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Abstract

One of the widely studied topics in singular integral operators is T1 theorem. More precisely, it

asks if one can extend a Calderón-Zygmund operator to a bounded operator on Lp. In addition, Tb

theorem was raised when one asks if the T1 theorem remains true if the function 1 is substituted

by some bounded function b. In this dissertation, we apply time-frequency analysis to T1 theorem

and Tb theorem. In particular, the theory of tiles and trees is used to prove T1 theorem on non-

homogeneous spaces. This provides an alternative and a more visualized point of view to some

parts of the proof. We also verify estimates from Lp × Lq to Lr for the paraproducts appeared in

T1 theorem. Although the paraproduct is specific, the method is applicable to this kind of study.

Lastly, an extension to the proof of Tb theorem is established via a different tree from T1 theorem.
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Chapter 1

Introduction

The theory of Calderón-Zygmund operators is known as one of the most powerful subjects in

Mathematics due to relations to PDE, Physics, Engineering, etc. One of the theory is T1 theorem

which was later generalized to Tb theorem, see some examples of applications in [DJ84, NTV03].

The T1 theorem gives conditions for Calderón-Zygmund operators to be bounded on L2 which is

enough for the extension to Lp due to weak type estimates of such operators. The Tb theorem

was motivated by a problem about the Cauchy integral operator on a Lipschitz graph [AHM+02].

Since the first proof of David and Journé on the classical T1 theorem [DJ84], the theory has

been well developed in various ways, for instance extending the range of functions to vector value

[Fig90, Hyt14]. Our interest is an extension on the domain. In particular, we consider a metric

space endowed with a measure that does not satisfy doubling condition. Such spaces are called

non-homogeneous type. This situation can occur even to the Lebesgue measure with an open subset

of RN having an unusual boundary. Verdera surveys more about the need of non-homogeneity and

applications [Ver02]. Undoubtedly, the theory on spaces of homogeneous type, the ones equipped

with doubling measures, was fine studied. Furthermore, T1 theorem on non-homogenous space

for the Cauchy integral operator was proved in many approaches [NTV97, Tol99, Ver00]. With

the use of BMOpλ, Nazarov, Treil and Volberg [NTV03] refined their work to Tb theorem in the

general setting as the classical statements leading to the fairly complete theory. The generalization

includes Cotlar inequalities and weak type (1, 1) estimates [NTV98] needed to extend L2 to Lp

boundedness of Calderón-Zygmund operators as in the classical homogeneous spaces where one

can consider only L2 case.

On the other side, the connection between the theory of Carleson measures and the theory

of trees and tiles has played an interesting role in bilinear singular integrals, see for example

[LT97, LT00, MTT02a]. In the expository article of Auscher, Hoffmann, Muscalu, Tao and Thiele
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[AHM+02], they reprove Carleson embedding theorem on trees and hence paraproduct estimates

and T1 theorem in this manner though the kernel associated to the operator satisfies so-called

perfect conditions where one has stronger smoothness conditions. Also, Tb theorem is proved by

T1 theorem, tree selection arguments and size estimates under the Lebesgue measure. In this way,

they provide different proofs which are clearer in many senses and obtain some extended results.

Therefore, it is interesting to apply these time-frequency analysis to generalized T1 or Tb theory,

i.e. in non-homogeneous setting in which we have not seen such extension. This leads to another

good point of view to understand the theory. We now introduce the main objects and state the

main theorems reproved and proved in this work.

Let d be a positive number not necessary the same as dimension N and let µ be a Borel

measure on RN satisfying µ(B(x, r)) ≤ rd for all ball B(x, r). Note that the doubling property is

not assumed. A function K : RN ×RN\{(x, y) : x = y} is said to be a Calderón-Zygmund kernel

if it satisfies the following conditions for some constants C > 0 and α > 0:

• |K(x, y)| ≤ C 1

|x− y|d

• there exists α > 0 such that

|K(x, y)−K(x, y′)| ≤ C |y − y
′|α

|x− y|d+α
when |x− y| > 2|y − y′|,

and

|K(x, y)−K(x′, y)| ≤ C |x− x
′|α

|x− y|d+α
when |x− y| > 2|x− x′| .

A Calderón-Zygmund operator is an operator T : S(RN )→ S ′(RN ) of the form

Tf(x) =

ˆ
K(x, y)f(x)dx

for all f ∈ C∞c and x /∈ supp(f) with the Calderón-Zygmund kernel K and it can be extended to

a bounded operator on L2. Some authors do not require L2 boundedness but we will keep this

original definition.

Another assumption is weak boundedness of the operators. For general measures, we say the

operator T is weakly bounded if there exist Λ ≥ 1, C <∞ such that |〈TχQ,χQ〉| ≤ Cµ(ΛQ) for any
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cube Q ∈ RN .

The statement of T1 theorem is the following:

Theorem (David-Journé). A Calderón-Zygmund operator T extends to a bounded operator on

L2(µ) if the operator T is weakly bounded and T1, T ∗1 belong to BMO(µ).

Next chapter will say more about BMO space used in this general theory. As for Tb theorem, it

can be obtained in a similar manner to our proof of T1 theorem but we desire different approaches.

We have noticed the local Lp testing conditions for the theorem in the work of Auscher et al.

This type of condition was introduced by Christ with L∞ control [Chr90]. Both of them are in the

homogeneous world. Recently, Lacey and Vähäkangas [LV16] extend this story to non-homogeneous

local T1 theorem even with dual exponents. We then prove Tb theorem with L2 testing conditions

since we have not seen any result under this setting. This path also serves as a good start to an open

problem of Tb theorem for dual exponents where the number two in the local testing conditions in

the assumption below is replaced by conjugate pairs p and q. We now define weak accretivity and

provide the statement below.

A bounded function b is weakly accretive if there exists δ > 0 such that for any cube Q,

1

µ(Q)

∣∣∣∣ˆ
Q
b(x) dµ(x)

∣∣∣∣ ≥ δ.
Thus, we have that |b| ≥ δ µ-almost everywhere.

Theorem. Let T be a Calderón-Zygmund operator satisfying that there exist weakly accretive func-

tions b1, b2 and a constant B such that for all cubes Q in RN ,

‖T (b1χQ)‖L2(Q) ≤ Bµ(Q)1/2 and ‖T ∗(b2χQ)‖L2(Q) ≤ Bµ(Q)1/2.

Then T is bounded on L2.

The proofs are based on random lattices in which one utilize them to avoid bad parts when it

comes to analysis of small pieces. This idea was applied to handle Calderón-Zygmund operators in

[NTV97]. As a common procedure, one works with Haar system and, in non-homogeneous spaces,
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one needs martingale difference and also adapted version of it. We observe all of these with their

properties in chapter 2 as well as required known lemmas.

As usual in harmonic analysis, there are many components to handle. We then analyze each

component in chapter 3 using knowledge from [NTV03, AHM+02].

In chapter 4, we prove T1 theorem as stated above. Although the way we decompose and

control most terms are not new ideas, we can apply time-frequency analysis to achieve embedding

theorem and thus boundedness of paraproducts. In addition, we are able to deal with a mistake

on one of the considered terms in [NTV03].

In chapter 5, we investigate estimates of the paraproduct Π(f, g) risen from proving T1 theorem.

It has been a topic of interest to seek paraproduct estimates, e.g. boundedness from Lp × Lq to

Lr, as in [AHM+02, MTT02b, Li08] and such estimates for the paraproduct Π are unknown. With

the use of time-frequency analysis technique, Li improves this kind of investigation to r larger than

1/2 instead of 1. We then follow this method and obtain the following result.

Theorem. The paraproduct Π(f, g) is bounded from Lp × Lq → Lr where 1 < p, q < ∞ and

1/p+ 1/q = 1/r.

In the last chapter, we prove Tb theorem stated above by combining techniques from T1

theorem and [LV16]. In particular, we reduce the problem to study the good part via probabilistic

techniques. Then decompose it so that some terms can be treated using estimates as in T1 case.

For the paraproduct term, we rewrite it regarding a sparse tree and bound each of them.
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Chapter 2

Preliminaries

2.1 BMO spaces

Definition. Let 1 ≤ p < ∞ and λ > 1. Let f ∈ L1
loc(µ). We say f ∈ BMOp

λ(µ) if for any cube Q

there exists a constant aQ such that

ˆ
Q

|f − aQ|p dµ


1/p

≤ Cµ(λQ)1/p.

The infimum of such constant C taking over all Q is called the BMOp
λ(µ)-norm of f. Note that the

constant aQ can be replaced by the average 〈f〉Q := µ(Q)−1
´
Q

f dµ. Also we know from [NTV03]

that

BMOp2
λ (µ) ⊂ BMOp1

λ (µ) if p1 < p2, and BMOp
λ(µ) ⊂ BMOp

Λ(µ) if λ < Λ.

2.2 Useful lemmas

Lemma (Comparison Lemma). Let F ≥ 0 be a decreasing function on (0,∞), and let the measure

µ satisfy µ(B(x0, r)) ≤ rd for a fixed x0 and for all r ≥ 0. Then, for δ > 0,

ˆ

x:δ≤|x−x0|

F (|x− x0|) dµ(x) ≤ F (δ)δd + d

∞̂

δ

F (t)td−1dt.

Lemma (Schur’s Test). Let K : X × Y → C be a measurable function obeying the bounds

‖K(x, ·)‖L1 ≤ C
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for almost every x ∈ X, and

‖K(·, y)‖L1 ≤ C

for almost every y ∈ Y. Then the integral operator T is bounded on L2.

2.3 Martingale decomposition

In this section, we study decomposition of functions into functions on dyadic cubes.

Definition. A dyadic cube I is a cube of the form

I = [j2k, (j + 1)2k]N

where j, k ∈ Z. Denote a (standard) dyadic lattice I the set of all dyadic cubes.

2.3.1 Decomposition for T1

Let f ∈ L2. Define the averaging operator Ek by

Ekf(x) :=
∑
Q∈Sk

 
Q
f dµχQ(x) =

∑
Q∈Sk

χQ(x)

µ(Q)

ˆ
Q
f dµ.

where Sk = {Q ∈ I : l(Q) = 2−k}. If l(Q) = 2−k, then define EQf := (Ekf)χQ, 4kf := Ek+1f −

Ekf, and 4Qf := (4kf)χQ.

Proposition 2.1. 1. {4Qf : Q ∈ I} is orthogonal.

2. 4Q = 4∗Q for all Q ∈ I.

3. 4Q(4Q) = 4Q for all Q ∈ I.

Proof. 1. For any Q,R ∈ I, 〈4Qf,4Rf〉 = 0 if Q∩R = ∅. In case Q∩R 6= ∅, we assume that

l(Q) = 2−k, l(R) = 2−l and WLOG that k > l. Since

〈4Qf,4Rf〉 =

ˆ
(Ek+1f(x)− Ekf(x))(El+1f(x)− Elf(x))χQ(x) dµ,
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we observe that

Ekf(x)Elf(x) =

 ∑
Q′∈Sk

 
Q′
f dµχQ′(x)

∑
R∈Sl

 
R
f dµχR(x)


=
∑
Q′∈Sk

∑
R∈Sl

 
Q′
f dµ

 
R
f dµχQ′(x)

so that ˆ
Q
Ekf(x)Elf(x) dµ =

∑
R∈Sl

ˆ
Q
f dµ

 
R
f dµ.

Similarly, ˆ
Q
Ekf(x)El+1f(x) dµ =

∑
R∈Sl+1

ˆ
Q
f dµ

 
R
f dµ

Also, we have

ˆ
Q
Ek+1f(x)El+1f(x) dµ =

∑
Q′∈ch(Q)

∑
R∈Sl+1

ˆ
Q′
f dµ

 
R
f dµ

=
∑

R∈Sl+1

ˆ
Q
f dµ

 
R
f dµ

and similarly, ˆ
Q
Ek+1f(x)Elf(x) dµ =

∑
R∈Sl

ˆ
Q
f dµ

 
R
f dµ.

Therefore, 〈4Qf,4Rf〉 = 0.

2. It is straightforward to see that

〈4Qf, g〉 =

ˆ
(
∑

R∈ch(Q)

gχR
µ(R)

ˆ
R
f dµ−

gχQ
µ(Q)

ˆ
Q
f dµ) dµ

=
∑

R∈ch(Q)

1

µ(R)

ˆ
R
g dµ

ˆ
R
f dµ− 1

µ(Q)

ˆ
R
g dµ

ˆ
Q
f dµ

=

ˆ
(
∑

R∈ch(Q)

fχR
µ(R)

ˆ
R
g dµ−

fχQ
µ(Q)

ˆ
Q
g dµ) dµ

= 〈f,4Qg〉.
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3. It is also easy to see that

4Q(4Qf) =
∑

R∈ch(Q)

χR
µ(R)

ˆ
R
4Qf dµ−

χQ
µ(Q)

ˆ
Q
4Qf dµ

=
∑

R∈ch(Q)

(
χR
µ(R)

ˆ
R
f dµ− χR

µ(Q)

ˆ
Q
f dµ)− 0

=
∑

R∈ch(Q)

χR
µ(R)

ˆ
R
f dµ−

χQ
µ(Q)

ˆ
Q
f dµ

= 4Qf.

Proposition 2.2. Let Fn be the smallest σ-algebra containing Sn and F be the smallest σ-algebra

containing
⋃
n∈N Sn so that the system of sub-σ-algebra of F, {Fn : n ∈ Z}, is a filtration. Then

{Enf,Fn} is a martingale for f ∈ L1.

Proof. First of, for all n we have Enf ∈ L1 and for a fixed P of size 2−n we know that Enf(x) is

constant for all x ∈ P. Therefore, Enf is Fn-measurable. Lastly, we need to check that E[Enf |Fm] =

Emf for n > m. Indeed, for all Q ∈ Fm, we have l(Q) ≥ 2−m > 2−n. Thus,
´
QEmf dµ =

´
QEnf dµ.

Lemma 2.3 (Martingale difference decomposition). Every function f ∈ L2(µ) can be decomposed

as

f =
∑
P∈I
4P f

in L2. Moreover,

‖f‖2L2 =
∑
P∈I
‖4P f‖2L2

Proof. By Lebesgue Differentiation Theorem as l→∞,

Elf(x)→ f(x) in L2.

On the other hand, Elf(x)→ 0 in L2 as l→ −∞. In fact, for each x, |Elf(x)| = |µ(Q)|−1|
´
Q f dµ| ≤
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‖f‖2µ(Q)−1/2 → 0 as l→ −∞. Thus,

∞∑
k=−∞

4kf(x) = lim
|l|→∞

El+1f(x)− Elf(x) = f(x).

The result about L2 norm of f follows from the orthogonality of 4P f to each P ∈ I.

Lemma 2.4. For every f ∈ L2,

f =
∑
Q∈I

cQ(f)χQ

where cQ(f) are constants. Moreover,

‖f‖22 =
∑
Q∈I
|cQ(f)|2µ(Q).

Proof. Set fk :=
∑
Q∈I

l(Q)=2k

4Qf Then we observe that for eachQ of size 2k,4Qf =
∑

R∈ch(Q)

χR
µ(R)

´
R f dµ−

χQ
µ(Q)

´
Q f dµ =

∑
R∈ch(Q)

(
1

µ(R)

´
R f dµ− 1

µ(Q)

´
Q f dµ

)
χR. Thus, fk =

∑
R∈I

l(R)=2k−1

cR(f)χR so that

f =
∑
k∈Z

fk =
∑
k∈Z

∑
R∈P

l(R)=2k−1

cR(f)χR. In addition, by disjointness one can see that

‖f‖22 =
∑
k

‖fk‖22 =
∑
k

∑
R∈I

l(R)=2k−1

‖cR(f)χR‖22 =
∑
R∈I
|cR(f)|2µ(R).

2.3.2 Decomposition for Tb

In this part, we establish tools as in T1 theorem for Tb theorem.

Definition. Given a function f ∈ L2 and a weakly accretive function b. Define Ebkf(x) to be

Ebkf(x) :=
∑
Q∈Sk

(ˆ
Q
b dµ

)−1(ˆ
Q
f dµ

)
b(x)χQ(x)

and 4b
kf(x) := Ebk+1f(x) − Ebkf(x). For a cube Q ∈ Sk, define EbQf(x) := (Ebkf)χQ(x) and

4b
Qf := (4b

kf)χQ. Moreover, define 4c
Qf(x) to be the part that 4b

Qf(x) = b(x) · 4c
Qf(x). Then,
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observe some properties.

Proposition 2.5. 1.
´
4b
Qf dµ = 0 for all Q ∈ I.

2. 4b
k(4b

lf) = 0 for k 6= l.

3. 4b
Q(4b

Q) = 4b
Q for all Q ∈ I.

4. 4c
k(E

b
l ) = 0 for k > l and 4c

k(4b
l ) = 0 for k 6= l.

Proof. 1. Basic computation tells us that

ˆ
4b
Qf dµ =

ˆ
Q
Ebk+1f(x)− Ebkf(x) dµ

=
∑

Q′∈ch(Q)

(ˆ
Q′
b dµ

)−1(ˆ
Q′
f dµ

)ˆ
Q′
b dµ−

(ˆ
Q
b dµ

)−1(ˆ
Q
f dµ

)ˆ
Q
b dµ

=
∑

Q′∈ch(Q)

ˆ
Q′
f dµ−

ˆ
Q
f dµ = 0.

2. We first show that 4b
k(E

b
nf) = 0 and Ebn(4b

kf) = 0 for k ≥ n. Indeed, for k ≥ n

Ebk+1(Ebnf) =
∑

Q∈Sk+1

(

ˆ

Q

b)−1(

ˆ

Q

Ebnf)bχQ(x)

=
∑

Q∈Sk+1

(

ˆ

Q

b)−1

ˆ

Q

( ∑
R∈Sn

(

ˆ

R

b)−1(

ˆ

R

f)bχR(x)
)

dµbχQ(x)

=
∑

Q∈Sk+1

(

ˆ

R

b)−1(

ˆ

R

f)bχQ(x), where R ⊇ Q

Similarly,

Ebk(E
b
nf) =

∑
Q′∈Sk

(

ˆ

R

b)−1(

ˆ

R

f)bχQ′(x), where R ⊇ Q′.

Since for each Q ∈ Sk+1 such that Q ⊂ Q′, Q shares the same R, we have

∑
Q∈Sk+1

(

ˆ

R

b)−1(

ˆ

R

f)bχQ(x) =
∑
Q′∈Sk

(

ˆ

R

b)−1(

ˆ

R

f)bχQ′(x), R ⊇ Q′.
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Hence 4b
k(E

b
nf) = Ebk+1(Ebnf)− Ebk(Ebnf) = 0. To see the other equality, consider that

Ebn(Ebk+1f) =
∑
R∈Sn

(

ˆ

R

b)−1(

ˆ

R

Ebk+1f)bχR(x)

=
∑
R∈Sn

(

ˆ

R

b)−1

ˆ

R

( ∑
Q∈Sk+1

(

ˆ

Q

b)−1(

ˆ

Q

f)bχQ(x)
)

dµbχR(x)

=
∑
R∈Sn

(

ˆ

R

b)−1
( ∑
Q⊂R

(

ˆ

Q

f)
)
bχR(x)

=
∑
R∈Sn

(

ˆ

R

b)−1(

ˆ

R

f)bχR(x)

= Ebnf.

Similarly, Ebn(Ebkf) = Ebnf. Thus, Ebn(4b
kf) = Ebn(Ebk+1f) − Ebn(Ebkf) = 0. Then, recall that

4b
k(4b

lf) = Ebk+1(4b
lf) − Ebk(4b

lf). Since Ebn(4b
kf) = 0 for k ≥ n, we have 4b

k(4b
lf) = 0

when l ≥ k− 1. When l < k, we see that 4b
k(4b

lf) = 4b
k(E

b
l+1f)−4b

k(E
b
l f) = 0 by what we

have shown above as well.

3. By definition and 2, forQ ∈ Sk,4b
Q(4b

Qf) = (Ebk+1(4b
Qf)−Ebk(4b

Qf))χQ = (Ebk+1(4b
Qf))χQ =∑

R∈ch(Q)

(
´
R

b)−1(
´
R

4b
Qf)bχR. Since

´
R

4b
Qf =

´
R

f−(
´
R

b)(
´
Q

b)−1(
´
Q

f), it follows that4b
Q(4b

Qf) =

4b
Qf.

4. Similar calculation as in 2.

Lemma 2.6 (Weighted martingale difference decomposition). Let b be a weakly accretive function,

and let n ∈ Z. Then, any f ∈ L2(µ) can be decomposed as

f =
∑
Q∈I

l(Q)≤2n

4b
Qf +

∑
Q∈I

l(Q)=2n

EbQf

in L2. Moreover, ∑
Q∈I

l(Q)≤2n

∥∥∥4b
Qf
∥∥∥2

L2
+

∑
Q∈I

l(Q)=2n

∥∥∥EbQf∥∥∥2

L2
≤ C(b, δ)‖f‖2L2

11



Proof. Let I be a dyadic lattice. We will show first that the following set E is dense in L2,

E :=

{ ∑
Q∈Sk

CQχQb(x) : k ∈ Z

}
,

so that it is enough to prove the lemma on this subset. Indeed, for any ε > 0, and f ∈ L2, there

exists a simple function g =
n∑
i=1

aiχDi
(x), where ai ∈ R, Di ∈ B such that ‖f − g‖L2 ≤ ε. Now, we

observe that Di =
m⊔
j=1

Qij where Qij ∈ Sk. Consider h(x) :=
n∑
i=1

cib(x)χDi
(x) =

n∑
i=1

m∑
j=1

cib(x)χQi
j
(x) ∈

E where ci = ai
b(x) . Note that for each i, |b(x)| > 0 µ-a.e. on Di and hence on Qij for all j by weak

accretivity of b. Thus we have |
n∑
i=1

aiχDi
(x) − cib(x)χDi

(x)| = |
n∑
i=1

(ai − cib(x))χDi
(x)| = 0. and

hence ‖g − h‖L2 = 0. Therefore, ‖f − h‖L2 ≤ ‖f − g‖L2 + ‖g − h‖L2 ≤ ε as desired for the density.

Now for any fixed k ∈ Z, let f =
∑
R∈Sk

CRb(x)χR(x) we consider the term

∑
Q∈I

l(Q)≤2−k

4b
Qf +

∑
Q∈Sk

EbQf.

