increasing the size of

the topology run on a fixed number of cores; this has the same effect of with-

holding CPU resources from OLSRD processes that need them to keep up

with the flow of real time.

We observed the stressing technique to be very effective. By increasing the

number of nodes in the topology, the amount of CPU time available to each

LXC per unit real time is reduced. If the LXC is additionally stressed with

high priority processes, then OLSRD process running on these LXCs are

starved of CPU time and do not send keep alive messages periodically. If a
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routing update does not arrive within a timeout, the routing daemon could

flush its routing tables and all packets which arrive without available routes

are dropped. This is observed in the form of increased packet losses in Fig-

ure 2.1 where the x-axis is the number of LXCs assigned to each core (of two

cores).

The packet transmission rate used in the experiments were low enough so

that in a real system packet loss would be very very infrequent. Likewise,

under stress we see in Figure 2.1 that there is considerable variance in the

number of hops per end-to-end route as the frequency of routing table oscil-

lation increases. In the real system there is no variance.

The observations gathered from the stressing technique confirm our intu-

ition that emulation results can be strongly influenced by irrelevant external

factors. To improve the believability of experimental results, we need to

de-couple the impact of these extraneous experimental conditions from sim-

ulation outcomes. We argue that virtual time systems are a viable solution

to this problem. Unlike hybrid simulations advancing in real time, if we can

alter a node’s perception of time by controlling its clock, we can force the

perceived time to progress at a slower rate and make the applications less de-

pendent on the speed of the underlying hardware or other irrelevant factors.
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(a) Percentage of Lost Packets

(b) Variance of number of Routing Hops

Figure 2.1: Lost packets and variance in hops in best-effort emulation
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CHAPTER 3

BACKGROUND

The notion of virtual time is not new and has been referenced by several

works in the past. Lamport [10] first introduced a scheme for assigning

virtual timestamps to events in a distributed system so that timestamps of

causal events satisfy a well-defined invariant. The scheme defined an artificial

clock for each process and advanced it by coarse values at event generation

and reception instances. However, such event driven coarse advancement of

the virtual clock is only useful when channels are unreliable and delays are

arbitrary. In general-purpose simulators, the virtual time advancement needs

to be finer because the event send times and receive times are related by the

specified channel delay.

Traditionally, there have been two approaches to virtual time (VT) advance-

ment: optimistic and conservative.

3.1 Optimistic Virtual Time Advancement

Jefferson [11] extended Lamport’s work and proposed an optimistic virtual

time advancement algorithm which uses a rollback mechanism to reorder

event execution at a process when a message with a past virtual timestamp

arrives at a given virtual time instant. The virtual clock at each process

advances in rounds and jumps to the next-lowest virtual receive timestamp

in the current round. During such an advancement, the process may generate
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other events which are added to the receive list of other processes at the end

of the current round. Such a virtual time system can be used to emulate the

fundamental operation of any discrete event simulator by setting the virtual

receive time of an event to its scheduled simulation time.

3.2 Conservative Virtual Time Advancement

The fundamental drawback of hybrid systems built on top of an optimistic

virtual time advancement technique is the expensive rollback operation, in-

curred memory overheads and idempotency requirements.

The only alternative to optimistic rollback mechanisms is to ensure that

events are delivered in causal order at all entities. This requires synchro-

nizing the advancement of each emulated entity’s virtual clock. It is easy to

maintain synchrony in a standalone simulation because the simulated entity’s

clock is tied to the simulation time and thus the simulator has full control of

each entity’s clock. However, in hybrid emulation-simulation systems, emu-

lated entities get the notion of time from the system clock. The simulator

in such systems, must therefore be fast enough to process and deliver events

at appropriate real-time instants consistent with the specified channel delay.

This is not always trivial to achieve particularly when the workload is high. If

the rate of event injection becomes higher than the maximum event process-

ing rate, the simulator would start to fall behind, leading to causal violations.

In this section, we discuss some of the conservative virtual time techniques

that have been studied in the past.
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3.2.1 Time dilation

Gupta et al. [12] proposed the notion of time dilation as a potential solution.

They define time dilation factor (TDF) as the ratio of rate of progress of

real time to virtual time. A TDF of 10 implies virtual time progresses 10

times slower than real time or, in other words, the resources available to the

operating system appear to be 10 times faster. An application which is di-

lated gets more CPU time (real time) to process events per unit virtual time.

From the perspective of a hybrid emulation-simulation system, dilating all

components of the system would reduce the physical rate at which events are

injected into the simulator allowing it to catch up. In this work, the authors

give VMs a notion of virtual time. Guest VMs typically synchronize their

local clock with the host’s clock at periodic timer interrupts using a shared

data structure. The Xen hypervisor is modified to change the perceived no-

tion of time of a guest operating system in a VM by scaling the content of

the shared data structure and the frequency of timer interrupts with a factor

equal to the TDF.

SVEET! [13] is a TCP protocol evaluation testbed built using the time

dilation technique discussed above. It stresses the importance of virtual

time systems in performance-scalability studies of emerging technologies and

demonstrates the cost benefits of time dilation by accurately predicting TCP

performance on slower hardware. However, simply changing the OS’s percep-

tion of time may not be sufficient because some external devices like the disk

are not virtualized and drivers for such devices would not perceive scaled re-

sponse times. To scale the observed Disk I/O throughput with TDF, Diecast

[14] which is an extension of [12], employs a disk simulator to compute service

time for each I/O request and delays each request by the computed delay in

virtual time.
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While both SVEET! and Diecast are successful in emphasizing the usefulness

of the time dilation primitive, they leave the task of scheduling VMs to the

hypervisor. The VMs are usually scheduled with fixed time-slices in a round

robin fashion and are not synchronized in virtual time. Each VM’s virtual

clock experiences interference from other running VMs in the system. The

synchronization error would depend on the number of VMs running on host

machine. This is not a desirable trait in simulation because the synchro-

nization error needs to be bounded. A control phase is required to schedule

entities and precisely direct the advancement of virtual time in each compo-

nent to keep all components closely synchronized.

3.2.2 Control over the virtual clock

In [15], Zheng and Nicol adopt a different approach to advancing virtual time

which is less tied to the advancement of real time. They propose a virtual

time system with a simulation control phase which decides how far each con-

tainer should advance in virtual time. Containers which have advanced too

far in virtual time are blocked to allow others to catchup. This keeps all

containers closely synchronized in virtual time.

