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Abstract

According to the quantum superposition principle, quantum mechanics at the macroscopic scale predicts

that a macroscopic system can be in more than one distinct state at the same time. Such an extrapola-

tion of quantum mechanics contradicts our everyday instinct, summarized by Leggett and Garg (LG) under

the heading of macrorealism (MR) [1]. To resolve the conflict and to determine whether MR or quantum

mechanics is the right description of macroscopic objects, in 1985, Leggett and Garg [1] proposed the tem-

poral Bell’s inequality (TBI). If a macorealist description is possible, the inequality is satisfied - quantum

mechanics, on the other hand, predicts a violation. Thereafter, people were motivated to engineer macro-

scopic quantum systems and to test the TBI. In the TBI, one of the most critical postulates is that of the

noninvasive measurability (NIM) : it is in principle possible to determine which state the system is in with

an arbitrarily small effect on the subsequent system dynamics. To satisfy the NIM postulate in the TBI

experiment, the implementation of the “ideal negative result” (INR) measurement was also proposed by

LG [1]. In a two-state system, an INR measurement is designed to interact (in each run) with only one of

two system states. Only runs where the measurement reported no outcome are kept.

Although in the last few years there have been tests of the TBI on microscopic systems with the use of

INR measurements [4] and on macroscopic systems using weak measurement [5], no one has ever implemented

INR measurements on macroscopic systems in TBI tests so far. In addition, the NIM postulate was simply

assumed, and not verified by an ancillary test [9, 3].

With these considerations in mind, there are two main tasks in this thesis: the first one is to analyze the

realization of an INR measurement on a macroscopic object. I propose an experiment based on coupling

a flux-qubit to a dcSQUID, which mirrors the approach of Knee et al. [4], where the system of interest is

coupled to another quantum system which acts as a measuring device. In order to accomplish the first task,

we analyze the escape dynamics of a flux-qubit SQUID composite system in various limits and discuss the

prospects of operating in a regime realizing a von Neumann (“projective”)-like measurement onto the qubit

flux basis. Later in the thesis, I discuss current feasibility of the proposed experiment based on the possible

measurement error (the “venality” [4]) of our INR measurement.
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The second task is to analyze experimental tests of measurement invasiveness. I propose a concrete

protocol, ancillary to the main TBI experiment, which may narrow some loopholes in the test of MR [3]. I

generalize the approach of Wilde and Mizel [3], using the behavior of the two-time correlator of a system as

an indicator of measurement invasiveness. The measured invasivities can be used to give a improved lower

bound for the TBI.

iii



The author thanks Hayato Nakano for fruitful discussions of the experiments and of the numerical analysis

of ref.[21] and for sending us the updated version of this reference, and Alec Maassen van den Brink for

helpful discussions of theory. I am particularly grateful to Adrian Lupascu for a careful reading of the

manuscript of Chapter 2 and many constructive comments. I also thank George Knee and Lance Cooper

for helping writing the abstract and introduction. Most importantly, the author thanks his advisor Anthony

J. Leggett very much for patiently discussing all the research topics and revising the thesis. This work

was supported in part by the National Science Foundation through grants number [488437-244014-19110

NSFDMR 09-06921 and 496696-244022-191100 A07 NSF EIA 01-21568ITR], by the Department of Energy

through grants [488732-220001-191100 A03] and by the Macarthur Professorship endowed by the John D.and

Catherine T.Macarthur Foundation at the University of Illinois.

iv



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The derivation of the Temporal Bell inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The flux qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 The dcSQUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Measuring the state of a flux qubit via the escape statistics of a dcSQUID . 14
2.1 Introduction to measurement of “macroscopic” flux qubit with dcSQUID . . . . . . . . . . . 14
2.2 The basic analysis of qubit-SQUID coupled system . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 The Harmonic approximation for decay dynamics of qubit-SQUID system in static experiments 23
2.4 Large escape rate limit and the dynamic experiments . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 The truncated model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 The numerical analysis of truncated model . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.1 The qubit density matrix evolution under the negative outcome measurement . . . . 44
2.6.2 The scenario related to the weak measurement . . . . . . . . . . . . . . . . . . . . . . 53
2.6.3 The sudden change of state due to fast current ramping . . . . . . . . . . . . . . . . . 54
2.6.4 The entanglement between qubit and dcSQUID . . . . . . . . . . . . . . . . . . . . . . 54
2.6.5 Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.7 The extension to ideal negative outcome measurement for testing TBI . . . . . . . . . . . . . 56
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 3 Possibilities of a test of the Temporal Bell inequalities(TBI) using a flux
qubit coupling to a dcSQUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 The Motivation (review) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 The realization of INR measurement with the qubit-SQUID coupled system . . . . . . . . . . 62
3.4 Quantifying measurement invasiveness in the ancillary test . . . . . . . . . . . . . . . . . . . . 65
3.5 The arrangement of main TBI experimental based on the invasivities measured in ancillary

test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6 The estimation of type II invasivity ∆K (t1, t3 |Q2± ) of INR measurement (by simple venality

model ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7 The possible sources of venality in our INR measurement with qubit-SQUID coupled system 77
3.8 The parameter analysis: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Appendix A The perturbation correction to our Harmonic approximation . . . . . . . . 84

Appendix B More general perturbation analysis of qubit-SQUID composite system . . 86
B.1 The energy levels of qubit-SQUID composite system . . . . . . . . . . . . . . . . . . . . . . . 86
B.2 The calculation of the SQUID’s lowest two energy levels . . . . . . . . . . . . . . . . . . . . . 92

v



Appendix C The behavior of maximum switching point with the current ramping rate 94

Appendix D The matrix elements of time evolution operator of qubit-SQUID system . 99

Appendix E The formula for the switching current probability in different representa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix F The equivalence between the two measurement schemes in the zero tran-
sition limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendix G Alternative description of qubit density matrix evolution under negative
outcome measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Appendix H A pictorial way to understand the entanglement change during the mea-
surement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Appendix I Transition between energy eigenstates during non-adiabatic current ramping110

Appendix J The maximum resonance pumping probability under the relaxation to the
ground state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendix K The off resonance pumping of dcSQUID for the qubit in the negative state114

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vi



Chapter 1

Introduction

Quantum mechanics is considered to be the most reliable theory in the world because of its incredible

accuracy in experimental prediction. Despite its predictive accuracy, the principal assumptions of quantum

mechanics remain puzzling. For example, people generally find puzzling the premise in quantum mechanics

that a system can exist in a superposition of states – like Ψ = aΨ1 + bΨ2, where Ψ1 and Ψ2 are different

states (or wavefunctions) of the system and a and b are probability amplitudes for those states – and that the

system will collapse into a particular state Ψ1 or Ψ2 (with a probability |a|2 or |b|2, respectively) only after

a measurement of the system is made. Even though these assumptions have been verified by experimental

results, they are difficult to grasp because they do not follow our natural intuition. The concept of a

system existing in a superposition of two distinct realities is difficult to reconcile with the so-called ’local

realism’ point of view–in which objects are assumed to be influenced by their local surroundings and to exist

independent of whether or not they are observed. Local realism also cannot explain how the wavefunction of

a system collapses, which is the so-called measurement problem that people have studied since the discovery

of quantum mechanics.

To demonstrate the counterintuitive consequences of quantum mechanics compared to our everyday

experiences with classical mechanics, the implications of quantum mechanics are often naively extrapolated

to the macroscopic world in the so-called Schroedinger’s cat paradox, in which Schroedinger’s cat can be

simultaneously dead and alive, i.e., described by the superposition state Ψ = aΨalive+ bΨdead. Actually, the

validity of extrapolating the consequences of quantum theory to the macroscopic world is still questionable.

Experimental evidence, at least, is required to show that the macroscopic system exhibits macroscopic

quantum coherence [18, 19], i.e., that the state describing the macroscopic system can indeed be described

as a superposition exhibiting a temporal oscillation between macroscopically distinct states. But such

experimental evidence is not sufficient: it has been speculated that macroscopic realism (”macrorealism”)–

in which a macroscopic object must be in a macroscopically distinct state at any given time–can give the

same prediction. More rigorously, to disprove macrorealism and support the validity of quantum mechanics

to macroscopic objects, an experimental violation of a Bell-type inequality must be demonstrated. To
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achieve this goal, in 1985, Leggett and Garg[1] proposed a Temporal Bell’s inequality (TBI) (also called the

Leggett-Garg inequality(LGI)) constructed from the assumptions of macrorealism. Similar to the role of

Bell’s inequality with respect to quantum mechanics, we expect that experimental tests of TBI will show

violation of this inequality if quantum mechanics applies to macroscopic objects.

In principle, the TBI is mainly based on the following postulates: (a) Macroscopic realism per se (MR)

– a macroscopic object, which has two or more macroscopically distinct states available to it, must have

a definite state at any particular time. (b) Noninvasive measurability (NIM) – it is possible, in principle,

to determine which of the macroscopically distinct states the system is in with a measurement that has an

arbitrarily small effect on the subsequent dynamics of the system. (c) Induction – there is no retro-causality,

i.e., the system’s dynamics is exclusively determined by its history and not by its future behavior.

Before addressing the TBI, let’s first consider what is measured in the main TBI experiment. To

simplify the testing of MR, the TBI experiment focuses on a system with only two macroscopically distinct

[2] states, which correspond respectively to the measurement outcomes Q = ±1. We assume we have a

distinct measurement outcome Qi = Qi(ti) only available at each of the following three times t1, t2, and

t3. In addition, there is only one system considered in each experimental run, and the system is prepared

initially and measured only twice, at two of the three possible times provided by the time sequence t1, t2, and

t3 described above. After repeating the experiment to get the time ensemble of the system, we can obtain

the two time correlators 〈QiQj〉i,j of the system. Here the pointed brackets represent the time ensemble

average for the required quantity, and the subscripts i, j on the pointed brackets specify at which two times,

ti and tj , the two measurements are performed. In total, there are only three possible two-time correlators

given by the experiment, which are 〈Q1Q2〉1,2, 〈Q1Q3〉1,3, and 〈Q2Q3〉2,3. According to these correlators,

we can define the Leggett-Garg function[4] by

L (t1, t2, t3) ≡ 〈Q1Q2〉1,2 + 〈Q2Q3〉2,3 + 〈Q1Q3〉1,3 + 1 (1.1)

In general, because the correlators belong to different ensembles, the correlators can be independent,

e.g., it is possible that all three correlators are equal to − 1
2 so that the Leggett-Garg function is less than

zero. But if we consider Eq.(1.1) restricted to the postulates (a), (b), and (c), where the measurement

in experiment needs to be non-invasive according to postulate (b), Eq.(1.1) should have a classical bound.

After imposing postulates (a), (b), and (c) and some additional analysis (the details of which will be given

in the next section), the so-called TBI can be written:

L (t1, t2, t3) ≥ 0. (1.2)
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Therefore, a violation of Eq.(1.2) implies a failure of at least one of the postulates (a), (b), and (c)

above. To rule out the MR postulate correctly, we need to make sure that the other two postulates are

true. Because we still believe the legitimacy of induction, this implies that only the NIM postulate needs

to be checked. In addition, to provide a noninvasive measurement (also called NIM here), an ideal negative

result (INR) measurement was also suggested by Leggett and Garg [1]. An INR measurement is designed to

interact with only one of two system states, and only those experimental runs on which no positive outcome

is detected are kept to accomplish the (negative-outcome) measurement. As an example, suppose we can

design a measuring apparatus which only interacts with the measured system in the ”Q = +” state. Then,

we can keep the system of non-triggered runs as the collection of negative outcomes in which the system

is purported to be in the ”Q=-” state. Similarly, we can collect the ensemble of the system in the ”Q=+”

state based on a measurement that interacts only with the system in a ”Q = −” state. From these data set

we can determine the complete two-time correlators.

But even if an INR measurement is set up, we still need an additional test to confirm its NIM character-

istics [9], or at least to quantify the degree of measurement invasiveness to place a correct bound on TBI.

This is one of the main topics in this thesis, and we will return to this soon.

After the TBI was proposed, people more actively investigated this macroscopic quantum phenomenon

with the help of improved quantum techniques and the architecture of quantum computing. Around 1999,

several experiments realized macroscopic quantum-persistent-current states in a superconducting ring of

Josephson junctions, which is called the superconducting flux qubit [11, 17, 18]. In a flux qubit, two

qubit states correspond to two different current states of superconductor, so that they have two distinct

macroscopically induced fluxes. (We will give a more detailed review of flux qubit soon in the following

sections.) Moreover, to demonstrate quantum mechanics on a macroscopic scale, quantum coherent control

was performed on these macroscopic states [18], e.g. Rabi oscillations or Ramsey fringes are observed in

flux qubits. There have been other experiments developed for studying quantum coherence in macroscopic

systems, but the flux qubit is one of the best systems for studying macroscopic quantum coherence so far

(with the difference of magnetic moment between the flux states being about 106 to 109 Bohr magnetons).

Consequently, we consider the flux qubit to be the primary system for TBI experiments. Concerning the

implementation of measurements on the flux qubit, we only focus on the single shot measurement by a

dcSQUID (the superconducting quantum interference device with dc current, which will be reviewed at the

end of this chapter) because it contains the most promise for realizing a projective measurement on the flux

qubit. Please note that the dcSQUID contributed a lot in those pioneering experiments [17, 18, 11], though

the measurements were not of a projective type at the time.
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In the last few years, people attempted to realize the TBI test on a microscopic system with a projective

type of measurement [4, 6, 7]. One of the most successful of these measurements was an experiment reported

by Knee’s group using an INR measurement [4, 8]. (Knee et al.’s INR measurement is based on a paired

nuclear-electron system, in which the electron spin has different resonant frequencies corresponding to two

different nuclear states. The negative measurement of the system’s state is considered to be the outcome in

which the electron ensemble is not excited after resonant pumping. We will introduce this experiment again

in Section 2 of Chapter 3.) Although these experimental groups have made significant progress on testing the

TBI, none of their attempts included the ancillary test needed to complete the TBI experiment [8]. In 1988,

A.J. Leggett suggested using the ancillary test [9] to check the NIM postulate in order to avoid the possible

loophole [3] that would rule out the MR postulate; however, no explicit protocol was given at that time.

More recently, Wilde and Mizel [3] gave a concrete definition of measurement invasiveness (associated with

the second measurement), called ε-adroitness. ε-adroitness is evaluated by summing all possible absolute

values of the joint probability changes between the first and third measurements due to the presence of

the second measurement. Although their ε-adroitness precisely describes measurement invasivity, it does

not directly permit calculation of the correction to the TBI. By considering the application of the ancillary

test to the TBI experiment, measurement invasivity must be quantified by the two-time correlators; only

considering the ε-adroitness is not enough to construct this quantity. Therefore, providing an explicit and

useful protocol of the ancillary test as applied to the TBI experiment is one of the most important topics

in this thesis. On the other hand, because there is no TBI test on a macroscopic object so far, we are

also going to propose an experimental scheme of performing INR measurement with a flux qubit-dcSQUID

system. With previous experience testing the TBI on the microscopic scale and the current technology for

achieving macroscopic quantum coherence, we are ready to test the TBI on a macroscopic object.

The main content of the thesis is decomposed into Chapters 2 and 3. In the rest of this chapter, we

will introduce the derivation of the TBI along with some background information on the flux qubit and the

dcSQUID. Chapter 2 focuses on the mechanism of the qubit state measurement by a dcSQUID, which is

dominated by the escape behavior of a dcSQUID and is also related to the net flux induced by the flux

qubit. Because the flux can be induced by the qubit in a superposition state, it is not a conventional

escape problem. Furthermore, which measurement basis this qubit-SQUID composite system prefers is the

most relevant problem we need to answer; the answer to this problem will be approached analytically in

various limits in different sections of the thesis. In the discussion section, we will use the dcSQUID’s escape

properties to investigate other related questions: For example, how does the density matrix evolve before the

current switching taking place? how does the entanglement between the qubit and the SQUID change during
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the measurement? And how is the measurement related to the weak measurement based on the behavior of

the current switching distribution? At the end of the chapter, we will analyze how to use this qubit-SQUID

system to set up a flux-basis-preferred projective measurement in preparation for the INR measurement in

the next chapter.

In Chapter 3, based on the escape analysis of Chapter 2, we generalize Knee et al.’s INR measure-

ment setup to our qubit-SQUID composite system. On the other hand, we also examine how to quantify

measurement invasiveness in the ancillary test and to make this test applicable to the TBI experiment,

so that we can find a more accurate lower bound for the TBI. Moreover, we give a simple estimation of

measurement invasivity based on the generalized ”venality” of the INR measurement [4]. Here the term

”venality” is introduced in Knee’s experiment as the fraction of the ensemble for which the electron spin

is incorrectly prepared, where the electron spin is coupled to the system to indicate the system’s state. In

this thesis, we generalize the definition of ”venality” to refer to the fraction of any kind of ensemble that is

mis-sampled. Accordingly, we can estimate the maximum tolerated venality of the INR measurement in the

TBI experiment. At the conclusion of the chapter, we also investigate possible sources causing measurement

venality.

The last chapter, Chapter 4, is a summary of the thesis.

1.1 The derivation of the Temporal Bell inequality

As mentioned previously, the TBI experiment measures the three two-time correlators 〈Q(t1)Q(t2)〉1,2,

〈Q(t2)Q(t3)〉2,3, and 〈Q(t1)Q(t3)〉1,3. Because these correlators belong to different experimental setups

or ensembles, which give different pairs of measurements, generally we don’t expect that there will be a

relationship among the correlators. But by applying the above three TBI postulates, a lower bound of the

Leggett-Garg function can be obtained. This lower bound gives the TBI. In the following, we give a detailed

derivation of the TBI.

First, because of the NIM postulate, in the experiment for 〈Q(t2)Q(t3)〉2,3 the presence of the Q1 mea-

surement (before Q2 and Q3) have nothing to do with the outcomes of Q2 and Q3. Therefore, we have

〈Q(t2)Q(t3)〉2,3 = 〈Q(t2)Q(t3)〉1,2,3. Here the subscripts 1, 2, 3 on the pointed brackets represent the ensem-

bles associated with three measurements at t1, t2, and t3 respectively. Additionally, according to the induc-

tion postulate, in the experiment for 〈Q(t1)Q(t2)〉1,2, the Q3 measurement (made after measurements Q1 and

Q2) cannot change the outcomes of Q1 and Q2. Consequently, we have 〈Q(t1)Q(t2)〉1,2 = 〈Q(t1)Q(t2)〉1,2,3.

Similarly, in the experiment for 〈Q(t1)Q(t3)〉1,3, the Q2 measurement (made between measurements Q1 and
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Q3) cannot change the outcomes of Q1 and Q3 because of the induction and NIM postulates, respectively.

Consequently, we have 〈Q(t1)Q(t3)〉1,3 = 〈Q(t1)Q(t3)〉1,2,3. ( Please note that in quantum mechanics the

presence of the measurement in front or after a two-time correlator can not change the correlator itself,

which automatically satisfies the NIM postulate; only the measurement staying between the two times of

correlator can make a change of correlator in quantum mechanics. Therefore, the second measurement can

be invasive in quatnum mechanics even it classically satisfies the NIM postulate, and then the correlator

〈Q(t1)Q(t3)〉1,3 plays a more significant role than other two for testing the TBI.) In sum, with the help of

the three TBI postulates, we make an extrapolation of the correlators in Eq.(1.1) to new ones belonging to

the same ensemble of a sequence of three consecutive measurements at t1, t2, and t3. Consequently, we can

write the extrapolated result of Eq. (1.1) as follows:

L (t1, t2, t3) = 〈Q1Q2〉1,2,3 + 〈Q2Q3〉1,2,3 + 〈Q1Q3〉1,2,3 + 1. (1.3)

On the other hand, it’s not hard to see that

〈Q1Q2〉1,2,3 + 〈Q2Q3〉1,2,3 + 〈Q1Q3〉1,2,3 + 1 = 〈Q1Q2 +Q2Q3 +Q1Q3 + 1〉1,2,3 ≥ 0 (1.4)

Furthermore, we have Q1Q2 +Q2Q3 +Q1Q3 +1 ≥ 0 for the measurements Q1, Q2, and Q3 appearing in the

same experimental run because the value of the Qi is always either 1 or -1. For example, for Q1 = Q2 = 1

and Q3 = −1, we have Q1Q2 + Q2Q3 + Q1Q3 + 1 = 0 as the minimum value; we can not find the result

lower than zero for any possible composition. Therefore, we can conclude that Eq.(1.3) is bounded from

zero, which gives the conventional form of TBI as shown in Eq.(1.2).

Basically, the TBI gives the macro-realistic bound of the experimental result which can be violated in

quantum mechanics. If we want to disprove the MR postulate: first, we need to find out the possible

experimental parameter region where TBI can be violated (by quantum mechanics), and next we need to

make an ancillary test to check the NIM postulate such that we can preclude the possible violation by

measurement invasiveness. In the end, we can more confidently confirm the violation of TBI is due to the

assumption of MR, which may support quantum mechanics at macroscopic scale. (Here we had excluded

the possible failure of induction postulate.)
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Figure 1.1: The flux qubit of three Josephson junctions.

Figure 1.2: The double well potential as a function of the flux Φ penetrating through superconducting loop
of the qubit.

1.2 The flux qubit

Before we investigate the measurement of the flux qubit, let’s have a brief review of the flux qubit itself.

Typically, the flux qubit is made of superconducting loop interrupted by Josephson junctions and there is an

applied flux Φq penetrating the circuit, please see Fig. 1.1. It’s well known that the flux qubit is claimed to

have macroscopic quantum coherent property, where each flux state corresponds to a definite circuit current

and then has macroscopic distinct flux. To simplify the demonstration, here we consider the single-junction

model of flux qubit (and will provide the corresponding formulas for three-junction model later) . Although

the three-junction structure is more popular for qubit engineering[13],[12], the choice of the qubit structure

doesn’t change our analysis of principle in the following.

Let’s first construct the effective potential for the circuit in semi-classical limit. Because the supercon-

ducting circuit has loop inductance L, circuit current I, and the applied flux Φq, we can have its magnetic
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energy 1
2LI

2 =
(Φ−Φq)2

2L , which can be considered as part of the effective potential in the flux coordinate Φ,

which is the total flux enclosed by the superconducting loop. To complete the required potential, we also

need to consider another energy term from the Josephson junction. The Josephson junction inherits the

properties of superconductor and has its super current I controlled by the phase difference ∆θ across the

junction, according to the formula

I = Ic sin(∆θ) (1.5)

with Ic as the critical current of the junction. Accordingly, based on this current formula we can construct

a potential term for Josephson junction

U (∆θ) = −EJ cos ∆θ (1.6)

, where EJ = IcΦ0

2π is named as Josephson coupling energy. Please note that because of the U(1) gauge

symmetry of the superconducting wave function there is a relation between the phase difference ∆θ of the

junction and the flux Φ within the loop:

∆θ = 2πΦ/Φ0. (1.7)

Here Φ0 = h
2e is called the flux quantum. Based on above formulas, totally we can have the circuit effective

potential as a function of Φ:

Ueffective =
(Φ− Φq)

2

2L
− EJ cos 2π

Φ

Φ0
(1.8)

With appropriately chosen parameters, we can see that the potential looks as a double well in some Φ

region, where the minimum in two wells corresponding to two distinct flux values. As we will see, the states

respectively localized around the two minima are the so-called flux basis |L〉 and |R〉; each state has a definite

flux value closed to the minimum of the well. Please see Fig. 1.2.

Next, in order to complete the circuit Hamiltonian, we also need to consider the charge energy term from

the Josephson junction. Because the Josephson junction has the structure of two superconductors separated

by a very thin insulating barrier, it can act as a capacitance C and contributes a charge energy Ec = Q2

2C .

Here Q represents for the charge stored in the capacitance of the junction.

In the end, we have the total Hamiltonian

H =
Q2

2C
+

(Φ− Φq)
2

2L
− EJ cos 2π

Φ

Φ0
(1.9)
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At first sight, we can see the first quadratic term looks like the kinetic energy, and guess that the charge

Q acts as the momentum conjugating to Φ. More rigorously, we can derive the conjugation relation from

the Faraday’s law Φ̇ (t) = −v (t), where v (t) is the voltage on the loop(or the voltage across the junction

more precisely). Combining it with the formula of capacitance Q = cv (t), we can have Q = −CΦ̇, then the

first term can be rewritten as CΦ̇2

2 , which exactly corresponds to the kinetic term in the L
(

Φ, Φ̇
)

(because

other terms only depend on Φ). Therefore, the momentum conjugate to Φ is given by

P = ∂L
(

Φ, Φ̇
)
/∂Φ̇ = CΦ̇ = −Q.

This conjugate relation may imply us the quantum mechanical commutation relation between Φ and Q, but

more rigorous argument of why we can treat Φ as a quantum mechanical variable should reference Leggett’s

lecture[14]. In total, the net flux Φ and the capacitance charge Q are quantum mechanically conjugated :

[Φ, Q] = −ih̄. (1.10)

Once we have the circuit Hamiltonian and quantization formula, we can have all spectrum of the system.

Then the next step is to establish the two state behavior for the flux qubit. In general, people engineer the

effective potential[11],[12],[13] of the phase (or the flux Φ) into the double-well shape under the appropriate

parameter setting, where the minimum of the two wells correspond to the fluxes of two opposite circulating

current ±Ip. Besides, the ratio between the Josephson energy EJ and the charge energy Ec are also appro-

priately chosen such that the first two energy levels are well separated from other higher ones and eventually

becomes two well defined energy states. Therefore, similar to the standard double well problem, the ground

state |g〉 and the excited state |e〉 can be represented as superpositions of the states of the flux localized in

the left and right wells, which are the flux states |L〉 and |R〉 and respectively correspond to the clockwise

and counterclockwise circulating current states( of the current magnitude Ip). In sum, we finally have the

effective Hamiltonian(see ref.[13]) to describe to flux qubit

Hq = εσz −∆σx. (1.11)

Here σz and σx are the Pauli matrices in the flux basis |L〉 and |R〉, ∆ is the tunneling energy between two

flux states, and the ε≈ Ip
(
Φq − Φ0

2

)
is the qubit bias energy [28].

In the three-junction model, we have similar arguments for the derivation of two state in Eq.(1.11). We

have three junctions (with phase differences ∆θ1,∆θ2, and ∆θ3) respectively distributed on the supercon-

9



ducting loop as shown in Figure 1.1. Correspondingly, we can have the effective potential as

Ueffective =
(Φ− Φq)

2

2L
−

3∑
i=1

EJ cos ∆θi (1.12)

under a new phase constraint
3∑
i=1

∆θi = 2πΦ/Φ0. (1.13)

Similarly, we can find out the minimum of its effective potential and the quantization formulas for the total

Hamiltonian

H =

3∑
i=1

Q2
i

2C
+

(Φ− Φq)
2

2L
−

3∑
i=1

EJ cos ∆θi (1.14)

According to Eq. (1.13), ∆θs only have two independent degree of freedoms, and therefore the double

well of a qubit correspond to two local minima in 2-dimensional ∆θs’ space. Correspondingly, based on the

Faraday’s law, we have equation of Qs

3∑
i=1

Qi = cΦ̇ = c

3∑
i=1

∆θ̇i (1.15)

and therefore only two Q variables are independent; there should be two independent quantization

formulas in this system. If the ratio between the Josephson energy EJ and the charge energy Ec are also

appropriately chosen, we can make the first two energy levels of the Eq.(1.14) well separated from other

higher ones (in the chosen double well). Eventually, we effectively construct a two state system in the

three-junction qubit.

