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Abstract

One of the widely studied topics in singular integral operators is T1 theorem. More precisely, it
asks if one can extend a Calderén-Zygmund operator to a bounded operator on LP. In addition, Tb
theorem was raised when one asks if the T1 theorem remains true if the function 1 is substituted
by some bounded function b. In this dissertation, we apply time-frequency analysis to T1 theorem
and Tb theorem. In particular, the theory of tiles and trees is used to prove T1 theorem on non-
homogeneous spaces. This provides an alternative and a more visualized point of view to some
parts of the proof. We also verify estimates from LP x L% to L" for the paraproducts appeared in
T1 theorem. Although the paraproduct is specific, the method is applicable to this kind of study.

Lastly, an extension to the proof of Tb theorem is established via a different tree from T1 theorem.
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Chapter 1

Introduction

The theory of Calderén-Zygmund operators is known as one of the most powerful subjects in
Mathematics due to relations to PDE, Physics, Engineering, etc. One of the theory is T1 theorem
which was later generalized to Tb theorem, see some examples of applications in [DJ84, NTV03].
The T1 theorem gives conditions for Calderén-Zygmund operators to be bounded on L? which is
enough for the extension to LP due to weak type estimates of such operators. The Tb theorem
was motivated by a problem about the Cauchy integral operator on a Lipschitz graph [AHM*02].
Since the first proof of David and Journé on the classical T1 theorem [DJ84], the theory has
been well developed in various ways, for instance extending the range of functions to vector value
[Figd0, Hyt14]. Our interest is an extension on the domain. In particular, we consider a metric
space endowed with a measure that does not satisfy doubling condition. Such spaces are called
non-homogeneous type. This situation can occur even to the Lebesgue measure with an open subset
of RN having an unusual boundary. Verdera surveys more about the need of non-homogeneity and
applications [Ver02]. Undoubtedly, the theory on spaces of homogeneous type, the ones equipped
with doubling measures, was fine studied. Furthermore, T1 theorem on non-homogenous space
for the Cauchy integral operator was proved in many approaches [NTV97, Tol99, Ver00]. With
the use of BMOY, Nazarov, Treil and Volberg [NTVO03] refined their work to Tb theorem in the
general setting as the classical statements leading to the fairly complete theory. The generalization
includes Cotlar inequalities and weak type (1,1) estimates [NTV98] needed to extend L? to LP
boundedness of Calderén-Zygmund operators as in the classical homogeneous spaces where one
can consider only L? case.

On the other side, the connection between the theory of Carleson measures and the theory
of trees and tiles has played an interesting role in bilinear singular integrals, see for example

[LT97, LT00, MTTO02a]. In the expository article of Auscher, Hoffmann, Muscalu, Tao and Thiele



[AHM™02], they reprove Carleson embedding theorem on trees and hence paraproduct estimates
and T1 theorem in this manner though the kernel associated to the operator satisfies so-called
perfect conditions where one has stronger smoothness conditions. Also, Tb theorem is proved by
T1 theorem, tree selection arguments and size estimates under the Lebesgue measure. In this way,
they provide different proofs which are clearer in many senses and obtain some extended results.
Therefore, it is interesting to apply these time-frequency analysis to generalized T1 or Th theory,
i.e. in non-homogeneous setting in which we have not seen such extension. This leads to another
good point of view to understand the theory. We now introduce the main objects and state the
main theorems reproved and proved in this work.

Let d be a positive number not necessary the same as dimension N and let p be a Borel
measure on RY satisfying p(B(x,7)) < r¢ for all ball B(z,r). Note that the doubling property is
not assumed. A function K : RV x RM\{(z,y) : 2 = y} is said to be a Calderdn-Zygmund kernel
if it satisfies the following conditions for some constants C' > 0 and a > 0:

1

K <(Ci——
¢ K@yl <O

e there exists o > 0 such that

ly—y'|*
K(9) ~ Kl £ O 10 when o=yl > 20y~ o],
and
|z — o/ |*
K (2,y) — K(2',y)| < CW when |z —y| > 2[z — 2| .

A Calderén-Zygmund operator is an operator T : S(RV) — S&'(R") of the form

Tf(z) = / K () f (x)dz

for all f € C° and z ¢ supp(f) with the Calderén-Zygmund kernel K and it can be extended to
a bounded operator on L?. Some authors do not require L? boundedness but we will keep this
original definition.

Another assumption is weak boundedness of the operators. For general measures, we say the

operator T is weakly bounded if there exist A > 1, C' < oo such that [(T'x,, X,)| < Cu(AQ) for any
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cube Q € RV,

The statement of T1 theorem is the following:

Theorem (David-Journé). A Calderén-Zygmund operator T extends to a bounded operator on

L?(p) if the operator T is weakly bounded and T1, T*1 belong to BMO(u).

Next chapter will say more about BMO space used in this general theory. As for Tb theorem, it
can be obtained in a similar manner to our proof of T1 theorem but we desire different approaches.
We have noticed the local LP testing conditions for the theorem in the work of Auscher et al.
This type of condition was introduced by Christ with L control [Chr90]. Both of them are in the
homogeneous world. Recently, Lacey and Véhikangas [LV16] extend this story to non-homogeneous
local T1 theorem even with dual exponents. We then prove Tb theorem with L? testing conditions
since we have not seen any result under this setting. This path also serves as a good start to an open
problem of Tbh theorem for dual exponents where the number two in the local testing conditions in
the assumption below is replaced by conjugate pairs p and g. We now define weak accretivity and
provide the statement below.

A bounded function b is weakly accretive if there exists § > 0 such that for any cube @,

> 0.

o 1 || ) o

Thus, we have that |b| > § p-almost everywhere.

Theorem. Let T be a Calderon-Zygmund operator satisfying that there exist weakly accretive func-

tions by, by and a constant B such that for all cubes Q in RV,

IT(b1xo) 2@y < B(@)Y?  and [T (baxo)ll12() < Bu(@)'/.

Then T is bounded on L2.

The proofs are based on random lattices in which one utilize them to avoid bad parts when it
comes to analysis of small pieces. This idea was applied to handle Calderén-Zygmund operators in

[NTV97]. As a common procedure, one works with Haar system and, in non-homogeneous spaces,



one needs martingale difference and also adapted version of it. We observe all of these with their
properties in chapter 2 as well as required known lemmas.

As usual in harmonic analysis, there are many components to handle. We then analyze each
component in chapter 3 using knowledge from [NTV03, AHM™02].

In chapter 4, we prove T1 theorem as stated above. Although the way we decompose and
control most terms are not new ideas, we can apply time-frequency analysis to achieve embedding
theorem and thus boundedness of paraproducts. In addition, we are able to deal with a mistake
on one of the considered terms in [NTV03].

In chapter 5, we investigate estimates of the paraproduct II( f, ¢) risen from proving T1 theorem.
It has been a topic of interest to seek paraproduct estimates, e.g. boundedness from LP x L7 to
L", as in [AHM ™02, MTT02b, Li08] and such estimates for the paraproduct II are unknown. With
the use of time-frequency analysis technique, Li improves this kind of investigation to r larger than

1/2 instead of 1. We then follow this method and obtain the following result.

Theorem. The paraproduct I1(f,g) is bounded from LP x LY — L" where 1 < p,q < oo and

1/p+1/g=1/r.

In the last chapter, we prove Tb theorem stated above by combining techniques from T1
theorem and [LV16]. In particular, we reduce the problem to study the good part via probabilistic
techniques. Then decompose it so that some terms can be treated using estimates as in T1 case.

For the paraproduct term, we rewrite it regarding a sparse tree and bound each of them.



Chapter 2

Preliminaries

2.1 BMO spaces

Definition. Let 1 < p < co and A > 1. Let f € L}, .(1). We say f € BMOX (p) if for any cube Q

loc

there exists a constant ag such that

1/p

[15 =00l du| < cuirQ)
Q

The infimum of such constant C' taking over all @ is called the BMOX (11)-norm of f. Note that the

constant ag can be replaced by the average (f)g := p(Q)™! [ f du. Also we know from [NTV03]
Q

that

BMO#? (1) € BMOX! (1) if p1 < p2, and  BMOX (1) € BMOR (1) if A < A.

2.2 Useful lemmas

Lemma (Comparison Lemma). Let F' > 0 be a decreasing function on (0,00), and let the measure

w satisfy p(B(xg, 7)) < ¢ for a fived xo and for all ¥ > 0. Then, for § > 0,

o0

/ F(|z — xo|) du(z) < F(8)6% + d/F(t)tdldt.

z:0<|z—x0] 1)

Lemma (Schur’s Test). Let K : X x Y — C be a measurable function obeying the bounds

1K (@, )]l < C



for almost every x € X, and

IKC Yl <C

for almost every y € Y. Then the integral operator T is bounded on L?.

2.3 Martingale decomposition

In this section, we study decomposition of functions into functions on dyadic cubes.

Definition. A dyadic cube I is a cube of the form

I=[2% (j +1)2"~

where j, k € Z. Denote a (standard) dyadic lattice T the set of all dyadic cubes.

2.3.1 Decomposition for T1

Let f € L?. Define the averaging operator Ej, by

QESk

Eef@)= 3 f (o) = ) Lo
where Sy ={Q € Z:1(Q) =27%}. If 1(Q) = 2%, then define Eq f := (Epf)Xy, Akf = Epa f —
Eif, and Aqf == (Dkf)Xe-
Proposition 2.1. 1. {Aqf:Q € I} is orthogonal.
2. Ng =N} for all Q € L.
3. No(Dg) = N for all Q € T.
Proof. 1. Forany Q,R € Z, (Aof,Arf) =0if QN R = 2. In case QN R # @, we assume that

1(Q) =27% I(R) = 27" and WLOG that k > [. Since

(Dof, Arf) = / (B £(2) — Eof (2)) (B f(2) — Euf (@) (@) dp



we observe that

Euf (@) Euf (2 (Z][fd% )(fodm )

Q'ES
= 3 of sanf st
Q'ESy RES;
so that
/Ekf VEf(2) du = /fdu][fdu
RES;
Similarly,
/Ekf VEpe f(z) du = /fdu][ £ du
RESH_l

Also, we have

/Ek:-Hf z) B f(x Z Z / de][fdM

Q'ech(Q) RES1+1

and similarly,

/Q B f(@)Euf(s) du= 3 /Q f di ]é m
Therefore, (Aqf, Arf) =0.

2. It is straightforward to see that

<AQf79>:/ gXR/f —/fu
Rech(Q
/gdu/fdu Q)/Rgdu/Qfdu

2/( ; f(ﬁ)/l%gdu—%/cggdu)du




3. It is also easy to see that

Ba(dan = 3 e | saran—as [ safdn

Rech(Q)

XR _ XR —
> Gt Jof v i f, ) -0

Rech(Q)

X X
_ X [ pqu- e [ rq
RG%L%Q)MR)/RJC G Ly
=8ql-

O]

Proposition 2.2. Let §, be the smallest o-algebra containing S, and § be the smallest o-algebra
containing |J,cn Sn so that the system of sub-o-algebra of §, {§n : n € Z}, is a filtration. Then
{E,f, S} is a martingale for f € L.

Proof. First of, for all n we have E, f € L' and for a fixed P of size 27" we know that E,f(z) is
constant for all z € P. Therefore, E,, f is §,-measurable. Lastly, we need to check that E[E, f|§] =
E,.f for n > m. Indeed, for all Q € §,,, we have [(Q) > 2™ > 27", Thus, fQ E,.f du =

fQ E,f du. O

Lemma 2.3 (Martingale difference decomposition). Every function f € L?(u) can be decomposed

as

F=> 0pf

pPel

in L?. Moreover,

A7 =D 1Ap I3

pPel

Proof. By Lebesgue Differentiation Theorem as [ — oo,
Ejf(x) — f(x) in L

On the other hand, E;f(z) — 0in L? as | — —oo. In fact, for each z, |E; f(z)| = |u(Q)| 7| fQ fdu| <



| £ll24(Q) /%2 = 0 as | — —oc. Thus,

> Auf@) = Jim B f(@) - Bf(x) = (@)

k=—00
The result about L? norm of f follows from the orthogonality of Apf to each P € T. O

Lemma 2.4. For every f € L?,

F=> colH)xe

QeT

where cq(f) are constants. Moreover,

1715 = D le(NPu(@)-

QeI

Proof. Set f¥:= > Aqf Then we observe that for each Q of size 2%, Agf = 5 % Jp fdp—

QeZ Rech(Q)
uQ)=2*
:((8) Jof dn =3 (u(lR) Jrf du— u(lQ) fodM> Xg- Thus, f& = 3 cp(f)x, so that
Rech(Q) ReT
I(R)=2F"1
f=>7f=> > cr(f)xs In addition, by disjointness one can see that
keZ keZZ(RI)%_egiil

IFE=D 113 =0" D ler(Nxald =) ler(HPu(R).
k k

ReZ ReTZ
I(R)=2F"1

2.3.2 Decomposition for Tb
In this part, we establish tools as in T1 theorem for Tb theorem.

Definition. Given a function f € L? and a weakly accretive function b. Define E,l; f(x) to be

Blfa) = 3 ( /Q bdu>_1 < /Q fdu> ) xo (2)

QESk

and A f(z) = Egﬂf(x) — EVf(z). For a cube Q € Sy, define Eg (z) = (E}f)xo(z) and

Ab

of = (AL f)Xo- Moreover, define AGf(z) to be the part that A%f(:n) = b(z) - AG f(z). Then,

9



observe some properties.

Proposition 2.5. 1. [ Al(:?f dp=0 forall Q € Z.
2. DAL =0 fork # 1.
3. Np(Ay) = Ay for all Q € T.
4. D(EP) =0 for k> 1 and AG(AY) =0 for k # 1.

Proof. 1. Basic computation tells us that

/ AL f du = / EY, f(x) — BYF(x) dp
Q

- ¥ </Q/bd,u>_1</,fdu>/,bdu</bd,u> </fdu>/bdu

Q'ech(Q)

> /fdu | gan=o

Q'ech(Q

2. We first show that AL (ES f) =0 and E5(Ab f) = 0 for k > n. Indeed, for k > n

Bl = 3 > (v / i (o
€Sk+1
eskﬂ ] / R%S:n IZ / X () dpibx, ()
:QEZS;H]Z /beQ ), where R 2 @

Similarly,
EUELD) = 32 ([ 071 ([ Db @), where R2 Q"

QE€Sk R R

Since for each @ € Sii1 such that Q C @', @ shares the same R, we have

/ /fbe / /beQ ), RDQ.

QE€Sky1 R Q'eSy

10



Hence A (ES f) = E,lj:Jrl(Efo) — EY(EL f) = 0. To see the other equality, consider that

B = Y (o / By f)bxal(@)

i
Rean R/ P Q/ /)%( )) dubi(@)
Z/ @CRQ/f

F)oxg(x
.

Similarly, Ej(Epf) = E} f. Thus, EL(ALf) = EA(EY., f) — EL(ELf) = 0. Then, recall that
AYALS) = E) (A f) — ER(ALS). Since ES(AYf) = 0 for k > n, we have AL (APf) =0
when [ > k — 1. When [ < k, we see that AZ(A;’f) Ab(E ' f)— AZ(Elbf) = 0 by what we

have shown above as well.

3. By definition and 2, for Q € S, A® (A = (Ek+1(A - Ek(A )Xo (Ek_H(A xo =
> (o)t fA F)bXg- SlncefA f= ff fb (fB)7HS ), 1tfollowsthatAb(Abf)
Rech(Q) R Q Q
Abf.
4. Similar calculation as in 2.

