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ABSTRACT 
 
Outlier detection has relevance in many modern day contexts, including health care, engineering, 

data processing and analysis, credit card fraud, monitoring computer and internet intrusions and 

wearable personal health sensors.  Outlier detection once represented a single pre-processing step, 

completed prior to the analysis of data proper.  Today it has importance in all stages of the data 

analysis pipeline, from initial processing to defining data points of interest, such as when a sensor 

detects an anomaly.  Moreover, as data sets have grown to encompass millions and billions of 

observations and variables, it is imperative to have outlier detection methods capable of effectively 

and automatically winnowing through large amounts of data with few or no inputs from a data 

analyst.  Many existing outlier detection methods are constrained in certain ways which might 

limit their utility and efficacy.  For instance, it is not uncommon for outlier detection methods to 

require some knowledge about the data under study or require the analyst to specify information 

about the number of outliers in the data.  Another possible constraint of many outlier detection 

methods is the use of the raw data.  Sometimes outliers can readily be detected in the raw data; but 

sometimes not, in which case one can achieve greater sensitivity and accuracy from features 

derived from data.  This study uses feature extraction on multivariate time series data and 

demonstrates the efficacy of a set of features and their potential for aggregation through the use of 

Voronoi diagrams.  Voronoi diagrams are constructed from the data to create tessellations which 

satisfy certain geometric properties.  The covariance based outlier detection is proposed and 

demonstrated to addresses both of these challenges. It utilizes covariance information in the data 

and its efficacy lies in its ability to take a set of features constructed from the data and determine 

which feature is best at detecting outliers.  The method is shown to work effectively on time series 

data; but it is general and can be applied or extended to other types of data objects and data sets.   
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1. Introduction 
Chapter 1 provides an introduction to outliers.  Section 1.1 introduces outliers by way of some 

prominent outlier definitions and then proceeding to consider different lenses through which one 

might view outliers, including statistical and machine learning approaches.  Section 1.2 provides 

a more formal introduction to understanding outliers, including some standard outlier models, 

important terminology and a case study.   

1.1 Outlier definitions 
Outliers seem easy to understand.  But they are challenging to define rigorously.  For instance: 

 

a) …an outlier being an observation which is suspected to be partially or wholly irrelevant 

because it is not generated by the stochastic model assumed (Box & Tiao, 1968). 

 

b) An outlying observation, or outlier, is one that appears to deviate markedly from other 

members of the sample in which it occurs (Grubbs, 1969). 

 

c) …any observation that has not been generated by the mechanism that generated the 

majority of observations in the data set (Freeman, 1980). 

 

d) An observation (or subset of observations) which appears to be inconsistent with the 

remainder of that set of data (Barnett & Lewis, 1994).  

 

e) …surprising veridical data, a point belonging to class A but actually situated inside class 

B so the true (veridical) classification of the point is surprising to the observer (John, 1995).  

 

f) …noise points lying outside a set of defined clusters which behave differently from the 

norm (Aggarwal & Yu, 2001).  

 

Regardless of the definition, outlier detection in data analysis has steadily grown from traditionally 

serving as the first step in a larger data processing workflow—removing outliers before fitting a 

model—to an end goal in its own right with enormous economic, personal and national security 
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consequences.  Consider the economic costs of detecting fraudulent credit card usage to determine 

anomalous purchases, for instance, or the national security implications in identifying hackers 

attempting to access a computer server.  Outlier detection plays a key role in many fields, and is 

growing in importance in many others.  These include loan application processing, intrusion 

detection, activity monitoring network performance, fault diagnosis, structural defect detection in 

manufacturing, satellite image analysis, novelties in images, motion segmentation (especially 

moving features that are independent of the background), time series monitoring, medical 

condition monitoring, pharmaceutical research, identification of mischievous responders in survey 

research, text or language novelty, detecting database anomalies, mislabeled data in training data 

sets and many others (Hodge & Austin, 2004).  Outliers can also arise from errors caused by 

humans, incorrect recording of data, instrument or sensors errors, natural variation, fraud and 

changes or faults in systems.   

 
Detecting outliers represents a complex interplay among several factors: 

a) How critical is the response time once an outlier has been identified? The consequences of 

identifying and finding a recording error from a consumer insights survey are much lower 

than anomalous readings for a sensor measuring vital indicators of a patient in a hospital.   

b) How accurate does the outlier detection algorithm need to be? Are false positives less 

desired or do false negative carry less weight? The consequences of being right in a life or 

death medical situation might require different outlier detection methods than a situation 

where the sensitivity or specificity is less critical.   

c) What financial costs are incurred if the outlier is not detected and dealt with properly and 

quickly? Failing to flag fraudulent credit card charges can lead to hundreds or thousands 

of dollars for an individual and can cost credit card companies billions of dollars over the 

course of a year.   

d) How complex is the outlier detection algorithm and how quickly can it yield results? An 

algorithm may have 100% accuracy detecting outliers but take months to produce the 

result.   

 

Each of these factors trade-off and interact.  In a financial setting, one can respond slower; but the 

need for accuracy is higher because of the financial cost of not detecting fraud.  But in a health 
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care environment, immediate detection may be required and that might mean an algorithm which 

is fast and perhaps yields a lower hit rate than an algorithm which takes weeks to yield a solution 

but is perfectly accurate. 

 

Classical approaches to outlier detection come from statistics; but more recently advances in 

computer science, machine learning and neural networks have made important contributions to 

key problems in outlier detection.  Statistical approaches, which have parametric, non-parametric 

or semi-parametric forms, leverage distributional assumptions and asymptotic properties to 

identify outliers.  Statisticians have also developed robust statistics, methods that yield reliable and 

accurate results in the presence of outliers.  If one has a good understanding of the distribution 

underlying their data, statistical approaches are excellent; but the classical approaches have 

shortcomings when this distributional information is unknown.  In these cases, machine learning 

approaches use information in the data to identify outliers.  But even these machine learning 

approaches to outlier detection have shortcomings because they usually require the user to specify 

values for key input parameters, parameters which usually depend on the structure of the data.  

Additionally, a certain amount of data is required for some of these approaches to work effectively. 

 

Hodge and Austin (2004) conceptualize three approaches for identifying outliers from a machine 

learning perspective.  The first approach finds outliers in the data but one does not know anything 

about the structure of the data, similar to an unsupervised learning framework.  Outlying points 

are more distant than the normal data and the algorithm identifies these points.  This way is 

necessarily static because it requires the full dataset.  The second approach is more akin to a 

supervised learning approach, requiring a priori knowledge of outliers.  Classifiers are good 

examples of this method.  In the third approach a classifier learns what is normal (from pre-labeled 

data) and then will label anything not normal as an outlier. 

 

The foregoing distinctions for outlier detection across disciplinary contributions are somewhat 

conceptual, as hybrid approaches that adopt strengths from these disciplines are gaining traction.  

For instance, statistical and machine learning communities make different assumptions regarding 

models and have operated mostly independently of each other (Breiman, 2001).  But in recent 

years, these communities have started to hybridize, leading to new insights and overcoming 
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problems that neither perspective alone could address.  In a similar way, the outlier detection 

methodology that follows is best construed as a hybrid between statistics and machine learning.   

1.2 An introduction to outliers 
Anomalous data can be classified as either an outlier or inlier.  The definition of outlier commonly 

used by researchers (Barnett & Lewis, 1994) states, “An outlier is a data value 𝑥𝑥𝑖𝑖 in a dataset 𝓓𝓓 

that is inconsistent with the nominal behavior exhibited by most of the data values in 𝓓𝓓.”  The 

underlying assumption to this definition is that most data points are homogeneous, in the sense of 

being generated from the same underlying process of interest to the observer.  In statistical 

parlance, this could mean a particular statistical distribution, such as the normal distribution.  When 

all observed data is generated from the same underlying process, outliers will typically arise from 

error measurements or due to chance.  But some of the observed data can be generated by a 

mechanism fundamentally different than that under consideration, such as a different statistical 

distribution.  Typically, the fraction of outliers is small (i.e. less than 1%) though it can be as large 

as 20%.    

 

Inliers are observations that fall within the range of nominal behavior of the entire data set but are 

not part of the data generating mechanism or are an error.  The error may result, for instance, from 

duplicate records, disguised missing data or file merge errors.  Or they could even be generated 

from another statistical distribution.  Detecting outliers is difficult enough.  Inliers are even tougher 

to diagnose.  One common manifestation of inliers is the frequent recurrence of a single data value 

in a dataset.  For instance, missing data might be coded as a 0 but, when a statistical analysis is 

performed, these 0-coded missing data points are included as part of the real data, thereby yielding 

misleading results.   

 

When anomalous data is suspected, a researcher needs to first detect these anomalies.  Once 

detected, one might opt to remove, replace or set aside and analyze those data points separately.  

Alternatively, one could use robust statistical methods, which are more resistant to outliers.  

Irrespective of the strategy adopted, one must detect the presence of an outlier first. 

 

To better appreciate the importance of outlier detection, consider the influence of a single outlier 

in a dataset on the first 4 statistical moments—the mean, standard deviation, skew and kurtosis.  
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Estimators of these moments are incredibly sensitive to a single outlier, let alone multiple 

anomalous points.  To illustrate this suppose we generate 4 data sets from a normal distribution 

with 𝜇𝜇 = 0 and 𝜎𝜎 = 1.  Two of the data sets have 1,024 observations (large sample) and two have 

128 (small sample).  One data set each from the larger and smaller sample contained no outliers 

while the other larger and smaller sample had a single outlier, of magnitude 8, added to one 

observation.  The estimates of the first four moments of these four data sets are shown in Table 

1.1. 

 
Table 1.1 reveals at least two important facts.  First, sample size has an important influence on the 

measures of moments.  Moments computed from larger sample sizes are less sensitive to outliers; 

but bear in mind the relativity implicit with this simple example in Table 1.1.  If one had many 

outliers even in a large dataset, or a few outliers with large magnitudes, these could bias even large 

samples.  Second, the influence of the single outlier across the four moments is not equally 

distributed.  The mean and standard deviation of the small sample size with a single outlier are 

influenced much less than the skew and kurtosis.   

 

Masking is “the failure of an outlier detection rule to detect outliers in the presence of outliers 

themselves” (Pearson, 2011).  Figure 1.1, which has been reproduced from Pearson, illustrates 

masking with flow rate data from a physical system with a lower bound of 0.  The outlier detection 

rule implemented for the data in this figure is a simple but commonly used one:  flagging any 

observation beyond three standard deviations from the mean as an outlier.  This is sometimes 

called the 3 sigma rule.  Figure 1.1 has 3 horizontal lines with intercepts at -150, 315 and 780.  The 

horizontal line with an intercept of 780 is three standard deviations above the mean and the 

horizontal line at -150 is three standard deviations below the mean.  The mean is the horizontal 

line with a y-intercept of 315.  The true outliers of the system are roughly between 0 and 200 

(which reflect system shut down processes) while normal system functioning is represented by all 

points above the mean (y=315).  Because the discrepancy between the true and outlying data points 

is so extreme, the mean is pulled in the direction of the anomalous values, yielding a standard 

deviation of greater than 150 and thus creating a very wide band of allowable values under the 

outlier detection rule of plus or minus three standard deviations from the mean.  None of the 
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outliers are correctly identified by this method.  This example illustrates the masking effect 

because the simple (and commonly used) method failed to detect the outliers.   

 
The swamping effect is the opposite of masking:  outliers present in the data cause data points that 

are not outliers to be misclassified as outliers.  Assume we have four sets of data with 100 

observations each from a Gaussian normal.  Outliers of magnitude 4, 8, 16 or 32 replace 

observations in the simulated data.  In the first data set, one outlier of magnitude 4 replaced one 

observation.  In the second data set, one outlier of magnitude 8 replaced one observation.  In the 

third data set, one outlier of magnitude 16 replaced one observation.  And in the fourth data set, 

one outlier of magnitude 32 replaced one observation. Then this process was repeated on four new 

sets of 100 observations, except this time 2 outliers at each of the four magnitudes (4, 8, 16 and 

32) replaced original observations.  Then the process was repeated for 4, 8, 9 and 10 outliers.  The 

number of outliers is called the contamination level, often expressed as a percentage.  For instance:  

when 10 outliers are present in a data set of 100 observations, the contamination level is 10%.   

 

How does the swamping effect manifest in this example? Consider the 4 data sets with a 1% 

contamination level (a single outlier).  When the magnitude of the outlier is 4, and assuming the 

simple 3-sigma rule, 3 observations are identified as outliers.  So even though only 1 observation 

is truly an outlier, two more observations were flagged as outliers but were not actually outliers.  

Still considering the 1% contamination level, only when the magnitude of the outlier is 16 or 32 

does the swamping effect go away.  With 2 or 4 outliers present, and when the magnitude is 8, 16 

or 32, the 3-sigma rule works perfectly.  But when the magnitude is 4, some observations are 

flagged as outliers that are not outliers.  Once the contamination level reaches 10%--a value often 

cited as conservative or typical of actual data—swamping no longer exists.  But masking rears its 

head again:  in this 10% contamination case, no outliers are identified, even though 10 out of the 

100 observations are outliers.   And this is true whether the magnitude of the outlier is 4, 8, 16 or 

32.  So, one key issue to develop an effective outlier detection method is balancing the competing 

effects between swamping and masking. 

 

One formal approach to modeling outliers uses mixture models.  A contaminated normal mixture 

model assumes most observations are well represented by an i.i.d. sequence of Gaussian random 
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variables with a mean and standard deviation; but some fraction of the observations 𝜀𝜀 are drawn 

from a different distribution.  Formally we can express the overall data distribution as  

 

𝑝𝑝(𝑥𝑥) = (1 − 𝜀𝜀)𝜙𝜙(𝜇𝜇,𝜎𝜎; 𝑥𝑥) + 𝜀𝜀𝜀𝜀(𝑥𝑥), (1.1) 

   

where 𝜙𝜙(𝜇𝜇,𝜎𝜎; 𝑥𝑥) denotes the density 𝑁𝑁(𝜇𝜇,𝜎𝜎2) and 𝜓𝜓(𝑥𝑥) represents the contaminating distribution. 

 
Technically any contaminating distribution can be used; but a popular outlier model assumes the 

contaminating distribution is identical to the data generating normal distribution, except the 

variance of the outlier model is greater than that of the data generating model.  A common way to 

express this type of contaminated normal models is  

 

𝐶𝐶𝐶𝐶(𝜇𝜇1, 𝜇𝜇2,𝜎𝜎1,𝜎𝜎2, 𝜀𝜀). (1.2) 

   

 

Equation 1.2 corresponds to the normal mixture density  

 

𝑝𝑝(𝑥𝑥) = (1 − 𝜀𝜀)𝜙𝜙(𝜇𝜇1,𝜎𝜎1;𝑥𝑥) + 𝜀𝜀𝜀𝜀(𝜇𝜇2,𝜎𝜎2; 𝑥𝑥). (1.3) 

   

There is also terminology commonly used to describe outliers.  The contamination level represents 

the percentage of outliers.  In a multivariable context, the contamination level could happen at the 

same observation for all variables.  Alternatively, there might be differential variable 

contamination where an outlier influences some variables, but not all, for a given observation.  

Outlier magnitude refers to the numerical magnitude of the outlier.  Depending on the outlier type, 

this has different interpretations.  But generally we can think of this as the value added (or 

subtracted, with negative-valued observation) for a given observation, yielding the outlier.  So, for 

instance, if a data generating process returns a true value of 2.356, but a sensor error records a 

value of 3.356, we would say the outlier has magnitude 1.  Additive outliers add some magnitude 

to an observation.  Correlation outliers manifest in multivariate settings where a correlation 

structure controls the behavior of outliers.   
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There are many excellent surveys published which provide more details of outlier detection 

algorithms, including Barnett and Lewis (1994).  Rousseeuw and Leroy (1987) describe and 

analyze a broad range of statistical outlier techniques.  Marsland (2001) analyzes a wide range of 

neural network methods while Hodge and Austin (2004) consider many popular machine learning 

techniques.   

 

The outline for the present work is as follows.  Chapter 2 reviews some outlier detection methods, 

establishes a simulation framework for generating data with outliers and provides the criteria for 

assessing the efficacy of an outlier detection method.  Chapter 3 presents the results from a simple 

outlier heuristic.  These results are reasonable, but not great, and this is the rationale for considering 

features in outlier detection:  can greater sensitivity be achieved with features? Chapter 3 also 

describes the construction of 13 features for outlier detection which are further tested.  Chapter 4 

develops a framework for testing features using a multivariate algorithm based on a 2-dimensional 

Voronoi diagram.   The results are presented for all pairs of the 13 features.  While the results of 

the Voronoi diagram represent an advance over simple heuristics, this method does not allow a 

user to screen candidate features and provide a clear way to assess the total number of outliers.  

Chapter 5 addresses this issue by proposing a general framework to test any set of candidate 

features to a) determine if those features are effective or not and b) use the deemed good candidates 

for outlier detection, including determining the number of outliers in the dataset.  Chapter 6 is the 

application of the outlier detection method.  And Chapter 7 is the conclusion and summary. 
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1.3 Figure and Table 
 
Table 1.1.  First four moments of four data scenarios with and without outliers. 
 

N Outlier Mean St. dev Skewness Kurtosis
1024 none -0.006 1.000 -0.002 0.553
1024 +8 0.002 1.032 0.454 3.894

128 none -0.075 0.875 -0.156 0.115
128 +8 -0.012 1.137 2.721 18.820  
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Figure 1.1.  Illustration of the masking effect on outliers. 
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2. Background, Data Model and Simulation 
Chapter 2 provides a more in-depth look at outliers and sets the stage for the simulation and 

modeling in chapters that follow.  Section 2.1 covers several established and popular outlier 

detection methods, including the 3-sigma rule, the Minimum Covariance Determinant, the Local 

Outlier Factor and a Voronoi diagram based approach.  These particular methods are covered in 

some detail because they provide a foundation on which later chapters will build.  Section 2.2 

describes the time series model used to generate the data for the simulations.  Section 2.3 provides 

details of the simulation which are common throughout this work.  And Section 2.4 discusses the 

criteria used for evaluation and validation. 

2.1 Literature review 
Many outlier detection algorithms rely upon a handful of common approaches.  These include 

statistical based, depth-based, deviation, distance-based, set-based, model-based, graph-based, 

density-based and high dimensional outlier detection (Kriegel et al., 2009).  Several popular 

approaches, which provide a foundation for the proposed outlier detection method, are reviewed 

first.  Additionally, several methods for detecting outliers in time series data are also reviewed.   

 

The first method is a heuristic that uses the number of standard deviations from the mean to set a 

threshold for outliers.  This heuristic is frequently employed when a researcher believes their data 

is specified by a symmetrical distribution (like the standard normal) and they want an easy and 

simple way to classify outliers.  Consider the standard normal distribution, with a mean of μ and 

standard deviation of σ.  The cumulative distribution function of the normal distribution specifies 

that 68% of observations fall within 1 standard deviation of the mean, 95% of the observations fall 

within 2 standard deviations of the mean, 99.7% of the observations fall within 3 standard 

deviations of the mean, etc.  An outlier rule based on the number of standard deviations from the 

mean is sometimes called a #-sigma rule, where ‘#’ is a place holder that represents the number of 

standard deviations from the mean.  Later on, the 3-sigma rule is explicitly tested and, for purposes 

of this paper, called the Simple Testing Method, or STM for short.  

 

The Multivariate Least Trimmed Squares (MLTS) algorithm (Rousseeuw et al., 2004; Croux & 

Joossens, 2008) is a statistical type of outlier detection method.  It is a statistical approach because 

it assumes the underlying probability distribution is symmetrical (i.e. multivariate normal) for the 
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data and also because it seeks to estimate the parameters of a regression model while handling 

outliers in the data.  It relies on the Minimum Covariance Determinant (MCD) that performs fast 

and efficient statistical outlier detection (Rousseeuw & Driessen, 1999; Hubert & Debruyne, 

2010).  MCD iteratively samples a subset of h observations (out of n) and attempts to find the 

subset whose covariance matrix has the lowest determinant.  This subset is then retained as outlier 

free and used to estimate parameters for the regression model.  Further technical details of this 

algorithm are provided in Chapter 3.  This method requires the data follows a symmetrical 

distribution.  It determines outlying points by comparing a score assigned to each observation to a 

chi-square distribution, again with the underlying assumption that outliers for this type of data 

should follow a chi-square distribution.  Nearly all outlier detection algorithms require the data 

analyst to specify values for one or more input parameters and the MLTS is no exception.  The 

MLTS algorithm requires specification of the contamination level of the data set under analysis.  