1.3 The dcSQUID

Basically, we use dcSQUID to measure the induced flux from the qubit as a method to detect the qubit

state. Therefore, the flux qubit is usually fabricated together with the dcSQUID by sharing common area

(with flux) such that they can inductively couple to each other(see Fig(1.3)), where the inner loop with three

junctions is the flux qubit and outer loop is the dcSQUID.

The dcSQUID usually consists of a superconducting loop symmetrically (with respect to the incoming

and outgoing current I) interrupted by two identical Josephson junctions (of the same critical current Ic0)

on the left and the right branches, please see the Fig.(1.4). As we know that the super current of each

junction is a function of phase difference across the junction, therefore the two branch currents I1 and I2

in dcSQUID are respectively described by I1 = Ic0 sin ∆θ1 and I2 = Ic0 sin ∆θ2. Here ∆θ1 and ∆θ2 are the

10



Figure 1.3: colorred Usually the flux qubit is fabricated together with the dcSQUID by sharing common
area such that they can inductively couple to each other; the inner loop with three junctions is the flux qubit
and outer loop is the dcSQUID. For the SEM picture of ”persistent-current qubit” sample with dcSQUID,
please see the ref.[12].

phase difference of two junctions. Furthermore, if we represent two branch currents as the sum (difference)

of the total current I and circulating current J , then we can rearrange them and have new equations

 I = 2Ic0 cos (πfSQ) sin (x)

J = Ic0 sin (πfSQ) cos (x)
(1.16)

, where fSQ ≡ ΦSQ
Φ0

= (∆θ1 −∆θ2 + 2nπ) /(2π) with ΦSQ being the flux enclosed by the SQUID loop

and x = ∆θ1+∆θ2
2 the average phase of two junctions. According to the first equation in Eq.(1.16), we can

consider the dcSQUID as a Josephson junction with flux dependent critical current Ic(fSQ) = 2Ic0 cos(πfSQ).

Because the dcSQUID inductively couples to the flux qubit, the flux will depend on the qubit state and then

we can measurement the qubit state by investigating the critical current. Furthermore, to study the flux-

dependent dynamics of dcSQUID, it will be helpful to analyze its Hamiltonian with the effective potential

of the phase variable x. Here the SQUID effective potential is

U0 (x, fSQ) = −2EJ0 cos [πfSQ] cos [x]− Φ0I

2π
x (1.17)

, and it’s first derivative with respect to x exactly gives the current equation of I in Eq.(1.16). The

shape of this potential looks like a washboard (see Fig.(1.5)) and we can treat the dcSQUID dynamics in
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Figure 1.4: the dcSQUID

Figure 1.5: The effective potential of the phase variable x of dcSQUID.

analogy with the problem of a particle in this washboard potential. Based on the formula given in Eq.(1.17),

we can tell that each well of the washboard potential becomes shallower as the current increases, and then

the ”phase particle” has more probability to escape. Basically this phase particle has two ways to escape

the well, one is via the quantum tunneling, the other is activated by thermal fluctuation. Both of them

are stochastic process and characterized by the escape rate Γ. In this thesis we only focus on its quantum

tunneling and will mention the WKB formula of it in the next chapter. Please note that once the phase

particle escapes the minimum of the well, it will have velocity dx
dt , and the junction will have corresponding

voltage drop V = Φ0

2π
dx
dt ; the dcSQUID is no more in the superconducting state, rather it is in what is called

the voltage state. Consequently we can measure the voltage of dcSQUID to detect a switching (or an escape)

event and repeat the measurement to get the switching probability which is directly related to the escape

rate. Because the SQUID potential and its escape rate are flux dependent, the switching probability also
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depends on the flux ΦSQ. Therefore, the in principle scheme of using the dcSQUID to measure the flux is

based on analyzing the change of the switching probability at a given bias current near the critical one, so

called DC-switching readout.
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Chapter 2

Measuring the state of a flux qubit
via the escape statistics of a dcSQUID

2.1 Introduction to measurement of “macroscopic” flux qubit

with dcSQUID

As mentioned in the last chapter, the flux qubit is developed due to the demands on both exploring the

quantum mechanical limit up to macroscopic level [1] and the architecture of the quantum computer [10].

Therefore we expect the flux qubit can stay coherently between two macroscopic distinct flux states. It

is famous for its breakthrough on testing the macroscopic extrapolation of quantum prediction with the

pioneering experiments [11, 17, 18] in both statics and dynamics (the first successful experiment of displaying

the quantum coherent oscillation is by Chiorescu et al. in 2003 [18]). After these experiments, there are

also many extensive studies of flux qubit on various aspects, which are mostly related to the decoherence

problem or other interesting topics of quantum mechanics in the engineering of quantum computer, lasting

more than a dozen of years (see Ref. [10] as an example).

Basically, the most intuitive way to measure the qubit state is to detect its total magnetic flux enclosed

by its superconducting loop. As we can see in the last chapter, the total flux is contributed by both the

applied flux on the qubit and its own compensation flux due to the super current. As claimed, the most

important property of flux qubit related to macroscopic quantum mechanics is that the total flux of the

qubit can be considered as a quantum mechanical variable[14], which is similar to the position of particle in

quantum physics. Therefore, if the qubit is in superposition of two qubit eigenstates of distinct flux values,

the total flux can have quantum mechanical indeterminacy between two macroscopically distinct values.

Because so far the dcSQUID [15] is still one of the most popular and promising ways to measure the flux

qubit, in this chapter we mainly focus on the topic of the dcSQUID inductively coupling to flux qubit as a

qubit measurement; we investigate how its escape rate behavior changes with qubit state such that we can

correctly read out the information about qubit state.

Because the escape rate of dcSQUID is a function of both bias current( on dcSQUID) and detected flux,
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people usually record the dcSQUID switching current, which is the current recorded when the dcSQUID

switches to the voltage mode, to measure the flux. However, the switching current itself always reflects the

stochastic property of the escape process and has a distribution width. Even if there is no classical(Arrhenius-

Kramers) thermal activation at T = 0 [17], the distribution width is still contributed by quantum tunneling;

the histogram of measured switching current always distributes with a nonzero width before the dcSQUID

couples to the flux qubit. Moreover, such a stochastic width seems to dominate the qubit’s effect on the

switching current behavior [17]; the current distributions corresponding to two qubit states of distinct fluxes

almost look the same to each other such that we need to repeat the experiment tens of thousands of times

to measure the change of average current instead of reading out the qubit state. Any single run in the

repeated measurements is not enough to tell any information from the qubit. This kind of measurement

strategy seems very different from the conventional von Neumann measurement. Instead, it’s closer to the

weak measurement scheme of Albert et al. [16] (though we don’t consider the post-selection here).

Besides, another interesting question motivating us is what the measurement basis of this qubit-SQUID

coupled system is. Because the way of qubit coupling to dcSQUID is based on their mutual inductance,

that will make the qubit-dcSQUID interaction term proportional to σz (see Eq.(3.2) in the flux basis rep-

resentation). Therefore, according to the conventional understanding of the projective measurement, we

would expect the qubit state after the measurement to collapse to a flux eigenstate. However, the further

experimental result seems to tell us a different story. Since the NTT group has a great improvement on re-

ducing the width of current distribution and then improving the resolution of the experiment, they observed

that if we vary a control parameter (i.e. the external applied flux on qubit) so as to change the form of

the ground state (see Fig.1.2), the center of the current distribution (for the ground state) varies smoothly

from the lower value to the higher one (see Fig. 2.1), where these two limit values should correspond to

the two flux states [24]. But this result seems contradictory to our prediction of the current distribution

for the flux-basis-preferred measurement (see Fig. 2.2). Because if the projective measurement prefers flux

basis, the qubit state should collapse into one of the flux states such that there is only two distinct current

distributions (centering at two limit values) respectively corresponding to the two flux states; no current

distribution shifting continuously within two limits values (due to the ground state change) should be observ-

able in the flux-basis-preferred measurement. Therefore we guess that the qubit measurement by dcSQUID

prefers energy basis instead of flux basis in some parameter regime. We want to investigate analytically

what the measurement basis of this composite system is, which is directly related to the escape behavior of

the system.

Actually, people put more attention to the analytical study of qubit intrinsic dynamics instead of its
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Figure 2.1: The switching current distribution of qubit ground state under energy-basis-preferred projective
measurement at various qubit bias energy, where each point in the plot represents a switching event at certain
qubit bias energy (X-axis) and switching current (Y-axis). See ref.[24] for the detailed experimental results.

Figure 2.2: The switching current distribution of qubit ground state under flux-basis-preferred projective
measurement at various qubit bias energy, where each point in the plot represents a switching event at
certain qubit bias energy (X-axis) and switching current (Y-axis). See ref.[24] for the detailed experimental
results.

readout physics; there have not been many related papers [20, 21, 22] considering this topic, and most of

them were numerical. Especially, the NTT group [21, 22] has investigated the topic in both the presence

and the absence of the decoherence. They gave the conclusion that the von-Neumann-like measurement only

happens in strong coupling limit, in which the coupling energy is comparable to (or not negligible with) the

transition energy between the lowest two states of the dcSQUID, with sufficient decoherence. As we will

see in the following analysis of this chapter, to realize a von-Neumann-like measurement of flux basis, the

presence of decoherence is not the necessary condition.

The purpose of this chapter is to give an analytical treatment to investigate the escape physics of dcSQUID

inductively coupled to the flux qubit in the weak couping limit. We will approach the problem by starting

with the static experiments, which probe the dependence of the switching current behavior on the applied

flux on the qubit [17, 24, 25]. Next, we will generalize our theory by considering the dynamic experiments

(especially for “large escape rate” limit where the escape rate is faster than the qubit tunnelling rate) which

shows the switching probability oscillation due to the coherent manipulation of qubit state [18]. Among
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these investigations, we keep asking how does the current distribution depend on the applied flux on qubit,

and what kind of basis does this current switching measurement prefer in various parameter regimes? In

addition, to realize a macroscopic projective measurement for testing the temporal Bell inequalities (TBI)

[1], we also try to find out the possible ways to perform the flux-basis-preferred projective measurement with

our coupled qubit-SQUID composite system in different parameter regimes.

In the next section, we will set up the background information and estimate the related experimental

parameters (especially for static experiment); it’s helpful to know what the relevant energy scales of our

experiment are before analyzing the problem, e.g. the energies listed in increasing order: the escape energy

Γh̄ of the dcSQUID, the qubit tunneling energy ∆, the qubit bias energy ε, and the plasma frequency

(or excited energy ωh̄) of dcSQUID. Also, we need to know that the current ramping rate (the increasing

rate of dcSQUID bias current) would vary a lot depending on the type of experiments; the typical current

ramping rate in static experiment is around 103Hz, which can be smaller than any scale above, but in the

dynamic experiment it can be larger than the qubit tunneling energy and even be comparable with the

plasma frequency of dcSQUID. In Section 3, because the escape dynamics has the smallest energy scale in

the static experiment (especially in small escape rate limit where the escape rate is much smaller than the

qubit tunneling rate), we drop the cubic term of SQUID potential first and then keep the ‘harmonic-like’

Hamiltonian such that we find the appropriate eigenbasis of the composite system (i.e. the preferred basis of

the measurement) before considering the escape dynamics; that’s why we called it ‘harmonic’ approximation.

In the last step, we need to restore the cubic term back to the Hamiltonian after the harmonic approximation

for analyzing the escape dynamics of composite system. In the end of the section, we justify our harmonic

approximation by comparing the behavior of the theoretical result with the data from the NTT and Delft

experiments. Section 4 is the study of escape physics in the dynamic experiments especially for the large

escape rate limit where the escape rate is much larger than the qubit tunneling rate. In Section 5, we propose

a truncated model, where the dcSQUID spectrum is truncated and only its ground state is kept, to simplify

the problem and attempt to use it to approach the results in two different limits described in previous

sections. Both analytical and numerical treatment are provided and show a great consistency. Section 6

gives the overall discussion, in which we integrate the answers to the measurement basis problem discussed

in the previous sections, analyze how qubit density matrix evolves before SQUID switching to voltage mode,

clarify the quantum Zeno and anti-Zeno effect of negative measurement operated by our qubit-SQUID system,

investigates how entanglement changes during the measurement, and study the scenario and properties of

our measurement in the weak measurement limit etc. Section 7 is the preparation for the next chapter,

on testing TBI, in which we investigate the possible ways to perform the flux-basis-preferred projective
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measurement with our qubit-SQUID coupled system under different parameter controls. In the end, we will

give a brief summary of this chapter. Throughout we work at zero temperature; possible thermal-activation

corrections to the zero-temperature WKB tunnelling exponents are estimated at the end of Section 2 and

shown to be small for existing experiments. In Appendix B, we confirm the results of Section 3 by an explicit

calculation of the energy levels of the coupled system. Appendix C analyzes how the maximum point of

current distribution changes with the current ramping rate. In Appendix H, a pictorial way is given to

see how entanglement between qubit and dcSQUID changes during the measurement. Appendix I gives the

numerical and analytical study of non-adiabatic transition between states due to the rapid current ramping.

In the rest of this section, we will give a brief review of some experimental protocols in the static and

dynamic experiments:

In the static measurement of qubit with dcSQUID, people usually ramp up the bias current slowly, e.g.

at around 103Hz to critical current, record the current when the SQUID switching takes place, and finally

give a histogram like switching current distribution as the switching probability distribution after repeated

measurements. People can detect the qubit state via analyzing this current distribution, e.g. the measured

shift of average switching current can be used to determine the qubit state.

In the dynamic (Rabi oscillations or Ramsey fringe) experiments [18], the ramping rate of bias current

Ib is faster than in the static measurement, and Ib usually reaches a definite value at which the averaged

switching probability is maintained at 50%. The bias current Ib usually consists of a short pulse followed

by a trailing plateau, where the height of short pulse is just equal to the required value for 50% switching

probability and the height of the trailing plateau is about 70% of short pulse [26]. The purpose of the trailing

plateau is to avoid missing the voltage signal due to the re-trapping of SQUID phase.

In a Rabi experiment, the qubit is initialized to the ground state and then manipulated coherently

between the ground state and excited state by applying microwaves of a frequency equal to the energy

difference of the qubit states. To obtain the switching probability, we repeat the switching-event detection

of applying the current bias pulse right after the microwave operation on qubit. The switching probability is

observed to oscillate as a function of the microwave operation time and the oscillation frequency (called the

Rabi frequency Ωr) is proportional to the microwave amplitude, which is the Rabi oscillation phenomenon.

In Ramsey experiment, the qubit’s state is initialized and then manipulated coherently by applying two

microwave (π2 ) pulses (of a microwave frequency ω equal to the energy difference of the qubit states), where

the duration τ of each π
2 pulse satisfies the equation Ωrτ = π

2 with Ωr as the Rabi frequency. By changing

the interval t between two π
2 pulses, we can observe the temporal behavior of Ramsey interference based on

the measured switching probability right after the second pulse, where the Ramsey fringe period is 1
δF for
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the microwave frequency detuned from resonance by δF . The function of the first π
2 pulse is to generate a π

2

rotation with respect to y-axis in the Bloch sphere (for the ground state being aligned with z-axis) from the

ground state and then creates an equal superposition of the qubit energy states. Right after the first pulse,

the state starts to precess (relative to z-axis) at a rate ω. If the microwave frequency is detuned from the

resonance by δF , it will result in a rotation of state (relative to z-axis) at a rate δF in the rotating frame

of the applied microwave; after an interval t, the state will rotate by an angle tδF in the rotating frame.

Therefore, the components of two states after the second π
2 pulse (relative to y-axis of rotating frame) will

depend on the angle tδF . That is why we can see the Ramsey interference in time at frequency δF by

observed the switching probability.

2.2 The basic analysis of qubit-SQUID coupled system

Let’s first introduce our starting model. It is believed that we can give a simplified description of the flux

qubit as a two-level system with the two flux states {|R〉 , |L〉} and a tunnelling energy ∆ between them.

The qubit effective Hamiltonian can be represented by the Pauli spin matrices σz,x, that is

Hq = εσz −∆σx (2.1)

with 2ε being the energy difference between two flux states. The relation between ε and the flux Φq applied

to the qubit is [18, 21]

ε ≡ ε(fq)≈ IpΦ0

(
fq −

1

2

)
, (2.2)

where Ip is the maximum qubit persistent current [28] and we have defined fq ≡ Φq/Φ0 and fSQ ≡ ΦSQ/Φ0

for flux parameters of the qubit and dcSQUID respectively, where Φq and ΦSQ are the corresponding applied

fluxes and Φ0 = h/2e is the flux quantum.

On the other hand, we can consider the dcSQUID as a system of one degree of freedom x which is the

average of the phases of the two junctions [31]. As we have mentioned, the SQUID potential changes with

the applied flux ΦSQ and bias current Ib (t), and each qubit state induces a different flux on the SQUID.

The total flux on the SQUID will be ΦSQ ± ΦM depending on which of the qubit states is realized, where

2ΦM is the net flux difference on the SQUID induced by the qubit states. Denoting by EJ0 the Josephson

energy of a single junction, we can construct our SQUID phase potential, including the effect of the induced
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flux from the qubit, as follows:

U0 (x, fSQ + gσz) = −2EJ0 cos [πfSQ + πgσz] cos [x]−
(
h̄

2e

)
Ib (t)x (2.3)

, where we define the dimensionless coupling(or flux) parameter g as ΦM

Φ0
. Expanding in terms of the small

parameter g, we can rewrite the potential as

U0 (x, fSQ + gσz) ≈ U0 (x, fSQ) + εint (x)σz (2.4)

with the coupling energy εint (x) defined by the formula

εint (x) = 2πgEJ0 sin [πfSQ] cos [x] . (2.5)

In the above approximation we have assumed g � 1, which is additional to the weak coupling assumption

that the coupling energy is much smaller than the ground state energy of the dcSQUID.

Considering the potential of Eq.(2.4) together with the SQUID kinetic energy and the qubit Hamiltonian,

the total Hamiltonian of the coupled system is

H = Hq +HSQ +Hcoupling (2.6)

, where we have

HSQ =
−h̄2

2m
∂2
x − 2EJ0 cos [πfSQ] cos [x]−

(
h̄

2e

)
Ibx (2.7)

Hcoupling = εint (x)σz. (2.8)

Here the effective mass m ≡ 2C0

(
h̄
2e

)2
, and C0 is the capacitance of one junction of the SQUID.

Before applying the WKB decay analysis to our coupled system, we need to make a further approximation

to the potential. With a Taylor expansion around the minimum of the well x = x0, where

sin [x0] =

(
h̄
2e

)
Ib (t)

2EJ0 cos [πfSQ]
(2.9)

20



, we can approximate the washboard potential U0 (x, fSQ) as

v (R) =
1

2
kR2 − 1

2

k

Rc
R3. (2.10)

Here we have R = x− x0 and

k = 2EJ0 cos [πfSQ] cos [x0] . (2.11)

The classical turning point is defined by

R = Rc = 3 cot [x0] (2.12)

[29]; that is v (R) > 0 for 0 < R < Rc. Besides, we can also approximate the form of εint (x) around x0,

that is

εint (R) = πg tan [πfSQ]

(
k − 3

k

Rc
R− k

2
R2 +

1

2

k

Rc
R3

)
. (2.13)

Finally, we obtain our approximate Hamiltonian

Happrox =
−h̄2

2m
∂2
R + v (R) + ε (R)σz −∆σx (2.14)

with the qubit total bias energy ε (R) ≡ ε + εint (R). The analysis below is based on this approximate

Hamiltonian. The first two terms should determine the standard decay physics of SQUID single shot mea-

surement. And near the minimum of the well, the effect of the cubic term of the potential v (R) is relatively

small in comparison with the square term, and therefore we can consider our potential as a simple harmonic

one with oscillation frequency ω =
√

k
m , where the corresponding simple harmonic energy levels are |n′〉.

In static experiments [17, 24, 25], the bias current Ib usually increases over a time interval long compared

to the inverse of the tunnelling rate, so that we can consider the dcSQUID potential changes adiabatically;

on each run, as the bias current Ib across the dcSQUID is increased towards its critical value, the value of Ib

at which a non-zero voltage drop develops (the switching current ISW ) is recorded, and it is the distribution

of ISW averaged over many runs which constitutes the raw data of the experiment. In one experiment of this

type [17] the Delft group determined the average value of ISW as a function of the flux applied to the qubit,
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which determines the ground-state energy and wave function of the latter. In a second such experiment,

the NTT group[25] found a pattern of two peaks in the distribution of ISW which cross as a function of the

applied flux( the so-called χ-structure, the fig(4a) of Ref. [25]), and interpreted these as corresponding to

the switching behaviour for the ground state and excited state of the qubit.

For the experimental setup of NTT group [21], we have the parameters:

πg ∼ 0.003
fSQ 0.4
∆ 1GHz = 6.6× 10−25J
Ic0 ∼ 200nA

m ≡ 2C0

(
Φ0

2π

)2
7.4× 10−44Js2

EJ0 = Φ0IC0

2π 100GHz = 6.6× 10−23J
k = 2EJ0 cos [πfSQ] cos [x0] 4.1× 10−23 cos [x0] J

ωh̄ =

√
k

m
h̄ 2.5× 10−24

√
cos [x0]J

The corresponding parameters for the Delft experiment [17] are:

πg ∼ 0.005
fSQ 0.76
∆ 0.33GHz = 2.2× 10−25J
Ic0 ∼ 110nA

m ≡ 2C0

(
Φ0

2π

)2
1.3× 10−46Js2

EJ0 = Φ0IC0

2π 3.6× 10−23J
k = 2EJ0 cos [πfSQ] cos [x0] 5.3× 10−23 cos [x0] J

ωh̄ =

√
k

m
h̄ 6.7× 10−23

√
cos [x0]J

Before analysing the physics of our system, we can briefly estimate the expectation value of the coupling

energy based on the ground state wave function of the harmonic well, which is 〈0′| εint (R) |0′〉 ∼ 10−25J .

It is of the same order of magnitude as the qubit tunnelling energy, but much smaller than the zero point

energy of the dcSQUID:

ωh̄(
10−24J ∼ 10−23J

) � ∆(
∼ 10−25J

) ∼= 〈0′| εint (R) |0′〉(
∼ 10−25J

)
.

In comparison with these energy scales, the estimated dcSQUID escape rate in static experiments( Γh̄ ∼

10−26J for the bias current Ib around the value which gives the maximum switching probability of dc-

SQUID(based on Eq.2.29) ) has the smallest energy among them. Here we estimated Γh̄ by the formula

Γ = ω601/2

(
B

2πh̄

)1/2

exp−[(B/h̄)

(
1 +

0.87

Q

)
]. (2.15)
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, where B = 8
15mωR

2
c is the decay bounce action and Q = ωRsC0 is the damping factor with net resistance

Rs [30]. As a result, we can ignore the escape effect in some steps by considering its relatively small energy

scale, which can help us to simplify the analysis of qubit-SQUID system in the next section. We note in

passing that the thermally activated escape rate ΓT h̄ [27] is of order 10−55J , which is negligibly small. Thus,

it is adequate to consider only zero-temperature WKB tunnelling in our analysis.

2.3 The Harmonic approximation for decay dynamics of

qubit-SQUID system in static experiments

Because the decay dynamics has the smallest energy scale in static experiment, the behaviour of the

harmonic kernel is believed to dominate most of the properties of the wave function of the coupled system.

It will simplify the analysis if we can ignore the decay process for a moment. What we want to do is to try to

approximately diagonalize the system in the ground state (at least within the harmonic region of potential)

before we really take the decay physics into account.

Therefore, the first step is to to drop the cubic terms of the potential:

v (R) → vH (R) =
1

2
kR2 (2.16)

ε (R) → εH (R) = ε+ πg tan [πfSQ]

(
k − 3

k

Rc
R− k

2
R2

)
(2.17)

Then we can get a new simple-harmonic-approximate Hamiltonian, namely

HH =
−h̄2

2m
∂2
R + vH (R) + εH (R)σz −∆σx. (2.18)

This Hamiltonian will be helpful for us to determine the system’s behaviour within the harmonic region of

the potential.

According to our previous analysis of the energy scales, the ground state expectation value of the last

two terms in HH is much smaller than the ground state energy of the harmonic well. Therefore, we may

treat these two terms by a perturbation analysis. On the other hand, we have assumed that the system

always starts from the lowest simple harmonic state of the well, in order to follow the traditional WKB

decay analysis.

Once we rewrite our Hamiltonian in harmonic form HH , the next step is to change our representation

into the new spin basis that is determined by diagonalization of the ground state expectation value of
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perturbation term 〈0′| ε (R)σz −∆σx |0′〉, where |0′〉, as we defined in last section, is the simple harmonic

ground state at minimum of the SQUID potential. The relations between new and old Pauli matrix are

τz = cosχσz + sinχσx and τx = − sinχσz + cosχσx, where the angle is defined by

sinχ =
−∆√

εH2
00 + ∆2

, cosχ =
εH00√

εH2
00 + ∆2

(2.19)

with the definition εH00 ≡ 〈0′| εH (R) |0′〉 .

After rewriting our Hamiltonian in the new spin basis, we can rearrange it in the following form:

HH =
−h̄2

2m
∂2
R + vH (R) +

(
εH (R) cosχ−∆ sinχ

)
τz −

(
εH (R) sinχ+ ∆ cosχ

)
τx (2.20)

In this new representation, the Hamiltonian can be divided into two parts; one is the off diagonal part

V H = −
(
εH (R) sinχ+ ∆ cosχ

)
τx, and the rest is the diagonal part HH

d . The diagonal part describes

the physics of two independent harmonic channels with different spring constants; their eigenstates are

denoted as
∣∣n′−〉 and

∣∣n′+〉. The off diagonal part now can be considered as new perturbation term instead,

and its perturbative correction to the eigenenergy of two harmonic channels can be evaluated with 2δωh̄

being the energy difference between two states
∣∣0′−〉 and

∣∣0′+〉, where the dominate term is
|〈0′+|V H |0′−〉|2

[2δωh̄]
∼=

(ωh̄) g5

1024 tan5 [πfSQ] cosχ sin2 2χ ∼ 10−34J , see appendix A. Therefore, this perturbation correction to the

eigenenergy is much smaller than the decay energy scale of the SQUID near the maximum of switching

probability, so that we will neglect this off diagonal term in the following discussion.

The last step is to restore the cubic terms in the SQUID potential and the coupling energy, that is to

replace vH (R) and εH (R) by v (R) and ε (R) respectively in the diagonal part of HH . Finally, we have the

kernel Hamiltonian which describe the dominant physics of the system:

Hd =
−h̄2

2m
∂2
R + v (R) + (ε (R) cosχ−∆ sinχ) τz

=

 H+ 0

0 H−

 (2.21)
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Figure 2.3: The two possible escape ways corresponding to two qubit states |+〉 and |−〉 are shown in (a)
and (b) where two SQUID potentials have different ground states(|0+〉 and |0−〉) and independent escape
rates (Γ+ and Γ−).

, here we have H± = −h̄2

2m ∂2
R + k±0 + 1

2k±R
2 − 1

2

k±
Rc±

R3 and parameters given by:

k± ≡ k
(

1± πg cosχ tan [πfSQ]

(
1 +

(
3
Rc

)2
))

Rc± ≡ Rc
(

1±
(

3
Rc

)2

πg cosχ tan [πfSQ]

)
k±0 = ∓

(√
εH2

00 + ∆2 + πg
4 ωh̄ tan [πfSQ] cosχ

)
.