The benefits of such capability are twofold. An application waiting for I/O

is suspended and does not contend for CPU resources unlike the previous

approach where each VM is guaranteed a virtual time-slice even if the appli-

cation is blocked. This not only reduces the overall execution time but also

allows the simulator to process events without falling behind since it is now

able to set the virtual clock of each container when the container resumes and

choose to make the virtual time advance faster or slower during the elapsed

period. Containers in the experiment are run for a specified virtual time-

slice or until they are blocked. The simulation controller can deliver events
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to containers only during time-slice boundaries and hence the error associ-

ated with an event delivery is bounded by the time-slice length. Decreasing

the time-slice length will lead to an increased number of expensive context

switches and longer execution times.

Zheng and Nicol’s approach does not bring the notion of time dilation to

the forefront and uses lightweight OpenVZ containers to host applications

instead of virtual machines. OpenVZ containers running on a system have

isolated process spaces but share the same kernel unlike virtual machines

which have their own operating systems and virtualized disks. While this im-

proves scalability, it places a stricter requirement on simulated applications

to be lightweight and less sensitive to the view of the underlying hardware.

Further, neither of the proposed architectures allows dynamic assignment of

TDFs to individual components in the system to reduce execution time.

3.2.3 Variable time-slices

Both of the previously discussed approaches use fixed static time-slices for

advancement of entities. This is overly conservative and can lead to context

switch overheads if the assigned time-slice is too small. A more effective ap-

proach to fully exploit available parallelism would be to allow the simulator

to specify virtual time-slice values dynamically. We take a brief digression

into synchronization techniques in parallel discrete event simulation to sup-

port this claim.

Synchronization techniques are primarily concerned with ensuring that causally

incorrect event delivery is avoided. An entity is allowed to advance to a spec-

ified time z only after ensuring that no further messages with timestamp less

than z will be received at that entity. The most common approaches to tack-
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ling this problem are broadly classified into two categories: conservative and

asynchronous.

Conservative techniques typically advance each entity by a duration equal

to the minimum link delay in the model. Although they are simple and scal-

able, they make an overly pessimistic assumption that every entity can be

affected by every other entity in the model which can reduce the exploitation

of parallelism.

Asynchronous techniques on the other hand are less pessimistic and decide

each entity’s advancement based on only the other entities that can affect it

(neighbors). To reduce the overhead associated with asynchronous synchro-

nization and still exploit parallelism, recent works such as [16] by Nicol and

Liu propose a composite technique which advances a subset of nodes conser-

vatively and the rest asynchronously. Thus, it is clear that the parallelism

benefits offered by asynchronous and composite synchronization techniques

can only be leveraged by allowing the simulator to specify the time-slice

lengths.
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CHAPTER 4

TIMEKEEPER - DESIGN AND
IMPROVEMENTS

The discussion presented in the Chapter 3 emphasises the capabilities re-

quired to classify a virtual time system as effective. Any efficient imple-

mentation must have complete control over the scheduling order of emu-

lation entities, advancement of virtual clocks and must support dynamic

assignment of TDFs. TimeKeeper [6] is a Linux-based lightweight virtual

time system built with these objectives in mind. It differs from other related

virtual time systems by allowing a tighter coupling between the advance-

ment of simulation and emulation. TimeKeeper advances emulated entities

in rounds. The current round is considered finished when all the emulated

entities have advanced by their assigned virtual time-slices. It is able to

achieve a tighter coupling between simulation and emulation by allowing the

simulator to specify the per round virtual advancement duration for each

entity. This is different from other related virtual time systems where the

virtual time-slice is fixed prior to the start of the experiment.

In this chapter, we briefly discuss the design choices that were made dur-

ing TimeKeeper’s development and our subsequent contributions to improve

the system.
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4.1 Design

TimeKeeper’s design choices could broadly be divided into three categories:

degree of virtualization, control over the scheduling order and running time

of processes and control over a process’s perceived time. Each requirement

is briefly discussed below.

4.1.1 Degree of virtualization

Emulation entities can be virtualized to varying degrees of complexity. In

Gupta et al.’s work, VMs ran the emulated applications. VMs are entirely iso-

lated from the host operating system and operate using a virtualized network

stack and disks. VMs fall under the category of fully virtualized solutions

where the underlying physical system is abstracted out completely. These

solutions incur the highest overhead but they allow the ability to run multi-

ple operating systems. Para-virtualization solutions like Xen [17] modify the

guest VM’s kernel to directly communicate with the host. Lightweight OS-

level virtualization solutions like OpenVZ [18] and Linux Containers (LXCs)

[19] mandate the guest VMs to share the same host kernel, thereby losing

out on the ability to run multiple operating systems. TimeKeeper, uses

lightweight Linux containers with fully virtualized network stacks to emulate

applications at a large scale. Processes running inside an LXC are isolated

from processes running inside other LXCs and during each round, each LXC

is advanced by the assigned virtual time-slice.

4.1.2 Control over scheduling order and running time

To control the running time of dilated entities, the control phase must be

capable of starting and stopping processes at precise instants of time. The
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timing errors associated with these actions would be unavoidable because

of OS-level overheads but they should be minimal. Kernel-level signalling

(SIGSTOP and SIGCONT) is a viable solution currently used by Time-

Keeper.

To control the scheduling order of containers, TimeKeeper was designed to

maintain a queue of LXCs under its control. During the start of each round,

each LXC is assigned a time-slice for which it is required to run (by the

simulator) and all LXCs are run one after the other for the duration of their

assigned time-slices within that round. A subtle design flaw with this ap-

proach is that when an LXC is about to run, TimeKeeper signals all processes

inside the LXC to resume at the same time and the scheduling order of these

processes is left to the Linux scheduler. This has an unintended outcome be-

cause the state of the residual execution times of processes within a container

is not retained over successive rounds which could lead to an unfair allocation

of CPU execution times to processes within an LXC. We address this issue

by redesigning the scheduling mechanism employed by TimeKeeper. This is

briefly discussed in Section 4.1.3.

4.1.3 Control over perceived time

Advancing LXCs in bursts requires stopping each LXC’s virtual clock when

the LXC is not running and scaling the virtual time by a time dilation factor

during each time-slice. The control phase would have to set the start time

of every entity in the experiment. At the end of each LXC’s time-slice, the

freeze time must be noted. The amount of physical time elapsed between

subsequent burst periods of the LXC also needs to be tracked. The elapsed

intermediate physical time must be subtracted from the current real time to

determine the dilated running time at the start of the next time-slice. Time-
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Keeper performs these necessary operations by modifying the Linux kernel

source to add new fields to the process descriptor structure.

When a dilated process gets CPU time, the process must perceive virtual

time instead of the actual wall clock time. A process gets its notion of time

by querying the operating system using specific system calls. TimeKeeper

modifies gettimeofday and sleep system calls to present the correct virtual

time to each dilated process.