If one works with data where this information is known and consistent this is not problematic; but 

there are many instances of data analysis where one cannot be sure outliers are even present and 

these cases present challenges for the MLTS algorithm.   

 

Another approach to outlier detection is called the Local Outlier Factor, or LOF (Breunig et al., 

2000).  Many outlier detection algorithms (like the MLTS) use a binary classification to determine 

outliers; but the LOF assigns a numeric value to each observation, with larger values indicating 

the observation is more likely to be an outlier.  The ‘L’ in LOF stands for local, in that the degree 

of localness depends on how isolated the observation is with respect to the surrounding 

neighborhood of observations.  As with the MLTS method discussed previously, the algorithm 

requires a user input parameter—the number of local neighbors to include. 

 

LOF builds on distribution-based, depth-based and distance-based approaches.  In a distribution-

based approach a standard distribution is sought that best fits the data.  Outliers are defined relative 

to this probability distribution.  One could use a discordancy test, for instance.  However, most of 

these tests are for univariate distributions only.  In a depth-based approach, each data object is 

represented as a point in a k-dimensional space and assigned a depth.  Outliers have smaller depths.  

Distance-based outlier algorithms consider the distances between all data points and flags as 

outliers those which exceed a user defined distance.   
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For global outliers (observations outlying relative to the entire data set) distribution-, depth- and 

distance-based approaches work well.  But outliers might have a more complex structure.  For 

instance, an observation can be outlying relative to a local neighborhood, particularly with respect 

to the density of its neighborhood.  These are called ‘local’ outliers, which are problematic for 

approaches that identify global outliers.  

 

For the data in Figure 2.1, the LOF computes the distance between all points within cluster 𝐶𝐶2.  

Because all of these points are close together, this creates a local density, resulting in small 

distances with similar magnitudes.  But the distance from all points in 𝐶𝐶2 to 𝑜𝑜1 and 𝑜𝑜2 is large.  

Moreover, and more importantly from the point of view of the LOF, 𝑜𝑜1and 𝑜𝑜2 are the only points 

with these large distances.  A cluster of points does not exist around these two points so the local 

density is non-existent.  So the key to detecting outliers in the LOF framework is the distance 

between points, conditioned on the information in the surrounding neighborhood.  A purely 

distance based outlier metric would classify all points in 𝐶𝐶1 as outliers, in addition to 𝑜𝑜1 and 𝑜𝑜2.  

The LOF is better than a distance based metric for outlier detection in this case.  The value returned 

from the LOF algorithm depends on how closely the data points are packed in the local 

neighborhood.  And this neighborhood is defined by the distance to the minimum points (MinPts) 

nearest neighbor, where MinPts is the minimum number of points of the nearest neighbors.   

 

An alternative, but related, method is the Voronoi neighbor outlier factor (VNOF) which uses 

geometric principles to define the neighborhood (Qu, 2008).  Instead of a fixed parameter 

determined by the user, VNOF uses the Voronoi nearest neighbor geometry information to 

calculate the outlier factor for each data point.  VNOF is non-parametric, a definite advantage for 

users of an outlier detection algorithm who have little understanding of reasonable choices of 

parameter values in parametric methods.  The VNOF algorithm is also computationally efficient. 

 

Let 𝑉𝑉(𝑝𝑝𝑖𝑖) denote a Voronoi cell.  Assume we have a set S of n points, 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛, in a plane.  

Then a Voronoi diagram (Preparata & Shamos, 1985), Vor(S), is a subdivision of the plane into 

Voronoi cells, with the latter being defined as the set of points q that are closer or as close to 𝑝𝑝𝑖𝑖 

than to any other point in S.  Formally we can express this as 
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𝑉𝑉(𝑝𝑝𝑖𝑖) = �𝑞𝑞|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑖𝑖, 𝑞𝑞) ≤ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑝𝑝𝑗𝑗 , 𝑞𝑞�,∀ 𝑗𝑗 ≠ 𝑖𝑖�, (2.1) 

 

where dist is the Euclidean distance function.  Figure 2.2 is an example of a Voronoi diagram 

where the plane is decomposed into n=6 convex polygonal regions, one for each 𝑝𝑝𝑖𝑖.  Vertices are 

called Voronoi vertices and Voronoi edges are defined as the boundaries between two Voronoi 

cells.  The boundaries of a Voronoi cell 𝑉𝑉(𝑝𝑝𝑖𝑖) cannot exceed n-1 edges.  Three theorems (see 

Preparata & Shamos, 1985) are also needed to apply Voronoi diagrams to outlier detection.   

 

Theorem 1:  Every nearest neighbor of 𝑝𝑝𝑖𝑖 defines an edge of the Voronoi polygon 𝑉𝑉(𝑝𝑝𝑖𝑖). 

Theorem 2:  Every edge of the Voronoi polygon 𝑉𝑉(𝑝𝑝𝑖𝑖) defines a nearest neighbor of 𝑝𝑝𝑖𝑖. 

Theorem 3:  For 𝑛𝑛 ≥ 3, a Voronoi diagram on n points has at most 2n-5 vertices and 3n-6 edges. 

 

Assume we have a data set S.  For a point 𝑝𝑝𝑖𝑖 ∈ 𝑆𝑆 each edge of the Voronoi polygon 𝑉𝑉(𝑝𝑝𝑖𝑖) defines 

a nearest neighbor 𝑝𝑝𝑖𝑖.  The numbers of nearest neighbor vary for different points, some have more 

and some have less.  Once the polygons are formed, a periphery of the immediate neighborhood 

is created.  The Voronoi neighborhood is now defined more precisely.  

 

Voronoi nearest neighbor.  For a point 𝑝𝑝𝑖𝑖 of set S, the nearest neighbors of 𝑝𝑝𝑖𝑖 defined by the 

Voronoi polygon 𝑉𝑉(𝑝𝑝𝑖𝑖) are the Voronoi nearest neighbor of 𝑝𝑝𝑖𝑖, denoted as 𝑉𝑉𝑁𝑁𝑁𝑁(𝑝𝑝𝑖𝑖).  In the figure 

above, the nearest Voronoi neighbors to point 𝑝𝑝1 are 𝑝𝑝2,𝑝𝑝3,𝑝𝑝4, 𝑝𝑝5 and 𝑝𝑝6. 

 

Voronoi reachability density.  The Voronoi reachability distance of point 𝑝𝑝𝑖𝑖 is defined as 

 

𝑉𝑉𝑅𝑅𝑅𝑅(𝑝𝑝𝑖𝑖) =
1

∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑖𝑖, 𝑜𝑜)
|𝑉𝑉𝑁𝑁𝑁𝑁(𝑝𝑝𝑖𝑖)|𝑂𝑂∈𝑉𝑉𝑁𝑁𝑁𝑁(𝑝𝑝𝑖𝑖)

, (2.2) 

   

 

where |𝑉𝑉𝑁𝑁𝑁𝑁(𝑝𝑝𝑖𝑖)| is the number of points in 𝑉𝑉𝑁𝑁𝑁𝑁(𝑝𝑝𝑖𝑖).  This means that the reachability distance is 

an inverse average of the distance determined by the Voronoi nearest neighbors of 𝑝𝑝𝑖𝑖. 
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Voronoi neighbor outlier factor.  The Voronoi neighbor outlier factor of 𝑝𝑝𝑖𝑖 is defined as 

 

𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝𝑖𝑖) =
1

|𝑉𝑉𝑁𝑁𝑁𝑁(𝑝𝑝𝑖𝑖)| �
𝑉𝑉𝑅𝑅𝑅𝑅(𝑜𝑜)
𝑉𝑉𝑅𝑅𝑅𝑅(𝑝𝑝𝑖𝑖)𝑂𝑂∈𝑉𝑉𝑁𝑁𝑁𝑁(𝑝𝑝𝑖𝑖)

. (2.3) 

  

This means the Voronoi neighbor outlier factor of 𝑝𝑝𝑖𝑖 is the average of the ratio of the local Voronoi 

density of 𝑝𝑝𝑖𝑖 and those of 𝑝𝑝𝑖𝑖’s Voronoi nearest neighbors. 

 

The formal definitions given in Qu (2008) are implemented algorithmically as follows: 

Input:  Data set S. 

Step 1.  Construct a Voronoi diagram of S. 

Step 2.  For each 𝑝𝑝𝑖𝑖 ∈ 𝑆𝑆, compute the Voronoi reachability density, 𝑉𝑉𝑅𝑅𝑅𝑅(𝑝𝑝𝑖𝑖). 

Step 3.  For each 𝑝𝑝𝑖𝑖 ∈ 𝑆𝑆, compute the Voronoi neighbor outlier factor, 𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝𝑖𝑖). 

Step 4.  Sort the data in descending order by 𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝𝑖𝑖). 

Output:  Outlier factor of the points in S. 

 

Now we consider some algorithms which have been developed to work optimally on time series 

data.  One method requires fitting an auto-regressive time series model to the data first and 

subsequently identifies outlying points using residuals and the hat matrix (Hau & Tong, 1989).  

Burridge and Taylor (2006) developed an outlier detection algorithm for additive outliers using 

extreme-value theory.  Extreme value theory is a branch of statistics that considers events which 

show extreme deviation from the median of a probability distribution.  It makes sense to consider 

outliers from this perspective, as researchers sometimes conceptualize outlying observations as 

extreme points that happen less frequently.   

 

Other time series algorithms for identifying outliers include those that leverage the stationarity, or 

lack thereof, of the time series.  For instance, Choy (2001) developed a method for identifying 

outliers in stationary time series by iteratively estimating a model, detecting outliers and removing 

outlying points.  Other algorithms rely on violations in stationarity, such as the algorithm that 

identifies outliers in autoregressive time series data relies using a change detection paradigm 
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(Gombay, 2007).  If the order of the model, the mean or variance changes significantly over time, 

this reflects a disturbance which can be identified using an efficient score vector.  Another outlier 

detection paradigm leverages the local violations of stationarity in the time series to determine the 

presence of outliers (Last & Shumway, 2008). 

 

A final important class of outlier detection algorithms for time series data concerns those which 

require automatic or online detection, which not only have the function of identifying an outlier in 

the present moment but also facilitate the prediction of future states and/or allow an analyst to take 

immediate action based on outliers.  One such method uses the median from a neighborhood of 

data points in the time series and compares that value to a threshold, a method that is fast and 

works well for online or streaming data (Basu & Meckesheimer, 2007).  Time series forecasting 

also falls under this purview because, in a regression-based forecast model, outliers are identified 

based on their deviation from expected (or forecasted) values (Aggarwal, 2013).  But forecasting 

can also be the goal, where one would like to make optimal future predictions.  In order to do this 

accurately and effectively it is important that outliers are removed from the data or else the model 

fit will be incorrect, leading to biased predictions. 

 

This concludes the review of several key outlier detection algorithms which are representative of 

broader classes of outlier detection methods.  The MLTS is a statistical approach to outlier 

detection; but it requires the user to input the percent of outliers in the data.  It also makes 

assumptions about the distribution of the underlying data generating mechanism.  The LOF is a 

density-based outlier detection tool that requires the user to specify the number of MinPts and the 

algorithm is sensitive to this parameter.  Since LOF ranks points only considering the 

neighborhood density of the points (determined by the parameter MinPts) it may miss potential 

outliers whose densities are close to their neighbors.  The Voronoi diagram approach overcomes 

some shortcomings of the LOF algorithm, as it does not require the user to define the minimum 

number of points to define the neighborhood since those neighborhoods are created by Voronoi 

tessellations.  However, just as with LOF, the results are in the form of order statistics and one 

must still set a threshold to determine which observations are outliers.  The Voronoi diagram 

method reviewed here has only been developed for univariate data.  In general, there are not many 

outlier detection algorithms designed for multivariate data but the proposed outlier detection 



 

17 
 

 

method is designed for such case.  Both the LOF and VNOF represent a machine learning approach 

to outlier detection.  There are several outlier detection algorithms specifically designed for time 

series data and time series models (such as the AR model).  Moreover, some of these algorithms 

are effective at identifying outliers in real time. 

 

The foregoing review raises some important challenges in developing an effective outlier detection 

algorithm.  First, the user of the algorithm should not even need to assume that outliers are present 

and, even if they are present, have any foreknowledge of their structure in the data.  A robust and 

sensitive algorithm should have the capacity to determine the presence of outliers first and, if 

present, determine the number of outliers in the dataset without the analyst supplying an input 

parameter.  In cases where one is unsure if outliers are present, what good is an outlier detection 

algorithm that requires the user to provide information about outliers that may not exist? 

Additionally, a good outlier detection algorithm should flag outliers automatically, if they are 

present.  Before specifying the algorithm in more detail, it is necessary to describe the data 

simulation and evaluation methods. 

 

2.2 Time series model 
Let 𝑢𝑢𝑣𝑣  ∈  ℛ𝑚𝑚 be the realizations of a stationary time series.  If these realizations are generated 

from a multivariate auto-regressive (AR) model with order p, then define the auto-regressive 

model as 

 

𝒖𝒖𝑡𝑡 = 𝒘𝒘 + �𝑨𝑨𝑙𝑙𝒖𝒖𝑡𝑡−𝑙𝑙

𝑝𝑝

𝑙𝑙=1

+ 𝜺𝜺𝑡𝑡, (2.4) 

 

where 𝜺𝜺𝑡𝑡 is white noise (uncorrelated random variables with zero mean and finite variance), 𝑡𝑡 

designates the observation and 𝑙𝑙 specifies the lag.  The coefficient matrices of the AR(p) model 

are represented by 𝐴𝐴1,   .  .  .  ,𝐴𝐴𝑝𝑝  ∈  ℛ𝑚𝑚 × 𝑚𝑚 and  𝒘𝒘 ∈  ℛ𝑚𝑚 is an intercept vector which allows the 

time series to have a nonzero mean (Lutkepohl, 2005). The AR coefficients used in the simulation 

studies of this thesis are provided in Table 2.1.  This is like a multiple regression but with lagged 
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values of 𝒖𝒖𝑡𝑡 as predictors.  At each lag, each time series has 3 predictors because there are 3 

variables in the system.   

 

The outlier model builds upon Equation 2.4 and is specified in Equation 2.5 as 

 

𝒛𝒛𝑡𝑡 = 𝒖𝒖𝑡𝑡 ± �𝐼𝐼𝑡𝑡𝒙𝒙
𝑛𝑛

𝑣𝑣=1

. (2.5) 

 

In Equation 2.5, 𝒛𝒛𝑡𝑡 is the observed time series value, 𝒖𝒖𝑡𝑡 are the realizations from the AR model in 

equation 2.1, 𝐼𝐼 is an indicator variable which takes the value of 1 if an outlier is added to that time 

point and 0 otherwise and 𝒙𝒙 is the magnitude of the outlier added to the time series.   

2.3 Simulation setup and data generation  
For each simulation experiment conducted, 100 multiple time series observations were generated 

from a Vector AR(2) model, which generalizes the univariate AR(2) model as defined in Equation 

2.4. The simulations were implemented in Matlab, using published Matlab code to generate the 

AR realizations (Schneider, 2001).  In all simulation studies, an uncorrelated variance/covariance 

error term was specified so as to have data generated from a model with all variables having 

variance 1 and covariance 0.  The number of variables for all simulations was 3. 

 

Outliers were always additive, meaning they were introduced after the time series was generated 

and that the magnitude of the outlier was added to the simulated observation value.  However, 

because the underlying data generation process was Gaussian normal, negative observations could 

occur as frequently as positive observations.  So for observations with a negative value the outlier 

was subtracted.  Additive outliers were always introduced for the same observation for all variables 

in the time series.  Table 2.2 shows an example of 5 time series observations as generated by 

Equation 2.4 and then, for observation 3, with an additive outlier of magnitude 3. 

 
For all simulation studies, 15 unique additive outlier conditions were examined.  5, 10 or 15 

outliers were introduced.  These are the contamination levels.  Each contamination level has 

outliers of magnitude 1, 2, 3, 4 or 5.  Fully crossing three contamination levels with five 

magnitudes yields 15 outlier conditions.  These were chosen partly based on prior literature 



 

19 
 

 

reviews; but also to demonstrate the strength of an outlier detection method.  Because the data 

were generated from a Gaussian standard normal (where we expect values greater than 

approximately 3 very infrequent), a magnitude of 4 or 5 is quite extreme and even weak outlier 

detection methods can do well in these conditions, especially when the contamination level of the 

time series is high.  But a more critical test of an outlier detection algorithm is made at magnitudes 

of 1 or 2 (and small contamination levels) because, in these cases, it is often times difficult to 

separate the underlying signal from noise.  A time series observation with a small initial magnitude, 

say 1.2, that has an additive outlier magnitude of 1 added to it results in an observation of 2.2, 

which is well within the bounds of where approximately 99% of observations generated under a 

normal Gaussian distribution are expected to fall within three standard deviations of the mean.  

Hence, observed values between -3 and 3, if they have an additive outlier added to them, are 

challenging to separate from expected observations.  These are examples of inliers, as they lie 

within the normal range of the rest of the data.   

 

For each of the 15 conditions 25 different time series with 100 observations were generated.  

Multiple time series within the same condition were generated to average out the random 

fluctuations expected in simulation studies and provide a more stable estimation of the outlier 

detection technique.  Within a condition, only the specified contamination level and outlier 

magnitude were used.  The observations selected for the introduction of additive outliers were 

randomly determined.  And across each of the 25 different time series generated for each condition, 

the observations (i.e. rows) selected were always randomly selected.  

 

Analyses were conducted and results were obtained on multivariate time series data in a 

multivariate and a univariate fashion.  For the multivariate approach, all variables were analyzed 

together.  In a univariate approach, the same multivariate data were used; but each variable was 

analyzed separately, as though it was independent.  This was done because many outlier detection 

methods are specified for univariate and it was important to see the change in performance and 

outcomes that come from a univariate versus a multivariate analysis.  Moreover, there are some 

researchers who advocate for the use of univariate analyses, even if multivariate approaches are 

available.   



 

20 
 

 

2.4 Validation criteria 
Outlier detection efficacy was assessed with True and False Positive Rates (TPR and FPR, 

respectively), as defined in Table 2.3.  To compute the true and false positive rates for the first set 

of simulation studies a sliding threshold was employed.  The TPR and FPR were calculated 

assuming there was only a single outlier in the dataset.  Then they were computed assuming there 

were two outliers in the dataset.  This process was repeated up to 20 outliers.  For each outlier 

detection method this resulted in 20 TPRs and FPRs, one for each threshold between 1 and 20.  

For outlier detection, this approach makes sense because, in data practice, one often does not know 

a priori the outlier contamination level of the dataset.  Then, depending on the contamination level 

for the given condition (either 5, 10 or 15 outliers in a time series with 100 observations), a subset 

of TPRs were averaged.  If there were 5 outliers in the condition, then the TPR was computed by 

averaging the TPR for the 5 thresholds from 1 to 5; if there were 10 outliers the 5 TPR thresholds 

from 6 to 10 were averaged; and if there were 15 outliers the thresholds from 11 to 15 were 

averaged.  Other averaging possibilities also make sense, such as averaging across both sides of 

the contamination level.  But irrespective of the averaging approach used, the ordinal results were 

always consistent within an averaging scheme and, moreover, were close to the result at 5, 10 or 

15 outliers.  Averaging was used to produce a result not influenced by statistical fluctuations across 

the multiple simulations.  Another possibility that does not rely on a moving threshold is to use a 

threshold based on a statistical distribution.  Observations beyond that threshold are considered 

outliers.  Some existing outlier detection methods leverage such a threshold.  Thresholding based 

on a statistical distribution makes some sense, as it gives a user of an outlier detection technique a 

different way to decide if observations are outliers or not.  But at the same time, the statistical 

distribution may or may not fit the data and/or outliers of the particular data application so, while 

it could facilitate ease of use, this might also lead to biased results.  