We will show first that
∑
Q∈I

l(Q)≤2−k

4b
Qf = 0. Fix j ∈ Z, and a cube Q ∈ Sj , for any j ≥ k. Then we

have that

Ebj+1f(x) =
∑

Q′∈Sj+1

(

ˆ

Q′

b dµ)−1(

ˆ

Q′

f dµ)b(x)χQ′(x)

=
∑

Q′∈Sj+1

(

ˆ

Q′

b dµ)−1(CR

ˆ

Q′

b dµ)b(x)χQ′(x), where R ⊃ Q′

=
∑

Q′∈Sj+1

CRb(x)χQ′(x)

and similarly

Ebjf(x) =
∑
Q∈Sj

(

ˆ

Q

b dµ)−1(

ˆ

Q

f dµ)b(x)χQ(x)

=
∑
Q∈Sj

CRb(x)χQ(x), where R ⊇ Q.

12



Hence, 4b
Qf =

(
Ebj+1f − Ebjf

)
χQ =

∑
Q′∈ch(Q)

CRbχQ′ −CRbχQ = CRbχQ−CRbχQ = 0. Since this is

true for all j ≥ k, we proved that
∑
Q∈I

l(Q)≤2−k

4b1
Q f = 0.

Now, we investigate the remaining term
∑
Q∈Sk

EbQf. As seen above, Ebkf =
∑
Q∈Sk

CRb(x)χQ(x),

whereR ⊇ Q. SinceR,Q ∈ Sk, it must be Ebkf =
∑
Q∈Sk

CQb(x)χQ(x) and hence EbQf = CQb(x)χQ(x).

Thus,
∑
Q∈Sk

EbQf =
∑
Q∈Sk

CQb(x)χQ(x) = f. Therefore,
∑
Q∈I

l(Q)≤2−k

4b
Qf +

∑
Q∈Sk

EbQf = f as desired.

For the estimate, We consider that for each Q ∈ Sn,

ˆ
Q
|Ebnf(x)|2 dµ =

ˆ
Q

∣∣∣ ∑
Q′∈Sn

(ˆ
Q′
b dµ

)−1(ˆ
Q′
f dµ

)
b(x)χQ′(x)

∣∣∣2 dµ

≤
∑
Q′∈Sn

ˆ
Q

∣∣∣ (ˆ
Q′
b dµ

)−1 ∣∣∣2∣∣∣ ˆ
Q′
f dµ

∣∣∣2|b(x)χQ′ |2 dµ

=
∣∣∣ (ˆ

Q
b dµ

)−1 ∣∣∣2∣∣∣ ˆ
Q
f dµ

∣∣∣2 ˆ
Q

|b(x)|2 dµ

≤ δ−2µ(Q)−2‖b‖2∞µ(Q)
∣∣∣ ˆ

Q
f dµ

∣∣∣2
≤ δ−2‖b‖2∞

ˆ
Q
|f |2 dµ

and thus ∑
Q∈Sn

‖EbQf‖2L2 ≤ δ−2‖b‖2∞
∑
Q∈Sn

ˆ
Q
|f |2 dµ ≤ C(δ, b)‖f‖2L2 .

This part is to show that
∑

Q∈I,l(Q)≤2n
‖4b

Qf‖2L2 ≤ C(δ, b)‖f‖2L2 . First observe that

∑
Q∈I,l(Q)≤2n

‖4b
Qf‖2L2 =

∑
k≤n

∑
Q∈Sk

‖4b
Qf‖2L2 =

∑
k≤n

ˆ
|4b

kf |2 dµ =
∑
k≤n
‖4b

kf‖2L2

by disjointness of same-sized cubes. Consider next that

4b
kf = Ebk−1f − Ebkf =

(
(Ek−1b)

−1Ek−1f − (Ekb)
−1Ekf

)
b

= (Ek−1b)
−1(Ek−1f − Ekf)b+ Ekf

(
(Ek−1b)

−1 − (Ekb)
−1
)
b

= (Ek−1b)
−14kfb− Ekf

4kb

EkbEk−1b
b.

13



Since b is weakly accretive,

∑
k≤n
‖(Ek−1b)

−14kfb‖2L2 . δ−2‖b‖2∞‖f‖2L2 .

For the second sum, we recall that ‖f‖2L2 =
∑
Q∈I

l(Q)≤2n

‖4Qf‖2L2 +
∑
Q∈Sn

‖EQf‖2L2 for any f ∈ L2.

Hence,
∑
R⊆Q
‖4Rb‖2L2 ≤

´
Q

|b|2 dµ ≤ ‖b‖2∞µ(Q) for any b ∈ L∞ so that

∑
R⊆Q

aRµ(R) :=
∑
R⊆Q

µ(R)−1‖4Rb‖2L2µ(R) ≤ ‖b‖2∞µ(Q).

By the embedding theorem above, we have

∑
Q∈I
‖4Qb‖2L2

(
µ(Q)−1

ˆ
Q
f dµ

)2
=
∑
Q∈I

aQ
(
µ(Q)−1

ˆ
Q
f dµ

)2
µ(Q) ≤ C‖f‖2L2 .

Since b is weakly accretive, |b(x)/(Ekb(x)Ek−1b(x))|2 ≤ C(δ, b). Therefore,

∑
k≤n

∥∥∥∥Ekf 4kb

EkbEk−1b
b

∥∥∥∥2

L2

≤ C
∑
k≤n
‖(Ekf)(4kb)‖2L2

= C
∑
k≤n

ˆ ∣∣∣ ∑
Q∈Sk

χQ(x)

µ(Q)

ˆ

Q

f dµ4Qb(x)
∣∣∣2 dµ

= C
∑
k≤n

∑
Q∈Sk

ˆ

Q

|
´
Q f dµ|2

|µ(Q)|2
|4Qb|2 dµ

= C
∑
Q∈I

|
´
Q f dµ|2

|µ(Q)|2
‖4Qb‖2L2

≤ C‖f‖2L2 .

Thus, we proved that
∑
Q∈I

l(Q)≤2n

‖4b
Qf‖2L2 =

∑
k≤n
‖4b

kf‖2L2 ≤ C(δ, b)‖f‖2L2 and hence the lemma.

Next, we observe another direction to decompose functions and the estimate of this form.

Lemma 2.7. For every f ∈ L2,

f =
∑
Q∈I

cQ(f)bχQ
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where cQ(f) are constants. Moreover,

∑
Q∈I
|cQ(f)|2µ(Q) . ‖f‖22.

Proof. Since 4b
Qf can be written as cQ′(f)b where Q′ ∈ ch(Q) and EbQf can be written as cQ(f)b.

Hence, we get the decomposition. To see the estimate, one observe that

δ2
∑
Q∈I
|cQ(f)|2µ(Q) ≤

∑
k

∑
Q∈I

l(Q)=2k

|cQ(f)|2‖bχQ‖22 =
∑
k

‖
∑
Q∈I

l(Q)=2k

4b
Qf‖22 =

∑
k

‖4b
kf‖22 . ‖f‖22

where the first inequality follows from the property that |b| ≥ δ µ-almost everywhere and the last

from the previous Lemma 2.6.

Remark. One may notice that the constant cQ′(f) is in fact the value 4c
Qf(x) when x ∈ Q′, the

children of Q. Thus, let us state an alternative form of the estimate as the inequality

∥∥∥(∑
k∈Z
|4c

kf |2
)1/2∥∥∥

2
. ‖f‖2 (2.1)

Next, the well-known Stein’s inequality is needed therefore we record it here, see e.g. [Bou86].

Lemma. For any 1 < p <∞ and sequence (fk)k∈Z in Lp,

∥∥∥∥∥(∑
k∈Z
|Ekfk|2

)1/2
∥∥∥∥∥
p

.

∥∥∥∥∥(∑
k∈Z
|fk|2

)1/2
∥∥∥∥∥
p

. (2.2)

Last but not least, we have the following somewhat martingale transform inequality in a general

measure, i.e. with the adapted martingale difference.

Lemma 2.8. For any T ∈ T , functions f ∈ L2, and constants satisfying supQ∈D |εQ| ≤ 1,

∥∥∥ ∑
Q∈D

πT Q=T

εQ4b
Qf
∥∥∥

2
. ‖f‖2.

One may think of T as a family of cubes or a tree and πTQ as a parent of Q in the family T .

Their definitions will be introduced when we need it to handle the term involving l(R) < 2−rl(Q).
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This lemma is proved in [LM16] where the problem is reduced to the bound of maximal truncations

∥∥∥ sup
ε>0

∣∣∣ ∑
Q∈D

πT Q=T
l(Q)>ε

εQDQf
∣∣∣∥∥∥2

2

where DQf = 4c
Qf except one sums over Q′ ∈ ch(Q)\chT T . To have this kind of estimates, one

usually rewrite 4c
Qf into terms, for example, as the sum over Q′ ∈ ch(Q)\chT T of

1

〈b〉Q
(〈f〉Q′ − 〈f〉Q) + (〈f〉Q′ − 〈f〉Q)

(
1

〈b〉Q′
− 1

〈b〉Q

)
+ 〈f〉Q

(
1

〈b〉Q′
− 1

〈b〉Q

)

so that the classical martingale transform inequality comes to help. For Lebesgue measure, the

inequality as the classical one where one sums over all dyadic cubes holds with help from the perfect

Calderón-Zygmund operator [LV14]. However, in our setting, the above lemma is all we need.

2.4 Random dyadic lattices

This section is where probabilistic analysis is in charge. A dyadic lattice randomly shifted from

the standard dyadic lattice is introduced to obtain a desired distribution property.

Construction of a random dyadic lattice.

Let Ω = [0, 1], B is a Borel σ − algebra, and l is the Lebesgue measure so that (Ω,B,l) is a

probability space. Let η(ω) = ω be a random variable uniformly distributed over [0,1). Indeed, if

x < 0, then F (x) = l(ω : ω = η(ω) < x) = 0. If x ∈ [0, 1], then F (x) = l(ω : ω = η(ω) < x) = x.

If x > 1, then F (x) = l(ω : ω = η(ω) < x) = 1. So the distribution function is the uniform

distribution. Let ξj(ω) be the following random variables for j ∈ N :

ξj(ω) =


1 , ω ∈

[
k
2j
, k+1

2j

]
for all positive odd number k < 2j

−1 otherwise

,

so that l {ω : ξj(ω) = 1} = 2j−1
(

1
2j

)
= 1

2 = 1− 1
2 = l {ω : ξj(ω) = −1} .

The random lattice D(ω) consists of the following cubes (interval in this case):
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i) Ik=0(ω) := [x(ω)− 1, x(ω)] = [ω − 1, ω] ∈ D(ω). Ĩ0(ω) := its siblings ∈ D(ω)

ii) For k < 0, Ik(ω) :=
[
ω − 2k, ω

]
∈ D(ω). Ĩk(ω) := its siblings ∈ D(ω)

iii) For k = 1, first choose one of Ĩ0(ω), say I0. Then put

I1(ω) :=


I0 ∪ left adjacent sibling of I0 , ξ1(ω) = 1

I0 ∪ right adjacent sibling of I0 , ξ1(ω) = −1

∈ D(ω)

and Ĩ1(ω) ∈ D(ω).

Inductively, we have all Ik(ω) and Ĩk(ω) ∈ D(ω) for all k > 0. In other words, for all k > 0 we

choose one of Ĩk−1(ω), say Ik−1 Then put

Ik(ω) :=


Ik−1 ∪ left adjacent sibling of Ik−1 , ξk(ω) = 1

Ik−1 ∪ right adjacent sibling of Ik−1 , ξk(ω) = −1

∈ D(ω)

and Ĩk(ω) ∈ D(ω). Hence we get intervals of length 2k for all k ∈ Z in the random lattice D(ω).

Lastly, get the random lattice in RN by taking a product of N independent random lattices

D(ω), ω ∈ Ω.

Lemma. The random lattice D(ω) in RN is uniformly distributed over RN .

It means, for any cube Q ∈ D(ω), the probability that a given point x ∈ Q is in a subcube

Q′ ⊆ Q of RN , i.e. the event E := {ω : x ∈ Q′ ⊆ Q ∈ D(ω)} , is

(
l(Q′)

l(Q)

)N
.

Proof. For first dimension, since η(ω) is uniformly distributed, the probability

P (ω : η(ω) < x) = F (x) =


0 , x < 0

x , 0 ≤ x ≤ 1

1 , x > 1

.

Thus, for l(Q) = 1, the probability of E is l(Q′). Otherwise, the probability of E is the ratio
l(Q′)

l(Q)
.

Then we get

(
l(Q′)

l(Q)

)N
in RN .
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Lemma (Equidistribution property.). For x ∈ RN , k ∈ Z, the probability that dist(x, ∂Q) ≥ εl(Q)

for some cube of size 2k is exactly (1− 2ε)N .

Proof. Consider first in the real line case, i.e. let x ∈ R. Thus Q is the interval of size 2k. Let

A := {ω : ∃Q ∈ D (ω) , dist(x, ∂Q) ≥ εl(Q)} . We can see also that A = {ω : x ∈ Q′ ⊆ Q ∈ D(ω),

l(Q′) = l(Q)− 2εl(Q)}. Since the random lattice D(ω) is uniformly distributed, P (A) is the ratio

of the length of A to the size of Q, i.e., P (A) =
(
l(Q)−2εl(Q)

l(Q)

)N
=
(

(1−2ε)2k

2k

)N
= (1− 2ε)N .

2.5 Bad parts with small probabilities

The purpose of the random lattices is to ignore some bad parts when we decompose functions. So

we study bad cubes and bad parts of functions here.

2.5.1 Bad cubes, decomposition and their probabilities

Definition. Let γ = α
2α+2d and r be a large quantity chosen later. A cube Q ∈ D(ω) is bad

if there exists a cube R in D′(ω′) such that l(Q) < 2−rl(R) and dist(Q, ∂R) ≤ l(Q)γl(R)1−γ or

dist(Q, ∂Rk) ≤ l(Q)γl(Rk)
1−γ for some Rk ∈ ch(R).

Lemma 2.9 (Small probability of bad cubes). Let r, γ be from the previous definition. Then for

any fixed ω and a cube Q ∈ D(ω) we have P :=P {ω′ : Qis bad } ≤ 4N 2−rγ

1−2−γ .

Proof. Given a cube Q ∈ D(ω) where ω is fixed. There exists a cube R ∈ D′ (ω′) such that Q ⊆ R

and l(R) = 2kl(Q) for all k ≥ r. We consider events A and B as A =
{
ω′ : dist(Q, ∂R) ≤ 2k−γkl(Q)

}
and B =

{
ω′ : dist(Q, ∂R) > 2k−γkl(Q)

}
so that 1 = P (A ∪ B) = P (A) ∪P (B). We then observe

that

P (B) ≥ P
{
ω′ : dist(c (Q) , ∂R) ≥ 2k−γkl(Q) + l(Q) =

(
2−γk + 2−k

)
l(R)

}
and from equidistribution property,

P
{
ω′ : dist(c (Q) , ∂R) ≥

(
2−γk + 2−k

)
l(R)

}
=
(

1− 2
(

2−γk + 2−k
))N

.

Thus, P (A) = 1−P (B) ≤ 1−
(
1− 2

(
2−γk + 2−k

))N
. Now we know that 1− (1− 2(x+ xy))N −

N
(
2 + 4x−y+1

)
xy ≤ 0 for x, y > 0 (proved below) so that P (A) ≤ N

(
2 + 4

(
2−k
)−γ+1

)
2−γk =
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N2−γk+1 +N2−γk−2k. Since k ≥ r ≥ 0, the probability P can be estimated as

P =
∑
k≥r

P (A) ≤ 2N
∑
k≥r

(
2−γk + 2−γk−2k−1

)
≤ 2N

∑
k≥r

(
2−γk + 2−γk

)
≤ 4N

∑
k≥r

2−γk = 4N
2−rγ

1− 2−γ
.

Proof. (of (1−2(x+xy))n ≥ 1−n
(
2 + 4x−y+1

)
xy for x, y > 0 and n ∈ N.) We prove it by induction

on n. For n = 1, we see that 1− 2(x+ xy)− 1 +
(
2 + 4x−y+1

)
xy = −2x− 2xy + 2xy + 4x−y+1xy =

−2x + 4x = 2x ≥ 0. Assume that the statement holds for n. Then we consider the statement for

n+ 1 : (1− 2(x+ xy))n+1:

(1− 2(x+ xy))n+1 = (1− 2(x+ xy))n(1− 2(x+ xy))

≥
(
1− n

(
2 + 4x−y+1

)
xy
)

(1− 2(x+ xy))

= 1− 2x− 2xy − n
(
2 + 4x−y+1

)
xy + 2n

(
2 + 4x−y+1

)
xy+1 + 2n

(
2 + 4x−y+1

)
x2y

= 1− n
(
2 + 4x−y+1

)
xy −

(
2 + 4x−y+1

)
xy − 2x− 2xy + 2n

(
2 + 4x−y+1

)
xy+1

+ 2n
(
2 + 4x−y+1

)
x2y +

(
2 + 4x−y+1

)
xy

= 1− (n+ 1)
(
2 + 4x−y+1

)
xy + 2x+ 2n

(
2 + 4x−y+1

)
xy+1 + 2n

(
2 + 4x−y+1

)
x2y

≥ 1− (n+ 1)
(
2 + 4x−y+1

)
xy.

Definition. Let f and g be in L2 and D := D(ω) be a random dyadic lattice. As in Lemma 2.3

that we can write f =
∑
Q∈D
4Qf in L2, define

fbad :=
∑
Q∈D
Qbad

4Qf, and fgd :=
∑
Q∈G
4Qf,

so that f = fgd + fbad in L2.

Next, we will see that it is possible to pick lattices with desired control.
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Lemma 2.10. With probability at least 9
16 , for some dyadic lattices we have

‖fbad‖2 ≤ 2−32−2N ‖f‖2 , ‖gbad‖L2 ≤ 2−32−2N ‖g‖2 .

Remark. More precisely, as ω, ω′ determine bad terms of functions, the probability in this

lemma just means P
{

(ω, ω′) ∈ Ω2 : ‖fbad‖L2 ≤ 2−32−2N ‖f‖L2 , ‖gbad‖L2 ≤ 2−32−2N ‖g‖L2

}
.

Proof. In order to estimate ‖fbad‖, we consider a square function Sf(x) on RN :

SDf(x) :=
∑
Q∈D
‖4Qf‖22 µ(Q)−1χQ

so that ˆ
RN

SDf(x) dµ(x) =
∑
Q∈D
‖4Qf‖22 = ‖f‖22,

and

SDfbad(x) :=
∑
Q∈D
Qbad

‖4Qf‖22 µ(Q)−1χQ(x).

We first compute Eω′SDfbad(x) :=
´
SDfbad(x) dP(ω′) where ω′ ranges for the existence of bad

cubes Q. That is

Eω′SDfbad(x) =

ˆ
{ω′:∃ badQ }

SDfbad(x) dP(ω′)

Since SDfbad is taken from SDf , we get

ˆ
{ω′:∃ badQ }

SDfbad(x) dP(ω′) ≤
ˆ
{ω′:∃ badQ }

SDf(x) dP(ω′)

and since SDf(x) is independent of ω′, we have

ˆ
{ω′:∃ badQ }

SDf(x) dP(ω′) = P
{
ω′ : ∃ badQ

}
SDf(x). ≤ 2−82−4NSDf(x).

We have seen that P {ω′ : Qis bad} ≤ 4N2−rγ

1−2−γ by Lemma 2.9 for a cube Q. If one chooses r ≥
1
γ log2

(
21024NN
1−2−γ

)
, we then have P {ω′ : Qis bad} ≤ 2−82−4N . Also the case that there exist bad
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cubes covers the one that one cube Q is bad. Therefore,

Eω′SDfbad(x) ≤ P
{
ω′ : ∃ badQ

}
SDf(x)

≤ P
{
ω′ : a cubeQ is bad

}
SDf(x)

≤ 2−82−4NSDf(x).

By orthogonality, we can see that

Eω′ ‖fbad‖22 = Eω′
(ˆ

SDfbad dµ

)
.

Since ‖f‖22 =
´
RN SDf(x) dµ,

Eω′
(ˆ

SDfbad dµ

)
=

ˆ
Eω′SDfbad dµ ≤ 2−82−4N

ˆ
RN

SDf(x) dµ = 2−82−4N ‖f‖2L2 .

Note here that we can change the order of integration since Eω′ [
´
RN SDfbad dµ] ≤ Eω′ [

´
RN SDf dµ] ≤

Eω′ [‖f‖22] ≤ ‖f‖22 . Then,

Eω,ω′ ‖fbad‖22 :=

ˆ
{ω∈Ω}

Eω′ ‖fbad‖22 dPω ≤ 2−82−4N ‖f‖22

Hence, using Markov’s inequality,

P
{

(ω, ω′) : ‖fbad‖22 ≥ 222−82−4N ‖f‖22
}
≤

Eω,ω′ ‖fbad‖22
222−82−4N ‖f‖22

≤
2−82−4N ‖f‖22

222−82−4N ‖f‖22
=

1

4
.

That is with probability at least 3
4 , ‖fbad‖L2 ≤ 2 ·2−42−2N ‖f‖L2 . Similary, we have g = ggd+gbad

where cubes for g are in D′(ω′) and are bad to D(ω) satisfying ‖gbad‖2 ≤ 2 · 2−42−2N ‖g‖2 with

probability at least 3
4 . Therefore, with probability at least 9

16 ,

‖fbad‖2 ≤ 2−32−2N ‖f‖2 , ‖gbad‖2 ≤ 2−32−2N ‖g‖2 ,

simultaneously.
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2.5.2 Another bad part

In this section, we want to avoid more bad part defined below.

Definition. For a cube Q ∈ D, define the bad part of Q to be

Qb := Q ∩
( ⋃

R∈D′
2−rl(Q)≤l(R)≤2rl(Q)

δR

)

where δR := (1 + 2ε)R\(1− 2ε)R (i.e. εl(R)-neighborhood of ∂R).

For a function f ∈ L2(µ) and for each k, define the bad parts fkb of fk to be

fkb :=
∑
Q∈D

l(Q)=2k

cQ(f)χQb .

The following lemma says that even more satisfied lattices can be chosen.

Lemma 2.11. With probability at least 1
4 , for some lattices D(ω),D′(ω′)

‖fbad‖2 ≤ 2−32−2N ‖f‖2 , ‖gbad‖2 ≤ 2−32−2N ‖g‖2

and ∑
k

∥∥∥fkb ∥∥∥2

2
≤ 8pε ‖f‖22 ,

∑
k

∥∥∥gkb ∥∥∥2

2
≤ 8pε ‖g‖22 .

where pε is defined below. Roughly speaking, we are talking about probability P{(ω, ω′) ∈ Ω2 : four

inequalities above holds simultaneously} which is greater than 0 so that there exists (ω, ω′) giving

D(ω),D′(ω′) with such inequalities.

