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ABSTRACT

Hardware security features need to strike a careful balance between design

intrusiveness and completeness of methods. Securing against attacks like Re-

turn Oriented Programming (ROP) requires frequent and expensive checks.

Complete security defenses have been proposed yet modern systems are still

vulnerable to ROP attacks. We provide complete security by decompos-

ing the solution into two stages. The first stage raises alarms based on an

imprecise, low cost hardware detector. The second stage applies complete

methods in order to accurately distinguish real attacks from false alarms.

This decomposition is enabled with Record and Deterministic Replay. The

original execution is recorded and subjected to replay analysis as alarms are

raised. In this way the Replay infrastructure can compensate for the occa-

sional hardware imprecision.

We demonstrate this approach by applying it to thwart ROP attacks on

the Linux kernel. We call the design RnR-ROPSafe. It reuses a simple

Return Address Stack (RAS) as the hardware detector. The RAS is slightly

modified to prevent corruption of the RAS due to multithreading and due

to non-procedural returns—improving its performance as a ROP detector.

Rare false positives due to underflows are eliminated via replay instead of

hardware over-design. RnR-ROPSafe relies on two on-the-fly replayers: an

always-on, fast Checkpointing replayer that periodically creates checkpoints,

and a detailed-analysis Alarm replayer that is triggered when there is a threat

alarm. We find that the first one has execution speed comparable to that of

the recorder, and can be replaying all the time, while the latter has to handle

only very few false positives.
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CHAPTER 1

INTRODUCTION

As security attacks are becoming more frequent and varied, there is increasing

interest in augmenting processor and system hardware with security features.

As a result, processor manufacturers have developed new hardware archi-

tectures, such as Intel’s MPX [1], AMD’s Secure Processor [2], and ARM

TrustZone technology [3].

A general difficulty in this area is that security threats are continuously

evolving, circumventing existing security defenses. What used to be an effec-

tive defense yesterday is less effective today. For example, to defend against

code injection attacks, W⊕X [2, 4] features have been widely deployed in

processors. They prevent the execution of data by enforcing the invariant

that memory pages are either executable or writable, but never both. As

a result, new attacks have appeared that do not need code injection. In

particular, an attack based on code reuse called Return Oriented Program-

ming (ROP) [5] is now the preferred technique. It builds attack code by

chaining together multiple snippets of code from the victim program, allow-

ing complete bypass of W⊕X defenses. Systems today remain vulnerable to

such attacks despite the existence of provable prevention techniques [6, 7].

Such techniques cannot be implemented in modern systems either due to

prohibitive performance costs [6, 7] or unsatisfiable requirements [8, 9]. Less

expensive techniques have been proposed [10, 11, 12, 13, 14], but they can be

undermined due to the incompleteness of their methods [15,16,17,18,19].

An intriguing primitive that can be used to defend against security threats

is Record and Deterministic Replay (RnR) (e.g., [20, 21, 22]). With RnR,

a workload’s initial execution creates a log, which can be deterministically

replayed on another machine. RnR has been used for security purposes,

most often off-line, to provide insight into how and when an attack took

place [20, 21]. It has also been used to support speculating past security

checks [22].
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In this thesis, we explore a novel approach to hardware security design

where RnR is used to complement a hardware security feature—to offload

intrusive checks and/or to eliminate imprecision. Specifically, security hard-

ware is allowed to be less precise at detecting attacks and potentially re-

port false positives; it relies on an on-the-fly replayer to transparently verify

whether the alarm is a real attack or a false positive. This approach relies

on two types of on-the-fly replayers: an always-on fast replayer that peri-

odically creates state checkpoints of the monitored execution (Checkpointing

replayer), and an analyzing replayer—triggered by an alarm—which starts

from a checkpoint and analyzes the execution to determine whether the alarm

indicated a real attack or was a false positive (Alarm replayer).

This thesis then applies this approach to thwart ROP attacks on the

kernel—a challenging target to defend. We call the design RnR-ROPSafe.

The micro-architecture that it builds on is the Return Address Stack (RAS).

A RAS misprediction occurs for benign software, making the RAS an impre-

cise ROP detector as is. Hence, RnR-ROPSafe makes simple modifications

to the RAS hardware to eliminate the vast majority of the false positives.

The few remaining false positives are identified by the alarm replayer, thus

minimizing hardware changes.

To evaluate RnR-ROPSafe, we execute a set of varied workloads on a

Virtual Machine (VM) running Linux. We find that the RnR-ROPSafe ar-

chitecture is an effective hardware-software co-design point. Thanks to the

judicious RAS hardware extensions and hypervisor changes, the checkpoint-

ing replayer has comparable execution speed to the recorder, and can be

replaying continuously. In addition, the alarm replayer has to handle only

very few false positives.

Assumed System and Threat Models. ROP attacks can occur within

the kernel or user contexts, and RepROP can secure both contexts. The

target most difficult to secure is the kernel. We focus on evaluating RepROP’s

ability to detect kernel ROP attacks. The protected system (kernel and

applications) runs inside a VM whose execution is continuously recorded.

The recorded execution is then replayed, on a different platform, at which

point it is checked for ROP attacks.

We assume that the attacker can launch a ROP attack against the kernel.

We assume the host machine OS and hypervisor (recording and replaying
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machines) to be benign and that they can safeguard against compromised

guest VMs.
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CHAPTER 2

BACKGROUND

2.1 Return Oriented Programming

The objective of attackers is to execute malware on a victim machine. In

the past, attackers injected malware machine code into memory allocated

for data. Later, execution is hijacked to fetch instructions that corrupted

memory. The W⊕X [2, 4, 10, 23, 24] policy was designed to counter this spe-

cific attack vector. By enforcing that memory pages are either executable

or writable—but never both—malware injected into memory can no longer

be executed. To bypass W⊕X, “Code Reuse” based attacks were proposed.

For these attacks, malware instructions are recovered from existing code in-

stead of injected into memory. Return Oriented Programing (ROP) [5] is the

dominating example of this approach.

Conceptually, an ROP attack executes multiple snippets of code from the

victim program or software environment (e.g. libc) called Gadgets. Each

gadget is terminated with a return—a branching instruction whose target is

popped from the software stack. The attacker first loads into the software

stack the addresses of the desired gadgets. Then, to trigger the attack,

control flow is forced to the first gadget. As the first gadget terminates, its

return instruction pops the next entry from the software stack, redirecting

execution to the next gadget. Thus, by writing onto the stack the addresses

of gadgets, the attacker can stitch together a desired sequence of gadgets

required to achieve the desired malicious effects.

This type of attack is dangerous for several reasons. First, it has been

shown that the right set of gadgets can construct a Turing-complete lan-

guage [5] enabling an ROP compiler to translate malware from any other

Turing-complete language (like C) to one expressed entirely in gadgets. Sec-

ond, this attack bypasses the prevalent W⊕X defense techniques, because
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there is no data being written and then directly executed: the malware ex-

ecutes existing code. Finally, any simple bug in the code enabling attackers

to corrupt the stack can trigger the execution of a sophisticated chain of

gadgets.

Figure 2.1 shows an example of an ROP attack that exploits a buffer

overflow to execute three gadgets. We use a buffer overflow bug for simplicity;

any bug that allows stack modification can be used to launch an ROP attack.