 

A TPR for an outlier detection algorithm is only effective if one knows the location of outliers 

ahead of time.  One of the key aims of this thesis is to develop an outlier detection algorithm that 

does not require this knowledge (nor a parameter which relates to this knowledge).  Hence, the 

proposed method can identify outliers without using a true positive rate and will be useful and 

effective in applied research; but even to demonstrate that the method is valid, TPR and FPR are 

still used.  
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The final chapter presents an application of the proposed method for forecasting time series with 

outliers.  To evaluate the efficacy of the method, the mean square error (MSE) is also used.  The 

mean square error is the sum of the squared deviations between the true values and biased values.  

The MSE provides a sense of how far away the statistical estimate is from the true value, with 

values of 0 meaning the estimate is very accurate.   

2.5 Summary 
This chapter introduced in some detail several outlier detection algorithms.  Each represented a 

different class of outlier detection methods.  For instance, the Minimum Covariance 

Determinant/Multivariate Least Trimmed Squares is representative of a statistical approach to 

outlier detection.  One goal for introducing outlier detection methods form different backgrounds 

is to show the diversity of approaches to outliers.  But this diversity also quickly reveals a 

fundamental challenge underlying many existing outlier techniques, irrespective of the 

disciplinary grounding from which they come:  that users are almost always required to provide 

some prior information about their data and/or outliers in order to effectively apply the algorithm.  

This assumption works fine if this information is known beforehand, as it might for instance in a 

quality control setting for an industrial factory process.  Or in some cases, such as when base rates 

are known, specifying the number of outliers in advance might be possible.  But many times a 

researcher may not have prior expectations and these necessary constraints and assumptions that 

are required to use the methods could induce artifacts in the data, especially if the assumptions are 

not true.  So an important goal going forward is to leverage the strengths and outlier detection 

ability of established methods but to try and find a way to use those methods, or pieces of them, 

by peeling away the prior assumptions and constraints.  To this end, feature construction is 

proposed in Chapter 3 as a way to meet these goals.   
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2.6 Figures and Tables 
 

 
Figure 2.1.  Two data clusters (𝐶𝐶1 and 𝐶𝐶2) with two outliers (𝑜𝑜1 and 𝑜𝑜2).  
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Figure 2.2.  A Voronoi diagram with 6 cells. 
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Table 2.1.  AR(2) coefficients for time series model used to generate simulation data.  The 
eigenvalues of the coefficients are all less than 1, indicating the system is stable and stationary 
(Johnston & DiNardo, 2001; Glaister 1991). 
 

 Lag 1 Lag 2 
Variable 1 0.0 0.1 0.2 0.0 0.3 0.0 
Variable 2 0.0 0.4 0.2 0.4 0.0 0.1 
Variable 3 0.1 0.0 0.0 0.3 0.4 0.0 
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Table 2.2.  Example time series with and without outliers. Row 3 is bolded because, in the 
‘Additive Outlier’ columns, an outlier of magnitude 3 has been added or subtracted (if the 
observation was negative) to the observations in the corresponding ‘No Outliers’ columns. 
 

Observation  No Outliers  Additive Outlier 
1  2.1 3.6 4.9  2.1 3.6 4.9 
2  -3.2 -.9 -1.2  -3.2 -.9 -1.2 
3  -1.2 .75 2.1  -4.2 3.75 5.1 
4  -.5 -1.9 -.03  -.5 -1.9 -.03 
5  1.7 3.0 .25  1.7 3.0 .25 
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Table 2.3.  Definition of True and False Positive Rate (TPR and FPR, respectively).  The 
Definitions in the right column of the table are based on the cells on the left side of the table.  TP 
means True Positive; FP means False Positive; FN means False Negative; and TN means True 
Negative.   

 

 
 

 
 

Outlier in data? 
(Gold Standard) 

 Definitions 
True Positive Rate 

TP / (TP + FN) Yes No 

Detected 
Outlier? 

Yes TP FP False Positive Rate 
FP / (FP +TN) No FN TN 
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3. Feature Extraction 
Chapter 3 provides the first set of simulation studies.  Section 3.1 considers a very simple, but 

commonly used, outlier heuristic.  Despite its popularity by researchers, the simulation shows it 

limitations.  Sections 3.2 through 3.5 contain principles of feature construction, a technical review 

of an existing outlier detection algorithm (which is used as a feature in the current study) and an 

overview of all the features used.  Section 3.6 tests via simulation all the features.  We will see that 

many of the features are much better at detecting outliers than the Simple Testing Method heuristic.  

This will also set up an important question by the end of this chapter:  how can one determine 

which feature will yield the best outlier detection results?  

3.1 Simple Testing Method 
Researchers often employ simple outlier detection heuristics.  While they are easy to implement 

and understand, they also have shortcomings.  Perhaps the simplest approach to outlier detection 

is a visual inspection of the plotted data.  With visual inspections, a rule of thumb for outlier 

identification is adopted, such as identifying points far from the others or identifying points that 

lay beyond some threshold.  However, what is ‘far’ and how to determine the threshold is mostly 

arbitrary and varies from one researcher to another and one research context to the next, not exactly 

a solid basis for reproducible and accurate research.   

 

Figure 3.1 is a simple univariate plot of 100 observations of time series data generated from a 

Normal distribution with a mean of 0 and a standard deviation of 1 (~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜇𝜇 = 0,𝜎𝜎2 = 1)). 

The x-axis is time while the y-axis represents the observed values at each time point.  The red 

horizontal lines (intercept 3 and -3) are arbitrary reference lines that one might use to adjudicate 

outliers from non-outliers.  This approach is not without foundation because if one reasonably 

expects their data to follow a standard normal distribution, approximately 99% of all observations 

should take values between (-3, 3).  This rule is sometimes called the 3-sigma rule.  If we adopt 

the heuristic that observations taking values larger than 3 or less than -3 are outliers for Figure 3.1, 

then 4 observations are labeled outliers. 

 
One criticism of a heuristic like the 3-sigma rule is that there is no guarantee the points beyond -3 

or 3 are in fact outliers.  For standard normally distributed data, we expect some observations to 

take values more extreme than 3 or -3.  Additionally, some observations which fall within the 
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range of most data (between 3 and -3) can still be an outlier.   As we shall soon see, a very important 

diagnostic criterion for comparing outlier detection methods is their performance when outlier 

magnitudes are small and within the range of the ‘normal’ data.  These are examples of so-called 

inliers. 

 

Multivariate data also presents problems for a heuristic like the 3-sigma rule.  Figure 3.2 is a 

multivariate time series plot with three variables.  As with Figure 3.1, assume the 3-sigma outlier 

detection rule and call observations outliers if their magnitudes are beyond -3 or 3.  The 

observation at time point 78 (which is labeled ‘outlier’ in Figure 3.2) is clearly classified as an 

outlier because its magnitude is less than -3.  But this multivariate data set has three variables (each 

represented by a different colored line in Figure 3.2) which could co-vary because they are related 

to the same behavior.  At the very least, they are linked by virtue of being measured at the same 

point in time.  If we classify the observation measured at time point 78 for the blue line as an 

outlier, should the other two observations at time point 78—represented by the orange and yellow 

lines—also be labeled as outliers, even though they take values between -3 and 3? One possibility 

is that only the observation at time point 78 represented by the blue line is an outlier.  Another 

possibility is that all three variables measured at time point 78 are outliers because an 

environmental variable influenced the outcome of these variables and made them more extreme 

than they otherwise would have been, such as 3 different sensors subjected to the same sudden 

movement.  If one only identified outliers based on a plot with a 3-sigma rule, it would be 

challenging to adjudicate outliers in multivariate datasets where some observations for some 

variables exceed the outlier threshold while other observations at the same time point for other 

variables do not exceed the threshold.   

 

Figure 3.3 and Table 3.1 present the results from the Simple Testing Method based on 3 standard 

deviations from the mean using a simulation study.    25 sets of 3 variable multivariate time series 

with 100 observations each were generated at random from a standard normal distribution with a 

mean of 0 and standard deviation of 1 for each of the 15 outlier conditions (5, 10 or 15 outliers at 

each of 5 magnitudes of outliers—1, 2, 3, 4 or 5).  The TPR, as defined in Chapter 2, was calculated 

for each univariate time series and these were averaged together across variables to obtain a single 

TPR for each multivariate data set.  Figure 3.2 shows a plot of one of these time series.  The TPR 
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for the Simple Testing Method for each of these 15 outlier conditions is plotted in Figure 3.3 and 

the numerical values underlying this figure are in Table 3.1. 

 

An outlier magnitude of 1 yields the lowest TPR for all three contamination levels and the value 

is relatively similar:  .31 for 5 outliers, .28 for 10 outliers and .33 for 15 outliers.  The best TPR is 

.82 for 5 outliers of magnitude 3 and the worst TPR is for outlier magnitude 1 with 10 outliers.  

The average TPR across all 15 outlier conditions is .60.  One important trend that emerges from 

Figure 3.3 is a larger TPR with larger outlier magnitudes.  Specifically, we see that for magnitudes 

3, 4 and 5, the 3-sigma rule has nearly identical performance.  This makes sense for this rule 

because it is only flagging values that are more extreme than 3 standard deviations from the mean 

as outliers.  Outliers of magnitude 3 (or more) added to the original observations make those 

observations more extreme than the plus or minus 3 cutoffs for outliers.  So it matters little how 

much larger than 3 the magnitude of the outlier is for the 3-sigma rule.  Overall, the Simple Testing 

Method with a cutoff of 3 standard deviations from the mean as a cutoff method gives some 

accurate information; but given the mediocre TPR results, there is much room for improvement.  

Feature construction is proposed to improve these true positive rates. 

3.2 Feature construction 
Features are numerical vectors which represent some object.  Feature construction (Liu & Motoda, 

2012) is the process or method by which one defines a new feature from the original object for 

better or more desirable next stage data analysis. It is commonly employed in pattern recognition, 

social networks and machine learning.   

 

Define a data structure 𝒟𝒟 as a 𝑛𝑛 ×  𝑝𝑝 matrix where 𝑛𝑛 represents observations and is equivalent to 

the number of rows in 𝒟𝒟.  𝑝𝑝 is the number of response variables and is equivalent to the number 

of columns in 𝒟𝒟.  Since all-time series data used for the simulation studies that follow contained 

100 observations and 5 variables, we can set 𝑛𝑛 = 100 and 𝑝𝑝 = 5.  13 unique features were 

constructed and the details of these features are presented in the next section.  All 13 features are 

𝑛𝑛 × 1, which means they have the same number of observations as the underlying data object.  

But the number of variables has been compressed from 5 in the original data to 1 in the feature 

vector. 
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The 13 features are representative of the types of features one could construct; but otherwise there 

is nothing special about these particular features.  Some are based on a regression model while 

some are model free.  Some are based on statistics while others are based on a to-be described 

leave one out covariance algorithm. Table 3.2 overviews these features.    

 

9 of the 13 features implement a so-called ‘leave one out’ method, which algorithmically is the 

same as the jackknife (Quenouille, 1949; Quenouille, 1956; Tukey, 1958; Efron & Stein, 1981), 

though the typical goal of the jackknife procedure is the estimation of variance and bias.  Whereas 

here we are only concerned with the computation of a feature.  Denote the number of observations 

in a time series as 𝑖𝑖 = 1, … , 𝑛𝑛.  The first observation is removed from the time series, which now 

has length 𝑛𝑛 − 1, and a statistic is computed on this remaining set of 𝑛𝑛 − 1 observations.  The first 

observation is then returned and the second observation is removed and the statistic is computed 

again on this new set of 𝑛𝑛 − 1 observations.  This sequence of removing and replacing each of the 

𝑖𝑖 observations in order is repeated 𝑛𝑛 times, cycling through the total set of observations exactly 

once.  The particular statistical operation required for the feature is computed 𝑛𝑛 times for each 

feature.  F2, F11, F12 and F13 do not require the leave one out method. 

 

This ‘leave one out’ method, while algorithmically equivalent to the jackknife, is perhaps more 

similar in its goal to computing Cook’s distance (or other influence measures) in ordinary least 

squares.  Cook’s distance assesses the influence of a single observation by determining the 

difference between the statistic (usually the residual in the classic Cook’s distance measure) on an 

entire data set when the observation is included as compared to when it is removed.  Each data 

point is then assigned an index, with larger values reflecting more influential points (possibly 

outliers) which might affect the regression models in unintended ways.  

 

Several of the features require the computation of the determinant of the covariance matrix based 

on data while another subset of features require the computation of the determinant of the 

covariance matrix after a model has been fit.  This determinant is known as Generalized Sample 

Variance (Wilks, 1932) and is a 1-dimensional scalar measure of multivariate scatter (Johnson & 

Wichern, 2007).   
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Before the features are presented, the Minimum Covariance Determinant (MCD) and Multivariate 

Least Trimmed Squares (MLTS) methods are reviewed because three of the features depend on 

these. 

 

3.3 MCD and MLTS 
The Multivariate Least Trimmed Squares (MLTS) (Rousseeuw, 2004) is a robust approach for 

estimating the vector autoregressive model while handling outliers in the data. It relies on a popular 

statistical procedure, called the Minimum Covariance Determinant (MCD) that performs fast and 

efficient statistical outlier detection (Rousseeuw, 1999; Hubert, 2010).  MCD finds h observations 

(out of n) whose covariance matrix has the smallest determinant.  Incidentally, this process 

embodies the same algorithmic underpinning as D-optimality experimental design (Fedorov, 

1972) in that both the MCD procedure and D-optimality seek to optimize the determinant of the 

covariance matrix.  MCD seeks the smallest determinant whereas D-optimality desires the largest 

determinant.  MCD and D-optimality also differ in their aims, where the former uses the minimum 

determinant to identify a set of observations that are outlier free whereas the latter aims to define 

the parameter values that will yield the most optimal experimental design.  Geometrically, since 

the determinant is inversely related to the volume of an ellipsoid, MCD aims to find the ellipsoid 

with the smallest volume, as points that are outlying or extreme, when they are included in the set 

of observations used to compute the determinant; however, D-optimality will have the effect of 

making the volume of this ellipsoid large. 

 

Assume we have a data set with p variables with i = 1…n observations. Take a subset of these n 

observations, h, where h is chosen by the user and constrained by [(n+p+1)/2] ≤ h ≤ n.  The MCD 

algorithm selects a subset of randomly selected observations of size h, computes the mean T1, the 

variance/covariance matrix S1 and then determines the statistical distance d for each data point xi in 

n according to 

𝑑𝑑(𝑖𝑖) = �(𝒙𝒙𝑖𝑖 − 𝑻𝑻1)𝑡𝑡𝑺𝑺1−1(𝒙𝒙𝑖𝑖 − 𝑻𝑻1). (3.1) 
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The obtained distances from (3.1) are next sorted from smallest to largest, and the h smallest are 

retained as h2.  A new mean T2 and variance/covariance matrix S2 are computed from h2.  The 

relationship in Equation 3.2 between the determinant (det) of the two variance/covariance matrices 

S1 and S2 is defined by 

 

det(𝑺𝑺𝟐𝟐) ≤  det(𝑺𝑺𝟏𝟏) . (3.2) 

  

These steps are repeated 500 times (when n is less than 500), where a different subset h is chosen 

for each iteration.  The subset yielding the smallest overall determinant is then used for further 

statistical analysis.   

 

The MCD framework has been extended to a regression framework for time series data (Croux & 

Joossens, 2008), which is called the multivariate least trimmed squares, or MLTS.  The MLTS 

algorithm leverages the residuals from least squares regression. Then, instead of determining the 

h from the raw data as in the MCD, MLTS selects the h observations with the smallest determinant 

of the covariance matrix of the residuals. So in the MLTS the joint variability (of the predictor and 

response variables) is modeled by using residuals. Also, the MLTS returns a binary output vector 

where a 0 indicates the observation is an outlier.   

 

Define h as the size of the subset.  Let ℋ denote the superset of all samples H of size h in time 

series data 𝒁𝒁 = {(𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡), 𝑡𝑡 = 𝑘𝑘 + 1, …𝑇𝑇} where 𝑘𝑘 is the AR model order, 𝑥𝑥𝑡𝑡 is the predictor and 

𝑦𝑦𝑡𝑡 is the response.  For any 𝐻𝐻 ∈ ℋ, define the classical least squares regression fit for the estimates 

of beta and the covariance matrix of the error as 

 

𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂(𝐻𝐻) = (𝑋𝑋𝐻𝐻′ 𝑋𝑋𝐻𝐻)′𝑋𝑋𝐻𝐻′ 𝑌𝑌𝐻𝐻 (3.3) 

      

and  
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Σ�𝑂𝑂𝑂𝑂𝑂𝑂(𝐻𝐻) =
1

ℎ − 𝑝𝑝
�𝑌𝑌𝐻𝐻 − 𝑋𝑋𝐻𝐻𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂(𝐻𝐻)�

′

�𝑌𝑌𝐻𝐻 − 𝑋𝑋𝐻𝐻𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂(𝐻𝐻)� , (3.4) 

       

 

where 𝑝𝑝 is the number of variables.  Let 𝐻𝐻� be the subset of size h which has the smallest 

determinant of all iterations in the MCD framework after computing the covariance matrix of the 

least squares regression: 

 

𝐻𝐻� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐻𝐻 ∈ ℋ  𝑑𝑑𝑑𝑑𝑑𝑑 �Σ�𝑂𝑂𝑂𝑂𝑂𝑂(𝐻𝐻)� . (3.5) 

 

Then the MLTS estimators of beta and the covariance matrix of the error are 

 

𝛽̂𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍) = 𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂�𝐻𝐻�� (3.6) 

     

and 

 

Σ�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻) = 𝑐𝑐𝛼𝛼Σ�𝑂𝑂𝑂𝑂𝑂𝑂�𝐻𝐻��. (3.7) 

    

 

𝑐𝑐𝛼𝛼 is a correction factor to consistently estimate the variance/covariance error term of the model 

where 𝛼𝛼 is a user-defined trimming proportion, 𝛼𝛼 = 1 − ℎ
𝑛𝑛
, and 

 

𝑐𝑐𝛼𝛼 =
1 − 𝛼𝛼

𝐹𝐹𝜒𝜒𝑝𝑝+22 (𝑞𝑞𝛼𝛼) , (3.8) 

      

where p is the number of variables, 𝑞𝑞𝛼𝛼 = 𝜒𝜒𝑞𝑞,1−𝛼𝛼
2  is the 1 − 𝛼𝛼 quantile of a chi-square distribution 

with q degrees of freedom (where q=p*k + 1; k is the AR model order) and F is the CDF of this 

chi-square distribution.  Once the model parameters have been obtained, the residuals are 

computed.  The set of h sorted residuals which yield the smallest determinant of the covariance 

matrix (as in MCD) are considered outlier free. 
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The authors (Croux & Joossens, 2008) propose a reweighting to improve statistical efficiency and 

improve its performance in their simulation setup.  Here, the residuals are compared to 𝑞𝑞𝛿𝛿, which 

is the chi-square distribution 

 

𝑞𝑞𝛿𝛿 = 𝜒𝜒𝑞𝑞,1−𝛿𝛿
2 , (3.9) 

      

where 𝛿𝛿 is a user defined parameter.  If the residual is larger than this critical threshold, then that 

observation is flagged as an outlier (coded as a 1) and the result is a vector of 1’s and 0’s.      

3.4 Features 

Feature 1: MLTS-based covariance 
Feature 1 is identical to the non-weighted MLTS result except it implements the leave one out (or 

jackknife) algorithm.  So the MLTS is iterated n times, where n is the number of observations in 

the data.  The result is a vector of values representing the smallest determinant of the covariance 

of the residuals.  All else being equal, determinants of larger magnitude reflect the presence of an 

outlier.   

Feature 2: Reweighted MLTS 
Feature 2 is the reweighted result of the MLTS.  The output of this feature is a vector of binary 

outputs of 1’s and 0’s that codes observations as ‘good’ and outliers, respectively.  This feature 

requires setting two parameters, the subset of observations believed to be outliers (h) and the 

parameter 𝛿𝛿 used in the reweighting step for the chi-square distribution.  h was chosen to optimize 

the algorithm (i.e. to equal the exact number of outliers) so the reweighting could have a negative 

effect for this simulation by excluding observations which were already selected as outliers in the 

final subset h. 