Proof. Given the random dyadic lattice D := D(ω). For a fixed x ∈ RN , k ∈ Z, consider

Eω′
∣∣∣fkb (x)

∣∣∣2 ≤ ˆ ∑
Q∈D

l(Q)=2k

|cQ(f)|2 χQb
(x)dP(ω′).
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We want to consider the case that there is R ∈ D′(ω′), l(R) = 2k, x ∈ δR so that χQb
(x) = 1. Thus

ˆ ∑
Q∈D

l(Q)=2k

|cQ(f)|2 χQb
(x)dP(ω′) =

ˆ

{ω′:∃R∈D′(ω′), l(R)=2k, x∈δR}

∣∣∣ ∑
Q∈D

l(Q)=2k

cQ(f)
∣∣∣2dP

=

ˆ

{ω′:∃R∈D′(ω′), l(R)=2k, x∈δR}

∣∣∣fk(x)
∣∣∣2 dP

= pε

∣∣∣fk(x)
∣∣∣2 ,

where pε = P{ω′ : ∃R ∈ D′(ω′), l(R) = 2k, x ∈ δR}. Note that pε does not depend on k. Then, one

can consider that

Eω′
(∑

k

‖fkb ‖22

)
=
∑
k

(ˆ
RN

Eω′ |fkb |2dµ(x)

)
≤ pε

∑
k

(ˆ
RN

|fk(x)|2dµ(x)

)
= pε

∑
k

‖fk‖22

= pε ‖f‖22 .

Since the above inequality holds for any dyadic grid D(ω), we have

Eω,ω′
(∑

k

∥∥∥fkb ∥∥∥2

2

)
:= Eω

(
Eω′
(∑

k

∥∥∥fkb (x)
∥∥∥2

2

))
≤ pε ‖f‖22 .

Similarly for a given D′(ω′), Eω
(∑
k

∥∥gkb ∥∥2

2

)
≤ pε ‖g‖22. Then,

Eω′,ω

(∑
k

∥∥∥gkb ∥∥∥2

2

)
≤ pε ‖g‖22 .

Hence, by Markov’s inequality, we have

Pω,ω′
{∑

k

∥∥∥fkb ∥∥∥2

2
≥ 8pε ‖f‖22

}
≤

Eω,ω′
(∑

k

∥∥fkb ∥∥2

2

)
8pε ‖f‖22

≤ 1

8
.
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Similarly, Pω′,ω
{∑

k

∥∥gkb ∥∥2

L2 ≥ 8pε ‖g‖2L2

}
≤ 1

8 .

Since P(A ∩ B ∩ C ∩D) ≥ 1−A′ − B′ − C′ −D′ together with the estimate in Lemma 2.10,

the probability that ‖fbad‖2 ≤ 2−32−2N ‖f‖2, ‖gbad‖2 ≤ 2−32−2N ‖g‖2,
∑
k

∥∥fkb ∥∥2

2
≤ 8pε ‖f‖22, and∑

k

∥∥gkb ∥∥2

2
≤ 8pε ‖g‖22 is greater than 1− 1

4 −
1
4 −

1
8 −

1
8 = 1

4 .

2.5.3 Bad parts for Tb theorem

For Tb theorem, the definition of bad cubes is slightly adapted though important properties are

the same [Hyt11]. Since ideas and proofs are explicitly presented for the martingale difference, we

only state required lemmas without proofs in this part.

Definition. Given D and D′ dyadic lattices. A cube Q ∈ D is bad if there is a cube R in D or D′

such that l(Q) ≤ 2−rl(R) and dist(Q, ∂R) ≤ l(Q)γl(R)1−γ . Then, by Lemma 2.6, one can consider

f = fgd + fbad in L2 where

fbad :=
∑
Q∈D
Qbad

4b
Qf, and fgd :=

∑
Q∈G
4b
Qf +

∑
Q∈Sn

EbQf.

Moreover, for each k, the bad parts fkb of fk can be defined as

fkb :=
∑
Q∈D

l(Q)=2k

cQ(f)bχQb .

Lemma 2.12. With probability at least 1
4 , for some lattices D(ω),D′(ω′)

‖fbad‖2 ≤ 2−32−2N ‖f‖2 , ‖gbad‖2 ≤ 2−32−2N ‖g‖2

and ∑
k≤n

∥∥∥fkb ∥∥∥2

2
≤ 8C(δ, b)pε ‖f‖22 ,

∑
k≤n

∥∥∥gkb ∥∥∥2

2
≤ 8C(δ, b)pε ‖g‖22 ,

where pε is the probability that there exists R ∈ D′(ω′) in which a point x lies in its εl(R)-nbhd

(Q ∈ D(ω) with εl(Q)-nbhd for g).
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Remark. Again, the lemma says about the probability P{(ω, ω′) ∈ Ω2 : four inequalities above

holds simultaneously} which is greater than 0 so that there exists (ω, ω′) giving D(ω), D′(ω′) with

such inequalities. Also, from the estimates, observe that ‖fgd‖2 = ‖f − fbad‖2 ≤ ‖f‖2 + ‖fbad‖2 .

‖f‖2, and similar for g.

2.6 Trees and decompositon

In this section, we introduce language of trees. Also, we will see how one can decompose a tree in

a useful direction.

Definition. A tree is a collection T ⊆ I of dyadic cubes (a.k.a. tiles) with a top tile IT ∈ T such

that P ⊆ IT for all P ∈ T .

The complete tree Tree(I) is the collection {P ∈ I : P ⊆ I} with the top tile I.

A collection P ⊆ I is convex if for every pair P ⊆ P ′ in P, and I ∈ I such that P ⊆ I ⊆ P ′,

then I ∈ P.

Let a : I → R+ be a positive-real-valued function. Define the size of a on a tree T by

‖a‖size(T ) :=
1

µ(IT )

∑
P∈T

a(P )

and the maximal size of a by

‖a‖size∗(I) := sup
T⊂I
‖a‖size(T ).

Given f on R and P ∈ I, define

‖f‖mean(P ) :=
1

µ(IP )

ˆ

IP

|f | dµ

and for any collection P ⊂ I, define

‖f‖mean∗(P) := sup
P∈P
‖f‖mean(P ).

Lemma 2.13 (Decompositon for mean). For n ∈ Z, given a convex collection Pn ⊂ I and a

function f ∈ S such that ‖f‖mean∗(Pn) ≤ 2n. There exists a disjoint partition Pn =
⋃
T ∈Tn T ∪Pn−1
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where Pn−1 is a convex collection of tiles such that ‖f‖mean∗(Pn−1) ≤ 2n−1, and Tn is a collection

of convex trees T with disjoint spatial intervals IT such that

‖f‖mean(IT ) ∼ ‖f‖mean∗(T ) ∼ 2n

for all T ∈ Tn. In particular,

∑
T ∈Tn

µ(IT ) ≤ 2−n+2

ˆ
|f |≥2n−2

|f | dµ ≤ 2−np+2p‖f‖pp

for 1 ≤ p <∞.

Proof. Choose P ∈ Pn that is maximal with respect to set inclusion for ‖f‖mean(P ) > 2n−1. If

no such P , then set Pn−1 := Pn. Otherwise, we collect the complete tree T = Tree(P ) ∩ Pn

into Tn so that 2n−1 < ‖f‖mean(IT ) ≤ ‖f‖mean∗(T ) ≤ 2n. Remove T from Pn and do the same

with Pn\T . Repeat this procedure with the remaining tiles. Set Pn−1 := Pn\
⋃
T ∈Tn . Now we

can see that in Tn the trees in Tn are disjoint since we choose the maximal top tile. In addition,

they are complete w.r.t. Pn and thus convex. Then we see that ‖f‖mean∗(Pn−1) ≤ 2n−1 and

2n−1 < ‖f‖mean(IT ) ≤ ‖f‖mean∗(T ) ≤ 2n for all T ∈ Tn. This leads to 2n−1 ≤ 1
µ(IT )

´
IT
|f | dµ for all

T ∈ Tn. That is

2n−1µ(IT ) ≤
ˆ

IT
|f |≥2n−2

|f | dµ+

ˆ

IT
|f |≤2n−2

|f | dµ ≤
ˆ

IT
|f |≥2n−2

|f | dµ+ 2n−2µ(IT )

Thus,

2nµ(IT ) ≤ 4

ˆ

IT
|f |≥2n−2

|f | dµ.

Then summing over disjoint T ∈ Tn, we have

∑
T ∈Tn

µ(IT ) ≤ 4 · 2−n
∑
T ∈Tn

ˆ

IT
|f |≥2n−2

|f | dµ ≤ 4 · 2−n
ˆ

|f |≥2n−2

|f | dµ.
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To obtain Lp norm of f , first apply Hölder’s inequality to get

4 · 2−n
ˆ

|f |≥2n−2

|f | dµ ≤ 4 · 2−n‖f‖p‖χ|f | ≥ 2n−2‖q = 4 · 2−n‖f‖pµ({x : |f(x)| ≥ 2n−2})1/q.

Then, by Chebyshev’s inequality, one can see that

4 · 2−n‖f‖pµ({x : |f(x)| ≥ 2n−2})1/q ≤ 4 · 2−n‖f‖p2−np+n+2p−2‖f‖p−1
p = 2−np+2p‖f‖pp .
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Chapter 3

Prerequisite lemmas

In addition to tools and their properties in the previous chapter, we prepare some estimates and

lemmas in this one. One may refer to the next chapter to get some ideas why we deal with this

stuff.

3.1 L2 boundedness of Π and cancellation

It is common to meet some paraproducts in study of singular integral operator. The one we

encounter is

Π(g, T ∗1) :=
∑
S∈D′

∑
P∈D

l(P )=2−rl(S)
dist(P,∂S)≥λl(P )

ESg · 4∗P (T ∗1) .

Lemma 3.1. Let h ∈ BMO2
λ. Define a function a : D′ → R+ by

a(S) :=
∑
P∈D

l(P )=2−rl(S)
dist(P,∂S)≥λl(P )

‖4∗P (h)‖22.

Then we have that the size of a on T is bounded ,i.e. ‖a‖size(T ) < ∞ for all T ∈ Tn in Lemma

2.13 where Pn = D′ and hence ‖a‖size∗(D′) <∞.

Proof. For all T ∈ Tn, consider that

∑
S∈T

a(S) ≤
∑

P∈D;P⊆IT
l(P )≤2−rl(IT )

dist(P,∂IT )≥λl(P )

‖4∗P (h)‖22.

We want to rewrite the last sum to form a collection of Whitney intervalsW :W :=
⋃
i≥0Wi where
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W0 is the collection of intervals P ⊂ IT such that l(P ) = 2−rl(IT ) and dist(P, ∂IT ) ≥ λl(P ) and

Wi is the collection of intervals P ⊂ IT such that l(P ) = 2−r−il(IT ) and dist(P, ∂IT ) ≥ λl(P ) and

P ∩
i−1⋃
j=0

Wj = ∅ for i = 1, 2, 3, ... Then we can see that for every Q ∈ W,

∑
P⊆Q
‖4∗P (h)‖22 =

∑
P⊆Q
‖4∗P (h− cQ)‖22 ≤

ˆ
Q
|h− cQ|2 dµ ≤ Cµ(λQ),

where we use martingale difference properties in the first two steps and that h ∈ BMO2
λ in last

inequality. Therefore,

∑
Q∈W

∑
P⊆Q
‖4∗P (h)‖22 ≤ C

∑
Q∈W

µ(λQ) = C
∑
Q∈W

ˆ
χλQ dµ = C

ˆ
IT

∑
Q∈W

χλQ dµ ≤ C(λ)µ(IT )

where the last step follows from that for each x ∈ IT , there are finitely many Q such that x ∈ λQ.

Hence, ∑
S∈T

a(S) ≤
∑

P∈D;P⊆IT
l(P )≤2−rl(IT )

dist(P,∂IT )≥λl(P )

‖4∗P (h)‖22 =
∑
Q∈W

∑
P⊆Q
‖4∗P (h)‖22 ≤ C(λ)µ(IT )

which means ‖a‖size(T ) < C(λ).

Lemma 3.2 (Carleson’s embedding theorem). Let h ∈ BMO2
λ. For 1 < p <∞,

∑
S∈D′

∑
P∈D

l(P )=2−rl(S)
dist(P,∂S)≥λ(P )

‖4∗P (h)‖22|〈f〉S |p ≤ C(p, λ)‖a‖size∗(D′)‖f‖pp

for all locally integrable functions f .

Proof. Choose large enough k such that ‖f‖mean∗(D′) ≤ 2k. Then, by Lemma 2.13, we get D′ =⋃
T ∈Tk T ∪Pk−1. Repeatedly decomposing Pk−i, we obtain D′ =

⋃
n≤k

⋃
T ∈Tn

T where Tn is a collection

of convex trees T with disjoint spatial interval IT such that ‖f‖mean(IT ) ∼ ‖f‖mean∗(T ) ∼ 2n. It is

then easy to see that

∑
S∈D′

a(S)|〈f〉S |p =
∑
n≤k

∑
T ∈Tn

∑
S∈T

a(S)|〈f〉IS |
p .

∑
n≤k

∑
T ∈Tn

∑
S∈T

2npa(S).
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By definition, we have

∑
n≤k

∑
T ∈Tn

∑
S∈T

2npa(S) =
∑
n≤k

2np
∑
T ∈Tn

µ(IT )‖a‖size(T ) ≤
∑
n≤k

2np
∑
T ∈Tn

µ(IT )‖a‖size∗(D′).

From Lemma 2.13,

∑
n≤k

2np
∑
T ∈Tn

µ(IT )‖a‖size∗(D′) ≤ ‖a‖size∗(D′)
∑
n≤k

2np−n+2

ˆ
|f |≥2n−2

|f | dµ

and then one can get Lp norm of f as follows. Obtaining the upper bound from the fact that

∑
n≤k

2np−n+2 .
∑
n≤k

2np−n−2p+2 =
∑
n≤k

2(n−2)(p−1)

As a geometric series with the first term 2(k−2)(p−1), we are done since

‖a‖size∗(D′)
ˆ

2n−2≤|f |

∑
n≤k

2(n−2)(p−1)|f | dµ . ‖a‖size∗(D′)
ˆ
|f |p−1|f | dµ = ‖a‖size∗(D′)‖f‖pp.

Theorem 3.3. The paraproduct Π(g, h) is bounded on L2 when h ∈ BMO2
λ.

Proof. One just play with the definition and apply the previous embedding as

‖Π(g, h)‖22 = sup
‖f‖2=1

|〈Π(g, h), f〉|2 ≤ sup
‖f‖2=1

∑
S∈D′

∑
P∈D

l(P )=2−rl(S)
dist(P,∂S)≥λl(P )

|〈ESg · 4∗P (h), f〉|2

= sup
‖f‖2=1

∑
S∈D′

∑
P∈D

l(P )=2−rl(S)
dist(P,∂S)≥λl(P )

|〈g〉S〈4∗P (h), f〉|2

≤
∑
S∈D′

|〈g〉S |2
∑
P∈D

l(P )=2−rl(S)
dist(P,∂S)≥λl(P )

‖4∗P (h)‖22

. ‖g‖22.
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Lemma 3.4. For any R ∈ D′, Q ∈ D such that R ⊆ Q or l(Q) ≥ 2−rl(R), the terms 〈4Qf,Π4Rg〉

is zero.

Proof. If Q ⊇ R, then R ⊆ Q ⊆ P ⊂ S so that ES(4Rg) = 0. If l(Q) ≥ 2−rl(R) then l(P ) =

2−rl(S) < 2−rl(R) ≤ l(Q). Since P,Q ∈ D and P ⊂ Q (otherwise 0), we have that 4Qf is constant

on P as well as ES(4Rg). Hence
´
4Qf · ES(4Rg) · 4∗P (T ∗1) dµ = c

´
4∗P (T ∗1) dµ = 0.

3.2 Estimates of bilinear forms on some cubes

When one decomposes 〈Tf, g〉, summands as 〈4Qf,4Rg〉 arise. For some relations of Q and R,

one gets good estimates so that the summation over such cubes can be controlled. Before starting,

denote the long distance D(Q,R) := dist(Q,R) + l(R) + l(Q).

Lemma 3.5. For R ∈ D′ and Q ∈ G such that Q ∩R = ∅, l(Q) < 2−rl(R),

|〈T4Qf,4Rg〉| ≤ C
l(Q)α/2l(R)α/2

D(Q,R)d+α
µ(Q)1/2µ(R)1/2‖4Qf‖2‖4Rg‖2.

Proof. To prove this, we first prove that for such Q, R,

|〈T4Qf,4Rg〉| ≤ C
l(Q)α

dist(Q,R)d+α
µ(Q)1/2µ(R)1/2‖4Qf‖2‖4Rg‖2.

Indeed, we have |x− y0| ≥ 2|y − y0| since Q is good leading to dist(Q,R) ≥ l(Q). Then using the

condition of the operator and Hólder inequality for the last line we get

|〈T4Qf,4Rg〉| = |
ˆ ˆ

(K(x, y)−K(x, y0))4Qf(y)4Rg(x) dµ(y) dµ(x)|

.
ˆ ˆ

|y − y0|α

|x− y0|d+α
|4Qf(y)||4Rg(x)| dµ(y) dµ(x)

≤ l(Q)α

dist(Q,R)d+α
‖4Qf‖L1‖4Rg‖L1

≤ l(Q)α

dist(Q,R)d+α
µ(Q)1/2µ(R)1/2‖4Qf‖L2‖4Rg‖L2 .

Next we consider two cases regarding dist(Q,R) and l(R):
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If dist(Q,R) ≥ l(R), then D(Q,R) ≤ 3dist(Q,R). Thus

|〈T4Qf,4Rg〉| .
l(Q)α

D(Q,R)d+α
µ(Q)1/2µ(R)1/2‖4Qf‖L2‖4Rg‖L2

.
l(Q)α/2l(R)α/2

D(Q,R)d+α
µ(Q)1/2µ(R)1/2‖4Qf‖L2‖4Rg‖L2 .

In case dist(Q,R) ≤ l(R), we use the fact that Q is good and that γd+ γα = α/2 to have

l(Q)α

dist(Q,R)d+α
≤ l(Q)α

(l(Q)γl(R)1−γ)d+α
=

l(Q)α

l(Q)α/2l(R)d+α/2
=
l(Q)α/2l(R)α/2

l(R)d+α
=
l(Q)α/2l(R)α/2

D(Q,R)d+α

and then the result follows from the inequality we first proved.

Lemma 3.6. The following term is bounded,

∑
R∈D′

∑
Q∩R=∅

2−rl(R)>l(Q)

l(Q)α/2l(R)α/2

D(Q,R)d+α
µ(Q)1/2µ(R)1/2‖4Qf‖2‖4Rg‖2

≤ C(
∑
Q∈D
‖4Qf‖22)1/2(

∑
R∈D′

‖4Rg‖22)1/2

. ‖f‖2‖g‖2.

Proof. We rewrite the sum on the left as
∑
n>r

∑
k

∑
R∈D′

l(R)=2−k

∑
Q∩R=∅

l(Q)=2−n−k

so that it suffices to prove that

∑
R∈D′

l(R)=2−k

∑
Q∩R=∅

l(Q)=2−n−k

l(Q)α/2l(R)α/2

D(Q,R)d+α
µ(Q)1/2µ(R)1/2‖4Qf‖2‖4Rg‖2

≤ 2−nβ(
∑

Q∩R=∅
l(Q)=2−n−k

‖4Qf‖22)1/2(
∑
R∈D′

l(R)=2−k

‖4Rg‖22)1/2

for some positive β. In order to prove that we will consider the sum as an integral operator

ˆ ˆ
K

(n)
k (x, y)X(x)Y (y) dµ(x) dµ(y)
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and show that it is bounded so that the double integral is bounded by C‖X‖2‖Y ‖2. Indeed, we set

X :=
∑

Q:Q∩R=∅
l(Q)=2−k−n

‖4Qf‖2
µ(Q)1/2

χQ, Y :=
∑
R

l(R)=2−k

‖4Rg‖2
µ(R)1/2

χR,

and

K
(n)
k (x, y) :=

∑
R

l(R)=2−k

∑
Q:Q∩R=∅
l(Q)=2−k−n

l(Q)α/2l(R)α/2

D(Q,R)d+α
χQ(x)χR(y).

We observe now that for each x, y there is only one non-zero term in K
(n)
k . By Schur’s Test, we

just show that the kernel is bounded in L1. Firstly, we get the geometric sequences as follows:

|K(n)
k (x, y)| ≤ l(Q)α/2l(R)α/2

D(Q,R)d+α
=

2(−kα−nα)/2 · 2−kα/2

D(Q,R)d+α
≤ 2−nα/2 · 2−kα

(2−k + |x− y|)d+α

where the last inequality holds since 2D(Q,R) ≥ 2−k + |x− y|. Then consider that

ˆ
2−kα

(2−k + |x− y|)d+α
dµ ≤ 2−kα lim

ε→0

ˆ

|x−y|>ε

1

(2−k + |x− y|)d+α
dµ.

By Comparison Lemma,

ˆ

|x−y|>ε

1

(2−k + |x− y|)d+α
dµ ≤ εd

(2−k + ε)d+α
+ d

∞̂

ε

td−1

(2−k + t)d+α
dt ≤ d

∞̂

ε

(2−k + t)−α−1 dt

= d
(2−k + t)−α

−α

∣∣∣∣∞
ε

=
d

α
(2−k + ε)−α.

Taking limit we get the term d
α2kα and hence

´
2−kα

(2−k+|x−y|)d+α dµ is bounded by d
α which is inde-

pendent of k.

Lemma 3.7. For R ∈ D′ and Q ∈ G satisfying Q ⊂ R, l(Q) < 2−rl(R). Then

|〈(T −Π∗)4Qf,4Rg〉| ≤ C
(
l(Q)

l(R)

)α/2( µ(Q)

µ(Rl)

)1/2

‖4Qf‖2‖4Rg‖2
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Proof. We want to write the operator as something easier to deal with but first we recall that 4Rg

can be written in terms of a step function on the children Rl and Rr of R as ClχRl
+ CrχRr

for

some constant Cl, Cr. Now fix such R,Q and consider

〈4Qf,Π4Rg〉 =
∑
S∈D′

∑
P∈D

l(P )=2−rl(S)
dist(P,∂S)≥λl(P )

〈4Qf,ES4Rg · 4∗P (T ∗1)〉 =
∑
S⊆Rl

∑
P

〈4Qf, ClχS · 4∗p(T1)〉

since S,R are in the same lattice and only non-zero terms of ES(4Rg) are those of S ⊂ R. These

sums are actually simple since Q is one of those P ’s and they are in the same lattice so only

P = Q is left. In fact, one observes that there exists S ∈ D′ such that Q ⊂ S ⊆ Rl ∈ ch(R),

l(Q) = 2−rl(S), and dist(Q, ∂S) ≥ λl(Q). We can choose S = Rl if needed since dist(Q, ∂Rl) ≥

l(Q)γl(Rl)
1−γ = l(Q)2r(1−r) ≥ λl(Q). Therefore,

∑
S⊆Rl

∑
P

〈4Qf, ClχS · 4∗p(T1)〉 = 〈4Qf,4∗Q(T1)〉Cl = 〈T4Qf, 1〉Cl.