AA239C5FF0
BD905EE02F
23FF90BC78
9DD025FA72
DA9047FE85
28AA34FC28
BBD23FA931
04BCAD48F1

(a) Finding gadgets

G1

G2

G3

pop R1

ret

ret

call [R2]
ret

mov R2, [R1]

G2
G1

G3

(b) Translating to gadgets

pop R1

call [R2]
mov R2, [R1]

void vulnerable(char *str){

char buffer[128];
...
strcpy(buffer,str); /*No bounds check,

buffer overflow */...
return;

}

(c) Vulnerable code

Stack pointer

junk_data[0:127]

127

0

G1

G3
G2

Addr

St
ac

k 
gr

ow
th

(e) Functional stack (f) Compromised stack

Stack pointer

127

0

Return address

buffer[0:127]

(d) Generating a ROP chain

str = [junk_data[0:127], G1, Addr, G2, G3]

Figure 2.1: Example of Return Oriented Programming attack.

In Figure 2.1(a), the executable is scanned for instances of the return

(ret) instruction. We decode a few bytes before three returns creating three

gadgets (G1-G3). Executing the three gadgets in sequence is equivalent to

executing the code in Figure 2.1(b). The code will result in a subroutine call

to a function pointer loaded from a memory location stored on the stack. If

this was executed during kernel execution, this can be a call to code giving
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the user root privileges.

Figure 2.1(c) shows code that is vulnerable to a buffer overflow attack.

The code copies a string into a 128-byte buffer without verifying that it can

fit in the buffer. Figure 2.1(d) shows how a payload can be constructed to

exploit this code to execute ROP malware. Figures 2.1(e-f) show the benign

state of the stack and its state after being corrupted by the malicious input

string. Now, returning from the vulnerable function takes us to G1, which

will pop Addr into R1 and then return. The return will lead to G2, which

will load into R2 and return to G3. Then G3 will perform the call.

ROP attacks can be detected with what is known as a Shadow Stack. The

shadow stack operates with typical “Last in First Out” semantics. Whenever

a call instruction is encountered, the address of the instruction following the

call is pushed to the top of the shadow stack. On the other hand, return in-

structions pop from the shadow stack. ROP attacks can be detected anytime

the return address used by the processor mismatches with the one popped

from the shadow stack.

Unmet challenges have prevented the utilization of shadow stacks in prac-

tice. First, the validity of this technique hinges on the integrity of the shadow

stack. Hence, it must be secured against the very software it protects—a non-

trivial task. Also, codes can be highly nested (e.g. recursive), multi-context

(e.g. kernel), or imperfectly nested (e.g. error/exception handling). Each of

these requires special handling.

2.2 ROP Still Possible on Current Systems

Many proposals focus on protection against ROP attacks [6, 7, 12, 13, 25, 26,

27, 28, 29, 30, 31, 32]. However, these techniques remain unused. The reasons

are as follows.

HW Intrusiveness. Some solutions [26, 28, 30] require intrusive hardware

changes. SRAS [26] adds a secure hardware RAS to verify the return tar-

gets. System memory must back up the secure RAS, necessitating additional

read/write ports. The PUMP [30] processor implements support for general

metadata propagation. This can be used to implement various safety checks,

including Control Flow Integrity (CFI). However, each stage of the pipeline

must be changed to support tag storage and/or rule execution. REV [28]
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hashes the instruction sequences within a basic block to verify a program’s

control flow. An additional 32KB first-level cache dedicated for caching sig-

natures is required to avoid prohibitive slow-downs.

SW Impact. The completeness of instrumentation-based solutions such

as [6, 7] is attractive. However, securely maintaining the shadow RAS at

call/ret boundaries via binary instrumentation adds overheads that exceed

100% [7]. Other approaches [29, 33] propose recompiling the kernel and ap-

plication code to target a secure virtual instruction architecture. This ar-

chitecture is emulated by a compiler-based virtual machine (similar to the

Java Virtual Machine). Aside from the performance costs, source code is not

always available, which limits the applicability of this technique.

Completeness. Proposals looking for an alternative to CFI-based solutions

propose monitoring execution properties for indicators of ROP execution [12,

13]. However, benign programs may also trigger these detectors. Also, ROP

payloads can blend their signature to match that of benign code to evade

detection [17, 34]. Probabilistic defenses [11, 35, 36, 37] use a secret value to

encrypt or randomly arrange code/data. This significantly complicates the

attacks, but other vulnerabilities [19] can leak secrets to negate the defenses.

2.3 Return Address Stack

Modern processors use a hardware structure called Return Address Stack

(RAS) to predict the target of return instructions. When a procedure call

instruction executes, the hardware pushes the address of the instruction that

follows it into the top of the RAS. When a return instruction is decoded,

the hardware pops the entry at the top of the RAS and uses its value as the

predicted target of the return. In most cases, the prediction is correct. The

IBM POWER7 [38] and POWER8 [39] processors have a RAS with 32 and

64 entries, respectively.

ROP attacks cause RAS mispredictions. Assume that the return from

gadget G1 to gadget G2 in the example was correctly predicted by the RAS.

This would require that a call was executed within gadget G2, so the ad-

dress of G2 gets placed on the RAS. However, G1 comes before G2. On

the other hand, a RAS misprediction cannot alone be used as an indicator of

ROP attacks because the RAS sometimes mispredicts in the course of benign

7



program execution.

2.4 Record and Replay

Record and Replay (RnR) of workloads is a popular architectural technique

(e.g., [40,41,42,43,44,45,46,47,48,49,50]). As a workload runs, RnR records

all the non-deterministic events that can affect the execution and stores them

in a log. Later, in a potentially different platform, the workload is re-run.

At this time, the system injects the recorded events at the correct times, en-

forcing a deterministic execution (Replay). Typically, the non-deterministic

events are the inputs to the workload and, in parallel programs, the memory-

access interleaving.

RnR can be done at different abstraction layers. In this work, we use VM-

level RnR [20,41,42,51,52]. Moreover, we consider uniprocessor hardware. As

a result, the sources of non-determinism are interrupts raised and data copied

by virtual devices into the guest machine. We also assume the widely used

model of hypervisor-mediated I/O, as used in Xen [53] or Qemu [54]. These

assumptions are not necessarily limitations, as RnR approaches compatible

with multiprocessor [47] and virtualized I/O [55] exist.

There are several papers that investigate the use of RnR in a security-

related scenario [20,21,22,50,51,56]. ReVirt [20] shows an example of using

VM-level RnR for post-facto offline analysis of a time-of-check to time-of-use

race conditions in the Linux kernel. IntroVirt [21] explores using VM-level

RnR to determine if systems were previously exploited once zero-day attacks

are discovered. Speck [22] explores using a combination of OS-level specula-

tion and program-level RnR to remove security checks from the critical path

of a program. ParanoidAndroid [50] and Secloud [56] explore the possibility

of maintaining replicas of mobile devices in the cloud, and perform program-

level RnR in the cloud. Finally, Aftersight [51] suggests using VM-level RnR

to perform online dynamic analysis of a system’s execution. However, it

does not address several important hardware-software design issues of such

a model, including a key contribution of our work: separation between the

fast checkpointing replayer and the exhaustive alarm replayer. We discuss

the details in Section 9.
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CHAPTER 3

RNR-ROPSAFE: THWARTING ROPS

We propose using a combination of existing processor hardware and well-

known RnR techniques to provide complete protection against ROP attacks

without the prohibitive costs of instrumentation-based approaches. Fig-

ure 3.1 shows the organization of our system, called RnR-ROPSafe. On the

left side, a workload runs on a Recorded VM. Its hypervisor records all the

non-deterministic events of the execution in a software log. Recording adds

only modest overhead—low enough for the execution not to be noticeably

slower. Note that we record at the VM level to also protect the operating

system.