O]

Lemma 2.6 (Weighted martingale difference decomposition). Let b be a weakly accretive function,

and let n € Z. Then, any f € L*(n) can be decomposed as

b b
Y. Lof+ Y. Euf
QeT Qez
(Q)<2n H(Q)=2"

in L?. Moreover,

|t |zbs], < cw.ozs

€ €
HQy<zr (Q)=2"

11



Proof. Let T be a dyadic lattice. We will show first that the following set E is dense in L2,

E:= { D Coxpbla) : k€ z},

QES

so that it is enough to prove the lemma on this subset. Indeed, for any ¢ > 0, and f € L?, there
n

exists a simple function g = > a;x,, (¥), where a; € R, D; € B such that ||f — g[[z2 < e. Now, we

=1
m . . n n m
observe that D; = | | Q} where Q} € Sy. Consider h(x) := > ¢;b(z)x,, (x) = X° > cib(@)xy: () €
=1 i=1 i=1j=1 !
E where ¢; = b‘(l—;). Note that for each 4, [b(z)| > 0 p-a.e. on D; and hence on @} for all j by weak

accretivity of b. Thus we have | ) a;X,, () — ¢ib(z)x, (z)| = | Y- (ai — ¢ib(x))xp, (z)] = 0. and
i=1 1=1

hence ||g — h| 2 = 0. Therefore, || f — hl[z2 < || f —gllr2 + |lg — k|2 < € as desired for the density.

Now for any fixed k € Z, let f = > Crb(z)x,(z) we consider the term

ReSk
b b
D Dof+ Y Eof
QeT QESK
H(Q)<2—*

We will show first that QZI A’éf = 0. Fix j € Z, and a cube Q € §j, for any j > k. Then we
€
H(Q)<27*
have that

Elaf@ = 3 ([odn ([ £ e (o)

Q'eSjt1 Q' Q'

= Z (/bd,u)1(CR/bdu)b(:c)XQ,(x), where R D Q'
Q'€Sj41 Q' Q'

= Z Crb(z) Xy (7)
Q' ESj11

and similarly

B ) = 3 / bdu)~( / f dwb(z)x, ()

Q€% Q Q
= Z Crb(z)Xx,(z), where R 2 Q.
QESj

12



Hence, A? of = (E;-’Hf — E;’f) Xo= >, CRrbxy —Crbx, = Crbx, — Crbx, = 0. Since this is

Q'Ech(Q)
true for all j > k, we proved that > Abl f=0.
QeL
(Q)<2~k
Now, we investigate the remaining term E%f. As seen above, Eff = > Cprb(z)x,(z),

QESy QeS8
where R D Q. Since R, Q € Sy, it mustbe EVf = Y Cqb(r)X,(7) and hence ng = Cgb(z) X, (7).
QESk

Thus, > E%f = Y Cgb(z)x,(x) = f. Therefore, > Al of + X E%f = f as desired.
QES QESk QeT QESk
1(Q)<2~*
For the estimate, We consider that for each Q € S,,,

/|Eb D= [ | ¥ (/Q/bdu>1</Q/fdu>b(df)xq(w)‘2du

Q Q'eS,

SQ%;%/Q\ (/Q,bdu)_l L ] b an
- | (/deu)_lf\/Qfdu\z/b(m)F i

< 0@ n@)| [ 1|

< 572pb|12, / P du
Q

and thus

S ES AR <672l S / P du < C@0) | £

QES, QESR

This part is to show that > ||A flIF2 < C(8,b)[|f[|7. First observe that

QETZ,I(Q)<2n
S IabfIE =3 S abf2. = Z/m F2du=3" |ALFI,
Qez,l(Q)gzn k<n QESk k<n k<n

by disjointness of same-sized cubes. Consider next that

AV f=E) f —Epf = ((Ep1b) 'Ex_1f — (Epb) ' Eif)b

= (Ep1b) N (Ep_1f — Exf)b+ Epf (Ex—1b) ™" — (Exb)~1)b
Agb

— -1 _
= (Er—1b) " Arfb EkakbEk_lb .

13



Since b is weakly accretive,

D M(Ee1d) A bl 72 < 5 2Bl F 117

k<n
For the second sum, we recall that ||f][2, = > ||AQf||i2 + > ||EQf||i2 for any f € L2
(Q)EZ QESn
(Q)<2m

Hence, > [[Agb||3. < [[b]* du < [|b]|2,1(Q) for any b € L™ so that
RcQ Q
Y ap(R) =Y p(R) T ARb|F2n(R) < |Ib]3n(Q)
RCQ RCQ

By the embedding theorem above, we have

S 1agbl2 (1 / Fdu)? =Y ag( / £ du)* Q) < C|f|%.

Qe Qe

Since b is weakly accretive, |b(x)/(Exb(z)Ey_1b(z))|*> < C(8,b). Therefore,

2

Akb 2
kz‘ et BELON YO
XQZ'
=C f dulob(z)| dp
Sz
o f an?
gz Mém@bm
k’<nQ€SkQ
d 2
oy Ml e,
2 @)

< C|IfII72-

Thus, we proved that > [|A% f||L2 = Z [ALFI2, < C(8,b)] f]|2. and hence the lemma. [
QeT
(@<

Next, we observe another direction to decompose functions and the estimate of this form.
Lemma 2.7. For every f € L?,

F=> co(f)b

QeT

14



where cq(f) are constants. Moreover,

> lea(f ) S IIF113.

QeT

Proof. Since A? o can be written as cq/(f)b where Q' € ch(Q) and E&f can be written as cg(f)b.

Hence, we get the decomposition. To see the estimate, one observe that

Y leqUNPu@) <Y > leaNPlbxgl3 =11 Y A ng—ZHA FIIZ < NF113

QezT k QeI k QeT
uQ)=2* 1(Q)=2k

where the first inequality follows from the property that |b| > 0 p-almost everywhere and the last

from the previous Lemma 2.6. O

Remark. One may notice that the constant cq(f) is in fact the value A f(x) when x € @', the

children of Q). Thus, let us state an alternative form of the estimate as the inequality

[ 1ae) | < st o)

keZ
Next, the well-known Stein’s inequality is needed therefore we record it here, see e.g. [Bou86].

Lemma. For any 1 < p < oo and sequence (f)kez in LP,

(2.2)

(S 1a) ]

keZ

(e

keZ

p p

Last but not least, we have the following somewhat martingale transform inequality in a general

measure, i.e. with the adapted martingale difference.

Lemma 2.8. For any T € T, functions f € L?, and constants satisfying supgep legl < 1,

| > =anbf|, S 111
QeD
T Q=T

One may think of 7 as a family of cubes or a tree and w7Q as a parent of ) in the family 7.

Their definitions will be introduced when we need it to handle the term involving [(R) < 2771(Q).
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This lemma is proved in [LM16] where the problem is reduced to the bound of maximal truncations

where Dq f = ACQ f except one sums over Q' € ch(Q)\ch7T. To have this kind of estimates, one

usually rewrite Ag, f into terms, for example, as the sum over Q' € ch(Q)\chsT of

1 1 1 1
T ((No =)+ (Mo =N 7 — 7 | el 5 — 7
Cra R O RCE MNCEROE
so that the classical martingale transform inequality comes to help. For Lebesgue measure, the
inequality as the classical one where one sums over all dyadic cubes holds with help from the perfect

Calder6n-Zygmund operator [LV14]. However, in our setting, the above lemma is all we need.

2.4 Random dyadic lattices

This section is where probabilistic analysis is in charge. A dyadic lattice randomly shifted from

the standard dyadic lattice is introduced to obtain a desired distribution property.

Construction of a random dyadic lattice.

Let Q = [0,1], B is a Borel o — algebra, and [ is the Lebesgue measure so that (2,8,]) is a
probability space. Let n(w) = w be a random variable uniformly distributed over [0,1). Indeed, if
x <0, then F(z) =l(w:w=nw) <z)=0.If x € [0,1], then F(z) =l(w: w =n(w) < z) = .
If © > 1, then F(z) = l(w : w = n(w) < x) = 1. So the distribution function is the uniform

distribution. Let £;(w) be the following random variables for j € N :

1 , W E [2%, %} for all positive odd number k < 27

éj (W) = )

—1 otherwise

sothatl{wzgj(w)zl}:?_l(%):%:1—%:l{w:§j(w):—1}.

The random lattice D(w) consists of the following cubes (interval in this case):
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i) Ii—o(w) := [z(w) — 1, 2(w)] = [w — 1,w] € D(w). o(w) := its siblings € D(w)
ii) For k < 0, Ix(w) == [w — 2¥,w] € D(w). I (w) := its siblings € D(w)

iii) For k = 1, first choose one of E)(w), say Ip. Then put

Iy U left adjacent sibling of Iy, &(w) =1
h(w) = € D(w)

Iy U right adjacent sibling of Iy , & (w) = —1

and I (w) € D(w).
Inductively, we have all Ij,(w) and Ij,(w) € D(w) for all k > 0. In other words, for all k > 0 we

choose one of I/;:l(w), say I;,_1 Then put

I 1 U left adjacent sibling of I yEp(w) =1
I (w) := € D(w)

I,_1 U right adjacent sibling of I_1 , {k(w) = —1

and Ij(w) € D(w). Hence we get intervals of length 2% for all k € Z in the random lattice D(w).
Lastly, get the random lattice in RV by taking a product of N independent random lattices
D(w), w € .

Lemma. The random lattice D(w) in RN is uniformly distributed over RN.

It means, for any cube @@ € D(w), the probability that a given point z € @ is in a subcube

/ N
Q' CQof RV ,ie. theevent E:={w: z€Q CQcDw)},is (ll((%))) _

Proof. For first dimension, since n(w) is uniformly distributed, the probability

Pw:nw)<z)=Fr)=<y ,0<x<1-

l /
Thus, for [(Q)) = 1, the probability of E is [(Q"). Otherwise, the probability of E is the ratio l((%)) .
l(Q’))N LN
Then we get in R™Y. =
° ( Q)

17



Lemma (Equidistribution property.). For € RN, k € Z, the probability that dist(x,0Q) > l(Q)

for some cube of size 2 is exactly (1 — 2¢)N.

Proof. Consider first in the real line case, i.e. let # € R. Thus Q is the interval of size 2¥. Let
A:={w:3Q € D (w), dist(z,0Q) > €l(Q)}. We can see also that A ={w: 2 € Q' C Q € D(w),
Q) =1Q) — 2el(Q)}. Since the random lattice D(w) is uniformly distributed, P (A) is the ratio

N N
of the length of A to the size of @, i.e., P (A) = (%) = ((17227:)23 =1-2)Y. O

2.5 Bad parts with small probabilities

The purpose of the random lattices is to ignore some bad parts when we decompose functions. So

we study bad cubes and bad parts of functions here.

2.5.1 Bad cubes, decomposition and their probabilities

Definition. Let v = 5;95; and r be a large quantity chosen later. A cube @ € D(w) is bad
if there exists a cube R in D’'(w’) such that I(Q) < 27"I(R) and dist(Q,0R) < I(Q)VI(R)'~ or

dist(Q, ORy) < L(Q)I(Ry)1™7 for some Ry, € ch(R).

Lemma 2.9 (Small probability of bad cubes). Let r, v be from the previous definition. Then for
any fired w and a cube Q € D(w) we have P:=P {w' : Qisbad} < 4N%.

Proof. Given a cube @ € D(w) where w is fixed. There exists a cube R € D’ (w’) such that Q C R
and [(R) = 2%1(Q) for all k > r. We consider events A and Bas A = {w' : dist(Q,9R) < 2" 7%(Q)}
and B = {w' : dist(Q,0R) > 2877%1(Q)} so that 1 = P (AUB) = P (A) UP (B). We then observe
that

P(B)>P {w’  dist(c (Q),0R) > 25771(Q) + 1(Q) = (2*7’c + 2*’f) l(R)}

and from equidistribution property,
p {w/ - dist(c(Q),0R) > (2% n 2*’?) l(R)} - (1 9 (2*7’“ + 2*’“))N .

Thus, P(A)=1-P(B)<1-(1-2(277"%+ Q_k))N. Now we know that 1 — (1 — 2(x + %))V —
N (24 427v+1) a¥ < 0 for z, y > 0 (proved below) so that P (A) < N (2 +4(27%) 77“) 2-7k —

18



N2-7k+1 4 N2=7k=2k Since k > r > 0, the probability P can be estimated as

P=YP(A)<2NY (2—% n 2—7’f—2k—1) <2NY (2—% + 2‘”‘?)
k>r k>r k>r
9=

1—2-7"

< 4N22*7’“ = 4N
k>r

O]

Proof. (of (1-2(z+a¥))" > 1—n (2 + 4~ Y1) 2¥ for z, y > 0 and n € N.) We prove it by induction
onn. Forn =1, we see that 1 —2(z + %) — 1+ (2 + 4z~ ¥H!) 2¥ = -2z — 22¥ + 22¥ + 4o~ V12V =
—2x + 4z = 2x > 0. Assume that the statement holds for n. Then we consider the statement for

n+1:(1—2(z+a¥)

(1 =2z +2¥)" = (1 = 2(z + 2¥))"(1 — 2(= + 2¥))
> (1—n(2+4a ) a2¥) (1 - 2(z +2¥))
=1-2r—22Y —n (2+427) 2¥ + 2n (2 + 427 ¥ ) 2T 4 20 (24 427V T) 2%
=1-n2+427V )2V — (24+ 42 V) ¥ — 20— 22Y + 2n (2 + 427V ) 2V
+2n (24427 ) 2% 4 (24 a7V ¥
=1—(n+1)(2+427V ) 2¥ + 22+ 2n (2 + 42 V) 2V 4 20 (24 427V ) 2%

>1—(n+1)(2+4a" V") av.

O]

Definition. Let f and g be in L? and D := D(w) be a random dyadic lattice. As in Lemma 2.3

that we can write f = > Agf in L?, define
QeD

frad =Y Dof, and fe:=Y_ Nof,
QeD Qeg

Q bad
so that f = fga + foad in L2

Next, we will see that it is possible to pick lattices with desired control.
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Lemma 2.10. With probability at least - 16, for some dyadic lattices we have

1 fsaally < 272721 Flly Ngbadll 2 < 272272 ||g]l, -

Remark. More precisely, as w, w’ determine bad terms of functions, the probability in this

lemma just means P {(w,w') € 9 ¢ || fuadll 12 < 272272 fl| 2+ llgbaall 12 < 279272V gl 2} -

Proof. In order to estimate || fpqq||, We consider a square function Sf(x) on RV :

Spf(x) =Y [18qfIl5 Q) "xq

QeD
so that
Spf@)du(z) = 3 [180f 13 = 1715
R QeD
and
Spfraa(@) = > 120 Il 1(Q) xq ().
QeD
Q bad
We first compute E,Sp foaa(x) := [ Spfraa(x) dP(w') where o’ ranges for the existence of bad

cubes (). That is

E. S fad(x) =/ Sp foaa(z) dP(wW')
{w'3bad Q }

Since Sp fraq is taken from Spf, we get

/ SD frad(z) dP(w') < / Sp f(z) dP(w)
{w’:3bad Q } {w:3bad Q}

and since Spf(x) is independent of w’, we have
/ Spf(z)dP(w') = P{w': Ibad Q } Spf(x). < 27327V Sp f(x).
{w':3badQ}

We have seen that P{w': Qisbad} < 21 by Lemma 2.9 for a cube Q. If one chooses r >
1—2=7

%logQ (%), we then have P{w’: Qisbad} < 278274V Also the case that there exist bad
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cubes covers the one that one cube ) is bad. Therefore,

Eo Sp frad(z) < P{w’': 3bad Q } Spf(x)
<P{w: acubeQisbad} Spf(x)

< 278274V G f ().
By orthogonality, we can see that
Eur || fradll = B </ SD foad dM) :
Since |5 = Jrv Spf(x) dp,
E, ( / Sp fbaddu> = / Eo Sp foaq dp < 278274V [R . Spf(z)du = 27827 || f|13,.

Note here that we can change the order of integration since Eo/[ [gx SD foad dpt] < Ewr[[gn Spf dp] <
Eo/[IIf113] < [1f]l3 - Then,

Ew,w’ ||fbad||§ ::/ Ew’ Hfbad”% dPw < 2_82_4N Hng
{weQ}

Hence, using Markov’s inequality,

Ew,w’ ||fbad||g
222824V || |2
27824V | f2 1
 229-89-AN||f|2 T 4

P{(w,w) | foaally = 2227527 || 13} <

That is with probability at least %, | foadll 2 < 2-274272V || f|| 2 . Similary, we have g = 9gd+ Gbad

where cubes for g are in D'(w’) and are bad to D(w) satisfying ||gpaally, < 2 - 274272V ||g]|, with

9

probability at least %. Therefore, with probability at least 35,

1 fsaalls <2727\ flly llgsaalla < 27°27% gy,

simultaneously. O
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2.5.2 Another bad part

In this section, we want to avoid more bad part defined below.