We now consider the inner product as follows:

|〈(T −Π∗)4Qf,4Rg〉| = |〈T4Qf,4Rg〉 − 〈4Qf,Π4Rg〉| = |〈T4Qf,4Rg − Cl〉|

= |〈T4Qf, ClχRl
− Cl〉+ 〈T4Qf, CrχRr

〉|

≤ |Cl||〈T4Qf,χRl
− 1〉|+ |〈T4Qf, CrχRr

〉|

For the latter term, we follow Lemma 3.5 together with D(Q,Rl) ≥ l(Rl) to get

|〈T4Qf, CrχRr
〉| ≤ C l(Q)α/2l(Rl)

α/2

D(Q,Rl)d+α
µ(Q)1/2µ(Rl)

1/2‖4Qf‖2‖CrχRr
‖2.

Since l(R) = 2l(Rl) and χRl
∩ χRr

= ∅,

|〈T4Qf, CrχRr
〉| ≤ C · 2d+α/2 l(Q)α/2

l(R)d+α/2
µ(Q)1/2µ(Rl)

1/2‖4Qf‖2‖4Rg‖2.
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By property of the measure,

|〈T4Qf, CrχRr
〉| .

(
l(Q)

l(R)

)α/2
µ(Q)1/2 1

l(Rl)d/2
‖4Qf‖2‖4Rg‖2

.

(
l(Q)

l(R)

)α/2( µ(Q)

µ(Rl)

)1/2

‖4Qf‖2‖4Rg‖2.

To handle the first term, we see first that for all x ∈ Qc,

|(T4Qf)(x)| ≤ C l(Q)α

dist(x,Q)d+α
‖4Qf‖L1 .

Indeed, if dist(x,Q) ≥ l(Q), then

|(T4Qf)(x)| = |
ˆ
K(x, y)4Qf(y) dµ(y)| = |

ˆ
K(x, y)4Qf(y) dµ(y)−K(x, c(Q))4Qf(y) dµ(y)|

= |
ˆ
|y − c(Q)|α

|x− c(Q)|d+α
4Qf(y) dµ(y)|

≤ C l(Q)α

dist(x,Q)d+α
‖4Qf‖L1 .

On the other hand, if dist(x,Q) ≤ l(Q), then

|(T4Qf)(x)| ≤
ˆ
|K(x, y)|||4Qf(y)| dµ(y) ≤

ˆ |4Qf(y)|
|x− y|d

dµ(y) ≤ 1

dist(x,Q)d
‖4Qf‖L1

≤ C l(Q)α

dist(x,Q)d+α
‖4Qf‖L1 .

By the above computation and Hölder’s inequality, we bound the term as

|〈T4Qf,χRl
− 1〉| ≤

ˆ

Rcl

|T4Qf | dµ ≤ Cl(Q)α‖4Qf‖2µ(Q)1/2

ˆ

Rcl

1

dist(x,Q)d+α
dµ

≤ C(
d

α
+ 1)l(Q)α‖4Qf‖2µ(Q)1/2 1

dist(Q, ∂Rl)α

where we can apply comparison lemma to estimate the integral in the last step since dist(x,Q) >

dist(Q, ∂Rl). Also observe that ‖4Rg‖22 = C2
l µ(Rl) + C2

rµ(Rr) and thus |Cl| ≤ µ(Rl)
−1/2‖4Rg‖22.
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Together we then have

|Cl||〈T4Qf,χRl
− 1〉| ≤ C l(Q)α

dist(Q, ∂Rl)α

(
µ(Q)

µ(Rl)

)1/2

‖4Qf‖2‖4Rg‖2.

Since Q is good, dist(Q, ∂Rl) > l(Q)γl(Rl)
1−γ ≥ l(Q)1/2l(Rl)

1/2. Finally, we have the estimate

|Cl||〈T4Qf,χRl
− 1〉| ≤ C

(
l(Q)

l(Rl)

)α/2( µ(Q)

µ(Rl)

)1/2

‖4Qf‖2‖4Rg‖2

≤ C · 2α/2
(
l(Q)

l(R)

)α/2( µ(Q)

µ(Rl)

)1/2

‖4Qf‖2‖4Rg‖2.

Lemma 3.8. The following estimate holds:

∑
R∈D′

∑
Q⊂R

l(Q)<2−rl(R)

(
l(Q)

l(R)

)α/2( µ(Q)

µ(Rl)

)1/2

‖4Qf‖2‖4Rg‖2 ≤ C
( ∑
Q∈D
‖4Qf‖22

)1/2( ∑
R∈D′

‖4Rg‖22
)1/2

.

Proof. We again consider the second sum as layers l(Q) = 2−nl(R) for n > r in order to get the

term 2−nβ, β > 0 on the right side of the inequality so that it converges when we sum all the layers

over n.

We first consider the layer l(Q) = 2k as
∑
R∈D′

∑
Q⊂R

l(Q)=2−nl(R)

=
∑
k

∑
R

l(R)=2n+k

∑
Q⊂R

l(Q)=2k

and see that

∑
Q⊂R

l(Q)=2k

(
l(Q)

l(R)

)α( µ(Q)

µ(Rl)

)
≤
(
l(Q)

l(R)

)α ∑
R′∈ch(R)

∑
Q⊂R′
l(Q)=2k

µ(Q)

µ(R′)
≤ 2

(
l(Q)

l(R)

)α
= 21−nα.

Hence, by Hölder’s inequality,

∑
k

∑
R

l(R)=2n+k

∑
Q⊂R

l(Q)=2k

(
l(Q)

l(R)

)α/2( µ(Q)

µ(Rl)

)1/2

‖4Qf‖2‖4Rg‖2

≤
∑
k

∑
R

l(R)=2n+k

( ∑
Q⊂R

l(Q)=2k

(
l(Q)

l(R)

)α( µ(Q)

µ(Rl)

))1/2( ∑
Q⊂R

l(Q)=2k

‖4Qf‖22

)1/2

‖4Rg‖2.
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By the previous calculation and Hölder’s inequality again, we bound the RHS by

2(1−nα)/2

(∑
k

∑
R

l(R)=2n+k

∑
Q⊂R

l(Q)=2k

‖4Qf‖22

)1/2(∑
k

∑
R

l(R)=2n+k

‖4Rg‖22

)1/2

.

Since for each n the inner sum give one full layer of cubes l(Q) = 2k for the first parentheses and

l(R) = 2n+k for the second ones, the upper bound is the desired one, i.e.

2(1−nα)/2

∑
Q∈D
‖4Qf‖22

1/2(∑
R∈D′

‖4Rg‖22

)1/2

.

Lemma 3.9. Let K : R × Q → C be a Calderón-Zygmund kernel for any cubes R,Q such that

2−rl(Q) ≤ l(R) ≤ 2rl(Q), and dist(Q,R) > εmin(l(Q), l(R)). The Calderón-Zygmund operator T

is bounded on L2.

Proof. WLOG, we first assume that l(Q) ≤ l(R). We want to use Schur’s test so we consider for

all x ∈ R,

‖K(x, ·)‖L1 ≤
ˆ

Q

1

|x− y|d
dµ(y) =

ˆ

εl(Q)<|x−y|<cl(R)

1

|x− y|d
dµ(y),

and the Comparison Lemma implies

‖K(x, ·)‖L1 ≤ d
cl(R)ˆ

εl(Q)

1

t
dt

= d log
cl(R)

εl(Q)

≤ d log
c2rl(Q)

εl(Q)
= C(r, ε).

Similarly for all y ∈ Q,

‖K(·, y)‖L1 ≤
ˆ

R

1

|x− y|d
dµ(x) ≤ C(r, ε).

By Schur’s test, The operator T is bounded on L2.
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Remark. This lemma also holds when K : R′×Q′ → C for any parallelepipeds Q′, R′ in cubes Q,R,

resp. where 2−rl(Q) ≤ l(R) ≤ 2rl(Q) such that R′ ∩Q′ = ∅ with dist(Q′, R′) > εmin(l(Q), l(R)).

Lemma 3.10. For any cubes Q ∈ D, R ∈ D′ such that dist(Q,R) ≤ εmin(l(Q), l(R)) and

2−rl(Q) ≤ l(R) ≤ 2rl(Q), we have the estimate

|〈TχQ,χR〉| ≤ C1µ(Q)1/2µ(R)1/2 + C2M(n)
√
ϕ(ε′)µ(Q)1/2µ(R)1/2

+M(n)
(
‖χQ‖2‖χRb

‖2 + ‖χQb
‖2‖χR‖2

)
.

Proof. Note first that this includes the cases that one cube contains in the other and Q ∩ R = ∅.

We would like to put a random grid G on the set 4 := Q ∩ R regardless its emptiness so that we

can get some estimating property. Thus, we consider the following: for any two cubes Q,R such

that 2−rl(Q) ≤ l(R) ≤ 2rl(Q), let s = (10Λ)−1εmin(l(Q), l(R)) be the size of cubes S in the grid

G. Note that we will see how small we pick the ε later so that it is fixed. Again, we want it to

be uniformly distributed over RN . We can shift a fixed grid by ξ(ω) where ξ is a random vector

uniformly distributed over [0, s)N

For ε′ > 0, let Gε′ :=
⋃
S∈G

S\(1 − 2ε′)S be an ε′s-neighborhood of the boundaries of the

cubes S in the grid G. Hence, for a fixed point x ∈ RN , P{ω : x ∈ Gε′} = ϕ(ε′). Clearly,

ϕ(ε′) → 0 as ε′ → 0. Then, E(µ(Gε′ ∩ 4)) =
˜
Gε′∩4

dµ(x) dP(ω) =
˜
χGε′ (x) ∩ χ4(x) dP dµ =

´
χ4(x)

´
χGε′ (x) dP dµ = ϕ(ε′)

´
χ4(x) dµ = ϕ(ε′)µ(4). Since P{ω : µ(Gε′ ∩4) = ϕ(ε′)µ(4)} 6=

0, we have P{ω : µ(Gε′ ∩ 4) > ϕ(ε′)µ(4)} < P{ω : µ(Gε′ ∩ 4) ≥ ϕ(ε′)µ(4)} ≤ E(µ(Gε′∩4))
ϕ(ε′)µ(4) = 1.

Therefore, P{ω : µ(Gε′ ∩ 4) ≤ ϕ(ε′)µ(4)} > 0. In other words, we can always find a grid G with

the inequality for given ε′ and 4.

To estimate
∣∣〈TχQ,χR〉∣∣, we split the cubes Q,R into three parts, Qsep, Q∂ , and 4Q, defined as

the following:

Qsep := Q\(4∪ δR)

Q∂ := (Q ∩ δR)\S where S is a small part of Q ∩ δR ∩4 making boundary hyperplanes of Q∂

in 4 go along the boundaries of the grid G

4Q := Q\(Qsep ∪Q∂).

Note here that Q∂ ⊂ Qb. Then, we can decompose 〈TχQ,χR〉 = 〈TχQ,χRsep
〉 + 〈TχQ,χR∂

〉 +
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〈TχQ,χ4R
〉. For the first term, we have that Q ∩ Rsep = ∅ with dist(Q,Rsep) > εl(Q) thus by

Lemma 3.9, ∣∣∣〈TχQ,χRsep
〉
∣∣∣ ≤ Cµ(Q)1/2µ(Rsep)

1/2 ≤ Cµ(Q)1/2µ(R)1/2.

For the middle term, since R∂ ⊂ Rb together with the definition of M(n),

〈TχQ,χR∂
〉 ≤ M(n)

∥∥χQ∥∥L2 ‖χRb
‖L2 .

For the last term, we write 〈TχQ,χ4R
〉 = 〈Tχ4Q

,χ4R
〉+ 〈TχQ∂

,χ4R
〉+ 〈TχQsep

,χ4R
〉.

Similarly to the previous consideration, we have, by definition, the estimate

〈TχQ∂
,χ4R

〉 ≤ M(n)‖χQb
‖L2‖χR‖L2

and by Lemma 3.9, the estimate

〈TχQsep
,χ4R

〉 ≤ Cµ(Qsep)
1/2µ(4R)1/2 ≤ Cµ(Q)1/2µ(R)1/2.

So, only the first term 〈Tχ4Q
,χ4R

〉 is left. We write 4Q = 4′Q ∪ 4̃Q where 4′Q := 4Q ∩Gε′ , and

4̃Q := 4Q\Gε′ , and similarly for 4R. Recall that we pick G such that µ(Gε′ ∩ 4) ≤ ϕ(ε′)µ(4).

Hence, we can decompose 〈Tχ4Q
,χ4R

〉 = 〈Tχ4′Q ,χ4R
〉+ 〈Tχ4̃Q

,χ4′R〉+ 〈Tχ4̃Q
,χ4̃R

〉. For the first

summand,

〈Tχ4′Q ,χ4R
〉 ≤ M(n)‖χ4′Q‖L2‖χ4R

‖L2 ≤M(n)µ(4′Q)1/2µ(4R)1/2

≤M(n)
√
ϕ(ε′)µ(4)1/2µ(4)1/2

≤M(n)
√
ϕ(ε′)µ(Q)1/2µ(R)1/2,

and similarly for the middle one,

〈Tχ4̃Q
,χ4′R〉 ≤ M(n)

√
ϕ(ε′)µ(Q)1/2µ(R)1/2.

For the last term, consider that 4̃Q∪4̃R consists of finitely many disjoint parallelepipeds Sk. Also,
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the set 4̃Q is a union of some of these parallelepipeds, and similarly for 4̃R.

For two disjoint parallelepipeds S1 and S2, we have dist(S1, S2) > 2ε′s thus, by Lemma 3.9,

|〈TχS1
,χS2
〉| ≤ Cµ(S1)1/2µ(S2)1/2 ≤ Cµ(Q)1/2µ(R)1/2.

The other case is that S ∈ 4̃Q∩4̃R. In this case, S must be a cube and hence by the assumption

of weak boundedness and the chosen size of the grid G,

|〈TχS,χS〉| ≤ Cµ(ΛS) ≤ Cµ(4) ≤ Cµ(Q)1/2µ(R)1/2.

Since the number of the parallelepipeds Sk is finite depending on r, ε,Λ, ε′, taking the sum over all

the parallelepipeds we have

〈Tχ4̃Q
,χ4̃R

〉 ≤ Cµ(Q)1/2µ(R)1/2.

To summarize, we have estimated all the terms and see that

|〈TχQ,χR〉| ≤ C1µ(Q)1/2µ(R)1/2 +M(n)
(
‖χQ‖L2‖χRb

‖L2 + ‖χQb
‖L2‖χR‖L2

)
+ C2M(n)

√
ϕ(ε′)µ(Q)1/2µ(R)1/2.
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Chapter 4

T1 theorem

In this chapter, we prove T1 theorem. As mentioned, we reduce the problem to bound a good part.

To bound it, we decompose such good part in suitable way so that the estimates from previous

chapter can apply. Since all hard work is prepared, here we should see a wide picture of the proof.

Theorem 4.1. A Calderón-Zygmund operator T extends to a bounded operator on L2(µ) if and

only if the operator T is weakly bounded and T1, T ∗1 belong to BMO = BMO(µ)

Proof. Let X :=
{
f ∈ L2(µ) : ‖f‖2 ≤ 1,∃R such that supp f ⊆ R, l(R) = 2n

}
and

M(n) := sup{|〈Tf, g〉| : f, g ∈ X}.

Thus, the task is to bound this quantity uniformly in n. By definition ofM(n), we choose functions

f, g ∈ X such that |〈Tf, g〉| ≥ 3
4M(n). Let D(ω) and D′(ω′) be random dyadic lattices in Lemma

2.11 so that ‖fbad‖2 ≤ 2−3−2N ‖f‖2 , ‖gbad‖2 ≤ 2−3−2N ‖g‖2 . We notice that fbad, fgd might not

be in X since their support is not in the dyadic lattice so it can be bigger. However, for example,

Q is the cube of size 2n supporting f , Q can be covered by at most 2N dyadic cubes Qk ∈

D(ω), l(Qk) = 2n so that fbad and fgood are supported by union of Qk and similarly for gbad. We

then have
fbadχQk
‖fbad‖L2

∈ X. Hence,

∣∣∣∣〈T ( fbad
‖fbad‖L2

)
, g

〉∣∣∣∣ ≤ ∑
Qk∈ch

(⋃2N

k=1Qk

)
∣∣∣∣〈T ( fbadχQk‖fbad‖L2

)
, g

〉∣∣∣∣ ≤ 2NM(n)

and then |〈Tfbad, g〉| ≤ 2N ‖fbad‖L2M(n) ≤ 2N2−3−2NM(n) ≤ 2−3M(n). Similarly, |〈Tfgd, gbad〉| ≤

22N2−3−2NM(n) = 2−3M(n).
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To estimate |〈Tfgd, ggd〉| , we decompose fgd and ggd to get upper bound

∑
R∈G′

∑
Q∈G

2−rl(R)≤l(Q)≤2rl(R)

〈T4Qf,4Rg〉+
∑
R∈G′

∑
Q∈G

2−rl(R)>l(Q)

〈T4Qf,4Rg〉+
∑
R∈G′

∑
Q∈G

2rl(R)<l(Q)

〈T4Qf,4Rg〉.

(4.1)

For the second and third terms, we first observe that they are symmetric so that we can consider

one case, say the second one. Since Q is good, we can decompose

∑
R∈G′

∑
Q∈G

2−rl(R)>l(Q)

〈T4Qf,4Rg〉 =
∑
R∈D′

∑
Q∈G

Q∩R=∅
2−rl(R)>l(Q)

〈T4Qf,4Rg〉+
∑
R∈G′

∑
Q∈D
Q⊂R

2−rl(R)>l(Q)

〈T4Qf,4Rg〉

For the first term, we use Lemma 3.5 and 3.6 to get

∑
R∈G′

∑
Q∈G

Q∩R=∅
2−rl(R)>l(Q)

|〈T4Qf,4Rg〉| .
∑
R∈D′

∑
Q∈G

Q∩R=∅
2−rl(R)>l(Q)

l(Q)α/2l(R)α/2

D(Q,R)d+α
µ(Q)1/2µ(R)1/2‖4Qf‖2‖4Rg‖2

. ‖f‖2‖g‖2.

To estimate the latter sum, we use the paraproduct Π(·) := Π(·, T ∗1) to see that for each R

∑
Q⊂R

l(Q)<2−rl(R)

〈T4Qf,4Rg〉 =
∑
Q⊂R

l(Q)<2−rl(R)

〈(T −Π∗)4Qf,4Rg〉+
∑
Q⊂R

l(Q)<2−rl(R)

〈4Qf,Π4Rg〉

=
∑
Q⊂R

l(Q)<2−rl(R)

〈(T −Π∗)4Qf,4Rg〉+ 〈f,Πg〉

where the last equality follows from Lemma 3.4. Since T ∗1 is in BMO, the paraproduct Π is

bounded on L2 and hence |〈f,Πg〉| ≤ C‖f‖2‖g‖2. The rest uses Lemma 3.7, 3.8 and 2.3 to get that

∑
R∈D′

∑
Q⊂R

l(Q)<2−rl(R)

|〈(T −Π∗)4Qf,4Rg〉| ≤ C
∑
R∈D′

∑
Q⊂R

l(Q)<2−rl(R)

(
l(Q)

l(R)

)α/2( µ(Q)

µ(R1)

)1/2

‖4Qf‖2‖4Rg‖2

≤ C

∑
Q∈D
‖4Qf‖22

1/2(∑
R∈D′

‖4Rg‖22

)1/2

≤ C‖f‖2‖g‖2.
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Now we go back to estimate the first sum of comparable size Q,R. For arbitrary ε > 0, we can

separate the sum in (4.1) into:

∑
R∈G′

∑
Q∈G

2−rl(R)≤l(Q)≤2rl(R)
dist(Q,R)≥εmin(l(Q),l(R))

〈T4Qf,4Rg〉+
∑
R∈G′

∑
Q∈D

2−rl(R)≤l(Q)≤2rl(R)
dist(Q,R)<εmin(l(Q),l(R))

〈T4Qf,4Rg〉.

For the first term, the sum is included in the cases separate cubes and comparably separated cubes

in Tb theorem. Thus, we refer to the cases to bound this term. To estimate the other term, by

Lemme 2.4, we have

|
∑
R∈G′

∑
Q∈G

2−rl(R)≤l(Q)≤2rl(R)
dist(Q,R)<εmin(l(Q),l(R))

〈T4Qf,4Rg〉| ≤
∑
R∈D′

∑
Q∈D

2−rl(R)≤l(Q)≤2rl(R)
dist(Q,R)<εmin(l(Q),l(R))

|cQ(f)c′R(g)〈TχQ,χR〉|.

We then estimate the bound applying Lemma 3.10 to get

∑
R∈D′

∑
R−related Q

|cQ(f)c′R(g)〈TχQ,χR〉|

≤
(
C1 + C2M(n)

√
ϕ(ε′)

) ∑
R∈D′

∑
R−related Q

|cQ(f)c′R(g)|µ(Q)1/2µ(R)1/2

+M(n)
∑
R∈D′

∑
R−related Q

|cQ(f)c′R(g)|
(
‖χQ‖L2‖χRb

‖L2 + ‖χQb
‖L2‖χR‖L2

)
,

where R− related Q is Q ∈ D such that 2−rl(R) ≤ l(Q) ≤ 2rl(R), dist(Q,R) < εmin(l(Q), l(R)).