(2.22)

Based on Eq.(2.21), we can clearly see that H+ and H− describe two independent decay channels (for

spin+ and spin −) respectively. Therefore, we simplify the escape dynamics of qubit-dcSQUID composite

system by the two-channel decay dynamics where each channel has its own ground state and the correspond-

ing conventional escape rate (as shown in Fig. 2.3); the composite system can be in superposition of these

ground states.

The corresponding oscillation frequency and bounce actions are

ω± =

√
k̄±
m
' ω ± δω. (2.23)

B± = B ·

(
ω±R

2

c±
ωR2

c

)
(2.24)

25



Figure 2.4: The calculated switching current probability corresponding to the ground state and excited
state in the NTT group’s set-up. Here the X-axis and Y-axis represent the applied flux fq and current
parameter y ≡ Ib/2IC0 cosπf respectively. We can see two clear ridges crossing one another, where each
ridge structure corresponds to escape-probability behaviour for flux qubit being in either the ground state
or excited state; this χ-cross structure was shown in NTT’s experiments(i.e. Fig.4(a) of [25]) with ground
and excited states being in thermal distribution.

Here we have

δω ' πg

2
ω cosχ tan [πfSQ]

(
1 +

(
3

Rc

)2
)

(2.25)

.

With the use of Eq.(2.15),(2.23), and(2.24), we can easily derive the decay rate of two spin channels:

Γ± = ω±601/2

(
B±
2πh̄

)1/2

exp−
[
(B±/h̄)

(
1 +

0.87

Q±

)]
= Γ

(ω±
ω

)(B±
B

)1/2

exp−

[
B

h̄

((
ω±R

2

c±
ωR2

c

− 1

)
+

0.87

Q

(
R

2

c±
R2
c

− 1

))]
(2.26)

With the further approximation of keeping only the first order of δω and δRc for ω±, B±, and Rc±, we

have

Γ± ' Γ

(
1± 3

2

δω

ω
± δRc

Rc

)
exp∓B

h̄

(
δω

ω
+ 2

(
1 +

0.87

Q

)
δRc
Rc

)
. (2.27)

Here

δRc ≡ ±
(
R
±
c −Rc

)
=

9πg

Rc
cosχ tan [πfSQ] (2.28)
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Figure 2.5: The switching current probability in the experiment of the Delft group calculated from our
formula. Here we can’t clearly see the flux dependence of the ground and excited states.

.

Together with the assumption that the state of the coupled system evolves adiabatically with the change

of bias current, we can use the formula

P± (y) =
Γ± (y)

dy/dt
exp

[
− 1

dy/dt

∫ y

0

Γ± (y′) dy′
]

(2.29)

to determine the switching current probabilities for the ground and excited states of the flux qubit. Here

y(t) ≡ Ib(t)
2IC0 cosπfSQ

is the current parameter, and IC0 = 2e
h̄ EJ0 is the critical current of each junction on the

dcSQUID. We will assume that in static experiments of the type conducted in Refs [25] and [17] the ramping

rate lies in the range ∼ 103 − 105Hz. The calculated results for the experiments of the NTT [25] and Delft

groups [17] are shown in the Fig.2.4 and 2.5 respectively. In the limit where B
h̄

(
δω
ω

)
, Bh̄

(
1 + 0.87

Q

)(
δRc
Rc

)
� 1,

(thr condition satisfied in most experiments), we have the further approximate formula for the decay rate

difference

|Γ+ − Γ−|
Γ

' 2

(
B

h̄
− 3

2

)
δω

ω
+ 2

(
2B

h̄

(
1 +

0.87

Q

)
− 1

)
δRc
Rc

. (2.30)

From this equation, roughly we can see that there are two ways to make the decay rate difference larger( to

the point that the switching distributions of the two qubit energy states are distinguishable from one another);

one is to have the coupling g large so as to give large ratios δω
ω and δRc

Rc
, which corresponds to pushing the

two current distributions apart, and the other one is to make a larger bounce action B
h̄ (or reduce the factor

Q. But in order to simplify the analysis, we put the discussion of Q factor into footnote [42]), which increases

the resolution of the measurement by reducing the width of the switching current distribution. According

to the above analysis, if we want the ground state flux-dependent switching current distribution to be easily
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distinguishable from the excited one, as shown by the crossing feature in FIG.2.4, a large capacity C0 and

Josephson coupling energy EJ0 is needed to increase B (since B
h̄ ∝

√
C0EJ0 cosπfSQ.) That’s why the

NTT experiment, with its large values of C0 and EJ0, can show two distinct current distributions for qubit’s

eigen states.

From Eqns.(20), (23), and(2.30), we know that the escape rate difference is also proportional to cosχ =

εH00√
εH2
00 +∆2

. The explicit formula for εH00 is

εH00 = ε+ 〈0′| εint (R) |0′〉

= IpΦ0

(
fq −

1

2

)
+ πgk tan [πfSQ]

(
1− ωh̄

4k

)
. (2.31)

If we consider εH00 as the total qubit bias energy for the qubit-SQUID coupled system, then here we can

see that the expectation value of coupling energy 〈0′| εint (R) |0′〉 also contributes to it. In other words this

coupling energy effectively induce a phase(or flux) deviation on qubit, which can change with the bias current

and is non-zero even if there is no bias current. The estimated flux deviation on qubit(for the Delft group) is

δfq = πgk
IpΦ0

tan [πfSQ]
(
ωh̄
4k − 1

)
= 0.00049. Although this phase deviation is much smaller than what is due

to the appearance of SQUID circulating current right after switching on bias current(δfq = 0.005) [18], we

still need to consider the corresponding coupling energy in the effective qubit bias energy εH00 because cosχ

is directly determined by the ratio between εH00 and the qubit tunnelling energy ∆.

Another physics aspect behind our harmonic-approximation analysis can be understood as follows. It

is well known that a convenient approach to evaluate quantum decay is to utilize the current-density-type

formula

Γ = J (R)

/∫ R

−∞
dR′ |ψ (R′)|2 (2.32)

Here we have J (R) = (h̄/m) Imψ∗out
∂ψout
∂R being the outgoing probability current near the turning point

Rc and
∫ R
−∞ dR′ |ψ (R′)|2 as the normalization factor [30].

Because the harmonic wave function around the minimum of the potential dominates the outgoing wave

function ψout near Rc in the quasi-classical approximation, the quantum decay is totally controlled by

the wave function within the harmonic region. Therefore, once we find an appropriate basis to effectively

diagonalize the harmonic part of the Hamiltonian into two escape channels( where the minimized tunnelling

energy between the channels is negligible compared to escape energy), we may consider the escape dynamics

separately in the two channels. A more comprehensive way to evaluate the energy levels of the composite
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system in a perturbation approximation is given in the appendix B, which also gives a improvement of our

harmonic approximation near the critical current.

In this section we have discussed the escape dynamics in the small escape rate limit and realize that the

coupled system prefer to escape as energy state or the escape rates are different by energy states instead

of flux states, which help us to give the main conclusion that our measurement of qubit can behave as an

energy-basis projective measurement in the small escape rate limit. Under this circumstance, the possible

way to make it as flux-basis measurement is to let the energy basis approach the flux basis by setting

cosχ → 1. Otherwise, for flux-basis measurement, we need to consider another limit where the escape rate

is much larger than the qubit tunnelling energy(Γh̄� ∆), which will be discussed in the next section.

Before we end the section, it may worth to keep in mind that the current of maximum point of switching

probability always increase with the current ramping rate; please see appendix C for the detailed analysis.

This property of switching probability will be helpful in the following analysis.

2.4 Large escape rate limit and the dynamic experiments

In the dynamic experiments the current ramping time can be less than 5ns, which means that the required

escape rate should be much larger than 0.2GHz [32]. Consequently the escape energy of SQUID can be

comparable to or larger than the qubit tunnelling energy and our harmonic approximation in previous section

would not work correctly. It’s inevitable to consider the large escape rate limit in the dynamic experiment.

As we will see in the following analysis, in the large escape rate limit of the dcSQUID (Γh̄ � ∆), the

measurement of qubit can behave as a projective measurement onto flux basis instead of energy eigenba-

sis, which is different from our previous analytical result of the harmonic approximation for small escape

rate(Γh̄� ∆).

Let’s simplify the problem by considering the time evolution operator e−iHt/h̄ for the coupled system

with Hamiltonian H = H0 − ∆σx given by Eq.(2.6), in which the H0 is the diagonal part of H in spin

representation and the corresponding eigenstates are |nL, L〉, |nR, R〉, i.e., H0 |nL, L〉 = EnL |nL, L〉 and

H0 |nR, R〉 = EnR |nR, R〉. Here R and L represent the qubit flux states; |nL〉 and |nR〉 are the corresponding

SQUID wave functions. In principle, we allow the eigenenergies EnL and EnR to contain small imaginary

part as escape energy ΓnL(� |EnL |) and ΓnR(� |EnR |) respectively. Next, we will take the qubit tunnelling

term ∆σx as perturbation for the large escape limit (ΓnR ,ΓnL � ∆). Besides, we also assume the SQUID

always starts with its two lowest energy levels |0L, L〉) and |0R, R〉, and the state |0σ, σ〉 ( σ ∈ {R,L})

evolves to itself respectively if there is no presence of tunnelling between two qubit flux states during the

time evolution . According to above arguments, the approximated matrix elements of the time evolution
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operator can be derived.

〈0σ′ , σ′| e−iHT/h̄ |0σ, σ〉 = 〈0σ′ , σ′| e−i(H0−∆σx)T/h̄ |0σ, σ〉

=

 e−iE0LT/h̄(1 +DL) e−i
(E0L+E0R)T

2h̄
∆2i〈0L |0R〉
(E0R−E0L)

sin
(

(E0R−E0L)T
2h̄

)
e−i

(E0L+E0R)T
2h̄

∆2i〈0R |0L〉
(E0L−E0R)

sin
(

(E0L−E0R)T
2h̄

)
e−iE0RT/h̄(1 +DR)

 (2.33)

Here we have σ′, σ ∈ {R,L} and take Dσ as the higher order ∆ expansion of the diagonal term (with σ′′ 6= σ

).

Dσ = |〈0σ |0σ′′〉|2
(
i∆

h̄

)2
h̄

i (E0σ′′ − E0σ)

T − h̄
(
e−i(E0σ′′−E0σ)T/h̄ − 1

)
−i (E0σ′′ − E0σ)

+O
(
∆4
)

(2.34)

Please see appendix D for the detail derivation of these formulas.

Based on the matrix form of the time evolution operator, the existence of the off diagonal matrix element

simply implies the qubit flux basis is not the eigenbasis of the coupled system and we expect the escape

rate for eigenbasis of coupled system should stay between Γ0R and Γ0L according to the time dependence of

the off diagonal element, i.e. 2ie−i(E0L+E0R)T/2h̄ sin ((E0L − E0R)T/2h̄) = e−iE0LT/h̄ − e−iE0RT/h̄, though

we can not give an appropriate analytical formula for eigenbasis of coupled system. Besides, because the off

diagonal element of the time evolution operator is proportional to ∆

(E0σ′−E0σ)
, if we make |E0σ′ − E0σ| � ∆

then we can properly eliminate the off diagonal elements such that the states |0R, R〉 and |0L, L〉 can decay

independently and respectively with the rates Γ0R and Γ0L, and we can claim our escape process works as an

flux-state projective measurement[33]. Basically, there are two extreme cases of making |E0σ′ − E0σ| � ∆.

The first one is to enlarge the real part of E0σ′ − E0σ and it’s equivalent to increasing the effective bias

energy of qubit, which can be realize by strong qubit-SQUID coupling and the large deviation of applied flux

on qubit. Similar to the argument in the last section, the energy basis of qubit behaves as the flux basis in

the limit of large qubit bias energy and hence the our measurement can become a flux-basis measurement.

The second case for performing a flux-basis measurement is to have Im (E0σ′ − E0σ)(or |Γ0σ′ − Γ0σ| h̄) much

larger than ∆, and it can be realized by strong qubit-SQUID coupling strength and large escape rate reached

by fast bias current ramp. In principle, especially in dynamic experiments, the escape rate difference between

two qubit flux states can reach at least 1GHz [32], therefore the flux-basis projective measurement can exist

for qubit tunnelling energy below 0.1GHz. Usually the real part and imaginary part of E0σ′ − E0σ can not

30



be zero simultaneously. Therefore the condition of

∆

|E0σ′ − E0σ|
� 1 (2.35)

is a more general one for realizing the flux-basis projective measurement with our coupled system.

On the other hand, if we consider our formula of time evolution operator in the limit of very small

coupling (where the coupling energy between qubit and dcSQUID is much smaller than qubit tunneling

energy ∆ and SQUID ground state energy ωh̄
2 ) and the limit of very small escape rate (Γh̄→ 0 faster than

other energy scales in the experiment), where the very small coupling guarantee |〈nσ, σ |n′σ′ , σ′〉| = 0 for

n 6= n′ and the very small escape rate guarantee 〈nσ, σ| e−iH0T/h̄ |n′σ, σ〉 = 0 for n 6= n′, we can restore

the orthogonal and completeness properties of eigenstates and extrapolate the time evolution operator to a

simpler form:

〈0σ′ , σ′| e−i(H0−∆σx)T/h̄ |0σ, σ〉 → e
−i
(

(E0L+E0R)
2 +

(E0L−E0R)
2 σz−∆σx

)
T/h̄

= e
−i
(

(E0L+E0R)
2 +

(E′0+−E
′
0−)

2 τ ′z

)
T/h̄

(2.36)

Here we have diagonalized and rewrote it in terms of new Pauli matrices τ ′z in the last equality. Besides,

E′0+ and E′0− are the eigenenergies of coupled system after diagonalization and both of them have very small

imaginary part Γ′0+h̄ and Γ′0−h̄ in the zero escape limit, which are similar to Γ0Lh̄ and Γ0Rh̄ of E0L and

E0R. It’s not hard to derive

E′0+ + E′0− = E0L + E0R (2.37)

and

Γ′0+ − Γ′0−
Γ0L − Γ0R

=
Im
(
E′0+ − E′0−

)
Im (E0L − E0R)

=
ε′√

ε′2 + ∆2
. (2.38)

Here we define

ε′ ≡ Re
(E0L − E0R)

2
(2.39)

and consider it as the effective bias energy of the qubit, which is similar to the place of Eq.(2.31) in Harmonic

approximation. According to Eq.(2.38), the escape rate difference between two energy states of coupled
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system should be smaller than the escape rate difference for two qubit flux states, and their ratio is equal

to ε′√
ε′2+∆2

, which is totally consistent with our previous result of harmonic approximation (or Eq.(2.30)).

This give us another evidence that the system tends to escape as energy state in the small escape rate

limit(Γ� ∆/h̄).

2.5 The truncated model

Actually, there is a simpler way to deal with escape physics of qubit-SQUID coupled system which may

make the connection between the physics in both small escape limit and large escape limit. Similar to the

last section, let’s consider the Hamiltonian in Eq.(2.6) as H = H0 + ∆σx, in which the H0 = H0 (Ib) is

the diagonal part of H in spin representation and the corresponding eigenstates are |nL, L〉, |nR, R〉, i.e.

H0 |nL, L〉 = EnL |nL, L〉 and H0 |nR, R〉 = EnR |nR, R〉. Here R and L represent the qubit flux states;

|nL〉 = |nL (Ib)〉 and |nR〉 = |nR (Ib)〉 are the corresponding SQUID wave functions and change with bias

current. In principle, we allow the eigenenergies EnL = EnL (Ib) and EnR = EnR (Ib) to contain small

imaginary part as escape energy h̄ΓnL(� |EnL |) and h̄ΓnR(� |EnR |) respectively, where h̄ΓnL,R also change

with bias current Ib. Next, we will truncate the spectrum of the H0 by considering only ground states |0L, L〉

and |0R, R〉, then any wave function |χ〉 of coupled system can be decomposed into these two basis, that’s

|χ〉 = a (t) |0L, L〉 + b (t) |0R, R〉. On the other hand, if we turn off the qubit tunnelling ∆ in Eq.(2.22) we

can derive corresponding parameters for L state and R state, i.e.

kL,R ≡ k
(

1± πg tan [πfSQ]

(
1 +

(
3
Rc

)2
))

RcL,R ≡ Rc
(

1±
(

3
Rc

)2

πg tan [πfSQ]

)
kL,R0 = ∓

(
εH00 + πg

4 ωh̄ tan [πfSQ]
)
.

= ∓
(
πgk tan [πfSQ]

(
1− ωh̄

4k

)
+ πg

4 ωh̄ tan [πfSQ] + ε
)
.

= ∓ (πgk tan [πfSQ] + ε) .

(2.40)

Based on these parameters, we can rewrite H0 with this energy-truncated spin representation, which

gives

 E0L 0

0 E0R

 =

 kL0 + ω0L

2 h̄− ih̄Γ0L

2 0

0 kR0 + ω0R

2 h̄− ih̄Γ0R

2

 . (2.41)

Here kL,R0 = kL,R0 (Ib) represents for the energy shift of potential minimum, which is contributed by

the qubit original bias energy ε and the constant term of the qubit-SQUID coupling formula in Eq.(2.13).

32



Besides, the qubit-SQUID coupling also changes the shape of the potential; therefore it gives kL,R = kL,R (Ib)

and RcL,R = RcL,R (Ib) such that the plasma frequencies ω0L (Ib) and ω0R (Ib) also change with R and L

flux states. All these parameters are bias current dependent. In sum, the qubit-SQUID coupling can change

the energy levels in two ways. The first one is to shift the minimum of the potential well, which gives the

same change on each energy level. The second one is to change the shape of the potential, that changes each

energy level differently.

Besides, as we know the minimum of the potential for the two flux channels can also be adjusted by ε(

given in Eq.(2.1) ). Accordingly we can engineer the ground state energies of two channels to be identical

by controlling ε though the two channel’s escape rates may not be the same. Because the identical ground

state energy already implies zero effective bias energy in our truncated model, i.e. δε ≡ (k0L − k0R) +

h̄ (ω0L − ω0R) /2 = 0, we can construct a truncated model with zero effective bias but different escape rates

for two channels at any Ib, which will be useful in our following numerical analysis.

After taking Eq.(2.41) and the corresponding off diagonal term

 0 −∆ 〈0L| 0R〉

−∆ 〈0R| 0L〉 0

 into

account, we finally have the simplified Schrdinger equation of the coupled system:

 E0L −∆ 〈0L| 0R〉

−∆ 〈0R| 0L〉 E0R


 a1

a2

 = ih̄
d

dt

 a1

a2

 (2.42)

If the current ramping rate is not too fast we can solve it as standard eigenvalue problem in which we

always can find the transfer matrix U to have

U

 E0L −∆ 〈0L | 0R〉

−∆ 〈0R | 0L〉 E0R

U−1 =

 E+ 0

0 E−

 (2.43)

, which gives  E+ 0

0 E−

U

 a1

a2

 =
d

dt
U

 a1

a2


and

E± =
1

2
(E0L + E0R)± 1

2

√
(E0L − E0R)

2
+ (2∆ |〈0L | 0R〉|)2

As we has mentioned, the current ramping rate is relative slow then we don’t need to consider the time

derivative of U . Here U is the general transfer matrix which is complex and not unitary but it has inverse

operator U−1
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Im (E+ − E−) = − 1√
2

(√(
δε2 − h̄2δΓ2 + 4|〈0L | 0R〉|2∆2

)2

+ (2h̄δεδΓ)
2

−
(
δε2 − h̄2δΓ2 + 4|〈0L | 0R〉|2∆2

))1/2

(2.44)

Re (E+ − E−) =
1√
2

(√(
δε2 − h̄2δΓ2 + 4|〈0L | 0R〉|2∆2

)2

+ (2h̄δεδΓ)
2

+
(
δε2 − h̄2δΓ2 + 4|〈0L | 0R〉|2∆2

))1/2

(2.45)

Here we have δε ≡ (k0L − k0R)+ h̄ (ω0L − ω0R) /2 and δΓ = Γ0L−Γ0R. In particular, in the small escape

limit we can derive

Im (E+ − E−) = −δε/2√
(δε/2)2+∆′2

δΓ = − cosχδΓ (2.46)

with ∆′ = ∆ |〈0L | 0R〉|. This result is very consistent with our Harmonic approximation for the small escape

limit( see Eq.(2.30)). And it can be understood as follows. Suppose we can approximately diagonalize the

truncated Hamiltonian

 E0L −∆ 〈0L | 0R〉

−∆ 〈0R | 0L〉 E0R

 only based on the it real components because the

escape energy is relative small comparing to others. After rotating the truncated Hamiltonian, we only keep

the diagonal part and take its imaginary part as the new escape rate of the energy states.

On the other hand, in the large escape limit we can also derive the similar result as shown in the last

section. In large escape limit, two analysis both assume the truncated spectrum and it’s reasonable to take

qubit tunnelling ∆ as perturbation, that’s why them give consistent result.

If the current ramping rate is comparable to other time scales, then we need should consider its original

truncated formula Eq.(2.42) or try to find an appropriate U to diagonalize

U−1U̇ +

 E0L −∆ 〈0L | 0R〉

−∆ 〈0R | 0L〉 E0R




To sovle this dynamics problem, it’s really hard to give the analytical solution, only possible way is to deal

with it by numerical method.

34



2.5.1 The numerical analysis of truncated model1

Basically, in order to show the required phenomenon we are interested in, we need to have a narrower

switching current distribution( compared with the distribution shift due to the qubit-SQUID coupling ) such

that any shift or separation of distribution can be easily seen in our numerical diagrams, e.g. Fig.2.6. Hence,

as an illustration, in our numerical analysis we choose most of the parameters the same as the setup in

the NTT static experiments except different current ramping rate, qubit tunnelling energy, and qubit bias

energy setting for different specific experiments.

The Large escape limit with qubit starting in flux state

In order to show the required flux-basis-preferred phenomenon in the large escape rate limit, at least we

may need to have switching current distributions corresponding to two qubit flux states to be distinct or

separated enough in the numerical result of our truncated model. At same time, a large current ramping

rate dy
dt is also required to make sure that most switching events take place in the large escape rate limit.

Most importantly, if we want to justify that our phenomenon is indeed contributed by large escape rate

difference, i.e. (Γ0L − Γ0R) h̄� ∆, we need to show how does the distribution of the flux state change due to

the increase of current ramping rate( or escape rate difference). Hence, we naively wish the two distributions

to be identical in the small escape rate limit (e.g. for dy
dt = 104Hz) in order to easily see the change of the

distribution in two limits.

Therefore our first task is to construct two identical distributions for different flux states before we

increase the current ramping rate to reach the large escape rate limit. According to our previous analysis of

harmonic approximation, because the switching measurement in the small escape rate limit prefers energy

basis, if the switching distributions corresponding to two qubit energy states are the same in the small escape

rate limit, that’s similar to the situation at the crossing point of two distributions of energy states in the

Fig.2.4, then we expect the switching distributions of flux states will be the same automatically.

Hence, to achieve above situation and improve it by steps, we will start with the simplest condition ε = 0

for bias energy to discuss its disadvantage, and then know how to replace it by another condition later; we

are going to deduce the logic why we choose our special condition in the end, where the effective bias energy

is asked to be zero for all Ib. Finally, we isolate the real contribution of the large escape rate difference to

the flux-basis-preferred phenomenon.

Let’s first start with the numerical analysis of truncated model in Eq.(2.42) with the simplest setup of

zero applied bias on qubit (ε = 0), ∆ = 108Hz, dydt = 107Hz, and rest of parameters being the same as NTT’s

1This subsection may be skipped at a first reading
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Figure 2.6: According to Eq.(2.42), the numerical result of current switching probability for qubit starting
in a flux eigenstate, which is based on the NTT group’s set-up except ∆ = 108Hz, dy

dt = 107Hz, and
E0L−E0R

2 6= 0 ( even if we set ε = 0 ) for all Ib. Here the X-axis and Y-axis correspond to the current
ramping time t (sec) and switching amplitude P

(
sec−1

)
respectively. The two color lines distinctly illustrate

current switching distributions of different initial flux states |L〉 and |R〉. Here we have almost the ultimate
separation for two distributions of flux states because the effective bias energy(E0L−E0R

2 ≈ 109Hz) is much
larger than ∆ = 108Hz and the energy state here is already close to the flux state. That’s why this is the
most clear diagram among three.

static experiments. The result is shown in Fig.2.6 in which two color lines represent the two distributions of

qubit starting from different flux states |L〉 and |R〉. The distributions look separated enough such that we

can claim they are distinct distributions. Actually, they almost reach their maximum separation according

to our experimental setup. But we can not claim this is the required phenomenon caused by large escape

rate difference because the effective bias energy E0L−E0R

2 is not zero (even if we start with ε = 0) and the

energy states are already close to the flux states of different switching distributions no matter how current

ramping rate changes; as shown in the Fig.2.4, the crossing point of two distributions of energy states has

been shifted from ε = 0 by the nonzero effective bias energy. Hence we need to consider next possible

condition of E0L−E0R

2 ( or ε) such that the effective bias energy can approach zero and then the switching

distribution of two energy states will be the same in the small escape rate limit.

Let’s consider another choice of the ε such that the effective bias energy E0L−E0R

2 is zero at the maximum

of switching probability. The result is shown in Fig.2.7, where we only change the condition of effective bias

energy and keep other setup the same as in Fig.2.6. As we expected, the distributions look less distinct than

what we have in Fig.2.6 due to the reduction of the effective bias energy( especially around the maximum

switching point) by our new choice of the ε. But this condition is still not enough for us to exclude the

possibility of the effective bias energy because the effective bias energy does not vanish at the current other

than the maximum switching point. Moreover the effective bias energy at the peak of distribution will start

to be nonzero after we increase the current ramping rate. That’s just because the change of the current

ramping rate can shift the switching current distribution but the effective bias energy itself is still the same
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Figure 2.7: According to Eq.(2.42), the numerical result of current switching probability for qubit starting
with its flux states, which is based on the NTT group’s set-up except ∆ = 108Hz, dy

dt = 107Hz, and
E0L−E0R

2 = 0 specified at the maximum switching probability. Here the X-axis and Y-axis correspond to the
current ramping time t (sec) and switching amplitude P

(
sec−1

)
respectively. The two color lines respectively

represent the current switching distributions of qubit starting with different flux states |L〉 and |R〉. Here
we have less clear separation of two distributions than in Fig.2.6 because the effective bias energy E0L−E0R

2
is reduced around the maximum point of switching probability.

function of the bias current. Therefore, even if we can appropriately choose ε such that the distributions

of the flux states are identical in the small escape rate limit, we still can not deny the contribution of the

non-vanishing effective bias energy to the separation of two distributions in the large escape rate limit. In

sum, our choices of ε so far can not reduce the effective bias energy efficiently to satisfy our requirement.