Definition. For a cube ) € D, define the bad part of ) to be

o i—Q“( U 5R)

ReD’
27TI(Q)<I(R)<27I(Q)

where 0 1= (1 +2¢)R\(1 — 2¢)R (i.e. €l(R)-neighborhood of OR).

For a function f € L?(u) and for each k, define the bad parts fF of f* to be

=3 calfxaq,
QeD
1(Q)=2"

The following lemma says that even more satisfied lattices can be chosen.

Lemma 2.11. With probability at least 1, for some lattices D(w), D' (w')

| foadlls < 27227 I flla s llgsadlls < 27°272Y |lglly

and

2 2
S|l < see sz, D2 ok < speligl-
k k

where pe is defined below. Roughly speaking, we are talking about probability P{(w,w’) € Q2 : four
inequalities above holds simultaneously} which is greater than 0 so that there exists (w,w') giving

D(w),D'(') with such inequalities.

Proof. Given the random dyadic lattice D := D(w). For a fixed x € R, k € Z, consider

E.

Al <[ X el x @0dpw)
(@
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We want to consider the case that there is R € D'(w'), I(R) = 2¥, = € 0 so that Xg,(z) = 1. Thus

[ % kel eme) - / Y o]
1(8)@ {w':ARED! (w'), ((R)=2%, x5} Z(Q)GD
= | fk(x)] dP

{w'3RED! (W), I(R)=2k, €8}

)|

= De

where p. = P{w’ : 3R € D'(w'), I(R) = 2¥, 2 € dr}. Note that p. does not depend on k. Then, one

can consider that

B, (z mfu%)
k

Zk: </ Eo | P dp(a )) <pey (/RN Ifk(:x)|2dp(x)>

k

k
=p- ) 713
k

2
= pe I f1l3-

Since the above inequality holds for any dyadic grid D(w), we have

Euo (Z Hfij) = E. (E(Z Hfé“(@Hi)) <pe lf13-
k k

Similarly for a given D’'(w'), Eu (Y Hg{fH;) < p. |lgll3. Then,
k

2
Eur (Z Hg:sz> <pe gl
k

Hence, by Markov’s inequality, we have

(S 1813)

2 o,
Puw 3 O[5, = 8- 161§ < <
o {; 2= sp- |I£13

oo =
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. 2
Similarly, Py, {Z Hg{fHLQ > 8p. ||g||%2} < %.
k
Since PLANBNCND) >1— A’ —B' — C' — D’ together with the estimate in Lemma 2.10,

. 9. - 2
the probability that | foealls < 272272 || fllo, llgbaall, < 273272 |lglly, S| £E]5 < 8pe I £]13. and
k

2 2 .
Zk: Hg{fHQ < 8p. ||g|l; is greater than 1 — 1 — % — é - % =1 O

2.5.3 Bad parts for Tb theorem

For Tb theorem, the definition of bad cubes is slightly adapted though important properties are
the same [Hyt11]. Since ideas and proofs are explicitly presented for the martingale difference, we

only state required lemmas without proofs in this part.

Definition. Given D and D’ dyadic lattices. A cube QQ € D is bad if there is a cube R in D or D’
such that 1(Q) < 27"I(R) and dist(Q,0R) < 1(Q)7I(R)'~7. Then, by Lemma 2.6, one can consider

f = fgd + foaqa in L? where

foaa =D Dof, and fuai=) AQf+ )Y Eof.
85% Qeg QESn

Moreover, for each k, the bad parts féc of f¥ can be defined as

=" c(Nxq,
QeD
UQ)=2F

Lemma 2.12. With probability at least %, for some lattices D(w), D' (w')

1 fsaalls < 272272 (1 flly, llgsaally < 27°272% |Igll,

and

S| < scw vz, S Job < s0 b ol
k<n k<n

where p. is the probability that there exists R € D'(w') in which a point x lies in its el(R)-nbhd
(Q € D(w) with €l(Q)-nbhd for g).
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Remark. Again, the lemma says about the probability P{(w,w’) € Q2 : four inequalities above
holds simultaneously } which is greater than 0 so that there exists (w,w’) giving D(w), D'(w") with
such inequalities. Also, from the estimates, observe that || fydll2 = ||f — feadll2 < [|fll2 + || fraallz S

| fll2, and similar for g.

2.6 Trees and decompositon

In this section, we introduce language of trees. Also, we will see how one can decompose a tree in

a useful direction.

Definition. A tree is a collection 7 C Z of dyadic cubes (a.k.a. tiles) with a top tile I+ € T such
that P C I for all P € T.

The complete tree Tree(I) is the collection {P € Z : P C I} with the top tile .

A collection P C T is convez if for every pair P C P’ in P, and I € Z such that P C I C P/,
then I € P.

Let a : Z — R™ be a positive-real-valued function. Define the size of a on a tree T by

lalsiser) == &T) S a(P)

K pPeT

and the mazximal size of a by

|| sizex (1) 1= sup ||al|s; .
H ”szze () TclH Hszze(T)

Given f on R and P € Z, define

1

mean = d

llmeante = == [ 1]
Ip

and for any collection P C Z, define

f mean* ‘= sup f mean(P)*
1f llmean=P) PGPH lmean(p)

Lemma 2.13 (Decompositon for mean). For n € Z, given a convex collection P, C I and a

function f € S such that || f|lmean=(p,) < 2" There exists a disjoint partition Py, = Urer, TUPn-1
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where Pp_1 is a convex collection of tiles such that || f|lmean=(p,_1) < 2"~ and T, is a collection

of convex trees T with disjoint spatial intervals I such that

”f”mecm(IT) ~ ||f|’mean*(T) ~ 2"

for all T € T,. In particular,

E:Mh)§2m2/ 1] dp < 272 |

TET, [f]>2n—2
for 1 <p< .

Proof. Choose P € P, that is maximal with respect to set inclusion for ||f|lmeanpy > 271 If
no such P, then set P,_1 := P,. Otherwise, we collect the complete tree 7 = Tree(P) N P,
into 7, so that 2"~! < | fllmean(zr) < [1flmean+(7) < 2". Remove T from P, and do the same
with P,\7. Repeat this procedure with the remaining tiles. Set P,-1 := Pp\Uscr,. Now we
can see that in 7, the trees in T, are disjoint since we choose the maximal top tile. In addition,
they are complete w.r.t. P, and thus convex. Then we see that ||f|[mean=(p,_,) < 27~1 and

2n—1 < | fllmeantrr) < I1f lmean=(m) < 2" for all T € Ty, This leads to on—1 < ﬁﬂ flr | f| du for all

T € T,,. That is

rui < [ ians [ ians [l u)

T T T
| f|>2n—2 | f]<2n—2 | f|>2n—2

Thus,
i) <4 [ 15l du

It
|f|>2n—2

Then summing over disjoint 7 € 7T, we have

Sumzarn [ gtz [ s
TeTn TeTn Ir ‘f|22n_2
|f‘22n72
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To obtain LP norm of f, first apply Holder’s inequality to get

42 / i< 427" £l o anzlle = 4- 27| fllpp({ : | £(2)] > 2721,
| f|>2n—2

Then, by Chebyshev’s inequality, one can see that

427 fllppl{a - | f ()] = 2772 HYT < 4270 flp27 PR R = 27 f
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Chapter 3

Prerequisite lemmas

In addition to tools and their properties in the previous chapter, we prepare some estimates and
lemmas in this one. One may refer to the next chapter to get some ideas why we deal with this

stuff.

3.1 L? boundedness of Il and cancellation

It is common to meet some paraproducts in study of singular integral operator. The one we

encounter is

(g, T71) = Y > Egg- Ab(T*1) .
Sep! PED
1I(P)=2-"1(S)
dist(P,0S)>\(P)

Lemma 3.1. Let h € BMO3. Define a function a : D' — R* by
a(S) := > 1AB M5
PeD

1(P)=2"T1(S)
dist(P,0S)>\(P)

Then we have that the size of a on T is bounded ,i.e. |allsize(ry < 00 for all T € T, in Lemma

2.18 where Pp, = D" and hence ||| size=(pry < 00.

Proof. For all T € T,, consider that

> als) < > IABR)I.

SeT PeD;PCIy
W(P)<27"I(IT)
dist(POI7)>A(P)

We want to rewrite the last sum to form a collection of Whitney intervals W : W := (J,~, W; where
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Wy is the collection of intervals P C I7 such that {(P) = 27"I(I1) and dist(P,0I7) > N(P) and
W; is the collection of intervals P C I such that I[(P) = 27"%(I7) and dist(P,d17) > M (P) and

i—1
Pn U W;=wofori=1,2,3,... Then we can see that for every Q € W,
§=0

ST ARmIE= 3 AR - o)l < / h— cof? dp < Cu(AQ),

PCQ PCQ

where we use martingale difference properties in the first two steps and that h € BMO?\ in last

inequality. Therefore,

S S apmiE<e S pQ) = cz/xwdu c/ S Yoo dit < COpIr)

QEW PCQ QeW QeEW It QewW

where the last step follows from that for each x € I, there are finitely many @) such that x € AQ.

Hence,
> a(s) < > IABMIE= D D IIARMIE < CNullr)
SeT PeD;PCIy QEW PCQ
UP)<27"I(IT)
dist(PoIr)>\(P)
which means [|a| size(ry < C(N). O

Lemma 3.2 (Carleson’s embedding theorem). Let h € BMO3. For 1 < p < o,

> > IABM31f)sP < Co, Mlallsize o | F15
SeD’ PeD
1(P)=2""1(S)
dist(P,0S)>\(P)

for all locally integrable functions f.

Proof. Choose large enough k such that || f|lmean=(pr) < 2% Then, by Lemma 2.13, we get D' =

Urer, TUPk-1. Repeatedly decomposing Py—_;, we obtain D' = (J (J T where T, is a collection
n<k TE€Tx

of convex trees 7 with disjoint spatial interval I7 such that || f||mean(zr) ~ [|flmean=(m) ~ 2" Tt is

then easy to see that

YoaSNsP=d > D al®IHlP Sy Y Y 2%a(s)

SeD’ n<kT€T, SET n<kTET, SET
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By definition, we have

Z Z Z 2npa ZQTLP Z I’T ”aHszze < Zan Z IT)Ha”szze*(D’)

n<kTETn SET n<k T€Tn n<k T€Th

From Lemma 2.13,

327 3 il < ol 27 [ il

n<k T€Tn n<k |f|>2n—2

and then one can get LP norm of f as follows. Obtaining the upper bound from the fact that

Zznp n+2 < Z2np n—2p+2 __ Zz(n 2)(p—1)

n<k n<k n<k

As a geometric series with the first term 2(5=2)P—1)  we are done since

lallyiner o / S 20 26-D| | dp < | sizer (01 / FPF] gt = Nallsise o | £

n=2<f] n<k

Theorem 3.3. The paraproduct T1(g, h) is bounded on L? when h € BMO3.

Proof. One just play with the definition and apply the previous embedding as

(g, )13 = sup |(T(g,h), f)I? < sup » > [(Esg - Ap(R), f)I?
I£ll2=1 =1 dcpy  pep
1(P)=2""1(S)
dist(P,0S)>Al(P)

= sup > S Ka)s(ap(h), £
1£12=1 gepr pPeD
(P)=2""1(S)
dist(P,0S)>\(P)

<> laslP Yo IARMIB

Sep’ PeD
1(P)=2""1(S)
dist(P,0S)>\I(P)

< llgll3-
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Lemma 3.4. For any R € D',Q € D such that R C Q or [(Q) > 27"I(R), the terms (Aqg f,IIARg)

18 zero.

Proof. If Q@ O R, then R C Q C P C S so that Eg(Agrg) = 0. If [(Q) > 27"I(R) then [(P) =
277(S) < 27"I(R) < U(Q). Since P,@ € D and P C Q (otherwise 0), we have that Ag f is constant
on P as well as Es(Agrg). Hence [ Aqf - Es(Agg) - Ap(T*1) dp = ¢ [ AW(T*1) du = 0. O

3.2 Estimates of bilinear forms on some cubes

When one decomposes (T'f, g), summands as (Aqf, Arg) arise. For some relations of @ and R,
one gets good estimates so that the summation over such cubes can be controlled. Before starting,

denote the long distance D(Q, R) := dist(Q, R) + I(R) + 1(Q).
Lemma 3.5. For Re D' and Q € G such that Q "R =&, 1(Q) < 27"I(R),

(Q)**UR)*

|<TAQf7 ARg>| <C D(Q,R)dJra

w(@2u(R) 2 8o 2l ARl

Proof. To prove this, we first prove that for such Q, R,

l [0
(Thqf, Arg)l < O (QV2u(R)V2) A g fall Arglla

dist(Q, R)

Indeed, we have |z — yo| > 2|y — yo| since Q is good leading to dist(Q, R) > I(Q). Then using the

condition of the operator and Hélder inequality for the last line we get

(Tof, Brg)l = | / / (K (2,y) — K (2, 50)) Do f () Arg(x) du(y) du(a)]

/ / | = y0d|+a‘AQf(y)HAR9(x)| du(y) dp(z)

(@
- dzst(Q, R)d+a
HQ)*”
~ dist(Q, R)dte

1AQf Lt 1A Rl L

w(@) 2RV A fll 2 | A Ryl 2.

Next we consider two cases regarding dist(Q, R) and I(R):
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If dist(Q, R) > I(R), then D(Q, R) < 3dist(Q, R). Thus

%“(Q)I/QM(R)IﬂHAQf”L? IARgllz2

a/2
< Mu(@>1/2u<R>1/2HAQfHLzrARgan.

(TAQf, ARG S

In case dist(Q, R) < I(R), we use the fact that Q is good and that vd + ya = a//2 to have

QT _UQT M@ QAR UQMAUR)
dist(Q, )t = (LQ)UR)=7)dte [(Q)*/2U(R) T/ I(R)4te D(Q, )™+
and then the result follows from the inequality we first proved. O

Lemma 3.6. The following term is bounded,

/2 a/2
D D R G S CT N W N

d+
RED' QNR=2 D(@, Ry
27TI(R)>U(Q)
<O 120f )2 14rg13)"
QeD ReD!
S [ ll2llgll2-
Proof. We rewrite the sum on the left as > Y>> > > so that it suffices to prove that

n>r k  ReD' QNR=gY
(R)y=2"F1(Q)=2"""k

l a/2l R a/2
22 Wu@)”%(R)WHAQﬂ2||ARgH2
ReD'  QNR=w J

UR)=27F ((@)=2""F

<270 T A fIRMYAC D] I1ARgIDY?