Next, we observe that for each R ∈ D′ there are at most M(N, r) such R − related Q. Thus we

can write the RHS of the above inequality as

(
C1 + C2M(n)

√
ϕ(ε′)

)M(N,r)∑
j=1

∑
R∈D′

|cR(j)(f)c′R(g)|µ(R(j))1/2µ(R)1/2

+M(n)

M(N,r)∑
j=1

∑
R∈D′

|cR(j)(f)c′R(g)|
(
‖χR(j)‖L2‖χRb

‖L2 + ‖χR(j)b
‖L2‖χR‖L2

)
.
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Then using Cauchy-Schwartz inequality we have

(
C1 + C2M(n)

√
ϕ(ε′)

)M(N,r)∑
j=1

(∑
R∈D′

|cR(j)(f)|2µ(R(j))

)1/2(∑
R∈D′

|c′R(g)|2µ(R)

)1/2

+M(n)

M(N,r)∑
j=1

(∑
R∈D′

|cR(j)(f)|2‖χR(j)‖2L2

)1/2(∑
R∈D′

|c′R(g)|2‖χRb
‖2L2

)1/2


+M(n)

M(N,r)∑
j=1

(∑
R∈D′

|cR(j)(f)|2‖χR(j)b
‖2L2

)1/2(∑
R∈D′

|c′R(g)|2‖χR‖2L2

)1/2
 .

Since the same-sized cubes are disjoint together with the other estimated terms from Lemma 2.11,

we have that
∑
Q

|cQ(f)|2‖χQb
‖22 =

∑
k

‖fkb ‖22 ≤ 8pε‖f‖22,
∑
R

|c′R(g)|2‖χRb
‖22 =

∑
k

‖gkb ‖22 ≤ 8pε‖g‖22.

Also recall from Lemma 2.4 that
∑
Q

|cQ(f)|2µ(Q) = ‖f‖22,
∑
R

|c′R(g)|2µ(R) = ‖g‖22. Thus we obtain

the upper bound

C1M(N, r)‖f‖2‖g‖2 + C2M(n)
√
ϕ(ε′)M(N, r)‖f‖2‖g‖2 + 2

√
8pεM(n)M(N, r)‖f‖2‖g‖2.

Then choose ε, ε′ small enough so that 4
√

2pεM(N, r) ≤ 1
4 and C2

√
ϕ(ε′)M(N, r) ≤ 1

8 leading to

the bound

|
∑
R∈G′

∑
Q∈D

2−rl(R)≤l(Q)≤2rl(R)
dist(Q,R)<εmin(l(Q),l(R))

〈T4Qf,4Rg〉| ≤ C‖f‖2‖g‖2 +
1

8
M(n)‖f‖2‖g‖2 +

1

8
M(n)‖f‖2‖g‖2.

To recap, we have finished bounding the term |〈Tfgd, ggd〉| and hence obtain that

3

4
M(n) ≤ |〈Tf, g〉| ≤ |〈Tfgood, ggood〉|+ |〈Tfgood, gbad〉|+ |〈Tfbad, g〉|

≤ C +
1

8
M(n) +

1

4
M(n) +

1

8
M(n) +

1

8
M(n)

which in turn yields boundedness of the quantity M(n).

44



Chapter 5

Paraproduct estimates

In this chaper, we prove that the paraproduct Π arose in the T1 theorem is bounded from Lp×Lq

to Lr where 1
p + 1

q = 1
r for p, q > 1 and the doubling condition of the measure is assumed. For

convenience, let us recall that

Π(g, T ∗1) :=
∑
S∈D′

∑
P∈D

l(P )=2−rl(S)
dist(P,∂S)≥λl(P )

ESg · 4∗P (T ∗1).

To start, we observe Lp boundedness of the averaging operator and use it to prove an inequality

that defines a size of a tree.

Lemma. For 1 ≤ p ≤ ∞ and P ∈ I,

‖EP f‖p ≤ ‖f‖p.

Proof. Obviously, ‖EP f‖∞ ≤ ‖f‖∞. It is also easy to see that

‖χP (x)

µ(P )

ˆ
P
f dµ‖1 ≤

ˆ
P
|f | dµ ≤ ‖f‖1.

By Marcinkiewicz’s Interpolation, we get the result.

Lemma 5.1. For a given tree T and P ∈ T ,

‖EP f‖p ≤ inf
x∈IT

Mp(Mf)(x)µ(IT )1/p

where Mpf = (M(|f |p))1/p and M is the dyadic maximal function.

Proof. Consider first that ‖EP f‖p ≤ ‖EP (fχIT )‖p+‖EP (fχICT )‖p. It is obvious that EP (fχICT ) = 0.
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On the other hand, the previous lemma tells that

‖EP (fχIT )‖p ≤ ‖fχIT ‖p = (
1

µ(IT )

ˆ
IT

|f |p)1/pµ(IT )1/p.

With the fact that |f(x)| ≤Mf(x), it is straightforward to see that

(
1

µ(IT )

ˆ
IT

|f |p)1/pµ(IT )1/p ≤ inf
x∈IT

Mpf(x)µ(IT )1/p ≤ inf
x∈IT

Mp(Mf(x))µ(IT )1/p.

Definition. For a tree T , define a square function

STf(x) := (
∑
P∈T
|4P f |2)1/2 = (

∞∑
k=N

|4kf |2)1/2

and

Snf(x) := (
n∑

k=N

|4kf |2)1/2.

Without loss of generality, we can consider N = 1 that means the biggest cubes in the tree have

size 1/2. We also need some general definitions along the proofs so let us state them here.

Let f = (f1, f2, ...) be a sequence of function. Define the maximal function of the sequence

f∗(x) := sup
n∈N
|fn(x)|.

Define the Rademacher functions rn(t) := sign sin(2nπt) for n ∈ N.

Define a transform of Ef = (E1f,E2f, ...) to beRf = (R1f,R2f, ...) whereRnf :=
n∑
k=1

rk(t)4kf.

Similarly to the averaging operator, we need Lp boundedness of the square function. In order

to see that, we need the following result from Burkholder on martingale transforms [Bur66].

Lemma. For each n ≥ 1, Rn is bounded on Lp.

Now we are ready to prove Lp boundedness of the square function. In fact, we have the following

lemma.

Lemma. For 1 < p <∞, there are positive real numbers M and N such that

M‖Sf‖p ≤ ‖f‖p ≤ N‖Sf‖p.
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Proof. We will show that ‖Sn(f)‖p . ‖Enf‖p . ‖Sn(f)‖p then by DCT with the fact that Enf → f

as n→∞, we get the result. First, by Khintchine’s inequality and Fubini’s theorem, one have

‖Sn(f)‖pp .
ˆ

E[|
n∑
k=1

rk(t)4kf |p] = E[

ˆ
|
n∑
k=1

rk(t)4kf |p] .

Since k ≤ n and Rn is bounded on Lp, we see that

E[

ˆ
|
n∑
k=1

rk(t)4kf |p] = E[

ˆ
|
n∑
k=1

rk(t)4k(Enf)|p] . ‖Enf‖pp .

To see the other inequality, we use the fact about the Rademacher functions to see that

conversely Ef is a transform of Rf under the same Rademacher sequences. In other words,

Enf =
n∑
k=1

rk(t)dkf where dkf := Rk+1f − Rkf = rk(t)4kf . Similarly, one have the desired

inequality

‖Enf‖pp ≤ E
ˆ
|
n∑
k=1

rk(t)4kf |p =

ˆ
E|

n∑
k=1

rk(t)4kf |p .
ˆ

(
n∑
k=1

|4kf |2)p/2 .

As before, we have the following lemma which will define a size of a tree so that the sum of

µ(IT ) is controlled by Lp norm of functions.

Lemma 5.2.

‖Sf‖p ≤ C inf
x∈IT

Mp(Mf)(x)µ(IT )1/p.

Proof. Again one have ‖Sf‖p ≤ ‖S(fχIT )‖p+‖S(fχICT )‖p. Considering as EP f function, one obtain

‖S(fχIT )‖p ≤ ‖fχIT ‖p = (
1

µ(IT )

ˆ
IT

|f |p)1/pµ(IT )1/p ≤ inf
x∈IT

Mpf(x)µ(IT )1/p

≤ inf
x∈IT

Mp(Mf(x))µ(IT )1/p

where the last inequality follows from the fact that |f(x)| ≤Mf(x) a.e. The latter term S(fχICT ) = 0

since Sf is supported on IT .

Now we define some sizes of a tree so that we can decompose cubes regarding these sizes.
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Definition. For a tree T , 1 < p <∞, define

size1(T ) :=
1

µ(IT )1/p
sup
P∈T
‖EP f‖p,

size2(T ) :=
1

µ(IT )1/p
‖Sf‖p,

size∗(T ) := sup{size(S) : convex tree S ⊆ T }.

Lemma 5.3. ‖EP f‖∞ ≤ size∗1(T ) for all P ∈ T .

Proof. Observe that ‖EP f‖∞ ≤ 1
µ(P )

´
P |f | ≤ inf

x∈P
Mf(x) . inf

x∈P
Mf(x). Also note that EP (EP f) =

EP f. Thus, with Hölder’s inequality, we see that

‖EP f‖∞ = ‖EP (EP f)‖∞ ≤ inf
x∈P

M(EP f)(x) ≤
(

1

µ(P )

ˆ
P
|EP f |p

) 1
p

.

From the definition, this means ‖EP f‖∞ ≤ size∗1(T ).

Next, we prepare a collection of trees with some desired properties.

Lemma 5.4. Given a convex collection Q of tiles in P, we can decompose it into a collection S of

maximal convex trees T with respect to set inclusion with disjoint top tiles IT and

∑
T ∈S

µ(IT ) .
1

size∗l (Q)p
‖f‖pp

for both l = 1, 2. The remaining tiles are collected in Qleft such that size∗l (Qleft) ≤
size∗l (Q)

2
so

that Q =
⋃
T ∈S T ∪ Qleft.

Proof. Take P in Q that is maximal such that sizel(T ) >
size∗l (Q)

2 where T = Tree(P ) ∩ Q for

both l = 1, 2. If there is no such P , then Qleft = Q. Remove the maximal tree with top P from

Q. Repeating the procedure with the new collections until no such P and then collecting all the

remaining P in Qleft, we get the decomposition.

Next, from the previous lemmas, inf
x∈IT

Mp(Mfl)(x) ≥ sizel(T ) ≥ size∗l (Q)
2 for all T ∈ S. Thus,
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we have
⋃
T ∈S IT ⊂ {x : Mp(Mfl)(x) ≥ size∗l (Q)

2 }. By disjointness, we have

∑
T ∈S

µ(IT ) = µ(
⋃
T ∈S

IT ) ≤ µ({x : Mp(Mfl)(x) ≥
size∗l (Q)

2
}).

From weak L1 and strong Lp boundedness of M , we respectively have

µ({x : Mp(Mfl)(x) ≥
size∗l (Q)

2
}) . 1

size∗l (Q)p
‖Mfl‖pp .

1

size∗l (Q)p
‖fl‖pp.

Finally, we are able to establish the paraproduct estimate.

Theorem 5.5.

‖Π(f, g)‖r ≤ C‖f‖p‖g‖q

where 1/p+ 1/q = 1/r and p, q > 1.

Proof. By an interpolation argument in [MTT02a], one need to show that for any measurable set

F1, F2, F3, there exists a measurable set F ′3 such that F ′3 ⊆ F3 and µ(F ′3) ≥ 1
2µ(F3) satisfying

|〈Π(1F1 ,1F2),1F ′3〉| ≤ Cµ(F1)
1
pµ(F2)

1
qµ(F ′3)

1
r′

where 1
r + 1

r′ = 1. We consider the set

F ′3 := F3

∖({
x : Mp(M1F1)(x) > C0

µ(F1)
1
p

µ(F3)
1
p

}⋃{
x : Mq(M1F2)(x) > C0

µ(F2)
1
q

µ(F3)
1
q

})
.

To check that this F ′3 works, we observe using weak L1 of M that

µ(

{
x : Mp(M1F1)(x) > C0

µ(F1)
1
p

µ(F3)
1
p

}
) ≤ Cµ(F3)

Cp0µ(F1)
‖M1F1‖pp

Therefore, by strong boundedness, we have

Cµ(F3)

Cp0µ(F1)
‖M1F1‖pp ≤

C

Cp0
µ(F3) ≤ 1

4
µ(F3)
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where we choose C0 large enough for the last inequality. Similarly for F2 with q. Therefore, we

have µ(F ′3) ∼ µ(F3).

To obtain the main inequality, we first apply Lemma 5.4 to decompose D′ as D′ =
⋃
σ

⋃
T ∈Tσ

T .

Observe that size∗l (D′) = sup
T ⊂D′

sizel(T ) ≤ sup
T ⊂D′

inf
x∈IT

Mp(M1Fl)(x) ≤ C0
µ(Fl)

1/p

µ(F3)1/p
since x ∈ F ′3. We

thus consider size1(T ) ∼ σµ(F1)
1
p

µ(F3)
1
p

and size2(T ) ∼ σµ(F2)
1
q

µ(F3)
1
q

for all T ∈ Tσ where σ represent dyadic

numbers. Therefore, we have

〈Π(1F1 ,1F2),1F ′3〉 =
∑
S∈D′

∑
P∈D(S)

〈ES1F1 · 4P1F2 ,1F ′3〉

=
∑
σ

∑
T ∈Tσ

∑
S∈T

∑
P∈D(S)

〈ES1F1 · 4P1F2 ,1F ′3〉

where P ∈ D(S) stands for P ∈ D such that P ⊂ S, l(P ) = 2−rl(S) and dist(P, ∂S) ≥ λl(P ). Since

for all x ∈ P ⊂ S, ES1F1(x) = 〈1F1〉S is a constant, we get

〈Π(1F1 ,1F2),1F ′3〉 =
∑
σ

∑
T ∈Tσ

∑
S∈T

∑
P∈D(S)

〈1F1〉S〈4P1F2 ,1F ′3〉.

Since 42
P = 4P ,4∗P = 4P ,

〈Π(1F1 ,1F2),1F ′3〉 =
∑
σ

∑
T ∈Tσ

∑
S∈T

∑
P∈D(S)

〈1F1〉S〈4P1F2 ,4P1F ′3
〉.

We know by definition that |〈1F1〉S | = ‖ES1F1‖∞ and we have seen that

∑
S∈T

∑
P∈D(S)

|〈4P1F2 ,4P1F ′3
〉| ≤

∑
P⊆IT

l(P )≤2−rl(IT )
dist(P,∂IT )≥λl(P )

|〈4P1F2 ,4P1F ′3
〉|.

Together with Lemma 5.3, we get

|〈Π(1F1 ,1F2),1F ′3〉| ≤
∑
σ

∑
T ∈Tσ

size∗1(T )
∑
P⊆IT

l(P )≤2−rl(IT )
dist(P,∂IT )≥λl(P )

ˆ
|4P1F2(x)||4P1F ′3

(x)| dµ.
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We also have seen that we can rewrite the sum in the form of a collection of Whitney intervals W,

i.e.

W :=
⋃
i≥0

Wi

where W0 is the collection of intervals P ⊂ IT such that l(P ) = 2−rl(IT ) and dist(P, ∂IT ) ≥ λl(P )

and Wi is the collection of intervals P ⊂ IT such that l(P ) = 2−r−il(IT ) and dist(P, ∂IT ) ≥ λl(P )

and P ∩
⋃i−1
j=0Wj = ∅ for i = 1, 2, 3, ... so that

∑
P⊆IT

l(P )≤2−rl(IT )
dist(P,∂IT )≥λl(P )

ˆ
|4P1F2(x)||4P1F ′3

(x)| dµ =
∑
Q∈W

∑
P⊆Q

ˆ
|4P1F2(x)||4P1F ′3

(x)| dµ.

Cauchy-Schwartz inequality yields that

|〈Π(1F1 ,1F2),1F ′3〉| ≤
∑
σ

∑
T ∈Tσ

size∗1(T )
∑
Q∈W

ˆ
(
∑
P⊆Q
|4P1F2(x)|2)

1
2 (
∑
P⊆Q
|4P1F ′3

(x)|2)
1
2 dµ.

Hölder’s nequality yields that

|〈Π(1F1 ,1F2),1F ′3〉| ≤
∑
σ

∑
T ∈Tσ

size∗1(T )
∑
Q∈W

‖SQ1F2‖p‖SQ1F3‖p′ .

Let us observe more that ‖SQ1F ′3‖p′ ≤ C‖1F ′31Q‖p′ ≤ Cµ(Q)
1
p′ where 1

p + 1
p′ = 1 together with

the definition of the sizes we then have

|〈Π(1F1 ,1F2),1F ′3〉| ≤
∑
σ

∑
T ∈Tσ

size∗1(T )
∑
Q∈W

size2(Tree(Q))µ(Q)
1
pµ(Q)

1
p′ .

Then according to the sizes we chose at the beginning we can write

|〈Π(1F1 ,1F2),1F ′3〉| ≤
∑
σ

σµ(F1)
1
p

µ(F3)
1
p

σµ(F2)
1
q

µ(F3)
1
q

∑
T ∈Tσ

∑
Q∈W

µ(Q).
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Since Q ∈ W are disjoint, we have that that

∑
Q∈W

µ(Q) ≤ µ(IT ),

and therefore

|〈Π(1F1 ,1F2),1F ′3〉| ≤
∑
σ

σµ(F1)
1
p

µ(F3)
1
p

σµ(F2)
1
q

µ(F3)
1
q

∑
T ∈Tσ

µ(IT ).

On the other hand, we can see that

1

size∗l (D′)p
‖1Fl‖

p
p ≤

1

size∗l (Tσ)p
‖1Fl‖

p
p ∼

µ(F3)

σpµ(Fl)
µ(Fl) =

1

σp
µ(F3)

where this p represents both p and q. Thus, by the previous Lemma 5.4,

|〈Π(1F1 ,1F2),1F ′3〉| ≤ C
∑
σ

σµ(F1)
1
p

µ(F3)
1
p

σµ(F2)
1
q

µ(F3)
1
q

1

σp
µ(F3)

and hence

|〈Π(1F1 ,1F2),1F ′3〉| ≤ Cµ(F1)
1
pµ(F2)

1
qµ(F3)

1− 1
p
− 1
q

∑
σ

σ2−p

≤ Cµ(F1)
1
pµ(F2)

1
qµ(F3)

1
r′

for p < 2. Note here that the sum converges because σ ≤ C0. Indeed, if σ > C0, we would get

Mp(M1Fl)(x) ≥ inf
x∈IT

Mp(M1Fl)(x) ≥ sizel(T ) ∼ σµ(Fl)
1/p

µ(F3)1/p
> C0

µ(Fl)
1/p

µ(F3)1/p
which contradicts to the

fact that x ∈ F ′3.
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Chapter 6

Tb theorem

In this closing chapter, Tb theorem is proved. We start setting the proof as the T1 theorem and

treat each piece in sections. Definitions and lemmas are written in the smallest environments that

require them to avoid confusion. Furthermore, we will work on dimension N = 1 for simplicity as

higher dimensions are considered almost the same.

Theorem 6.1. Let T be a Calderón-Zygmund operator satisfying that there exist weakly accretive

functions b1, b2 such that for all cubes Q in R,

‖T (b1χQ)‖L2(Q) ≤ Bµ(Q)1/2 and ‖T ∗(b2χQ)‖L2(Q) ≤ Bµ(Q)1/2.

Then T is bounded on L2.

First, consider a quantity M := sup{|〈Tf, g〉| : ‖f‖2, ‖g‖2 ≤ 1}. Pick functions f and g in L2

such that 3
4M ≤ |〈Tf, g〉|. Then choose two random dyadic lattice D and D′ as in Lemma 2.12

leading to inequalities |〈Tfbad, g〉| ≤ 1
8M and |〈Tfgd, gbad〉| ≤ 1

8M. The main story in this chapter

is to prove that |〈Tfgd, ggd〉| ≤ C + 1
4M. Once it is known, we have 3

4M≤
1
8M+ 1

8M+ C + 1
4M

resulting in boundedness of M.

To estimate 〈Tfgd, ggd〉, we break the term using Lemma 2.6 into three parts as

〈Tfgd, ggd〉 = 〈T (
∑
Q∈G
4b
Qf),

∑
R∈G′

4b
Rg〉+ 〈T (EbQ0

f), ggd〉+ 〈T (
∑
Q∈G
4b
Qf), EbR0

g〉

where Q0, R0 contain the support of the measure µ. Note that there is no concern to write just b

associated to f and g instead of b1 and b2, respectively. Also, we only need to consider the first

summand because the other ones can be estimated in the same way. To handle the first term, one
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splits it as

〈T (
∑
Q∈G
4b
Qf),

∑
R∈G′

4b
Rg〉 =

∑
R∈G′

∑
Q∈G

l(Q)≥l(R)

〈T (4b
Qf),4b

Rg〉+
∑
R∈G′

∑
Q∈G

l(Q)<l(R)

〈T (4b
Qf),4b

Rg〉.

This way one can treat only one term since the other can be considered similarly regarding T ∗. Next,

we divide the sum into three parts with respect to the distant of Q and R, i.e dist(Q,R) ≥ l(R),

εl(R) ≤ dist(Q,R) < l(R), and dist(Q,R) < εl(R). The rest is devoted to estimate these parts and

such ε will be determined in the last one.

6.1 Separated cubes

In this case, we treat the sum in which dist(Q,R) ≥ l(R). Before working on the main part, let us

post some lemmas first.

Lemma 6.2. Let θ(i) = dγi+r1−γ e for i ∈ N0. For any cube Q ∈ D of size 2k and any cube R ∈ G′

of size 2k−m such that 2nl(Q) < D(Q,R) ≤ 2n+1l(Q) where k ∈ Z and n,m ∈ N0. Then R ⊂

πn+θ(n+m)Q.

Proof. Observe that n + θ(n + m) > r so that 2rl(R) ≤ 2rl(Q) < l(πn+θ(n+m)Q). Thus, by

goodness of R, either R ⊂ πn+θ(n+m)Q or R ⊂ R\πn+θ(n+m)Q. For the latter case, again by

goodness, l(R)γl(πn+θ(n+m)Q)1−γ < dist(R, ∂πn+θ(n+m)Q) ≤ D(R,Q) ≤ 2n+1l(Q). Computing

the inequality with the size of Q,R brings about r < 1 which is a contradiction.

Lemma 6.3. For any Q,R as in the previous lemma with additional assumption dist(Q,R) ≥ l(R).

Then, for x ∈ R, y ∈ Q,

|K(x, y)−K(xR, y)| . 2−α(n+m)/4

µ(πn+θ(n+m)Q)
.

Proof. Set P := πn+θ(n+m)Q. Since dist(Q,R) ≥ l(R), the assumption on the kernel gives that

|K(x, y)−K(xR, y)| ≤ |x−xR|α
|x−y|d+α . Then decorate the bound as

|x− xR|α

|x− y|d+α
≤ 2djl(R)α

dist(R,Q)α(2j |x− y|)d
≤ 2djl(R)α

dist(R,Q)α
· 1

µ(B(x, 2j |x− y|))
=: A ·B

where j is any integer. We consider two possible cases.
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Case dist(R,Q) > l(Q) : let j = 2 + θ(n + m). Observe that 2n+k < D(R,Q) < 4dist(R,Q)

so that 2j |x − y| ≥ 2jdist(R,Q) > 2n+k+θ(n+m). Thus, B(x, 2j |x − y|) ⊇ P by Lemma 6.2 above

and hence B ≤ µ(P )−1. On the other hand, A ≤ 4α · 2−α(n+k) · 2dj+α(k−m) . 2dθ(n+m)−α(n+m) .