4.2 Improvements

4.2.1 Fair process level scheduling

The Linux scheduler meets the requirements for fair scheduling by maintain-

ing multiple queues for runnable processes in the system. A separate queue

is allotted for each priority level at each CPU. The scheduler is usually in-

voked on timer interrupts and it can decide to replace the current running

process at a CPU with the next one in its CPU queue or it can pre-empt

the current process with a higher priority one. However, in a virtual time

system like TimeKeeper, the control phase must be able to circumvent the

Linux scheduler’s actions because it must be able to precisely control the ex-

ecution order and running time of dilated processes. Further, over the course

of execution, existing processes may spawn new processes which need to be

fairly scheduled as well.

The original scheduling mechanism employed by TimeKeeper resulted in un-

fair execution times to processes within a container. To circumvent this

issue, we altered TimeKeeper’s scheduling logic to maintain a separate live

run queue of processes for each container.
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During the start of an LXC’s time-slice, the process at the head of the run

queue is signalled to run. The execution time quanta assigned to the process

is proportional to the relative process priority (i.e. higher priority means a

higher positive weight) times the number of threads. However, TimeKeeper

also strives to advance all the containers in virtual time more or less uni-

formly. It moves a window of size W over the virtual time axis, and advances

each container in the window by W time before moving the window. For a

container with TDF α, the W virtual time allocation is translated into a

wallclock αW time allocation. TimeKeeper starts a container running in a

window by sending the process at the head of the TimeKeeper queue for that

container a Linux SIGCONT signal. It stops that process at the end of its

residual service time or at the end of the window (whichever comes first) by

sending it a SIGSTOP signal. From a logical point of view, the allocation of

execution quanta to processes is orthogonal to the maintenance of temporal

synchrony among containers. Algorithms 1 and 2 describe how the LXC’s

run queue is maintained over successive rounds. Notations cvt and rst denote

the current virtual time and residual service time respectively.

A subtle difficulty with this approach is that we cannot always guarantee

that a process that is signalled to start at a moment actually starts to run.

A process signalled to run is inserted into the run queue maintained by the

Linux scheduler and may take while to actually run if there are other pro-

cesses in the run queue. To ensure that the process immediately starts to

run, it must be assigned the highest available priority so that it would pre-

empt any background processes already running.

The solution described above for fair scheduling lets us retain the state of

residual execution times and order of execution across successive rounds.

However, there is a Linux implementation wrinkle that affects us when em-
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Algorithm 1 run LXC one round(LXC id, duration )

LXC = get LXC object(LXC id)
time left = duration
scan add new processes(LXC,LXC → run queue)
while time left > 0 do
head process = LXC → run queue.pop()
if is runnable(LXC, head process) then
time to run = min(head process→ rst, time left)
resume process(head process, time to run)
pause process(head process)
head process→ rst = head process→ rst− time to run
if head process→ rst == 0 then
reset(head process→ rst)

end if
time left = time left − time to run
LXC → cvt + = time to run
update current virtual time(LXC → child processes, LXC → cvt)

end if
requeue(LXC → run queue, head process)

end while

Algorithm 2 is runnable(LXC, process)

if process invoked sleep(process) then
if LXC → cvt > process→ wake up time then
return TRUE

end if
end if
if process invoked select(process) then

if (LXC → cvt > process→ wake up time)
OR (select events arrived(process) == TRUE) do
return TRUE

end if
end if
if process invoked poll(process) then

if (LXC → current virtual time > process→ wake up time)
OR (poll events arrived(process) == TRUE) do
return TRUE

end if
end if
return FALSE
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ulated processes use threading.

When Linux starts a process executing, it places all of the process’s threads

into a separate run-time queue in a fixed order, independent of any run-time

history. TimeKeeper forces the thread scheduling policy to be “real-time

round-robin”, and Linux schedules threads with a time quanta that is a

function of the process priority. Now when TimeKeeper stops a process with

the SIGSTOP signal, all threads are removed from the Linux run-time queue,

and (importantly) no memory of the state of the thread queue is retained.

When the process is restarted with a SIGCONT, the thread run-time queue

is reconstituted in the pre-determined fixed order, giving the threads at the

front of that ordering first access to the CPU.

This idiosyncrasy of Linux, coupled with TimeKeeper’s reliance on signals

to control processes has the potential to starve some threads entirely, and

certainly has the potential to give unintended priority to some threads over

others. This is illustrated in Figure 4.1 using a simple deterministic sim-

ulation of a four-threaded process under various assigned time-slices (cycle

durations). The plot clearly indicates how thread 1 always gets more CPU

share while thread 4 is starved under these conditions.

The main defense we have against such thread level starvation is a sufficiently

large value of αW . But, as we will see, this may conflict with our objective of

high temporal accuracy of the integration of emulation and simulation. For-

tunately, this is an issue only for containers whose processes have multiple

threads, and in Chapter 5 we discuss use of a Global Time Dilation Factor

that can also address this issue.
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Figure 4.1: Thread execution share for varying cycle durations
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4.2.2 Support for additional system calls

We extended the set of system calls supported by TimeKeeper to include

two additional system calls: select and poll which are commonly used for

scheduling actions after specific timeout values or after the occurrence of

specified events. Poll and select system calls normally block the execution

flow by waiting for specific timeouts or events. This is implemented by sim-

ply removing the process from the corresponding LXC’s active run queue.

TimeKeeper checks for the occurrence of events at the start of every round.

These blocked processes are inserted back into the run queue after event de-

tection or after the virtual time exceeds the timeout. Algorithm 3 describes

how a dilated select system call is handled internally. The algorithm for han-

dling a dilated poll system call is also very similar and hence not included

for brevity.

Algorithm 3 do dilated select(process, events, timeout)

S ← dilated processes which invoked select
if timeout > 0 then
S ← S

⋃
(process, events)

LXC = get container LXC(process)
process→ wake up time = LXC → cvt+ timeout
pause process(process)

else
do normal select(process, events)

end if
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CHAPTER 5

CASE STUDY: EMANE WITH
TIMEKEEPER

This chapter describes the integration of EMANE with TimeKeeper and

demonstrates the scalability and fidelity benefits of such a virtual time driven

emulation platform. Further, it also briefly discusses use of a Global Time

Dilation Factor to suppress the effects of thread-level scheduling artifacts

described in Chapter 4.