Feature 3:  Determinant of covariance (model-based) 

On each iteration of leave one out, a vector AR(𝑝𝑝) model is fit and the estimate of the population 

error variance/covariance matrix is computed from the sum of squared residuals divided by the 

degrees of freedom.  Calculation of the residuals requires the estimates of the intercept and beta 

parameters.  The inverse determinant of this variance/covariance matrix is then taken,  
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1

det(𝑺𝑺) , (3.10) 

 

where the resulting scalar values with larger magnitude represent observations more likely to be 

outliers.  The denominator of this feature is the same as the product of the eigenvalues of this 

covariance matrix.     

Feature 4:  Trace of sigma (model-based) 
Using the same procedure as in Feature 3, the estimate of the population error variance/covariance 

matrix is computed.  The trace of this variance/covariance matrix is then taken, which is the sum 

of the values of the diagonal.  This is equivalent to the sum of the eigenvalues.  The inverse of the 

trace is taken, where the resulting scalar values with larger magnitude represent observations more 

likely to be outliers, defined as 
1

𝑡𝑡𝑡𝑡(𝑺𝑺) . (3.11) 

   

Feature 5:  Determinant of the correlation matrix (model-based) 
As in Feature 3 and Feature 4, the estimate of the population error variance/covariance matrix is 

first calculated. The correlation matrix is computed from the estimated variance/covariance matrix 

(this is equivalent to the product of the variance multiplied by the product of the eigenvalues). The 

inverse determinant is taken, where the resulting scalar values with larger magnitude represent 

observations more likely to be outliers, yielding the equation 

 
1

det(𝑹𝑹) . (3.12) 

   

Feature 6:  Product of variances (model-based) 
As in other model-based features (Feature 3 to Feature 5), the estimate of the population error 

variance/covariance matrix is computed.  The variances of this matrix, denoted by 𝜎𝜎𝑖𝑖 for 𝑖𝑖 =

1, … , 𝑝𝑝 comprise the diagonal.  The inverse of the product of these diagonals is taken for this 
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statistic, where the resulting scalar values with larger magnitude represent observations more likely 

to be outliers.  The result is defined as 
1

∏𝜎𝜎𝑖𝑖 
 𝑖𝑖 = 1, … ,𝑝𝑝. (3.13) 

   

Feature 7:  Determinant of covariance (model-free) 
Feature 7 is computed identically as in Feature 3 except with one difference:  no AR model is fit.  

This feature is model free, in that the inverse determinant of the covariance matrix is based 

exclusively on the raw data. The resulting scalar values with larger magnitude represent 

observations more likely to be outliers, defined as 

 
1

det(𝑺𝑺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) . (3.14) 

   

Feature 8:  Trace of sigma (model-free) 
Feature 8 is computed identically as in Feature 4 except the covariance matrix is computed from 

the raw data on each iteration of the leave one out algorithm.  The resulting scalar values with 

larger magnitude represent observations more likely to be outliers, defined as 

 
1

tr(𝑺𝑺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) . (3.15) 

   

Feature 9:  Determinant of the correlation matrix (model-free) 
Feature 9 is computed identically as in Feature 5 except the correlation matrix is computed from 

the raw data on each iteration of the leave one out algorithm.  The resulting scalar values with 

larger magnitude represent observations more likely to be outliers, defined as 

 
1

det(𝑹𝑹data) . (3.16) 
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Feature 10:  Product of variances (model-free) 
Feature 10 is computed identically as in Feature 6 except the covariance matrix is computed from 

the raw data on each iteration of the leave one out algorithm. The variances of Σ, denoted by 𝜎𝜎𝑖𝑖 for 

𝑖𝑖 = 1, … ,𝑝𝑝 comprise the diagonal.  The inverse of the product of these diagonals is taken for this 

statistic.  The resulting scalar values with larger magnitude represent observations more likely to 

be outliers, defined as 

 
1

∏𝜎𝜎𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
 𝑖𝑖 = 1, … ,𝑝𝑝. (3.17) 

   

Feature 11:  Sum of time series magnitude 
Take the absolute value of all time series points for each variable, which provides some 

information about the total magnitude each time series contributes.  These magnitudes are 

summed.  The resulting scalar values with larger magnitude represent observations more likely to 

be outliers:  Let 𝒚𝒚 denote a vector of time series variables of length n.  Then the sum of the absolute 

value of all the time series realizations across all variables for a single observation y is defined as 

 

�𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦𝑖𝑖) , 𝑖𝑖 = 1 … 𝑝𝑝. (3.18) 

   

Feature 12:  Sum of squared residuals 

After fitting a AR(𝑝𝑝) model, the residuals are obtained.  These are squared and then summed 

across all variables (in the multivariate case) for a given observation.  Larger summed residuals 

reflect a greater propensity to be an outlier.  Let 𝒓𝒓 denote a vector of residuals for all variables after 

fitting the model.  Then the residuals r for each observation with p variables are 

 

�𝑟𝑟𝑖𝑖2 , 𝑖𝑖 = 1, … , 𝑝𝑝. (3.19) 
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Feature 13:  Literature based Multivariate Least Trimmed Squares (MLTS) 
This is the exact result from the non-reweighted MLTS method in the literature (Croux & Joossens, 

2008).  It should be noted in the simulation studies that the subset of size h selected was designed 

to give the algorithm the best chance at succeeding, namely the exact number of outliers 

introduced.  Normally the true value of this parameter is not known and it is up to the analyst to 

choose this.  So a choice which is quite discrepant from the true number of outliers can lead to 

incorrect outlier identification.  The output is a feature vector of 1’s and 0’s, where a 1 is an outlier 

and this set of outliers is based on the subset chosen which yields the smallest determinant.   

 

One reasonable criticism is that the leave one out approach, when applied to a model fit to time 

series data, might disrupt the pattern of residuals and/or autocorrelation when the observation is 

removed.  However, the effect is inconsequential for two reasons.  First, disrupting the ordering of 

the time series is only done to identify the possible outliers.  Corrections of those outliers are done 

on the original, ordered time series data (which we will see in the next chapter).  Second, this 

disruption happens randomly, with a large number of iterations (500), thereby making this 

disruption something that is held equal.  The idea is to identify outliers or extreme points and, as 

we will soon see, in spite of the problem that might be introduced by un-ordering the time series, 

this technique is quite effective.  If a strong conclusion were being drawn based on the unordered 

series alone, that could be problematic.  But this is only an intermediate step towards the goal of 

outlier identification.  Finally, and if one felt this procedure of reordering the time series for some 

features was completely untenable, it should be borne in mind that the features developed in this 

study are not required to be used for outlier detection.  The broader goal is an algorithm that will 

winnow the best feature from a set of features.  As has been shown for some of the 13 features, the 

leave one out approach that disrupts the ordering of the time series is not necessary for feature 

construction.   

3.5 Feature evaluation studies 

These thirteen features were tested with two simulation studies.  These studies aim to demonstrate 

the efficacy of features in identifying outliers and to test if their TPR performance can exceed a 

raw data based approach such as the Simple Testing Method.  To avoid a proliferation of figures 

and tables if results were presented for each of 15 outlier conditions for each feature for each of 
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these studies, results are only presented for each feature averaged across all 15 conditions and for 

the maximum value obtained across any one of these 15 conditions.  The patterns in these summary 

level figures mimic the results for the individual outlier conditions, however.  (Chapter 2.4 details 

the evaluation criteria for these studies.) 

Multivariate Study (Study A) 
Study A presents results from all thirteen features.  Non-parametric features have two desirable 

properties over parametric features.  First, they require less knowledge and fewer working 

assumptions to implement.  Second, because a model is not fit, there is an increase in 

computational efficiency.  In outlier detection frameworks where speed is critical, these non-

parametric features offer definite advantages. For the results in Study A and Study B, the time 

series realizations were generated from a model with no covariance and unit variance in the error 

term (i.e. the variance/covariance matrix has 1’s on the diagonal and 0’s on the off-diagonal).  This 

simulation study is considered multivariate because the feature was obtained by operating on all 

variables together.    

 

Figure 3.4 shows the TPR averaged across all 15 conditions for each of the 13 features.  Features 

7, 8, 9 and 10 are the non-parametric analog of Features 3, 4, 5 and 6.  Based on the TPR, the non-

parametric features are as effective (or more) at identifying outliers, as compared to the parametric 

features.  Most features have TPR’s at .9, though a few features like 2, 5 and 9, do much worse.  

Figure 3.5 shows the outlier condition on the x-axis (see Table 3.3 for a mapping of these labels 

to the particular outlier condition on the x-axis) and the maximum TPR achieved for any of the 

features.  This demonstrates the best that one might be able to achieve with this set of features.  

Outlier conditions 1, 6 and 11 show the worst TPR and these correspond with outlier magnitudes 

of 1, irrespective of the number of outliers.  As the outlier magnitude increases, the TPR also 

increases.  This illustrates how inliers—points within the range of the data—can be difficult to 

detect.  Table 3.4 presents all results from which Figure 3.5 was derived.  Rows in that table 

represent outlier conditions (per Table 3.3) while columns are feature labels.  The cells contain the 

maximum TPR for a given outlier condition and features.   
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Overall, Feature 11 dominates, with the maximum TPR for almost all outlier conditions.  But there 

are a lot of other features—especially for outlier magnitudes of 3, 4 and 5—which also achieve a 

TPR of 1.0.  And even for smaller magnitudes, Feature 11 is only better by one or two hundredths 

of a percentage point.  So the take home message is that many features do well—and a few like 

Feature 2 perform quite poorly—but the outlier condition has an important impact in determining 

how well a feature can ultimately detect outliers.   

Univariate Study (Study B) 
The results in Figures 3.6 and 3.7 are the univariate analog of the multivariate results in Figures 

3.4 and 3.5.  This means the TPR rate for each feature was computed on each time series 

individually.  Then, to get an overall TPR, the univariate TPRs were averaged into a single TPR.  

The univariate results show the same pattern as the multivariate result in that non-parametric 

features (see the TPR of features 7 through 10 in Figure 3.6) yield nearly identical results as the 

parametric features (see the TPR of features 3 through 6 in Figure 3.6).  One important difference 

between the multivariate and univariate results can be seen in the magnitudes of the TPRs for 

Figure 3.6 as compared to Figure 3.4.  The former is on average about .10 TPR points above the 

TPR for the latter; but aside from the magnitude difference, the patterns across features in the two 

figures are consistent.  One plausible suggestion for the differential performance lies in how the 

features aggregate information across the variables and how this is advantageous for the 

multivariate method.  For these simulation studies the outliers appear at the same observation for 

all variables.  In some cases, those outlier magnitudes are more correctly classified as inliers and, 

as a result, the univariate method has more trouble picking these points out.   

 

But the multivariate method is stronger here because it can leverage information across the 

variables for a given observation to ‘decide’ if the data has been contaminated by an outlier.  Figure 

3.7 is the univariate analog of Figure 3.5 and we see in the former a similar pattern as we do in the 

latter, but with lower magnitudes.  Outlier conditions with outliers of magnitude one have the 

lowest TPRs and, as the magnitude increases, the TPRs increase to the maximum of 1.  But an 

important difference between Figure 3.5 and Figure 3.7 can be seen in a more gradual ‘stair 

stepping’ up to the maximum for the univariate case (Figure 3.7) whereas the rise is much steeper 

and the leveling off at 1 occurs sooner for the multivariate case (Figure 3.5).  For instance, 
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comparing outlier conditions 1 through 5 (5 outliers of magnitude 1, 2, 3, 4 and 5) for the univariate 

and multivariate analysis, we see values of 0.29, 0.64, 0.92, 1.00 and 1.00 for outlier conditions 1, 

2, 3, 4 and 5 for the univariate analysis but see values of 0.58, 0.95, 1.00, 1.00 and 1.00 for the 

multivariate analysis.  Clearly, the information from all variables gives the multivariate analysis a 

boost.  The full set of TPR values underlying Figure 3.7 are in Table 3.5. 

3.6 Summary 
At the beginning of Chapter 3, the efficacy of the Simple Testing Method (which classifies outliers 

based on the number of standard deviations from the mean) was evaluated.  It performed 

respectably, but also left a lot to be desired, as it never achieved close to a TPR of 1.0.  Features, 

which were built from some principles of existing outlier detection methods, were constructed and 

tested in simulation studies to see if TPRs greater than those obtained by the Simple Testing 

Method could be achieved.  Section 3.3 showed that, indeed, many features achieved TPRs much 

greater than the Simple Testing Method, providing evidence that features might provide a 

reasonable path forward for outlier detection.  Another insight from this chapter is that multivariate 

approaches have larger TPRs than univariate approaches.  For the particular type of outliers 

introduced—outliers contaminate all variables at the same observation—this makes sense because 

the multivariate approach can leverage information across the variables to more effectively 

identify outliers, even in the presence of inliers.  Univariate approaches do not benefit from looking 

at other variables and, especially for inliers, can yield misleading results. 

 

Within the multivariate and univariate results, we see that some features do extremely well while 

others have very poor performance.  Poor performing features include F2, F5 and F9.  F2 probably 

fails because it identifies a further subset (of the h observations) which is outlier free.  In the 

simulation studies, h was set to the contamination level so it is quite expected that performance 

would be optimal.  The reweighting step for F2 requires comparing the results to a chi-square 

distribution with a critical value determined by a user specified parameter.  The results here are 

for a single value of this parameter, which resulted in a smaller set of outliers being identified than 

the original h, thus leading to a decrement in performance.  One may choose to use different values 

of this parameter and it could lead to better performance.  F5 and F9 are identical in that they 

represent the determinant of the correlation matrix.  In results not included in this thesis, results 

were obtained for features by first standardizing the variables and this yielded very poor 
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performance for all features.  The reasoning is that the standardization procedure removes the 

variance, which is critical for these features to work effectively.  Correlation matrices are 

standardized versions of the variance/covariance matrix so, from this perspective, it is perhaps not 

surprising they fail. 

 

However, at this juncture and given the evidence of this chapter, it is evident that not all features 

are equal.  Some are better than others and it seems those that do better effectively leverage 

information in the covariance matrix.  More importantly, how can one winnow a set of features to 

find those that are best or most able to predict outliers in their data set? In the current chapter we 

could leverage prior knowledge of the dataset---the so-called ground truth—to assess the efficacy 

of the features.  But if progress is to be made on the larger goal—namely that of developing a 

general outlier detection algorithm which does not require prior assumptions of the data or 

outliers—then it will be necessary to develop a method capable of teasing out the effective features 

from those that are ineffective at identifying outliers.  Before addressing that larger goal, Chapter 

4 continues the work of Chapter 3 by continuing the feature construction and evaluation process; 

but Chapter 4 also extends this work by suggesting a framework that might help select features 

that are better at outlier detection. 
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3.7 Figures and Tables 

 
Figure 3.1.  Univariate time series with 4 outliers, as defined by a simple heuristic.  The x-axis is 
time and the y-axis is the magnitude of the observation.  The red horizontal lines with intercepts 
at -3 and 3 represent three standard deviations from the mean.  Points beyond these red lines are 
labeled ‘outliers’ under the 3-sigma outlier detection algorithm (also called the Simple Testing 
Method in Chapter 3). 
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Figure 3.2.  Multivariate time series plot with one outlier when adopting the 3-sigma outlier 
detection rule.  The point labeled ‘outlier’ for the blue line exceeds the -3 threshold and is identified 
as an outlier by the 3-sigma rule.  The points for the red and yellow lines at the same observation 
are labeled ‘??’ in this figure because the 3-sigma outlier rule would not identify these observations 
as outliers.  But if this time series data were generated from 3 sensors measuring the same behavior, 
for instance, and a disturbance impacted all 3 sensors, then technically all three variables at 
observation 78 should be classified as outliers.    
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Figure 3.3.  TPR for each of 15 outlier conditions from the Simple Testing Method.  Red lines 
represent an average across 25 simulated time series for each of 15 outlier conditions.  x-axis is 
the magnitude of the outlier introduced and they y-axis is the contamination level, 5, 10 or 15 
outliers. 
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Table 3.1.  TPR for each of 15 outlier conditions from the Simple Testing Method.  Rows of the 
table represent outlier magnitudes (1, 2, 3, 4 or 5) and columns represent contamination levels (5, 
10 or 15). 
 

True Positive Rates Contamination 
5 10 15 

M
ag

ni
tu

de
 

1 3 sigma 0.31 0.28 0.33 
2 3 sigma 0.47 0.46 0.54 
3 3 sigma 0.82 0.66 0.57 
4 3 sigma 0.68 0.65 0.61 
5 3 sigma 0.73 0.67 0.60 
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Table 3.2.  Overview and labeling of 13 Features.  The number in the left column represents the 
feature label number. 
 

 Feature Description 

1 Multivariate Least Trimmed Squares 

2 Reweighted Multivariate Least Trimmed Squares 

3 Model based determinant of covariance matrix 

4 Model based trace of covariance matrix (i.e. sum of variances) 

5 Model based determinant of correlation matrix 

6 Model based product of variances 

7 Model free determinant of covariance matrix 

8 Model free trace of covariance matrix (i.e. sum of variances) 

9 Model free determinant of correlation matrix 

10 Model free product of variances 

11 Sum of absolute value of time series observations 

12 Model based sum of squared residuals 

13 
Literature based Multivariate Least Trimmed Squares  
(Agullo, et al. 2008; Croux & Joossens, 2008) 
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Figure 3.4.  Multivariate Study A results.  TPR averaged across 15 outlier conditions for 13 
features using a multivariate approach.  
 
 
 

 
Figure 3.5.  Multivariate Study A results.  Max TPR for any of 13 features for each outlier 
condition using a multivariate approach.  The x-axis represents the outlier condition in Table 3.3. 
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Table 3.3.  Labels of the 15 outlier conditions in Figures 3.5 and 3.7. 
 

 Outlier Description 

1 5 outliers, magnitude 1 

2 5 outliers, magnitude 2 

3 5 outliers, magnitude 3 

4 5 outliers, magnitude 4 

5 5 outliers, magnitude 5 

6 10 outliers, magnitude 1 

7 10 outliers, magnitude 2 

8 10 outliers, magnitude 3 

9 10 outliers, magnitude 4 

10 10 outliers, magnitude 5 

11 15 outliers, magnitude 1 

12 15 outliers, magnitude 2 

13 15 outliers, magnitude 3 

14 15 outliers, magnitude 4 

15 15 outliers, magnitude 5 
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Table 3.4.  Multivariate study A maximum TPRs (cell entries) for each outlier condition (rows, as 
defined in Table 3.3) and each feature (columns).  The maximum of each row is highlighted in 
bold and italicized.   
  
 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 
5-1 0.39 0.23 0.54 0.55 0.20 0.54 0.50 0.55 0.29 0.55 0.58 0.46 0.31 
5-2 0.87 0.40 0.94 0.95 0.46 0.94 0.91 0.91 0.62 0.91 0.95 0.91 0.78 
5-3 0.98 0.20 0.97 0.98 0.46 0.98 0.98 1.00 0.60 1.00 1.00 0.98 0.94 
5-4 0.99 0.19 0.99 0.99 0.54 0.99 1.00 1.00 0.68 1.00 1.00 0.99 0.97 
5-5 0.98 0.13 0.99 1.00 0.52 1.00 0.99 1.00 0.59 1.00 1.00 1.00 0.99 
10-1 0.52 0.31 0.58 0.61 0.30 0.60 0.55 0.53 0.42 0.53 0.59 0.50 0.27 
10-2 0.87 0.51 0.89 0.93 0.38 0.93 0.89 0.94 0.49 0.95 0.97 0.92 0.76 
10-3 0.97 0.29 0.97 0.99 0.43 0.99 0.97 0.99 0.49 0.99 1.00 0.98 0.93 
10-4 1.00 0.33 0.99 0.99 0.44 0.99 0.99 1.00 0.49 1.00 1.00 0.99 0.96 
10-5 1.00 0.16 1.00 1.00 0.47 1.00 1.00 1.00 0.53 1.00 1.00 1.00 0.99 
15-1 0.51 0.31 0.58 0.61 0.31 0.60 0.60 0.61 0.45 0.62 0.67 0.56 0.27 
15-2 0.87 0.43 0.88 0.91 0.37 0.91 0.91 0.93 0.47 0.94 0.95 0.90 0.72 
15-3 0.94 0.53 0.93 0.96 0.38 0.96 0.95 1.00 0.47 1.00 1.00 0.96 0.89 
15-4 0.99 0.30 0.99 1.00 0.51 1.00 0.99 1.00 0.57 1.00 1.00 1.00 0.97 
15-5 1.00 0.08 0.98 0.99 0.51 0.99 1.00 1.00 0.53 1.00 1.00 1.00 0.99 
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Figure 3.6.  Univariate Study B results.  TPR averaged across 15 outlier conditions for 13 features 
using a univariate approach.  
 