According to above analysis, in order to eliminate the contribution of effective bias energy to the flux-

basis-preferred phenomenon, let’s consider an extreme case where we allow ε changes with Ib to cancel the

effect from qubit-SQUID coupling energy and then give E0L−E0R

2 = 0 for all Ib, as shown in Fig.2.8. Maybe

this is neither the necessary condition nor the realistic situation to make two identical switching distributions

of energy states in the small escape rate limit, but it’s the most straightforward way to eliminate the effective

bias energy ideally for any bias current such that we can exclude all the possible contribution from the

effective bias energy even if the distribution itself can change with current ramping rate. Based on this

special condition, the corresponding energy states with zero effective bias energy are always 1√
2
|L〉± 1√

2
|R〉

for any Ib, which implies that the energy states should have the same escape rates and then have identical

switching distributions because they all have the same weight of |L〉 and |R〉 no matter how current ramping

rate changes. Therefore, the distributions for the two flux states should be the same as for the energy

states in the small escape rate limit, and we can extrapolate this result of identical switching distributions

of flux states to the large escape rate limit if the switching measurement still prefer energy basis. As shown

in the Fig.2.8, the two distributions, which are expected to be exactly overlapped, have some significant

separation though the separation itself is not as large as previous cases in Fig.2.7 and Fig.2.6. Because we
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have excluded the contribution from effective bias energy we can claim this separation is due to the increase

of escape rate difference. Moreover the |Γ0L − Γ0R| h̄ bases on our setup has not reach the large escape

rate limit, that’s |Γ0L − Γ0R| h̄ � ∆, hence we can improve the separation in Fig.2.7 to give the required

flux-basis-preferred phenomenon by either increasing the current ramping rate to dy
dt = 108 or lowering the

qubit tunnelling energy to ∆ = 107Hz, which will give the same result as Fig.2.6. Finally, we have shown

the required flux-basis-preferred phenomenon in the large escape rate limit based on our numerical analysis

of our truncated model, and we also justify this phenomenon is indeed caused by increasing the escape rate

to the large escape rate limit.

Figure 2.8: According to Eq.(2.42), the numerical result of current switching probability for qubit starting
with its flux states, which is based on the NTT group’s set-up except ∆ = 108Hz, dy

dt = 107Hz, and
E0L−E0R

2 = 0 for all Ib. Here the X-axis and Y-axis correspond to the current ramping time t (sec) and
switching amplitude P

(
sec−1

)
. The two color lines represent the two current switching distributions of

qubit starting with flux states |L〉 and |R〉. If the measurement prefer energy basis then we expect the
switching distribution should be independent of the qubit’s initial state because the corresponding energy
states at zero effective bias energy are 1√

2
|L〉 ± 1√

2
|R〉 and therefore the corresponding escape rates for

two energy basis are exactly the same. But the result shows that two distributions are different and more
separated with the increase of the current ramping rate. Therefore we can conclude that the current switching
prefers flux basis if the current ramping rate is fast enough such that we can reach the large escape rate
limit before most of the switching events take place. Please note that the setup in Fig.(2.8) has not reach
the required large escape rate limit. Hence it’s similar to the situation where energy state is close to but
not exactly equal to the flux state. That’s why each distribution of the flux state may have two peaks at
different bias current.

The Large escape limit with qubit starting in energy state

Furthermore, if the qubit starts in a given energy state, i.e. 1√
2
|L〉 ± 1√

2
|R〉, it requires a higher current

ramping rate to achieve the required distribution of two peaks for the flux-basis-preferred phenomenon. In

Fig.(2.9), we lower ∆ to 107Hz instead of increasing the ramping rate, and we only consider effective bias

energy under the same condition as in Fig.(2.7) because the diagrams of three possible conditions of effective

bias energy are almost the same. The two lines in Fig.(2.9) seems to indicate that the dcSQUID prefers
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to escape as the flux state of lower switching current (the distribution peak looks higher at lower critical

current). But, actually it’s just the addition of two switching probabilities of flux states with equal weights.

Therefore, according to the two distributions of the flux states in Fig.(2.6), we can see why the first peak of

lower switching current has higher amplitude in Fig.(2.9).

Figure 2.9: The numerical switching current probability based on Eq.(2.42) of the same parameters and
condition of effective bias energy as given in Fig.(2.7) except with different initial state and lower qubit
tunneling energy ∆ = 107Hz, where the two color lines illustrate the current-switching distributions for
qubit starting with different energy states 1√

2
|L〉 ± 1√

2
|R〉. Here the X-axis and Y-axis correspond to

the current ramping time t (sec) and switching amplitude P
(
sec−1

)
respectively. The two distributions

looks almost the same and they will be exactly overlapped if we replace the condition of bias energy by
E0L−E0R

2 = 0 for all Ib. Besides, if we use the same qubit tunnelling energy as in Fig.(2.7), i.e. ∆ = 108Hz,
we can not give same clear diagram. In brief, the higher current ramping rate is required if we want to see
flux-basis-preferred phenomenon clearly for qubit starting with its energy state.

The small escape limit with qubit starting in energy state

On the other hand, based on the same formula but in the small escape rate limit, if the qubit starts in an

energy eigenstate our numerical result for slower current ramping rate as in the NTT static experiments

is consistent with our harmonic approximation, i.e. the peak of current distribution of energy state shifts

with the effective qubit bias energy from one critical current of flux state to the other. To simplify the

analysis, let’s first consider the condition of the effective bias energy being zero during the current ramping,

then the qubit starting with its energy eigenstate 1√
2
|L〉 ± 1√

2
|R〉 will be stationary in the same energy

state in the numerical analysis of truncated model. Then, we expect both distributions of two energy states

will be the same as the numerical result given in Fig.(2.10), that is consistent with the result of Harmonic

Approximation; the escape rates of two energy channels are exactly the same.

But there is still some intrinsic difference between the representations of our truncated model and the

harmonic approximation, and it would be more clear if we compare the numerical diagrams of truncated

model in Fig.(2.11) and Fig.(2.10) where the initial conditions are different but the parameters are based on
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Figure 2.10: The numerical result of current switching probability according to Eq.(2.42) for qubit starting
with either energy state and the parameters based on the NTT static experiments including ∆ = 109Hz,
dy
dt = 104, and specified effective bias energy E0L−E0R

2 = 0 during the current ramping. Here the X-axis
and Y-axis correspond to the current ramping time t (sec) and switching amplitude P

(
sec−1

)
respectively.

Because we have controlled the effective bias energy to be zero during current ramping, the qubit is stationary
in the same energy state. Therefore, the two switching distribution of different energy states are simply
described by the green line in the diagram, which is simpler than Fig.(2.11).

the NTT static experiments except fixed zero effective bias energy.

On the other hand, if we don’t keep the effective bias energy as a constant zero during the current ramping

but just make it zero only at the maximum switching probability instead, it will give the numerical result

as Fig.(2.11), which looks more complicated than Fig.(2.10) and the blue area implies the small oscillation

between states. Because the oscillation frequency is much faster than the current ramping rate that’s why

such a dense oscillating line looks like a blue area. But it is still consistent with the harmonic approximation

because the peaks corresponding to two energy states appear approximately at same time(or Ib).

Figure 2.11: The numerical result for the current switching probability according to Eq.(2.42), for the same
condition as in Fig.(2.10) except keeping E0L−E0R

2 = 0 only at Ib of maximum switching probability. Here
we only show the result for qubit starting with 1√

2
|L〉+ 1√

2
|R〉 , and the X-axis and Y-axis correspond to the

current ramping time t (sec) and switching amplitude P
(
sec−1

)
respectively. Though the result looks more

complicate than Fig.(2.10), the peak of each switching distribution of energy state implies approximately
the same critical current of the SQUID, which is still consistent with the harmonic approximation.
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The small escape limit with qubit starting in flux state

If the qubit starts with either flux state it must oscillate between one and the other flux states at a frequency

equal to ∆ = 1GHz because the flux state is not the energy eigenstate based on the zero effective bias

energy. Actually, our truncated model in Eq.(2.42) already chose the flux basis as the preferred basis of the

representation because Γ0L and Γ0R are given by flux states. Therefore we use the formula( the more correct

one is in Appendix E)

P = Γ0L |a1|2 + Γ0R |a2|2 (2.47)

to evaluate the switching probability and expect there must be the oscillation of switching probability

between the maximum and the minimum due to the tunnelling between two flux states, which is shown in

the Fig.2.12. On the other hand, in the Harmonic approximation, the distribution in Fig.2.10 is trivial and

independent of initial state because both eigenstates in (energy-state-preferred) harmonic approximation

have the same escape rate at zero effective bias energy. Hence, the numerical result in Fig.2.12 is a typical

way to see the difference between the truncated model and harmonic approximation. But, experimentally

we always get the result as Fig.(2.10) because what we measure actually is the average switching probability

due to the fast oscillation even if the truth is described by Fig.(2.12). It looks like that both descriptions

works well in small escape limit (due to the poor time resolution for observing the oscillation behavior within

the scale of ramping time).

On the other hand, as we increase the effective bias energy continuously in the small escape rate limit we

will see the distribution changing gradually from one peak to two peaks, where the two peaks move more apart

as the increase of the effective bias energy. In the Fig.(2.13), we can see two separated peaks of distribution

for given initial state 1√
2
|L〉+ 1√

2
|R〉, this behaviour is consistent with the Harmonic approximation. Besides,

the colored areas in the Fig.(2.13) also implies the oscillation of the state, which is mostly due to the quantum

tunnelling between the states, not the change of bias current. Because our energy state at a given effective

bias energy is not close enough to flux state such that there is still a small oscillation of the state at the

same frequency of 1GHz and our numerical simulation prefers the flux-basis representation.
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Figure 2.12: The numerical result of current switching probability according to Eq.(2.42) for qubit starting
with either flux state and the parameters based on the NTT static experiments except ∆ = 109Hz, dydt = 104,

and 0L−E0R

2 = 0 only at the maximum switching probability. Here the X-axis and Y-axis correspond to
the current ramping time t (sec) and switching amplitude P

(
sec−1

)
respectively. The two distributions are

almost overlapped and have the same distribution peak. Especially, the large colored area implies the fast
oscillation(at rate about 1GHz) between the maximum and the minimum switching probabilities respectively
corresponding to two qubit flux states. That’s because our flux state is not stationary and the truncated
model of Eq.(2.42) is intrinsically based on the flux-state representation where the escape probability is

evaluated by P = Γ0L |a1|2 + Γ0R |a2|2. The pattern here is totally different from what in Fig.(2.10), which
start with energy state instead, but the corresponding switching currents at the peak of probability in both
cases are the same. Besides, if we take the average of the maximum and minimum values, it will gives the
same curve as shown in the Fig.(2.10)

Figure 2.13: The numerical result of current switching probability according to Eq.(2.42) with the same
parameter as the NTT static experiment except dy

dt = 5×103Hz, ∆ = 109Hz, and effective bias energy equal
to 5∆. Here the X-axis and Y-axis correspond to the current ramping time t (sec) and switching amplitude
P
(
sec−1

)
respectively. We only show the switching distribution of qubit starting with 1√

2
|L〉+ 1√

2
|R〉 and

it clearly has two separated peaks, where each peak approximately corresponds to the switching events for
the flux state. The presence of blue area here also implies the oscillation of the qubit state. That’s because
our energy state at large bias energy is not exactly equal to the flux state, though they are close each other.
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2.6 Discussion

Based on the conventional understanding of von Neumann measurement, the σz coupling between qubit and

dcSQUID implies the projection of qubit energy state stochastically onto either |R〉 or |L〉 after the current

switching if the corresponding current distributions of |R〉 and |L〉 are distinguishable, i.e. the separation

between two current distributions centred at IR and IL are large enough in comparison to the width of each

distribution. Actually, the experimental results give a different answer ( especially for static experiment):

after the NTT group successfully improved the resolution of the switching current of the dcSQUID [24], their

raw data of switching currents for flux qubit being in its ground state clearly shows a single peak of the current

distribution which continuously shifts from IR to IL( depending on the qubit applied flux); the existence of

such intermediate distribution staying between IR and IL gives a direct evidence of the entanglement between

dcSQUID wave function and qubit energy state, otherwise the entanglement of dcSQUID to the qubit flux

state should give two current distributions respectively at IR and IL after measurement. Furthermore, they

also do the simulation with a reasonable coupling strength [21] and give the same result, namely a single-

peak switching current distribution, for the measurement of qubit in the ground state under various external

fluxes Φq. Therefore it looks like the coupled system prefer to escape as qubit being projected onto energy

state instead of flux state in static experiments(with small current ramping rate), which is different from our

conventional understanding of von Neumann measurement. To solve this puzzle we have investigated the

escape physics in different parameter regimes in previous sections and give a very consistent result, namely

that the measurement basis tend to be the energy basis in the small escape rate limit but tend to be the

flux basis in large escape rate limit.

As we know that in most static experiments the current sweeping rate is as slow as 103 ∼ 104Hz, it

generally gives the scenario of small escape rate limit Γ � ∆/h̄ (or |Γ0L − Γ0R| � ∆/h̄ ) for dcSQUID.

That’s why we use our harmonic approximation to deal with the escape dynamics in section 3, where it

gives consistent result with the NTT’s static experiments. Besides, the two-channel escape dynamics after

the harmonic approximation help us to see why the current switching measurement of flux qubit prefer to

work as a wave collapsing into energy eigenstates |+〉 and |−〉 instead of the flux states |R〉 and |L〉 [36];

our measurement of qubit behaves as an energy-basis-preferred measurement in the small escape rate limit.

At same time, if we consider the dependence of the qubit effective bias energy on the SQUID bias current,

the energy basis of each channel actually rotates during the current ramping. Besides, because of the slow

current ramping rate in static experiment, which is much smaller than the plasma frequency of the SQUID

potential, the state evolution of coupled system with the bias current can be considered in the adiabatic

limit. Therefore if we don’t take into account the conditional evolution of density matrix according to the
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measurement outcome, ideally the weight for each channel should be preserved from its starting value to

the end. But in fact the weight for each channel( i.e. the diagonal components in density matrix) should

depend on the measurement outcome via the Bayes’ rule[37]. Even there is no switching event taking place

during the current ramping, it still provides some information about the measurement of qubit; the density

matrix still evolves conditionally with the negative outcome measurement.

In the following, we are going to analyze how the density matrix evolves according to the Bayes’s rule

under the negative outcome measurement. Because of the large back-action from the dcSQUID, we are not

interested in the qubit density matrix for SQUID being in the voltage mode.

2.6.1 The qubit density matrix evolution under the negative outcome

measurement

According to previous analysis of static experiments(in the slow current ramping rate limit), the harmonic

approximation already told us that the SQUID prefers to escape in two energy channels. Therefore we

can assume the eigenstates for two escape channels are |ψ+〉 |+〉 and |ψ−〉 |−〉, where |ψ+〉 and |ψ−〉 are the

corresponding dcSQUID ground state wave functions, and any state |ψ〉 of our coupled system under the

condition that the dcSQUID stays in its ground state can be decomposed into these eigenstates, which gives

|ψ〉 = a+ |ψ+〉 |+〉+ a− |ψ−〉 |−〉 (2.48)

with |a−|2+|a+|2 = 1; the corresponding density matrix elements of the qubit are σ++ (0) = |a+|2, σ−− (0) =

1− σ++ (0), and |σ−+ (0)| =
√
σ++ (0)σ−− (0) respectively. As we mentioned before, if the dcSQUID does

not switch to the voltage mode during the measurement time t, we can consider it as a measurement with

negative outcome, which happens with the probability W (yt). Consequently, after the negative outcome

measurement we still can get useful information from the system; the diagonal part of density matrix σ++,

σ−− should change accordingly based on the standard Bayes’ formula for a posteriori probability, which is

similar to the analysis by Korotkov [37].

As an example, let’s first consider an ideal case where we only observe the measurement result with

negative outcome at y = yt; the negative outcome measurement is operated in a black box until we open the

box at time t. As we know, for given SQUID state |ψ+〉 and |ψ−〉 between the time interval 0 < t′ < t,

where 0 < y′ < yt, the corresponding probabilities of the SQUID staying in the well (not escaping) are
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evaluated by

W± (t) ≡ exp

[
− 1
dy/dt

∫ yt

0

dy′Γ± (y′)

]
(2.49)

, which strictly depend on how bias current ramps and dy
dt can change with time. According this formula

for given state as in Eq.(2.48), the total probability W of observing the dcSQUID being not switched during

0 < t′ < t is given by

W (t) = σ++ (0)W+ (t) + σ−− (0)W− (t) (2.50)

Therefore, based on the conditional probability of observing the SQUID being not switched at y = yt,

the diagonal elements of density matrix after observation should be modified by

σ++ (t) = σ++ (0) (W+ (t)) {W (t)}−1
(2.51)

σ−− (t) = 1− σ++ (t) (2.52)

On the other hand, for the off-diagonal density matrix elements, because there is no tunnelling energy

between the two escape channels, if we assume that our measurement suffers no de-coherence [38] we can

follow the same procedure as Korotkov’s [37] to give the formula of σ+− (t) :

|σ+− (t)| =
√
σ++ (t)σ−− (t) (2.53)

and

σ+− (t) = exp

i t∫
0

ε+− (t)

h̄
dt

√σ++ (t)σ−− (t). (2.54)

Here ε+− (t) is the energy difference between two states |ψ+〉 |+〉 and |ψ−〉 |−〉. Basically, the Equations

(2.51) and(2.54) describe how density matrix evolves after we observe the measurement result in the ideal

case. This is our first type of negative outcome measurement.

But in the real experiment we actually observe the measurement continuously at every moment. There-

fore, to analyze the problem in the real case, we will consider the second type of measurement, where the

time interval 0 < t′ < t is divided into N segments of length τ = t
N , and then rewrite the Eq.(2.49) as
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W± (yt) ≈
N∏
n=1

w± (n) (2.55)

. Here we have

w± (n) ≡ exp

[
−
∫ (n+1)τ

nτ

dt′Γ± (yt′)

]
(2.56)

as the probability of SQUID not escaping during the time segment nτ < t′ < (n+ 1) τ . Similarly,

according to the formula of w± we can claim the total probability w (n) of observing the dcSQUID being

not switched during nτ < t′ < (n+ 1) τ is given by

w (n) = σ++ (nτ)w+ (n)

+ σ−− (nτ)w− (n) (2.57)

Here σ++ (nτ) and σ−− (nτ) are the diagonal density matrix elements at t′ = nτ . Because we disclose the

measurement result at every moment in the scheme for real case, according to Bayes’ rule we can derive

evolution of diagonal elements of density matrix after each observation of the time segment, which gives the

formulas in differential form:

σ++ ((n+ 1) τ) = σ++ (nτ) (w+ (n)) {w(n)}−1
(2.58)

σ−− ((n+ 1) τ) = 1− σ++ ((n+ 1) τ) (2.59)

or equivalently

σ++ (t+ τ) = σ++ (t) (w+ (t)) {w(t)}−1
(2.60)

σ−− (t+ τ) = 1− σ++ (t+ τ) . (2.61)

Similarily, corresponding to Eq.(2.54), we have replacing formula for the off diagonal density matrix
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element, i.e.

σ+− (t+ τ) = σ+− (t) e
i
h̄ ε+−(t)τ

√
σ++ (t+ τ)σ−− (t+ τ)

σ++ (t)σ−− (t)
. (2.62)

Moreover, it’s not hard to derive the Langevin-type equations for σ++ and σ+−, which are

σ̇++ (t) = −σ++ (t)σ−− (t) (Γ+ (yt)− Γ− (yt)) (2.63)

σ̇+− (t) =
iε+−

h̄
σ+− +

σ+−

2
(σ++ − σ−−) (Γ+ (yt)− Γ− (yt)) (2.64)

In sum, for the second type of measurement scheme, the equations (2.60) and (2.62) describe how

the qubit density matrix evolves before the dcSQUID switches to the voltage mode, especially for negative

outcome measurement in the slow current ramping rate limit. More general representation of these equations

is given in appendix G.

Although the two types of measurement schemes are intrinsically different, we can prove that the equa-

tions (2.60) and (2.62) give the same evolution as what of the equations (2.51) and (2.54), see Appendix F.

It is because the two measurement types are equivalent only when there is no dynamical transition between

two channels, e.g., no Landau-Zener transition occurs during the sudden change of bias current. Therefore,

the differential form of equations, that’s Eq.(2.60) and Eq.(2.62), in the real scheme are more appropriate

to describe the evolution of the qubit density matrix. We will see its advantages in the following analysis of

generalized evolution formulas of density matrix, which is not restricted to small escape rate limit and also

includes the dynamical transition between two channels.

Next, to generalize the density matrix analysis of negative outcome measurement (especially for Eq.(2.57)

and (2.60)) to the other limits, we also need to consider the possible conditions in dynamic experiments where

the current ramping rate can be as fast as 10GHz and |Γ0L − Γ0R| can be comparable to or much larger

than ∆/h̄ which can be as low as 1MHz. As we discussed in previous sections, even though the effective

bias energy is small by comparing to the qubit tunnelling energy no matter how the bias current changes,

each energy basis of escape channel still can rotate to flux basis in the end if the escape rate reaches the

limit |Γ0L − Γ0R| � ∆/h̄ at higher bias current. This implies that the escape energy also contributes to the
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rotation of the eigenbasis though the related mechanism is not as simply as what we have in small escape

rate limit[39]. Consequently, we can generalize the idea of basis rotation and extend it to all range of bias

current, where it usually requires higher current ramping rate to reach higher range of bias current. Besides,

we believe that our two-channel picture for escape dynamics still works at regime other than small escape

rate and large escape rate limits [40]. Hence we generalize the application of two-channel picture to all range

of bias current. Based on above assumptions of universal two-channel picture with generalized basis rotation,

we can justify that, as long as the excitations to higher energy levels of dcSQUID are negligible, the Eq.(2.48)

of wave function being decomposed into two channels is generally true even at higher current ramping rate,

and then each element of density matrix in two channel representation is meaningful. Theoretically

we can derive the intrinsic evolution of composite system( including the basis rotation with bias current)

before considering the ”observation” effect that will induce the conditional probability on the evolution of

the system’s density matrix. To identify this intrinsic evolution, let’s assume that the evolution from σ++ (t)

to σ
(0)
++ (t+ τ)(or from σ−− (t) to σ

(0)
−− (t+ τ)) is purely based on the dynamics of our composite system

between t′ and t′ + τ . Next, it’s ready for us the generalize Eq.(2.57) and Eq.(2.60) by merging them with

the pure dynamical evolution of density matrix. We can use σ
(0)
++ (t+ τ) and σ

(0)
−− (t+ τ) to claim that the

total probability w (t+ τ) of observing the dcSQUID being not switched during t < t′ < t+ τ is given by

w (t+ τ) = σ
(0)
++ (t+ τ)w+ (t+ τ)

+ σ
(0)
−− (t+ τ)w− (t+ τ) . (2.65)

Then we can use Eq.(2.65) to derive the evolution of the density matrix under Bayes’ rule after the

observation of negative outcome measurement during t < t′ < t+ τ , which gives

σ++ (t+ τ) = σ
(0)
++ (t+ τ) (w+ (t+ τ)) {w(t+ τ)}−1

. (2.66)

σ+− (t+ τ) = σ
(0)
+− (t+ τ)

√
σ++ (t+ τ)σ−− (t+ τ)

σ
(0)
++ (t+ τ)σ

(0)
−− (t+ τ)

. (2.67)

Once we have σ++ (t+ τ) from Eq.(2.66), we can use it to generate σ
(0)
++ (t+ 2τ) according to the dynam-

ical evolution of composite system and then bring σ
(0)
++ (t+ 2τ) back to Eq.(2.65) for repeating steps, and

so forth.(Similar for the σ+− (t+ τ) of Eq.(2.67)) The Eq.(2.65), Eq.(2.66), and Eq.(2.67) are our general

evolution formulas for density matrix, which already include both the system’s dynamics and the conditional
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probability based on the observation of measurement result. Their corresponding Langevin-type equations

are

σ̇++ (t) = σ̇
(0)
++ (t)− σ++ (t)σ−− (t) (Γ+ (yt)− Γ− (yt)) (2.68)

σ̇+− (t) = σ̇
(0)
+− +

σ+−

2
(σ++ − σ−−) (Γ+ (yt)− Γ− (yt)) (2.69)

For more general representation of these equations please see the appendix G.

To understand the evolution of the qubit density matrix described by Equations (2.68) and (2.69), let’s

investigate their nonlinear terms, which represent the conditional evolution due to the negative outcome after

the measurement and are all proportional to (Γ+ − Γ−). As an example, let’s assume that we are performing

the negative outcome measurement for − state, i.e., we require Γ+ > Γ− such that the probability of the

qubit staying in the − state increases after the negative outcome measurement. Because now we have

Γ+ > Γ−, the nonlinear term in Eq.(2.68) should be negative. Hence, without considering the terms of

intrinsic dynamics σ̇
(0)
++ (t) and σ̇

(0)
+− (t), we expect σ++ (t) should always decrease to 0 (as the orange ”-.-”

line in Fig. (2.14)) and σ−− (t) should increase to 1, which is consistent with our assumption of the negative

outcome measurement for − state. Besides, the nonlinear term in Eq.(2.68) is proportional to σ++ and

σ−−, hence its effect is negligible near σ++ = 1 or σ++ = 0 but reaches maximum at σ++ = 1
2 . Also, if

we take σ++ as the role of velocity v in the equation of motion of an object, then the Eq.(2.68) looks like

v̇ = v̇(0) − v (1− v) (Γ+ − Γ−), where v̇(0) is the original trajectory before the measurement, and then the

nonlinear term in Eq.(2.68) works as a dissipative force.

Furthermore, if we take the terms σ̇
(0)
++ (t) and σ̇

(0)
+− (t) back into account in the Eq. (2.68) and (2.69), the

evolution will be more complicated and there will be a quantum Zeno effect or anti-Zeno effect depending

on the dynamics in different conditions and limits( we will show them soon). As mentioned before, our

composite system is ideally diagonalized into two energy states( ”+” and ”-”) and the escape rate (Γ±)

only defined for each energy state in the two-channel picture. Therefore, we expect that a possible way

to induce a dynamical transition between two energy states is by a Landau-Zener-type transition due to

non-adiabatic current ramping. In general, the bias current and the dynamical transition between two states

can be any possible function of time. Therefore, as example, we will focus on two typical transition behaviors

of density matrix (before considering the measurement effect) to illustrate how these behaviors change after
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Figure 2.14: The numerical result for σ++ under ε′ = 106Hz, ∆′ = 106Hz, and Γ+ − Γ− = 4 × 107Hz.
The blue line represents the oscillating motion of σ++ starting at σ++ = 1 before the measurement effect
takes place. The orange line represents the evolution of σ++ after considering the negative measurement
effect. Here we can see, due to the strong measurement effect when α � |Γ+ − Γ−|, the σ++ decays from
1 much faster than the original motion and then goes to 0 in the end, which works as a strong Anti-Zeno
measurement.

Figure 2.15: The numerical result for σ−− under ε′ = 106Hz, ∆′ = 106Hz, and Γ+ − Γ− = 4× 107Hz. The
blue line represents for the oscillating motion of σ−− starting at σ−− = 1 before the measurement effect
takes place. The orange line represents the evolution of σ−− after the negative measurement effect. Here
we can see, due to the strong measurement effect when α� |Γ+ − Γ−|, the σ−− decays from 1 much slower
than the original motion and keeps staying around 1, which works as a strong Zeno measurement.
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Figure 2.16: The numerical result for σ++ under ε′ = 2×107Hz, ∆′ = 2×107Hz, and Γ+−Γ− = 4×107Hz.
The blue line represents the oscillating motion of σ++ starting at σ++ = 1 before the measurement effect
takes place. The orange line represents the evolution of σ++ after considering the negative measurement
effect. Here we can see, due to the measurement effect under α ≈ |Γ+ − Γ−|, the σ−− decays from 1 faster
than its original oscillating motion thought it no longer goes to 0 in the end. Besides, the oscillation keeps
damping and reaches a new equilibrium σ++ ≈ 0.25, where we still can see its tendency of Anti-Zeno effect.

the measurement.