5.1 EMANE

The Extensible Modile Adhoc Network (EMANE) simulator, developed by

[4], is a widely used ad-hoc wireless simulator. EMANE can be used as a

standalone package or it can be integrated with CORE and other network

simulators to enable robust simulation of wireless links. In this section, we

give a brief overview of EMANE and describe the integration of TimeKeeper

with the standalone EMANE package.

5.1.1 Overview

EMANE provides Network Emulation Modules (NEMs) to emulate data-link

and physical-layer models. EMANE provides data-link layer models such as

IEEE 802.11a/b/g and RF-Pipe. The default physical-layer model referred

to as the universal physical-layer is responsible for emulating several effects of

wireless links such as fading, collisions, interference and noise. In EMANE’s
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implementation, the physical-layer adds a header to each outgoing packet

and every outgoing packet is broadcast to every other node in the network.

On receiving a packet a node examines the header to determine if the packet

should be passed up the stack or dropped. The fields in the header include

detail of information such as the sender’s location (which can be used to es-

timate signal strength), sender frequency and the transmit time from which

the the propagation delay is calculated.

EMANE uses a transport interconnect to transfer packets between the appli-

cation and the NEM. The transport interconnect interfaces with NEMs using

tun-tap devices. EMANE creates a separate network interface in each LXC

to capture application generated packets through the transport interconnect.

NEMs and transports function as independent multi-threaded processes. A

third independent component called the platform server is responsible for re-

laying data between NEMs. It collects packets transmitted by the physical-

layer and broadcasts it to other NEMs. The goal of integrating EMANE

with TimeKeeper forced us to deal with multi-threaded processes, a forcing

function with significant ramifications, as we will see.

5.1.2 Deployment configurations

EMANE supports two deployment configurations: centralized and distributed.

In a centralized deployment, a separate transport instance is launched inside

each LXC, while all NEM instances and a single common platform server in-

stance are launched in the base system outside all LXC process namespaces.

All transports interact with NEM instances outside the LXC namespace and

messages are relayed by the platform server to different NEM instances using

common IPC techniques. In the fully distributed deployment each LXC has

its own NEM instance and platform server instance inside its process names-
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pace and messages are multicasted to other LXCs using the ACE wrapper

for UDP/IP multicast [20]. We chose to integrate TimeKeeper with the

distributed EMANE configuration because it is the most commonly used

configuration and offers greater flexibility in allowing the experimenter to

assign independent TDFs to each LXC and possibly run experiments on a

distributed cluster.

5.1.3 Integration with TimeKeeper

Integration of EMANE with TimeKeeper requires no modifications to EMANE

source code. The general architecture of the EMANE-TimeKeeper integra-

tion is shown in Figure 5.1. We developed an user interface in python to

allow the experimenter to easily specify the dilation factors for each node,

model parameters, initial physical locations for every node and specify the

applications to run on each LXC. The interfacing code launches EMANE in a

distributed deployment configuration which was described earlier. Initial lo-

cations specified in the user interface are broadcast to all participating nodes

at the start of the experiment. The application is responsible for simulating

node movement through sharing of so-called location events. All launched

LXCs are added to a synchronized CBE experiment.

Channel delays in EMANE are not explicitly specified. Instead, propaga-

tion delays are calculated inside the emulator based on the distance between

the transmitting and receiving node. Similarly, the transmission delay is cal-

culated based on the transmission bandwidth and the received packet size.

On receiving a packet, EMANE first estimates when to process a packet by

computing the transmission and propagation delays. An internal timer is

then scheduled to fire after the computed delay elapses and subsequently,

the packet is processed and pushed up the stack.
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Figure 5.1: EMANE-TimeKeeper integration

The challenge with distributed simulation of EMANE (indeed, a typical

challenge for distributed simulation of ad-hoc networks in general) is that

generation of message traffic is unpredictable, and the propagation delay of

a wireless message is very small. In the TimeKeeper context, temporal ac-

curacy means using a synchronization window for each round that is small

enough so that a packet is not both sent and received in the same window.

A lower bound on the time between when the first bit of a packet is trans-

mitted and when the last bit is received is the minimum packet size (in bits)

divided by the channel bandwidth (in bits per second). As these quanti-

ties are buried within EMANE, we do ask the user to provide them. The

TimeKeeper window size W is set to this product.
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5.1.4 Evaluation

Our intuition is that embedding emulation into virtual time and integrating

it with simulation may do “a better job” at reproducing behavior seen in

real systems than would simply using best effort. For our evaluation of the

EMANE integration with TimeKeeper we use routing behavior to see what

the differences may be between EMANE behavior with and without Time-

Keeper coordination. We measure the difference between routes selected

under the system organizations in terms of the effects the chosen routes have

on traffic throughput and latency. For the experiment we used OLSRD [9],

a routing module available for use in EMANE.

The EMANE-Timekeeper integration starts an instance of OLSRD in ev-

ery LXC. OLSRD is a link state based routing protocol in which neighboring

nodes exchange periodic keep-alive messages. Keep-alive messages carry link

state and the sender’s view of the overall topology. Through these messages

each node can construct an overall view of the topology and determines the

best path to each destination. The protocol implementation allows specifica-

tion of a periodic keep-alive exchange interval and duration of time for which

the link-state information for a particular node is valid. If a node does not

get a routing update from a neighbor within the validity period, it considers

the link between them to be broken. This of course impacts the routes it sub-

sequently chooses. Thus we see that the behavior of the emulation depends

on the network simulation delivering keep-alive messages to the emulation in

a timely fashion with respect to the emulation’s view of time. Integration

with TimeKeeper ensures this is the case.

It was previously shown in Chapter 2 that by engineering a set of stress con-

ditions that affect EMANE’s ability to deliver link update messages on time,

the behavior of EMANE without TimeKeeper started to diverge significantly

27



Figure 5.2: Average throughput, GTDF=1

from what is expected. On the contrary, Figure 5.2 shows the throughput of

a 43-node chained topology emulated by EMANE with TimeKeeper under

the same experimental conditions. From the figure, it is clear that EMANE

with TimeKeeper exhibits much lesser deviance in comparison with best ef-

fort emulation. However, interestingly the application throughput appears

to depend on the TDF of the routers. To explain this dependence, we were

forced to understand how Linux manages threads internally and how thread-

level scheduling artifacts could have impacted results of the stress test. In

Section 5.2, we present our findings and advocate the use of a Global Time

Dilation factor to suppress the effects of thread-scheduling artifacts.
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5.2 Global Time Dilation

Our experience analyzing the behavior of EMANE managed by TimeKeeper

forced us to understand how Linux treats threads. The observations indicated

that the application traffic throughput is affected by the assumed TDF of

the routers. As TDF increased, we observed an increase in the throughput

relative to the theoretical maximum (determined by the application data

injection rate), see the GTDF=1 graph at the top of Figure 5.2. The er-

ror bars show the standard deviation over 10 experiments. What does this

mean? Why are more packets being lost at smaller TDFs?