Checkpointing
Replayer

Alarm
Replayer

Alarm
Replayer

Replaying VMs

Recording
Hypervisor

Checkpoints

Log

Inputs Alarms

Recorded VM

Figure 3.1: RnR-ROPSafe organization.

The designer has augmented the hardware in the recorded VM (e.g., pro-

cessor and memory system) with support to detect a certain class of attacks.

When the combined operation of this hardware and the recording hypervisor

detect the attack, the hypervisor inserts an alarm marker in the log. At this

point—and depending on the risk tolerance of the workload—the recorded

VM may be stopped until the alarm is analyzed, or allowed to continue.

On the right side, one or more Replaying VMs re-execute the workload

natively. They use the log to inject all the non-deterministic events. As a

result, their execution deterministically follows the original one.
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3.0.1 What Record and Replay Offers

The addition of RnR provides—in addition to its traditional usages—three

security benefits.

Robustness. Perfect hardware detection accuracy often necessitates intru-

sive hardware. By separating alarm detection from attack verification using

RnR, this can be alleviated. Now, the only requirement for the hardware

security detectors is to support the common case. False alarms and rare cor-

ner cases are instead handled by software-based replay. Thus, RnR restores

robustness to a system stack that includes imprecise security hardware.

Flexibility. RnR is intrinsically flexible. As attackers devise new attacks,

defenders can add new analysis techniques to the alarm replayer to detect

and/or prevent them. Defenders can even run parallel alarm replayers track-

ing different types of attacks at the same time. This is simplified because

the analysis is in software.

Execution Auditing. RnR allows detailed analysis of executions. The

execution context causing the alarm can be replayed to audit the code and

data state. This is a general mechanism for identifying security violations by

auditing sensitive flows in the system.

3.0.2 RnR-ROPSafe Modes of Execution

In RnR-ROPSafe, monitored recording consists of normal execution, while

transparently recording all the non-deterministic inputs in a log, and trans-

parently monitoring safety violations. If a violation is found or suspected,

an alarm entry is inserted in the log. A key detail is that, in order to claim

complete protection, the detector must catch all potential threats. In other

words, false negatives are impossible.

In RnR-ROPSafe, the replay execution can be performed in two ways.

One way is Checkpointing Replay. Such replay runs at recording-like speeds.

It uses the log to deterministically replay the workload while creating state

checkpoints at regular intervals. When an alarm marker is found in the log,

the checkpointing replayer launches the execution of an alarm replayer from

a recent (typically the latest is sufficient) checkpoint. Once old checkpoints

and log entries are verified they can be discarded to save storage.

A second type of replay is Alarm Replay. Alarm replay replays log en-
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tries from a given checkpoint until an alarm, while performing an extensive,

attack-specific analysis of the replayed execution. Its goal is to resolve an

alarm, either to show that it is a false positive or to verify and characterize

the attack. It can be much slower than the recording execution.

Typically, alarms are rare events. Therefore, we envision one replaying VM

to continuously run the checkpointing replayer. This replayer simply replays

the workload at a speed comparable to the recorded execution, consuming

the log, and periodically creating state checkpoints. If the checkpointing

replayer finds an alarm marker in the log, it starts an alarm replayer in

another VM. The alarm replayer deterministically replays from the latest

checkpoint until it finds the alarm marker. This replay performs a detailed

analysis, characterizing the attack to identify the vulnerability it exploited

and to assess the extent of the damage.

This approach can be applied to protect against different attacks (Sec-

tion 6). In this thesis, we focus on ROP attacks.

In the next section, we explain the techniques of RnR-ROPSafe that im-

plement ROP protection flexible enough to protect against ROP attacks [57]

on the kernel.

3.1 Main Idea in RnR-ROPSafe

The basic architecture primitive that can help detect ROPs is the RAS (Sec-

tion 2.3). The RAS stores the addresses of the predicted targets of return

instructions. At every call instruction, the hardware pushes the return ad-

dress onto the RAS; at every return, the hardware pops the RAS and uses

its address to predict the return target. Hence, a ROP attack causes RAS

mispredictions.

To use RAS mispredictions to prevent ROP attacks requires that there are

no false negatives. Fortunately, execution of ROP payloads is guaranteed to

cause RAS mispredictions, making false negatives impossible. Furthermore,

for this detector to be useful, false alarms should be infrequent. However,

there are a few major sources of imprecision in the basic RAS operation. We

will explain these sources with Linux kernel examples, where we found them

to be most common.

First, there is the effect of multithreading. In a multithreaded environ-
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ment, when the kernel switches from Thread i to Thread j, it leaves entries

belonging to Thread i on the RAS. When executing code in Thread j (or

other threads scheduled after i), these entries might be incorrectly popped

and used for prediction. If so, not only will Thread j encounter mispredic-

tions, but also Thread i’s entries will no longer be available for their use after

i is rescheduled. Hence, there will be mispredictions and false positive ROP

alarms.

A second effect is non-procedural returns in the kernel. Sometimes—e.g.,

during a context switch—the kernel inserts an address into the software stack,

which will later be used by a return instruction as target. Since there was no

prior call from that address, the RAS will not contain a corresponding entry

and will mispredict.

RAS underflows are a third source of imprecision. If the code executes

many nested procedure calls, the RAS may evict some of the earlier return

addresses. Later, when the execution returns from the inner calls and tries

to pop entries corresponding to the outer calls, the RAS will be empty (un-

derflow) and will mispredict.

Imperfect nesting in procedure calls is another reason for RAS mispredictions—

a situation where a procedure is called but never returned from. Within the

kernel, these are rare events that typically only take place as part of bug

recovery processes in the kernel. When the kernel execution encounters a

recoverable bug, it initiates a recovery process, as part of which it terminates

the current thread of execution, leaving all the RAS entries of the current

thread orphaned. For user-mode code these occur more commonly—for ex-

ample, exception handling is implemented using setjmp/longjmp.

These effects show that the RAS is an imprecise detector of ROPs and,

therefore, unusable as is. For RnR-ROPSafe to use it as the initial indica-

tor, two steps are needed. First, we robustify the RAS detection capability

with simple hardware and hypervisor support. The goal is to minimize the

false positive rate. To completely eliminate false positives requires disruptive

software changes and intrusive hardware changes. The second step is to use

deterministic replay to distinguish the false alarms from the real attacks—

and to characterize any detected ROPs.

An alarm replayer is invoked when there is an alarm. Since it has to

provide a response quickly, replay cannot start from the beginning of the

VM execution. Instead, it starts from a nearby checkpoint created by the
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checkpointing replayer.

In the following, we describe the components of RnR-ROPSafe and the

steps taken to protect the kernel despite its unique RAS challenges.

3.2 Basic Design

As shown in Figure 3.1, the workload (applications + kernel) runs in a

Recorded VM. As it runs, the hypervisor creates an input log that is sent

to and consumed by a Replaying VM.

The traditional behavior of the RAS is slightly augmented in this basic

design of RnR-ROPSafe. Specifically, if we are executing a return instruc-

tion in kernel mode, and a mismatch is found between the predicted target

in the RAS and the actual return target, the hardware sets a flag (called

ROP Alarm) in the ROB entry for the return instruction. When a return

reaches the ROB head, if the ROP Alarm bit is set, a VM exit is triggered.