QNR=o ReD’
WQ)=2"n"* I(R)=2"F

for some positive 8. In order to prove that we will consider the sum as an integral operator

/ / KM (2, 9)X (@)Y (y) dp() dp(y)
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and show that it is bounded so that the double integral is bounded by C||X||2]|Y||2. Indeed, we set

[Aefll2 IARgll2
X = , Y = Xps
o H@V VT 2 e
(Q)=2—F=" UR)=2"F

and

a/2 a/2
K= Y Y M )

R Q:QNR=2
l(R)Z?fk l(Q):Q—k—n

)

We observe now that for each x,y there is only one non-zero term in K ,gn . By Schur’s Test, we

just show that the kernel is bounded in L. Firstly, we get the geometric sequences as follows:

|K(n)(x y)’ - l(Q)a/Z[(R)a/Q _ 2(7kafna)/2 . 27]60(/2 - 2fna/2 .9—ka
BT D, Ryt D@, Ry = (270 4 [o —y[)dre

where the last inequality holds since 2D(Q, R) > 2% + |z — y|. Then consider that

2—ko¢ X 1
< 2Ry .
[ s [ G
lz—y|>e
By Comparison Lemma,
oo o0
! < — < d " gi<a @t eta
@ F o —g)ire H =g Epaire T GE gy pare S 27" +1) t
|lz—y|>e € 5
7d(2—k+t)—a >
=d—— 8
d
= a(Q_k + E)_a.
9—ka

Taking limit we get the term ngo‘ and hence [ 0 dy is bounded by g which is inde-

Tz =y

pendent of k. O

Lemma 3.7. For R€ D' and Q € G satisfying Q C R, 1(Q) < 27"I(R). Then

) HQ)\*? [ @)\
r<<T—H>AQf,ARg>|sc(Z(R)) (MRZQ 120 flall A gl
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Proof. We want to write the operator as something easier to deal with but first we recall that Agrg
can be written in terms of a step function on the children R; and R, of R as Cjx,, + Cy X, for

some constant C, C.. Now fix such R, Q and consider

(Aof TARg) = Y ({Aqf EsArg- AR(T*1)) = Y > (Aqf.Cixs - A5(T1))
SeD’ PeD SCR; P
I(P)=2""1(S)
dist(P,dS)>\(P)

since S, R are in the same lattice and only non-zero terms of Fg(Aprg) are those of S C R. These
sums are actually simple since ) is one of those P’s and they are in the same lattice so only
P = @ is left. In fact, one observes that there exists S € D’ such that Q@ C S C R; € ch(R),
Q) = 2771(S), and dist(Q,0S) > N (Q). We can choose S = R; if needed since dist(Q,0R;) >
QIR =1(Q)27"(1=") > \I(Q). Therefore,

D7D DQf Cixs - A(T1) = (Do f, AH(T1)Cy = (TAqf,1)Ch.
SCR, P

We now consider the inner product as follows:

(T —1I")Aq f, Arg)| = (TAqf, Arg) — (Do [ 11ARg)| = KTAqQf, Arg — C1))|
= |<TAQf7 OlXRZ - Cl> + <TAQfa CTXRT>|

<|GI{TAQf, Xe, = DI+ [(TAQS, Crxg, )]

For the latter term, we follow Lemma 3.5 together with D(Q, R;) > I(R;) to get

Q) I(R)

<
(TAQF Crxe, )l < C= 55 piyara

(@2 u(B) V2 8o fN12]|Cr i, l2-

Since I(R) = 2l(R;) and X N Xz, = 9,

Q)

[y M@ (B 2180 | Arglle

(TLQf,Crxe, )| < C - 20F02
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By property of the measure,

Q)™ 1
(T00f. 0l 5 (150) M@ s |80 Il Al

QN [ @)\
s(l(R)) (wm) 1807 2l A rglle

To handle the first term, we see first that for all x € Q°,

HQ)*

(TAqf) ()] < CW

1AQ -

Indeed, if dist(xz, Q) > 1(Q), then

(TAof) @) = | / K(z.y)Dof (v) duly)| = | / K(x,ymgf(y) duly) — K(x,6(Q)) Lo f () duly)|

|/‘ ‘MA of () dpy)|

Q
dmt((x,ég)d%tHAQfHLl-

On the other hand, if dist(z, Q) < 1(Q), then

(r2an@) < [ K@ulisesml e < [ auy) < o2

Q)"
= Cd’LSt(l‘, Q)d+a HAQfHLl

illBafll

By the above computation and Hélder’s inequality, we bound the term as

1

—d
dist(x, Q)+ a

(T2 f, xe, —1)] < / TAof| du < CUQY | Do flan(@)2 /
Ry

< O 4 DIQ | B (@)

Ry
_
dist(Q,0R;)™

where we can apply comparison lemma to estimate the integral in the last step since dist(z, Q) >

dist(Q,0R;). Also observe that ||Agg||3 = C?u(R;) + C2u(R,) and thus |C)] < u(R;)~ 2| Argl3.
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Together we then have

1/2
) 180 f 2l Argle.

T B f X, —1)] < 0@ <u<@>

dist(Q,0R)™ \ u(Ry)

Since @ is good, dist(Q,dR;) > 1(Q)YI(R;)' =7 > 1(Q)"/?1(R;)'/2. Finally, we have the estimate

a2 1/2
T A0S X — 1) ( ) ( ) 1Aof sl Argls

a/2 1/2

Lemma 3.8. The following estimate holds:

S5 (M) (MDY n ptngl < o X 120718) (X hent)

ReD’ QCR QeD ReD’
(Q)<27"I(R)

Proof. We again consider the second sum as layers [(Q) = 27"{(R) for n > r in order to get the

term 277, 8 > 0 on the right side of the inequality so that it converges when we sum all the layers

over n.
We first consider the layer 1(Q) = 2% as > > =y > > and see that
ReD’ QCR k R QCR
(Q)=2""U(R) I(R)=2"F | (Q)=2*
l(Q)>a (M(Q)) <l(Q))a mQ) <Z(Q)>a -
> <(LDY 5 5 HO (KDY _pie
2z (i) Ciey) = (i) w2 2 ) = 2 i)
uQ)=2* 1(Q)=2*

Hence, by Holder’s inequality,

> X (m N (DY gl

QCR
I(R)= 2”*’“ 1(Q)=2F

NS ( > <§Eg><5(<§l>)>>”< > ||Aqu%>l/2||ARg||z.

R QCR
(R)=2"FF y(Q)=2* 1(Q)=2k
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By the previous calculation and Hoélder’s inequality again, we bound the RHS by

1/2

1na)/2<z Z Z IIAQf||2>1/2<zk: T IIARgH%)

I(R)= 2”*’“ Z(Q) 2k I(R)=2"
Since for each n the inner sum give one full layer of cubes I(Q) = 2* for the first parentheses and
I(R) = 2"+ for the second ones, the upper bound is the desired one, i.e.

1/2

1/2
S DY (Z IIARg@) ~

QeD ReD’
O

Lemma 3.9. Let K : R x @ — C be a Calderon-Zygmund kernel for any cubes R,Q such that
2771(Q) < I(R) < 2"(Q), and dist(Q, R) > emin(l(Q),I(R)). The Calderén-Zygmund operator T

is bounded on LZ2.

Proof. WLOG, we first assume that 1(Q) < [(R). We want to use Schur’s test so we consider for

K (e ||L1</ R B R )

el(Q)<|z—y|<cl(R)

all x € R,

and the Comparison Lemma implies

c(R)

1K@ <d [ i
l(Q)

cl(R)

(@)

Q)
< dlog S90Q) C(r,e).

= dlog

Similarly for all y € Q,

1K, HL1</, 7 dula) < Clr.o)

By Schur’s test, The operator T is bounded on L?. O
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Remark. This lemma also holds when K : R’ x Q' — C for any parallelepipeds @)', R’ in cubes Q, R,
resp. where 2771(Q) < I(R) < 2"1(Q) such that R'N Q' = & with dist(Q’, R') > e min(l(Q), (R)).

Lemma 3.10. For any cubes Q € D, R € D' such that dist(Q,R) < emin(l(Q),I(R)) and
277(Q) < I(R) < 2"(Q), we have the estimate

T Xg, Xa)| < CLi(@Q) 2 u(R)Y? + CoM(n) /(") (Q) 2 (R

+ M(n) (IXll2lXa, 12 + X0, 211Xz l12)

Proof. Note first that this includes the cases that one cube contains in the other and @ N R = &.
We would like to put a random grid G on the set A := ) N R regardless its emptiness so that we
can get some estimating property. Thus, we consider the following: for any two cubes @, R such
that 2771(Q) < I(R) < 271(Q), let s = (10A)temin(I(Q),I(R)) be the size of cubes S in the grid
G. Note that we will see how small we pick the ¢ later so that it is fixed. Again, we want it to
be uniformly distributed over RY. We can shift a fixed grid by &(w) where ¢ is a random vector
uniformly distributed over [0, s)™V

For ¢ > 0, let Go := |J S\(1 — 2¢/)S be an &'s-neighborhood of the boundaries of the
cubes S in the grid G. Hej(fecj for a fixed point z € RV, IP’{w cx € Goa} = p(e’). Clearly,
o(e') = 0 as ¢ — 0. Then, E(u(G N A)) :fmeA du(z = [l xc. () N xa(z) dP dp =
S xa(@) [ xa, (@) dP dp = @(') [ xa(@) du = (') (D). Since P{w PG N D) = () (D)} #
0, we have P{w : u(Ger N ) > o(e)u(A)} < Plw : u(Ger N &) 2 p(e)i(A)} < FEGETG =1
Therefore, P{w : u(Ge N A) < p(e")u(A)} > 0. In other words, we can always find a grid G with
the inequality for given ¢’ and A.

Qs, and A, defined as

To estimate [(T'X,, Xz)|,

the following:

Qsep = Q\(A U 5R)
Qs = (Q Nr)\S where S is a small part of @ N dr N A making boundary hyperplanes of Qg

in A go along the boundaries of the grid G

AQ = Q\(Qsep U Qa)
Note here that Qs C Qp. Then, we can decompose (TXy, Xn) = (TXgs Xa..,) + (TXgs Xap) +
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(T'Xgs Xa )+ For the first term, we have that Q N Rsep = @ with dist(Q, Rsep) > €l(Q) thus by
Lemma 3.9,

< Cu(@)2u(Roep)? < C(Q)Y2u(R)'2.

( (TXg: Xa...,)

For the middle term, since Ry C R} together with the definition of M(n),

(TXgs Xr,) < M) [[Xo |2 1, Il 22-

For the last term, we write (T'X,,, XAR> = <TXAQ3XAR> + <TXQO, XAR> + <TXQSEP, XAR>'

Similarly to the previous consideration, we have, by definition, the estimate

(TXqy Xa ) < M(0)lIXg, Il 2l Xe 22

and by Lemma 3.9, the estimate

(TX..» Xop) < Cri(Quep) P u(R)Y? < Cu(@Q)V2pu(R)V.

So, only the first term (T'X,,, X ) is left. We write Ag = AU AQ where A = Ag NG, and
Ag = No\Ge, and similarly for Ag. Recall that we pick G such that u(Go N A) < p(e)u(D).
Hence, we can decompose (T'Xx 5 Xa ) = (TXar» Xap) + {TXa 5 Xar,) + (TXz > Xa ) - For the first

summand,

(TXag,> X)) < M0)lIxag, 221X, 2 < /‘/l(n)u(A’Q)1/2M(A1Lz)1/2
F# 1/2 1/2
\/71u 1/2 1/2

and similarly for the middle one,

(TXa s Xog) < M(n)V/o(e (@) p(R)2.

For the last term, consider that AQ UAR consists of finitely many disjoint parallelepipeds Si. Also,
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the set AQ is a union of some of these parallelepipeds, and similarly for Ar.

For two disjoint parallelepipeds Sy and S, we have dist(S1,S2) > 2¢’s thus, by Lemma 3.9,

(TXs, X, )| < Cua(S1) 2 0(S2) % < Cu(@Q) 2 u(R)Y2.

The other case is that S € AQOA Rr. In this case, S must be a cube and hence by the assumption

of weak boundedness and the chosen size of the grid G,
(Txss Xs)| < Cu(AS) < Cu(D) < Cu(Q)'*p(R)>.

Since the number of the parallelepipeds S}, is finite depending on 7, &, A, &/, taking the sum over all

the parallelepipeds we have

(TXaq0 Xap) < Cr(Q)2u(R)"2.

To summarize, we have estimated all the terms and see that

{TX Xa)| < CLis(@) 2 (R)Y? + M(n) (Xl 221X, 122 + 11X, 2211 22)
+ CoM(n)y/ () (Q) 2 (R) V2.
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Chapter 4

T1 theorem

In this chapter, we prove T1 theorem. As mentioned, we reduce the problem to bound a good part.
To bound it, we decompose such good part in suitable way so that the estimates from previous

chapter can apply. Since all hard work is prepared, here we should see a wide picture of the proof.

Theorem 4.1. A Calderén-Zygmund operator T extends to a bounded operator on L*(p) if and
only if the operator T is weakly bounded and T1, T*1 belong to BMO = BMO(u)

Proof. Let X := {f € L*(u) : ||f|l, < 1,3 R such that supp f C R,I(R) = 2"} and

M(n) :=sup{[(Tf,9)| : f,g € X}.

Thus, the task is to bound this quantity uniformly in n. By definition of M(n), we choose functions
f.g € X such that [(Tf,g)| > 3M(n). Let D(w) and D’'(w’) be random dyadic lattices in Lemma
2.11 so that || foaalls < 27372V (| fllys gbadlls < 27372V ||gll, - We notice that Joads fga might not
be in X since their support is not in the dyadic lattice so it can be bigger. However, for example,

Q is the cube of size 2" supporting f, @ can be covered by at most 2V dyadic cubes Qi €

D(w), I(Qr) = 2" so that fyeq and fyooq are supported by union of Q) and similarly for gyq. We

foadXQy,
| foadll 12

‘<T<Hfb“dHL2>7g>’§ 2 ‘ g foaall2) 7 <2 M(n)

Qreeh (U, Qr)

then have € X. Hence,

and then [(T fyad, 9)| < 2% | foaall 2 M(n) < 2V27372NM(n) < 273 M(n). Similarly, (T fgd, ghad)| <

22N2=372N M(n) = 273 M(n).

41



To estimate (T fyq, gga)| , we decompose fyq and gq4q to get upper bound

> > (TAQf, ARG+ Y. (TAf,Arg)+ Y. > (TAqf Arg).

Reg’ Qeg Reg’ Qeg Reg’  Qeg
27TUR)<SI(Q)<2"I(R) 27(R)>1(Q) 2"I(R)<U(Q)
(4.1)
For the second and third terms, we first observe that they are symmetric so that we can consider

one case, say the second one. Since @) is good, we can decompose

S Y (ThefArgy =D > (TAf,Arg)+ Y. > (TAgf, Arg)

Reg’ Qeg ReD! Qg ReG’ Q€D
27TI(R)>U(Q) QNR=0 QCR
27"I(R)>1(Q) 27"I(R)>1(Q)

For the first term, we use Lemma 3.5 and 3.6 to get

a/2 a/2
S Y (@nentrdls Y Y MR o)z (R) 2 g fla Anglls

d+a
Reg! QQEQ ReD/ QQ}%Q D(Q. )
NR=9 NR=9
27"I(R)>1(Q) 27"I(R)>1(Q)
S I fllzllgll-

To estimate the latter sum, we use the paraproduct II(-) := II(-, 7*1) to see that for each R

Y (Thqf.Brg)= >, (T-T)Aqf,Arg)+ Y, (Aqf,TTIARg)

QCR QCR QCR
(Q)<2"I(R) (Q)<2"I(R) (Q)<2"I(R)
= Y ((T-T)Aqgf, Arg) + (f.TIg)
QCR
1(Q)<2"I(R)

where the last equality follows from Lemma 3.4. Since T™1 is in BMO, the paraproduct II is

bounded on L? and hence |{f, IIg)| < C||f|l2]|gll2. The rest uses Lemma 3.7, 3.8 and 2.3 to get that

/2 1/2
Y Y (T -m)sef i< Y Y (ﬁg%) ([j(f))) 1A0f 2l Argls

ReD’  QCR ReD’  QCR
1(Q)<27"I(R) HQ)<27"I(R)
1/2 1/2
<C Y 12gfl3 ( > HARQH%) < C| fll2llgll2-
QeD ReD’
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Now we go back to estimate the first sum of comparable size @, R. For arbitrary € > 0, we can

separate the sum in (4.1) into:

> > (TAQS, Drg)+ Y > (TAGQF, Arg).

Reg’ Qeg Reg’ QeD
2 7I(R)<U(Q)<2"I(R) 2 "I(R)<U(Q)<2"I(R)
dist(Q,R)>e min(l(Q),(R)) dist(Q,R)<e min(i(Q),l(R))

For the first term, the sum is included in the cases separate cubes and comparably separated cubes
in Th theorem. Thus, we refer to the cases to bound this term. To estimate the other term, by

Lemme 2.4, we have

> > WS NTIESY > leQ(F)er(9)(T X Xa) -
Reg’ Qeg ReD’! QEeD
27"(R)<UQ)<2"U(R) 27 R)SU(Q)<27U(R)
dist(Q,R)<e min(l(Q),l(R)) dist(Q,R)<e min({(Q),l(R))

We then estimate the bound applying Lemma 3.10 to get

Yo D leeNerO(TNg: Xl

ReD’ R—related Q

< (Gr+aMmVEE) Y Y leal)ek(9)n@) P u(R)

ReD’ R—related Q

n) Y D @U@ (2l Iz + 1o, 2 Xl z2)

ReD’ R—related Q

where R — related Q is @ € D such that 27"[(R) < (Q) < 2"l(R), dist(Q, R) < emin(l(Q),(R)).
Next, we observe that for each R € D’ there are at most M (N, r) such R — related ). Thus we

can write the RHS of the above inequality as

M(N,r)
(C1+ CMOVE) Yo 3 ler) (k@) u(RG) Y 2u(R) 2
j=1 ReD’
Z > leney (D@ (Do 221, 122 + X, 22 Xl 22) -
j=1 ReD’
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Then using Cauchy-Schwartz inequality we have

Jj=1 ReD’!