To explain these trends, we first need to understand how TimeKeeper is

able to maintain synchrony between emulated entities. The TimeKeeper

synchronization window is the smallest virtual time by which each container

can safely advance while maintaining causal packet delivery times. It ensures

that the completed receipt of the packet occurs in a different synchroniza-

tion window than its transmission, which means that TimeKeeper keeps the

sender and receiver in close temporal synchrony. Assuming a synchronization

window of virtual duration W , Timekeeper translates it into a physical time

duration αW where α is the TDF assigned to the container. Processes be-

longing to the container are started using the SIGCONT signal, and stopped

using the SIGSTOP signal. The Linux scheduler puts the threads of the

started process into its thread run-queue in a fixed order, independent of the

state of the run-time queue when the process was stopped. Unfortunately,

stopping and re-starting a process are not transparent to the behavior of

a threaded application, because the threads at the front of the fixed order

get preferential service through the start/stop mechanism TimeKeeper em-

ploys. We observed that when the time quanta per container per window is

small enough some threads are actually starved (Figure 2.1). Even when

not starved, withholding enough resources from the thread that provides
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keep-alive messages impacts routing behavior, as we have seen in earlier ex-

periments. Larger scheduling quanta give the threads the opportunity to run,

suspend themselves, and yield the CPU to other threads in need of service.

The TDF of a container is a characteristic of the model which reflects the

speed difference between executing code on the emulator’s CPU, and exe-

cuting the code on a device in the field. From a user’s point of view, the

TDF of a container is a given fixed value. We are faced then with a seeming

conflict between the desire for temporal fidelity achieved by small scheduling

windows in virtual time, and the desire for functional fidelity which requires

larger scheduling windows.

One approach to this dilemma is to yield on the requirement of temporal

fidelity. However, depending on the type of application, this approach can

impact system metrics of interest. In the context of the OLSRD routing

example, the impact is increased variance in the experienced link delays, be-

cause looser synchronization allows a packet to be received earlier, or later

in the timeline of the recipient than it does under tighter synchrony. The

frequency of keep-alive messages is so small that the synchronization window

would have to become very large indeed for this variance to impact timely

receipt of keep-alive messages, however the latency of application packets will

be impacted.

In this section, we describe another approach which is the notion of global

time dilation factor (GTDF). Increasing the TDF of an LXC changes the

view of virtual time of the emulator, but not the simulator. We can artifi-

cially (and arbitrarily) rescale the virtual time units of both emulator and

simulator simultaneously. The effective TDF of a container would be its

native TDF, multiplied by the GTDF. In the simulator all simulation dura-

tions would multiplied by the GTDF, all bandwidths would be divided by
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the GTDF, internal processes that occur at rate λ in virtual time now occur

at rate λ/GTDF . From the simulator’s point of view, changing the GTDF

is equivalent to changing the units of virtual time. Conceptually, by employ-

ing GTDF we could achieve the same functional behavior of the system, but

using different units of virtual time, slowing both emulation and simulation

enough to create large enough physical time quanta to deal with the issues

created by threading.

It is worth noting that mechanism for rescaling simulation time is related

to, but distinct from what is achieved in SVEET [13] and in our treatment of

ns-3. In both cases the simulation clock is the product of the wall clock times

some scaling factor, and governs when simulation events are executed. In a

certain sense the effect is the same as with GTDF, but in another sense not.

For SVEET and ns-3, the virtual time units do not change; what changes

is the rate at which simulation time advances, and remains the time-scale

of the system being modeled. With GTDF the time units actually change,

artificially, in both emulation and simulation. Correspondingly the reported

results of the experiments have to be rescaled to undo the impact of applying

GTDF.

Implementation of GTDF requires support from the simulator, and means of

un-scaling results. It is not transparent. Yet, as we will see with preliminary

experiments, it can deliver the desired effects. Figure 5.3 shows the appli-

cation throughput on the routing topology (40 nodes) with a GTDF of 5.

Here we see that the benefit of larger real-time scheduling quanta can now be

enjoyed on models with small native TDF. Still, under the model conditions

we have assumed, we expect for the full 100% of the theoretical throughput

to be captured. There may be still undiscovered factors impacting the ap-

plication performance. This experiment is thus merely a proof-of-concept.

There are a number of issues remaining that have to be address if use of
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Figure 5.3: Throughput affected by GTDF

GTDF can be made transparent.

While GTDF is a useful concept as a stop-gap measure, we believe that

the best possible solution is one where TimeKeeper’s technique for starting

and stopping processes is transparent to the behavior of the computation. If

this were possible the only impact of small scheduling quanta would be the

overhead. If we are to have any hope of using threaded processes with the

fine-grained synchronization approach we have developed for S3FNet, this

will be absolutely necessary. Our future work will investigate our options

there.
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CHAPTER 6

CASE STUDY: EMULATION OF PLC
NETWORKS

In this chapter we substantiate our claim that TimeKeeper is widely applica-

ble under different contexts, by designing a High Fidelity Industrial SCADA

control Testbed which emulates Networks of Programmable Logic controllers

(PLCs).

PLCs are devices frequently used in industrial control systems with tight

real-time constraints on operations. Using emulation and/or simulation to

evaluate the behavior of a network of PLCs is difficult because of the lack

of tools that accurately mimic the real-time behavior of such networks. This

case study addresses this issue by showing how to tightly integrate instances

of a PLC emulator Awlsim with the network simulator S3F, in such a way

that emulations and simulation are advancing synchronously in virtual time.

We demonstrate fidelity of the approach in capturing the operating behavior

of a PLC network under varied network conditions and stress levels.

6.1 Introduction

Programmable Logic Controllers (PLC) are an integral part of modern manu-

facturing plants and critical infrastructures like power stations, marine dock-

ing operations, and water treatment units. Their use helps to cut costs,

minimize human errors and improve system capability. Networks of PLCs

monitor data from different subsystems and send control signals to actuators
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that impact the behavior of a physical system.

It is difficult to test a network of PLCs without actual deployment. The

program of an individual PLCs can be tested via emulation, but evaluation

of a network of PLCs requires a communication infrastructure, and impor-

tantly, a means of ensuring that the temporal aspect of messaging behavior

in the evaluation testbed is a good model of what will happen in the field.