 

 
Figure 3.7.  Univariate Study B results.  Max TPR for any of 13 features for each outlier condition 
using a univariate approach.  The x-axis represents the outlier condition in Table 3.3. 
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Table 3.5.  Univariate study B maximum TPRs (cell entries) for each outlier condition (rows, as 
defined in Table 3.3) and each feature (columns).  The maximum for each row is highlighted in 
bold and italicized.   
 
 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 0.25 0.28 0.29 0.29 0.05 0.29 0.28 0.28 0.05 0.28 0.25 0.28 0.05 
2 0.50 0.39 0.64 0.64 0.06 0.64 0.61 0.61 0.06 0.61 0.60 0.63 0.26 
3 0.82 0.43 0.92 0.92 0.07 0.92 0.91 0.91 0.07 0.91 0.90 0.92 0.63 
4 0.95 0.19 0.98 0.98 0.02 0.98 0.99 0.99 0.02 0.99 1.00 0.99 0.93 
5 0.99 0.13 0.99 0.99 0.03 0.99 1.00 1.00 0.03 1.00 1.00 1.00 0.99 
6 0.33 0.29 0.36 0.36 0.07 0.36 0.34 0.34 0.07 0.34 0.34 0.35 0.06 
7 0.64 0.51 0.69 0.69 0.09 0.69 0.70 0.70 0.09 0.70 0.67 0.68 0.22 
8 0.84 0.57 0.90 0.90 0.11 0.90 0.91 0.91 0.11 0.91 0.92 0.91 0.47 
9 0.96 0.50 0.97 0.97 0.13 0.97 0.98 0.98 0.13 0.98 0.99 0.98 0.79 
10 1.00 0.20 0.99 0.99 0.11 0.99 1.00 1.00 0.11 1.00 1.00 1.00 0.96 
11 0.39 0.38 0.42 0.42 0.13 0.42 0.42 0.42 0.13 0.42 0.42 0.41 0.04 
12 0.69 0.56 0.72 0.72 0.19 0.72 0.73 0.73 0.19 0.73 0.71 0.71 0.15 
13 0.89 0.66 0.91 0.91 0.16 0.91 0.92 0.92 0.16 0.92 0.94 0.92 0.34 
14 0.98 0.65 0.98 0.98 0.16 0.98 0.98 0.98 0.16 0.98 0.99 0.99 0.72 
15 1.00 0.41 0.99 0.99 0.16 0.99 1.00 1.00 0.16 1.00 1.00 1.00 0.92 
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4. Voronoi Diagram Outlier Detection 
This chapter builds on the success of Chapter 3 by aggregating individual features.  In Section 4.1, 

Voronoi diagrams are considered.  Section 4.2 generalizes the work of Section 4.1.  These 

approaches are nonparametric, straightforward to implement and computationally efficient.  The 

goal is to test whether even greater TPRs can be achieved than with individual features, which 

themselves represented an important advance over the Simple Testing Method.   

4.1 Multivariate Voronoi Outlier Detection (MVOD) 

A Voronoi outlier detection algorithm was reviewed in Chapter 2; but this method was only 

designed for univariate time series.  The univariate method was extended to multivariate time 

series and generalized in recent work (Zwilling & Wang, 2014).  This extension is briefly 

reviewed here, with the results presented.   

 

The Multivariate Voronoi Outlier Detection (MVOD) method is based upon Voronoi nearest 

neighbors.  For a point pi of set S, the nearest neighbors of pi defined by the Voronoi polygon V(pi) 

are the Voronoi nearest neighbor of pi, denoted as VNN(pi).  In Figure 2.2 the nearest Voronoi 

neighbors to point p1 are p2, p3, p4, p5 and p6.  For each point in the data set, the MVOD uses the 

nearest neighbors to compute a Voronoi outlier index of how likely that point is an outlier. It is 

multivariate because it aggregates information across all individual time series, thus retaining 

features which might be common to the entire interlocking set of variables.  

 

The method is based upon the geometric principles of Voronoi diagrams for defining the 

neighborhood relationship of the data points and this facilitates the assignment of outliers and non-

outliers.  Construction of a two dimensional Voronoi diagram requires two coordinates for each 

data point; but Voronoi diagrams can have as many dimensions as desired.  The present work only 

considered 2-dimensional Voronoi spaces.  Figure 4.1 overviews the process used by Zwilling and 

Wang (2014). 

 

The 2-dimensional vector fed into the Voronoi diagram had 2 features.  The feature value for the 

x-coordinate in Figure 4.1 was the same as Feature 1.  The feature value for the y-coordinate in 

Figure 4.1 was computed by multiplying Feature 11 (sum of the absolute value of the time series) 
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and Feature 12 (the sum of the residuals after fitting a MVAR model) together, both of which were 

already described in Chapter 3.  These x- and y-coordinates were fed into a Voronoi diagram from 

which a Voronoi Outlier Index (VOInd) was computed for each time series observation.  The 

VOInd for point pi has as its numerator the sum of the Euclidean distance (dist) between each point 

and all its neighbors. This is divided by the denominator term which is the number of neighbors, 

yielding an average density 

 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝𝑖𝑖) =
∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑖𝑖, 𝑜𝑜)𝑂𝑂∈𝑉𝑉𝑁𝑁𝑁𝑁(𝑝𝑝𝑖𝑖)

|𝑉𝑉𝑁𝑁𝑁𝑁(𝑝𝑝𝑖𝑖)| . (4.1) 

   

Results of this method (Zwilling & Wang, 2014) are displayed in Figure 4.2 and Table 4.1.  These 

results compare the MVOD method with the popular MLTS method, showing a clear advantage 

of the MVOD method when the magnitude of outliers is small, which is the most difficult case to 

identify outliers.  For 5 outliers of magnitude 1, the MVOD has a TPR of 0.52 whereas the MLTS 

is 0.21.  For 5 outliers of magnitude 2, the MVOD has a TPR of 0.91 and the MLTS has a TPR of 

0.63.  The same pattern is true for 10 and 15 outliers with magnitudes 1 and 2.  The TPR of the 

two methods track similarly for magnitudes of 3, 4 and 5 for all outlier conditions.  

4.2 MVOD Extension  

The MVOD developed in Zwilling and Wang (2014) was applied to all features.  Since there are 

13 features, there are theoretically 78 (13 ∁ 2=78) unique feature pairs which can serve as input 

coordinates for the 2-dimensions Voronoi diagram.  Voronoi diagrams will not yield unique 

solutions under certain cases, such as when there are degenerate point sets—at least the algorithm 

implemented in Matlab.  In the features constructed for outlier detection, there were two features 

which yielded redundancy, preventing the algorithm from finding a unique solution for all points.  

Features 2 and 13 were dropped here, leaving 11 features.  A Voronoi Outlier Index was computed 

for these 55 pairs of input coordinates (11 ∁ 2=55).  The results from just these 55 pairings are 

discussed now.   

 

Figure 4.3 and Figure 4.4 contains the results from the feature pairs that were input as x- and y-

coordinates into the MVOD method.  Figure 4.3 presents the maximum TPR (for all 15 outlier 
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conditions) while Figure 4.4 presents the average TPR (across the 15 outlier conditions); the full 

set of tabled results from which these figures were created can be found in the Appendix (Table 

A.1).  In both figures there are several input coordinates which do quite poorly:  8-9, 8-10, 8-11, 

8-12, 9-10, 9-11, 9-12, 10-11, 10-12 and 11-12 all have TPRs less than 0.10, no matter whether 

considering the average or maximum.  But there are also features which have TPRs close to 1 (for 

the maximum) and values around 0.8 for the average.  Overall, especially in comparison to the 

results of the features by themselves, the Voronoi diagram results here may or may not offer many 

gains. However, the Voronoi diagram is capable of testing multidimensional spaces.  Additionally, 

the results of the features tested here might be different for other data sets.    

   

4.3 Summary  
At this point in analyzing the role of features in outlier detection, one could proceed laterally or 

vertically.  The lateral path means that one could search hundreds or thousands or millions or 

billions of individual features or pairs of features or triples and find the best one at predicting 

outliers.  The vertical approach would say, of features that have been defined, can we theoretically 

motivate why that feature does well and why it might be the best universal outlier algorithm? 

 

An honest reading of the literature will reveal that outlier detection research has yielded a multitude 

of unique methods that work better (or worse) depending on the data situation.  Given this reality, 

it is probably unlikely that one could identify a single best outlier detection rule, even if that was 

the goal.  So perhaps a smarter approach is to develop a method that screens a candidate set of 

features and finds the best feature that is most optimized for identifying outliers for the particular 

data set at hand.  Ideally, this procedure can be applied to many other novel situations and is not 

constrained to special properties of the data.  This is the approach that is developed in the next 

chapter.   
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4.4 Figures and Table 
 

 
Figure 4.1.  Flowchart of information processing steps for 2-dimensional Voronoi outlier detection. 
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Figure 4.2.  True positive rate (TPR, y-axis) for MVOD and MLTS for 5 outliers (top panel), 10 
outliers (middle panel) and 15 outliers (bottom panel) with outlier magnitudes of 1, 2, 3, 4, or 5 
(x-axis). 
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Table 4.1.  True and false positive rates for the MVOD and MLTS methods with 5, 10 or 15 outliers 
of magnitude 1, 2, 3, 4 or 5. 

 
 True Positive Rate False Positive Rate 

Number of Outliers  
5 10  15  5    10  15  

M
ag

ni
tu

de
 

1 
MVOD 0.52 0.52 0.54 0.037 0.065 0.094 
MLTS 0.21 0.37 0.32 0.012 0.028 0.047 

2 
MVOD 0.91 0.79 0.78 0.025 0.041 0.056 
MLTS 0.63 0.61 0.73 0.002 0.012 0.011 

3 
MVOD 0.96 0.83 0.86 0.023 0.037 0.045 
MLTS 0.93 0.78 0.80 0.004 0.006 0.005 

4 
MVOD 0.96 0.86 0.88 0.023 0.034 0.042 
MLTS 0.97 0.87 0.85 0.002 0.002 0.003 

5 
MVOD 0.96 0.86 0.90 0.023 0.034 0.039 
MLTS 0.96 0.90 0.87 0.002 0.002 0.002 
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Figure 4.3.  Maximum TPR (of any of 15 outlier conditions) of all 2-dimensional input coordinates 
to Voronoi diagram.  y-axis is accuracy and x-axis is the label of features, where the number 
preceding the dash is the first feature and the number after the dash is the second feature.  
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Figure 4.4. Average TPR (across all 15 outlier conditions) of all 2-dimensional input coordinates 
to Voronoi diagram.  y-axis is accuracy and x-axis is the label of features, where the number 
preceding the dash is the first feature and the number after the dash is the second feature. 
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5. Covariance Based Outlier Detection 
  

In searching for outliers in real datasets, one rarely has the luxury of knowing which observations 

are outliers and which are not.  Indeed, if this information is known, then using an outlier detection 

algorithm becomes superfluous.  Hence, using a simulation approach and looking at the TPR is 

good in a simulation setting; but this has very limited practical utility.  One shortcoming addressed 

in the literature review of this thesis, and a criticism leveled against many existing outlier detection 

methods, is that most outlier detection algorithms require users to input a parameter value that 

reflects their belief about the number and/or nature of the outliers in the data.  But this logic is 

circular:  if one knew about the outliers in their data, why use an outlier detection algorithm? 

Granted, there are cases where on might have good guesses about the number of outliers in their 

data.  But even in those cases, one is not precluded from using this method.  It provides a basis for 

comparing the algorithm results to the actual results. But, as a further qualification, even if one 

knows the number of outliers, they still may not know their location so an algorithm like this could 

still be of utility. 

 

This chapter presents a covariance based outlier detection algorithm that selects from a candidate 

set of feature vectors those that are best at identifying outliers.  While this chapter only considers 

the 13 features introduced in Chapter 3, there are no restrictions on the number of features that can 

be tested.  An important challenge for an algorithm operating on a set of features is for it to winnow 

the effective features from the ineffective features.  The algorithm leverages covariance 

information from the feature vectors to identify those that are best at outlier identification.  

Covariance matrices communicate variability and outliers show different patterns of variability 

than the normal data.  So when this variability is examined over a time stream, it is possible to 

identify which observations are signal and which are noise.  The work in this chapter demonstrates 

a method that accomplishes this challenging but important goal (Zwilling and Wang, 2014, 2015). 

5.1 Algorithm description 

The covariance based outlier detection algorithm, diagrammatically shown in Figure 5.1, 

generalizes and extends the multivariate Voronoi outlier detection approach (Zwilling & Wang, 
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2014 and Chapter 4 of this work) through a powerful feature selection procedure.  Each of these 

steps is now discussed in more detail. 

Step 1 — Feature extraction: Features have the capacity to be more informative than the data 

itself (Liu & Motoda, 2013).  Without loss of generality, suppose the original data are multivariate 

time series with n observations and p columns of variables.  Univariate feature vectors of length n 

can be computed using the multivariate data.   

 

The 13 feature vectors are reviewed again in Table 5.1.  Features 3, 4, 5 and 6 require first fitting 

a parametric autoregressive (AR) time series model whereas Features 7, 8, 9 and 10 are the model 

free analogues that operate just on the raw data.  Features 11 and 12 are closely related to the time 

series data.  Features 1, 2 and 13 are binary indicator vectors derived based on the Multivariate 

Least Trimmed Squares estimator (Agullo et al., 2008), an important classical statistical method 

for outlier detection.  All features except F11, F12, and F13 implement a leave one out, or 

jackknife, approach.  For a given feature, its statistic is first computed on all data except the first 

observation.  The first observation is added back, the second observation is removed and the 

statistic is computed again.  This process is repeated for all observations, yielding a n x 1 vector 

for each feature.  If an observation is influential (i.e. outlier), removing it will lead to a less extreme 

feature value than leaving the observation in the data. At each time point, the features are calculated 

based on the descriptions in Chapter 3.  

 

Step 2 — Order statistics computation: For each feature vector, order statistics are computed.  The 

sorting operation happens on the feature vector, so the maximum value is listed first and the 

minimum value is last.  The observations corresponding to each feature value are shuffled 

according to the order statistics of the feature value.  Once the order statistics are computed for all 

feature vectors, the order sorted feature vectors now encode outlier predictions.  The largest feature 

value is most likely to be an outlier.  Two features can theoretically have different statistical or 

mathematical underpinnings but could still make identical predictions.  These features are 

redundant.  Steps 3, 4 and 5 proceed iteratively. 

 

Step 3 — Fixing outliers in order:  For a given feature vector, the observation under consideration 

that is predicted to be an outlier is corrected by interpolating with the adjacent observations in the 
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un-sorted data.  Interpolation is not the only or required procedure for fixing the outlier.  One could 

use multiple imputation, for instance, and treat it as missing data.  Or there are many Bayesian 

algorithms which would allow one to generate a distribution of what the values should look like.  

These, and other approaches, would be equally acceptable for this step. 

 

Step 4 — Log ratio of covariance determinants:  After the predicted outlier has been corrected 

through interpolation, the determinant of the covariance matrix of the data is computed.  A 

determinant can be geometrically interpreted as a volume, where a larger relative volume reflects 

data with more extreme values.  A log of the ratio between the current determinant of the 

covariance matrix and the determinant of the covariance matrix from the 1-step back interpolation 

is computed.  The determinant of the covariance matrix at each step of iteration, and across all 

iterations, will obtain values unique to the data set at hand.  For instance, a time series with outliers 

of larger magnitudes will initially have a determinant of the covariance matrix that is larger than 

the same time series with outliers that are smaller in magnitude.  Similarly, even in the case where 

no outliers are present, different sequences of time series will yield determinants of the covariance 

matrix with different values.  So relying on the value alone of individual determinant of a 

covariance matrix will not prove general enough for an outlier detection algorithm that can adapt 

to the data at hand.  What is required is a measure which does not depend on the dataset at hand, 

or the number and size of outliers.  The log ratio of two consecutive determinants of the covariance 

matrices is a measure that does not depend on the data and it measures the rate of change.  If this 

ratio is unchanging (up to some small tolerance), this suggests no further outliers are present.  But 

as long as the ratio is decreasing, this suggests the feature is identifying outliers.   

 

Step 5 — Convergence check:  After each interpolation, and computing the log ratio of the 

covariance determinant described in Step 4, convergence is checked. If the log ratio of the 

determinant approaches 0 with some small tolerance like .05, the feature has identified all of its 

predicted outliers.  If the log ratio of the determinant is not close to within a tolerance close to 0, 

then the algorithm repeats steps 3, 4 and 5.  The number of iterations to reach convergence 

(excluding the current iteration) determines the number of outliers predicted by that feature.  
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Step 6 — Outlier detection with feature selection:  Steps one through five are applied to each 

feature individually.  One will typically have a set of features for detecting outliers and so it will 

be necessary to identify the best feature(s).  The plot of the determinant of the covariance for each 

feature provides visual and analytical evidence towards this goal when compared on the same data 

Step 6a – Convergence plot:  Plotting the convergence (i.e. the determinant of the covariance after 

fixing the candidate outlier) for all features across all iterations will yield different patterns.  As 

we will soon see with the results, certain patterns are more reflective of good features than poor 

features. 

Step 6b – Sum of area under convergence plot:  The best feature can be identified by a single 

value derived analytically from the convergence plot:  the sum of the area under the curve.   

 

5.2 Algorithm illustration 

Before looking at the experimental results, this section provides more details of the algorithms 

inner workings by way of an example.  Table 5.2 has features as columns.  The first two rows 

represent the value of the determinant of the time series before any outliers were added and the 

second row represents the determinant once all outliers were added.  Starting with the 3rd row, the 

values in each cell represent the determinant of the covariance matrix from the time series after 

each interpolation.  The first row, labeled ‘None’ in Table 5.2, is the determinant of the covariance 

matrix of the time series before any outliers were added.  The second row, labeled ‘All’ in Table 

5.2, is the initial value of the covariance of the time series with outliers added but before 

interpolation.  The row labeled ‘1’ represents the first interpolation step.  Different features yield 

different results down each column.  An important trend that emerges for these features is the quick 

decline in magnitude of the values in each cell when reading down a column, at least up to a point.  

For instance, feature 1, labeled column ‘1’, has an initial value of 17.87.  After the 1st ‘outlier’ 

identified by feature 1 is corrected, the determinant drops to 11.18.  After the 2nd ‘outlier’ is 

corrected, the determinant drops to 6.202.  Continuing down the column, we see that the 

magnitudes begin to level off starting with the row labeled ‘6’.  Indeed, this should be expected 

for a good feature.  So this provides evidence that there are outliers and how many outliers exist 

in the data set, without requiring special input or knowledge about the data.   
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Once the algorithm has computed the table of values for the convergence check as illustrated in 

Table 5.2, the log ratio of adjacent points in each column of Table 5.2 is taken by moving down 

the column one cell at a time.  Doing this for rows 2 through 20 of Table 5.2 yields Table 5.3, 

which is Step 5. 

 

In Table 5.3 it is apparent that all of these features do a decent job of identifying that outliers exist, 

as well as the exact number of outliers.  The very last row in the Table 5.3 indicated the number 

of observations flagged as an outlier for that feature.  From Table 5.3 however, it is not known 

whether the outliers identified are actually correct.  So in order to validate these results, the 

experimental results presented next will show how the algorithm works on a simulation study, 

along with an assessment of the true positive rate to determine if the algorithm is accurate. 