Then, the hypervisor inserts a ROP alarm entry in the input log. Depending

on its configuration, the hypervisor may or may not stop the recorded VM

until the alarm is fully processed in the replaying VM.

In the meantime, the checkpointing replayer is consuming the log to create

regular checkpoints. If it finds the alarm entry in the log, it triggers the

execution of the alarm replayer, starting from the most recent checkpoint.

The alarm replayer determines whether it is a false alarm or a real ROP. It

is possible—but rare—that an older checkpoint is needed to confirm/refute

the attack.

This basic RnR-ROPSafe design will not miss an attack, since a ROP has to

execute a return instruction. However, this is insufficient, as a large source

of false alarms remains: those due to multithreading and non-procedural

returns. Alarms involve costly VM exits and lengthy replay, incurring high

overheads with this design. Next, we extend this basic design to reduce its

false positives.
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3.3 Supporting a Multithreaded Environment

In a multithreaded environment, a thread might be de-scheduled—e.g., due

to pre-emption or performing a blocking operation—while executing in kernel

mode. The return address entries left by this thread on the RAS might be

popped and used (incorrectly) by subsequent threads, and this thread itself

might pop and use RAS entries belonging to other threads once it is re-

scheduled. The result is RAS mispredictions and a large source of false ROP

alarms.

To address this problem, RnR-ROPSafe extends the processor hardware.

On a context switch, the hardware automatically saves the current RAS into

a safe memory area, and restores the RAS state as needed for the upcoming

running thread. The hypervisor helps by setting a hardware pointer to point

to the correct memory area to move data out and in. For that, we augment

the set of structures that the micro-coded virtualization hardware already

saves and restores at the context switch to also include the RAS.

The structures are shown in Figure 3.2. The software structure in memory

is an array of backed-up RASes (BackRAS). Each entry belongs to a thread,

and has a RAS and a counter with the number of entries in the RAS. The

counter is needed to know the number of entries that need to be read later

on. The processor hardware includes a pointer (BackRASptr) that points

to the backed-up RAS of the currently running thread. The pointer is set

by the hypervisor and used by the hardware to access the correct BackRAS

entry.
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Figure 3.2: Structures used to support multiple threads.

The logic used is shown in Figure 3.3. On a context switch, as part of

the transition to the hypervisor, the hardware saves the RAS to the entry to
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which BackRASptr is pointing. In addition, it computes and stores the count

of saved entries. Our measurements show that a transition to the hypervisor

already takes about 1,000 cycles. We estimate that backing up the RAS

will add about 20% more time. Later, when the hypervisor runs, it changes

BackRASptr to point to the entry for the new thread. Finally, as part of the

transition back to the guest, the hardware reads the correct BackRAS entry

into the RAS. We also estimate about 20% additional overhead.

To program the BackRASptr, the hypervisor needs to be informed of con-

text switches in the guest kernel and identify the new thread to be scheduled.

Section 4.2 explains how this can be done without modifying the guest kernel.

to Thread j
from Thread i
Context switch

HW transition HW transitionGuest

Save RAS toThread i
BackRAS[i]runs

Set BackRASptr
to point to
BackRAS[j]

BackRAS[j]
to RAS

Copy Thread j
runs

GuestHypervisor

Time

Figure 3.3: Algorithm and timeline to handle multiple threads.

With this support, when a thread is scheduled, it will find its correct state

in the RAS, thus eliminating many false alarms.

3.4 Supporting Non-Procedural Returns

Sometimes, the kernel uses the return instruction as an indirect branch.

Specifically, it inserts an address into the software stack, and then executes

a return that uses that address as target. Since there was no corresponding

procedure call, the RAS did not push an entry, and will mispredict. Conse-

quently, in these cases, the RAS should not be popped, as doing so would

corrupt the RAS state.

In the Linux version we use, this use of returns outside of the procedural

abstraction occurs once, when a context switch is complete. At that point,

right before launching the next thread, the kernel executes such a return in

order to start executing code on behalf of the new thread. This code is written

in assembly and directs the control flow to a few well-defined locations in the
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kernel code. These locations complete the task switching based on whether

it involves forking a thread, executing a kernel thread, or rescheduling a task.

To address this problem, RnR-ROPSafe extends the processor hardware

with a table of “whitelisted” addresses. For our Linux version, there is a

single-entry return whitelist (RetWhitelist) with the PC of the single return

used as indirect branch, and a target whitelist (TarWhitelist) with the PC

of the three instructions that can be the target of this return. During return

address prediction, if a return and its target PC match entries in the tables,

then the RAS is not popped and no alarm is raised. The potential for these

lists to bypass our security checks is limited as they are only writable by the

hypervisor.

The logic used and its timeline are shown in Figure 3.4. When an instruc-

tion is decoded and identified as a return, the hardware checks if its PC is in

the RetWhitelist. If so, the RAS is not popped and a Whitelisted flag in the

return’s ROB entry is set. Later, when the target address is accessed, if the

Whitelisted flag is set, the hardware checks if its PC is in the TarWhitelist.

If it is not, the ROP Alarm bit is set in the ROB entry for the return in-

struction. When the return reaches the ROB head, if the ROP Alarm bit is

set, a VM exit is triggered.

Raise ROP alarm
}

Return at ROB head

If (ROP_Alarm==1){

Time

Don’t pop RAS
Whitelisted=1

}

Return decoded

If (PC in RetWhitelist){ If (Whitelisted==1){
If(Target not in

TarWhitelist){
ROP_Alarm=1

}
}

Target address accessed

Figure 3.4: Timeline to handle non-procedural returns.

The whitelisted addresses can be found by analyzing the binary image of

the guest kernel. Then, the hypervisor can populate RetWhiteList and Tar-

WhiteList using the identified addresses when entering the VM as explained

in Section 4.1.
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3.5 RAS Underflows and Imperfect Nesting

It is possible that the kernel executes many nested procedure calls, causing

the RAS to evict some of the earlier return addresses. In this case, when

the hardware accesses the RAS in a return instruction, it may find it empty.

This will cause a RAS misprediction, and will trigger a ROP alarm when the

return instruction reaches the ROB head. These alarms are likely to be false

positives.

RnR-ROPSafe could prevent this problem by adding more entries in the

RAS or opportunistically saving/restoring the RAS. However, this requires

expensive hardware that is rarely used. Hence, RnR-ROPSafe lets these

events raise ROP alarms, and relies on the replayer to identify them as false

positives. Since the replayer models an unbounded RAS, it has no underflows

and can filter out such false positives.

Similarly, we let the processor raise ROP alarms for mispredictions due to

imperfect nesting. Such alarms are easily filtered out by our alarm replayer.

It should be noted that these events are very rare—we encountered only a

few underflows in our benchmark runs.

3.6 Replaying Platform

The input log is passed to another platform, where the VM execution is de-

terministically replayed in one or several guest VMs. At all times, there is

at least one VM running the checkpointing replayer. In addition, at certain

times, there may be one or more VMs running alarm replayers. As indicated

above, the checkpointing replayer consumes the log as it is received, and

creates checkpoints at regular intervals. When it finds a ROP alarm marker

in the input log, it initiates an alarm replayer at the immediately preced-

ing checkpoint. The alarm replayer carefully analyzes the execution until it

reaches the alarm marker, to determine if it is a true ROP or a false alarm.