Effective testing therefore calls for a flexible, scalable and low-cost testbed

which can produce realistic behavior. This testbed would facilitate research

in cyber-security of industrial control systems using PLCs, where the diffi-

culty associated with gathering generic data has been the main obstacle to

development of efficient defensive measures [21]. With the emergence of vir-

tualization technology, parallel simulation/emulation could potentially be an

economical solution.

Simulators offer control over experiment conditions, which is necessary to

perform reproducible evaluations. In [22], the authors simulate a small vir-

tual factory with four turning machines by writing simulation models for each

subsystem in the manufacturing cell. However, writing simulation models of

individual components in the Industrial Control System (ICS) is often diffi-

cult and error prone and needs extensive validation. Thus it is easier to use

emulations of these devices instead.

Previous works on development of testbeds for industrial control systems

have typically been either implementation based or emulation based or a

combination of both. An example of an implementation-based testbed is

[23] and it consists of real PLCs and HMI devices. Data collected from

implementation-based testbeds is more accurate and realistic but the costs

of expanding the testbed and maintaining it often outweighs the benefits.

In [24], the authors propose an open virtual testbed for an ICS which in-
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terconnects emulated models of PLCs and Master Terminal Units (MTU)

and Remote Terminal Units (RTU) with each other and with a central pro-

cess simulator which simulates inputs to these virtual devices. However, the

testbed does not simulate network links between its components, making

the experiments non-repeatable. Best-effort emulation and implementation

testbeds such as [25] also exist where physical devices are interconnected with

virtual emulated devices. However they are still expensive to maintain and

less flexible.

This chapter describes the integration of a PLC emulator Awlsim [8] within

the TimeKeeper+S3F system. S3F simulator [5] is a parallel discrete event

network simulator built on top of the Scalable Simulation Framework (SSF)

API. SSF was redesigned in [26] to improve performance of discrete event

simulations by exploiting potential parallelism. S3F relies on standard C++

libraries which attest to its efficiency and simplicity. We chose S3F because of

its capability to support creation of complex communication network models

using devices like switches and routers operating on top of layered proto-

cols like TCP/IP. In addition, S3F also supports emulation using LXCs and

OpenVZ containers which can be conveniently used to run emulations of

PLCs. Further, conventional PLC networks support serial (RS-232) capabil-

ity and hence we augmented S3F with the notion of serial non-IP-speaking

communication lines, and with a model of the ModBus communication pro-

tocol running on those serial lines. We demonstrate empirically that under

TimeKeeper+S3F management, a network of PLC emulations produce ex-

pected behavior, but when run under “best-effort” control they do not.
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6.2 Motivation

A programmable logic controller (PLC) is a computing device designed for

use in industrial control systems. A PLC’s role typically is to monitor in-

puts from sensors, and issue commands to actuators in a physical system

as a result of the inputs it has read, and inputs other PLCs have read and

communicated to it. Networks of PLCs are in the class of “hard real-time

systems”, meaning that they are designed to respond to changes in inputs

within a set period of time. Failure to do so, for any reason, can mean catas-

trophic consequences for the controlled system.

To support hard real-time operations, PLC applications run on top of custom

operating systems. The applications themselves (and the languages used to

describe those applications) are designed around this “read-then-respond”

model. A PLC program is described as organization of cycles, where in each

cycle one or more inputs are read, a calculation is made, then one or more

output messages to actuators or to other PLCs are issued. Determinism in

execution time and predictability of program behavior are key in designing

PLC networks with predicable execution timing. However, because a PLC’s

execution behavior can depend in part on communication with other PLCs,

the timing of the network supporting inter-PLC communications is also crit-

ical to PLC functional behavior and meeting of real-time constraints.

Our penultimate goal is to study cyber-security issues in networks of PLCs.

The work reported here is necessary to support that goal, in that our studies

will initially involve simulation of cyber-attacks and simulation of the impacts

that the detection and defensive measures have on the operations of the PLC

networks. Therefore, we need a means by which actual PLC programs can

be responding to simulated inputs, can communicate with each other over

a simulated network, and can send commands to simulated actuators. This
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integration of emulation and simulation must be as careful as possible to

capture the temporal behavior of PLC networks as they operate in the field.

As we have previously developed the integrated TimeKeeper/S3F combina-

tion to provide fine-grained temporal control over emulations in the context

of network simulation, we identified a suitable PLC emulator to integrate

with TimeKeeper/S3F. This task required some modifications to the PLC

emulator, TimeKeeper and S3FNet. In this chapter we focus on how those

modifications deliver much better predictability in temporal behavior than is

achieved using “best-effort” emulation. With this basis, our continuing work

will focus on studying cyber-security issues in PLC networks.

6.3 Testbed Description

Awlsim [8] is an open source Python-based PLC emulator which supports a

large subset of Step 7 programming instructions. It emulates Siemens S7-300

and S7-400 PLC CPUs. PLC programs are written in Step 7 STL language

and the source file is simply presented as an input to the emulator. Awlsim

also allows the user to simulate sensor inputs and read output values via a

GUI interface. We choose Awlsim in part because it is open source, and in

part because of its extensive support for real Step 7 programs. However,

Awlsim does not itself support the notion of networked PLCs. We provided

this by developing additional system blocks/instructions that would allow

two Awlsim instances to communicate with each other using the MODBUS

application layer protocol.

MODBUS, developed by Modicon in 1979 is a widely used standard for com-

munication over industrial networks still being widely used today [27]. It

is a simple master-slave based communication protocol which can run over

many physical layers including RS-232, RS-485 and in the TCP/IP mode
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Figure 6.1: General architecture of the PLC network testbed

over ethernet. We implemented a Python-based MODBUS stack which is

used by the Awlsim’s ModBus instructions we developed to send and receive

ModBus messages over simulated IP or serial networks.

6.3.1 General architecture

Figure 6.1, shows the architecture of the TimeKeeper controlled hybird PLC

emulation-simulation framework. Emulated PLC instances are run in sepa-

rate Linux containers whose execution times and scheduling order are con-

trolled by S3F through TimeKeeper. The user is allowed to assign an input

generator script for each emulated PLC instance. The input generator script
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is invoked by the PLC instance at the start of every cycle and the script can

be used to model the physical process being monitored by the PLC and alter

the inputs to the PLC program. When the assumed connectivity is that of

an IP network, packets that are injected by emulated PLCs are captured

by the S3F network simulator and injected into the appropriate destination

container after the specified link delay. Many legacy PLC systems use point-

to-point serial communications. We needed to modify both TimeKeeper and

S3F to support serial communication; our solution requires bypassing the

Linux network stack completely.