5.3 Experimental results 

25 multivariate time series data sets of 5 variables and 100 observations were generated for each 

of the 15 outlier conditions.  The 15 conditions were all combinations of 5, 10 or 15 outliers with 

magnitudes of 1, 2, 3, 4 or 5.  Each multivariate time series was simulated from an AR(2) process 

with standard normal Gaussian noise (see Chapter 2 for further details).  For each outlier condition 

and for each feature, a receiver operating characteristic (ROC) curve was constructed by using 

convergence thresholds ranging from 0 to 1, with a step size of .01.  Keep in mind that this ROC 

curve would not be available to a researcher who did not have prior knowledge of the number of 

outliers, as this plot was constructed with that information.  This plot is one way to establish the 

validity of the features, independent of their feature performance through the convergence plots. 

 

Table 5.4 presents a summary of these ROC results.  The entries of Table 5.4 were computed by 

taking the maximum and average of the ratio of the true positive rate (TPR) divided by the false 

positive rate (FPR).  Larger values are better.  Within a condition, we see variability across 

features.  For instance, F2 has a max of 26 whereas F1 has a max of 1097.  We also see variability 

within a feature, as we consider 5, 10 or 15 outliers.  Generally speaking, good features will have 

large values within a column, relative to other columns and demonstrate consistency across outlier 

conditions.  Magnitudes differ within a column because different outlier conditions have differing 

levels of detection difficulty, for example, it is much easier to identify 10 outliers with magnitude 
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5 as compared to 5 outliers of magnitude 1.  Tables A.2, A.3 and A.4 in the Appendix provide 

further evidence demonstrating the difficulty most features have in identifying outliers of 

magnitude 1, no matter whether there are 5, 10 or 15 outliers in the data.   

 

Figure 5.2 plots the log of the results in Table 5.4, but adds two lines for the overall average across 

all 15 outlier conditions for the maximum and average.  The lines representing the max values 

always have larger values than the lines representing the averages; but generally the max and 

average track similarly for all feature vectors.  Features with larger values (whether the maximum 

or average) are better at detecting outliers—like F1 and F3—whereas features with smaller 

values—like F2 and F11—do a poor job of identifying outliers.  This figure also shows that it is 

more difficult for any feature—good or poor—to identify more outliers.  We see that higher 

maximum or average values were obtained for 5 outliers and smaller values for the 15 outlier 

condition.   

 

Now we transition to results that would be available to researchers if they were using the algorithm 

in practice and trying to determine the number of outliers in the data.  Figure 5.3 shows the number 

of outliers identified by each feature vector for 5, 10 and 15 outlier conditions.  If a feature 

predicted 5 outliers, then it should have its plot symbol at 5.  For F4 and F6, we see accurate 

predictions of 5, 10 or 15 outliers for each of those conditions.  But F2 fails for instance because 

it predicts 5 outliers (or fewer) for all 3 outlier conditions.  In Figure 5.3 the lines are averaged for 

all 5, 10 and 15 outlier conditions.  Figure 5.3 is based on a convergence threshold of a log ratio 

of .05, meaning the number of outliers identified by each feature was determined once the value 

of the log ratio between two adjacent values drops below .05.  Zero is the theoretical convergence 

of the log ratio and one could construct many such graphs as Figure 5.3, where each figure would 

be based on a different convergence threshold.  For instance, one could construct a figure similar 

to Figure 5.3, except use a log ratio threshold of .04.  For good features, the choice of a threshold 

does not seem to have important consequences for the number of outliers detected but for poor 

features this value can make a difference.  The best recommendation is to pick a threshold based 

on the location of the sharpest bend in the convergence plot, which is Figure 5.4.   
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Figure 5.4 shows the covariance of the determinant at each iteration for four features only:  F1, 

F2, F5 and F6.  Four features were selected to allow for better visual discrimination; the full set of 

analogous results to Figure 5.4 for all 13 features is included in the Appendix.  These features also 

showcase the range of variability for poor versus good feature vectors.  Figure 5.5 shows 

complimentary information in the form of the value of the integral, which is derived from the 

convergence plot of Figure 5.4.  These two figures provide consistent, yet different, information.   

 

In Figure 5.4, good features like F1 and F6 reach a bend quickly and level off.  F1 has a pattern of 

convergence most like the ideal ‘L’, because it demonstrates a negative slope fastest and has the 

sharpest bend and, once it levels off, maintains a horizontal line.   Poor features, like F2 and F5 

have a different pattern.  F2 does not drop as quickly and only reaches the floor about halfway 

through the dataset, which would indicate that feature predicted half the observations as outliers.  

F5 seems to start as a good feature because it drops off fairly quickly; but notice that it levels off 

at a higher point on the y-axis than F1 and F6, which implies it did not identify all the outlier 

points.   

 

Figure 5.5 is a bar chart which displays the value of the integral (averaged, across all 15 outlier 

conditions) and these results confirm what we see in the convergence plot in Figure 5.4.  F1 has 

the smallest value (237) while F2 has the largest value (938), which means it is the worst feature.  

F5 has a value of 521 while F6 has a value of 258, making it 2nd best.  Again, the information in 

Figure 5.4 and Figure 5.5 would be available to a researcher trying to identify outliers in the data 

and the result does not depend on knowledge of the outliers beforehand.   

 

Figure 5.6 is the ROC plot for the four features. This ROC plot would not be a diagnostic tool for 

a researcher using this algorithm.  Figure 5.6 is a different way of presenting the same results as 

in Figure 5.2 and Table 5.4 (at least for the four features presented).  The good features (F1 and 

F6) have high TPRs whereas the poor features (F2 and F5) have low TPRs when they are compared 

at the same FPRs. F6 performs well most likely due to the leveraged covariance information in the 

data. F5 is a standardized version of the covariance matrix. For outlier detection, variance may be 

critical.  Suppressing it makes the feature unlikely or unable to predict outliers effectively.  
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The pattern of results in Figure 5.4, Figure 5.5 and Figure 5.6 demonstrates that the covariance 

based method can simultaneously select a good set of candidate feature vectors and, from that 

candidate or effective set, accurately predict outliers.  

 

Figure B.1, Figure B.2, Figure B.3 and Figure B.4 in the Appendix each have three panels.  One 

figure shows the covariance of the determinant.  Another panel shows the corresponding ROC 

curves.  And the final panel shows the value of the integral for the determinant of the covariance 

across all observations/iterations.  These figures present the results for 5, 10 or 15 outliers for all 

13 features for outlier magnitudes of 1, 2, 3, 4 and 5. (Also see Comment A.1 preceding those 

figures in the appendix for a general description of those figures.)  A subset of these results from 

the Appendix were presented in the current chapter to highlight the efficacy of the method (and 

reduce visual clutter); but the pattern of results and conclusions drawn for the features examined 

in Figure 5.4, Figure 5.5 and Figure 5.6 apply to all 13 features in the Appendix.   

5.4 Algorithm usage 

Having seen the performance of the covariance based outlier detection algorithm on simulated 

data, further details of its usage in practice are now offered. 

 
Step 1 — Feature extraction:  The set of candidate features are proposed or constructed.  Each 

feature vector is univariate and its length must match the number of observations of the original 

data.  Additionally, the values of the feature vector must make unique ordinal predictions in 

accordance with the extent that a given observation is an outlier.  Redundant feature values mean 

those corresponding time series observations are equally likely to be an outlier.  As a general rule, 

better features will make unique predictions  

 

Step 2 — Order statistics computation:  For each feature vector, order statistics are computed.    A 

small or large magnitude could encode observations that are more likely to be outliers.  This 

decision needs to be made by the user on a per feature basis, in accordance with the properties of 

each feature selected.  But even if one was not sure of whether smaller or larger values were more 

predictive of outliers, they could create two features, one which ordered from small to large and a 

second feature which ordered large to small.  Two features can theoretically have different 
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statistical or mathematical underpinnings but could still make identical predictions.  These features 

are redundant.   

 

Step 3 — Fixing outliers in order:  For a given feature vector, the observation under consideration 

that is predicted to be an outlier is corrected by interpolating with the adjacent observations in the 

un-sorted time series data.  Alternative interpolation schemes could also be implemented, such as 

using two observations ahead and behind from the current one, which may lead to more data 

smoothing effect. 

 

Step 4 — Log ratio of covariance determinants:  After the predicted outlier has been corrected 

through interpolation, the determinant of the covariance matrix of the data is computed.  A log of 

the ratio between the current determinant and the determinant from the 1-step back interpolation 

is computed.  This log ratio represents a rate of change. 

 

Step 5 — Convergence check:  After each interpolation, and computing the log ratio of the 

covariance determinant described in Step 4, convergence is checked. If the log ratio of the 

determinant approaches 0 with some small tolerance, such as .05, the feature has identified all of 

its predicted outliers.  If the log ratio of the determinant is not close to 0, then the algorithm repeats 

steps 3, 4 and 5.  The number of iterations to reach convergence (excluding the current iteration) 

determines the number of outliers predicted by that feature.  

 

Step 6 — Outlier detection with feature selection:  Steps one through five are applied to each 

feature individually.  Ideally, in most cases, one will have a set of features for detecting outliers 

and so it will be necessary to identify the best feature or subset of features.  The plot of the 

determinant of the covariance for each feature provides two complimentary pieces of evidence to 

identify the best feature(s), one visual and one analytical.   

 

Step 6a – Convergence plot:  Plotting the convergence (i.e. the determinant of the covariance after 

fixing the candidate outlier) for all features over the iterations yields different patterns.  There are 
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several key properties of this plot that will discriminate good features from poor ones.  All of the 

following points assume the data has outliers.  However, it is possible for a dataset not to contain 

outliers, and this is also addressed below. 

• First, we expect a negative slope between points in the convergence plot, at least until 

convergence is achieved.    

• Second, assuming the outliers are additive in nature and the feature correctly identifies all 

of those outliers correctly, there should be a piecewise continuous negative slope between 

consecutive points, at least until convergence is achieved.   

• Third, a steeper overall slope in the overall piecewise continuous descent is better.  This 

means the feature is identifying the observations which contribute the most variability, 

first.  All else being equal, one could have two features which both identify all of a set of 

10 outliers.  But the order in which each of those features predict the outliers is different.  

So while both features will arrive at the same result (in terms of predicting the number of 

outliers), the feature that predicts the more extreme observations to be outliers first will 

have a steeper overall slope. 

• Fourth, there will be a sharp bend (less than 180-degrees, but more than 90).  Where this 

bend occurs is the features’ prediction for the total number of outliers.  This bend is also 

where the log ratio should, for the first time, reach 0 (or a value very close to 0).  A poor 

feature might never have such a bend or it might occur prematurely. 

• Fifth, after the sharp bend, there will be a leveling off or the remainder of the observations 

up to minor oscillatory noise.  The theoretical lower limit is the determinant of the 

covariance matrix without any outliers.  However, this is not useful to know in practice 

because one may not know whether the data has outliers or not. So a better indicator, which 

is independent of the underlying data, is the rate of change and this is accounted for by the 

log ratio.  When the rate of change goes to 0 within some tolerance--.05 was used in the 

current work—we can say the feature has converged.  Figure 5.7 shows a plot of a time 

series with no outliers and it shows the value of the determinant of the covariance matrix 

as successive observations of the time series are corrected by interpolation.  Notice that the 

starting value of about .5 is arbitrary and that each time series would have its own different 

starting value.  However, for the same time series in which the log ratio of adjacent 

determinants of the covariance matrix are taken in Figure 5.8, we see the value stays close 
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to 0.  Since we expect some small variation in the rate of change in a time series without 

outliers, setting the threshold to some small value such as .05 (which is the threshold used 

in the current work) says that reduction in the rates of change greater than .05 are not due 

to expected fluctuations but, instead the presence of outliers.  

• Overall, the pattern of convergence should approximate an L-shape. 

Step 6b – Sum of area under convergence plot:  The best feature can be identified by a single 

value derived analytically from the convergence plot:  the sum of the area under the curve.  In 

order to compute this integral, we proceed with the following steps. 

• First, the x-axis is always identical for each feature because the x-axis represents the 

number of observations in the time series, which never changes. 

• Second, the starting values of the y-axis (when the x-axis equals 1) are equivalent for all 

features, as these represent the value of the determinant of the covariance matrix without 

any corrections.  

• Third, the final values of the y-axis (when the x-axis equals 100) are reflective of how close 

to (or far away from) the theoretically true value.   

• Fourth, the points in between these starting and ending values represent the particular path 

taken by a given feature.  We can recast this feature path as a polynomial function by using 

cubic splines, based on which we can compute the integral and determine the area under 

the curve.   

• Finally, for a given dataset, the area obtained for each feature can be used to determine the 

best and worst feature.  In fact, one can obtain a rank ordering of the features from best to 

worst with this single quantitative index, where smaller areas reflect better features.  

Building on our previous intuition regarding the properties of the convergence plot, the 

ideal L shaped function will have a much smaller area than a function which does not 

decrease as quickly or which does not level off or which demonstrates more oscillation, for 

instance.   

 

Step 7 – Feature adaptation:   It should be noted that a feature that works really well for one 

dataset might do poorly in a different data set.  This outlier detection algorithm is adaptive to the 

data because it does not claim any one feature is always best.  It also does not require the user to 

assume or specify the number of outliers in the data, which is a common limitation with many 
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existing outlier techniques.  One could have 0 outliers in the data and the log ratio of the 

determinant of the covariance matrix of a good feature would oscillate around 0, up to some 

tolerance, as we see in Figure 5.8.   

 

5.5 Summary 
In contrast to the simulation only studies, where the number and location of the outliers is known 

beforehand and allows for the computation of the true positive rate to measure an outlier detection 

method’s efficacy, experimental data is more challenging because one does not even know the 

number and location of outliers, or if they are present at all.  Most existing outlier detection 

methods require user defined input parameters, which make assumptions about the nature, number 

or type of outliers and/or the data itself.  But the circular logic implemented in these methods—

that one should know something about the outliers in the data beforehand—makes some methods 

ineffective in some situations.   

 

The current chapter showed how the covariance based outlier detection algorithm can winnow a 

set of features which make predictions about outliers and determine which features yield the most 

effective outlier detection results.  The result was shown to be effective both from a data point of 

view (where the outliers are not known beforehand) and from the point of view of a sensitivity 

analysis where the TPR and FPR are calculated because the outliers are known beforehand.  

Remarkable consistency is seen between the features that perform best under each scenario.   

 

The key to achieving this difficult goal is the covariance matrix of the error term of the time series.  

The covariance based outlier detection algorithm is predicated on the assumption that outliers in 

the data perturb the error terms in a discernible and systematic way and that, by monitoring the 

rate of change in the error term, one can determine the number of outliers in the data.  As the rate 

of change converges to some small tolerance level, one has evidence that the outliers have 

successfully been detected and corrected.  Another powerful property of this proposed method is 

that, unlike many existing outlier detection algorithms, one need not know if the data has outliers 

or not.  If outliers do not exist, the rate of change of the error term will start small and stay small, 

which stands in contrast to data with outliers where the rate of change will start large but then 

decrease until all outliers have been detected.  A final important property of this proposed 



 

73 
 

 

covariance based solution is that it can help differentiate features that are better or worse at 

detecting outliers.  One can compare the convergence rate for a set of features.  Features ineffective 

at identifying outliers will show a slow rate of change from the beginning (indicating that features 

inability to detect outliers) whereas features that are better predictors of outliers will have a rate of 

change that drops quickly as outliers are identified and corrected.   
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5.6 Figures and Tables 
 

 
Figure 5.1.  Workflow of the Covariance Based Outlier Detection Algorithm. 
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Table 5.1.  Summary of 13 features presented in Chapter 3. 
 Feature Description 

F1 Multivariate Least Trimmed Squares 

F2 Reweighted Multivariate Least Trimmed Squares 

F3 Model based determinant of covariance matrix 

F4 Model based trace of covariance matrix (i.e. sum of variances) 

F5 Model based determinant of correlation matrix 

F6 Model based product of variances 

F7 Model free determinant of covariance matrix 

F8 Model free trace of covariance matrix (i.e. sum of variances) 

F9 Model free determinant of correlation matrix 

F10 Model free product of variances 

F11 Sum of absolute value of time series observations 

F12 Model based sum of squared residuals 

F13 
Literature based Multivariate Least Trimmed Squares 

(Agullo, et al. 2008; Croux & Joossens, 2008) 
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Table 5.2.  Determinants of the covariance matrix for different features (columns) before outliers 
were added (row labeled ‘None’), after all outliers were added but no corrections (row labeled 
‘All’) and sequential corrections.  The values in the row labeled ’None’ are identical because this 
is the determinant of the covariance matrix before outliers were added so it is the same for all 
features.  The same logic is true for the row labeled ‘All’.    Starting with the row labeled ‘1’, 
interpolation was implemented based on the outlier predictions of each feature.  These results are 
for the outlier condition with 5 outliers of magnitude 3.   
 

Outliers F1 F3 F4 F6 F7 F8 F10 F11 F12 F13 
None 0.961 0.961 0.961 0.961 0.961 0.961 0.961 0.961 0.961 0.961 
All 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 17.87 
1 11.18 10.18 12.48 12.27 9.757 12.09 12.35 14.09 12.12 12.92 
2 6.202 5.942 7.883 8.014 6.009 8.004 8.069 10.49 8.499 7.724 
3 3.68 3.924 4.449 4.318 3.724 4.334 4.407 6.589 4.267 4.573 
4 1.852 2.413 2.27 2.265 2.31 2.215 2.187 3.422 2.155 2.317 
5 1.149 1.245 1.175 1.175 1.151 1.082 1.082 2.089 1.082 1.149 
6 1.04 1.072 1.145 1.162 1.027 1.076 1.007 1.767 1.054 1.127 
7 0.999 1.157 1.197 1.166 1.04 1.076 1.072 1.765 1.141 1.068 
8 1.051 1.169 1.326 1.417 1.037 1.063 1.05 1.755 1.107 1.232 
9 1.183 1.215 1.375 1.381 1.026 1.025 0.999 1.739 1.133 1.223 
10 1.177 1.201 1.362 1.35 1.005 1.04 0.996 1.739 1.085 1.222 
11 1.13 1.242 1.475 1.41 0.985 1.038 1.031 1.722 1.122 1.199 
12 1.121 1.287 1.391 1.372 0.975 1.037 1.051 1.69 1.174 1.178 
13 1.137 1.277 1.388 1.413 0.988 0.998 1.034 1.689 1.191 1.178 
14 1.119 1.25 1.477 1.482 0.96 0.996 0.984 1.679 1.174 1.205 
15 1.106 1.223 1.448 1.43 0.928 0.953 0.94 1.673 1.149 1.231 
16 1.164 1.198 1.444 1.427 0.893 0.904 0.907 1.646 1.152 1.208 
17 1.099 1.174 1.414 1.376 0.851 0.962 0.972 1.642 1.17 1.18 
18 1.142 1.196 1.397 1.354 0.824 0.962 0.966 1.64 1.162 1.122 
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Table 5.3.  Log ratio of adjacent values from columns of Table 5.2.  Row 1 of Table 5.3 is the log 
ratio of rows 2 and 3 in Table 5.2.  Row 2 of Table 5.3 is the log ratio of rows 3 and 4 in Table 
5.2.  Highlighting shows the location where the threshold is less than .05.  Columns are features, 
rows are observations and the bottom row is the number of observations flagged by that feature as 
outliers.  These results are for the outlier condition with 5 outliers of magnitude 3.   

 

 
 
  

1 3 4 6 7 8 10 11 12 13
1 0.47 0.56 0.36 0.38 0.61 0.39 0.37 0.24 0.39 0.32
2 0.59 0.54 0.46 0.43 0.48 0.41 0.43 0.30 0.35 0.51
3 0.52 0.41 0.57 0.62 0.48 0.61 0.60 0.48 0.69 0.52
4 0.69 0.49 0.67 0.65 0.48 0.67 0.70 0.64 0.68 0.68
5 0.48 0.66 0.66 0.66 0.70 0.72 0.70 0.49 0.69 0.70
6 0.10 0.15 0.03 0.01 0.11 0.01 0.07 0.17 0.03 0.02
7 0.04 -0.08 -0.04 0.00 -0.01 0.00 -0.06 0.00 -0.08 0.05
8 -0.05 -0.01 -0.10 -0.19 0.00 0.01 0.02 0.01 0.03 -0.14
9 -0.12 -0.04 -0.04 0.03 0.01 0.04 0.05 0.01 -0.02 0.01

10 0.01 0.01 0.01 0.02 0.02 -0.01 0.00 0.00 0.04 0.00
6 6 5 5 6 5 6 6 5 5
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Table 5.4.  Maximum and Average Ratios of TPR over FPR for all 13 Features.  Larger values are 
better.   
 