2−α(n+m)/4.

Case dist(R,Q) ≤ l(Q) : let j ∈ N such that 2j−1 < 2r(1−γ)l(P )
l(R)γ l(Q)1−γ ≤ 2j . First, we show that

dist(R,Q) ≥ l(R)γ l(Q)1−γ

2r(1−γ)
. Indeed, let otherwise assume. If l(R) < 2−rl(Q), then, by goodness of R,

dist(R,Q) > l(R)γl(Q)1−γ ≥ l(R)γ l(Q)1−γ

2r(1−γ)
, a contradiction. If l(R) ≥ 2−rl(Q), then dist(Q,R) <

l(R)γl(R)1−γ = l(R), a contradiction. With such inequality, we see that l(P )
dist(Q,R) ≤

2r(1−γ)l(P )
l(R)γ l(Q)1−γ ≤ 2j

so that l(P ) ≤ 2jdist(R,Q) ≤ 2j |x − y|. From Lemma 6.2 we know that R ⊂ P . Together we

have that P ⊆ B(x, 2j |x − y|) leading to B ≤ µ(P )−1. Moreover, A ≤ 2djl(R)α 2αr(1−γ)

l(R)αγ l(Q)α(1−γ)
.

2dj
(
l(R)
l(Q)

)α(1−γ)
. 2d(n+θ(n+m))

2−dmγ
= 2d(m+n+θ(n+m))

2m(d+α)(1−γ) . Also, it follows from dist(R,Q) ≤ l(Q) that n ≤ 1

since 2n < D(Q,R)
l(Q) ≤

3l(Q)
l(Q) . With γ = α(2α+ 2d), we get estimate A . 2−α(n+m)/4.

We are ready to begin. Let us break the sum regarding the size of cubes and the long distance

D(Q,R) i.e.

∑
R∈G′

∑
Q∈G

l(Q)≥l(R)
dist(Q,R)≥l(R)

〈T4b
Qf,4b

Rg〉 =
∑
n∈N0

∑
m∈N0

∑
k∈Z

∑
R∈G′

l(R)=2k−m

∑
Q∈G

l(Q)=2k

2n+k<D(Q,R)≤2n+k+1

dist(Q,R)≥l(R)

〈T4b
Qf,4b

Rg〉.

Since 4c
Qf is constant on its children, we get 〈T4b

Qf,4b
Rg〉 =

∑
Q′∈ch(Q)

〈4c
Qf〉Q′〈T (bχQ′),4b

Rg〉.

Though the number of the children of any cubes depend on the dimension, it is finite so we will

not keep track on this sum. We rewrite the term further from the fact that the mean of 4b
Rg is

zero to obtain 〈T (bχQ′),4b
Rg〉 = 〈T (bχQ′) − T (bχQ′)(xR),4b

Rg〉. Now we apply Cauchy-Schwartz

inequality to bound

∣∣∣∑
k∈Z

∑
R∈G′

l(R)=2k−m

4b
Rg(x)χR(x)

∑
Q∈G

l(Q)=2k

2n+k<D(Q,R)≤2n+k+1

dist(Q,R)≥l(R)

〈4c
Qf〉Q′

(
TbχQ′(x)− TbχQ′(xR)

) ∣∣∣
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by

(∑
k∈Z

∑
R∈G′

l(R)=2k−m

|4b
Rg|2

)1/2(∑
k∈Z

∑
R∈G′

l(R)=2k−m

|χR ·
∑
Q∈G

l(Q)=2k

2n+k<D(Q,R)≤2n+k+1

dist(Q,R)≥l(R)

〈4c
Qf〉Q′

(
TbχQ′(x)− TbχQ′(xR)

)
|2
)1/2

.

Using Cauchy-Schwartz inequality again we bound the integration of the above terms by

∥∥∥(∑
k∈Z

∑
R∈G′

l(R)=2k−m

|4b
Rg|2

)1/2∥∥∥
2
·B

where B :=

∥∥∥∥∥
( ∑
k∈Z

∑
R∈G′

l(R)=2k−m

|χR ·
∑
Q∈G

l(Q)=2k

2n+k<D(Q,R)≤2n+k+1

dist(Q,R)≥l(R)

〈4c
Qf〉Q′

(
TbχQ′ − TbχQ′(xR)

)
|2
)1/2∥∥∥∥∥

2

. The left

norm can be bounded by Lemma 2.6 as

∥∥∥(∑
k∈Z

∑
R∈G′

l(R)=2k−m

|4b
Rg|2

)1/2∥∥∥
2
. ‖g‖2.

Thus, we are left to show that
∑
n∈N0

∑
m∈N0

B ≤ C. We will show that B . 2−α(m+n)/4 and we are

done since they are geometric series.

To see that, we consider a cube S ∈ D with l(S) = k + n + θ(n + m), k ∈ Z and consider B

using disjointness of R as

B2 =

ˆ ∣∣∣∣∑
k∈Z
|

∑
R∈G′

l(R)=2k−m

χR(x)
∑
Q∈G

l(Q)=2k

D(Q,R)∼2n+k

dist(Q,R)≥l(R)

〈4c
Qf〉Q′

(
TbχQ′(x)− TbχQ′(xR)

)
|2
∣∣∣∣dµ(x).

Then we group the sum over Q regarding a cube S ∈ D of size k + n+ θ(n+m) so that

B2 =

ˆ ∣∣∣∣∑
k∈Z
|

∑
R∈G′

l(R)=2k−m

χR(x)
∑
S∈D

l(S)=2k+n+θ(n+m)

∑
Q∈G

Q⊂S, l(Q)=2k

D(Q,R)∼2n+k

dist(Q,R)≥l(R)

〈4c
Qf〉Q′

(
TbχQ′(x)− TbχQ′(xR)

)
|2
∣∣∣∣dµ(x)
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Set

KS(x, y) :=
∑
R∈G′

l(R)=2k−m

∑
Q∈G

Q⊂S,l(Q)=2k

2n+k<D(Q,R)≤2n+k+1

dist(Q,R)≥l(R)

µ(Q′)−1
(
TbχQ′(x)− TbχQ′(xR)

)
χR(x)χQ′(y)

then we see that

B2 =

ˆ ∣∣∣∣∑
k∈Z
|

∑
S∈D

l(S)=2k+n+θ(n+m)

ˆ
KS(x, y)4c

kf(y)dµ(y)|2
∣∣∣∣dµ(x)

In order to bound KS , from Lemma 6.3, we have
∣∣TbχQ′(x)− TbχQ′(xR)

∣∣ . 2−α(n+m)/4

µ(S)
µ(Q′) and

thus,

|KS(x, y)| . 2−α(n+m)/4

µ(S)

∑
R∈G′

l(R)=2k−m

∑
Q∈G

Q⊂S,l(Q)=2k

2n+k<D(Q,R)≤2n+k+1

dist(Q,R)≥l(R)

χR(x)χQ′(y).

Then by Lemma 6.2 we have R ⊂ S for such R and hence |KS(x, y)| . 2−α(n+m)/4

µ(S)
χS(x)χS(y) by

disjointness of cubes. Therefore,

B2 ≤
ˆ ∣∣∣∣∑

k∈Z

∣∣ ∑
S∈D

l(S)=2k+n+θ(n+m)

ˆ
|KS(x, y)4c

kf(y)|dµ(y)
∣∣2∣∣∣∣dµ(x)

. 2−2α(n+m)/4

ˆ ∣∣∣∣∑
k∈Z

∣∣ ∑
S∈D

l(S)=2k+n+θ(n+m)

〈|4c
kf |〉SχS(x)

∣∣2∣∣∣∣dµ(x).

Observe that
∑
S∈D

l(S)=2k+n+θ(n+m)

〈|4c
kf |〉SχS(x) = Ek+n+θ(u+m)|4c

kf |(x). By Stein’s inequality (2.2),

ˆ ∣∣∣∣∑
k∈Z

∣∣ ∑
S∈D

l(S)=2k+n+θ(n+m)

〈|4c
kf |〉SχS(x)

∣∣2∣∣∣∣dµ(x) .
ˆ ∣∣∣∣∑

k∈Z
|4c

kf |2
∣∣∣∣dµ(x) . ‖f‖22

where the last step is the inequality (2.1). Equivalently, B . 2−α(n+m)/4‖f‖2.
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6.2 Comparably separated cubes

This section refers to the sums over Q,R such that εl(R) ≤ dist(Q,R) < l(R). We will apply

Lemma 3.6 for this term. Thus our work is to get some bound of 〈T4b
Qf,4b

Rg〉. First, let us

observe a key inequality from goodness of cubes.

Lemma 6.4. For good cubes Q,R with dist(Q,R) ≥ εl(R), we have dist(Q,R) ≥ εl(R)γl(Q)1−γ

2r(1−γ)
.

Proof. If l(R) > 2−rl(Q), then we are done otherwise we would get a contradiction from

dist(Q,R) <
εl(R)γl(Q)1−γ

2r(1−γ)
< εl(R).

If l(R) ≤ 2−rl(Q), by goodness of R, we have

dist(Q,R) > l(R)γl(Q)1−γ >
l(R)γl(Q)1−γ

2r(1−γ)
≥ εl(R)γl(Q)1−γ

2r(1−γ)
.

Also recall that for all x outside the cube R, |T ∗(4b
Rg)(x)| ≤ Cl(R)α

dist(x,R)d+α
‖4b

Rg‖1 as we

considered in T1 theorem. Now we can see that

|〈T4b
Qf,4b

Rg〉| = |〈4b
Qf, T

∗4b
Rg〉| ≤ Cl(R)α‖4b

Rg‖1
ˆ

Q

|4b
Qf |

dist(x,R)d+α
dµ(x)

≤ C l(R)α

dist(Q,R)d+α
‖4b

Rg‖1‖4b
Qf‖1

≤ C2r(1−γ)(d+α)

εd+α

l(R)α

l(R)γ(d+α)l(Q)(1−γ)(d+α)
‖4b

Rg‖1‖4b
Qf‖1

where the previous lemma is used in the last inequality. Recall that γd+ γα = α/2. Hence,

|〈T4b
Qf,4b

Rg〉| ≤ C(r, γ, d, α, ε)
l(R)α

l(R)α/2l(Q)d+α/2
‖4b

Rg‖1‖4b
Qf‖1

= C(r, γ, d, α, ε)
l(R)α/2l(Q)α/2

l(Q)d+α
‖4b

Rg‖1‖4b
Qf‖1
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Since D(Q,R) ≤ 3l(Q) in this case, we have

|〈T4b
Qf,4b

Rg〉| ≤ C(r, γ, d, α, ε)
l(R)α/2l(Q)α/2

D(Q,R)d+α
‖4b

Rg‖1‖4b
Qf‖1

≤ C(r, γ, d, α, ε)
l(R)α/2l(Q)α/2

D(Q,R)d+α
µ(R)1/2µ(Q)1/2‖4b

Rg‖2‖4b
Qf‖2

where Cauchy-Schwartz is applied in the last step. Then similarly to Lemma 3.6, we have

∑
R∈G′

∑
Q∈G

l(Q)≥l(R)
εl(R)≤dist(Q,R)<l(R)

|〈T4b
Qf,4b

Rg〉| ≤ C

(∑
Q∈D
‖4b

Qf‖22

)1/2( ∑
R∈D′

‖4b
Rg‖22

)1/2

≤ C‖f‖2‖g‖2

in which we apply Lemma 2.6 to finish the proof.

6.3 Nearby and inside cubes

In this last section, we handle the sums of Q,R over dist(Q,R) < εl(R). We separate the sum

regarding the size of Q and R into 2−rl(Q) ≤ l(R) (≤ l(Q)) and l(R) < 2−rl(Q).

6.3.1 The nearby term 2−rl(Q) ≤ l(R) ≤ l(Q)

This term is very similar to one term in T1 theorem except the weighted martingale difference

is used here. In addition, the situation is simpler on account of one dimension. One can extend

this proof to higher dimension by following T1 theorem. The difference is indeed in the following

lemma.

Lemma. For any cubes Q,R such that 2−rl(Q) ≤ l(R) ≤ l(Q) with dist(Q,R) < εl(R),

|〈T (bχQ), bχR〉| ≤ Cµ(Q)1/2µ(R)1/2 +M
(
‖bχQ‖2‖bχRb

‖2 + ‖bχQb
‖2‖bχR‖2

)
.

Proof. The proof is in a similar manner to Lemma 3.10 even without bothering ε′.

To estimate the sum in this part, we break the summand using what we observe in Lemma 2.7
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so that

∑
R∈G′

∑
Q∈G

dist(Q,R)<εl(R)
2−rl(Q)≤l(R)≤l(Q)

|〈T4b
Qf,4b

Rg〉| ≤
∑
R∈D′

∑
Q∈D

dist(Q,R)<εl(R)
2−rl(Q)≤l(R)≤l(Q)

|cQ(f)c′R(g)〈T (bχQ), bχR〉|.

Then by the above lemma we have

∑
R∈D′

∑
suchQ

|cQ(f)c′R(g)〈T (bχQ),bχR〉| ≤ C ·
∑
R∈D′

∑
suchQ

|cQ(f)c′R(g)|µ(Q)1/2µ(R)1/2

+M ·
∑
R∈D′

∑
suchQ

|cQ(f)c′R(g)|
(
‖bχQ‖2‖bχRb

‖2 + ‖bχQb
‖2‖bχR‖2

)
.

Again, recall the fact that for each R ∈ D′ there are at most M(r) cubes Q ∈ D such that

2−rl(Q) ≤ l(R) ≤ l(R) and dist(Q,R) < εl(R). Thus we may consider the sums on RHS as

C ·
M(r)∑
j=1

∑
R∈D′

|cR(j)(f)c′R(g)|µ(R(j))1/2µ(R)1/2

+M ·
M(r)∑
j=1

∑
R∈D′

|cR(j)(f)c′R(g)|
(
‖bχR(j)‖2‖bχRb

‖2 + ‖bχR(j)b
‖2‖bχR‖2

)
=: I+II.

Applying Cauchy-Schwartz inequality we have

I ≤ C ·
M(r)∑
j=1

(∑
R∈D′

|cR(j)(f)|2µ(R(j))

)1/2(∑
R∈D′

|c′R(g)|2µ(R)

)1/2

. ‖f‖2‖g‖2

where the last step follows from Lemma 2.7. Now Cauchy-Schwartz inequality again yields

II ≤M

M(r)∑
j=1

(∑
R∈D′

|cR(j)(f)|2‖bχR(j)‖22

)1/2(∑
R∈D′

|c′R(g)|2‖bχRb
‖22

)1/2


+M

M(r)∑
j=1

(∑
R∈D′

|cR(j)(f)|2‖bχR(j)b
‖22

)1/2(∑
R∈D′

|c′R(g)|2‖bχR‖22

)1/2


Since cubes of the same size are disjoint, we have that
∑
k

‖fkb ‖22 =
∑
Q∈D
|cQ(f)|2‖bχQb

‖22 and
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∑
k

‖gkb ‖22 =
∑
R∈D′

|c′R(g)|2‖bχRb
‖22. With the estimates from Lemma 2.12, we can conclude that

II .
√

8C(b, δ)pεM(r)M (‖f‖2‖g‖2 + ‖f‖2‖g‖2) .
1

4
M

where we choose small ε making small enough pε for the last inequality.

6.3.2 The inside term l(R) < 2−rl(Q)

Note first that ”inside” comes from the fact that dist(R, ∂Q) > l(Q)γl(R)1−γ ≥ l(R) by goodness

of R. Thus, under the case dist(Q,R) < εl(R), it is only possible that R ⊂ Q. Also, we make an

observation that R ⊂ Q′ for some Q′ ∈ ch(Q) since l(R) ≤ 2−rl(Q′) and R is good. We denote

such child as Q′R. In what follows, we apply time-frequency techniques constructing a tree which

satisfies some desired properties. Also, as needed for the techniques, we replace 4b
Qf with 4b

Qfgd.

This is fine due to the properties of the weighted martingale difference and only good Q we sum.

The same applies to g as well.

Before constructing such tree, we need some notations. Intuitively, we need layers of parents

and children in a tree of a cube. For a cube Q, denote its parent by πQ. In addition if a tree T is

given, denote πTQ to be the smallest cubes in T containing Q. Let π1
TQ be the smallest cube in T

containing πTQ. Define πkTQ inductively. Similarly, define chTQ to be the collection of maximal

cubes in T strictly contained in Q. Define ch2
TQ to be the collection of maximal cubes strictly

contained in cubes of chTQ. Inductively define chkTQ and we are ready to go now.

We start with the maximal good cubes Q ⊂ Q0 in G and put them in the tree T . Next for each

cube T ∈ T , consider the maximal cubes Q ⊂ T in D satisfying that 〈|fgd|〉Q > 4〈|fgd|〉T and that

either Q or πQ is good. Then we add such cubes to the tree T . Now we repeat the process at each

minimal cubes T ∈ T . Note that T ′ is denoted for the tree constructed by cubes in D′ and ggd.

We observe desired properties about Carleson condition and embedding in the lemmas below.

Lemma 6.5. For each cube T ∈ T ,

∑
T ′∈chT (T )

µ(T ′) ≤ 1

4
µ(T ).
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Moreover, the tree T satisfies a Carleson condition

∑
S∈T
S⊆T

µ(S) . µ(T )

for every T ∈ T .

Proof. Given T ∈ T , we have from the first condition that 4µ(T ′)
µ(T )

´
T |fgd|dµ <

´
T ′ |fgd|dµ for every

T ′ ∈ chT (T ). Since children are disjoint, we get 4
µ(T )

´
T |fgd|dµ

∑
T ′∈chT (T )

µ(T ′) <
´
T |fgd|dµ and we

are done. In addition, we can consider the sum of S ∈ T where S ⊆ T as the sum of T (n) ∈ chnT (T )

for all n ∈ N0. From the sparseness of each layer we just proved, we can argue inductively that for

each n,

∑
T (n)∈chnT (T )

µ(Tn) ≤ 1

4

∑
T (n−1)∈chn−1

T (T )

µ(T (n−1))

≤ 1

42

∑
T (n−2)∈chn−2

T (T )

µ(T (n−2))

...

≤ 1

4n
µ(T )

where T 0 = T . Therefore, it is summable over n ∈ N0.

Lemma 6.6. The following embedding holds

∑
T∈T
〈|fgd|〉2Tµ(T ) . ‖fgd‖22 . ‖g‖22.

Proof. Given T ∈ T . Observe an inequality µ(T\
⋃
T ′∈chT (T ) T

′) ≥ µ(T )− 1
4µ(T ) = 3

4µ(T ). Thus,

∑
T∈T
〈|fgd|〉2Tµ(T ) ≤ 4

3

∑
T∈T
〈|fgd|〉2Tµ(T\

⋃
T ′∈chT (T )

T ′).
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Recall a dyadic maximal function Mf(x) := supQ〈|f |〉Q where x ∈ Q ∈ D. Then we have

∑
T∈T
〈|fgd|〉2Tµ(T\

⋃
T ′∈chT (T )

T ′) ≤
∑
T∈T

ˆ
T\
⋃
T ′∈chT (T ) T

′
(Mfgd)

2dµ.

Since T\
⋃
T ′∈chT (T ) T

′ are disjoint for all T ∈ T ,

∑
T∈T
〈|fgd|〉2Tµ(T ) ≤ 4

3

ˆ
R

(Mfgd)
2dµ.

By boundedness of the maximal function on Lp,

∑
T∈T
〈|fgd|〉2Tµ(T ) ≤ 4

3

ˆ
R
|fgd|2dµ

as desired.

We get back to the main track now. First, we decompose

4b
Qfgd = 〈4c

Qfgd〉Q′RbχπT Q′R − 〈4
c
Qfgd〉Q′RbχπT Q′R\Q′R +4b

Qfgd · χQ\Q′R

so that 〈T4b
Qfgd,4b

Rggd〉 equals I−II+III :=

〈4c
Qfgd〉Q′R〈T (bχπT Q′R),4b

Rggd〉−〈4c
Qfgd〉Q′R〈T (bχπT Q′R\Q

′
R

),4b
Rggd〉+ 〈T (4b

Qfgd ·χQ\Q′R),4b
Rggd〉.

6.3.3 I The sum of 〈4c
Qfgd〉Q′R〈T (bχπT Q′R),4b

Rggd〉

First note that πTQ
′
R ∈ T . Thus we rewrite this sum according to T ∈ T as it has nice properties:

∑
R∈G′

∑
Q⊃R

2rl(R)<l(Q)

〈4c
Qfgd〉Q′R〈T (bχπT Q′R),4b

Rggd〉 =
∑
T∈T

∑
R∈G′

∑
Q⊃R

2rl(R)<l(Q)
πT Q

′
R=T

〈4c
Qfgd〉Q′R〈T (bχT ),4b

Rggd〉.
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On purpose of utilizing a martingale transform, a constant εR,T for fixed R ∈ G′ and T ∈ T is

defined by

εR,T :=
1

〈|fgd|〉T

∑
Q⊃R

2rl(R)<l(Q)
πT Q

′
R=T

〈4c
Qfgd〉Q′R .

Then we observe an important property as needed to apply the martingale transform inequality.

Lemma 6.7. The constants defined above are uniformly bounded i.e. |εR,T | . 1 for any such R

and T .

Proof. Let us denote Q, Q the minimal and maximal of cubes Q such that Q ⊃ R, 2rl(R) < l(Q),

πTQ
′
R = T, and µ(Q′R) 6= 0. Since 4c

Qfgd is constant on Q′R, so is on Q ′R. Thus one can consider

that ∑
Q⊃R

2rl(R)<l(Q)
πT Q

′
R=T

〈4c
Qfgd〉Q′R =

∑
Q∈G

Q⊆Q⊆Q

〈4c
Qfgd〉Q ′R = 〈

∑
Q∈G

Q⊆Q⊆Q

4c
Qfgd〉Q ′R .

Since 4c
Qfgd = 0 for Q /∈ G, the sum can be viewed as all such Q ∈ D. Now for all x ∈ Q ′R, the

series is a telescoping ones so that

∑
Q∈G

Q⊆Q⊆Q

4c
Qfgd · χQ ′R =

(ˆ
Q ′R

b

)−1 ˆ
Q ′R

fgd −
(ˆ

Q
b

)−1 ˆ
Q
fgd

χQ ′R .