6.3.2 Serial connections

Serial connections were simulated by implementing a serial driver which man-

ages reads and writes to device files. Each Linux container running an em-

ulated PLC instance is assigned a separate device file to which it can read

and write data to be sent over a simulated serial connection. The emulated

PLC is allowed to maintain multiple serial connections simultaneously by

specifying a connection ID along with the read or write requests. We aug-

mented S3F to poll device files of every emulated entity for any available

data among all active connections. It then simulates a half-duplex RS-232

connection with handshakes (RTS, CTS) before sending the data over the

simulated link. The received data is then written into the destination device

file to be later read by the emulated PLC.

6.3.3 Experiment configuration

Within a configuration file read at the beginning of the experiment, a user

specifies the network type (IP or Serial) and the Time dilation factor for each

emulated PLC. The general topology description and link delays are specified
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in a separate configuration file. In the IP mode, each PLC is connected to

a simulated router by default and different routers are connected with each

other in a user specified configuration. In serial mode, the connection is point

to point, and thus the user specifies direct links and link delays between

different PLCs.

6.3.4 HMI devices and compromised routers

The testbed also supports emulation of Human Machine Interface (HMI) de-

vices to interact with emulated PLCs. HMI devices are frequently used by

human operators of industrial control systems to send and receive messages

to monitor and update the operator’s view of the current system state. HMI

devices function as ModBus master devices and can send commands to PLCs

functioning as ModBus slaves. The user can leverage the implemented Mod-

Bus stack API to write models of HMI devices and send arbitrary commands

to slave PLCs.

The testbed also allows the user to experiment with different attack sce-

narios on the system and study its resilience. The user can designate certain

routers in the topology as compromised. Routers which are classified as com-

promised invoke a specified attack script upon reception of each simulated

packet. The user-defined script can passively examine the packet or even per-

form man in the middle attacks by modifying it. We are using this feature of

the testbed to study the effectiveness of intrusion detection algorithms under

different active and passive adversarial attack models.
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6.4 Evaluation

We now demonstrate how the testbed manages to deliver predictable low-

variance behavior as exhibited in a real system, as compared to behavior of

the same emulation under best-effort coordination. All of the experiments

described here were performed on a single dual core machine with 16 GB of

RAM. We consider a hypothetical job routing scenario in a bottling plant.

Jobs arrive at an incoming root node which performs some operations on the

incoming job before routing the job to one of its child nodes. The topology

is organized as a full binary tree of PLCs, with leaves being dispatch units

where the finished product leaves the manufacturing plant. For simplicity,

we assume that all nodes at a particular level in the binary tree perform the

same action (i.e., run the same application) on its incoming jobs. This sce-

nario is similar to automated baggage transfer in modern airports and bottle

filling operations in bottling plants.

In this scenario, each PLC controls two conveyor belts connected to two

other PLCs (child nodes in the binary tree,) and is also linked to both nodes

over a high-speed ethernet connection. An incoming job is routed by the

PLC to the child node with the least congestion in its sub-tree. To maintain

a real-time view of congestion in each child sub-tree, nodes repeatedly query

their children for congestion levels in their sub-trees. The performance of

such a dispatch system relies heavily on the frequency of updates and the

speed of processing of these messages. Incoming jobs are simulated as sensor

inputs at each node. Sensor inputs are scheduled at the chosen child node

after the routing decision is made at the current node. Dispatch jobs are also

modeled as simulated sensor inputs to the leaves of the tree. All inter-node

communication links were assigned the same delay of 4 ms. Figure 6.2 de-

picts the topology used.
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Figure 6.2: Bottle plant routing scenario

We impose stress on the test topology by forcing nodes to send updates at

the fastest possible rate. Each node queries both its children, waits for their

reply, and then initiates the next query immediately. We define the following

metrics to analyse the accuracy of the testbed in simulating the expected

behavior of the target system.

• Per packet delay: Isolated industrial control networks typically have

static nodes with fairly regular traffic patterns. Hence, the variance in

the delay experienced by each packet is expected to be small. A testbed

simulating these networks must also be able to guarantee stable packet

delays under fixed traffic generation patterns.
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• Throughput of updates: The number of update messages sent and

received over the course of the run time of the system relies heavily

on the network delay experienced by each packet and on the speed at

which each update is processed. PLCs have stable per cycle execution

times which can guarantee bounded information processing delays. The

emulation testbed must therefore be able to exhibit low-variance in

cycle exhibition times and steady throughput values.

We vary the topology size in our experiments and then study the impact

of topology size on the packet delays, cycle execution times and throughput

of update messages. In an actual system we expect that packet delay and

the cycle execution times will be insensitive to topology size, and we expect

the aggregate update throughput to scale linearly with topology size. We

compare our observations in controlled (under TimeKeeper) and best-effort

experiments, and by doing so emphasize the benefits of tight coupling be-

tween emulation and simulation.

6.4.1 Experiments

For running best-effort experiments, we designed a simple setup where Linux

containers running emulated PLCs are directly interconnected with each

other. As TimeKeeper and S3F are not involved (and are required for support

of serial communication), the emulated PLCs use the IP protocol to carry

their Modbus communications. At the point a source constructs a packet, we

note the “send time” and have the source delay transmitting the packet for a

length of time equal to the modeled transmission delay. The time a packet is

received by the target PLC is likewise noted, and the observed packet trans-

mission delay was calculated by logging the receive times and send times of

each packet.
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(a) CDF of packet delay for best-effort experiment for different topologies

(b) CDF of packet delay for TimeKeeper controlled experiment for different topolo-
gies

Figure 6.3: Comparison of CDF of per packet delays for best-effort and
TimeKeeper controlled experiments
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(a) Histogram of standard deviation of cycle times for undilated 63 node topology.

(b) Histogram of standard deviation of cycle times for dilated 63-node topology.

Figure 6.4: Comparison of standard deviation of cycle times for dilated and
undilated 63-node topologies
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Figure 6.5: Comparison of maximum throughput of update messages for
best-effort and controlled experiments.

Figure 6.3a shows the plot of the cumulative density function (CDF) of the

observed packet delays for different sizes of full binary trees. At each step,

the topology size was nearly doubled but throughout the experiment was run

on the same Linux server. Each tree node represents a PLC emulation, so

as we increase the size of the topology, the computational resources available

to a container decreases; Figure 6.3a shows that this has a clear impact on

processing time, increasing topology significantly increases the packet delay.