) 1/2 1/2
Z ler() ()] !\XR@)\ILQ) (Z [cr(9)] HXRpr)

j=1 ReD’ ReD’

1/2 1/2
+ M(n) ( Z (Z \CR(j)(f)IQHXRm,,H%z> (Z IC’R(g)IZ’HXRII%2> ) :

j=1 ReD’ ReD’

M(NT) 1/2 1/2
(1 + MmVeE) 3 ( rcRm(f)Pu(Ru») (Zrc'R<g>2u<R>)
ReD’
N

M(

Since the same-sized cubes are disjoint together with the other estimated terms from Lemma 2.11,

we have that Z!CQ( Elxg, 17 = ZHfb 15 < 8pell 113, Z|CR( P IXe, 5 = Xk:\lgz’fH% < 8pellgl3-
Also recall from Lemma 2.4 that Z ]cQ( DHIPu(@) = 11113 Z |n(9)P(R) = ||g/|3- Thus we obtain
R

the upper bound

CLM(N,r)[[fll2llgllz + CoMn)Vp(e)MN,r) | fll2llgllz + 2v/8peM(n)M (N, 7| fll2]lgll2-

Then choose ¢,¢’ small enough so that 44/2p.M(N,r) < % and Caor/p(e")M(N,r) < % leading to

the bound
B > (TAqf, Arg) < Clfll2llgllz + M ()| fll2llgll2 + M( )N fll2llgll2-
Reg’ QeD

27TI(R)<U(Q)=2"(R)
dist(Q,R)<e min(l(Q),l(R))

To recap, we have finished bounding the term [(T'fgq4, ggq)| and hence obtain that

3
ZM(n) < ’<va g>’ < |<ngoodaggood>‘ + ’<ngoodagbad>| + |<bead>g>|

<C+ éM(n) + i/\/l(n) + %M(n) + %M(n)

which in turn yields boundedness of the quantity M(n). O
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Chapter 5

Paraproduct estimates

In this chaper, we prove that the paraproduct II arose in the T1 theorem is bounded from LP x L4
to L™ where % + % = % for p,q > 1 and the doubling condition of the measure is assumed. For

convenience, let us recall that

(g, T*1) == Y > Esg- No(T*1).
SeD’ PeD
1(P)=2""1(S)
dist(P,0S)>AlL(P)

To start, we observe LP boundedness of the averaging operator and use it to prove an inequality

that defines a size of a tree.

Lemma. For1<p<ooand P€Z,

1EP fllp < I £1lp-

Proof. Obviously, ||Epflleco < ||flleo- It is also easy to see that

Xp(7)
P [t < [ i1 au <.

By Marcinkiewicz’s Interpolation, we get the result. O

Lemma 5.1. For a given tree T and P € T,
1Epfllp < inf My(Mf)(@)u(Ir)"?
zelr

where My, f = (M(|fP))'/? and M is the dyadic mazimal function.
Proof. Consider first that [Epf|lp < [|Ep(fX;,)llp+1Ep(fXig)p- It is obvious that Ep(fx,e) = 0.
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On the other hand, the previous lemma tells that

1
IBP (o < 1%, o = G |12t

With the fact that |f(x)] < M f(x), it is straightforward to see that

(

M(}T) Ir ) I < 1EnIfTMpf( ) (IT)l/pSxienlfTMp(Mf(x))u(IT)l/p_

Definition. For a tree 7, define a square function

= () |apf)? = me )12

PeT

and
n
= (D 1akfP)Y2.
k=N

Without loss of generality, we can consider N = 1 that means the biggest cubes in the tree have
size 1/2. We also need some general definitions along the proofs so let us state them here.

Let f = (f1, f2,...) be a sequence of function. Define the maximal function of the sequence
fH(x) := sup | fu(2)].

neN
Define the Rademacher functions r,(t) := sign sin(2"nt) for n € N.

n

Define a transform of Ef = (E1f, Eaf,...)tobe Rf = (R1f, Raf,...) where R, f := Y ri(t) Ar f.
k=1

Similarly to the averaging operator, we need LP boundedness of the square function. In order

to see that, we need the following result from Burkholder on martingale transforms [Bur66].
Lemma. For each n > 1, R, s bounded on LP.

Now we are ready to prove LP boundedness of the square function. In fact, we have the following

lemma.

Lemma. For 1l < p < oo, there are positive real numbers M and N such that

MSfllp < 1fllp < NISFlp-
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Proof. We will show that ||S,,(f)llp S |Enfllp S IISn(f)|lp then by DCT with the fact that E, f — f

as n — oo, we get the result. First, by Khintchine’s inequality and Fubini’s theorem, one have

15 (f / !Zm )ORfIP] = /\Zrk JARFIP]

Since k < n and R, is bounded on LP, we see that

Bl | Zm )8ufP =B Zrk (OLEIP S IEfI

To see the other inequality, we use the fact about the Rademacher functions to see that
conversely Ef is a transform of Rf under the same Rademacher sequences. In other words,

E.f = > ri(t)dif where dipf := Rps1f — Rif = rmi(t)Arf. Similarly, one have the desired
k=1
inequality

1B <B [ 13 n@on? = (B n@aulr s [ 1aPr? .
k=1 k=1 k=1

O]

As before, we have the following lemma which will define a size of a tree so that the sum of

w(Ir) is controlled by LP norm of functions.

Lemma 5.2.

1S Fllp < € inf Mp(Mf)(@)u(l )P,
Proof. Again one have ||S fl, < [[S(fX;,)llp+[1S(fx;¢)llp- Considering as Ep f function, one obtain
IS < X, llp = (1/ VP u(Ir) P < inf My f(2)u(I7) /P
e =Wl =Gy =
< inf My(Mf@)u(ir)?

zelr

where the last inequality follows from the fact that | f(z)| < M f(2) a.e. The latter term S(fx;c) =0

since S f is supported on I7. O

Now we define some sizes of a tree so that we can decompose cubes regarding these sizes.
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Definition. For a tree 7, 1 < p < 0o, define

1
size1(T) := ———— sup |E ,
1( ) ,U(I’T)l/p Peg_” Ppr
2ea(T) = ———||S
sizea(T) = WH f||p7

size™(T) := sup{size(S) : convex tree S C T }.
Lemma 5.3. ||Epflloc < sizef(T) for all P € T.

Proof. Observe that || Ep fleo < ﬁ Jplfl < l}rellfJMf(a:) < jglngf(x) Also note that Ep(Epf) =

Epf. Thus, with Holder’s inequality, we see that

Bl = IER(Ee Sl < inf M(EpD@) < (o5 [ 1BR7P)"

From the definition, this means |Ep || < sizel(T).

Next, we prepare a collection of trees with some desired properties.

Lemma 5.4. Given a convex collection Q of tiles in P, we can decompose it into a collection S of

maximal convex trees T with respect to set inclusion with disjoint top tiles IT and

S uIn) S ———— | £

=% sizef(Q)P
o . . size] (Q)
for both | = 1,2. The remaining tiles are collected in Qe such that sizef(Qief) < — S0
that @ = Ures T U Qiepr-

Proof. Take P in Q that is maximal such that size;(T) > where T = Tree(P) N Q for

size} (Q)
2
both [ = 1,2. If there is no such P, then Oy = ©O. Remove the maximal tree with top P from
Q. Repeating the procedure with the new collections until no such P and then collecting all the

remaining P in Qjes, we get the decomposition.

Next, from the previous lemmas, inIf My(M fi)(z) > size)(T) > %*(Q) for all 7 € S. Thus,
xelT
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we have Jrcs It C {x: Mp(M fi)(z) > Slzel © }. By disjointness, we have

S utrr) = (U Ir) < l{ : (a1 ) () > 2Ty

TeS TeS

From weak L' and strong LP boundedness of M, we respectively have

size;“(Q) 1 < 1

p{x : Mp(M fi)(x) > SIM AN < £l

( )P

Finally, we are able to establish the paraproduct estimate.

Theorem 5.5.

ITL(f, 9) - < Cll A lIbllgllg

where 1/p+1/qg=1/r and p,q > 1.

Proof. By an interpolation argument in [MTT02a], one need to show that for any measurable set

Fy, F, F3, there exists a measurable set F3 such that Fj C Fy and p(Fy3) > % p(F3) satisfying

1
7

(L, 1), L] < C(Fy) 7 u(Fo) s p(F)

where % + % = 1. We consider the set

Q=

Fj = Fg\ ({x My (M1p,)(2) > G } U {x My (M1p)(2) > CoMI2)
W(Fs) ()

Q=

)

To check that this Fi; works, we observe using weak L' of M that

Cu(F3) »
})<Cp( )HMHFIH

S I

M({x L My(M1p,)(z) > YAy
p(F3)

Therefore, by strong boundedness, we have

Cu(Fs)

C
CP( )”M:H'FIH Cp:u(F?))

4 p(F3)
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where we choose Cy large enough for the last inequality. Similarly for F, with g. Therefore, we
have pi(F3) ~ p(Fs).

To obtain the main inequality, we first apply Lemma 5.4 to decompose D" as D' =) | T.

o T€eT,
Observe that size; (D) = ﬁgg/ size(T) < ﬁgg/ aclélIfTM p(M1p)(x) < Co “éFl))l/Z since x € F3. We
ou(F1)P 7

thus consider sizey(7) ~ for all T € T, where o represent dyadic

=

and sizea(T) ~ opFa)?
wu(F3)P w(Fs)
numbers. Therefore, we have

=

<H(1F171]-F2 :[]-F’ Z Z ESILFl AP:I]-F2711F/>
SeD’ PeD(S)

=22 > 2 (Eslm-Oplely)

o TET, SET PeD(S)

where P € D(S) stands for P € D such that P C S, [(P) = 27"(S) and dist(P,05) > A(P). Since

forallz € PC S, Eslp (x) = (1p)s is a constant, we get

<H<HF17]1F2 ]lF’ Z Z Z Z ]]‘Fl AP]levle’>

o T€Ts SET PeD(S

Since AQ = AP, A}; = AP,

(II(1py, 1g,), ]lF’ ZZ Z Z (Ip)s APILFWAPHF’>

o T€Ts SET PeD(S)

We know by definition that [(17)s| = [|[Eslr, |lcc and we have seen that

Z Z APILFWAPILF?’)’ < Z ‘<AP]]-F27AP]]-F§>“

SeT PeD(S) PCIr
U(P)<2~"I(I7)
dist(P,017)>\(P)

Together with Lemma 5.3, we get

((Lpy, 1p,), L)l < Y Y sizei(T) > /IAP1F2 IAPLg (2)] dp.

g TG% PC]T
1(P)<2-"I(I7)
dist(P,017)>\(P)
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We also have seen that we can rewrite the sum in the form of a collection of Whitney intervals W,

i.e.

W::UWi

i>0
where W is the collection of intervals P C I such that I[(P) = 27"I(I7) and dist(P,0I1) > N (P)
and W; is the collection of intervals P C I7 such that [(P) = 27""I(I7) and dist(P,dIr) > M(P)

and PN Uj;t W; =@ fori=1,2,3,... so that

Z /‘APILFQ ”AP:H-F’ ]d,u— Z Z/|AP:H-F2 HAP]]-F’( )|dﬂ

PCIy QeW PCQ
I(P)<2-"I(IT)
dist(POI7)>\(P)

Cauchy-Schwartz inequality yields that

|<H(]lF1,]lF2 ]lF/ ‘<Z Z szzel Z / Z ‘Ap]lFQ % Z |Ap]lF/ 2 d .

o TeTs Qew PCQ PCQ

Hoélder’s nequality yields that

(g, 1), Tp) < Y0 > sizef(T) D 11SQLallpllSoLelly-
o T€Ts QeEW

1

Let us observe more that [|So1lp|ly < C||1g1lglly < Cu(Q)?" where % + 1% = 1 together with

the definition of the sizes we then have

3 e

(I, 1), Tl < 03 sizei(T) Y sizea(Tree(@)u(Q)7 u(Q)

o TeTs QeW

Then according to the sizes we chose at the beginning we can write

l
LIPRIERIEDY oulF)> Z >

p(Fs) M(Fs i TeTs QEW

o1



Since @) € W are disjoint, we have that that

> Q) < p(Ir),

QeEW

and therefore

o F)pau(Fz)
((1p, 1g,), 1) < S 2 1 (I7).
olnh el <)yt AT

On the other hand, we can see that

Iy~ 20 = Lty

1P < )=
Ik l5 < — T E) = o

1
— |1
szze?‘(’]})pn Fillp

sizef(D')P

where this p represents both p and g. Thus, by the previous Lemma 5.4,

B =
/-\
S
S—
Q=

ou(F 1
(115, 1) 1 < 0 3 22 FUE R
p(Fs)r p(Fs)e

and hence

1 1 111 2 p
(1, 1p,), )| < Cu(Fy) e p(Fa)ip(Fs)' 770y o

1
-

< Cu(Fy)? p(Fy) s u(Fy)7

for p < 2. Note here that the sum converges because o < (. Indeed, if o > Cy, we would get

M,(M1g)(z) > 1n[f M,(M1g)(x) > size/(T) ~ C;‘zgl))ll/f Co (( ))1/p which contradicts to the
xelT

fact that z € F3.

52



Chapter 6

Tb theorem

In this closing chapter, Th theorem is proved. We start setting the proof as the T1 theorem and
treat each piece in sections. Definitions and lemmas are written in the smallest environments that
require them to avoid confusion. Furthermore, we will work on dimension N = 1 for simplicity as

higher dimensions are considered almost the same.

Theorem 6.1. Let T be a Calderén-Zygmund operator satisfying that there exist weakly accretive

functions by, by such that for all cubes Q in R,

IT(b1xo) 2@y < Bu(@)Y?  and [T (baxo)ll12(q) < Bu(@)'/2.

Then T is bounded on L2.

First, consider a quantity M := sup{[(T'f, )| : |fll2, llgll2 < 1}. Pick functions f and g in L?
such that 2M < [(Tf,g)|. Then choose two random dyadic lattice D and D’ as in Lemma 2.12
leading to inequalities [(T fyqd, 9)| < %./\/l and (T fod, Gbad)| < %./\/l. The main story in this chapter
is to prove that |(T fyq, gga)| < C 4+ M. Once it is known, we have 2M < i M+ iM+C + M
resulting in boundedness of M.

To estimate (T fyq, ggq), we break the term using Lemma 2.6 into three parts as

(T fga: gga) = (LY AHF), Y Arg) + (T(EQf), gga) + (T Ay ), Ekyg)
Qeg Reg’ Qeg

where @, Ry contain the support of the measure p. Note that there is no concern to write just b
associated to f and ¢ instead of b; and by, respectively. Also, we only need to consider the first

summand because the other ones can be estimated in the same way. To handle the first term, one
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splits it as

(T D00, Y LRy =D D (TLQN.Lkre)+ Y Y (T84, Lka).

QEG Reg’ ReG" Qe€g ReG’ Qeg
HQ)=U(R) H{Q)<UR)

This way one can treat only one term since the other can be considered similarly regarding 7. Next,
we divide the sum into three parts with respect to the distant of @ and R, i.e dist(Q, R) > l(R),
el(R) < dist(Q, R) < l(R), and dist(Q, R) < el(R). The rest is devoted to estimate these parts and

such € will be determined in the last one.

6.1 Separated cubes

In this case, we treat the sum in which dist(Q, R) > [(R). Before working on the main part, let us

post some lemmas first.