Therefore, ∑
Q⊃R

2rl(R)<l(Q)
πT Q

′
R=T

〈4c
Qfgd〉Q′R =

(ˆ
Q ′R

b

)−1 ˆ
Q ′R

fgd −
(ˆ

Q
b

)−1 ˆ
Q
fgd .

From accretivity of b and construction of T , we have

|εR,T |〈|fgd|〉T ≤
1

δ

(
1

µ(Q ′R)

ˆ
Q ′R

|fgd|+
1

µ(Q)

ˆ
Q
|fgd|

)

≤ 1

δ
(4|〈|fgd|〉T + 4|〈|fgd|〉T )

leading to the conclusion that |εR,T | ≤ 8/δ.
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At this point, the term we are considering can be written as

∑
T∈T

∑
R∈G′

∑
Q⊃R

2rl(R)<l(Q)
πT Q

′
R=T

〈4c
Qfgd〉Q′R〈T (bχT ),4b

Rggd〉 =
∑
T∈T
〈|fgd|〉T

∑
R∈G′
〈T (bχT ), εR,T4b

Rggd〉.

As a consequence of non-orthogonality of this martingale difference, we need to consider the term

in two parts, πT ′R ⊂ T and πT ′R * T , regarding the other tree T ′. Therefore the following family

is introduced.

Definition. For T ∈ T , let L(T ) be the collection of πT ′R for possible Q,R. More precisely,

L(T ) := {πT ′R |R ∈ G′, R ⊂ Q, 2rl(R) < l(Q), and πTQ
′
R = T for some Q ∈ G}.

Denote Lk(T ), for k ≥ 0, the layer of cubes in L(T ) for which πkL(T ) of the cubes are maximal in

L(T ).

Hence, the sum can be considered as

∑
T∈T
〈|fgd|〉T

∑
R∈G′
〈T (bχT ), εR,T4b

Rggd〉 =
∑
T∈T
〈|fgd|〉T

∑
S∈L(T )
S*T

∑
R∈G′

πT ′R=S

〈T (bχT )χS, εR,T4b
Rggd〉

+
∑
T∈T
〈|fgd|〉T

∑
S∈L(T )
S⊂T

∑
R∈G′

πT ′R=S

〈T (bχT )χS, εR,T4b
Rggd〉.

Two sections below show how to bound each term.

The term with πT ′R * T

Recall that each considered R there exists Q for some size containing it such that πTQ
′
R = T. Thus,

πT R ⊂ T. Hence, we can rewrite the sum in terms of layers of children of T , i.e. for each T ∈ T

∑
S∈L(T )
S*T

∑
R∈G′

πT ′R=S

〈T (bχT )χS, εR,T4b
Rggd〉 =

∑
t≥0

∑
S∈L(T )
S*T

∑
T ′∈chtT (T )

〈T (bχT )χSχT ′ ,
∑
R∈G′

πT ′R=S
πT R=T ′

εR,T4b
Rggd〉.

Next, let us observe the following lemma to get some finiteness.
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Lemma. For each T ∈ T and S ∈ Lk(T ) such that S * T , k must be less than 2(r + 1).

Proof. Let S0 ∈ L0(T ) the maximal cube containing S. Thus, S0∩T 6= ∅ with T * S0. Otherwise,

either goodness of S0 with dist(S0, ∂T ) = 0 would give l(S0) ≤ 2−rl(T ) or goodness of πS0 with

dist(πS0, ∂T ) = 0 would give l(πS0) ≤ 2−rl(T ), a contradiction. Hence, dist(T, ∂S0) = 0 =

dist(πT, ∂S0). Since either T or πT is good, one have either l(T ) > 2−rl(S0) or l(πT ) > 2−rl(S0).

In other words, l(S0) ≤ 2rl(T ). Therefore, l(S) ≤ 2−kl(S0) ≤ 2−k+rl(T ). If k ≥ 2(r + 1), then

2r+2l(S) ≤ l(T ). However, S * T so that dist(T, ∂S0) = 0 = dist(πT, ∂S0) which contradicts to

goodness of T or πT .

We divide the sum over t respecting to 2(r + 1) to make use of the fact that 2t < 22(r+1) for

t ≤ 2r + 1. That is to consider, using Cauchy-Schwartz inequality, to see that

∑
t≤2r+1

∑
S∈L(T )
S*T

∑
T ′∈chtT (T )

|〈T (bχT )χSχT ′ ,
∑
R∈G′

πT ′R=S
πT R=T ′

εR,T4b
Rggd〉|

≤
∑

t≤2r+1

( ∑
S∈L(T )
S*T

∑
T ′∈chtT (T )

∥∥∥T (bχT )χSχT ′
∥∥∥2

2

)1/2( ∑
S∈L(T )
S*T

∑
T ′∈chtT (T )

∥∥∥ ∑
R∈G′

πT ′R=S
πT R=T ′

εR,T4b
Rggd

∥∥∥2

2

)1/2

For the term with the operator T with the above lemma, we can write

∑
S∈L(T )
S*T

∑
T ′∈chtT (T )

∥∥T (bχT )χSχT ′
∥∥2

2
=

2r+1∑
k=0

∑
S∈Lk(T )
S*T

∑
T ′∈chtT (T )

∥∥T (bχT )χSχT ′
∥∥2

2

≤
2r+1∑
k=0

∑
T ′∈chtT (T )

∥∥T (bχT )χT ′
∥∥2

2

.
∑

T ′∈chtT (T )

∥∥T (bχT )χT ′
∥∥2

2

≤
∥∥T (bχT )χT

∥∥2

2

where the inequalities follow from disjointness of cubes in each layer Lk(T ), finiteness of the sum

in k and disjointness of children in each chtT (T ), respectively. Then, by the assumption, one have
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that ∥∥T (bχT )χT
∥∥2

2
≤ B2µ(T ) < 22(r+1)B22−tµ(T ).

Now, let us turn to the other term where t ≥ 2(r + 1) before treating the term with the

martingale difference in the sum. We first adjust the term without changing anything since 4b
Rggd

has mean zero as

〈T (bχT )χSχT ′ ,
∑
R∈G′

πT ′R=S
πT R=T ′

εR,T4b
Rggd〉 = 〈

(
T (bχT )− T (bχ

T\πbt/2cT T ′)(xT ′)
)
χSχT ′ ,

∑
R∈G′

πT ′R=S
πT R=T ′

εR,T4b
Rggd〉.

Using Cauchy-Schwartz inequality for the triple sums we can get the bound

∑
t>2r+1

( ∑
S∈L(T )
S*T

∑
T ′∈chtT (T )

∥∥∥(T (bχT )− T (bχ
T\πbt/2cT T ′)(xT ′)

)
χSχT ′

∥∥∥2

2

)1/2

·

( ∑
S∈L(T )
S*T

∑
T ′∈chtT (T )

∥∥∥ ∑
R∈G′

πT ′R=S
πT R=T ′

εR,T4b
Rggd

∥∥∥2

2

)1/2
.

Again, consider the term with the operator T as above we obtain

∑
S∈L(T )
S*T

∑
T ′∈chtT (T )

∥∥∥(T (bχT )− T (bχ
T\πbt/2cT T ′)(xT ′)

)
χSχT ′

∥∥∥2

2

.
∑

T ′∈chtT (T )

∥∥∥(T (bχT )− T (bχ
T\πbt/2cT T ′)(xT ′)

)
χT ′
∥∥∥2

2
. (6.1)

The above bound on the right side can be written regarding the cubes π
bt/2c
T T ′ in ch

dt/2e
T (T ) as

∑
T ′′∈chdt/2eT (T )

∑
T ′∈chtT (T )

π
bt/2c
T T ′=T ′′

∥∥∥ (T (bχT )− T (bχT\T ′′)(xT ′)
)
χT ′
∥∥∥2

2
.
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At each T ′′ ∈ chdt/2eT (T ), we bound the second sum as

∑
T ′∈chtT (T )

π
bt/2c
T T ′=T ′′

∥∥∥ (T (bχT )− T (bχT\T ′′)(xT ′)
)
χT ′
∥∥∥2

2

≤ 2 ·
∑

T ′∈chtT (T )

π
bt/2c
T T ′=T ′′

∥∥∥ (T (bχT ′′))χT ′
∥∥∥2

2
+ 2 ·

∑
T ′∈chtT (T )

π
bt/2c
T T ′=T ′′

∥∥∥ (T (bχT\T ′′)− T (bχT\T ′′)(xT ′)
)
χT ′
∥∥∥2

2

where the first term can be bounded by disjointness of children T ′ ( T ′′ and the assumption as

∑
T ′∈chtT (T )

π
bt/2c
T T ′=T ′′

∥∥∥ (T (bχT ′′))χT ′
∥∥∥2

2
≤
∥∥∥ (T (bχT ′′))χT ′′

∥∥∥2

2
≤ B2µ(T ′′).

For the second term, observe that l(T ′′) ≥ 2bt/2cl(T ′) ≥ 2r+1l(T ′) > 2rl(T ′) and also recall

that either T ′ or πT ′ is good when collecting cubes in T . If T ′ is good then, by its goodness,

dist(T ′, ∂T ′′) > l(T ′). In case πT ′ is good, we can see that 2rl(πT ′) is still less than l(T ′′) and hence

dist(T ′, ∂T ′′) ≥ dist(πT ′, ∂T ′′) > l(πT ′) > l(T ′) by goodness of πT ′. Since dist(T ′, ∂T ′′) ≥ l(T ′) in

any cases, for x ∈ T ′,

|T (bχT\T ′′)(x)− T (bχT\T ′′)(xT ′)| ≤
ˆ

T\T ′′

|x− xT ′ |α

|x− y|d+α
|b(y)|dµ(y) ≤ ‖b‖∞l(T ′)α

ˆ

T\T ′′

1

|x− y|d+α
dµ(y).

By Comparison Lemma,

|T (bχT\T ′′)(x)− T (bχT\T ′′)(xT ′)| ≤ (
d

α
+ 1)‖b‖∞

l(T ′)α

dist(T ′, ∂T ′′)α

≤ (
d

α
+ 1)‖b‖∞.

Lastly, we use disjointness of T ′ again to get the bound ( dα + 1)2‖b‖2∞µ(T ′′) for the second term.

Thus, we just showed that

∑
T ′∈chtT (T )

π
bt/2c
T T ′=T ′′

∥∥∥ (T (bχT )− T (bχT\T ′′)(xT ′)
)
χT ′
∥∥∥2

2
≤ 2B2µ(T ′′) + 2(

d

α
+ 1)2‖b‖2∞µ(T ′′).
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Taking sum over T ′′ we have

∑
T ′′∈chdt/2eT (T )

∑
T ′∈chtT (T )

π
bt/2c
T T ′=T ′′

∥∥∥ (T (bχT )− T (bχT\T ′′)(xT ′)
)
χT ′
∥∥∥2

2
≤ 2(B2+(

d

α
+1)2‖b‖2∞)

∑
T ′′∈chdt/2eT (T )

µ(T ′′).

Applying Lemma 6.5 d t2e steps so that

∑
T ′′∈chdt/2eT (T )

µ(T ′′) ≤ 1

22dt/2eµ(T ) <
1

2t
µ(T ).

There are two terms which are the same except t left and they should be treated similarly so

let us recap and simplify things a bit.

|
∑
T∈T
〈|fgd|〉T

∑
S∈L(T )
S*T

∑
R∈G′

πT ′R=S

〈T (bχT )χS, εR,T4b
Rggd〉|

.
∑
t≥0

2−t/2
∑
T∈T
〈|fgd|〉Tµ(T )1/2

( ∑
S∈L(T )
S*T

∑
T ′∈chtT (T )

∥∥∥ ∑
R∈G′

πT ′R=S
πT R=T ′

εR,T4b
Rggd

∥∥∥2

2

)1/2

≤
∑
t≥0

2−t/2

(∑
T∈T
〈|fgd|〉2Tµ(T )

)1/2(∑
T∈T

∑
S∈L(T )
S*T

∑
T ′∈chtT (T )

∥∥∥ ∑
R∈G′

πT ′R=S
πT R=T ′

εR,T4b
Rggd

∥∥∥2

2

)1/2

where our favorite Cauchy-Schwartz inequality is used in the last step. Lemma 6.6 says that∑
T∈T
〈|fgd|〉2Tµ(T ) is bounded by L2 norm square of f with constant. If the remaining parentheses

are bounded by something independent of t (actually by L2 norm of g with constant), the sum is

convergent geometric series. Thus what follows is only to see its boundedness.

First let us adjust the form for fixed T ∈ T , S ∈ L(T ) such that S * T , and T ′ ∈ chtT (T ) as

∥∥∥ ∑
R∈G′

πT ′R=S
πT R=T ′

εR,T4b
Rggd

∥∥∥2

2
=
∥∥∥ ∑

R∈D′
πT ′R=S

εR,T4b
R

( ∑
R∈G′

πT ′R=S
πT R=T ′

4b
Rggd

)∥∥∥2

2
.
∥∥∥ ∑

R∈G′
πT ′R=S
πT R=T ′

4b
Rggd

∥∥∥2

2

where the properties of the weighted martingale difference give the equality (with suitable constants

and R added to the first sum in the middle norm) and Lemma 2.8 with Lemma 6.7 yields the second
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inequality. Then we estimate the form as

∥∥∥ ∑
R∈G′

πT ′R=S
πT R=T ′

4b
Rggd

∥∥∥2

2
. µ(T ′ ∩ S)〈|ggd|〉2S +

∑
S′∈chT ′ (S)
πT (πS′)=T ′

µ(S′)〈|ggd|〉2S′

which is proved in the next four paragraphs.

Set FS := S\ ∪S′∈chT ′ (S) S
′. We then break the norm and consider that

∥∥∥ ∑
R∈G′

πT ′R=S
πT R=T ′

4b
Rggd

∥∥∥2

2
=
∥∥∥ ∑

R∈G′
πT ′R=S
πT R=T ′

4b
Rggd · χS ∩ T ′\FS ∩ T ′

∥∥∥2

2
+
∥∥∥ ∑

R∈G′
πT ′R=S
πT R=T ′

4b
Rggd · χFS ∩ T ′

∥∥∥2

2

≤
∥∥∥ ∑

R∈G′
πT ′R=S
πT R=T ′

4b
Rggd · χS\FS

∥∥∥2

2
+
∥∥∥ ∑

R∈G′
πT ′R=S
πT R=T ′

4b
Rggd · χFS ∩ T ′

∥∥∥2

2
.

To handle the first term, consider a cube S′ ∈ chT ′(S) such that R ∈ G′, πT ′R = S, πT R = T ′,

and S′ ⊂ R exists. Denote R the minimal cube of such cubes and R the maximal one. In other

words, R ⊆ R ⊆ R. Thus, due to the fact that 4b
Rggd = 0 if R is bad, we can obtain a telescoping

series and see that

∣∣∣ ∑
R∈G′

πT ′R=S
πT R=T ′

4b
Rggd · χS′

∣∣∣ =
∣∣∣ ∑
R∈D′
R⊆R⊆R

4b
Rggd · χS′ ∩ T ′

∣∣∣ ≤ ∣∣∣EbR ′
S′
ggd − EbRggd

∣∣∣χS′ ∩ T ′

where R ′S′ is the child of R containing S′. Also observe that for any cube R and function g, EbRg

can be estimated by |EbRg| ≤
|b|χR
|
´
R bdµ|

|
´
R gdµ| ≤

‖b‖∞
δµ(R) |

´
R gdµ|χR ≤

‖b‖∞
δ 〈|g|〉RχR. Therefore

∣∣∣EbR ′
S′
ggd − EbRggd

∣∣∣χS′ ∩ T ′ ≤ ‖b‖∞δ (
〈|ggd|〉R ′

S′
+ 〈|ggd|〉R

)
χS′ ∩ T ′ .

To exclude the good cube R from T ′, one must have 〈|ggd|〉R ≤ 4〈|ggd|〉S . For the other cube, if

R ′S′ = S′ which is in T ′ then it gives us not more than 〈|ggd|〉R ′
S′

= 〈|ggd|〉S′ for S′ such that

πT (πS′) = T ′. If R ′S′ 6= S′, then 〈|ggd|〉R ′
S′
≤ 4〈|ggd|〉S due to goodness of R and maximality of S′.
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Hence, we get the estimate

∣∣∣ ∑
R∈G′

πT ′R=S
πT R=T ′

4b
Rggd · χS′

∣∣∣2 . (〈|ggd|〉S′χS′ + 〈|ggd|〉SχS′ ∩ T ′)
2 . 〈|ggd|〉2S′χS′ + 〈|ggd|〉2SχS′ ∩ T ′ .

Then, using disjointness of S′, we can estimate our first term as

∥∥∥ ∑
R∈G′

πT ′R=S
πT R=T ′

4b
Rggd · χS\FS

∥∥∥2

2
=

∑
S′∈chT ′ (S)

∥∥∥ ∑
R∈G′

πT ′R=S
πT R=T ′

4b
Rggd · χS′

∥∥∥2

2

.
∑

S′∈chT ′ (S)
πT (πS′)=T ′

〈|ggd|〉2S′µ(S′) + 〈|ggd|〉2Sµ(S ∩ T ′).

Here we look at the latter term. Consider a point x ∈ FS ∩T ′ such that lim
k→∞

Ekggd(x) = ggd(x)

and all cubes R ∈ G′ containing x satisfying πT ′R = S, πT R = T ′. Again, let R be the maximal

one. Since x ∈ FS and 4b
Rggd = 0 if R is bad, one can write

∣∣∣ ∑
R∈G′

πT ′R=S
πT R=T ′

4b
Rggd(x)

∣∣∣ =
∣∣∣ ∑

R∈D′
R⊆R

πT R=T ′

4b
Rggd(x)

∣∣∣

where the condition πT R = T ′ is kept to determine cases. Indeed, if there is a minimal cube R

subject to conditions πT R = T ′, x ∈ R ⊂ R, R ∈ G′. As in the above paragraph, we obtains

∣∣∣ ∑
R∈D′
R⊆R

πT R=T ′

4b
Rggd(x)

∣∣∣ . 〈|ggd|〉R ′x + 〈|ggd|〉R

where R ′x is the children of R containing x. Since the smallest cube in T ′ containing x is S, both

〈|ggd|〉R ′x and 〈|ggd|〉R are less than 4〈|ggd|〉S . If all cubes R satisfy such conditions, then in a similar

manner we have

∣∣∣ ∑
R∈D′
R⊆R

πT R=T ′

4b
Rggd(x)

∣∣∣ =
∣∣∣ lim
l(R)→0

EbRggd(x)− Eb
R
ggd(x)

∣∣∣ ≤ ‖b‖∞
δ

(
|ggd(x)|+ 〈|ggd|〉R

)
. (6.2)
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What’s left is to estimate |ggd| by 〈|ggd|〉S . This can be treated in two cases below according to the

good cubes belonging to D′ contained in S.

The first case is that there is a minimal cube, say R, of such good cubes containing x. Let R ′x

be the child of R containing x. One reason that we works with the child is that 〈ggd〉R ′x = 〈ggd〉R

for all R ⊆ R ′x in D′ containing x. Hence,

|ggd(x)| = lim
l(R)→0

|〈ggd〉R| = |〈ggd〉R ′x |.

Since πT ′R
′
x = S and R is good, |〈ggd〉R ′x | ≤ 4〈|ggd|〉S as desired. For the other case, there are

infinitely many such good cubes. With the same argument as the previous case in the last step, we

can see that

|ggd(x)| = lim
R∈G′
x∈R⊆S
l(R)→0

|〈ggd〉R| ≤ sup{〈|ggd|〉R : R ∈ G′, x ∈ R ⊆ S} ≤ 4〈|ggd|〉S

finishing all the cases.

To recap, we just proved that

∣∣∣ ∑
R∈G′

πT ′R=S
πT R=T ′

4b
Rggd

∣∣∣χFS ∩ T ′
. 〈|ggd|〉SχFS ∩ T ′

(6.3)

and hence ∥∥∥ ∑
R∈G′

πT ′R=S
πT R=T ′

4b
Rggd · χFS ∩ T ′

∥∥∥2

2
. 〈|ggd|〉2Sµ(FS ∩ T ′) ≤ 〈|ggd|〉2Sµ(S ∩ T ′)

completing the proof of the desired estimate

∥∥∥ ∑
R∈G′

πT ′R=S
πT R=T ′

4b
Rggd

∥∥∥2

2
. µ(T ′ ∩ S)〈|ggd|〉2S +

∑
S′∈chT ′ (S)
πT (πS′)=T ′

µ(S′)〈|ggd|〉2S′ .
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Going back to the term which causes a few pages above, i.e.

∑
T∈T

∑
S∈L(T )
S*T

∑
T ′∈chtT (T )

∥∥∥ ∑
R∈G′

πT ′R=S
πT R=T ′

εR,T4b
Rggd

∥∥∥2

2

and using the last estimate above, we are able to bound it by

∑
S∈T ′
〈|ggd|〉2S

∑
T∈T
S*T

µ(T ∩ S) +
∑
S∈T ′

∑
S′∈chT ′ (S)

∑
T∈T

∑
T ′∈chtT (T )
πT (πS′)=T ′

µ(S′)〈|ggd|〉2S′ .

We are almost there. To bound the first term, we consider the sum over T in two parts

∑
T∈T
S*T

µ(T ∩ S) =
∑

T∈T , S*T
T⊆S

µ(T ∩ S) +
∑

T∈T , S*T
T*S

µ(T ∩ S).

For T ⊆ S, we can obtain Carleson condition as in Lemma 6.5 with T ∩S to have that
∑
µ(T ∩S) .

µ(S). To tackle the sum with T * S, fix S ∈ T ′. Then recall that l(S) ≤ 2rl(T ) as seen in the

lemma about Lk. In addition, since either S or πS is good, we must have l(S) > 2−rl(T ) or

l(πS) > 2−rl(T ) for S such that S ∩ T 6= ∅, S * T, T * S, respectively. In other words,

l(S) ≥ 2−rl(T ). Hence, there are a certain number of such cubes T depending on r and dimension.

This leads to the estimate
∑
µ(T ∩ S) . µ(S) for the second sum and thus for the combined one

as well. Applying Lemma 6.6, we can achieve boundedness for the first term

∑
S∈T ′
〈|ggd|〉2S

∑
T∈T
S*T

µ(T ∩ S) .
∑
S∈T ′
〈|ggd|〉2Sµ(S) . ‖g‖22.