3.6.1 Checkpointing Replayer

To understand the operation of the checkpointing replayer (CR), we first de-

scribe the contents of a checkpoint. Figure 3.5 shows three checkpoints. Each

17



checkpoint has three components. The first one is all the pages with the VM

state. These include the memory pages plus a page with the processor state

(PC, stack pointer, and the rest of the registers at the time of checkpoint).

They also include the virtual disk image contents. This is the state that

the VM being recorded wrote to the virtual disk. We need to checkpoint

it because, if the execution later reads this data, the data will not appear

in the input log. Note, however, that the state checkpoints are incremental.

Since we take regular checkpoints, a given checkpoint keeps copies of only

the pages that have been modified since the previous checkpoint; for each

unmodified page, it keeps a pointer to the page in the latest checkpoint that

modified it.

�
�
�
�

Pages and
blocks of
program
state

BackRAS

Checkpt 1 Checkpt 3Checkpt 2

InputLogPtr

Input log buffer

Time

Figure 3.5: Checkpoints created by the checkpointing replayer.

The second component of a checkpoint is a pointer to the input log buffer

(InputLogPtr). The pointer points to the next input log entry to be processed

after the checkpoint. Finally, the last component is the BackRAS at the time

of the checkpoint. We will see in Section 3.6.2 that the alarm replayer needs

this state.

The processor hardware on which the CR runs operates slightly differently

than how it operated for the recorded VM—in order for the hardware to help

create the checkpoints. Specifically, the hardware dumps the RAS into the

BackRAS not just at context switching points, but also at every VM exit
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while in the kernel. This ensures that, at the point of the checkpoint (which

is also a VM exit), the CR has the up-to-date state of the BackRAS to stash

in the checkpoint. There is no restoring of the RAS at non-context switching

VM exits. As indicated in Section 3.3, we estimate a VM exit and subsequent

entry to take ≈ 2,000 cycles, and saving the RAS to be ≈ 10% of it.

A second modification is that the processor hardware’s ability to trigger

ROP alarms is disabled. This is because replay does not create alarms.

With this background, we now describe the CR operation. The CR ex-

ecutes the recorded VM, in a deterministic manner, while consuming the

input log. After every checkpoint, all the pages comprising the VM’s mem-

ory and disk state are marked as copy-on-write. When a page is modified for

the first time since the last checkpoint, a copy is made and used from now

on. When the CR decides to create a checkpoint, it interrupts the proces-

sor and dumps the processor state (PC, stack pointer, and all registers) into

a memory page. The RAS is automatically saved as part of the VM exit.

The CR then creates the checkpoint by saving: (1) all the modified memory

pages and disk blocks, together with pointers to the unmodified ones, (2) the

current BackRAS, and (3) the current InputLogPtr. Then, the CR restores

the processor state, marks all pages copy-on-write, and continues execution.

The CR regularly recycles checkpoints. However, it can only recycle a

memory page or disk block if it is not pointed to by a later checkpoint.

3.6.2 Alarm Replayer

The goal of the alarm replayer (AR) is to determine whether an alarm is

caused by a ROP or if it is a false alarm. If the former, the AR immediately

provides the state of the processor, memory, and disk at the point of the

ROP attack.

The processor hardware on which the AR runs neither dumps the RAS

state nor triggers ROP alarms. Both capabilities are disabled because they

are not needed.

The AR VM starts its execution by initializing the VM state using a check-

point. It marks all the pages pointed to by the checkpoint as copy-on-write to

avoid modifying the initial state. Then, it reads the checkpoint’s BackRAS

into its own software data structure that it uses to simulate the RAS. Next, it
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loads the processor state from memory into the processor registers. Finally,

it starts execution, reading from the log starting from the InputLogPtr.

The AR executes the recorded VM natively, in a deterministic manner,

consuming the input log until it reaches the alarm marker. The AR models

unbounded, per-thread RAS structures in software. As such, the AR traps

every call and return instruction, inducing VM exits and transferring control

to the hypervisor. Then, the hypervisor runs in software the basic RnR-

ROPSafe algorithm plus its extensions for multithreading and non-procedural

returns. The simulated RAS cannot underflow as it is unbounded.

Once the AR encounters the alarm in the log, it checks whether the RAS

mismatch can only be explained as an ROP attack. If so, an expert can

carefully study the execution state— by performing multiple replays with in-

creasingly targeted instrumentation—to glean information about the attack.

Chapter 5 shows an example. Note that this design readily accommodates

running multiple ARs to analyze multiple ROP alarms in parallel.
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CHAPTER 4

IMPLEMENTATION ISSUES

Following Intel’s VT terminology, we use VMCS (VM Control Structure) to

refer to the in-memory control structure through which the hypervisor com-

municates with and configures the virtualization hardware. We use VMEnter

to mean transferring execution from the hypervisor to the VM, and VMExit

to mean the opposite transfer.

4.1 Hardware Implementation of RnR-ROPSafe

The hardware changes required to implement RnR-ROPSafe are minimal.

First, we need to allow the hypervisor to program the contents of Back-

RASPtr, RetWhiteList and TarWhiteList. This can be done by extending

the VMCS with three new fields. The microcoded logic of VMEnter reads

these fields to program these three processor hardware structures. In addi-

tion, it uses the BackRAS entry pointed to by BackRASPtr to populate the

RAS. Similarly, on a VMExit, its microcoded logic dumps the RAS content

into the active BackRAS entry.

The second set of hardware changes has to do with the interaction between

the RAS hardware and in-window speculation. In a conventional processor,

RAS entries can be pushed and popped by speculative call and return in-

structions that may be squashed later—e.g., due to a branch misprediction or

an exception in upstream instructions. However, when our hardware dumps

the RAS content on a VMExit, we need to dump only those entries that cor-

respond to architecturally retired instructions. This requires the following

changes.

In conventional processors, the RAS is typically implemented as a circular

buffer with a single pointer, Top, pointing to the most recent entry. Call

instructions increment this pointer and write to the top entry (push); re-
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turn instructions read from the top entry (pop) and decrement this pointer.

Both instructions typically modify the RAS while still speculative (i.e., be-

fore reaching the ROB head). In RnR-ROPSafe, we augment this design

by adding two more pointers, NonSpec Top and NonSpec Bottom, which re-

spectively point to the youngest and oldest RAS entries that correspond to

architecturally retired (non-speculative) instructions. Then, on a VMExit,

the hardware only dumps the RAS entries between these two pointers.

In our design, the RAS continues to use the Top pointer for its normal push

and pop operations and for making predictions. NonSpec Top is incremented

(decremented) by the retirement of call (return) instructions. Therefore, it al-

ways points to the architecturally accurate top of the RAS. NonSpec Bottom

is used to deal with the cases where a call instruction, which is later squashed,

pushes to an already full RAS and overwrites an older, non-speculative RAS

entry. Such overwriting can only happen when the RAS is full and, with a

big-enough RAS, will be a rare event. To avoid having to recover the lost

RAS entry, we increment NonSpec Bottom when the entry that it points to is

overwritten by a RAS push. This way, the net effect of overwriting the RAS

entry will be an underflow (when the return corresponding to the overwrit-

ten entry is executed), instead of polluting the RAS dump with speculative

content.

4.2 Hypervisor and RAS Hardware Interaction

In this section, we explain how the hypervisor is modified to use the hardware

extensions of RnR-ROPSafe.