The first effective behavior we are interested in is the simple oscillation between ”+” and ”−” energy

states, which is briefly described by σ̇(0) = − i
h̄ [He, σ] with He =

 ε′ ∆′

∆′ −ε′

 in the energy basis represen-

tation. The oscillation of σ++ should follow σ++ = 1
2

(
1 + ε′2

ε′2+∆′2

)
+ 1

2
∆′2

ε′2+∆′2 cos (αt) with α = 2
√
ε′2+∆′2

h̄

( for σ++ starting from 1 before taking the measurement effect into account). Please note that the σ++

decaying behavior in the t→ 0 limit is similar to the standard quantum Zeno problem. The second one is the

exponential decaying from one state to another, i.e., σ++ = e−βt or σ̇
(0)
++ = −βσ++ which gives σ++ = 1−βt

in t→ 0 limit. These basically are the evolutions of interest before the measurement effective is considered,

the corresponding detail analysis of how they change under the measurement effect (in different conditions

and limits ) will be discussed in the follows.

In the limit α� |Γ+ − Γ−| in the first case and β � |Γ+ − Γ−| in the second case, the so called quantum

zeno and anit-Zeno effect is very strong; if we start with σ++ = 1 then the σ++ will be forced to go zero at

a rate about |Γ+ − Γ−|, which gives the strong anti-Zeno effect, but if we start with σ−− = 1 then the σ−−

will keep staying at 1, which gives the strong Zeno effect. Please see Fig. (2.15) and Fig. (2.14).

In the limit of α being comparable to Γ+ − Γ− of the first case, if we start with σ++ = 1 we can see the

σ++ will be forced to decay faster than its original oscillating motion until it bounces back by the oscillation.
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Figure 2.17: The numerical result for σ−− under ε′ = 2×107Hz, ∆′ = 2×107Hz, and Γ+−Γ− = 4×107Hz.
The blue line represents the oscillating motion of σ−− starting at σ−− = 1 before the measurement effect
takes place. The orange line represents the evolution of σ−− after the negative measurement effect. Here we
can see, due to the measurement effect under α ≈ |Γ+ − Γ−|, the σ−− decays from 1 slower than its original
oscillating motion thought it no more stays around 1 in the end. In addition, the oscillation keeps damping
and reaches a new equilibrium σ−− ≈ 0.75, where we still can see the tendency of Zeno effect.

Besides, the oscillation keeps damping due to the measurement effect and it will reach a new equilibrium

determined by the competition between the oscillation force and measurement effect, which still gives the

tendency of the anti-Zeno effect. Please see Fig. (2.16). On the other hand, if we start with σ−− = 1

then the σ−− will decay slower than its original motion and keep damping in oscillation until it reaches a

equilibrium which is determined by the competition between the oscillation force and measurement effect and

therefore different from 1, which also reveals the tendency of Zeno effect. Please see Fig. (2.17). Similarly,

under the condition of β ≈ Γ+ − Γ− in the second case, we still can see the so called quantum zeno( for

σ++ starting from 1) and anit-Zeno effect( for σ++ starting from 1); if we start with σ++ = 1 then the σ++

will be forced to decrease faster by the measurement until it reaches 0, which corresponds to the anti-Zeno

effect, but if we start with σ−− = 1 then the σ−− will decay first at the rate slower than β until it reaches

β = σ++ (Γ+ − Γ−), which corresponds to the Zeno effect.

In the limit of α � |Γ+ − Γ−| of the first case and β � |Γ+ − Γ−| of the second case, the so called

quantum zeno and anit-Zeno effect is negligible because we are also in the relative weak measurement limit.

The trivial case is that when |Γ+ − Γ−| = 0 our negative measurement works as no measurement at all.

There are two special cases we also need to consider. The first one is under the condition of ∆′ = 0

and either σ++ or σ−− start at 1, where there is no change of σ++ or σ++ at all. It’s because the decay

term in the Eq.(2.68) is always zero except we make ∆′ 6= 0 to change this situation. The second one is the
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condition of ε′ = 0, which may show the periodic oscillation without damping on amplitude depending on

the ration ∆′

|Γ+−Γ−| ; if ∆′

|Γ+−Γ−| is greater than the critical value the density matrix will show the periodic

behavior forever. In this case the measurement (with decaying rate difference between two channels) still

changes the behavior and the period of the density matrix though no more damping on amplitude.

2.6.2 The scenario related to the weak measurement

Because of the inherent stochastic property of quantum tunnelling, the switching probability has a certain

width ∆Isw such that the displacement(δĪsw) between two peaks of switching current distribution of qubit

states |−〉 and |+〉 may be relatively small. Therefore we need to repeat the experiment tens of thousands of

times to get the change of average value and read out the qubit’s state; a single measurement is not enough

to get any useful information about the qubit. This situation( with δĪsw
∆Isw

� 1) is similar to the ”weak

measurement” scheme of Albert et al. [16](though no post selection step is made in our measurement) and

hereafter we call it the ”weak measurement limit”. In addition, based on the Equations (2.65), (2.66), and

(2.67) in the ”weak measurement limit”, the density matrix will not show any clear change from its initial

value due to the strong overlap between P+ (I) and P− (I). On the contrary, the ”von Neumann limit”

requires the condition δĪsw
∆Isw

� 1. Although a single measurement is still not enough to uniquely characterize

the original state of the qubit, at least we can tell, in this ”von Neumann limit”, into which energy state does

the qubit collapse after each measurement, which means that our measurement is a projective measurement

into |−〉 and |+〉. Correspondingly, the density matrix described by our equations shows good localization

in one or other of the two states after the current switching measurement. In the more general case, while

no complete collapse takes place due to the strong overlap between the two switching-current distributions,

at least we can analyze the qubit density matrix according to equations (2.65), (2.66), and (2.62) to give

probabilities of two states after the current switching.

In the Rabi experiments [18], because a+ and a− in Eq.(2.48) should oscillate between 0 and 1 alter-

natively by applying microwave of correct frequency that is equal to the energy difference between the two

states |ψ+〉 |+〉 and |ψ−〉 |−〉, the total switching probability P = |a+|2 P+ + |a−|2 P− should oscillate be-

tween P+ and P−. Usually, experimentalists pick up the current at which the difference between P+ and

P− is maximized, therefore, the Rabi or Ramsey diagram should oscillate with the amplitude |P+ − P−|.

In essence, the evolution of the density matrix also follows equations (2.65), (2.66), and (2.62) under the

specified current-ramping-up scheme for dynamic experiments. Similarly, the larger |P+ − P−| can make the

density matrix more localized onto either of two states.
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2.6.3 The sudden change of state due to fast current ramping

As a part of dynamical analysis, we need to notice that the state of composite system in static experiments

evolves adiabatically under the slow bias current ramping, but if we instead increase the current ramping

rate to the regime of r ≥ 10∆/h, the state of composite system can evolve suddenly, where the initial state

is preserved with bias current. In general, it’s similar to the Landau-Zener problem and more detail analysis

is shown in Appendix I. All of these properties will be useful for our discussion in the next section of ”the

extension to ideal negative outcome measurement for testing TBI”.

2.6.4 The entanglement between qubit and dcSQUID

Because of the limitation of qubit-SQUID coupling, the SQUID wave functions within the well for the two

qubit states may not be much different even at large bias current [44], but this does not imply that the

switching current distributions for two states can not be distinguishable. Actually, if we take the SQUID

wave function outside the well into account we will clearly see how does the SQUID become entangled

with the qubit as time evolves; the SQUID wave function can gradually become entangled with the qubit

if the SQUID wave function of one qubit state escapes faster than the other one such that two SQUID

wave functions have significant difference on distribution. And that’s why we can have distinct switching

distributions for two qubit states.

To illustrate the entanglement of our composite system, let’s consider again our system being in the state

of

|ψ〉 = a+ |ψ+〉 |+〉+ a− |ψ−〉 |−〉 (2.70)

with |a−|2 + |a+|2 = 1. Here we have assume that the state of the system can be decomposed into two escape

channels of bases |±〉 in which the corresponding SQUID states |ψ±〉 decay at the rates Γ± respectively.

Besides, similar to the behaviour of |ψ〉, the density matrix ρ = |ψ〉 〈ψ| changes with bias current and time.

In principle, we can trace out the SQUID part to obtain the reduced density matrix on qubit, which gives

ρq =

 |a+|2 a∗+a− 〈ψ+ | ψ−〉

a+a
∗
− 〈ψ− | ψ+〉 |a−|2

 (2.71)

in the representation of bases |±〉. Based on this, we can derive the entanglement entropy of the composite
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system

S = −Tr (ρq log2 ρq)

= −λ1 log2 λ1 − λ2 log2 λ2 (2.72)

with λ1, λ2 = 1
2±

1
2

√
1− 4 |a+|2 |a−|2

(
1− |〈ψ+ | ψ−〉|2

)
. As an example, according to Eq.(2.72) for |a+|2 =

|a−|2 = 1
2 we can have the maximum entanglement entropy of our composite system as a function of

r ≡ |〈ψ+ | ψ−〉|, that is

Smax = 1− 1

2
(1 + r) log2 (1 + r)− 1

2
(1− r) log2 (1− r) . (2.73)

At the beginning of lower bias current, we have |〈ψ+ | ψ−〉| ≈ 1 [44] and Smax ≈ 0, where qubit and

SQUID are not entangled, because the wave functions |ψ±〉 are all distributed within the well and they are

almost identical to each other. But if we start increasing the bias current to the higher value of Γ+ � Γ−

such that after waiting long enough we may have |ψ+〉 distributed mostly different from |ψ−〉 which still

stays in the well, then ideally we can make |〈ψ+ | ψ−〉| approaching zero and Smax close to one, where the

qubit-SQUID system becomes entangled and the switching measurement gives the distinct distributions for

two qubit states. This gives us a rough picture of entanglement formation for switching measurement on

flux qubit by SQUID.

Because the mutual inductance between the qubit and the dcSQUID already exists by experimental

design, we need to consider the qubit and the dcSQUID together as a quantum system where energy

levels evolve with bias current. Therefore, at first glance, we may think the measurement mechanism of

qubit-dcSQUID composite system is different from the standard weak-measurement assumption that the

interaction between system and apparatus is only turned on at measuring time. But, according to above

analysis of entanglement, if we regard the fact that in the weak-coupling limit the qubit and the dcSQUID

are not entangled until Ib approaches a certain value with a given time, it will be more appropriate to think

of using the development of a certain degree of entanglement between the system and apparatus as defining

the ”turning on” time of the interaction or measurement.

2.6.5 Other considerations

The conclusion of two current distributions reflecting two qubit energy states in static experiments is true

only when the de-coherence effect from the measurement is small(in comparison with ∆ [21] ) such that the

behavior of the eigenstates of the coupled Hamiltonian in Eq.(2.6) is good enough to describe the escape
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dynamics in the measurement process; this situation is similar to the ”Hamiltonian-dominated regime” in

the review of [45], if we consider the qubit-dcSQUID together as a quantum system. The opposite limit is

the decoherence-dominated regime in which the two parallel switching current distributions correspond to

two qubit ”flux” states instead [25] and our coupled Hamiltonian can not give a complete picture to catch

the real dynamics [36]. Usually, in a static experiment the qubit density matrix automatically evolves to a

statistical mixture before the switching event is detected [21].

Note added: When this thesis was in the final stages of preparation, we received an updated and expanded

version of ref.[21], which treats some of the same issues which are discussed above. While we do not disagree

with any of the conclusions of this paper, we want to emphasize our belief that even in the complete absence

of the decoherence an experiment starting from a non-trivial superposition of energy eigenstates will yield a

two-peak distribution of switching currents.

2.7 The extension to ideal negative outcome measurement for

testing TBI

In order to design an ideal negative result measurement for the TBI, we need to appropriately control the

bias current such that we can accurately collect the ensemble of system being in the claimed flux state

under the condition of no escape happening during the whole process of the measurement. The basic current

operation scheme follows the steps of first ramping up the bias current fast to I1 at t1, then keeping the

same current value till t2( the platform of height I1 from t1 to t2), and finally fast decreasing the bias

current to zero. Here the bias current is required to be ramped up fast enough such that the qubit initial

state is preserved till the current reaches the platform regime, and the (flux) state of system right after the

current platform is also required to be preserved to the end by fast decreasing bias current to zero. Because

we want to construct a flux basis preferred measurement the height of the current platform, that is I1, is

required to be high enough to make sure that the SQUID reaches the large escape rate limit and prefers to

escape in flux basis. Ideally we wish that most of the evolution of the density matrix under the conditional

probability of negative outcome measurement takes place during the current platform from t1 to t2 because

any uncontrollable density matrix evolution (before t1 or after t2) based on the wrong state will increase the

error(or venality) of the measurement. Besides, the value of I1 also needs to satisfy the requirement that

the escape rate of the SQUID under the desired flux state is much slower than the opposite one such that

after the (negative) conditional evolution of density matrix between t1 and t2 the diagonal matrix element

of the opposite flux state is close to zero. Therefore the system only has the probability of staying in the
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claimed state after the current operation if there is no escape taking place; we exactly perform a negative

measurement of the required flux state on the system. To complete the ideal negative outcome measurement,

we also need to perform the negative measurement on the opposite state and integrate them to evaluate the

probabilities of the two states.

As an example, for negative measurement of R state we require the escape rate ΓL (I1) for the L state

at given bias current I1 is much faster than ΓR (I1) for the R state such that we have

wL ≈ e−τΓL(I1) � wR ≈ e−τΓR(I1) (2.74)

WL ≈ e−(t2−t1)ΓL(I1) �WR ≈ e−(t2−t1)ΓR(I1) (2.75)

right after the whole process of bias current operation. Although the starting basis of each channel at zero

bias current is not the flux basis, we still can have the initial density matrix elements based on flux states,

which are σRR (0) and σLL (0). Hence there are only

w ≈ σRR (t1)wR + σLL (t1)wL ' σRR (t1) δWR (2.76)

W ≈ σRR (t1)WR + σLL (t1)WL ' σRR (t1)WR (2.77)

of the total number of experiment remaining as the ensemble of negative outcome measurement, where it’s

more accurate to use σRR (t1) and σLL (t1) instead of σRR (0) and σLL (0) but ideally we wish σRR (t1) ≈

σRR (0) and σLL (t1) ≈ σLL (0) if the current ramps to I1 fast enough. As an illustration, the two color

lines in Fig.2.18 respectively show how σRR (0)WR (t) and σLL (0)WL (t), which are the probabilities of

the SQUID remaining in the relevant flux channel, evolve under our current operation with starting density

elements σRR (0) = σLL (0) = 0.5. At the same time because the density matrix elements evolve eventually

to

σRR ≈ σRR (t1)WR {W}−1 ≈ 1 (2.78)

and

σLL ≈ σLL (t1)WL {W}−1 ≈ 0 (2.79)
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Figure 2.18: The blue line and green line respectively represent for the evolution of σRR (0)WR (t) and
σLL (0)WL (t) for negative measurement of R state. Here we start with σRR (0) = σLL (0) = 0.5 as an
example. Both lines have obvious drop between t1 and t2, during which the bias current is constantly I1,
but have different decay rates ΓR (I1) and ΓL (I1). Finally, σLL (0)WL (t) go to zero and σRR (0)WL (t) ≈
σRR (t1) e−(t2−t1)ΓR(I1) according to Eq.(2.75) and Eq.(2.77).

as shown in the Fig.2.19, where only the systems being in the R state left after the current operation without

escape taking place, we can claim that we are exactly performing a negative outcome measurement on R

state, though only a fraction W of the total tests is left as the required ensemble. According to Eq.(2.77), we

Figure 2.19: The evolutions of the density matrix elements σRR (t) and σLL (t) are respectively represented
by blue line and green line under the negative measurement of R state. As an example, both starting at value
0.5 and then have obvious change between t1 and t2. Finally, σRR (t) approaches 1 and σLL (t) approaches
0 as described in Eq.(2.78) and Eq.(2.79) .

can estimate σRR (0) by σRR (t1) if we can correctly measure W and WR. Similarly, for negative measurement

of L state, we need construct a situation where the escape rate Γ′R (I ′1) for the R state at given bias current

is much faster than Γ′L (I ′1) for the L state such that we have

W ′L ≈ exp−(t′2−t
′
1)Γ′L(I′1) �W ′R ≈ exp−(t′2−t

′
1)Γ′R(I′1) . (2.80)
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in the end and then we can claim that the systems after negative outcome measurement are all in the L

state. Here we use the prime notation to denote the difference between R and L measurement. Also the

portion of negative outcome ensemble relative to the total number of tests is

W ′ = σRR (t′1)W ′R + σLL (t′1)W ′L ' σLL (t′1)W ′L (2.81)

, and we can use this formula to estimate σLL (0).

Let’s consider the other possibility of constructing the flux basis preferred measurement if we instead

increase and decrease the bias current adiabatically during the measurement. Because in the adiabatic limit

the evolution of the weight for each channel follows its initial value, which is based on the energy basis

not flux basis, the only information we can get after the negative outcome measurement is just the density

matrix elements based on energy basis at zero bias current. Therefore our negative outcome measurement

in the adiabatic limit of bias current is the energy basis preferred measurement. If we want to change it to

a flux basis preferred measurement, we can make a sudden increase of the qubit bias energy right before the

adiabatic ramping of bias current on dcSQUID such that the eigen basis at zero bias current is exactly the

flux basis and what we measure in the end are the components of qubit initial state in flux basis.

2.8 Summary

The ”two-channel” picture based on energy basis after Harmonic approximation captures most of the physics

in static experiments. On the other hand, the ”two-channel” picture based on flux basis also works well in the

large escape rate limit of dynamic experiment. Therefore, we generalized the idea of ”two-channel” escape

to all of the parameter regime for the qubit-SQUID system and conclude that our coupled system tends to

behave as an energy-basis measurement in the small escape rate limit but as a flux-basis measurement in

the large escape rate limit. In sum we have studied the escape physics of the qubit-SQUID coupled system

in varies limits. Furthermore, we use these results to analyze the qubit density matrix evolution before

the current switching happens, the entanglement of the qubit-SQUID system, and the weak measurement

behavior of our experiment. In the end, we discussed the possible ways to realize the flux-basis projective

measurements with our qubit-SQUID system for the preparation of the TBI test.
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Chapter 3

Possibilities of a test of the Temporal
Bell inequalities(TBI) using a flux
qubit coupling to a dcSQUID

3.1 Introduction

In this chapter we have two main objectives; the first is to discuss the realization of an ideal negative

result (INR) measurement on our qubit-dcSQUID system, and the second is to quantify the measurement

invasiveness in the ancillary test and use it to improve the TBI experiment. In Section 2, we will give a

quick review of our motivations which have been discussed in Chpater 1, and introduce briefly the overall

structure of Knee’s experiment for testing TBI. The core structure of the INR measurement implemented by

Knee’s group will be discussed in detail in Section 3. Also, we will show how to generalize the structure to

our qubit-dcSQUID composite system. Our goal in this section is to set up a projective INR measurement

on a macroscopic object with flux basis such that we can achieve the prototype measurement mentioned in

ref.[1] for TBI. This is our first main objective. The second main objective of this chapter will be discussed

in sections 4-6. In Section 4, the ancillary test is reviewed in greater detail. Furthermore, we also take

into account the idea of Wilde and Mizel [3] in the quantification of the measurement invasiveness so that

we can give a more concrete protocol of the ancillary test that cooperates with our new arrangement of

the TBI test, which is itself given in Section 5. A new lower bound for TBI will be given based on the

ancillary test from Section 4 and the modified TBI main experiment described in Section 5 such that the

loophole will be narrowed. Next, we will give an idealized analysis of the boundary of TBI in Section

6. As there does not yet exist any experimental implementation of the ancillary test, it is uncertain how

large the measurement invasivity will be. Therefore, we try to estimate the measurement invasivity based

on an INR measurement. We assume that the ensemble of negative outcome is perfectly non-invasive by

measurement, but it it possible to mistakenly measure a positive outcome ensemble as a negative outcome

ensemble. Therefore, a mis-assignment of any portion of the positive ensemble will effectively introduce

measurement invasivity. Here the mistaken ratio can be described by the term measurement venality ζ,

which is exactly the probability of having a measurement error (this term will be described in detail later).

Based on this simplified model, we can find a venality-dependent TBI lower bound, and use it to determine
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the feasibility of the ancillary test. In other words, we will determine the maximum tolerated measurement

error within which the TBI experiment will be meaningful.) In Section 7, we discuss the possible sources

that can cause measurement error using our implementation of INR measurement given in Section 3.

3.2 The Motivation (review)

As we know from Chapter 1, the purpose of the TBI experiment is to see whether we can rule out MR,

thereby supporting quantum mechanics at the macroscopic scale. The TBI is given by

L (t1, t2, t3) ≡ 〈Q1Q2〉1,2 + 〈Q2Q3〉2,3 + 〈Q1Q3〉1,3 + 1 ≥ 0. (3.1)

(Please read Chapter 1 Section 1 for detailed definitions.) It is based on the three postulates: (1) macroscopic

realism (MR), (2) noninvasive measurability (or measurement) (NIM), and (3) induction. To implement the

NIM, the INR measurement was suggested by Leggett and Garg [1]. Recently, Knee et al. [4] successfully

realized the INR measurement on a nuclear-electron coupled system in the high field limit (we will discuss

their detailed implementation in the next section). More critically, in order to rule out MR we need to

make sure these postulates (especially the NIM) are satisfied in the TBI experiment; the ancillary test [9] is

introduced to check the measurement invasivity to avoid a possible loophole [3] of ruling out MR. Therefore,

one of our most important tasks in this chapter is designing an applicable way to quantify the measurement

invasivity for improving TBI by avoiding the NIM loophole.

With the help of nuclear-electron-pair based INR measurement, Knee et al. [4] first performed the TBI

test on a microscopic system using projective measurement of electron (or nuclear) spin. A family of three

experiments (each corresponding to a set of runs of the same operating times {ti, tj} ) are implemented to get

three two-time correlators Kij = 〈Q (ti)Q (tj)〉 for i < j(i, j = 1, 2, 3). Every experimental run always has

the arrangement of an INR measurement (the 1st measurement at ti) followed by a normal measurement

(the 2nd measurement at tj). In addition, between two measurements at ti and tj there should be an

unitary operation U to perform a coherent control on the system (nuclear) between two energy states to

set up the required two-time correlation of system. The results of Knee et al. indeed show the violation of

TBI and are close to quantum mechanical prediction, but they did not consider the ancillary test to ensure

the non-invasiveness of their INR measurement. Therefore, the experiment still is subject to the loophole

problem [3] and may not be used to rule out the MR assumption; their TBI experiment is not complete.

To solve this problem, we will study the ancillary test in Section 4 and Section 5. Before that, in Section

3 we will discuss the adaptation of the core structure of INR measurement used by Knee et al. to our
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qubit-dcSQUID composite system. Basically, we apply the properties of energy states of the qubit-dcSQUID

composite system given in Chapter 2 to the protocol of INR measurement used by Knee et al.

3.3 The realization of INR measurement with the qubit-SQUID

coupled system

So far there is no experiment indeed testing TBI based on Leggett-Garg proposal[1] of projective measure-

ment on macroscopic quantum coherent flux states; Palacios-Laloy et al. [5] only perform a weak measurement

on transmon type superconducting qubit, and Knee et al. [4] only realize projective INR measurement on

microscopic system. (Please note that some of these motivations may not be true anymore because during

the preparation of my thesis writing new experiments related to macroscopically testing TBI is published,

see ref. [50],[51].) The quantum theory as applied to macroscopic objects is still questionable. In order to

construct an INR measurement on a macroscopic object, we are going to generalize Knee’s INR measurement

by replacing nuclear-electron system with qubit-dcSQUID system. Basically, the core structure of our INR

measurement is very similar to Knee’s for the transition of system size from microscopic to macroscopic.

In Knee’s experiment, the core structure of INR measurement is based on nuclear-electron(system-ancilla)

pair, where the four possible energy eigen states of the coupled system are |↑↑〉 , |↑↓〉 , |↓↓〉 , and |↓↑〉 in the

spin representation of |system, ancilla〉( see Fig.3.1). Because the two possible excited energies (MW1 and

MW2) of electron depend on nuclear spin, when the frequency of the applied microwave matches one of

the two possible electron excited energies, the electron will flip its spin from ground energy level to excited

energy level and we can identify the nuclear spin via the measurement of electron state if the electron is

correctly prepared in the ground level |↓〉. Therefore, an INR measurement on nuclear spin up and spin

down states can be realized by post-selecting the runs of electron spin being not excited by microwave of

frequency MW2 and MW1 respectively, which are also called the CNOT gate and the antiCNOT gate in

Knee’s paper.

In our experiment, the qubit’s two energy states correspond to the nuclear spin of Knee’s experiment,

and the lowest two energy states of dcSQUID together can act as the electron spin. Furthermore, if we

want the excited energy between two dcSQUID states to depend on the qubit state, the flux qubit needs to

interact with dcSQUID such that they can behave exactly like a nuclear-electron pair in Knee’s experiment.

Because the induced flux from the qubit states can effectively change dcSQUID phase potential, as required,

the excited energy of lowest two energy levels of dcSQUID indeed depends on the qubit state. Therefore,

by solving the energy levels of qubit-dcSQUID coupled system, we can exactly show how energy levels of
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Figure 3.1: the four energy levels in Knee’s INR measurement

Figure 3.2: the four energy levels in our INR measurement

dcSQUID change with qubit state.

Please note that the work in this section is different from the tasks in Chapter 2. The analysis in Chapter

2 of whether the escape dynamics of the SQUID is better described in terms of energy or flux channels can

be considered as the preparartion for the work in this section; the relative knowledge can help us to pick up

the right channels and setup energy levels of qubit-SQUID so that we can construct an INR measurement

similar to Knee’s experiment based on our qubit-SQUID system.

Let’s consider the qubit-dcSQUID coupled system with simplified Hamiltonian

H = Hq +HSQ +Hcoupling

Hq = εσz + ∆σx

HSQ =
−h̄2

2m
∂2
φ − 2EJ0 cos [πfSQ] cos [φ] +

h̄Ib
2e

φ

Hcoupling ' 2πMEJ0 sin [πfSQ] cos [φ]σz = εint (φ)σz
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, where 2ε and ∆ are respectively the energy difference and tunneling energy between the two flux states

of the qubit. For the dcSQUID, EJ0 and C0 are the Josephson energy and capacitance of one junction,

m = 2C0

(
h̄
2e

)2
is the effective mass of the average phase φ of the junctions, and Ib is the bias current. We

have fSQ =
ΦSQ
Φ0

representing for the SQUID applied flux and M =
Φq
Φ0

being the coupling strength between

qubit and dcSQUID with Φq being the qubits induced flux on dcSQUID.