The latter and the last term in this part looks frustrating however the sums over T and T ′ are

nothing. This is because, for a cube S′, there is none or one of possible T ′ such that πT (πS′) = T ′

and hence one T . Together with our favorite Lemma 6.6, we are done since

∑
S∈T ′

∑
S′∈chT ′ (S)

∑
T∈T

∑
T ′∈chtT (T )
πT (πS′)=T ′

µ(S′)〈|ggd|〉2S′ ≤
∑
S∈T ′

∑
S′∈chT ′ (S)

µ(S′)〈|ggd|〉2S′ . ‖g‖22.
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The term with πT ′R ⊂ T

In this subsection we deal with the term

∑
T∈T
〈|fgd|〉T

∑
S∈L(T )
S⊂T

∑
R∈G′

πT ′R=S

〈T (bχT )χS, εR,T4b
Rggd〉.

Since S is in T ′ and is subset of T , one can consider the family R(T ′) of maximal cubes in

{S ∈ T ′ : πT S = T ′} for fixed T ∈ T , T ′ ∈ chtT (T ), and t ≥ 0 though it can be empty. This way

the term can be rewrite as

∑
T∈T
〈|fgd|〉T

∑
t,k≥0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∑
R∈G′

πT ′R=S′

〈T (bχT )χS′ , εR,T4b
Rggd〉.

As before, we separate the sums over t, k into 0 ≤ t, k ≤ 2r + 1 and t, k ≥ 2(r + 1) in three cases.

In case 0 ≤ k, t ≤ 2r + 1, let us first fix T ∈ T and t. We first use Cauchy-Schwartz inequality

twice to get the bound

( 2r+1∑
k=0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥T (bχT )χS′
∥∥∥2

2

)1/2

·
( 2r+1∑
k=0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥ ∑
R∈G′

πT ′R=S′

εR,T4b
Rggd

∥∥∥2

2

)1/2
.

We will tackle the second parentheses later as before. For the first ones, it is clear to see due to

disjointness of S′ at each k that

2r+1∑
k=0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥T (bχT )χS′
∥∥∥2

2
≤

2r+1∑
k=0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∥∥∥T (bχT )χS

∥∥∥2

2

and maximality of S, disjointness of T ′ that

2r+1∑
k=0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∥∥∥T (bχT )χS

∥∥∥2

2
≤

2r+1∑
k=0

∑
T ′∈chtT (T )

∥∥∥T (bχT )χT ′
∥∥∥2

2
≤

2r+1∑
k=0

∥∥∥T (bχT )χT

∥∥∥2

2
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and finite number of k, and the assumption that

2r+1∑
k=0

∥∥∥T (bχT )χT

∥∥∥2

2
.
∥∥∥T (bχT )χT

∥∥∥2

2
. B2µ(T ) . 2−tµ(T ).

In case 0 ≤ k ≤ 2r + 1 and t ≥ 2(r + 1), we add zero to the term first as

〈T (bχT )χS′ , εR,T4b
Rggd〉 = 〈(TbχT − TbχT\πbt/2cT T ′(xT ′))χS′ , εR,T4

b
Rggd〉

and get the bound

( 2r+1∑
k=0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥(TbχT − TbχT\πbt/2cT T ′(xT ′))χS′
∥∥∥2

2

)1/2

·
( 2r+1∑
k=0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥ ∑
R∈G′

πT ′R=S′

εR,T4b
Rggd

∥∥∥2

2

)1/2
.

Again using disjointness of children S′, maximality of S,and finite number of k, we have that

2r+1∑
k=0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥(TbχT − TbχT\πbt/2cT T ′(xT ′))χS′
∥∥∥2

2

.
∑

T ′∈chtT (T )

∥∥∥(TbχT − TbχT\πbt/2cT T ′(xT ′))χT ′
∥∥∥2

2
.

What we got on RHS is the term (6.1) in the previous subsection thus we just cite the result to

here that

2r+1∑
k=0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥(TbχT − TbχT\πbt/2cT T ′(xT ′))χS′
∥∥∥2

2
. 2−tµ(T ).

The last case is that k ≥ 2(r + 1), we adjust the summand as

〈T (bχT )χS′ , εR,T4b
Rggd〉 = 〈(TbχT − TbχT\πbk/2c

T ′ S′(xS′))χS′ , εR,T4
b
Rggd〉
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and again bound the sum by

( ∑
k≥2(r+1)

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥(TbχT − TbχT\πbk/2c
T ′ S′(xS′))χS′

∥∥∥2

2

)1/2

·
( ∑
k≥2(r+1)

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥ ∑
R∈G′

πT ′R=S′

εR,T4b
Rggd

∥∥∥2

2

)1/2
.

We then consider that

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥(TbχT − TbχT\πbk/2c
T ′ S′(xS′))χS′

∥∥∥2

2
≤

∑
S′∈chkT ′ (S)

∥∥∥(TbχT − TbχT\πbk/2c
T ′ S′(xS′))χS′

∥∥∥2

2

=
∑

S
′′∈chdk/2eT ′ (S)

∑
S′∈chkT ′ (S)

π
bk/2c
T ′ S′=S

′′

∥∥∥(TbχT − TbχT\S′′(xS′))χS′
∥∥∥2

2

. 2−kµ(S)

where we follow the situation (6.1) again. Maximality of S ∈ R(T ′) leads to

∑
k≥2(r+1)

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥(TbχT − TbχT\πbk/2c
T ′ S′(xS′))χS′

∥∥∥2

2

.
∑

k≥2(r+1)

∑
T ′∈chtT (T )

∑
S∈R(T ′)

2−kµ(S)

≤
∑

k≥2(r+1)

2−k ·
∑

T ′∈chtT (T )

µ(T ′).

Here we recall from Lemma 6.5 that

∑
T ′∈chtT (T )

µ(T ′) ≤ 2−2tµ(T ) < 2−tµ(T )

and hence

∑
k≥2(r+1)

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥(TbχT − TbχT\πbk/2c
T ′ S′(xS′))χS′

∥∥∥2

2
. 2−tµ(T ).
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We turn to the remaining terms related to martingale difference. In stead of looking into the

three cases, we can consider

∑
k≥0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥ ∑
R∈G′

πT ′R=S′

εR,T4b
Rggd

∥∥∥2

2

which bounds the underlying terms in all cases. In fact, one can rewrite the summation over

k ≥ 0, S ∈ R(T ′), and S′ ∈ chkT ′(S) as over S′ ∈ T ′. As before, one can simplify the norm using

the properties of weighted martingale difference for each S′ ∈ T ′ as

∥∥∥ ∑
R∈G′

πT ′R=S′

εR,T4b
Rggd

∥∥∥2

2
=
∥∥∥ ∑

R∈D′
πT ′R=S′

εR,T4b
R

( ∑
R∈G′

πT ′R=S′

4b
Rggd

)∥∥∥2

2
.

Then by Lemma 2.8 we can get the estimate

∥∥∥ ∑
R∈G′

πT ′R=S′

εR,T4b
Rggd

∥∥∥2

2
.
∥∥∥ ∑

R∈G′
πT ′R=S′

4b
Rggd

∥∥∥2

2
=
∥∥∥ ∑

R∈D′
πT ′R=S′

4b
Rggd

∥∥∥2

2

to which zero terms are added due to goodness of ggd for the equation. To recap, we proved that

∑
k≥0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∥∥∥ ∑
R∈G′

πT ′R=S′

εR,T4b
Rggd

∥∥∥2

2
=

∑
T ′∈chtT (T )

∑
S′∈T ′

πT S
′=T ′

∥∥∥ ∑
R∈G′

πT ′R=S′

εR,T4b
Rggd

∥∥∥2

2

.
∑

T ′∈chtT (T )

∑
S′∈T ′

πT S
′=T ′

∥∥∥ ∑
R∈D′

πT ′R=S′

4b
Rggd

∥∥∥2

2
.

What follows is to prepare upper bounds for the latest summation. First, WLOG, we can replace

S′ by S and consider the sum in two parts as

∥∥∥ ∑
R∈D′
πT ′R=S

4b
Rggd

∥∥∥2

2
=
∥∥∥ ∑

R∈D′
πT ′R=S

4b
Rggd · χS\FS

∥∥∥2

2
+
∥∥∥ ∑

R∈D′
πT ′R=S

4b
Rggd · χFS

∥∥∥2

2

where FS := S\ ∪S′∈chT ′ (S) S
′ for each S ∈ T ′. The first term is treated in the following paragraph

and the second term is in the next one.
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First, observe as before that for any x ∈ S′,

∑
R∈D′
πT ′R=S

4b
Rggd(x) =

∑
R∈D′

S′⊂R⊆S

4b
Rggd(x) = EbS′ggd(x)− EbSggd(x)

as a telescoping series. Thus it can be estimated as

∣∣∣ ∑
R∈D′
πT ′R=S

4b
Rggd(x)

∣∣∣ ≤ ‖b‖∞
δ

(
〈|ggd|〉S′ + 〈|ggd|〉S

)
≤
(

1 +
1

4

)‖b‖∞
δ
〈|ggd|〉S′

where the last inequality holds by construction of T ′. In other words,

∣∣∣ ∑
R∈D′
πT ′R=S

4b
Rggd · χS′

∣∣∣ . 〈|ggd|〉S′χS′

and hence by disjointness of children S′,

∣∣∣ ∑
R∈D′
πT ′R=S

4b
Rggd · χS\FS

∣∣∣2 .
∑

S′∈chT ′ (S)

〈|ggd|〉2S′χS′ .

Therefore, ∥∥∥ ∑
R∈D′
πT ′R=S

4b
Rggd · χS\FS

∥∥∥2

2
.

∑
S′∈chT ′ (S)

〈|ggd|〉2S′µ(S′).

For the other term, consider points x such that lim
k→∞

Ekggd(x) = ggd(x). Similarly to consider-

ation in (6.2), we can have that

∣∣∣ ∑
R∈D′
πT ′R=S

4b
Rggd · χFS

(x)
∣∣∣ =

∣∣∣ lim
l(R)→0

EbRggd(x)− EbSggd(x)
∣∣∣ · χFS

(x)

≤ ‖b‖∞
δ

(
lim

l(R)→0
〈|ggd|〉R + 〈|ggd|〉S

)
· χFS

(x)

. (|ggd(x)|+ 〈|ggd|〉S) · χFS
(x).
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Moreover, we can proceed further and obtain the estimate as in (6.3) as

∣∣∣ ∑
R∈G′

πT ′R=S
πT R=T ′

4b
Rggd

∣∣∣χFS
. 〈|ggd|〉SχFS

.

Together with that FS ⊆ S, we can bound the underlying term as

∥∥∥ ∑
R∈D′
πT ′R=S

4b
Rggd · χFS

∥∥∥2

2
. 〈|ggd|〉2Sµ(FS) ≤ 〈|ggd|〉2Sµ(S).

At this point, we have treated all important pieces so we finalize things here. First,

∣∣∣ ∑
T∈T
〈|fgd|〉T

∑
t,k≥0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∑
R∈G′

πT ′R=S′

〈T (bχT )χS′ , εR,T4b
Rggd〉

∣∣∣
.
∑
T∈T
〈|fgd|〉T

∑
t≥0

(
2−tµ(T )

)1/2( ∑
T ′∈chtT (T )

∑
S∈T ′

πT S=T ′

( ∑
S′∈chT ′ (S)

〈|ggd|〉2S′µ(S′) + 〈|ggd|〉2Sµ(S)
))1/2

.

By switching order of the sums over T and t and applying Cauchy-Schwartz inequality,

∑
T∈T
〈|fgd|〉T

∑
t≥0

(
2−tµ(T )

)1/2( ∑
T ′∈chtT (T )

∑
S∈T ′

πT S=T ′

( ∑
S′∈chT ′ (S)

〈|ggd|〉2S′µ(S′) + 〈|ggd|〉2Sµ(S)
))1/2

≤
∑
t≥0

2−t/2
(∑
T∈T
〈|fgd|〉2Tµ(T )

)1/2(∑
T∈T

∑
T ′∈chtT (T )

∑
S∈T ′

πT S=T ′

( ∑
S′∈chT ′ (S)

〈|ggd|〉2S′µ(S′)+〈|ggd|〉2Sµ(S)
))1/2

.

We then observe that for each t, the sums over T ∈ T , T ′ ∈ chtT (T ), and S ∈ T ′ such that πT ′S = T ′

are included in the sum over S ∈ T ′. Hence

∑
t≥0

2−t/2
(∑
T∈T
〈|fgd|〉2Tµ(T )

)1/2(∑
T∈T

∑
T ′∈chtT (T )

∑
S∈T ′

πT S=T ′

( ∑
S′∈chT ′ (S)

〈|ggd|〉2S′µ(S′) + 〈|ggd|〉2Sµ(S)
))1/2

≤
∑
t≥0

2−t/2
(∑
T∈T
〈|fgd|〉2Tµ(T )

)1/2( ∑
S∈T ′

( ∑
S′∈chT ′ (S)

〈|ggd|〉2S′µ(S′) + 〈|ggd|〉2Sµ(S)
))1/2

.
∑
t≥0

2−t/2
(∑
T∈T
〈|fgd|〉2Tµ(T )

)1/2( ∑
S∈T ′
〈|ggd|〉2Sµ(S)

)1/2
.
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Lemma 6.6 then bound the term by
∑

t≥0 2−t/2‖f‖2‖g‖2. At last, as a convergent geometric series,

we conclude that

∣∣∣ ∑
T∈T
〈|fgd|〉T

∑
t,k≥0

∑
T ′∈chtT (T )

∑
S∈R(T ′)

∑
S′∈chkT ′ (S)

πT S
′=T ′

∑
R∈G′

πT ′R=S′

〈T (bχT )χS′ , εR,T4b
Rggd〉

∣∣∣ . ‖f‖2‖g‖2

finishing the proof of part I.

6.3.4 II The sum of 〈4c
Qfgd〉Q′R〈T (bχπT Q′R\Q′R),4b

Rggd〉

Here we look at the sum over R ∈ G′, Q ∈ G such that R ⊂ Q and 2rl(R) < l(Q). We can specify

the sum more considering l(Q) = 2tl(R) and summing t from r + 1 to ∞. For simplicity, we say

Q ∈ It for such conditions. Also we will not use the goodness of f, g here so we just say f, g. Hence

consider, for each t ≥ r + 1,

∑
R∈G′

∑
Q∈It

|〈4c
Qf〉Q′R〈T (bχπT Q′R\Q

′
R

),4b
Rg〉|

=
∑
R∈G′

∑
Q∈It

|〈4c
Qf〉Q′R〈T (bχπT Q′R\Q

′
R

)− T (bχπT Q′R\Q
′
R

)(xR),4b
Rg〉|

due to the zero mean of 4b
Rg = 0. Since dist(R, ∂Q) > l(R), for x ∈ R,

|T (bχπT Q′R\Q
′
R

)(x)− T (bχπT Q′R\Q
′
R

)(xR)| ≤
ˆ

πT Q
′
R\Q

′
R

|x− xR|α

|x− y|d+α
|b(y)|dµ(y).

Bounding the integration and applying Comparison Lemma to get that

|T (bχπT Q′R\Q
′
R

)(x)− T (bχπT Q′R\Q
′
R

)(xR)| ≤ ‖b‖∞l(R)α
ˆ

πT Q
′
R\Q

′
R

dµ(y)

|x− y|d+α

≤ (
d

α
+ 1)‖b‖∞

l(R)α

dist(R, ∂Q)α

≤ (
d

α
+ 1)‖b‖∞

l(R)α

l(R)αγl(Q)α−αγ

≤ (
d

α
+ 1)‖b‖∞2−tα(1−γ)
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using goodness of R and the size of R in terms of Q. Therefore,

∑
R∈G′

∑
Q∈It

|〈4c
Qf〉Q′R〈T (bχπT Q′R\Q

′
R

),4b
Rg〉| . 2−tα(1−γ)

∑
R∈G′

∑
Q∈It

|〈4c
Qf〉Q′R |

ˆ
|4b

Rg|dµ(x).

Recall that 4c
Qf is constants on its children thus 〈4c

Qf〉Q′R = 4c
Qf(x) for all x ∈ R. Then we have

∑
R∈G′

∑
Q∈It

|〈4c
Qf〉Q′R〈T (bχπT Q′R\Q

′
R

),4b
Rg〉| . 2−tα(1−γ)

ˆ ∑
R∈G′

∑
Q∈It

|4c
Qf(x)||4b

Rg(x)|dµ(x).

By Cauchy-Schwartz inequality,

ˆ ∑
R∈G′

∑
Q∈It

|4c
Qf(x)||4b

Rg(x)|dµ(x)

≤
ˆ ∑

R∈G′

∑
Q∈It

χR(x)|4c
Qf(x)|2

1/2∑
R∈G′

∑
Q∈It

|4b
Rg(x)|2

1/2

dµ(x).

Now observe that R of the same size are disjoint and are covered by the same Q or Q’s of the

same size leading to
∑
R∈G′

∑
Q∈It

χR(x)|4c
Qf(x)|2 =

∑
Q∈I
|4c

Qf(x)|2. For each R, also, there is only one

Q ∈ It so that
∑
R∈G′

∑
Q∈It
|4b

Rg(x)|2 =
∑
R∈G′

|4b
Rg(x)|2. Applying Cauchy-Schwarz inequality again,

we get

∑
R∈G′

∑
Q∈It

|〈4c
Qf〉Q′R〈T (bχπT Q′R\Q

′
R

),4b
Rg〉| . 2−tα(1−γ)

∥∥∥(∑
Q∈I
|4c

Qf |2
)1/2∥∥∥

2

∥∥∥( ∑
R∈G′

|4b
Rg|2

)1/2∥∥∥
2

. 2−tα(1−γ)

by recalling inequality (2.1) and Lemma 2.6 in the last step. Lastly, we sum the last inequality in

t from r + 1 to ∞ proving boundedness of the desired term.

6.3.5 III The sum of 〈T (4b
Qfgd · χQ\Q′R),4b

Rggd〉

For this term, let us note first that Q\Q′R = Q′ in R. For higher dimension, we can just add what

we will consider according to the number of children of Q except Q′R. Again, we replace fgd, ggd
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back to f, g. Now we can start as in the previous one. For each t ≥ r + 1, we rewrite the term as

∑
R∈G′

∑
Q∈It

〈T (4b
Qf · χQ′),4b

Rg〉 =
∑
R∈G′

∑
Q∈It

〈4c
Qf〉Q′〈T (bχQ′),4b

Rg〉

=
∑
R∈G′

∑
Q∈It

〈4c
Qf〉Q′〈T (bχQ′)− T (bχQ′)(xR),4b

Rg〉

=

ˆ ∑
R∈G′

4b
Rg(x)

∑
Q∈It

〈4c
Qf〉Q′(T (bχQ′)(x)− T (bχQ′)(xR))dµ(x).

Applying Cauchy-Schwartz inequality twice to see that

∣∣∣ ∑
R∈G′

∑
Q∈It

〈T (4b
Qf · χQ′),4b

Rg〉
∣∣∣

=
∣∣∣ˆ ∑

R∈G′
4b
Rg(x)

∑
Q∈It

〈4c
Qf〉Q′

(
T (bχQ′)(x)− T (bχQ′)(xR)

)
dµ(x)

∣∣∣
≤
ˆ ∣∣∣( ∑

R∈G′
|4b

Rg(x)|2
)1/2( ∑

R∈G′

∣∣∣χR(x)
∑
Q∈It

〈4c
Qf〉Q′

(
T (bχQ′)(x)− T (bχQ′)(xR)

) ∣∣∣2)1/2∣∣∣dµ(x)

≤
∥∥∥( ∑

R∈G′
|4b

Rg|2
)1/2∥∥∥

2

∥∥∥( ∑
R∈G′

∣∣∣χR ∑
Q∈It

〈4c
Qf〉Q′

(
T (bχQ′)− T (bχQ′)(xR)

) ∣∣∣2)1/2∥∥∥
2

. ‖g‖2
∥∥∥( ∑

R∈G′

∣∣∣χR ∑
Q∈It

〈4c
Qf〉Q′

(
T (bχQ′)− T (bχQ′)(xR)

) ∣∣∣2)1/2∥∥∥
2

where Lemma 2.6 is used in the last bound. Now we look into each layer of R’s for the remaining

term and consider it as

∥∥∥(∑
k∈Z

∣∣∣ ∑
R∈G′
l(R)=2k

χR
∑
Q⊃R

l(Q)=2k+t

〈4c
Qf〉Q′

(
T (bχQ′)− T (bχQ′)(xR)

) ∣∣∣2)1/2∥∥∥
2
.

We can see that 2rl(R) ≤ l(Q′) and thus dist(R, ∂Q′) > l(R) due to goodness of R. Hence we can

consider as in Lemma 6.3 in the case that dist(Q′, R) < l(Q′) to obtain

∣∣∣ ∑
R⊂Q

l(R)=2k

χR(x)〈4c
Qf〉Q′

(
T (bχQ′)(x)− T (bχQ′)(xR)

) ∣∣∣ . 2−tα/4
∣∣∣ ∑

R⊂Q
l(R)=2k

χR(x)µ(Q)−1

ˆ

Q′

4c
Qf dµ

∣∣∣
≤ 2−tα/4χQ(x)µ(Q)−1

ˆ

Q

|4c
Qf |dµ.
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Then summing over Q we get

∑
Q∈G

l(Q)=2k+t

∣∣∣ ∑
R⊂Q

l(R)=2k

χR(x)〈4c
Qf〉Q′

(
T (bχQ′)(x)− T (bχQ′)(xR)

) ∣∣∣ . 2−tα/4
∑
Q∈G

l(Q)=2k+t

〈|4c
Qf |〉QχQ

≤ 2−tα/4Ek+t|4c
k+tf |

Therefore,

∥∥∥(∑
k∈Z

∣∣∣ ∑
R∈G′
l(R)=2k

χR
∑
Q⊃R

l(Q)=2k+t

〈4c
Qf〉Q′

(
T (bχQ′)− T (bχQ′)(xR)

) ∣∣∣2)1/2∥∥∥
2

. 2−tα/4
∥∥∥(∑

k∈Z

(
Ek+t|4c

k+tf |
)2 )1/2∥∥∥

2
.

From inequalities (2.2) and (2.1), we finally have

∥∥∥(∑
k∈Z

∣∣∣ ∑
R∈G′
l(R)=2k

χR
∑
Q⊃R

l(Q)=2k+t

〈4c
Qf〉Q′

(
T (bχQ′)− T (bχQ′)(xR)

)∣∣∣2)1/2∥∥∥
2

. 2−tα/4
∥∥∥(∑

k∈Z

(
|4c

k+tf |
)2 )1/2∥∥∥

2

. 2−tα/4‖f‖2.

Again, the proof is finished by summing t from r + 1 to ∞ to obtain ‖f‖2.
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