  F1 F2 F3 F4 F5 F6 

5 outliers, 
all magnitudes 

Maximum 
1097 26 1079 1023 107 1042 

Average 
118 5 108 87 24 86 

10 outliers, 
all magnitudes 

Maximum 
1804 40 695 810 246 818 

Average 
93 5 48 67 54 67 

15 outliers, 
all magnitudes 

Maximum 
1129 12 592 575 365 299 

Average 
44 3 38 35 30 27 

 
  F7 F8 F9 F10 F11 F12 F13 

5 outliers, 
all magnitudes 

Maximum 
1116 911 233 930 251 967 949 

Average 
123 119 39 122 53 89 125 

10 outliers, 
all magnitudes 

Maximum 
880 792 414 810 128 739 713 

Average 
71 49 75 52 36 50 42 

15 outliers, 
all magnitudes 

Maximum 
288 631 387 620 80 625 598 

Average 
22 20 29 30 20 20 27 
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Figure 5.2. Maximum and average values for 3 outlier conditions (5, 10 or 15 outliers) and all 
outlier conditions (thick line). x-axis is the labels of features vectors.  y-axis is the log of the ratio 
of the TPR over the FPR.  (This figure plots the log of the values in Table 5.4.)   
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Figure 5.3. Number of outliers identified by each feature vector. x-axis is the label of feature 
vectors and y-axis is the expected number of outliers.  The lines representing the 5, 10 and 15 
outlier conditions are each averaged across the five magnitudes of 1, 2, 3, 4 and 5.   
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Figure 5.4. Convergence plot for F1, F2, F5 and F6.  x-axis is observation (or iteration) and the y-
axis is the determinant of the covariance matrix.  Results are averaged across all 15 outlier 
conditions (5, 10 and 15 outliers for magnitudes of 1, 2, 3, 4 and 5).   
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Figure 5.5.  Integral value of the convergence plot for four features (F1, F2, F5 and F6).  y-axis 
represents the value of the integral and x-axis is the feature label.  Results are from the average of 
15 outlier conditions (5, 10 or 15 outliers and 1, 2, 3 4 or 5 magnitudes).   
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Figure 5.6. ROC plot for F1, F2, F5 and F6.  x-axis is FPR and y-axis is TPR.  Results are from 
the average of 15 outlier conditions (5, 10 or 15 outliers and 1, 2, 3 4 or 5 magnitudes).   
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Figure 5.7. Plot of the determinant of the covariance matrix of a time series with no outliers. 
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Figure 5.8.  x-axis is the observation number of the time series and y-axis is the log ratio of the 
determinant of the covariance matrix after successive observations of the time series were 
corrected by interpolation.  This time series was outlier free.  Notice the scale of the y-axis ranges 
from -.005 to .035 and that the true/theoretical value of the time series oscillates around 0.   
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6.   Forecasting Time Series with Outliers 
In this chapter, the covariance based outlier detection method is brought to bear on a process of 

outlier detection, model parameter estimation and data forecasting.  The rationale and workflow 

for forecasting is first overviewed and the results are presented. 

6.1 Time series forecasting 
Time series forecasting is employed to predict future observations based on known or existing 

observations (Tsay, 2002; Zivot & Wang, 2006).  To better understand forecasting, we present an 

alternative formulation of the AR(p) time series model presented in Equation 2.4.  Equation 6.1 

expresses Equation 2.4 in the form of the p-lag vector autoregressive model, 

 
𝒖𝒖𝑡𝑡 = 𝒘𝒘 + 𝑨𝑨1𝒖𝒖𝑡𝑡−1 + 𝑨𝑨2𝒖𝒖𝑡𝑡−2 + ⋯+ 𝑨𝑨𝑝𝑝𝒖𝒖𝑡𝑡−𝑝𝑝 + 𝜺𝜺𝑡𝑡,        𝑡𝑡 = 1, … ,𝑇𝑇, (6.1) 

     

 

where 𝒖𝒖𝑡𝑡 = (𝑢𝑢1𝑡𝑡,𝑢𝑢2𝑡𝑡 , … ,𝑢𝑢𝑛𝑛𝑛𝑛)′ is a (𝑛𝑛 𝑥𝑥 1) vector of time series variables where n is the number 

of variables, 𝒘𝒘 is an intercept vector which allows the time series to have a nonzero mean, 𝑨𝑨𝑖𝑖 are 

(𝑛𝑛 𝑥𝑥 𝑛𝑛) coefficient matrices and 𝝐𝝐𝑡𝑡 is a (𝑛𝑛 𝑥𝑥 1) unobservable 0 mean independent white noise 

vector process with time invariant covariance matrix Σ.   

 

In Equation 6.1, each row of the vector 𝒖𝒖𝑡𝑡 represents one equation, where the number of equations 

equals the number of variables.  Now let 𝒖𝒖𝑖𝑖 denote the 𝑖𝑖𝑡𝑡ℎ equation from Equation 6.1.  Under the 

assumption of covariance stationarity and no parameter restrictions and for purposes of parameter 

estimation, Equation 6.1 can be recast as  

 

𝒖𝒖𝑖𝑖 = 𝒁𝒁𝐴𝐴𝑖𝑖 + 𝒆𝒆𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛, (6.2) 

    

 

where 𝒖𝒖𝑖𝑖 is a (𝑇𝑇 𝑥𝑥 1) vector of observations for the 𝑖𝑖𝑡𝑡ℎ equation, 𝒁𝒁 is a (𝑇𝑇 𝑥𝑥 𝑘𝑘) matrix with the  

𝑡𝑡𝑡𝑡ℎ row determined by 𝑍𝑍𝑡𝑡′ = (1,𝒖𝒖𝑡𝑡−1′ , … ,𝒖𝒖𝑡𝑡−𝑝𝑝′ ), 𝑘𝑘 = 𝑛𝑛𝑛𝑛 + 1, 𝑨𝑨𝑖𝑖 is a (𝑘𝑘 𝑥𝑥 1) vector of parameters 

and 𝝐𝝐𝑖𝑖 is a (𝑇𝑇 𝑥𝑥 1) error term that has a covariance matrix defined by 𝜎𝜎𝑖𝑖2𝑰𝑰𝑇𝑇.  Because the AR(p) is 

in the form of a seemingly unrelated regression, where each equation has the same explanatory 
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variables, each equation may be estimated separately with OLS regression.  The variance of this 

model is estimated as follows. 

 

Define 𝑨𝑨� = �𝑨𝑨�1, … ,𝑨𝑨�𝑛𝑛� as the (𝑘𝑘 𝑥𝑥 𝑛𝑛) matrix of least squares coefficients for the 𝑛𝑛 equations.  

Then, let 𝑣𝑣𝑣𝑣𝑣𝑣�𝑨𝑨�� be the operation which stacks the columns of the (𝑘𝑘 𝑥𝑥 𝑛𝑛) matrix 𝑨𝑨� into a column 

vector of length (𝑛𝑛𝑛𝑛 𝑥𝑥 1) which yields 

 

 𝑣𝑣𝑣𝑣𝑣𝑣�𝑨𝑨�� = �  
𝑨𝑨�1
⋮
𝑨𝑨�𝑛𝑛

  � . (6.3) 

     

 

Assuming a stationary and ergodic VAR model (Lutkepohl, 2005), 𝑣𝑣𝑣𝑣𝑣𝑣�𝑨𝑨�� is asymptotically 

normally distributed with covariance matrix: 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� �𝑣𝑣𝑣𝑣𝑣𝑣�𝑨𝑨��� = 𝚺𝚺� ⨂ (𝒁𝒁′𝒁𝒁)−1, (6.4) 

 

 

where  

 

𝚺𝚺� =
1

𝑇𝑇 − 𝑘𝑘
�𝜀𝜀𝑡̂𝑡𝜖𝜖𝑡̂𝑡′
𝑇𝑇

𝑡𝑡=1

, (6.5) 

    

 

and 𝜀𝜀𝑡̂𝑡 =  𝒖𝒖𝑡𝑡 −  𝐴̂𝐴′𝑍𝑍𝑡𝑡  is the multivariate least squares residual at time t. 

 

Once the parameter estimates are obtained, one can use the VAR model to do h-step ahead 

forecasting according to Equation 6.6, 

 
𝒖𝒖𝑇𝑇+ℎ|𝑇𝑇 = 𝒘𝒘 + 𝑨𝑨1𝒖𝒖𝑇𝑇+ℎ−1|𝑇𝑇 + ⋯+ 𝑨𝑨𝑝𝑝𝒖𝒖𝑇𝑇+ℎ−𝑝𝑝|𝑇𝑇 (6.6) 
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where h is the number of steps ahead on which one desires to make a forecast. 
 

6.2 Forecasting workflow 
 
Step 1.  Data was simulated according to the VAR (Vector Auto Regressive) model in Equation 

2.4 (or, equivalently, Equation 6.1).  The parameters of this model were estimated for both a VAR 

and a VARMA (Vector Auto Regressive Moving Average) model because, in real practice, one 

would usually fit multiple models.   The estimated parameters were used to generate 10-step ahead 

forecasting of the data.  This model represents the ground truth because it is not contaminated by 

outliers.   

 

Step 2.  Outliers were added to the data generated in Step 1.  Because the objective of this study 

is to demonstrate the efficacy of the covariance based outlier detection algorithm, only three outlier 

conditions are considered:  5, 10 or 15 outliers with an outlier magnitude of 3.  These conditions 

represent the middle ground of the outlier conditions considered.  Once the data had been 

contaminated with outliers, the parameters of the model were estimated for both a VAR and 

VARMA model and the parameters were used to predict observations that are 10-steps (i.e. 

observations) ahead.  This would represent the situation of a data analyst who has contaminated 

data, but does not know it, and uses this contaminated data as though it does not have outliers.  

Parameter estimation and forecasting with contaminated data would lead to spurious or erroneous 

predictions.  The mean square errors (MSE) are computed for the model parameter estimates, 

where the sum of the squared differences for the estimates is compared to the ground truth (Step 

1).   

 

Step 3.  A feature that has performed well on time series data—Feature 1—and a feature that has 

performed poorly—Feature 2—were used to identify the outliers in the data and correct them.  

Then, once the corrections were completed, the model parameters were fit and the 10-step ahead 

forecasting was executed.  If the feature is good, then the MSE for this step should be really small, 

whereas a poor feature will show a MSE that is larger the MSE of the good feature.  The results 

for these steps are presented for each component of the model fitting and forecasting.   
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6.3 Performance evaluation 
 
Estimation of A coefficients 
As outlined in Section 6.1, the coefficients for the model were estimated.  The MSE for these 

coefficients was computed by summing the difference between the coefficients in Step 1 (the 

ground truth) and Steps 2 and 3.  Table 6.1 shows the results.  It is clear that the ‘Good Feature’ 

has the lowest MSE values, as compared to the ‘Poor Feature’ and ‘Outlier’ time series.  It is also 

apparent that the results are not influenced by fitting a VAR or VARMA model.  This makes sense 

because the data was generated from a VAR process.  Since the VAR is a special case of the 

VARMA, the model in both cases converged on the same solution, at least for the parameter 

coefficients.  

 

Model covariance estimate 
Equation 6.5 shows the covariance matrix estimated and Table 6.2 displays the results for those 

covariance matrix estimate.  Again the ‘Good Feature’ yields results near 0 whereas the ‘Outlier’ 

and ‘Poor Feature’ time series yielded estimates very far away from the ground truth.  Also, the 

two model fits track identically, with neither showing any difference over the other.  The results 

were computed by calculating the MSE for each cell of the variance/covariance matrix and the 

MSE’s were summed across all cells. 

 

An alternative way to assess the impact of outliers on the error term is to use the determinant of 

the variance/covariance matrix of the error term.  The determinant is nice because it uses a single 

number to represent the entire matrix (whereas the MSE requires multiple computations to arrive 

a single number).  This result is presented in Table 6.3.   

 

In Table 6.3, the true value of the determinant for the ground truth time series is in the column 

labeled ‘Truth’.  The ‘Good’ feature, which correctly identified the outliers, yields values of the 

determinant that are nearly identical to the determinant.  The untreated case, ‘Outlier’ has values 

for the determinant which are quite far from the ground truth and this is also the case for the ‘Poor’ 

feature.   
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10-step ahead prediction 
Using the parameter values obtained, one can then forecast observations according to Equation 

6.6.  Table 6.4 displays the MSE results for this forecasting step.  The VAR and VARMA yield 

different results for some conditions.  This is expected because the VARMA model fits an 

additional component—the moving average part of the model—and uses this information in the 

forecasting algorithm.  The VAR model does not have a moving average component.  But to the 

main point of this thesis, we see the ‘Good Feature’ fares better than the untreated outcome 

(‘Outlier’) and the ‘Poor Feature’.   

 
In conclusion, it is readily apparent that using a good feature for outlier detection with the 

covariance based convergence check method offers an accurate result.  The result is much better 

than using outlier contaminated data or even a poor feature.  After a VAR and VARMA model 

was fit to a set of data, the covariance based convergence method accurately detected the outliers 

and allowed for the correct estimation of the model parameters and yielded a forecast very close 

to that of the raw data which was not contaminated by outliers. 
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6.4 Tables 

 
Table 6.1:  MSE for the A coefficients for outliers of magnitude of 3 and contamination levels of 
5, 10 or 15 outliers for an outlier time series, for time series data that has been corrected using a 
good feature and time series data that has been corrected using a poor feature.  MSE values closer 
to 0 are better. 

 
 Outlier Good Feature Poor Feature 
 VAR VARMA VAR VARMA VAR VARMA 
5-3 0.02 0.02 0.01 0.01 0.04 0.04 
10-3 0.02 0.02 0.01 0.01 0.03 0.03 
15-3 0.05 0.05 0.03 0.03 0.08 0.08 
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Table 6.2:  MSE for the variance/covariance matrix for outlier conditions of magnitude equal to 3 
and contamination levels of 5, 10 or 15 outliers for uncorrected outlier time series, time series that 
has been corrected using a good feature and time series that has been corrected using a poor feature.  
 

 Outlier Good Feature Poor Feature 
 VAR VARMA VAR VARMA VAR VARMA 
5-3 0.67 0.67 0.00 0.00 0.48 0.48 
10-3 2.12 2.12 0.01 0.01 1.92 1.92 
15-3 5.87 5.87 0.02 0.02 5.22 5.22 
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Table 6.3:  MSE for the determinant of the variance/covariance matrix for outlier conditions of 
magnitude equal to 3 and contamination levels of 5, 10 or 15 outliers for uncorrected outlier time 
series, time series that has been corrected using a good feature and time series that has been 
corrected using a poor feature. 
 

 Truth Outlier Good Poor 
5-3 0.35 2.58 0.32 2.01 
10-3 0.87 13.19 0.82 10.53 
15-3 0.96 33.22 1.15 26.79 
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Table 6.4:  MSE for the 10-steps ahead predictions for outlier conditions with magnitude 3 and 
contamination levels of 5, 10 or 15 outliers for the untreated case (‘Outlier’), the case treated with 
a ‘Good Feature’ and the one treated with a ‘Poor Feature’.   
 

 Outlier Good Feature Poor Feature 
 VAR VARMA VAR VARMA VAR VARMA 
5-3 0.05 0.04 0.01 0.01 0.08 0.26 
10-3 0.07 0.28 0.02 0.01 0.09 0.42 
15-3 0.58 0.16 0.11 0.06 0.89 0.56 
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7. Conclusion 
 

One important weakness of nearly all outlier detection methods is that a researcher is required to 

express some a priori knowledge about the underlying statistical distribution.  Or that he or she 

knows something about the outliers themselves.  A more general method which can accommodate 

data that does not require special knowledge of the data is more desirable in these cases and the 

outlier detection method proposed here aimed to meet this requirement.  A second important 

weakness of many methods is the specification of some input parameter, such as the number of 

outliers that might be present or the choice of a threshold, either of which can make an important 

difference in the number of outliers the algorithm identifies.  The proposed method does not have 

any such input parameter required to be specified by the user. 

 

Commonly used heuristic (such as plots and the so called 3-sigma rule) were introduced to provide 

baseline performance for algorithms for what many researchers commonly use.  These methods 

are not wrong per se; but they have severe limitations.  Plots are fine in very small dimensional 

spaces with a limited number of data points; but visual inspection of millions or billions of data 

points and hundreds of thousands of variables quickly push the limits of cognitive and perceptual 

processing, thereby making visual heuristics ineffective.  These situations demand analytical based 

methods, which have the added advantages of being more principled and reproducible.  The 3-

sigma rule (or Simple Testing Method) showed an upper true positive rate of around .6 for outlier 

conditions where outliers should be easy to detect and showed lower bounds around .2.   

 

After constructing a set of features (some of which were based on existing methods in the literature, 

others were novel, some were parametric, some were non-parametric, some lead to fast 

computations and other features take longer to compute), these features were tested using the gold 

standard true positive rate.  The TPR is only effective if one knows in advance the location and 

number of outliers so it is not a realistic measure in practice; but in simulation studies it provides 

an excellent benchmark to assess the efficacy of features in outlier detection.  In these studies, 

which considered both univariate and multivariate time series and different error levels, a few 

conclusions became evident.  First, certain features tended to do well across all these conditions, 

providing support for the hypothesis that certain features might have more general utility across a 
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wide range of conditions.  For instance, features 3, 7 and 12 tended to do well across all studies 

(as well as several other features) whereas feature 2 did not fare well at all.  Feature 3 and feature 

7 were the determinant of the covariance matrix, with the former being a parametric version and 

the latter being a non-parametric version.  Feature 12 was the sum of the magnitudes of the time 

series observations.  Feature 2 did not do well in most studies.   

 

Another important conclusion from the feature evaluation studies in Chapter 3 is that parametric 

features do not yield a clear advantage over non-parametric features.  This is interesting and 

important because parametric features generally take longer to compute and, all else being equal, 

an algorithm that yields a quicker result is preferred to one that takes longer.  Another conclusion 

was that univariate analyses generally had lower outcomes than multivariate analyses.  This was 

expected because multivariate approaches can aggregate information across variables, thereby 

yielding a more accurate pattern of results and outliers.  Many of the features do really well, with 

some having an average TPR of .9—and for outlier conditions where detecting outliers is 

straightforward, many of these features had TPR of 1.  It would be interesting to see how the error 

level used to generate the time series might impact these conclusions in future research. 

 

Chapter 4 showed results from higher order feature construction, which were obtained by using a 

Voronoi diagram.  The diagram takes as inputs individual features to construct a new feature.  A 

2-dimensional input vector was considered in the present work; but larger dimensional inputs are 

indeed possible.  For this set of data, aggregating features led to some advantages over the features 

individually; but in other cases the individual features did better.  We see in the original MVOD 

result (Zwilling & Wang, 2014)—which compared a pair of features multiplied together to the 

literature based MLTS—an advantage for the features, demonstrating an improvement over a more 

established method.     It is also important to keep in mind the number of individual features which 

were used as inputs to the Voronoi diagram was quite small.  In machine learning applications, 

feature construction can lead to hundreds or thousands of features for testing.  So it may be the 

case that different inputs might yield different and better results also.  The Voronoi diagram is 

capable of testing multidimensional spaces.  Additionally, the results of the features tested here 

might be different for other data sets.    
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Chapter 5 demonstrated the efficacy of the covariance based convergence method.  This method 

leverages the error term of the time series to identify outliers.  The results from the simulation 

studies show a remarkable correspondence between the results using just a TPR approach (as in 

Chapter 3) and the covariance based convergence method (as in Chapter 5).  For instance, in the 

simulation study from Chapter 3.3, we see that 3 features—F2, F5 and F9 all perform poorly.  

These are also 3 of the features identified by the covariance based convergence method that do 

poorly as well.  Moreover, the features that do really well with the simulation approach based on 

the TPR—F1 and F6—also do really well with the covariance approach.   A key motivation for 

developing the covariance based approach is to discriminate among a candidate set of features 

proposed or used by the analyst and with the set of features proposed here this has been 

demonstrated.  This approach has potential application for so-called Big Data because it has the 

capacity to detect outliers in huge multivariate datasets.  While time series data was tested here, 

the method is general and could be used on any multivariate data. 