Based on our previous analysis of qubit-dcSQUID coupled system , we can effectively diagonalize our

Hamiltonian into the following form by new spin basis |+〉 and |−〉 of the coupled system:

H =

 H+ 0

0 H−

 (3.2)

, where

H± =
−h̄2

2m
∂2
φ + U± (φ) (3.3)

with U+ (φ) and U− (φ) being the effective SQUID potentials corresponding to new spin basis |+〉 and |−〉

respectively. Based on these effective potentials of dcSQUID, we can easily estimate the excited energy and

escape rates of lowest two energy levels(|0〉 and |1〉) of each potential. Ideally, we can consider the dynamics

of our coupled system as two-channel-escaping physics(without tunneling between the channels) as shown in

Fig.3.2; and similar to Knee’s experiment, the states |+, 0〉 , |+, 1〉 , |−, 0〉 , and |−, 1〉 are the corresponding

four energy levels, and the required excited energies(or frequencies) are

MW1 ≡ (E+1 − E+0) ≈ (E1 − E0) +

∑
k 6=1

|ε1k|2

E1 − Ek
−
∑
k 6=0

|ε0k|2

E0 − Ek

+

(√
ε2

11 + ∆2 −
√
ε2

00 + ∆2

)
(3.4)

MW2 ≡ (E−1 − E−0) ≈ (E1 − E0) +

∑
k 6=1

|ε1k|2

E1 − Ek
−
∑
k 6=0

|ε0k|2

E0 − Ek

− (√ε2
11 + ∆2 −

√
ε2

00 + ∆2

)
(3.5)

EU ≡ E+0 − E−0 = 2
√
ε2

00 + ∆2 +O
(
M3
)

(3.6)

Here we have defined εmn ≡ 〈m| ε+ εint (φ) |n〉, and En and |n〉 are eigen energy and eigen state of the

dcSQUID Hamiltonian in Eq.(3.2) respectively. In Eq. (3.4) and (3.5), the first terms are the SQUID

energy difference before coupling to qubit, the second terms are the perturbation corrections to the SQUID

energy, and the last one is the qubit energy diffence in our two-channel representation. Please see Eq.

(B.12) and (B.13) for detailed analysis. The energy EU in Eq.(3.6) corresponds to the transition between
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|+, 0〉 and |−, 0〉, which gives the microwave frequency for uniatry operation U on qubit system between

any two measuring times. The other two equations describe the excited energy between |+, 0〉 and |+, 1〉,

and the excited energy between |−, 1〉 and |−, 0〉, which respectively take place of the MW1 and MW2 of

the Knee’s experiment. As we can see that the difference between Eq. (3.4) and Eq. (3.5) is contributed

by their last terms, which is 2
(√

ε2
11 + ∆2 −

√
ε2

00 + ∆2
)

and related to the effective bias energy and qubit

tunneling energy. Theoretically, we justified that our qubit-SQUID system has similar energy structure as

nuclear-electron system in Knee’s experiment for INR measurement. We can either numerically calculate

these energy levels, or experimentally test their excited energies to get the correct resonance frequencies.

After figuring out the required excited energies between the states, it is not hard to control our system

coherently with microwaves. Besides, with appropriate bias current, once the dcSQUID is excited to |1〉 it

should switch to voltage mode immediately due to the large escape rate Γ1 for dcSQUID in |1〉. By contrast,

the dcSQUID in |0〉 is supposed to stay in superconducting mode by its relatively small escape rate Γ0, which

corresponds to negative result of measurement because there is no voltage signal measured. Therefore, we can

operate an INR measurement with qubit-dcSQUID system by applying microwave of selected frequency on

coupled system under appropriate current control of dcSQUID. Also, an unitary operation on qubit(primary

system) can be realized by conherent control of coupled system between |+, 0〉 and |−, 0〉 with microwave

frequency of energy EU . Practically, this unitary operation will be affected by relaxation and dephasing

physics.

Entirely, the core structure of each INR measurement requires appropriately controlled bias current Ib

such that the escape rate Γ1 of dcSQUID state |1〉 can be much greater than Γ0 of state |0〉, γ10 , and

γϕ, where γ10 and γϕ are the relaxation rate and the dephasing rate between |1〉 and |0〉 ( for more detail

analysis, please see Section 6). Besides, the system needs to wait for a certain time longer than 1
Γ1

to

prepare dcSQUID in its ground state |0〉, then we can perform the INR measurement of states |+〉 and |−〉

by applying the microwave MW− and MW+ respectively to equal number of experimental runs and keeping

only the systems of negative runs where dcSQUID does not switch to the voltage mode. Finally, the ratio

between two types of negative runs reveals the information of the system under the INR measurement.

3.4 Quantifying measurement invasiveness in the ancillary test

The main logic of the ancillary test is quite simple: if we don’t want the violation of TBI to be ascribed to

the untested measurement invasiveness, we need to implement a test to justify the non-invasiveness of the

measurements or at least measure and quantify the measurement invasiveness such that we can use these
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measured classical invasivities to adjust the boundary of TBI. Of course, if the measurement invasivities are

too large such that the new boundary of TBI is outside the range of the quantum limit, then it is hopeless

to claim anything. But, if we can set up the experiment appropriately such that the new boundary of TBI

is still within the quantum limit, then it may be possible to rule out macroscopic realism by our use of the

TBI experiment.

In this section, we will introduce the principles of the ancillary test, analyze how to quantify the mea-

surement invasiveness in a more practical way based on two-time correlators, and construct our protocol for

the ancillary test. We hope to use the test results to modify the lower bound of TBI in Eq.(1.3) such that

the possible violation of TBI due to the “classical” measurement invasiveness is already considered and the

loophole of arguing the invalidity of macroscopic realism per se becomes narrower.

In principle, it has been mentioned by A. J. Leggett in 1988 [9] that a complete experiment of TBI should

include such an ancillary test in order to justify the noninvasive measurability in the experiment. After that,

Wilde and Mizel [3] gave a more detailed theoretical analysis of measurement invasiveness in the ancillary

test. Consequently, the whole experiment has following stages:

I. Ancillary test:

I-A. Preparation of quantum state This is the standard experimental protocol of quantum me-

chanics; we can operate and adjust the standard von Neumann measurement(VNM) repeatedly to ensure

the agreement between experimental result and quantum mechanical prediction so that we can correctly

prepare our system in a specific state.

I-B. Test for classical invasivity This is the main stage of the ancillary test used to check the NIM.

The NIM postulate is considered in the context of the postulate of (macro) realism; the argument goes that

the system must (according to MR) be in a definite state right before measurement in TBI experiment, and

thus in the ancillary test, we only need to determine whether the system, when known (independently of

MR) to be in a definite state, is perturbed (invasively) by measurements or not, and we define the degree of

invasiveness under these conditions as ’classical’ invasivity. Therefore, to check the ’classical’ invasivity of

the measurement in TBI, we need to prepare the system in a definite state right at the measurement time

to guarantee the’ classical’ behavior of the system such that we can test the NIM postulate ’classically’; any

scenario inducing wave collapse mechanics should be excluded in the ancillary test because the measurement

in such a scenario will be invasive in quantum fashion. For example, if we want to test the invasiviness of

measurement Q(t′2), we need to prepare the system in such a manner that the measurement always gives

Q(t′2) = +1 whenever we operate it at t′2, where the preparation step is given by stage I-A. Next, once we set
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up our system state at t′2, we can compare the system’s behaviors at t′ > t′2 under the condition A that the

measurement is performed at t′2 and condition B that no measurement is performed at t′2. The discrepancy

between these two system’s behaviors indicates how invasive the measurement Q(t′2) is.

II. Main experiment: The purpose of this stage is to test the TBI. Based on Eq.(3.1), three core

measurements are implemented to get the three possible two-time correlators Kij = 〈QiQj〉(for 1 ≤ i < j ≤

3) and to give the Leggett-Garg function.

To quantify the measurement invasivity, Wilde and Mizel [3] give a concrete definition for the discrepancy

between the system’s behaviors under two different measurement conditions, though they do not focus on

the required classical preparation of state as described in stage I-B of the ancillary test. Wilde and Mizel

define a measurable quantity ε which is based on the change in joint probability distribution of the two

measurements’ outcomes (at t1 and t3) due to the operation of the measurement (at t′2 in our case).

∑
a.c

|P (a, c |A)− P (a, c |B)| ≤ ε (3.7)

Here a and c respectively represent the possible measurement outcomes of the 1st(at t1) and the 3rd(at t3)

measurements. In addition, “A” denotes a the condition where “the 2nd measurement is performed” and

“B” denotes a the condition where “the 2nd measurement is not performed”, where the 2nd measurement

is the main measurement to be tested for its invasiveness. Therefore, P (a, c |A) and P (a, c |B) can be read

as the measured joint probabilities of two given outcomes (a and c) of the 1st and the 3rd measurements,

respectively, under the conditions of being with and without the operation of the 2nd measurement.

To provide a more practical scheme for the ancillary test, we need to convert the idea of Wilde and Mizel

to a more useful representation for quantifying the invasiveness of measurement tested in the stage I-B, so

that we can easily use these quantified invasivities to modify the lower bound of TBI. Therefore, in the

following paragraph we will discuss further details of how to quantify the measurement invasivities.

Based on the protocol of the TBI experiment, in principle, there should be three possible structures of

invasivities according to the relative order between the measurement to be tested and the two-time correlator

used as an indicator, where the arrangement is similar to the analysis of non-invaded correlations(NIC) in

ref.[46]. For example, we can consider a situation in which the measurement to be tested(at t1) always

appears before the times(t2 and t3) of two-time correlator and see how does the two-time correlator change

due to the operation of that measurement, which is denoted as the type I invasivity. In order to fulfill the
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requirement of ancillary test in I-B stage, we need to prepare the system in either “Q1+” condition or “Q1−”

condition, where the “Q1±” condition means that the outcome always shows Q = ± whenever we perform

a VNM at t1. Besides, we will need the conditions A1 ≡ “the measurement at t1 is performed” and B1 ≡

“the measurement at t1 is not performed”.

Based on above definitions, if we consider P+− (t2, t3 |Q1+, A1 ) as the joint probability of Q (t2) = +1

and Q (t3) = −1 under the conditions Q1+ and A1, then the corresponding two-time correlator under the

same conditions is

K (t2, t3 |Q1+, A1 ) = P+,+ (t2, t3 |Q1+, A1 ) + P−,− (t2, t3 |Q1+, A1 )

− P+,− (t2, t3 |Q1+, A1 )− P−,+ (t2, t3 |Q1+, A1 ) . (3.8)

Accordingly, the change of the two-time correlator between measurements at t2 and t3 due to the operation

of the measurement at t1 is given by

∆K23 (Q1+) ≡ ∆K (t2, t3 |Q1+ ) ≡ K (t2, t3 |Q1+, A1 )−K (t2, t3 |Q1+, B1 ) . (3.9)

On the other hand, we can also consider ∆K23 (Q1−) for the “Q1−” condition. In principle, we can use

∆K23 (Q1+) and ∆K23 (Q1−) to quantify the type I invasivity. Please note that for utilizing our formula

of type I invasivity to the analysis of TBI in Eq.(1.3), in TBI main experiment we just need to specify the

initial state at t1 by considering the “Q1±” condition so that we can set t1, t2, and t3 here to be exactly

equal to the time sequence in the main experiment of TBI.

Next, we can also consider another type of invasivity, called the type II invasivity, where the measurement

to be tested appears within the time period of two-time correlator; the three measurements respectively

appear at t1, t′2, and t3, where the ones at t1 and t3 belong to the two-time correlator and the one at t′2 is

going to be tested its invasiveness. In principle, similar to the Type I invasivity, we wish our time sequence

t1, t′2, and t3 here to agree with what in the TBI main experiment. However, the choice of t′2 in the I-B

stage of ancillary test should satisfy the classical condition Q2± that “the system is prepared definitely in

± state before we take any measurement at t′2”. Therefore the t′2 for type II invasivity test is not the same

as the t2 in the TBI main experiment.

If we define A2 ≡ “the measurement at t′2 is performed” and B2 ≡“no measurement at t′2”, similarly, we

also can have the change of the two-time correlator of measurements at t1 and t3 due to the operation of
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the measurement at t′2, i.e.

∆K13 (Q2+) ≡ ∆K (t1, t3 |Q2+ ) ≡ K (t1, t3 |Q2+, A2 )−K (t1, t3 |Q2+, B2 ) (3.10)

Also, the corresponding change of two-time correlator K13 due to the measurement at t′2 under the

condition Q2− is given by ∆K13 (Q2−) ≡ ∆K (t1, t3 |Q2− ). Basically, we use ∆K13 (Q2+) and ∆K13 (Q2−)

to quantify the type II invasivity.

Because we believe the postulate of induction rather than the MR and NIM, we don’t consider the

type III invasivity test in which the measurement to be tested always appears after the times of two-time

correlator. Basically we just set the type III invasivity equal to zero by hypothesis.

Once we measure the quantified type I and type II invasivities, we can use them to modify the lower

bound of TBI under certain initial condition at t1. The detailed analysis will be discussed in next section.

In general, the measurements in TBI experiment can be any type, e.g., the VNM or the INR measurement.

However, if we want to reduce the values of type I and type II invasivities, the first measurement (at t1) and

the second measurement(at t2) are needed be the INR measurement. Please notice that even though the

type I invasivity (defined by ∆K23 (Q1+) or ∆K23 (Q1−)) is expected to be zero in the quantum theory, the

ancillary test for type I invasivity is still required based on the macrorealism.

As we mentioned before, because of the Q2± condition, only the choice of t′2 in type II invasivity test is not

equal to t2 in TBI experiment. Therefore, in order to make our ancillary test applicable to the improvement

of TBI, at least we can make the choice of t1 and t3 in ancillary test are the same as that(t1 and t3) in the

TBI main experiment, which should be based on the requirement of maximum violation in TBI experiment

(θ13 = 4nπ
3 for n being integer). Here θij represents the evolution phase of system between ti and tj for

quantum mechanical two-time correlator 〈QiQj〉i,j = cos θij . Next, we require that t′2 should stay between t1

and t3 so that we can check the type II inavsivity in ancillary test for estimating the measurement invasivity

at t2 in main TBI experiment. Accordingly, we can find the required minimum θ13 between t1 and t3 satisfies

θ13 = 4π
3 for t′2 satisfying Q2± with θ12′ = 0 or π

2 .

3.5 The arrangement of main TBI experimental based on the

invasivities measured in ancillary test

To reduce the type I and type II invasivities, the INR measurement would be good candidates for mea-

surements Q1 and Q2. Therefore, we can set up a new arrangement of TBI experiment with Q1 and Q2
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being the INR measurements for 〈Q1Q2〉1,2, Q2 and Q3 respectively being INR measurement and VNM for

〈Q2Q3〉2,3, and Q1 and Q3 respectively being INR measurement and VNM for 〈Q1Q3〉1,3. Besides, in order

to make the ancillary test more applicable to the TBI experiment, we also require the Q1± condition in TBI

experiment.

If we make the postulates of MR and induction and assign values of type I and type II invasivities, we

can estimate the new lower bound of Eq.(3.1) by extrapolating the ensemble in TBI experiment to another

ideal ensemble of sequence of three measurements ordered by INR measurement, INR measurement, and

VNM respectively at t1, t2, and t3 (under the same initial condition at t1). Of course, all extrapolations

are under the classical picture. For example, because of the assumption of induction, which gives zero type

III invasivity, the presence of the measurement at t3 has nothing to do with the correlator 〈Q1Q2〉1,2 and

therefore we can simply extrapolate 〈Q1Q2〉1,2 in Eq.(3.1) to 〈Q1Q2〉1,2,3 without any invasivity correction,

where the subscripts 1, 2, 3 on the pointed bracket represent the new ensemble of system with three mea-

surements ordered by INR measurement, INR measurement, and VNM respectively at t1, t2, and t3. Next,

for the extrapolation from 〈Q2Q3〉2,3 to 〈Q2Q3〉1,2,3 we need to consider the change of 〈Q2Q3〉 due to the

“classical” invasivity of the INR measurement at t1, which is exactly described by the type I invasivity

∆K (t2, t3 |Q1+ ). Here we have considered the “Q1+” condition that the system is prepared in “Q = +”

state at t1. Consequently we can replace 〈Q2Q3〉2,3 by 〈Q2Q3〉1,2,3 in Eq.(3.1) with the correction from

∆K (t2, t3 |Q1+ ). Similarly, with a knowledge of type II invasivity, that is ∆K (t1, t3 |Q1+, Q2± ), we can do

the extrapolation from 〈Q1Q3〉1,3 to 〈Q1Q3〉1,2,3. Please note that because the system at t2 in main TBI

experiment does not satisfy the “reality” requirement for the ancillary test, we can not directly measure the

“classical” inavaisity of the measurement Q2 at t2. Therefore, we can only measure ∆K (t1, t3 |Q2+ ) and

∆K (t1, t3 |Q2− ) at t′2 in ancillary test and use them to estimate the classical measurement invasivity at t2

for main experiment, where we emphasize that ∆K (t1, t3 |Q2± ) is defined by Eq. (3.10) with Q± condition

on t′2. Here we have assumed that the measurement invasivity of Q2 only depends on the state of the system.

The estimated formula for the classical invasivity of Q2 at t2 is given by

max ∆K (t1, t3 |Q2± ) ≥ ∆Kcl (t1, t3 |Q2 at t2 ) (3.11)
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. Here ∆Kcl (t1, t3 |Q2 at t2 ) is the imaginary type II invasivity of the measurement Q2 at t2 in TBI

experiment. Finally, we can extrapolate Eq.(3.1) to the following equation:

L (t1, t2, t3) ≥ 〈Q1Q2〉1,2,3 + 〈Q2Q3〉1,2,3 + 〈Q1Q3〉1,2,3 + 1

−∆K (t2, t3 |Q1+ )−max ∆K (t1, t3 |Q1+, Q2± )

≥ −∆K (t2, t3 |Q1+ )−max ∆K (t1, t3 |Q1+, Q2± ) . (3.12)

Here we have applied the previous result of 〈Q1Q2〉1,2,3 + 〈Q2Q3〉1,2,3 + 〈Q1Q3〉1,2,3 + 1 ≥ 0 for the second

inequality. It is bounded by our type I and type II invasivities, which are measurable quantity in the

ancillary test. Because the above analysis only considers the case of initial condition where the system is

prepared in “Q = +” state at t1, to complete the analysis we also need to consider the condition where the

system is prepared in “Q = −” state at t1:

L (t1, t2, t3) ≥ 〈Q1Q2〉1,2,3 + 〈Q2Q3〉1,2,3 + 〈Q1Q3〉1,2,3 + 1

−∆K (t2, t3 |Q1− )−max ∆K (t1, t3 |Q1−, Q2± )

≥ −∆K (t2, t3 |Q1− )−max ∆K (t1, t3 |Q1−, Q2± ) . (3.13)

As we mentioned, although the type I invasivity is ideally zero in quantum theory, the value of ∆K (t2, t3 |Q1± )

is still required during the extrapolation to TBI by macrorealism. Please note that if we apply the Q1±

condition to TBI main experiment we can have the equality ∆K (t2, t3 |Q1± ) = 〈Q2Q3〉1,2,3 − 〈Q2Q3〉2,3,

where ∆K (t2, t3 |Q1± ) are measured in ancillary test but 〈Q2Q3〉1,2,3 and 〈Q2Q3〉2,3 are measured in the

main experiment. This equality happens only when we specify the Q1± initial condition on main exper-

iment, in general we don’t specify such ’classical’ condition on TBI experiment. Therefore, we can con-

clude that the only contribution to TBI violation comes from the difference between type II invasivity and

〈Q1Q3〉1,2,3 − 〈Q1Q3〉1,3. Here we have introduced the induction postulate to set the type III invasivity

equal to zero. In sum, by appropriate choose of initial condition we can make all TBI violation related to

〈Q1Q3〉1,3.

In fact, there is a way to realize the noninvasive measurement(NIM) in our new TBI experiment setup;

if we simply specify “macrorealism”, in words, as the hypothesis that the macroscopic system with two

macroscopically distinct states, described by measurement outcome Q ∈ {+1,−1}, available to it will at

all times be in one of these states. Suppose we can prepare our (macro-realistic by hypothesis) system
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at t1 so that whenever we start from the prescribed initial condition at t=0 and operate a measurement

at t1, we always find it has Q = +; based on the specified “macrorealism” assumption, even if we don’t

measure the system at t1, we still know its state of “Q = +” at t1. Therefore, we can claim that we already

perform a NIM at t1 even though we do not actually measure the system at t1, because no invasive action

is performed to tell the state of the system. This imaginary NIM at t1 helps us to get rid of the type I

invasivity during the extrapolation to the temporal Bell inequality. With this imaginary NIM at t1, our TBI

experiment can be rearranged with the core structures of Q1 and Q2 being NIM and INR measurements

respectively for 〈Q1Q2〉1,2, Q2 and Q3 being INR measurement and VNM respectively for 〈Q2Q3〉2,3, and

Q1 and Q3 being NIM measurement and VNM respectively for 〈Q1Q3〉1,3. Similarly, we can extrapolate

ensemble of TBI experiment to another ensemble with sequence of three measurements ordered by NIM,

INR measurement, and VNM respectively at t1, t2, and t3. Because the type I invaisivity for NIM should

be zero, i.e. ∆K (t2, t3 |Q1+ ) = 0, the new extrapolated inequality corresponding to Eq. (3.12) is

L (t1, t2, t3) ≥ −max ∆K (t1, t3 |Q1+, Q2± ) . (3.14)

Similarly, we also need to consider the NIM under the condition of “Q = −” at t1 to complete the whole

TBI analysis. There the corresponding extrapolated formula is

L (t1, t2, t3) ≥ −max ∆K (t1, t3 |Q1−, Q2± ) . (3.15)

With the help of our imaginary NIM, there is only one INR measurement required(at t2) in the new

arrangement of main TBI experiment, then it is relatively easier to perform the experiment; we don’t need

to operate two adjacent INR measurements to get the two-time correlator 〈Q1Q2〉1,2.

3.6 The estimation of type II invasivity ∆K (t1, t3 |Q2± ) of INR

measurement (by simple venality model )

In principle, we consider the INR measurement as a system-ancilla coupled system[4], where the purpose of

the ancilla is to indicate the state of the system. In Knee’s experiment, due to the possibility of an incorrectly

initialized ancilla in an INR measurement, the measurement venality [4] is defined and analyzed. Instead of

using Knee’s definition of venality, we want to generalize the definition as the fraction of the ensemble of

which the ancilla cannot correctly indicate the system state; we introduce ζ to denote the venality, which
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is simply a measurement error of the INR measurement. In principle, the measurement venality and the

measurement invasivity are two different things; the venality can be understood as any improper indication

of the system state by the ancilla but the measurement invasivity is the direct measuring perturbation on

the behavior of system. Although the venality is different from the invasivity, as we will see in the analysis of

this section, the venality is able to provide a possible way of introducing the measurement invasivity under

a simplified assumption that the measurement invasiveness only comes from the interaction with system at

the ’positive’ state. ( Equivalently, we assume that there is no invasivity if the venality is reduced to zero.)

Here the ’positive’ state is claimed to be the only state that can interact with the (INR) measurement, giving

a positive outcome. Statistically, the venality can change the interpretation of the experimental result by

mistaking the runs intended give a positive outcome for runs intended to give a negative outcome. For

example, in the INR measurement the venality can induce a false negative case, where a state which is really

’positive’ may instead to give a negative measurement outcome. Therefore, according to the assumption

that the measurement invasiveness only comes from the interaction on the ’positive’ state, the system will

become more invasive by the measurement as the venality ζ increases. The venality can mix the invasive

part of the system ensemble into the noninvasive part so that we unable to guarantee the non-invasiveness

of our system ensemble even when we have a negative outcome. Due to the inappropriate preparation of the

ancilla and other detailed physical reasons, it is inevitable to consider measurement error (or fidelity) of the

INR measurement.

Motivated by the discussion above, if the measurement error is too large so that we already know

the system is heavily invasive by measurement, the TBI becomes meaningless and there is no need for

the ancillary test anymore. The purpose of the section is to estimate the maximum tolerated venality (or

measurement error) for making the TBI experiment feasible, so that we still have a to do the ancillary test for

TBI experiment. As we will see, the type II invasivity of the ancillary test is ideally quantified in terms of the

venality under our simplified venality model, which gives us an easy way to estimate part of the measurement

invasivity. In general, there are many other models which can establish the relationship between invasivity

and venality. Furthermore, in a different model, the system can be invasive by measurement even at zero

venality, which may be related to the issue of from the ’negative’ state and is additional to our results, but

this is not our main concern here. Our priority is to find the maximum tolerated measurement error (or the

minimum fidelity of measurement) that can make the TBI experiment meaningful.

Before a detailed theoretical analysis, we first need to classify some possible physical situations and give

corresponding notations for them.
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1. The measured probability under zero venality In (macro)realism, if the measurement have

venality (or error), the results may not correctly reflect the “real” behavior (or state) of the system. There-

fore, to make a distinction between the “real” behavior of the system, which can be measured by ζ = 0

measurement, and the measured behavior under ζ 6= 0, we use Pi0+ and Pi0− to represent the “real” probabil-

ity of the system being respectively in the state ’+’ and state ’−’ at ti, where 0 denote the system’s “real”

behavior right before the measurement and it should equal to the measured behavior if ζ = 0. For example,

in a realistic picture 10
+ represents the system being in + state at t1, which should be read from the outcome

of ζ = 0 measurements. Practically, we take the most reliable(ζ = 0) measurement to “describe” the “real”

state of system, e.g. we take the von Neumann measurement(VNM) as the ζ = 0 measurement. Although

the values of the real behavior and (ζ = 0)measured behavior are exactly the same, the (ζ = 0)measured

behavior requires the operation of measurement to read out the ’real’ behavior. Therefore, to make a dis-

tinction between these two concepts, we use “M” to denote measured behavior under (ζ = 0) measurement.

As we will see (especially for the INR measurement in the following analysis), the “real” probability can

help us clearly to represent how the measured correlation changes with the nonzero venality.

2. The measured probability based on the INR measurement We use p and n to represent

the positive and negative outcomes of INR measurement. Therefore, P2p and P2n respectively describe

the measured probability of INR measurement with positive outcome and negative outcome at t2. Based

on Knee’s experimental analysis, the INR experiment can be decomposed into two sub-measurements: the

CNOT gate and antiCNOT gate; one is designed to give the negative outcome (or not response) with +

state and the other is designed to give the negative outcome with − state, which are respectively called R

measurement and L measurement in the following analysis. Consequently, if we use R and L respectively

as the R measurement and the L measurement, then we can take 2Rn and 2Ln for the system with negative

outcome respectively in R measurement and L measurement at t2, 2Rp and 2Lp for the system of positive

outcome respectively in R measurement and L measurement at t2, and P2Rn
and P2Ln

for the probabilities of

system with negative outcome respectively in R measurement and L measurement at t2. Besides, we may

use the term “negative state” for the state for which the INR measurement is supposed to give negative

outcome. For example, in R(L) measurement, the +(−) qubit state is the corresponding negative state.

To give a proper estimation of type II invasivity, we will use a simple model of venality by assuming that

in the INR measurement the measurement invasiveness only comes from the interaction with the negative

state and the venalities of L measurement and R measurement are the same. Especially, we consider the

arrangement of Q1, Q2, and Q3 in TBI main experiment being NIM, INR measurement, VNM respectively.
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Besides, in ancillary test we require that the system is prepared in + state at t1, which is P10
+

= 1, and

is predicted to be in − state at t′2, which is P2′0−
= 1, though there is no measurement operated at t1

and t′2. Therefore, if we perform an INR measurement (Q2 with venality ζ) at t′2, we suppose to have

P2′Ln
= (1− ζ)P2′0−

= 1− ζ for L measurement and P2′Rn
= ζP2′0−

= ζ for R measurement; (1− ζ) of ensemble

correctly indicate the system state according to the definition of venality. Consistently, if there is no venality,

we should observe P2′Ln
= P2′0−

= 1 and P2′Rn
= P2′0+

= 0.