Lemma 6.2. Let 0(i) = [%ﬁ:] for i € Ng. For any cube Q € D of size 2¥ and any cube R € G’

of size 287™ such that 2"1(Q) < D(Q,R) < 2"t1(Q) where k € Z and n,m € Ny. Then R C

ﬂ_n—&—G(n—i-m)Q‘

Proof. Observe that n + 6(n + m) > r so that 2"I(R) < 2'1(Q) < I(z"*t?("+™)Q). Thus, by
goodness of R, either R ¢ 7" +m@Q or R ¢ R\a"t?("+™)Q. For the latter case, again by
goodness, I(R)(a"H0+mOQ)=7 < dist(R, on" 0+ Q) < D(R,Q) < 2"t1(Q). Computing

the inequality with the size of @, R brings about r < 1 which is a contradiction. O

Lemma 6.3. For any Q, R as in the previous lemma with additional assumption dist(Q, R) > I(R).

Then, for x € R,y € Q,
9—a(n+m)/4

_ <
|K(z,y) — K(zRr,y)| S p(mrtontm) Q)

Proof. Set P := n"H0(+m)Q  Since dist(Q, R) > I(R), the assumption on the kernel gives that

|K (z,y) — K(zg,y)| < 2=2rl" Then decorate the bound as

= Jomyl

| — xRl _ 2U1(R)™ 24 1(R)™ 1 AB
|z —yld+e = dist(R,Q)*(2|z —y)! ~ dist(R,Q)* pu(B(x, 2|z —y[))

where j is any integer. We consider two possible cases.
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Case dist(R,Q) > 1(Q) : let j = 2+ 6(n +m). Observe that 2"* < D(R, Q) < 4dist(R, Q)
so that 27|z — y| > 2/dist(R, Q) > 2"*+0(n+m) Thus, B(z,2/|z —y|) O P by Lemma 6.2 above

and hence B < u(P)~!. On the other hand, A < 4 .2-a(n+k) . gdjitalk—m) < odf(ntm)-a(ntm) <

~

2—a(n+m)/4'
Case dist(R,Q) < 1(Q) : let j € N such that 2/~ < éﬁ% < 2J. First, we show that
dist(R,Q) > %. Indeed, let otherwise assume. If [(R) < 27"1(Q), then, by goodness of R,

dist(R,Q) > I(R)U(Q)'™ = "M "y contradiction. It I(R) > 2771(Q), then dist(Q, R) <

I(R)YI(R)'™7 = I(R), a contradiction. With such inequality, we see that dislt((g) 7 < 1(2;;17;23)(5 )7 <2

so that I(P) < 2/dist(R,Q) < 27|z — y|. From Lemma 6.2 we know that R C P. Together we

. . _ . ar(l—-y)
have that P C B(z,2%|z — y|) leading to B < u(P)~!. Moreover, A < 2djl(R)aW <

- (I(R a(lf'}') d(n+0(n+m)) d(m+n+60(n+m)) . .
24 (ﬁ) < 2 gy = 22m(d+a)(1_7) . Also, it follows from dist(R,Q) < I(Q) that n <1
since 2" < Dz((%f) < % With v = (20 + 2d), we get estimate A < 2-(n+m)/4, O

We are ready to begin. Let us break the sum regarding the size of cubes and the long distance

D(Q,R) i.e.

Yoo D @R LR =D > > Y > (TAYf, D).

Reg’ Qeg n€NomeNo k€Z  Reg’ Qeg
UQ)>I(R) I(R)y=2k—m 1(Q)=2*
dist(QJ%)Zl(R) 2n+k<D(Q,R)§2n+k+l

dist(Q,R)>1(R)

Since Af)f is constant on its children, we get (TAIéf, Abg) = 0 Zf:(Q)(ACQf)Q/ (T(bxy ), Ayg).
'ec
Though the number of the children of any cubes depend on the dimension, it is finite so we will

not keep track on this sum. We rewrite the term further from the fact that the mean of Al}%g is
zero to obtain (T'(bx, ), Abg) = (T'(bxy) — T(bXy ) (zR), Alg). Now we apply Cauchy-Schwartz

inequality to bound

Y Y Ahk@e > (80hq (Tbxy (@) — Thyy (ar) |
keZ  Reg’ Qeg
[(R)=2k—m 1(Q)=2F
2n Tk <D(Q,R)<2n TRt
dist(Q,R)>I(R)
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by

1/2 1/2
(z 5 mw) (z Y e Y <Aaf>Q/<Tb>@,<x>waw).

k€Z  Reg’ k€eZ Reg’ Qeg
I(R)=2F—m I(R)=2F—m 1(Q)=2*
2n+k <D(Q,R)§2n+k+1
dist(Q,R)>I(R)

Using Cauchy-Schwartz inequality again we bound the integration of the above terms by

(X > 1ake)™],

k€Z  Reg’
I(R)=2k—m
1/2
where B := o e > VAV Dot (Tbxy — Thxy (zr)) [? . The left
keZ  Reg’ Qeg 2
I(R)=2k—m 1(Q)=2F

2R <D(Q,R)<2n k!
dist(Q,R)>I(R)
norm can be bounded by Lemma 2.6 as

(X = a%l)"], < lsl

k€eZ  Reg’
[(R)=2k—m

Thus, we are left to show that 3> 3. B < C. We will show that B < 2-2("+%)/4 and we are
neNg meNg

done since they are geometric series.
To see that, we consider a cube S € D with I(S) = k+n+60(n+m), k € Z and consider B

using disjointness of R as

-

STY xl@ D (8§ (Thxy (@) — Thyxy (zr)) I |du().
keZ Reg’ Qeg
I(R)=2k—m 1(Q)=2F
D(Q,R)~2ntk
dist(Q,R)>I(R)

Then we group the sum over @ regarding a cube S € D of size k + n + 0(n + m) so that

B-[|Y Y w0 S (8h e (Thg () — Thig(en) du(o)
keZ Reg’ SeD Qeg
I(R)=2k—m U(S)=2k+nto(ntm) g y(Q)=2k

D(Q,R)~2"tk
dist(Q,R)>I(R)
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Set

Kg(z,y):= > > (@) (Thxy () — Thxy (zr)) Xa(2)Xo (v)
Reg’ Qeg
I(R)=2F—m QCS,l(Q)=2*
2R <D(Q,R)<2n Tkt
dist(Q,R)>1(R)

then we see that

g

D /styAkfwm)r u(z)

keZ SeD
Z(S) 2k+n+9(n+m)

9—a(nt+m)/4
In order to bound Kg, from Lemma 6.3, we have |Tbx, (z) — TbX, (zr)| < TN(Q’) and
L
thus,
2—a(n+m)/4
[Ks(z,y)| < ) > > X ()Xo (1)-
s Reg’ Qcg
I(R)=2F—m QCS(Q)=2F
2n+k<D(Q,R)§2n+k+l
dist(Q,R)>I(R)
9—a(n+m)/4

Then by Lemma 6.2 we have R C S for such R and hence |Kg(z,y)| < sz(x)xs(y) by
,u

dp(z)

> > /!Ks(ﬂv,y)Aif(y)\du(y)\2

disjointness of cubes. Therefore,
kE€Z SeD

B? < /
l(s):2k+n+9(n+m)

s IS5 <|A;f|>sxs<m>|2'du<x>.

kEZ SeD
l(s):2k+n+0(n+m)

Observe that > (AL f)sXs(7) = Epgntouem)| ALf|(x). By Stein’s inequality (2.2),

SeD

l(s):2k+n+9(n+m)
ldu(a) SIf13
where the last step is the inequality (2.1). Equivalently, B < 2-*(tm)/4| 7|,

DS <|Aif\>sxs($)’2‘ </

keZ SeD
l(s):2k+n+9(n+m)

keZ
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6.2 Comparably separated cubes

This section refers to the sums over @), R such that cl(R) < dist(Q,R) < I(R). We will apply
Lemma 3.6 for this term. Thus our work is to get some bound of <TAléf, Al}{g) First, let us

observe a key inequality from goodness of cubes.

el(R)U(Q)

Lemma 6.4. For good cubes Q, R with dist(Q, R) > el(R), we have dist(Q, R) > (=)

Proof. f I(R) > 27"1(Q), then we are done otherwise we would get a contradiction from

el(R)1Q)

dist(Q, R) < 5r(1—)

< el(R).

If I(R) <277l(Q), by goodness of R, we have

URI@Q)' T _ Sl(RYUQ)
or(1—7) - or(1=v) '

dist(Q,R) > I(R)1(Q)*7 >

O]

CI(R)™

Also recall that for all z outside the cube R, |T*(A%g)(z)| < dist(z, Ry

HA gll1 as we
considered in T1 theorem. Now we can see that

(TLG S, Bk9) = (DG, T Dkg)| < CUR)™ || Akl Md ()
QJ» 2RI = QJls RIN = RIII dist(z, )& ML
Q

I(R)~
Y Al Al
disto, Ryira | g2
C2r(1—7)(d+a) l(R)a

<€d+o‘ Z(R)’Y(d-f—a)l(Q)

(1=)( d—i—a)”A gH HA f”l

where the previous lemma is used in the last inequality. Recall that vd + ya = /2. Hence,

I(R)*
(TALf. lg)| < Oy, d, o) (R)a/il() rarall ol A
R)*/?
= 07,0, L@ g8ty
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Since D(Q, R) < 31(Q) in this case, we have
a/2l
(TAYf, Ahg)| < C(Ta%d,a@)(@R()dla

)
(
R)*2(Q
< C(Ta Y d7 a, €)W

R
o) 18RI IAGF 1

W(B)2u(@) 2| Ak ll2ll G 12

where Cauchy-Schwartz is applied in the last step. Then similarly to Lemma 3.6, we have

> > (TAG S Dy !<O<Z [IY: f||2>1/ (Z 1A% g!b)m

Reg’ Qeg QeD ReD’
HQ)>U(R)
el(R)<dist(Q,R)<I(R)

< Clfll2llgll2

in which we apply Lemma 2.6 to finish the proof.

6.3 Nearby and inside cubes

In this last section, we handle the sums of @, R over dist(Q), R) < €l(R). We separate the sum

regarding the size of @ and R into 27"1(Q) < I(R) (< I(Q)) and [(R) < 27"1(Q).

6.3.1 The nearby term 27"(Q) < I(R) < (Q)

This term is very similar to one term in T1 theorem except the weighted martingale difference
is used here. In addition, the situation is simpler on account of one dimension. One can extend
this proof to higher dimension by following T1 theorem. The difference is indeed in the following

lemma.

Lemma. For any cubes Q, R such that 2771(Q) < I(R) < (Q) with dist(Q, R) < €l(R),

(T (0XG): Xl < Cr(@)Y2u(R)Y2 + M (10X l2llbXir, ll2 + 116X, 12110Xcell2)

Proof. The proof is in a similar manner to Lemma 3.10 even without bothering &’. O

To estimate the sum in this part, we break the summand using what we observe in Lemma 2.7
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so that

> Z (TLGS Lk < Y Z lcQ(F)r(9) (T (bXg), bX)|

Reg’ ReD’
dzst(Q R)<€l(R) dzst(Q R)<€Z(R)
27MUQ)<I(R)<UQ) 27MH(Q)<SUHR)<SUQ)

Then by the above lemma we have

D> D leaWehlo)Tbxelbxal < O 30 3 le()h(ln(@)"p(R)'?

ReD! suchQ RED’ such Q

+ MY Y e (@) (1012110, ll2 + 10X, 215X l2) -

REeD’ such @

Again, recall the fact that for each R € D’ there are at most M(r) cubes @ € D such that

277(Q) < I(R) < I(R) and dist(Q, R) < el(R). Thus we may consider the sums on RHS as

C- Z > lerg) (RGP u(R)?
j=1 ReD’
M(r)
F M e (HDEr(@)] (10Xag) 20X, 2 + 19Xy, l2lbXgll2) =: T+IL,
j=1 ReD’

Applying Cauchy-Schwartz inequality we have

M(r) 1/2 1/2
I<C- ), (Z !cR(j>(f)!2u(R(j))> (Z \C’R<g>\2u(R>> S [ ll2llgll2

j=1 \ReD’ ReD’

where the last step follows from Lemma 2.7. Now Cauchy-Schwartz inequality again yields

M(r) 1/2 1/2
II < M Z (Z ‘CR(j ’ “DCR(;)HQ) (Z ‘CR ‘ HbXR,,H2>

j=1 \ReD’ ReD’
M(r) 1/2 1/2
M (Z lcr@ ()] IIbXRmb\Iz) (Z cr(9)] ||bXR||2)
j=1 \ReD’ ReD’

Since cubes of the same size are disjoint, we have that > ||fF||3 = > |cQ(f)|2HbXQb||% and
k QeD
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% lgk|13 = RZD ]c}z(g)\QbeRb |3. With the estimates from Lemma 2.12, we can conclude that
e !

M

N

TS 8C (b, 0)p M (r) M ([ fll2llgllz + [ fll2llgll2) <

where we choose small € making small enough p. for the last inequality.

6.3.2 The inside term [(R) < 27"1(Q)

Note first that "inside” comes from the fact that dist(R,0Q) > [(Q)"I(R)'~ > I(R) by goodness
of R. Thus, under the case dist(Q, R) < el(R), it is only possible that R C Q. Also, we make an
observation that R C Q' for some Q' € ch(Q) since I(R) < 27"I(Q') and R is good. We denote
such child as Q',. In what follows, we apply time-frequency techniques constructing a tree which
satisfies some desired properties. Also, as needed for the techniques, we replace AZ) f with Alé fod-
This is fine due to the properties of the weighted martingale difference and only good @) we sum.
The same applies to g as well.

Before constructing such tree, we need some notations. Intuitively, we need layers of parents
and children in a tree of a cube. For a cube Q, denote its parent by 7Q. In addition if a tree 7T is
given, denote w7 Q) to be the smallest cubes in T containing (). Let W%—Q be the smallest cube in T
containing 77 Q. Define 77’7“—Q inductively. Similarly, define ch7@Q to be the collection of maximal
cubes in 7 strictly contained in (). Define chgrQ to be the collection of maximal cubes strictly
contained in cubes of ch7(@Q. Inductively define ch%“—Q and we are ready to go now.

We start with the maximal good cubes @ C @y in G and put them in the tree 7. Next for each
cube T € T, consider the maximal cubes @ C T' in D satisfying that (| fya|)g > 4(| fya|)r and that
either @ or 7@ is good. Then we add such cubes to the tree 7. Now we repeat the process at each
minimal cubes 7' € T. Note that 7 is denoted for the tree constructed by cubes in D’ and gyq.

We observe desired properties about Carleson condition and embedding in the lemmas below.

Lemma 6.5. For each cube T € T,

S T < )

T'echr(T)
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Moreover, the tree T satisfies a Carleson condition

for every T € T.

Proof. Given T € T, we have from the first condition that 45 ((::ﬁ;) S | fgaldp < [ | foaldp for every

T' € chy(T). Since children are disjoint, we get ﬁ Jplfealdn > w(T') < [7|fqaldp and we
T’EChT(T)

are done. In addition, we can consider the sum of S € T where S C T as the sum of T ¢ chi-(T)

for all n € Ng. From the sparseness of each layer we just proved, we can argue inductively that for

each n,
1 —
>, wI <y > wTth)
T ech?(T) T(h=Dech(T)
1 f—
=St DI Ch
T(n=2)echl™*(T)
1
= @M(T)
where 70 =T, Therefore, it is summable over n € Ny. 0

Lemma 6.6. The following embedding holds

D (feaFi(T) S Ml foall3 < g3

TeT

Proof. Given T' € T. Observe an inequality u(T\ Upecn 1y I") = (1) — u(T) = 3p(T). Thus,

S U 3u(T) < 5 Sl U 1)

TeT TeT T’ echy(T)

62



Recall a dyadic maximal function M f(z) := supg(|f|)q where x € Q € D. Then we have

S lfaiu@y | 1)<y / (M ) 2dp

TeT T’EChT(T TeT \UT/EC}LT(T)

Since T\ Urrech,(ry T" are disjoint for all T € T,

w\ﬂk

> Ao Fu(T) <

TeT

/ (M f0)2dp

By boundedness of the maximal function on LP,

S Uil BT < 3 [ 1fpald

TeT

as desired. O

We get back to the main track now. First, we decompose
DG Fea = (DG faa) @4 WXmray, — (Do Fead @ bXrrap\@y T 20 f0d Xovar,
so that (TAY fya, A%gga) equals T-TIHIII :=
(DG )@ (T (0Xnrqr,)s DkGga) = (DG Faad @y, (T (0Xrr@i\@y)s DrIga) + (T(AG Foa Xovay,)s DRYad)-

6.3.3 I The sum of (A fya) o, (T(bXrrqr,)s Akgga)

First note that 77Q’; € 7. Thus we rewrite this sum according to 7' € T as it has nice properties:

YooY (LS (TOxrrer): Lhggad = D D D (BGfeadqu{T(0Xy), Ahgga)-

Reg’ QDR TeT Reg’ QDR
2" I(R)<I(Q) 2Tl(122)/<l(1@)
T =
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On purpose of utilizing a martingale transform, a constant e 7 for fixed R € G’ and T € T is

defined by
1
ERT ‘= 777 <Acfd /.
e 2, (“afuler
2" I(R)<(Q)
T Q=T

Then we observe an important property as needed to apply the martingale transform inequality.