Programming BackRASPtr on a Context Switch

In RnR-ROPSafe, the hypervisor needs to interpose on all context switches

in the guest kernel during both recording and replay. In Linux, there is a

single instruction where the stack pointer is changed from pointing to the

current thread’s stack to the next thread’s stack. By setting a trap on this

instruction, the hypervisor forces a VMExit when the guest executes this

instruction. As part of the VMExit’s microcoded logic, the hardware dumps

the RAS into the memory location pointed to by BackRASPtr.
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Once the VMExit is complete and the control is transferred to the hyper-

visor, it can use a technique known as VM introspection to inspect the state

of the guest OS. This allows the hypervisor to identify the next thread to be

scheduled. In Linux, a thread’s descriptor (called task struct) can be easily

found if the thread’s stack pointer is known. Since we set the trap on the

instruction that changes the processor’s stack pointer, we can find the next

thread’s stack pointer by examining the register content of the VM, which

is available in the VMCS after a VMExit. Using this stack pointer, we find

the corresponding task struct descriptor in the VM’s memory, and from that

descriptor, read the next thread’s ID.

The hypervisor stores the BackRAS in a memory area inaccessible to the

guest machine. It stores it as a hash table mapping a thread’s ID (“key”)

to its BackRAS entry (“value”). Using this organization, once the thread

ID is found, the hypervisor checks the map to determine if there is already

an entry for that thread. If not, it means that the next thread is executing

for the first time, and the hypervisor allocates a new entry for it. In either

case, the hypervisor sets the BackRASPtr field of the VMCS to point to the

BackRAS entry.

4.2.1 Recycling BackRAS Entries

In Linux, threads are constantly being created and killed, and their IDs

may be reused. To keep the BackRAS consistent, we need to remove from

the BackRAS a thread’s entry when the thread is killed and its ID can be

reused. Similarly to the case of context switching, the hypervisor sets a trap

on the function that implements this functionality in the guest kernel to force

a VMExit when it is executed. At that point, the thread ID can be found

by introspection and then used to delete the corresponding BackRAS entry.

4.3 Complexity Discussion

One of the primary motivations for our work is finding a solution that is

largely compatible with commodity systems and ensures detection of ROP

payloads. The need for strong guarantees necessitates fine-grained CFI [6]

and not probabilistic measures [11, 35]—without prohibitive costs. It is also
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important that our solution suffer neither the overheads of instrumentation-

based approaches [7] nor the intrusiveness of hardware-based approaches [25,

26,28].

As discussed in Section 3.1, most of our hardware for verifying return in-

struction targets reuses the existing hardware RAS along with its read/write

ports. The actual hardware added by RnR-ROPSafe includes: the two

whitelist tables, a bit per ROB entry to mark an alarm, the BackRASptr

register, and two pointers in the RAS. The maintenance of the BackRAS

array in Figure 3.2 is performed in microcode, as the processor executes VM

entries and exits. The requirement for RnR can be considered the most sub-

stantial change. However, RnR is well understood and accepted as a useful

primitive for debugging and program analysis [21,22,51,58].
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CHAPTER 5

APPLICATION FOR KERNEL ROP
DETECTION

We built and ran the ROP attack of Figure 2.1. In the recording VM, as the

workload calls the vulnerable procedure of Figure 2.1(c), the hardware pushes

into the RAS the address of the instruction at the call site (call it CallSite).

This is the same address that is stored next to the buffer in the software

stack of Figure 2.1(e). After the malicious string copy, the software stack

becomes Figure 2.1(f). As the program executes the return of the vulnerable

procedure, the hardware uses the RAS to predict that execution will transfer

to CallSite. In reality, the target of the return is resolved to be the address

of gadget G1, as shown in Figure 2.1(f). This mismatch causes the recorded

VM to raise an alarm.

The recorded VM hypervisor then inserts an alarm marker in the log and

may decide to stall the VM. When the checkpointing replayer sees the alarm

marker in the log, it starts an alarm replayer from the most recent checkpoint.

As the alarm replayer executes, it models the RAS in software. At the point

of the alarm, it observes the mismatch between the return’s predicted target

(in the RAS) and the actual target (in the software stack), hence declaring

a ROP attack.

At this point, the hypervisor performs an analysis of the system. It can

use VM introspection to analyze the VM state, which has not been polluted

by the execution of any gadget. It can also invoke additional replays farther

back in time to perform a deeper analysis of the system.

One question replay analysis can answer is: how was the attack possible

to begin with? The hypervisor uses the return instruction that caused the

alarm to determine that the attack occurred in the vulnerable procedure. It

uses the address at the top of the RAS to determine the call site. An analysis

of the vulnerable procedure can conclude the presence of buffer overflow. An-

other question is who attacked the machine? The hypervisor can determine

the thread ID of the current thread, extract which users are logged in, and

25



determine which network connections are established. Yet another question

is: what did the attacker do? An analysis of the software stack can reveal

the gadgets used by the attacker. In this case, they did not execute. If

they did, the hypervisor can use VM introspection to analyze what files were

touched, what sockets were utilized, and what processes were forked [59].

This information is easy to get now because the workload is not running.
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CHAPTER 6

FUTURE EXTENSIONS

The RnR primitive we utilize can empower other security defenses. The

key advantage is that the replay can be used to compensate for imprecise

first lines of defense. The replay can distinguish the false alarms by using

additional information or complete methods.

For example, Table 6.1 considers jump-oriented programming (JOP) [60]

and denial of service (DOS) [61]. The table shows the alarm trigger, the

hardware needed, and the role of RnR. For example, JOPs can be detected

with a hardware table of addresses of the most common functions. An in-

direct branch target is compared to the table and is legal if the target is

the first instruction of a function, or any target within the current func-

tion. Otherwise, an alarm is triggered, and the RnR will check against all

the remaining functions. A DOS attack on the OS can be detected with a

counter that increments every time the kernel performs a context switch. If

the counter has not increased much for a while, an alarm is triggered, and

the RnR analyzes and identifies the code that has dominated the system’s

execution time.

Table 6.1: Potential uses of the RnR based approach.

Attack Alarm Hardware Needed Role of RnR
Trigger

Kernel ROP RAS mis- Dump the RAS, Perform kernel-
prediction BackRASPtr, compatible shadow

Whitelist stack algorithm

Jump Stray Table of addresses Verify control flow
Oriented indirect of most common integrity of calls
Program- branch functions (entry to less common
ming (JOP) and end addresses) functions

Denial of Kernel Counter of number Identify reason for
Service scheduler of context switches low switching
(DOS) inactivity frequency
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CHAPTER 7

EXPERIMENTAL SETUP

To evaluate RnR-ROPSafe, we use two evaluation environments. The first

one evaluates the performance of our recording and replaying modes. For

this, we use Insight [62], a VM RnR tool based on a modified Linux KVM

hypervisor and QEMU devices. Since the KVM hypervisor can leverage Intel

VTx extensions to virtualize the processor in hardware, the performance

numbers from this setup are representative of real-world machines.

The second environment evaluates the correctness of our techniques and

the functional characteristics of our proposed hardware. For this, we use

QEMU in emulation mode. In this mode, QEMU also emulates the processor

using dynamic translation of the systems software. This mode makes it easy

to simulate our hardware and evaluate its function.

Table 7.1 shows the system configuration we used for our performance

evaluation, and Table 7.2 shows our benchmarks.

Table 7.1: System configuration for performance evaluation.