Furthermore, we have P2′0−,3
M
+

as the joint probability of system in the condition of 2′0− and 3M+ , where the

system is predicted to stay in − state at t′2 without performing a measurement and shown to be in + state

at t3 by a VNM. The other joint probabilities can be read in similar way. However, because the system of −

state could be invasive by R measurement, we use double primes on joint probabilities ( P ′′
2′0−,3

M
+

and P ′′
2′0−,3

M
−

)

to indicate the perturbed behavior of the system after the measurement at t′2. Similarly, we use P ′
2′0+ ,3

M
+

and

P ′
2′0+ ,3

M
−

to indicate the invasive behavior of system after the L measurement. Next, to evaluate the joint

probabilities between Q2 and Q3 , we put all above arguments together to give the following equations:

L−measurement :P2′Ln
= (1− ζ)P2′0−

⇒


P

2′Ln ,3
M
+

= (1− ζ)P2′0−,3
M
+

+ ζP ′
2′0+ ,3

M
+
,

P
2′Ln ,3

M
−

= (1− ζ)P2′0−,3
M
−

+ ζP ′
2′0+ ,3

M
−
.

R−measureemnt :P2′nR
= ζP2′0−

⇒


P

2′Rn ,3M+
= (1− ζ)P2′0+ ,3

M
+

+ ζP ′′
2′0−,3

M
+
,

P
2′Rn ,3M−

= (1− ζ)P2′0+ ,3
M
−

+ ζP ′′
2′0−,3

M
−
,

(3.16)

Once we have set up above joint probabilities (for ζ 6= 0) between the measurements, we can use them

to evaluate the possible range of type II invasivity of the ancillary test in the following analysis so that we

can estimate the lower bound of TBI. Please note that if we want to consider the invasivity even at zero

venality, we should be aware of the terms proportional to (1− η) in Eq.(3.16) and then expect there will be

an additional term directly related to the invasity in Eq.(3.19). Based on the above analysis, we can have

the two-time correlator between measurements at t1 and t3 with the INR measurement Q2 at t′2 under Q2−

condition:

K (t1, t3 |Q2−, A2 ) = P2′Ln ,3
M
+

+ P2′Rn ,3M+
− P2′Ln ,3

M
−
− P2′Rn ,3M−

(3.17)

= (1− ζ)K (t1, t3 |Q2−, B2 ) + ζ
(
P ′′2′0−,3M+

− P ′′2′0−,3M−
)
.

Here we have assumed P ′
2′0+ ,3

M
+

= P ′
2′0+ ,3

M
−

= 0 because of Q2− condition. At same time, the corresponding
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two-time correlator between measurements at t1 and t3 without the presence of the INR measurement Q2 is

K (t1, t3 |Q2−, B2 ) = P2′0−,3
M
+
− P2′0−,3

M
−

(3.18)

, where we have P10
+

= P2′0−
= P10

+,2
′0
−

= 1.

Finally, the difference between above two equations gives

∆K (t1, t3 |Q1+, Q2− )

= K (t1, t3 |Q2−, A2 )−K (t1, t3 |Q2−, B2 )

= ζ
{(
P ′′2′0−,3M+

− P ′′2′0−,3M−
)
−K (t1, t3 |Q2−, B2 )

}
≤ 3

2
ζ

(3.19)

, where we used the fact that
∣∣∣P ′′2′0−,3M+ − P ′′2′0−,3M− ∣∣∣ ≤ 1 (for P ′′

2′0−,3
M
+

+P ′′
2′0−,3

M
−

= 1) and K (t1, t3 |Q2−, B2 ) = − 1
2

(for the parameter setting in the TBI main experiment). The result shows us that the estimated bound of the

type II invasivity ∆K (t1, t3 |Q1+, Q2− ) in our simplified venality model should be limited by 3
2ζ. Similarly,

we can show ∆K (t1, t3 |Q1+, Q2+ ) and ∆K (t1, t3 |Q1−, Q2± ) are also smaller than 3
2ζ. By applying this

results to the right sides of Eq.(3.14) and Eq.(3.15), we can get the estimated lower bound of TBIs.

L (t1, t2, t3) ≥ −3

2
ζ (3.20)

So far, we just use the simplified venality model (of the assumption that the measurement invasiveness only

comes from the interaction with positive state) to estimate the possible value of type II invasity in the

ancillary test, and then plug it into our new TBI formula and give Eq.(3.20). Next, we are going to estimate

the three two time correlators in TBI experiment from the quantum point of view. Because the venality

of our INR measurement can make a wrong indication of the system state, it will give rise to a chance of

sign change of the two-time correlator. Similar to the analysis in Knee’s paper [4], quantum theory would

predict that each two-time correlator (K1,2 or K2,3) with INR measurement Q2 in it will be replaced by

(1− ζ)Ki,j − ζKi,j due to the the presence of venality ζ, which finally gives the quantum prediction of

Leggett-Garg function (for cos θij = 1
2 )

LQ = (1− 2ζ) (cos θ12 + cos θ23) + cos θ13 + 1

≥ −0.5 + 2ζ (3.21)
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By comparing the lower bound of LQ with the estimated TBI in Eq.(3.20), if we want to see the TBI violation

in our experiment, we need to have the venality ζ satisfying ζ < 1
7 . This gives us the maximum tolerated

measurement error for satisfying the minimum requirement for testing TBI, in which we don’t consider the

general invasivity.

3.7 The possible sources of venality in our INR measurement

with qubit-SQUID coupled system

Basically, the structure of our INR measurement is similar to what is in Knee’s experiment by its system-

ancilla composition, where the ground state and first excited state of dcSQUID together work as an electron

spin(ancilla) and the purpose of the ancilla is to indicate the state of system. Since in last section we already

generalized definition of venality to be the fraction of the ensemble of which the ancilla can not correctly

indicate the system state, the inaccurate preparation of the dcSQUID state(ancilla) is not the only physical

mechanism inducing the venality. Therefore, to figure out all the other possible mechanism that causes the

venality in our experiment is the main topic of this section.

1. The inaccurate preparation of the dcSQUID state (ancilla) due to thermal fluctuation:

In most of experiments like NTT’s and Delft’s [12],[17],[18],[24],[25],[36],[22], for given the temperature of dc-

SQUID ( about 25mK), and the energy difference between ground state and excited state for SQUID potential

(ω0h̄ ≈ 75mK), the population ratio between two SQUID states is 1 : α with α = exp (−ω0h̄/kbT ) = 0.055,

where ω0 is the plasma frequency at the minimum of the SQUID potential. The corresponding venality

contribution ζ = α
1+α is about 5%, and we denote this kind of venality as ζ0 .

2. Non-efficient pumping between two states of dcSQUID: Due to the relaxation and escape

process, the pumping mechanics from ground state to excited state should be modified [47]. By solving the

Liouville equation in the limit of Γ1 > γ10 > γϕ > Γ0 [49], we can estimate the probability of dcSQUID

staying in excited state |1〉 by the formula ρ11 (t) = e−Γt Ω2
0

|Ω|2
∣∣sin (Ωt

2

)∣∣2 [47]. Here Γ0 and Γ1 are the escape

rates of ground and excited states of dcSQUID, and γϕ and γ10 are dephasing(not decoherence) and relaxation

rates between ground state and excited state. Besides, Ω ≡
√

Ω2
0 −

(
Γ− i∆

)2
, Ω0 is the on resonance Rabi

frequency; Γ ≡ 1
2 (Γ1 + Γ0 + γ10)+γϕ, and ∆ = (E1 − E0) /h̄−ω is the detuning. Considering the maximum

pumping at which ρ11 (t) reaches its maximum, we have

ρ11 = 1− πΓ

2Ω0
= 1− ζ0
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with ζ0 ≡ πΓ
2Ω0

(see Appendix J) in which we have required Ω0 � Γ such that ζ0 � 1. Because Γ1 corresponds

to the dcSQUID escaping to the voltage mode and gives positive outcome of measurement, we ignore Γ1 in

the formula of Γ directly and only keep γϕ and γ10 such that ζ0 ≈ π(γ10+2γϕ)
4Ω0

.

3. Non-perfect escape process due to the relaxation of dcSQUID from excited state to

ground state [48]: Once the qubit is not in negative state the dcSQUID will be pumped to excited

state and immediately escapes to voltage mode to give positive outcome due to large Γ1. However, it is still

possible for dcSQUID to stay in superconducting mode if the dcSQUID is released to its ground state before

escape process. Basically, in this case, we can use probability of dcSQUID relaxing to its ground state as

the evaluation of our new venality.

Given ρ11 = 1− ζ0 right after pumping stage of previous discussion, in the limit of Γ1 � γ10 � Γ0 , the

probability of the SQUID remaining in zero voltage state is [48]

P (t) = (1− γ) e−Γ0t + γe−Γ′t

≈ (ζ0 + ζ1) e−Γ0t + (1− ζ0 − ζ1) e−Γ1t (3.22)

Here Γ′ = Γ1 + γ10, ζ1 ≡ γ10/Γ1 , and we have defined

γ ≡ ρ11 (0) [1− γ10/(Γ′ − Γ0)] ≈ (1− ζ0) [1− γ10/Γ1]

≈ (1− ζ0 − ζ1) (3.23)

with ρ11 (0) ≈ (1− ζ0) being the population of excited state right after microwave resonance pumping.

Roughly speaking, the e−Γ1t term will vanish after certain time and only the term of e−Γ0t (≈ 1 for

Γ1 � γ10 � Γ0) is left in P (t) Finally, we can have P (t) ≈ (ζ0 + ζ1), where ζ1 is our new venality due to

the non-perfect escape of SQUID excited state.

4. The off-resonance pumping of dcSQUID for the qubit in the negative state [47] Even

if the qubit is in the negative state during the INR measurement, its ancilla (i.e. the dcSQUID) still has a

chance to be excited by off-resonance pumping.

Again, let’s consider the formula ρ11 (t) = e−Γt Ω2
0

|Ω|2
∣∣sin (Ωt

2

)∣∣2 in the limit of large detuning ∆
2 �

Ω2
0 � Γ2, then we will evaluate the incorrect pumping of dcSQUID for the qubit being in negative state:

ρ11 (tmax) ≈ Ω2
0

∆
2 ≡ ζ2 (see Appendix K).

Based on the dynamical analysis of qubit-dcSQUID coupled system, the escape rates for first excited
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state of dcSQUID would depend on qubit state. Therefore, if we can distinguish or enlarge such first-

excited-state escape rate difference between two qubit states it is still possible to elimate the venality of

unwanted off-resonance pumping.

Actually, ζ0 and ζ1 correspond to the venalities of mistaking the positive state as the negative state,

and ζ2 corresponds to the venality of mistaking the negative state as the positive state. Therefore, only the

venality ζ0 almost contributes equally to both positive and negative states, and the others behave differently

in R and L measurements.

3.8 The parameter analysis:

Basically, if we want our estimated venality to be small enough, that is

ζ0 =
π (γ10 + 2γϕ)

4Ω0
� 1 (3.24)

ζ1 = γ10/Γ1 � 1 (3.25)

ζ2 =
Ω2

0

∆
2 � 1 (3.26)

, the parameter constraints Ω0 � γ10 and γϕ, ∆
2 � Ω2

0, and Γ1 � γ10 are required. Please note that

∆ = (E1 − E0) /h̄− ω is the detuning.

We can estimate the off resonance detuning by the difference between two SQUID excited energies

corresponding to two qubit states :

∆= MW1−MW2 =δω ' 2Mω = 0.1 to 1GHz (3.27)

Here MW1 and MW2 are the resonance frequencies of dcSQUID corresponding to two qubit states, and

ω0 is the harmonic frequency at minimum of the potential of dcSQUID. Typically, we estimate ω0 ∼ 100GHz

and the coupling strength between qubit and dcSQUID M ≡ Φqubit
πΦ0

∼ 0.01 to 0.001. Here 2Φqubit is the flux

difference on dcSQUID induced by two qubit states and Φ0 is the flux quantum.

According to the relation ∆
2 � Ω2

0 , we estimate that Ω0

∆
∼ 0.3 and then the corresponding on resonance

Rabi frequency

Ω0 = (0.3GHz) ∼ (30MHz) (3.28)

Similarly, based on the relation Ω0 � γ10 , we require γ10

Ω0
∼ 0.1 and γ10 can be (30MHz) ∼ (3MHz).

Finally, they totally give ∆
γ10
∼ 30.
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Next, based on the relation Ω0 � Γ1 we require

Γ1 = (30MHz) ∼ (3MHz) (3.29)

(possible? Γ1 ∼ 0.4MHz in ref. [47]). Because we require Γ1 � γ10, we also have

γ10 = (3MHz) ∼ (0.3MHz) . (3.30)

The corresponding relaxation time τd = 1/γ10 = 300ns ∼ 3000ns. Based on current technology, τd = 300ns

may be possible but the corresponding coupling M is larger than the standard ones; that implies we need

to reach a balance between τd and M based on technical consideration such that we can minimize the

measurement venalities.

Using the formula γ10(= Γd) ≈ 2πω
RQ
R [48] with RQ = h/4e2 being the resistance quantum and R being

the resistance of RCJ model of junction in dcSQUID, basically, we can have the following relation

∆̄ ' 2Mω � γ10 ≈ 2π
RQ
R
ω (3.31)

, and estimate the minimum required ratio between the parameters based on the above analysis:

∆̄
/
γ10 =

MR

πRQ
> 30 (3.32)

According to this inequality, our experimental setup needs to increase the coupling strength M and

junction resistance R in dcSQUID. If the current achievable parameter values cannot give such a large

ratio, then we can’t guarantee a low enough venality for the TBI experiment to refute MR even if the

measurements are NIM. Therefore, how to increase this ratio is a really important technical problem in the

future development of TBI experiment.

3.9 Conclusion

In sum, we give a complete protocol for the ancillary test, which makes a consistent cooperation between

invasivity test and TBI experiment to give a more rigorous bound for TBI; our new arrangement of TBI

experiment successfully improves the Knee’s experiment to narrow its possible loophole for arguing the failure

of MR postulate. In addition, our classification of measurement invasivity is convenient for identifying the

properties of measurement invasiveness. Especially, under appropriate initial condition we can claim that

80



only the difference between the type II invasivity and 〈Q1Q3〉1,2,3−〈Q1Q3〉1,3 contributes to TBI violation.
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Chapter 4

Summary

In Chapter 2, for the escape dynamics of qubit-SQUID composite system, we generalize the idea of ”two-

channel” escape to all of the parameter regime of the qubit-SQUID system and conclude that our coupled

system tends to behave as an energy-basis measurement in the small escape rate limit but as a flux-basis

measurement in the large escape rate limit. Furthermore, we used these results to analyze the qubit density

matrix evolution before the current switching happens, the entanglement of the qubit-SQUID system, and

the weak measurement behavior of our experiment. To extend the application to NIM measurement in TBI

experiment, we also discussed a possible parameter setup to realize the flux-basis projective measurements

with our qubit-SQUID system.

In Chapter 3, we use a practical way to quantify the measurement invasisveness to improve the ancillary

test. Furthermore, we set up the best arrangement of TBI main experiment consistent with the ancillary

test and give the modified lower bound of TBI. On the other hand, we give a elegant protocol of how to

implement the INR measurement with qubit-SQUID composite system so that we can really test MR by

performing a TBI experiment on ”macroscopic” system. In the end, we roughly estimated the feasibility

of the proposed experiment based on the design of our INR measurement; the estimation gives the most

tolerable measurement error (venality) for making TBI experiment meaningful.

Recently, working with G.Knee and the NTT group, we applied the idea of the ancillary test to the TBI

experiment on flux qubit-SQUID composite system[50]. We believe that this is the first fully satisfactory

test of realism versus QM at the ’macroscopic’ level[52]. In our new paper[50], we try to test a new type of

TBI which is different from conventional one. The new TBI only needs to measure the time behavior of the

third measurement Q3, which is going to see the violation of the non-disturbance condition NDC:

〈Q3〉G − 〈Q3〉2̄ = 0. (4.1)

Here ’G’ means the ensemble in which all three measurements Q1, Q2, Q3 are operated, and ’2̄’ means

that only Q2 is not performed in the ensemble. There is a detailed discussion of the relation between the
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conventional TBI and NDC in the supplementary material of that paper[50]; according to the invasivity

analysis for conventional TBI, we do ancillary test for type II invasivity to narrow the loophole in the test

of NDC; please note that NIM measurement is not used in this new TBI test.
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Appendix A

The perturbation correction to our
Harmonic approximation

To deal with the Hamiltonian given in Eq.(2.20), in whichHH = HH
d +V H and V H = −

(
εH (R) sinχ+ ∆ cosχ

)
τx,

we can treat the last term, that is V H , perturbatively. Here we have εH (R) = ε+πg tan [πfSQ]
(
k − 3 k

Rc
R− k

2R
2
)

,

see Eq. (2.17). As we know that the lowest two eigenstates of HH
d are denoted as

∣∣0′+〉 and
∣∣0′−〉, the corre-

sponding eigenenergies in HH
d are E+ and E−. Following the steps of perturbation theory, we can calculate

correction to the eigenenergy E+, namely

∆E+ =

∣∣〈0′+∣∣V H ∣∣0′−〉∣∣
E+ − E−

2

. (A.1)

Because the first order term
〈
0′+
∣∣V H ∣∣0′+〉is zero automatically, we keep the second order term here. Besides,

according to Eq.(18) and (20) we have

E+ − E− ≈ δωh̄ = 2gωh̄ cosχ tan [πfSQ]

(
1 +

(
3

Rc

)2
)

On the other hand, we can evaluate
〈
0′+
∣∣V H ∣∣0′−〉 in the harmonic approximation:〈

0′+
∣∣V H ∣∣0′−〉

= −
[〈
ψ0+

∣∣∣ εH (R)
∣∣∣ψ0−

〉
sinχ+

〈
ψ0+

∣∣∣ ψ0−

〉
∆ cosχ

]
=

∆
〈
ψ0+

∣∣∣ ψ0−

〉
√
εH2

00 + ∆2


〈
ψ0+

∣∣∣ εH (R)
∣∣∣ψ0−

〉
〈
ψ0+

∣∣∣ ψ0−

〉 − εH00


=

∆
〈
ψ0+

∣∣∣ ψ0−

〉
√
εH2

00 + ∆2

gk

2

h̄

m
tan [πfSQ]

((
1

ω+ + ω−

)
− 1

2ω

)

=
g3

16
ωh̄ tan3 [πfSQ]

〈
ψ0+

∣∣∣ ψ0−

〉
sinχ

(
cosχ

(
1 +

(
3

Rc

)2
))2

(Here we have given only the critical steps).
∣∣∣ψ0+

〉
and

∣∣∣ψ0−

〉
are the corresponding SQUID harmonic
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(ground state) wavefunctions of
∣∣0′+〉 and

∣∣0′−〉. Then ω+ and ω− are the corresponding harmonic frequencies.

Plugging all the above formulae into Eq.(A.1), we get

∆E+ ≈
∣∣〈0′+∣∣V H ∣∣0′−〉∣∣2

[2δωh̄]

≈ (ωh̄)
g5

1024
tan5 [πfSQ] cosχ sin2 2χ ∼ 10−34J
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Appendix B

More general perturbation analysis of
qubit-SQUID composite system

B.1 The energy levels of qubit-SQUID composite system

In this appendix we give a more detailed study of the splitting of the lowest two energy levels of the qubit-

dcSQUID system, including the effects of the deviation of the SQUID wave functions from the pure harmonic

form. While this more detailed analysis does not by itself allow us to improve the formulae for the escape

rates Γ+ and Γ− calculated in the main text, it is useful in a slightly different context, namely the practical

implementation of a test of the temporal Bell inequalities[1] at the macroscopic level[34]. Our calculation is

based on a perturbative treatment of the complete Hamiltonian in Eq.(2.6), and its output will be a more

accurate value χ00 of the “spin rotation angle” χ introduced in Eq.(2.19) of the main text.

Please note that, for simplicity, from now on we use |n〉 to represent the eigenstate of HSQ instead of

simple harmonic wave function, i.e. HSQ |n〉 = En |n〉. Thus, if we approximate the SQUID potential

by Eq.(2.10), then the cubic correction to the simple harmonic wave function already contribute to the

eigenstate here (except that we ignore the small escape energy to simplify the analysis). We will also require

En � εmn, ∆, where εmn is defined in Eq.(B.3); this condition is satisfied for most experimental set-ups.

We can rewrite our total Hamiltonian in the spin representation:

H =

 HSQ (x) + ε+ εint (x) ∆

∆ HSQ (x)− ε− εint (x)

 . (B.1)

Here HSQ (x) and εint (x) are defined in Eq.(3.2)and Eq.(2.5). The basis for this representation is |x, σ〉 ,

where |x〉 and |σ〉 (σ ∈ {R,L}) represent the SQUID phase state and qubit flux state respectively. Further-

more, in terms of the energy representation with |n, σ〉 as basis , we can alternatively represent the total
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Hamiltonian by

H =



h00 h01 h02 .

h10 h11 h12 .

h20 h21 h22 .

. . . .


(B.2)

where hnn =

 En + εnn ∆

∆ En − εnn

 and hmn
(m 6=n)

=

 εmn 0

0 −εmn

 , where

εmn ≡ 〈m| ε+ εint |n〉 . (B.3)

Each element of the diagonal part of Eq.(B.2) can be rearranged into the form

hnn = En +
√
ε2
nn + ∆2 ·

 cosχnn sinχnn

sinχnn − cosχnn

 (B.4)

with

cosχnn ≡
εnn√

ε2
nn + ∆2

, sinχnn ≡
−∆√

ε2
nn + ∆2

. (B.5)

Next, we can divide the total Hamiltonian into a diagonal part (HD ) and an off-diagonal part (H−HD)

H =



h00 0 0 .

0 h11 0 .

0 0 h22 .

. . . .


+



0 h01 h02 .

h10 0 h12 .

h20 h21 0 .

. . . .


= HD + (H −HD) (B.6)

In the diagonal part HD, each element hnn(, which is the 2 × 2 diagonal block in H,) can be further

diagonalized into
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h′nn =

 En +
√
ε2
nn + ∆2 0

0 En −
√
ε2
nn + ∆2


=

 En+ 0

0 En−

 (B.7)

with an appropriate new spin basis |n, σ′〉 (σ′ ∈ {+,−}) , where

 |n,+〉 = cos χnn2 |n,R〉+ sin χnn
2 |n,L〉

|n,−〉 = − sin χnn
2 |n,R〉+ cos χnn2 |n,L〉

.

In other words, the Hamiltonian HD can be exactly diagonalized by |n, σ′〉 ; HD |n, σ′〉 = En,σ′ |n, σ′〉. Also,

the elements in (H −HD) can be rewritten as

h′mn = εmn

 cos χmm+χnn
2 − sin χmm+χnn

2

− sin χmm+χnn
2 − cos χmm+χnn

2

 (B.8)

in this new basis |n, σ′〉. Hereafter, instead of using |σ′〉, we denote |σ〉 (σ ∈ {+,−}) as our new spin basis

for convenience.

In the following, we will consider the off diagonal part (H −HD) as a perturbation, and argue that

the correction to the energy due to it is much smaller than any difference between eigenenergies of HD.

Therefore, we can neglect its effect on eigenenergies and effectively evaluate the energy spectrum of the

coupled system.

Let’s consider the perturbation correction for the energy levels of HD up to second order.

Enew
nσ = Enσ + 〈nσ| (H −HD) |nσ〉

+
∑

kσ′ 6=nσ

|〈kσ′| (H −HD) |nσ〉|2

Enσ − Ekσ′
+O

(
g3
)

(B.9)

Here σ′ and σ all stand for the new spin basis of HD, where σ, σ′ ∈ {+,−}. Because of the off-diagonal

property of (H −HD) , the first order term is exactly zero, 〈nσ| (H −HD) |nσ〉 = 0, and the second order

term with the summation k = n , which implies σ′ 6= σ , also vanishes, 〈nσ′| (H −HD) |nσ〉 = 0. Then we

can further simplify the equation to
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Enew
nσ = Enσ +

∑
k 6=n,σ′

|〈kσ′| (H −HD) |nσ〉|2

Enσ − Ekσ′
+O

(
M3
)

(B.10)

Also, the approximation
∑

k 6=n,σ′

|〈kσ′|(H−HD)|nσ〉|2
Enσ−Ekσ′

≈
∑
k 6=n

|εkn|2
En−Ek

is correct to the second order in M .

Finally, we obtain the new eigenenergies:

Enew
n± = En± +

∑
k 6=n

|εnk|2
En−Ek

+O
(
M3
)

(B.11)

According to Eq.(B.11), the excitation energies (from n = 0 to n = 1) for σ = + and σ = − channels

can be derived.

∆E+ = (E1 − E0) +

(∑
k 6=1

|ε1k|2
E1−Ek

−
∑
k 6=0

|ε0k|2
E0−Ek

)
+
(√

ε2
11 + ∆2 −

√
ε2

00 + ∆2
)

+ O
(
M3
)

∆E− = (E1 − E0) +

(∑
k 6=1

|ε1k|2
E1−Ek

−
∑
k6=0

|ε0k|2
E0−Ek

)
−
(√

ε2
11 + ∆2 −

√
ε2

00 + ∆2
)

+ O
(
M3
) (B.12)

It’s easy to see that the first two terms of ∆E+ are the same as the corresponding terms of ∆E−, and

the third terms of ∆E+ and ∆E− are just different by a sign. This is consistent with the property that

the states |0,±〉 have the same energy correction
∑
k 6=0

|ε0k|2
E0−Ek

, and the states |1,±〉 have the same energy

correction
∑
k 6=1

|ε1k|2
E1−Ek

, which are always true for states on the same energy level n. Based on this property,

we can easily derive the difference of excited energy between spin + and spin − channels.

∆E+ −∆E− = (E1+ − E0+)− (E1− − E0−)

= (E0+ − E0−)− (E1+ − E1−)

= 2
√
ε2

00 + ∆2 − 2
√
ε2

11 + ∆2
(B.13)

In general, Eq.(B.13) is a very good estimation for the difference of resonance frequencies between two

spin channels because we can eliminate the perturbation correction from (H −HD) and only need to consider

the energy spectrum of HD.
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If we want to get rid of the second term on right side of Eq.(B.12), which is
∑
k 6=1

|ε1k|2
E1−Ek

−
∑
k 6=0

|ε0k|2
E0−Ek

, we

have to require it to be much smaller than the last term of the formula,
(√

ε2
11 + ∆2 −

√
ε2

00 + ∆2
)

. Then

it gives

∣∣∣∣∣∑k 6=1

|ε1k|2
E1−Ek

−
∑
k 6=0

|ε0k|2
E0−Ek

∣∣∣∣∣∣∣∣√ε2
11 + ∆2 −

√
ε2

00 + ∆2
∣∣∣ � 1 (B.14)

Typically, we expect (En − Em) ∼ En � εmn ∼ εnn, and we can estimate that |εkn|2
En−Ek

∼ |εkn|2
En

∼
|εnn|2
En

� |εnn|. Therefore, with appropriate dcSQUID bias current Ib and qubit’s bias energy ε, Eq.(B.14)

usually can be satisfied such that we can have the simpler formulae,

∆E+ = (E1 − E0) +
(√

ε2
11 + ∆2 −

√
ε2

00 + ∆2
)

∆E− = (E1 − E0)−
(√

ε2
11 + ∆2 −

√
ε2

00 + ∆2
)
.