Lemma 6.7. The constants defined above are uniformly bounded i.e. |egpr| S 1 for any such R

and T.

Proof. Let us denote @, @ the minimal and maximal of cubes @ such that Q D R,2"I(R) < 1(Q),
QR =T, and p(Q) # 0. Since A fyq is constant on Q, so is on Q. Thus one can consider

that
S (Lo fadg, = Y. (Dofadgn = Y. Lbfuaa,

QDR Qeg Qeg
2"UR)<UQ) QCQCQ QEECQR
T Q=T B -

Since Achgd =0 for Q ¢ G, the sum can be viewed as all such Q € D. Now for all z € Q', the

series is a telescoping ones so that

> AbfaXep, = </,Rb>_1 Q/ngd_</Qb>_1/Qfgd Xo',-

Qeg
QCCQ

y, e ([2) o (f)

QDR
2"I(R)<(Q)
TrQR=T

Therefore,

From accretivity of b and construction of 7, we have

1 1 1
lerr (| foal)T < (M /Q;%|fgd|+u(Q)/Q|fgd|>

(4[(|fgal)r + 4|(| fgal) )

leading to the conclusion that |er | < 8/0.
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At this point, the term we are considering can be written as

DD Y (Lol (Thx), Akgga) = Y (fedldr Y (T(0Xr) eRTLRYga)-

TeT RegG’ QDR TeT Reg’
2"I(R)<(Q)
7TTQ'R:T

As a consequence of non-orthogonality of this martingale difference, we need to consider the term
in two parts, 777 R C T and mv R € T, regarding the other tree 7. Therefore the following family

is introduced.

Definition. For T' € T, let L(T') be the collection of w7 R for possible @, R. More precisely,
L(T):={rrR|R€G, RCQ,2"I(R) <I(Q), and 77Qr = T for some Q € G}.

Denote £F(T), for k > 0, the layer of cubes in £(T") for which WZ(T) of the cubes are maximal in

L(T).

Hence, the sum can be considered as

D fad)r D (Txe)serrDRGga) = D (fogalhr Y D (TbXe)Xsrer 1A RGga)

TeT Reg’ TeT SeL(T) Reg’

s¢r T R= S
+ > (I fgal)r Z > (T0Xe)Xsr eRT D RGga)-
TeT SeL(T) Reg’

ScT 7r7—/R S

Two sections below show how to bound each term.

The term with 7 R¢ T

Recall that each considered R there exists @ for some size containing it such that 77Q'; = T. Thus,

mrR C T. Hence, we can rewrite the sum in terms of layers of children of T, i.e. for each T' € T

) T )X errDRgea) =Y >, D> (TOx)XsXes D, errDRGga):

SeL(T) Reg’ t20 SeL(T) T'echt(T) Reg’
s¢T T R=5 SQT T R=S
mrR=T'

Next, let us observe the following lemma to get some finiteness.
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Lemma. For each T € T and S € L¥(T) such that S ¢ T, k must be less than 2(r + 1).

Proof. Let Sy € L°(T) the maximal cube containing S. Thus, SoNT # @ with T' ¢ Sp. Otherwise,
either goodness of Sy with dist(Sy,0T") = 0 would give I(Sp) < 27"I(T') or goodness of 7Sy with
dist(mSy,0T) = 0 would give I(7wSp) < 27"I(T), a contradiction. Hence, dist(T,d0Sy) = 0 =
dist(nT,05p). Since either T or 7T is good, one have either I(T") > 27"1(Sp) or I(7wT) > 27"1(Sp).
In other words, 1(Sp) < 2"I(T). Therefore, I(S) < 27%1(Sp) < 27*+"I(T). If k > 2(r + 1), then
27T21(S) < I(T). However, S ¢ T so that dist(T,9Sy) = 0 = dist(rT,dSy) which contradicts to

goodness of T or 77T I

We divide the sum over ¢ respecting to 2(r 4+ 1) to make use of the fact that 2¢ < 22("+1) for

t < 2r 4 1. That is to consider, using Cauchy-Schwartz inequality, to see that

Z Z Z |<T(bXT)XS‘XT’7 Z ER,TAIJ){ggdH

t<2r+1 SEL(T) T'€chl(T) Reg’
SQT T R=S
mr R=T'

‘Y (x ¥ oo ) (z SHD> ER,TA;@ggde)l/z

t<2r+1 \ SeL(T) T"echi( SEL(T) T"echi(T) Reg’
S;(_T S;(_T T R=S
nmr R=T'

For the term with the operator T' with the above lemma, we can write

2r+1
SN e i=Y Y Y 1Tl x|
SeL(T) T'echi(T) k=0 Ser*(T)T’echt(T)
S¢T S¢T
2r+1 )
< Z Z 17 (o) X }2

k=0 T'echt (T)

Z HT(bXT)XT/ 3

T'€cht(T)

< | Tox) x|

N

where the inequalities follow from disjointness of cubes in each layer £¥(T'), finiteness of the sum

in k£ and disjointness of children in each chﬁr(T), respectively. Then, by the assumption, one have
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that

170X xr |3 < Bu(T) < 220+ B224(T).

Now, let us turn to the other term where ¢t > 2(r 4+ 1) before treating the term with the
martingale difference in the sum. We first adjust the term without changing anything since Al]’%ggd

has mean zero as

(T (bXr) Xs X Z 6R7Tﬁ%ggd> = <(T(bXT) - T(bXT\w%f/%T’)(xT’)) Xs Xz Z 5R7Tﬁ%ggd>'

Reg’ Reg’
T R=S T R=S
mr R=T" T R=T"

Using Cauchy-Schwartz inequality for the triple sums we can get the bound

Z( > (10w - Tex ) @) XX

1/2
2>/
t>2r+1INSeL(T) T'ech’-(T)
S¢T

(5,5 I merstol)

SeL(T) T'echi(T) Reg’
S;(_T Tt R=S
nrR=T'

Again, consider the term with the operator 1" as above we obtain

DY H (T(bXT)—T(bXT\WLTt/Z’JT/)(fET’)) Xs X z
SEL(T) T'echt(T)

S¢T

< Y | (P0x) - T ) x|

T/ €cht - (T)

(6.1)

The above bound on the right side can be written regarding the cubes 777@/ Arin chgf/ 2l (T) as

2

Z Z H (T(bXT) - T(bXT\T”)(xT/)) X 5
T echlt/?1(T) T'€chi(T)
Lt/QJ T =T
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At each T" € chgf/ 2l (T'), we bound the second sum as

2
> || o) - T @)
T'echi(T)
/2

2

2 2
S 2 . Z H (T(bXT”)) XT/ 9 + 2 . Z H (T(bXT\T”) - T(bXT\T//)(.rT/)) XT/ 9
T'echi-(T) T’ echi-(T)
71_\7_f/2l T =T 7T7L—t/2J T =T

where the first term can be bounded by disjointness of children 77 C 7" and the assumption as

2
, < BT

> |@ewn o], < | o)

T'echi-(T)
bt/

For the second term, observe that [(T") > 2W/21(T") > 2"t1(T") > 2"I(T') and also recall
that either 7" or 771" is good when collecting cubes in 7. If 7" is good then, by its goodness,
dist(T',0T") > I(T"). In case 71" is good, we can see that 2"[(77") is still less than {(T") and hence
dist(T',0T") > dist(zT',0T") > I(zT") > I(T") by goodness of 7T". Since dist(T',0T") > I(T') in

any cases, for x € T",

| — x| 1

‘T(bXT\T”>(x) - T(bXT\T”)(xT')‘ < / WW@)WU(?J) < bllocl (T / Wdﬂ(y)-
T\T// T\TN

By Comparison Lemma,

d Z(T/)Cv
T (%) (@) = T ) )| < (3 + D¥loe g
d
< (— .
< (S + D)l

Lastly, we use disjointness of 7" again to get the bound (£ + 1)2[|b||2,(T") for the second term.

Thus, we just showed that

> | @ o) ~ T @) x|, < 22+ 2(S 4 1202,

T'echi-(T)
/2 g
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Taking sum over T” we have

> Y @t - Texe ) x| < 2B ) Y .

T echl/?1(T) T'€ch(T) Treehl/? (1)
W,LIE/QJ T =T

Applying Lemma 6.5 [5] steps so that
S T < D) < ()
= 5orea M ot L)

Techlt?1(T)

There are two terms which are the same except ¢ left and they should be treated similarly so

let us recap and simplify things a bit.

1> I fgal)r Z D AT (X ) Xsr ERT AR Gga) |

TeT SeL(T) Reg’
SQT 71'7—/R S

1/2
ST 22 Y (lyrn( ”2( DN DY aR,TA%ggdHZ)

t>0 TeT SeL(T)T'echi-(T)  Reg’
S,¢_T mr R=5
mr R=T"

sZz-tﬂ(Z<|fgd|>%u<:r>>”2<Z oY I 83%3%4))”2

t>0 TeT TeT SeL(T) T'echt (T)  ReG’
S¢T T R=S
mr R=T'

where our favorite Cauchy-Schwartz inequality is used in the last step. Lemma 6.6 says that
> (| f4al)3p(T) is bounded by L? norm square of f with constant. If the remaining parentheses
TeT

are bounded by something independent of ¢ (actually by L? norm of g with constant), the sum is

convergent geometric series. Thus what follows is only to see its boundedness.

First let us adjust the form for fixed T € T, S € L(T) such that S ¢ T, and T" € ch-(T) as

Z b 2 Z b Z b 2 Z b 2
H ER’TARggde - H gR’TAR< ARggd) Hz S H ARggdHQ
Reg’ ReD’ Reg’ Reg’
T R=S T R=S T R=S T R=S
mr R=T' T R=T' wr R=T'

where the properties of the weighted martingale difference give the equality (with suitable constants

and R added to the first sum in the middle norm) and Lemma 2.8 with Lemma 6.7 yields the second
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inequality. Then we estimate the form as

| S Ao ST aSguli+ 3w gl

Reg’ S'ech1(S)

T
7r7—115:7:8: m(wS")=T"
T R=

which is proved in the next four paragraphs.

Set Fg := S5\ Usrech(8) S’. We then break the norm and consider that

2
H Z ARggdH :H Z ARggd Xsn1\Fs N1’ +H Z ARggd Xrs n1! 9
Reg’ Reg’ Reg’
T R=S T R=S T R=S
mr R=T" wr R=T' mr R=T'
2
H Z ARggd Xs\Fs +H Z ARggd Xrgn 1’ o
Reg’
7r7—/R S o R=S
mr R=T" mrR=T"

To handle the first term, consider a cube S” € chy/(S) such that R € ¢, 7R = S, 7R = T’,
and S’ C R exists. Denote R the minimal cube of such cubes and R the maximal one. In other
words, R C R C R. Thus, due to the fact that A RrY94a = 0 if R is bad, we can obtain a telescoping

series and see that

b _ b b b
‘ Z ARYgd * Xsr| = ’ Z ARggd " Xsr 1| < ‘EE’S/ggd_Eﬁggd Xs' A1
Reg’ ReD'
7 R=S RCRCR
wrR=T'

where R'q, is the child of R containing S’. Also observe that for any cube R and function g, E%g

b blloo
can be estimated by |Ebg| < I‘lf}ﬁ(vll{ul‘ngdM’ < <‘5‘u | [ 9dulx; < [1Blloe H {|9]) kX, Therefore

b 11l
Elyr 991~ Bygoa|Xer iz < 5 ({ggal)mr, + (990D ) X
To exclude the good cube R from 77, one must have (|ggal)z < 4(|ggal)s. For the other cube, if
R, = S’ which is in 77 then it gives us not more than <|ggd|>ﬂfs, = (|ggal)s for S’ such that

7T7’(7TS/) =T Ifﬂ/ ’ 7é Slv then <‘ggd’>R

R, < 4(|ggal)s due to goodness of R and maximality of S’.
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Hence, we get the estimate

2
‘ Y AhggaXe| S (ggal)sXe + 199l sXe 00)* S {199al) % Xsr + (199l EXer -

Reg’
T R=S
mr R=T'

Then, using disjointness of S/, we can estimate our first term as

2 2
| S hownnl- T | S st
Reg’ S’echr1(S) Reg’
T R=S T R=S
rr R=T" T R=T"
S > {19gaDEu(S) + (|ggal) 2n(S NT).
S'€ch/(S)
m (S =T"

Here we look at the latter term. Consider a point € FgNT" such that klim Ergga(z) = gga(x)
—00
and all cubes R € G’ containing z satisfying 7+ R = S, 77 R = T’. Again, let R be the maximal

one. Since x € Fg and Al]’%ggd = 0 if R is bad, one can write

| Y Shg@)|=| Y Ahgla)

Reg’ ReD’
mrr R=5 RCR
w7 R=T" 7 R=T'

where the condition 7R = T’ is kept to determine cases. Indeed, if there is a minimal cube R

subject to conditions 7R =T', 2 € R C R, R € G'. As in the above paragraph, we obtains

b
| > Ahgea@)| S ggabms + (907
ReD’
RCR
mr R=T'

where R! is the children of R containing z. Since the smallest cube in 7' containing x is S, both
(l9gal) R and (|ggal) are less than 4(|gyql)s. If all cubes R satisfy such conditions, then in a similar

manner we have

18]l oo

| Y Aho@)] = [ im | Bhg(@) ~ Bhgoa(a)] < T5 (@) +ggabm) - (62)
ReD’
RCR

nr R=T'
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What'’s left is to estimate |ggq| by (|ggd|)s. This can be treated in two cases below according to the
good cubes belonging to D’ contained in S.

The first case is that there is a minimal cube, say R, of such good cubes containing x. Let R/,
be the child of R containing x. One reason that we works with the child is that (gsa)r: = (9ga)r

for all R C R! in D’ containing x. Hence,

@) = i {gga) ] = |(050) .|

Since mm R}, = S and R is good, [(gga)r.| < 4(|ggal)s as desired. For the other case, there are
infinitely many such good cubes. With the same argument as the previous case in the last step, we

can see that

19ga(@)| =l [{gga) rl < sup{{|ggal)r: R € G, v € R C 5} < 4lggal)s

zeRCS
I(R)=0

finishing all the cases.

To recap, we just proved that

Xrs nrt S (19gdl)$Xeg o7 (6.3)

2 : b
‘ A RYgd
Reg’
T R=S
mr R=T'

and hence

2
;S ({lggal)sn(Fs NT') < {|ggal)sn(S NT)

b
IS oo

Reg’
T R=S
wr R=T'

completing the proof of the desired estimate

| S aho ST S gt + 3w gl

Reg/ S’ cch1(S)

T
WT}?:;; m (S =T"
T R=
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Going back to the term which causes a few pages above, i.e.