Host machine
CPU: Xeon E3-64bit,4-cores,3.1GHz Memory: 8 Gbytes
OS: Ubuntu, Linux kernel 2.6.38-rc8

Guest machine
CPU: uniprocessor Memory: 1 Gbyte
OS: Debian, Linux kernel 3.19.0 Disk: 32 Gbytes

Table 7.2: Benchmarks executed.

Benchmark Parameters
apache -n100000 -c20
2*fileio –file-total-size=6G –file-test-mode=rndrw

–file-extra-flags=direct –max-requests=10000
make linux-4.0 config with all-no
2*mysql -test=oltp -oltp-test-mode=simple

-max-requests=500000 -table-size=4000000
radiosity -p1 -bf 0.005 -batch -largeroom
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7.1 Handling Non-Deterministic (ND) Events

The log contains three kinds of ND events. Here we describe the types of

ND events and how they are recorded and replayed.

Synchronous ND Events. Instructions such as rdtsc (read time stamp

counter) or rdrand (read random number generator) return ND results. Ac-

cesses to memory regions like Memory Mapped IO (MMIO) are also ND. The

VMCS controls when the processor will perform a VMExit. We configure the

controls to synchronously trap these ND accesses, allowing the hypervisor to

log their results. With similar configuration of the controls on the replaying

system, these events are deterministically reproduced during replay.

Network inputs are a special case and are also synchronous in our system.

The arrival of network packets to the physical NIC is inherently asynchronous

but the data is delivered to the VM at the boundaries of synchronous VMEx-

its. Thus, this simplifies the recording and replaying of network events.

Synchronous ND Events. Instructions such as rdtsc (read time stamp

counter) or rdrand (read random number generator) return ND results. Ac-

cesses to memory regions like Memory Mapped IO (MMIO) are also ND.

The VMCS controls when the processor will perform a VMExit. We lever-

age this fact to trap these ND accesses, allowing the hypervisor to log their

ND results. These VMExits are deterministically reproduced during replay.

The replay time VMExits can be associated with the corresponding VMExits

from the recorded execution if a synchronous VMExit count is maintained

during record. Delivering the inputs during these VMExits will faithfully

replay them.

Network. ND inputs from network traffic can constitute significant portions

of the input log. Network traffic addressed to the VM arrives as packets

through the host machine’s physical NIC and are subsequently delivered to

the appropriate VM virtual NIC by the QEMU IO thread. The ND packet

contents and the point where the data is injected into the virtual NIC must

be logged in the input log. The injection into the virtual NIC occurs at

boundaries of synchronous VMExits. Therefore, as before, the synchronous

VMExit number is enough to enable faithful replay.

Asynchronous ND Events. Asynchronous events are more challenging to

replay. These events are due to external (to the processor) interrupts. Exam-

ples include inter-processor interrupts and interrupts from physical devices
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like disks.

The VMCS can be configured to cause these events to trigger asynchronous

VMExits. Since these VMExits are asynchronous, they will not naturally

occur during replay. Faithful replay requires that these events be delivered

at the same point where they originally occurred. Therefore, we are forced

to recreate them manually.

Replicating these VMExits is not straightforward. Insight uses perfor-

mance counters to cause a VMExit close to where there needs to be one.

Then, we perform one VMExit per instruction, single-stepping until execu-

tion reaches the injection point. Each VMExit costs about ≈2,000 cycles.

Asynchronous ND Events. Asynchronous events are more challenging to

replay. These occur from external interrupts. These interrupts originate from

other processors or from physical devices like disks. The VMCS structure

can also be configured to cause a VMExit on these events. These VMExits,

however, are asynchronous and will not repeat on the same instruction during

replay. Therefore, for faithful replay, replay has to manually recreate them.

Trapping the VM at the same processor context is not straightforward.

Insight uses performance counters to cause a VMExit as close as possible

to the required point in replay. From there, the processor is single-stepped

until execution reaches the desired injection point. Each step will suffer the

overhead of a VMExit (≈2,000 cycles).

7.2 Evaluating Replay Overhead

To evaluate the overhead of checkpointing replay, we reuse the Linux copy-

on-write implementation used during fork system calls. Virtual memory

belonging to the VM is allocated within a user-space QEMU process running

on the host machine. With minor modifications, a checkpoint can be created

by forking the QEMU process.

The alarm replayer models the RAS at every call and return instruction.

Unfortunately, current Intel VTx extensions do not support trapping call and

return instructions. Hence, to measure the performance impact of alarm re-

play, we modified GCC to instrument binaries by inserting a debug exception

before kernel context switches, and before call and return instructions. The

debug exception is a single byte opcode (0xCC) used to trap instructions by
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raising debug exceptions. The VMCS is configured to cause VMExits on de-

bug exceptions. This allows us to mimic the behavior of the alarm replayer,

modulo a minor performance impact due to a 0.11% increase in the size of

the Linux binary.

7.3 Evaluating the Proposed Hardware

In binary translation mode, QEMU virtualizes the processor using software

only. This mode is significantly slower, but it allows for simulation of hard-

ware. We use this mode to evaluate our proposed hardware modifications in

RnR-ROPSafe. We simulate a 48-entry RAS by default.
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CHAPTER 8

EVALUATION

8.1 Recording

Our recording scheme generates the log and also saves/restores the RAS at

context switches. Recall we require hypervisor-mediated I/O, which prevents

the use of para-virtualized network drivers (PV). We call the scheme Rec.

Figure 8.1(a) compares Rec’s execution time to three other setups: no record-

ing with PV drivers (NoRecPV), no recording and no PV drivers (NoRec),

and recording without dumping the RAS (RecNoRAS). Each benchmark is

normalized to NoRec.

We see that disabling PV increases the execution time of these benchmarks

by 25-150%. As previously mentioned, RnR has been successfully applied to

PV drivers [55]; applying those techniques in our solution would eliminate

this overhead from our system. Apache and fileio are affected the most, while

mysql is not impacted much as it avoids disk accesses by caching recently

accessed tables in memory.
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Figure 8.1: Execution time of recording setups (a) and breakdown of the
Rec overhead over NoRecNoPV (b).
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Recording (Rec) takes, on average, 32% longer than NoRec. Record-

ing without saving/restoring the RAS (RecNoRAS) takes 28% longer than

NoRec. These overheads are modest. To understand their source, Fig-

ure 8.1(b) shows again the slowdown of Rec over NoRec and breaks it down

into their sources, namely recording timer reads (rdtsc), port and memory-

mapped I/O accesses (pio/mmio), interrupts, network packet contents, and

saving/restoring the RAS.

We see that the dominant overhead across all benchmarks is due to record-

ing rdtsc. This event occurs very frequently, especially in fileio and mysql,

where the application itself issues many timer reads to measure transaction

speed. In addition, fileio issues disk command and control signals using pio.

It also has DMA activity, which causes interrupt events to signal file access

completion. Apache receives network packets and uses mmio accesses to the

NIC to retrieve the packets. The more computation-intensive benchmarks

(make and radiosity) have little overhead. Finally, saving/restoring the RAS

induces only 4% overhead on average.

Figures 8.2(a) and (b) show the input log generation rate, and the band-

width of RAS saving and restoring, respectively, for all our benchmarks. We

do not compress the data. We see that the rates are low. Apache has the

highest input log rate (4 MB/s) because it records network packet contents.