The reason for this is that as these containers are scheduled purely by the

Linux kernel, when a container is swapped out in the midst of a transmission

(i.e., the send time has been recorded and the wait time before delivery has

not yet completed) the time it is swapped out will increase with the number

of other processes clamoring for CPU attention. The larger the topology, the

longer a container will be swapped out. For the topology with 7 nodes, we

measured the mean and 90 percentile delays as 25.26 ms and 32 ms (approx-
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imately) respectively. On the other hand, for the topology with 63 nodes,

the mean delay equaled 191.52 ms whereas the 90 percentile delay exceeded

200 ms. Whatever the true packet delay might be, we know that it should

not change with increasing topology size, and in this system it does.

We repeated the same experiment under a TDF of 15 with S3F and Time-

Keeper. Recall that Awlsim is a Python program that interprets Step-7

instructions, and furthermore spawns a number of other processes in support

of that interpretation. On a PLC the instructions run almost on bare metal.

While a TDF of 15 is admittedly arbitrary, it does reflect that there is con-

siderable overhead in interpreting Step-7 instructions. Fine-tuning a TDF

requires instrumenting the modeled PLC to acquire a solid understanding of

its native performance, and a study of the cost of interpreting its instructions

within Awlsim.

Figure 6.3b, shows the CDF of the observed packet delays in the dilated

experiment. Packet delay is considerably smaller; the cumulative distribu-

tion functions is largely insensitive to topology size. For the 7 node topol-

ogy, the mean and 90 percentile delays were approximately 11.42 ms and 16

ms respectively whereas the corresponding values for the 63-node topology

equaled 15.57 ms and 26 ms respectively. We attribute the slight increase

in the packet delay values to TimeKeeper’s timing errors in starting and

stopping processes and detecting and adding newly spawned processes to the

experiment. It is also important to note that while the specified link delay

was 4 ms, the observed mean delays were all greater than 4 ms. This is

because each process inside the container is assigned a default fixed virtual

time-slice of 1 ms and scheduled in a round robin fashion by TimeKeeper.

This can introduce a maximum delay proportional the number of processes

running in the container. In our experiments, each container ran a total of

10 processes including the PLC emulator, which can in theory introduce an
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additional packet reception delay of up to 10 ms. We understand the source

of this inaccuracy; to deal with it more directly will require somewhat exten-

sive modifications to the Linux kernel scheduler.

For both sets of experiments, we also compared the standard deviation of

each emulated PLC’s cycle execution time. Figure 6.4, shows the histogram

(taken over all network nodes) of the standard deviation of cycle execution

times in the controlled and best-effort executions of the 63-node topology.

Each marked point on the x-axis represents a standard deviation interval

starting from the specified point until the next one. The y-axis indicates

the number of nodes with standard deviation of cycle execution time within

the specified interval. From the figures, it is easy to see that the standard

deviation of the per cycle execution time is very low in the controlled ex-

periment with the 90 percentile standard deviation below 3 ms whereas it is

of the order of hundreds of milliseconds for the best-effort experiment. The

best-effort performance can again be attributed to the impact of a container

being suspended in the midst of an execution burst, with increasing length of

suspension as the number of other containers grows. The fact that the cycle

execution times of PLCs in a controlled experiment remain fairly constant

at each node further underlines the benefits of the tight coupling between

emulation and simulation.

We also measured the maximum number of processed update messages for

both classes of experiments. Figure 6.5 plots these measurements for various

topology sizes. As expected in the real systems, we observed a near linear

increase in the throughput values in the controlled experiment whereas the

throughput fell dramatically in the best-effort experiment. The observed

variance in the maximum throughput of the controlled experiment was also

fairly small, as should be observed in the real system.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, we argued that conjoining network simulation and emulation

with controlled virtual time advancement can improve the scalability and

fidelity of emulation results. We described TimeKeeper, a small modifica-

tion to the Linux kernel which can control the time perceived by a process

and advance simulated and emulated entities in close virtual synchrony. We

presented two case studies to substantiate these claims.

In the first case study, we studied an EMANE emulation of a wireless link

state routing protocol OLSRD which relied on periodic exchange of link up-

date messages. We engineered stress conditions that affected the ability of

EMANE to deliver these periodic updates in a timely fashion. We then in-

tegrated EMANE with TimeKeeper and observed much greater conformity

to expected behavior under stress even for large topologies.

In the second case study, we implemented a cost effective testbed for em-

ulating PLC networks used in Industrial SCADA control. We demonstrated

that the testbed delivers expected PLC network behavior in a hypothetical

bottling plant job routing scenario by studying the per packet delay and

throughput under varied topology sizes. We see that our testbed yields low-

variance packet delays and low-variance program cycle times (as expected in

a real system) whereas best-effort emulation shows marked increases in both

as the size of the network topology increases. Our observations highlight the

advantages of tight temporal integration between emulation and simulation
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and demonstrate the applicability of a tool like TimeKeeper in the design of

testbeds for networked applications.

Both case studies have helped us understand subtle implementation level

artifacts and yielded interesting problem formulations for the future.

Thread level artifacts: Threads are treated as lightweight processes

by the Linux kernel and signalling mechanism used by TimeKeeper to start

and stop processes unfortunately stops and resumes all threads associated

with the process as well. When a process is resumed, all the threads are

inserted into the run queue in a fixed order irrespective of the state of the

queue when the process was stopped. This has the potential to starve some

threads and needs a fix.

Dilating I/O components: Disks I/O rate is currently not dilated be-

cause much of the transfers are handled in firmware and the transfer requests

could be arbitrarily batched and served. Disk I/O rate becomes relevant if

the application to be tested is sensitive to such discrepancies.

Emulating architecturally different devices: In our current emula-

tion of Step-7 PLC programs, the TimeKeeper/S3F system relies purely on

the measured execution time on a Linux platform for an estimate of computa-

tional effort expended. But here the actual time spent in processing emulated

Step-7 instructions is muddied with the overhead of Python interpretation

and helper processes introduced by Awlsim. The future work should focus on

annotating the explicit differences between the modeled architectures and the

Linux platform, such as the execution times of a Step-7 program’s instruc-

tions, and somehow communicate those to TimeKeeper and/or the network

simulator to allow a more direct (and repeatable) and accurate emulation of

architecturally different devices.
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Distributed TimeKeeper: The current implementation is only capa-

ble of running on a single machine. The broader objective is to have multiple

TimeKeeper instances running on different machines and coordinating with

each other to advance large scale distributed simulations. A distributed ver-

sion of TimeKeeper could also open the doors for a new class of cloud-based

services called TaaS (Testing as a Service) [28], [29]. A TaaS service provider

could test client’s applications using a cluster controlled by virtual time sys-

tems like TimeKeeper. It raises interesting questions like how to effectively

manage cluster resources to handle multiple clients, applications and simul-

taneously minimize test time.
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