 

Chapter 6 demonstrated how the covariance based outlier detection method can be used in service 

of forecasting data.  The parameters were estimated and 10-steps ahead were forecasted for the 

contaminated time series for 3 outlier conditions.  Then, a good and poor feature were used to 

identify outliers and then 10-steps ahead were forecasted.  When outliers are effectively identified 

by the good feature, not only are the parameter estimates of a time series model (i.e. VAR) 

improved, but the resulting data forecasting is much more closely aligned to the results of the 

uncontaminated time series.  However, a poor feature does not have the same effect, as it cannot 

effectively identify the outlier and so the performance using this feature was more similar than the 

result obtained with the contaminated time series.   

 

Table 7.1 presents a summary of some important characteristics of each of the 13 features, which 

would be useful both for identifying a good feature but also a feature that may or may not work 

for the constraints of a data analyst.  A key point raised in the opening chapter was that certain 

outlier detection situations might trade speed for accuracy; but in other situations, such as a medical 

setting, being correct is probably more important than speed (though clearly there are times where 

speed and accuracy are important).  For each feature, this table summarizes three pieces of 

information.  First, the Model Based column indicates whether the feature is based on a model 
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(such as fitting a regression model) or whether the feature was derived directly from the data.  

‘Yes’ means a model was fit whereas ‘No’ means the feature was derived directly from the data.  

The Speed column, measured in seconds, represents the amount of time required to complete one 

iteration of the feature for one time series with 100 observations for a single outlier condition on a 

Windows 8 computer with an Intel Core i7-5500U CPU @ 2.40 GHz, 16.0 GB RAM and 64-bit 

operating system.  The Average Integral column is the area under the curve for the determinant of 

the covariance matrix and this value was averaged across all 15 outlier conditions.   

 

If one had constructed a feature that was fast (small time needed to compute the feature) with a 

small integral (it converged correctly) this would mean this feature was an excellent choice for the 

data set at hand.  For the 13 feature considered in this study, F7 is really good on all dimensions.  

It is the fastest features (0.0227 seconds), has the smallest average integral (209) and is not model 

based.  By contrast, we can see that a poor feature, such as F2, is slow (0.5514 seconds) and has a 

very large average integral (983).   

 

In F1, we see a good example of a feature that takes a very long time to complete (33.145 seconds) 

and has a good integral (209).  However, because this feature is very slow to compute, it is probably 

not a good choice to use, especially since we do not see this increased speed gaining anything over 

some of the better features, as measured by the area under the curve.  Overall, in practice, it is 

important to balance situational constraints with feature properties, like those provided in Table 

7.1. 
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7.1 Table 

 
Table 7.1.   Summary table of 13 Features.  The first column is the feature label.  Model Based 
refers to whether a feature required fitting a model (Yes) or whether the feature was computed 
directly from the data (No).  The speed listed in seconds is the amount of time required to complete 
one iteration of the feature for a single time series of 100 observations for a single outlier condition.  
The Integral represents the area under the curve of the determinant of the covariance matrix, 
averaged across all 15 outlier conditions.  Smaller values are better.   
- 

 Model Speed Average 
 Based (seconds)  Integral 

F1 Yes 33.145 237 
F2 Yes 0.5514 983 
F3 Yes 0.0284 232 
F4 Yes 0.0263 259 
F5 Yes 0.0364 521 
F6 Yes 0.0256 259 
F7 No 0.0227 209 
F8 No 0.0201 245 
F9 No 0.0211 458 
F10 No 0.0165 244 
F11 No 0.0067 573 
F12 Yes 0.5565 257 
F13 Yes 0.5514 255 
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Appendix 
 

Appendix A. Feature pairs performance in MVOD extension 
 
Table A.1.  Average, maximum and minimum TPR for the set of 55 feature pairs tested with a 
Voronoi diagram. 
 

Average  Maximum  Minimum 
Label TPR Pairs Label TPR Pairs Label TPR Pairs 
42 0.78 7  9 6 0.95 1  8 51 0.01 9  11 
4 0.77 1  6 32 0.94 5  10 52 0.01 9  12 
6 0.77 1  8 3 0.94 1  5 48 0.01 8  11 
27 0.76 4  12 14 0.94 3  7 49 0.01 8  12 
25 0.76 4  10 24 0.94 4  9 47 0.01 8  10 
7 0.76 1  9 27 0.93 4  12 53 0.01 10  11 
24 0.76 4  9 36 0.93 6  8 46 0.01 8  9 
12 0.75 3  5 21 0.93 4  6 55 0.02 11  12 
5 0.75 1  7 4 0.93 1  6 54 0.02 10  12 
44 0.75 7  11 42 0.93 7  9 50 0.02 9  10 
39 0.74 6  11 40 0.93 6  12 38 0.35 6  10 
9 0.74 1  11 9 0.93 1  11 43 0.36 7  10 
14 0.74 3  7 25 0.92 4  10 16 0.37 3  9 
33 0.74 5  11 33 0.92 5  11 8 0.37 1  10 
15 0.74 3  8 18 0.91 3  11 37 0.37 6  9 
30 0.74 5  8 12 0.91 3  5 29 0.38 5  7 
19 0.74 3  12 2 0.91 1  4 34 0.39 5  12 
17 0.74 3  10 1 0.91 1  3 41 0.39 7  8 
32 0.74 5  10 31 0.91 5  9 21 0.40 4  6 
35 0.74 6  7 19 0.90 3  12 22 0.43 4  7 
28 0.74 5  6 7 0.90 1  9 23 0.43 4  8 
2 0.73 1  4 17 0.90 3  10 20 0.44 4  5 
13 0.73 3  6 30 0.90 5  8 35 0.44 6  7 
21 0.73 4  6 15 0.89 3  8 45 0.44 7  12 
18 0.73 3  11 5 0.89 1  7 44 0.45 7  11 
3 0.73 1  5 26 0.89 4  11 40 0.45 6  12 
40 0.73 6  12 35 0.88 6  7 11 0.45 3  4 
36 0.73 6  8 10 0.88 1  12 31 0.46 5  9 
22 0.73 4  7 37 0.88 6  9 1 0.46 1  3 
26 0.73 4  11 13 0.88 3  6 10 0.46 1  12 
31 0.72 5  9 44 0.88 7  11 30 0.47 5  8 
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20 0.72 4  5 22 0.87 4  7 36 0.47 6  8 
10 0.71 1  12 39 0.87 6  11 19 0.47 3  12 
1 0.71 1  3 20 0.87 4  5 32 0.47 5  10 
45 0.71 7  12 45 0.87 7  12 4 0.47 1  6 
11 0.69 3  4 11 0.86 3  4 39 0.47 6  11 
37 0.66 6  9 28 0.86 5  6 9 0.48 1  11 
16 0.59 3  9 23 0.81 4  8 5 0.48 1  7 
29 0.59 5  7 16 0.79 3  9 12 0.48 3  5 
23 0.58 4  8 29 0.77 5  7 2 0.49 1  4 
8 0.56 1  10 8 0.77 1  10 14 0.49 3  7 
38 0.53 6  10 41 0.76 7  8 17 0.49 3  10 
41 0.53 7  8 38 0.72 6  10 26 0.49 4  11 
43 0.53 7  10 43 0.71 7  10 7 0.50 1  9 
34 0.53 5  12 34 0.68 5  12 25 0.50 4  10 
47 0.04 8  10 47 0.08 8  10 3 0.51 1  5 
50 0.04 9  10 51 0.07 9  11 28 0.51 5  6 
46 0.03 8  9 46 0.07 8  9 24 0.51 4  9 
51 0.03 9  11 50 0.07 9  10 33 0.52 5  11 
53 0.03 10  11 53 0.06 10  11 15 0.52 3  8 
48 0.03 8  11 52 0.06 9  12 13 0.52 3  6 
52 0.03 9  12 48 0.06 8  11 27 0.52 4  12 
55 0.03 11  12 55 0.05 11  12 42 0.53 7  9 
54 0.02 10  12 49 0.03 8  12 6 0.53 1  8 
49 0.02 8  12 54 0.03 10  12 18 0.54 3  11 

Table A.1 (cont.).  Average, maximum and minimum TPR for the set of 55 feature pairs tested 
with a Voronoi diagram. 
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Appendix B.  Further evaluation of covariance based method 
 
The following description of figure layouts applies to Figure B.1, Figure B.2, Figure B.3 and 

Figure B.4, below.  Each figure contains an upper, middle and lower panel.   

 

Figure B.1 presents all five outlier conditions with 5 outliers; Figure B.2 presents all five outlier 

conditions with 10 outliers; Figure B.3 presents all five outlier conditions with 15 outliers; and 

Figure B.4 is all outlier conditions—5, 10 and 15 outliers.  All of these figures are averaged across 

all magnitudes—1, 2, 3, 4 and 5. 

 

The upper panel shows the pattern of convergence for the determinant of the covariance matrix for 

each feature.  The x-axis is the number of observations.  While the time series had 100 

observations, these figures are truncated to show greater discrimination among the plotted features.  

The pattern in the figures presented extends across the full set of observations.  The maximum 

value of the x-axis varies for each figure because the optimal location of the bend (the point at 

which the plots level out horizontally) depends on the outlier condition.  So for Figure B.1, there 

were only 5 outliers so if a feature does a good job of detecting outliers the bend should occur at 

5 outliers.  The y-axis is the determinant of the covariance of the time series.  Notice that the range 

varies across Figure B.1, Figure B.2, Figure B.3 and Figure B.4 (upper panels).  The range of the 

y-axis varies systematically as a function of the number of outliers.  Figures with more outliers (5 

versus 10 versus 15) have a correspondingly larger value on the y-axis initially.  However, 

irrespective of the number of outliers, and their magnitudes, good features always converge to the 

same value.   

 

The middle panel is the ROC plot for all features for the same outlier condition as the upper panel.  

The x-axis is the False Positive Rate (always constrained between 0 and .1) and the True Positive 

Rate (always constrained between 0 and 1).   

 

The lower panel is a bar plot of the average value of the integral under the curve for the determinant 

of the covariance.  The x-axis represents feature labels and the values on top of the bars are the 

areas. 
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Figure B.1.    Convergence plot (upper panel), ROC plot (middle panel) and integral (lower panel) 
for outlier conditions with 5 outliers averaged across magnitudes 1, 2, 3, 4, and 5.   
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Figure B.2.    Convergence plot (upper panel), ROC plot (middle panel) and integral (lower panel) 
with 10 outliers averaged across magnitudes 1, 2, 3, 4, and 5.       
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Figure B.3.    Convergence plot (upper panel), ROC plot (middle panel) and integral (lower panel)) 
for outlier conditions with 15 outliers averaged across magnitudes 1, 2, 3, 4, and 5.    
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Figure B.4.   Convergence plot (upper panel), ROC plot (middle panel) and integral (lower panel) 
for all outlier conditions –5, 10 or 15 outliers and magnitudes 1, 2, 3, 4, and 5—averaged.    
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Table B.1.  Log ratios of first 10 values for 5 outliers with magnitude 1. 

 
 
 
 
Table B.2.  Log ratios of first 10 values for 10 outliers with magnitude 1. 

 
 
 
 
Table B.3.  Log ratios of first 15 values for 5 outliers with magnitude 1. 

 
 
 
 
 

1 3 4 6 7 8 10 11 12 13
0.10 0.13 0.13 0.13 0.10 0.14 0.15 0.09 0.16 0.15
0.05 0.08 0.06 0.05 0.14 0.09 0.08 0.07 0.04 0.02
0.09 0.06 0.08 0.09 0.04 0.07 0.06 0.08 0.07 0.04
0.11 0.07 0.06 0.06 0.05 0.05 0.08 0.02 0.04 0.08
0.04 0.06 0.05 0.08 0.07 0.04 0.05 0.00 0.04 0.08
0.02 0.01 0.01 0.02 0.10 0.01 -0.03 0.00 0.05 0.06
0.08 0.07 0.09 0.06 0.00 0.05 0.05 0.00 0.04 0.04
0.06 0.02 0.07 0.05 0.00 0.01 0.08 0.00 0.03 0.06
0.05 0.09 0.05 0.03 0.05 0.08 0.03 0.00 0.05 0.01
0.06 0.10 0.05 0.06 0.08 0.01 0.00 0.00 0.05 0.03

1 3 4 6 7 8 10 11 12 13
0.10 0.09 0.10 0.09 0.01 -0.01 0.01 0.04 0.01 0.06
0.08 0.11 0.11 0.11 0.17 0.08 0.10 0.04 0.10 0.06
0.11 0.07 0.09 0.05 0.05 0.09 0.02 0.08 0.04 0.05
0.09 0.13 0.07 0.11 0.01 0.04 0.06 0.06 0.05 0.09
0.10 0.06 0.02 0.09 0.06 -0.01 0.00 0.05 0.04 0.05
0.07 0.07 0.12 0.06 0.04 0.05 0.05 0.01 0.06 0.04
0.08 0.00 0.05 0.03 0.08 0.08 0.06 0.00 0.02 0.06
0.06 0.16 0.07 0.08 0.03 0.07 0.08 0.01 0.07 0.10
0.05 0.03 0.04 0.06 0.07 0.03 0.03 0.00 0.03 0.07
0.02 0.07 0.06 0.07 0.06 0.05 0.07 -0.02 0.06 0.01

1 3 4 6 7 8 10 11 12 13
0.03 0.10 0.07 0.07 0.08 0.05 0.03 0.02 0.00 0.06
0.15 0.10 0.09 0.10 0.08 0.04 0.04 0.05 0.08 0.14
0.05 0.06 0.11 0.11 0.06 0.05 0.09 0.05 0.02 0.10
0.00 0.12 0.05 0.07 0.05 0.06 0.08 0.07 0.04 0.02
0.15 0.09 0.12 0.07 0.04 0.08 0.09 0.05 0.08 0.00
0.02 0.06 0.03 0.08 0.08 0.10 0.03 0.04 0.06 0.06
0.10 0.07 0.02 0.01 0.03 -0.05 -0.04 0.03 0.03 0.10
0.04 0.01 0.01 0.01 0.03 0.12 0.09 0.01 0.06 0.06
0.03 0.06 0.03 0.04 0.08 0.03 0.04 0.00 0.01 0.01
0.06 0.01 0.03 0.04 0.08 0.01 0.08 0.02 0.10 0.07
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Appendix C.  Additional features in covariance based method 
 

While there is no upper limit to the number of features one could implement, some results provided 

thus far strongly suggest that certain operations on the covariance matrix yield features that are 

quite effective at detecting outliers.  Principal component analyses also operate on the covariance 

matrix, and given that one of the prerequisites for a feature in this study is that it compresses the 

multivariate time series data observations into a univariate feature vector (i.e. a data reduction), it 

makes sense to see how some features built from the steps of PCA would perform. 

 

Principal component analysis aims to identify a set of linearly uncorrelated variables (Wichern & 

Johnson, 2007) through an orthogonal transformation of the originally correlated observations.  

This transformation proceeds sequentially such that the first principal component accounts for the 

most variance, the second component accounts for the next largest variance, etc.   Geometrically, 

we can think of PCA as fitting a multi-dimensional ellipsoid to the data, where each axis represents 

one principal component and the respective axis length of each dimension reflects the amount of 

variance accounted for in that component. We can leverage this logic for the identification of 

outliers.  For the specific features then, the three eigenvalues were computed (because the data is 

3-dimensional).  These are listed in Table C.1. 

 

 

All of the same steps for the previous thirteen features (F1 to F13) were carried out on these new 

features derived from eigenvalues.  So the feature was computed for each time series data set 

(replicated twenty-five times) for each of fifteen outlier condition.  The original ordered time series 

was interpolated according to the prediction of each feature vector.  After each correction the 

determinant of the covariance matrix (and the associated log ratio) were computed, yield 

information and curves identical to those presented in Figure 5.4 and Figure 5.6. Figure C.1 shows 

the plot of the determinant of the covariance matrix (averaged across all 15 outlier conditions) and 

we see that the features show good convergence, like we see of the good features in Figure 5.4.  

Figure C.2 provides further supporting information that these new features do well.  The bar graph 

represents the area under the curve for Figure 5.5.  A smaller value is better because it means the 

convergence plot drops more quickly. In comparing the values of Figure C.2 with Figure 5.5, the 

best features among the set of 13 are F1 and F6 with integral values of 237 and 258.  The individual 
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eigenvalues (F14, F15 and F16) have decent integral values (344, 340 and 410, respectively), and 

they are not as small as the really good features which have even smaller values. 

 

Table C.1. List of five new features that relate to eigenvalues. 

 Feature Description 

F14 Largest eigenvalue 

F15 Second largest eigenvalue 

F16 Smallest eigenvalue 
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Figure C.1.  Convergence plot for F14, F15 and F16.  x-axis is observation (or iteration) and the 
y-axis is the determinant of the covariance matrix.  Results are from average across all 15 outlier 
conditions. 
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Figure C.2.  Integral value averaged across 15 outlier conditions for F14, F15 and F16.  y-axis 
represents the value of the integral and x-axis is the feature label.  Results are from the average of 
15 outlier conditions. 
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Appendix D.  Performance of all features in covariance based method 
 
Most of the results presented in this thesis are averaged across all 15 outlier conditions.  In looking 

at each individual condition separately, sometimes features that do as well on the average overall 

actually do quite well for some cases and the best overall features don’t necessarily do best for 

each individual condition.  This reiterates the important point that seeking to find a so-called best 

feature is probably not a wise pursuit.  Rather, what is more desirable is an algorithm that can assist 

one in finding a feature which is optimal for the data set at hand.   

 

As a specific example, F7 in Table D.1 (with values representing the areas under the curves for 

the covariance of the determinant plots) is probably the best feature for almost all individual 

conditions and the best overall.  This feature even outperforms the product of the eigenvalues.  F7 

is very simple and fast to compute:  the determinant of the covariance matrix of the data.  So from 

this point of view, we see that the proposed method for detecting outliers is effective at allowing 

a head to head contest among different features.  
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Table D.1.  Integral values for 18 features for all outlier conditions separately in covariance based 
method. The minimum and maximum for each outlier condition are listed at the bottom of the table 
and the average across all outlier conditions for each feature is listed in the right-most column. 
 

 5-1 5-2 5-3 5-4 5-5 10-1 10-2 10-3 10-4 10-5 15-1 15-2 15-3 15-4 15-5 Ave 

F1 33 37 49 76 118 39 69 130 205 466 52 101 243 631 1313 237 

F2 38 50 91 197 396 53 110 349 579 2401 73 172 522 2289 7431 983 

F3 33 37 52 82 124 40 71 136 214 436 50 100 239 613 1255 232 

F4 33 38 53 84 135 40 72 141 231 493 51 102 263 688 1456 259 

F5 52 69 116 196 324 65 124 290 536 1186 80 219 533 1287 2735 521 

F6 33 38 53 84 135 40 72 141 231 492 51 102 263 688 1454 258 

F7 30 37 48 72 98 39 65 122 204 391 52 95 223 545 1110 209 

F8 33 40 52 78 109 44 68 134 223 459 58 106 258 642 1366 245 

F9 43 53 86 145 260 54 109 244 482 1105 66 169 401 1085 2561 458 

F10 33 40 52 78 109 43 68 133 224 458 58 106 257 641 1368 244 

F11 66 72 107 130 181 87 133 208 516 675 105 219 537 1335 4227 573 

F12 36 42 55 82 119 46 77 141 233 488 61 107 273 677 1418 257 

F13 37 41 54 84 135 45 75 139 228 486 57 106 265 672 1404 255 

F14 40 52 75 131 261 50 100 198 378 688 66 157 370 870 1716 344 

F15 40 55 72 121 171 50 98 213 309 638 65 142 369 842 1918 340 

F16 51 71 92 129 176 69 121 209 345 782 91 197 483 1083 2246 410 

Min 30 37 48 72 98 39 65 122 204 391 50 95 223 545 1110  

Max 66 72 116 197 396 87 133 349 579 2401 105 219 537 2289 7431  
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