RAS save/restore bandwidth is very small.
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Figure 8.2: Input log generation rate (a) and bandwidth to save/restore the
RAS (b).
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8.2 Minimizing False Alarms

The RnR-ROPSafe hardware eliminates most of the false alarms in the kernel,

allowing only a few false alarms (in our case due to RAS underflow) to

be reported to the replayers. Figure 8.3 shows the number of kernel false

alarms reported to the replayers (FalseAlarm) and those suppressed with the

whitelist and with the BackRAS. The figure shows the number per million

instructions. Since the number of remaining false alarms is so small, the

FalseAlarm category cannot be seen, and we put the number on top of the

bars. All the benchmarks except Apache have practically no kernel false

alarm. Apache has a few false alarms because it has some deep procedure

nesting under network stress conditions. Both the whitelist and the BackRAS

are very effective at removing false alarms.
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Figure 8.4: Execution time of checkpointing replay setups (a) and
breakdown of the RepChk1 overhead over Rec (b).
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8.3 Replaying

8.3.1 Checkpointing Replay

Figure 8.4(a) compares the execution time of various checkpointing replay

setups to the recording setup (Rec). The replay setups use no checkpointing

(RepNoChk) or checkpoint every 5, 1, or 0.2 seconds (RepChk5, RepChk1, and

RepChk02, respectively). The bars are normalized to Rec. From the data,

we see that checkpointing every 1 second (RepChk1) increases the execution

time over Rec by 59% on average.

These results show that checkpointing replay runs at a speed that is

roughly comparable to that of recording. As a result, checkpointing replay

can be on all the time. While checkpointing replay is a bit slower, it can

catch up with recording because busy machines are rarely 100% utilized —

they are often waiting for multiple reasons. During that time, recording slows

down but replay can continue. If the replay gets significantly behind, we can

use backpressure to temporarily slow down recorded execution.

The figure also shows that increasing or decreasing the checkpoint period

changes the speed. Interestingly, even without checkpointing, replay already

takes on average 48% longer that Rec.

To understand these effects, Figure 8.4(b) shows again the slowdown of

RepChk1 over Rec and breaks it down into its sources. The sources are those

during recording plus creating checkpoints (Chk). During recording, RAS

involved saving/restoring the RAS at context switches; now it additionally

includes saving (but not restoring) the RAS at VMExits.

The breakdown in the figure shows that creating checkpoints contributes

noticeably to the total overhead. This is why the frequency of checkpoints

matters. The actual overhead depends on the memory write characteristics

of the workload; poor memory locality causes more page copies, increasing

checkpointing overhead.

Interestingly, we see that interrupt overhead dominates. The reason is that

interrupts are asynchronous events, while rdtsc, pio/mmio, and network are

synchronous. Identifying the instruction that should get the asynchronous

interrupt injected during replay is time-consuming. As indicated in Sec-

tion 7.1, it requires single-stepping VMExits over several instructions. This

is the reason for the overhead of Figure 8.4(b). It also explains why replay-
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ing without checkpointing (RepNoChk) already has significant overhead over

Rec.

8.3.2 Alarm Replay

Finally, Figure 8.5 compares the execution time of alarm replay (RepAlarm)

to previously shown environments: checkpointing replay (RepChk1) and record-

ing (Rec). The bars are normalized to Rec. Alarm replay needs to trap on

every call and return instruction. Hence, the slowdown of this mode directly

relates to how many kernel call and return instructions were executed. We

see that replaying make and mysql takes 30-40x longer than recording them.

For apache, it takes 50x. On the other hand, for radiosity, with its modest

kernel activity, it takes 2.8x.
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CHAPTER 9

RELATED WORK

Hardware-Software Approach. Our approach shares similarities with

Raksha [63]. Raksha raises security exceptions on potential security viola-

tions. A software exception handler investigates the threat. Our approach of

replaying the execution upon threat identification is more powerful. This is

because an exception handler is limited to inspecting a single system state—

whereas replay can inspect the steps leading to the exception. If the excep-

tion occurs after the attack, our replay approach is better suited to assess

the damage of the attack.

Targeting the RAS for Security. The behavior of call and return in-

structions has been targeted in the past to secure against buffer overflow at-

tacks [25,26,37,64]. Tuck et al. [36] explored using hardware to encrypt vari-

ables used to modify control flow, a technique proposed by PointGuard [37].

The proposal is for programs to ensure that control flow modifying variables

are stored encrypted and decrypted prior to being used. Assuming the at-

tacker cannot discover the secret key, the attacker will not be able to redirect

control flow even if the attacker can rewrite a control-flow variable. These

techniques are starting to be used today [35] in protecting against code reuse

attacks. SmashGuard [25,26] proposed using secured RASes that are backed

by memory which require non-trivial hardware changes.

Record and Deterministic Replay (RnR) for Security. The closest

previous work to ours is Aftersight [51]. It suggests using VM-level RnR to

perform online dynamic analysis of a system’s execution. Although it lays out

the general direction for VM-level RnR for online analysis, Aftersight does

not address some important aspects of such a model. For example, unlike our

proposal, Aftersight assumes that the replay analysis is constantly running

and is able to catch up with (or only modestly slow down) the recording;

otherwise, it loses precision and might introduce false positives. This is not

a reasonable assumption in case of heavy-weight analysis such as our ROP
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detection algorithm. In contrast, RnR-ROPSafe advances the state of the art

by proposing a holistic architecture that captures many practical aspects of

RnR-based online security analysis. These key practical aspects are: (1) Co-

designed hardware-software mechanisms (e.g., the RAS extensions) to achieve

reasonable overhead while keeping hardware changes simple; (2) separate

checkpointing and alarm replayers; and (3) need-based triggering of analysis

replays (as opposed to constantly-running analysis).

38



CHAPTER 10

CONCLUSIONS

In this thesis we propose a departure from the traditional approach to build-

ing defenses against malware. The traditional approach is to monitor and/or

enforce the security properties inline with the execution. Complex security

properties such as control-flow or data-flow integrity require monitoring and

tracking common events—like memory access or branches. The price of in-

strumenting programs with the code to perform these checks and make these

measurements is too high. As such, modern systems do not preserve these

properties, despite their need to prevent modern malware. Our approach de-

couples the security checks from program and system execution via Record

and Replay. There are additional benefits, which we have only alluded to in

this thesis.

First, since replays can be instrumented, the system gains the ability to

introspect prior executions. This can be used to assess damage from prior

intrusions or to discover new intrusions in cases where new malware is dis-

covered. One way this can be used is to verify the veracity of potentially

misplaced security alarms. Previously, it was unacceptable for a security

alarm to be incorrect, as it implied an innocuous program was halted. Being

perfect for all executions requires a detector just as accurate in its assess-

ment of corner case executions as it is for common case ones; otherwise, the

attacker will either escape detection by exploiting the detector’s gap in cov-

erage or turn the detector against the very system it protects by exploiting

its inaccuracy. Unfortunately, being correct for all executions is expensive as

corner cases are often pathological in nature. Thus, verifying security alarms

after the fact with RnR is a welcome flexibility that allows the detector to

narrow its focus on the common case executions.

Our approach allowed simple, non-intrusive, and inexpensive techniques

to be used to protect systems. RnR was utilized to filter false-positives and

compensate for detector shortcomings. With the RAS-based ROP detector,

39



the rare cases were highly nested codes which caused RAS underflow events.

Replay was used to reconstruct these relevant events and analyze them—in

a way which the detector could not—to corroborate or refute the alarms.

Thus, we were able to use the RAS—despite its imprecision—and RnR to

detect ROP attacks without significant overheads. Future work can explore

the additional detectors and additional attack surfaces.
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