S Y | Y cnrtho

TeT SeL(T)T'echt-(T)  Reg’
s¢T T R=S
mr R=T'

and using the last estimate above, we are able to bound it by

D Aggald DTSy + > > > D uS N geahd

SeT’ TeT SET' S'echy1(S)TET T'echl-(T)
s¢r m(nS)=T"

We are almost there. To bound the first term, we consider the sum over 1" in two parts

dDurnsS)= > wTnS+ > wTnS).

TeT TeT,SLT TeT,SLT
S¢r TCS T¢S

For T' C S, we can obtain Carleson condition as in Lemma 6.5 with 7'N.S to have that Y u(7'NS) <
u(S). To tackle the sum with T ¢ S, fix S € T'. Then recall that [(S) < 2"I(T) as seen in the
lemma about £¥. In addition, since either S or 7S is good, we must have I(S) > 27"I(T) or
[(wS) > 27"I(T) for S such that SNT # @,S € T,T ¢ S, respectively. In other words,
[(S) > 27"I(T). Hence, there are a certain number of such cubes 7' depending on r and dimension.
This leads to the estimate > pu(7T°NS) < p(S) for the second sum and thus for the combined one

as well. Applying Lemma 6.6, we can achieve boundedness for the first term

> (lggals D (T NS) S Y {lg0ahE(9) < llgll3-

SeT’ TSET SeT’
T

The latter and the last term in this part looks frustrating however the sums over 7' and T are
nothing. This is because, for a cube S’, there is none or one of possible 7" such that w7 (75") = T”

and hence one T'. Together with our favorite Lemma 6.6, we are done since

SN S S g% <> ST w8 geald < gl

SET' S'chy:(S) TET T'echt( ) SET' §'cch+(S)
mr(nS")=T
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The term with 7R C T

In this subsection we deal with the term

S llfad)r D D (Txe)Xsr T ARGga)-

TeT SeL(T) Reg’
ScT w1 R=S

Since S is in 7’ and is subset of T, one can consider the family R(7”) of maximal cubes in
{SeT :nprS =T} for fixed T € T, T" € ch’(T), and t > 0 though it can be empty. This way

the term can be rewrite as

Dllfaddr D D> D D> D (Tx)Xer erTARGga)-

TeT t,k>0T'echl(T) SER(T) S'echk, (S) REY'

7r7_S/ —_T1 T R= S’

As before, we separate the sums over ¢,k into 0 < ¢,k <2r+1 and ¢,k > 2(r 4+ 1) in three cases.
In case 0 < k,t < 2r+1, let us first fix T € T and ¢. We first use Cauchy-Schwartz inequality

twice to get the bound

2r+1

(X 2 X % Jrewx])”

k=0 T’echt(T) SeR(T’)s’echk (S)
7r7—S/:T/
2r+1

(X 2 ¥ 2 | X cretha)”

k=0 Tlecht T) SER(T') S/Gchk,(s) Reg’
wps/ort T R=S"

We will tackle the second parentheses later as before. For the first ones, it is clear to see due to

disjointness of S” at each k that

2r+1
S Y Y Y rewnf=Y X% |rew;
k=0 T’€ch(T) SER(T') §'€chk, (S) k=0 T'echt(T) SER(T")

71'7—.5" =T’

and maximality of S, disjointness of T that

Z HT (bxz) XT

Z > > HTbexs

k=0 T'echt(T) SER(T")

Z HT bXT XT’

chi(T)
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and finite number of k£, and the assumption that

S B*u(T) S 27'u(T).

~

+
Z |7 o) XT

S HT bx:) XT

Incase 0 <k <2r+1andt>2(r+1), we add zero to the term first as

(T(0Xr)Xsr» eRTDRYga) = (T — T0Xg 1272170 (27)) Xr s ERT L Gga)

and get the bound

2r+1

( Z Z Z Z H(TbXT = ToX;\ pLer21 o (217))

k=0 T'echt(T) SER(T") S’ech’;,,(S)
T S'=T'

/
Iy

2r+1

(X 2 ¥ ¥ | crsha)”

k=0 T'echl(T) SER(T') S'echk,(S)  REYG'
7r7’5" T T R=5'

Again using disjointness of children S’, maximality of S,and finite number of k, we have that

2r+1

2
)DNED DR SIS DI (CY A DR o))
k=0 T'ech!-(T) SER(T") S'echk (S)
S’ =T’
2
5 Z H(TbXT_TbXT\w¥/2JT’(xT’))XT’ 9

T'echi(T)

What we got on RHS is the term (6.1) in the previous subsection thus we just cite the result to

here that

2r+1

Z Z Z Z H(TbXT - TbXT\w%f/QJT' (z77)) X z S

k=0 T'€chl-(T) SER(T") §'echk,(S)
71'7—5’ =T’

27 ().

The last case is that k& > 2(r + 1), we adjust the summand as

<T(bXT)XS’>ER,TAI})%ggd> = ((Tbx; — TbXT\TrLT’“,/QJ s’ (xS’))XSH ERyTAII)%ggd>
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and again bound the sum by
/
I
Yoy 3 % | Senesta)"

k22(r+1) T'€ch!(T) SER(T') S'echk, (S)  REG'
TI’TS/ —_T w1 R=S'

Z Z Z Z H (TbXT - TbXT\-rrLTk/”J g (.’ES/))
k>2(r+1) T'echt(T) SER(T") S’ech’“ (S)
7TT5" T’

We then consider that

2 2
Z H (TbXT - TbXT\wLT",/zJ s (SUS’)) a < Z H (TbXT - TbXT\WLTk}/zj s (mS/))XS’ H2
S'echk,(S) S'echk,(S)
S =T’

2

- > |@ve - o e |

S//E h[k/Q](S) Slechk (S)
Lkmsl

<27Fu(9)

where we follow the situation (6.1) again. Maximality of S € R(T") leads to

2
oY > Y @ - T uees)
k>2(r+1) T'echi-(T) SER(T") S’Gchk (S)

WTS' T’

S 22 2 e

k>2(r+1) T'echi(T) SER(T")

< > 2R (T

k>2(r+1) T’ echi(T)

Here we recall from Lemma 6.5 that

> Ty <27u(T) < 27 (1)
T’ echi-(T)

and hence

SO Y Y @ - T S 2.
T 2

k>2(r+1) T'€ch’(T) SER(T”) s/eohk ,(S)
TI'TS/ =T’
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We turn to the remaining terms related to martingale difference. In stead of looking into the

three cases, we can consider

>y > > H > €RTARggdH

k>0 T’Echt (T) SER(T’) S’ echk ,(S) Reg’
T
TS =T" T R= S’

which bounds the underlying terms in all cases. In fact, one can rewrite the summation over
k>0,5 € R(T'), and S’ € ch%,(S) as over S’ € T'. As before, one can simplify the norm using

the properties of weighted martingale difference for each S’ € T’ as

| S cnrttoli -] S enesh( T Sl

Reg’ ReD’ Reg’
T R=S' 7 R=S" nr R=S'

2 2
b b
| 3 crrthon, <] X ko, =] X ko
Reg’ Reg’ ReD’
WT/R—S/ WT/R:S/ WT/R:S

to which zero terms are added due to goodness of g,q for the equation. To recap, we proved that

YSEDSEEDDRED SN D DI Y S S S ) SN T |

k>0 T'echi-(T) SER(T") S’cchk, (S) Reg’ T'echi-(T) S'eT’ Reg’
TI'TS/TT/ TI'7-/R S’ 7T7'S/=T/ 7T7—/R=S/
b 2
Y X | X Ak,
T'€echt (T) S'eT’ ReD’
7S'=T" wpR=S'

What follows is to prepare upper bounds for the latest summation. First, WLOG, we can replace

S’ by S and consider the sum in two parts as

2

H Z ARggdH :H Z ARggd Xs\Fg +H Z ARggol XFS
ReD! ReD’ ReD’
T R=S T R=S T R=5

where Fs := S\ Ugrcen,(s) S’ for each S € T". The first term is treated in the following paragraph

and the second term is in the next one.

7



First, observe as before that for any x € S’,

Y Ahgga(x) = > Ahgga(x) = Bhgga(z) — Egga(z)
ReD’ ReD’
w1 R=S S'CRCS

as a telescoping series. Thus it can be estimated as

| o) < = (gays+ lggas) < (14 5) o2 g

ReD’
T R=S

where the last inequality holds by construction of 7’. In other words,

| Ao x| 2 gl

ReD’
T R=5

and hence by disjointness of children S,

2
‘ Z A?’%di‘XS\FS S Z <’99d|>?9’X5"

ReD' S'echr(S)
mr R=S T

Therefore,

| ¥ b5 X a2

ReD’ S’echr (S
T R=S 7/(5)

For the other term, consider points x such that klim Ergga(x) = gga(z). Similarly to consider-
—00

ation in (6.2), we can have that

> kg e ()| = | lim Bhgy(e) ~ Bhggul@)]  xe, (@)

ReD’!
T R=S

< 1Plee ( lim {lggal)n + (lgal)s ) o (@)

(|ggd( )| + <!9ng> ) * X ()
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Moreover, we can proceed further and obtain the estimate as in (6.3) as

2 : b
) A RYgd
Reg’
T R=5
mr R=T"

Xrs S <’ggd|>5XFs'

Together with that Fg C S, we can bound the underlying term as

2
| >0 ahge X, S Qguab3(FS) < dlgga3u(s).

At this point, we have treated all important pieces so we finalize things here. First,

‘Z 1205 D D > (T (X)X R AR Gga)

TET t.k>0T"echl(T) SER(T') S'echk, (S) ReEG'
ﬂ.TS/ —_T1 T R= S’
- » 1/2 5 , 5 1/2
SO 7)) (X X (X (g Eals) + (guahEacs)))
TeT >0 T'€chly(T) SET’T S'€chg(S)
TTo=

By switching order of the sums over T" and ¢ and applying Cauchy-Schwartz inequality,

/ /
SUar S (@) (X Y (X e Ea(S) + o 2u))
TeT t>0 T’ echi-(T) ngﬂf S'echr1(S)

/ /
< (T i) (XX (X ) gl 2uc) )
t>0 TeT TeT T'ech’(T) ﬂSgZ’T/ S'echg(S)

We then observe that for each ¢, the sums over T' € T,T" € chl}(T), and S € 7’ such that 7+S = T’

are included in the sum over S € 7. Hence

S (S Uhdiam) (X Y Y (X el + lauhins))

>0 TeT TET T'echin(T) SeT' S'ech(S)

<Y 2 (i) (Z( S U)o + (gga)2()) )

>0 TeT SET'  S'echy(S)

<22 ( ) (X o 3us)

t>0 TeT SeT!
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Lemma 6.6 then bound the term by >, 27%2| f||2[|g]l2- At last, as a convergent geometric series,

we conclude that

DS DEED DEED DR DR D4 (G hancrrv ] By TN I B

TeT t,k2>0T"echl (T) SER(I") s/echkT (S) Reg’

TS =T' o R= S’

finishing the proof of part I.

6.3.4 II The sum of ( CQfgd>Q/R (T(bx,rTQ/R\Q%), A% gga)

Here we look at the sum over R € G',Q € G such that R C @ and 2"I(R) < I(Q). We can specify
the sum more considering 1(Q) = 2!/(R) and summing ¢ from 7 + 1 to co. For simplicity, we say
Q@ € I, for such conditions. Also we will not use the goodness of f, g here so we just say f,g. Hence

consider, for each t > r 41,

D D HAGN @ (T 0Xarpas)s D59

Reg’ Qel;

=D > (LGN (T Oxergnay) — TOXnrqr0) (@R), AR9)]
Reg’ Qely

due to the zero mean of Alg = 0. Since dist(R,0Q) > I(R), for x € R,

T — TRl
70 @) = Tlbxerag)on) < [ 228100 lduto).
TrQR\QR

Bounding the integration and applying Comparison Lemma to get that

du(y)

1T (0Xn7 @10\ ) (%) = T(0Xrr @ \@p) (@R < [[Bllocl (R) / T yle

TTQR\QR
d I(R)~
< (& + Dl g 2 e
d I(R)~
< (& + Dl e

d a1
< (£ 4 1)l 20—
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using goodness of R and the size of R in terms of (). Therefore,

> 3 HAh oy T bxeragar) Sha)l S 2707 37 3 (84 1gy | [ 18hsldu(o

Reg’ QEIt Reg’ QEIt

Recall that Af, f is constants on its children thus (AG f)q,, = AL f(z) for all z € R. Then we have

S ST KAS P (T(hxar 0 )s Dhg)] < 27120 / S 3 185 (@) | Ak (@) dpz).

Reg’ Qely Reg’ Qely

By Cauchy-Schwartz inequality,

/ S ST 1AG @)1 Akg(@)ldu(z)
RegG’ Qel,
1/2 1/2

< / S Y w@of@P ] | S 1ahe@)?]|  du).

RegG’ Qel Reg’ Qely

Now observe that R of the same size are disjoint and are covered by the same @) or @Q’s of the

same size leading to > > xa(z)|AG f@))?= ]ACQf(a:)|2 For each R, also, there is only one
Qel

Reg’' QeI
QeI sothat > > |Abg(x)? = 3 |A%g(z)|?. Applying Cauchy-Schwarz inequality again,
Reg’ Qel; Reg’
we get

> 2 HAoNe Txrraay)- kol 2 (S 185/ 2", (3 15ks )™,

Reg’ Qel

< 9—ta(l=7)

by recalling inequality (2.1) and Lemma 2.6 in the last step. Lastly, we sum the last inequality in

t from r + 1 to oo proving boundedness of the desired term.

6.3.5 III The sum of (T(A”Qfgd “Xovay)s Abgga)

For this term, let us note first that Q\Qz = Q" in R. For higher dimension, we can just add what

we will consider according to the number of children of @ except Q. Again, we replace fgd, ggd
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back to f, g. Now we can start as in the previous one. For each t > r + 1, we rewrite the term as

Z Z<T(Alégf' ARQ Z Z AQf (T ) )

Reg’ Qely ReG’ Qel,
= 3 > (L4Ne Tbx) ~ T(bxg)(zr). Ako)
Reg’ Qel,
— [ X 2hota) 3 54Mo Ty a) - T0x)ar)da(e).
Reg’ QeI

Applying Cauchy-Schwartz inequality twice to see that

|32 Y T(0h xe) Bk)]

RegG’ Qely
‘ / Y Dhgle) Y (D5 e (T(bxg)(x) = T(bxg)(zr)) du(x)‘
Reg’ Qel,
/‘ D 18k ) (Z Xa(®) Y (D8 (T(bxg) () = T(bxg ) (zr)) ‘2>1/2’du(a;)
Reg’ Reg’ Qel,

[ 3 @ane (Tbxe) = Tibxe) wn) )]

NS o) LIS o 3

S HgHzH( > i X @oher (1bx) - Tox) @) [) 7]

Reg’ Qel;

where Lemma 2.6 is used in the last bound. Now we look into each layer of R’s for the remaining

term and consider it as

(] T v X @ahe @) - Tx)@) )],
QDR

k€Z Reg’
(R)=2F  1(Q)=2FF!

We can see that 2"[(R) < I(Q') and thus dist(R,0Q’) > I(R) due to goodness of R. Hence we can

consider as in Lemma 6.3 in the case that dist(Q’, R) < [(Q’) to obtain

| Y @ @ohe (Mb)@ - o)) | £ 271 S @@ [ afdy
l(g)cfzk Z(Q)C;Qﬂ <

<2 @@ [ 185 ldn.
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Then summing over () we get

> Y w@dehe (Thxg)@) — Toxe)@r) | S27% > (186 haxe
Qeg RCQ Qeg
HQ)=2F*" I(R)=2F UQ)=2F+1

< 2_ta/4Ek+t’Az+tf‘

Therefore,

(2] S v X @ahe o) - Tew)e) )]
k€Z  Reg’ QDR
(R)y=2F  1(Q)=2Ft!

2

S 2_m/4H ( Z (Ek+t\AZ+tf|)2)1/2H2~

keZ

From inequalities (2.2) and (2.1), we finally have

(] S w X dohe @) - Tee)En)|) |
k€eZ Reg’ QDR
I(R)=2F  1(Q)=2F11

2

s2(3 (aga)?)”

kez
< 27| £l

Again, the proof is finished by summing ¢ from r + 1 to oo to obtain || f]|2.
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