(B.15)

Here
(√

ε2
11 + ∆2 −

√
ε2

00 + ∆2
)

can be further simplified by [35]

√
ε2

11 + ∆2 −
√
ε2

00 + ∆2 ' ε00(ε11−ε00)√
ε200+∆2

= cosχ00 (ε11 − ε00) (B.16)

Next, to evaluate ε11 and ε00 by Eq.(B.3), we can use the approximate formula in Eq.(2.13) to replace εint,

and use the approximate potential in Eq.(2.10) to find the energy levels |n〉. After some calculations with

the above elements, we finally get the result in Eq.(B.17). Actually, the first term in Eq.(B.17) is contributed

by the square and cubic terms in Eq.(2.13) and can be equivalently derived from the change of energy levels

of potential in Eq.(2.10) due to the small variation in parameter k by δk = Mπ cosχ00 tan [πfSQ] k , and

the second term in Eq.(B.17) can be understood from the non-vanishing ground state expectation value of

linear term in Eq.(2.13) due to the an-harmonic behaviour of SQUID ground state |0〉 (see Appendix B.2).

√
ε2

11 + ∆2 −
√
ε2

00 + ∆2

= π
2Mωh̄ tan [πfSQ] cosχ00

(
1 +

(
3
Rc

)2
) (B.17)
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To justify our harmonic-approximation analysis in the section 3, we need to compare the frequencies

in Eq.(2.25) and (2.23) with those in Eq.(B.15) and (B.17) respectively and the result shows that they

are indeed consistent except for a replacement of χ by χ00, where χ00 is evaluated by using the dcSQUID

ground state wave function instead of the simple harmonic ground state for χ. This slight difference could

be more significant when the bias current is approaching its critical value where the anharmonic effect from

the cubic term of dcSQUID potential becomes more important. Therefore, if we want to ignore the effect of

escape and efficiently diagonalize the whole wave function within the well, instead of a pure harmonic wave

function, the SQUID wave function |n〉 is a more appropriate basis to start with, and the spin angle χnn

defined in Eq.(B.5) seems better than χ in Eq.(2.19). Finally, we can improve and simplify our harmonic

approximation by replacing it by rewriting the coupled Hamiltonian of Eq.(2.14) in terms of the new spin

basis defined by χ00 and then keeping the diagonal part only. Then it gives an equation corresponding to

Eq.(2.21), namely

Hd =
−h̄2

2m
∂2
R + v (R) + (ε (R) cosχ00 −∆ sinχ00)σ00

z . (B.18)

Here we have defined σ00
z = cosχ00σ

00
z − sinχ00σ

00
x . The new parameters corresponding to Eq.(2.22) are

k± = k

(
1± πM cosχ00 tan [πfSQ]

(
1 +

(
3
Rc

)2
))

Rc± = Rc

(
1±

(
3
Rc

)2

πM cosχ00 tan [πfSQ]

)
k±0 = ∓

(√
ε2

00 + ∆2 + πM
4 ωh̄ cosχ00 tan [πfSQ]

×
(

1 +
(

3
Rc

)2
))

.

(B.19)

Comparing the Eq.(B.19) with Eq.(2.22), the only changes are the replacement of χ by χ00 and the small

correction to k±0 . Finally, we have the same decay rate formula as in Eq.(2.26) except that each parameter

is modified by the replacement of χ by χ00.

In brief, according our spectrum analysis in this section, once we find the “new spin basis” to diagonalize

the Hnn in Eq.(B.7)(we called it the “first step” here) we can treat the “new off-diagonal part”(H −HD)

perturbatively as shown in Eq.(B.10) and Eq.(B.11)( the “second step”). Therefore the only condition

required is that ωh̄ � εH00 (or εmn) if we want the perturbation formula Eq.(B.11) to be accurate to the

second order; the assumption of ωh̄ � ∆ seems not necessary. Basically, it may be difficult to diagonalize

the terms ∂2
R, ε (R)σz, and ∆σx simultaneously, but we can instead deal with the terms ∂2

R, ε (R)σz(that is

called the “diagonal terms” in the flux-state representation) first and then treat ∆σx( the “off-diagonal term”)

perturbatively, which only requires the smallness of the “off-diagonal term” to guarantee the correctness of
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perturbation method. To generalize this (perturbation) method, we can also deal with our total Hamiltonian

H in similar way but within “new spin representation” where the purpose of choosing the “new spin basis”

is to appropriately divide the whole Hamiltonian H into the “diagonal part” and “off-diagonal part” such

that we can minimize the “off-diagonal part” in the “new basis” [41], that is exactly what we do in the “first

step”. Although the way to determine the “new spin basis” here is a little bit different from that used in

the harmonic approximation in the section 3, their principal ideas are the same.

B.2 The calculation of the SQUID’s lowest two energy levels

To analyze the energy levels of the dcSQUID, we start with the approximate Hamiltonian

H =
P 2

2m
+
k

2
R2 − βR3 (B.20)

with β ≡ k
2Rc

and α ≡
√

h̄
2mω , and treat the cubic term −βR3 perturbatively. Besides, we use |n〉 for

representing energy state of Hamiltonian in Eq.(B.20) and |n′〉 for corresponding simple harmonic state.

Then the dcSQUID’s ground state wave function |0〉 can be constructed from the simple harmonic wave

function |n′〉 by perturbation analysis,

|0〉 = |0′〉 − β 〈1
′|R3 |0′〉

E0′ − E1′
|1′〉 − β 〈3

′|R3 |0′〉
E0′ − E3′

|3′〉

= |0′〉+
3α3β

ωh̄
|1′〉 −

√
6α3β

3ωh̄
|3′〉 .

Similarly, we also have the first excited state

|1〉 = |1′〉 − 3α3β

ωh̄
|0′〉+

√
72α3β

ωh̄
|2′〉+

√
24α3β

3ωh̄
|4′〉 ,

and the second excited state

|2〉 = |2′〉 −
√

72α3β

ωh̄
|1′〉+

√
243α3β

ωh̄
|3′〉+

√
60α3β

3ωh̄
|5′〉 .
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The expectation value of R in these energy levels is

〈0|R |0〉 =
3α3β

ωh̄
(〈1′|R |0′〉+ 〈0′|R |1′〉) =

6α4β

ωh̄
,

〈1|R |1〉 =
−3α3β

ωh̄
(〈1′|R |0′〉+ 〈0′|R |1′〉)

+

√
72α3β

ωh̄
(〈2′|R |1′〉+ 〈1′|R |2′〉) =

18α4β

ωh̄
,

〈2|R |2〉 =
−
√

72α3β

ωh̄
(〈2′|R |1′〉+ 〈1′|R |2′〉)

+

√
243α3β

ωh̄
(〈3′|R |2′〉+ 〈2′|R |3′〉) =

30α4β

ωh̄
.

Therefore, the difference between the two expectation values of the linear term in Eq.(2.13) is

πM tan [πfSQ]
(

3k
Rc
〈1|R |1〉 − 3k

Rc
〈0|R |0〉

)
= πM tan [πfSQ] 3k

Rc

12α4β
ωh̄ = πM

2 ωh̄ tan [πfSQ]
(

3
Rc

)2

.

According to the definition of εmn in Eq.(B.3), we can insert this result into Eq.(B.16), and give the second

term in Eq.(B.17). On other hand, we can also calculate all the other terms in ε00 and ε11 by Eq.(B.3), and

as a result we have

ε00 = πM
2 ωh̄ tan [πfSQ]

(
1
2 + 1

2

(
3
Rc

)2
)

+ ε− πMk tan [πfSQ]

ε11 = πM
2 ωh̄ tan [πfSQ]

(
3
2 + 3

2

(
3
Rc

)2
)

+ ε− πMk tan [πfSQ]
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Appendix C

The behavior of maximum switching
point with the current ramping rate

Here we are going to analyze how does the maximum switching probability point change and how does its

corresponding escape rate behave with the change of the current ramping rate. Roughly, the escape rate at

maximum switching probability is increased with current ramping rate, but its detailed behaviour still need

to be investigated.

Let’s consider the formula of current switching probability, namely

P (y) =
Γ (y)

dy/dt
exp

[
− 1

dy/dt

∫ y

0

Γ (y′) dy′
]

(C.1)

If we take the y derivative of Eq. (C.1) and set it equal to zero then we get an equation for the value ymax

of y corresponding to the maximum switching probability:

Γ−2 dΓ

dy
=

1
dy
dt

(C.2)

It can be rewritten as

Γ (y) =
d ln Γ

dy

dy

dt
. (C.3)

In principle, we need to find the solution y = ymax for the equation, and insert it in the formula for Γ to give

the escape rate Γmax at the maximum switching point. But if d ln Γ(y)
dy does not change a lot within a small

range of y we may consider it as a constant( it’s about 200 for 0.9 < y < 0.92 for 103Hz < dy
dt < 104Hz (for

static experiment) and all other parameters being the same as in the NTT experiments, see Fig.C.1 ) and

we will approximately see that the escape rate at maximum switching probability increases with the current

ramping rate, e.g., Γ (ymax) ≈ 200dydt for ymax satisfying Eq.(C.3) under the condition 103Hz < dy
dt < 104Hz.

If this approximation is not accurate enough, we need to attack the problem in another way. Before that,

we need to review how Γ depends on y. In general, we have the escape formula as

Γ (y) = ω601/2

(
B

2πh̄

)1/2

exp−[(B/h̄)

(
1 +

0.87

Q

)
]. (C.4)
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Figure C.1: The diagram shows the behavior of d ln Γ(y)
dy over the range 0.9 < y < 1. Here the X-axis and

Y-axis correspond to the bias current parameter y and d ln Γ
dy respectively. Based on the NTT parameters for

the static experiments, we have ymax ≈ 0.9( according to Eq.(C.3) numerically) for the current ramping rate

of dydt = 103Hz, and the corresponding d ln Γ(y)
dy

∣∣∣
y=ymax

= 220. If we increase the ramping rate to dy
dt = 104Hz

we will have ymax ≈ 0.92(according to Eq.(C.3) numerically) and the corresponding d ln Γ(y)
dy

∣∣∣
y=ymax

= 200.

That means the change of d ln Γ(y)
dy

∣∣∣
y=ymax

is less than 10 % if we raise the ramping by a factor of 10 from

dy
dt = 103Hz. Therefore, if we can tolerate such small change of d ln Γ(y)

dy

∣∣∣
y=ymax

and consider it as a constant

then we approximately have Γ (ymax) ≈ 200dydt for 103Hz < dy
dt < 104Hz.

, where B = 8
15mωR

2
c is the decay bounce action and Q = ωRsC0 is the damping factor with net resistance

Rs [30]. We expect Γ depends on y because B, Q, and ω are y dependent, as follows:

Rc = 3

√
1− y2

y
(C.5)

ω = ω0

(
1− y2

) 1
4 (C.6)

B = B0

(
1− y2

) 5
4

y2
(C.7)

Q = Q0

(
1− y2

) 1
4 (C.8)

Then we have the following formula for Γ as a function of y:

Γ (y) = ω0601/2

(
B0

2πh̄

)1/2 (1− y2
) 7

8

y
× exp−[

B0

(
1− y2

)
h̄y2

((
1− y2

) 1
4 +

0.87

Q0

)
]. (C.9)

Here we have B0 = 36
5 mω0 and Q0 = ω0RsC0. Now, we can start our analysis based on Eq.(C.9). Eq.(C.2)

can be rewritten as

dΓ−1

dy
=
−1
dy
dt

(C.10)
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Let’s assume y is close to 1 and let z = 1− y, then

dΓ−1

dz
=

1

r
(C.11)

Here we have defined dy
dt = r. Then we can derive Γ (z) from Eq.(C.9), which now reads

Γ (z) ≈ ω0601/2

(
B0

2πh̄

)1/2

(z)
7
8 × exp−[

B0

h̄

(
z

5
4 +

0.87z

Q0

)
]. (C.12)

The result is

Figure C.2: The diagram shows the behavior of
(

5
4z

1
4 + 0.87

Q0

)
within the range 0.9 < y < 0.98. Here the

X-axis and Y-axis correspond to the bias current parameter y and
(

5
4z

1
4 + 0.87

Q0

)
respectively.

dΓ−1

dz
(z) ≈ ω−1

0 60−1/2

(
2πB0

h̄

)1/2

z
−7
8

(
5

4
z

1
4 +

0.87

Q0

)
× exp[

B0

h̄

(
z

5
4 +

0.87z

Q0

)
] (C.13)

≈ Γ−1 (z)
B0

h̄

(
5

4
z

1
4 +

0.87

Q0

)
=

1

r
. (C.14)

To simplify the analysis, lets assume there is a base point called z0 where the maximum switching

probability takes place at certain ramping rate, e.g. we may choose z0 = 0.9 in our case. Because the term(
5
4z

1
4 + 0.87

Q0

)
changes relatively little within the range around z0, we take it as a constant

(
5
4z

1
4
0 + 0.87

Q0

)
instead and preserve the z dependence of the other terms. Then formula (C.14) can be rewritten as

dΓ−1

dz
(z) ≈ Γ−1 (z)

B0

h̄

(
5

4
z

1
4
0 +

0.87

Q0

)
=

1

r
(C.15)
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That gives the simple form

Γmax ≡ Γ (zmax) ≈ r
B0

h̄

(
5

4
z

1
4
0 +

0.87

Q0

)
(C.16)

More accurately, it should be

Γ (zmax) ≈ r
B0

h̄

(
5

4
z

1
4
max +

0.87

Q0

)
(C.17)

Because the behaviour of the exp[B0

h̄ z
5
4 ] in Eq.(C.13) is most dramatic one by comparing to other z

dependent terms with z around z0, therefore we can solve zmax by taking others as constant with z = z0

and preserving the z dependence of the term exp[B0

h̄ z
5
4 ] in formula..

Hence, we have an approximated form of zmax

dΓ−1

dz
(z) ≈ ω−1

0 60−1/2

(
2πB0

h̄

)1/2
(

5

4
z
−5
8

0 +
0.87z

−7
8

0

Q0

)
exp[

B0

h̄

0.87z0

Q0
] exp[

B0

h̄
z

5
4 ] =

1

r
. (C.18)

or

Figure C.3: The diagram shows the behavior of exp[B0

h̄ z
5
4 ] within the range 0.9 < y < 0.98. Here the

X-axis and Y-axis correspond to the bias current parameter y and exp[B0

h̄ z
5
4 ] respectively.

zmax =

(
−0.87z0

Q0
− h̄

B0
ln

(
r

(
πB0

30ω2
0h̄

) 1
2

(
5

4
z
−5
8

0 +
0.87z

−7
8

0

Q0

))) 4
5

. (C.19)

Insertion of (C.19) into (C.17) gives
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Γmax ≈ r
B0

h̄

0.87

Q0
+

5

4

(
−0.87z0

Q0
− h̄

B0
ln

(
r

(
πB0

30ω2
0h̄

) 1
2

(
5

4
z
−5
8

0 +
0.87z

−7
8

0

Q0

))) 1
5

 (C.20)
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Appendix D

The matrix elements of time evolution
operator of qubit-SQUID system

Here we are going to derive the matrix elements of the evolution operator for the qubit-SQUID composite

system. For the Hmiltonian H = H0 −∆σx, the matrix elements of its time evolution operator e−iHT/h̄ are

given by

K ≡ 〈0σ′ , σ′| e−iHT/h̄ |0σ, σ〉 = 〈0σ′ , σ′| e−i(H0−∆σx)T/h̄ |0σ, σ〉

= 〈0σ′ , σ′| e−iH0T/h̄ |0σ, σ〉+ i∆
h̄

∫ T
0
〈0σ′ , σ′| e−iH0(T−T1)/h̄σxe

−iH0(T1)/h̄ |0σ, σ〉 dT1

+
(
i∆
h̄

)2 ∫ T
0

∫ T1

0
〈0σ′ , σ′| e−iH0(T−T1)/h̄σxe

−iH0(T1−T2)/h̄σxe
−iH0(T2)/h̄ |0σ, σ〉 dT1dT2 +O(∆3)

Here we have σ′, σ ∈ {R,L} and have expanded e−iHT/h̄ in a power series in ∆ around ∆ = 0. Next,

as we mentioned before, |0σ, σ〉 evolves mostly to itself under the time evolution operator e−iH0T1/h̄; the

〈0σ, σ| e−iH0T/h̄ |0σ, σ〉 is the main contributing element of e−iH0T/h̄ if we start with |0σ, σ〉. Thus

〈0σ′ , σ′| e−iHT/h̄ |0σ, σ〉

= 〈0σ′ , σ′| e−iH0T/h̄ |0σ, σ〉

+δσ′ 6=σ 〈0σ′ |0σ〉 i∆h̄
∫ T

0
〈0σ′ , σ′| e−iH0(T−T1)/h̄ |0σ′ , σ′〉 〈0σ, σ| e−iH0(T1)/h̄ |0σ, σ〉 dT1

+δσ′ 6=σ′′〈0σ′ |0σ′′〉δσ′′ 6=σ〈0σ′′ |0σ〉
(
i∆
h̄

)2 ∫ T
0

∫ T1

0
〈0σ′ , σ′| e−iH0(T−T1)/h̄ |0σ′ , σ′〉 〈0σ′′ , σ′′| e−iH0(T1−T2)/h̄ |0σ′′ , σ′′〉

× 〈0σ, σ| e−iH0(T2)/h̄ |0σ, σ〉 dT1dT2 +O(∆3)

Next, we replace H0 by its eigenenergy.

〈0σ′ , σ′| e−iHT/h̄ |0σ, σ〉

= δσ=σ′e
−iE0σT/h̄ + δσ 6=σ′ 〈0σ′ |0σ〉 i∆h̄

∫ T
0
e−iE0σ′ (T−T1)/h̄e−iE0σ(T1)/h̄dT1

+δσ=σ′ 6=σ′′
(
i∆
h̄

)2 |〈0σ |0σ′′〉|2 ∫ T0 ∫ T1

0
e−iE0σ(T−T1)/h̄e−iE0σ′′ (T1−T2)/h̄e−iE0σT2/h̄dT1dT2 +O(∆3)

(D.1)

99



Rearrange the integral formula.

K = δσ=σ′e
−iE0σT/h̄ + δσ 6=σ′e

−iE
0σ′T/h̄ 〈0σ′ |0σ〉 i∆h̄

∫ T
0
e−i(E0σ−E0σ′)T1/h̄dT1

+δσ=σ′ 6=σ′′e
−iE0σT/h̄ |〈0σ |0σ′′〉|2

(
i∆
h̄

)2 ∫ T
0

∫ T1

0
e−i(E0σ′′−E0σ)T1/h̄ei(E0σ′′−E0σ)T2/h̄dT1dT2 +O(∆3)

Integrate the first order and the second order terms.

= δσ=σ′e
−iE0σT/h̄ + δσ 6=σ′e

−iE
0σ′T/h̄ 〈0σ′ |0σ〉 ∆

(E0σ−E0σ′)

(
1− e−i(E0σ−E0σ′)T/h̄

)
+δσ=σ′ 6=σ′′e

−iE0σT/h̄ |〈0σ |0σ′′〉|2
(
i∆
h̄

)2 ∫ T
0
e−i(E0σ′′−E0σ)T1/h̄ h̄

i(E0σ′′−E0σ)

(
ei(E0σ′′−E0σ)T1/h̄ − 1

)
dT1

+O(∆3)

Rearrange the first order term and continue to integrate the second order term.

= δσ=σ′e
−iE0σT/h̄ + δσ 6=σ′e

−i(E0σ+E
0σ′)T/2h̄ ∆2i〈0σ′ |0σ〉

(E0σ−E0σ′)
sin ((E0σ − E0σ′)T/2h̄)

+δσ=σ′ 6=σ′′e
−iE0σT/h̄ |〈0σ |0σ′′〉|2

(
i∆
h̄

)2 ∫ T
0

h̄

i(E0σ′′−E0σ)

(
1− e−i(E0σ′′−E0σ)T1/h̄

)
dT1 +O(∆3) (D.2)

Finally we have

= δσ=σ′e
−iE0σT/h̄(1 +Dσ) + δσ 6=σ′e

−i(E0σ+E
0σ′)T/2h̄

(
∆2i 〈0σ′ |0σ〉
(E0σ − E0σ′)

sin ((E0σ − E0σ′)T/2h̄) +O(∆3)

)
(D.3)

=

 e−iE0LT/h̄(1 +DL) e−i
(E0L+E0R)T

2h̄
∆2i〈0L |0R〉
(E0R−E0L)

sin
(

(E0R−E0L)T
2h̄

)
e−i

(E0L+E0R)T
2h̄

∆2i〈0R |0L〉
(E0L−E0R)

sin
(

(E0L−E0R)T
2h̄

)
e−iE0RT/h̄(1 +DR)

+O
(
∆3
)

, where Dσ represents the higher order terms in an expansion in ∆ of the diagonal term (with σ′′ 6= σ ).

Dσ = δσ 6=σ′′ |〈0σ |0σ′′〉|2
(
i∆

h̄

)2
h̄

i (E0σ′′ − E0σ)

T − h̄
(
e−i(E0σ′′−E0σ)T/h̄ − 1

)
−i (E0σ′′ − E0σ)

+O
(
∆4
)
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Appendix E

The formula for the switching current
probability in different
representations
The formula in Eq.(2.47), namely P = Γ0L |a1|2 + Γ0R |a2|2, seems not exactly correct; it is only true when

the escape dynamics for the L and R channels are independent, that is ∆ = 0 in the dynamics equation

Eq.(2.47). Therefore we need to find a correct formula for switching probability. Luckily, the general formula

for the switching probability of single channel, namely

P (y) =
Γ (y)

dy/dt
exp

[
− 1

dy/dt

∫ y

0

Γ (y′) dy′
]

(E.1)

can be generalized to our truncated model so as to give a correct formula for the switching probability. To

make it easier to understand the statistical meaning of Eq.(E.1), let’s rewrite it as

P (y) = − d

dy
exp

[
− 1

dy/dt

∫ y

0

Γ (y′) dy′
]

= − d

dy
W (y) (E.2)

Here W (y) = exp
[
− 1
dy/dt

∫ y
0

Γ (y′) dy′
]

can be considered as the probability of SQUID remaining in the

well or in the required state. Then we can say that the switching probability P is the -y derivative of

this probability of the state. Motivated by this, we can follow the same idea by first finding the so called

probability of remaining in the state of our truncated model ( Eq.(2.42)), that gives W (y) = |a1 (y)|2 +

|a2 (y)|2, and then applying it into Eq.(E.2). Eventually, we have the switching probability formula

P (y) = − d

dy

(
|a1 (y)|2 + |a2 (y)|2

)
(E.3)

Usually, the two component a1 and a2 derived from numerical analysis of Eq.(2.42) are time dependent.

Then the above formula can be written as

P (t) =
−1
dy
dt

d

dt

(
|a1 (t)|2 + |a2 (t)|2

)
(E.4)
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Please note that this formula is true only if the meaning of “probability”( of being in flux states) for |a1 (t)|2

and |a2 (t)|2 can be justified, and that’s why we usually require |a1 (t)|2 + |a2 (t)|2 = 1 at the beginning.

Furthermore, if we claim

a1 (t)

a2 (t)

 ≡ V (t) = U ′V ′ = U ′

a′1 (t)

a′2 (t)

 (E.5)

, where U†U = 1 and a′1 a
′
2 are the corresponding components in the new basis, then we have

2∑
i=1

|ai (t)|2 = V †V = V ′†V ′ =
2∑
i=1

|a′i (t)|2

P (t) =
−1
dy
dt

d

dt

(
V †V

)
=
−1
dy
dt

d

dt

(
V ′†V ′

)
(E.6)

The above formula implies that we can generalize Eq.(E.4) to the probabilities of any pair of states which

are rotated unitarily from the two flux states such that the amplitude square of each component still preserve

the meaning of “probability”.

Therefore our naive guess in Chapter 2 of the formula

P ≡ Γ0+ |a+|2 + Γ0− |a−|2

=
−1
dy
dt

d

dt

(
|a+ (t)|2 + |a− (t)|2

)
(E.7)

for the basis |+〉 and |−〉 after the diagonalization of Eq.(2.42) is not correct because the transformation U

in Eq.(2.43) is not unitary; |a±|2 do not have the correct probabilistic meaning of staying in the |±〉 state.

(Besides, |±〉 are not orthonormal either.)
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Appendix F

The equivalence between the two
measurement schemes in the zero
transition limit
In this appendix, we are going to show that the two measurement schemes in Section (2.6) give the same

qubit density matrix evolution if there is no dynamical transition between the channels.

According to Eq.(2.56), we get

δW± ' e−Γ±τ ' 1− τΓ±

for τ → 0. Therefore we can apply it to Eq.(2.60) and give

σ++ (t+ τ) ' σ++ (t) (1− Γ+τ)

σ++ (t) (1− Γ+τ) + σ−− (t) (1− Γ−τ)

' σ++ (t) (1− σ−− (t) (Γ+ − Γ−) τ)

Here we have used 1− σ++ (t) = σ−− (t).

Then we can derive a Langevin - type equation:

σ++ (t+ τ)− σ++ (t)

τ
' dσ++

dt
= −σ++ (t)σ−− (t) (Γ+ − Γ−)

Next, based on this formula, we can derive its solution. As we know, this formula can be rewritten in the

form

dσ++

dt
= −σ++ (t) (1− σ++ (t)) (Γ+ − Γ−)

, and it further gives the form

dσ++

σ++ (t) (1− σ++ (t))
= − (Γ+ − Γ−) dt.
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After integration, this gives

σ++ (t)

σ−− (t)

σ−− (0)

σ++ (0)
= e−

∫
(Γ+−Γ−)dt. (F.1)

Finally, we get

σ++ (t) =

σ++(0)
σ−−(0)e

−
∫

(Γ+−Γ−)dt

1 + σ++(0)
σ−−(0)e

−
∫

(Γ+−Γ−)dt

=
σ++ (0) e−

∫
Γ+dt

σ++ (0) e−
∫

Γ+dt + σ−− (0) e−
∫

Γ−dt

=
σ++ (0)W+ (t)

σ++ (0)W+ (t) + σ−− (0)W− (t)

, which is exactly the Eq.(2.51). Therefore, we conclude that these two types of measurement scheme give

the same density matrix evolution.
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Appendix G

Alternative description of qubit
density matrix evolution under
negative outcome measurement
Similar to the analysis of Eq.(2.58) and Eq.(2.62), we can instead represent the density matrix right after

our negative measurement during the interval nτ < t′ < (n+ 1) τ by PnσnPn on the basis of Bayes’ rule,

i.e.

σn → σn+1 = PnσnPn. (G.1)

Here Pn ≡
√

w+(n)
w(n) P+ +

√
w−(n)
w(n) P− is the new projective operator corresponding to our negative outcome

measurement, which automatically includes the Bayes’ rule correction to the density matrix, and P± is the

projective operator onto the ± state. To check the behavior of Pn in different limits, for Γ+ = Γ− = 0

we find it becomes the identity operator, which is Pn = P+ + P− = I, while for Γ+ = ∞ and Γ− = 0

we can see Pn = 1√
σ−−

P−, which is the projective operator onto − state with normalized factor 1√
σ−−

due to the negative measurement; conversely in the opposite limit where Γ− = ∞ and Γ+ = 0 we will see

Pn = 1√
σ++

P+ , which is again the projective operator onto + state with normalized factor 1√
σ++

due to the

negative measurement.

Based on Eq.(G.1), we can formula the time derivative of the density matrix, where only the measurement

effect is considered.

σn+1 − σn
τ

=

(
Pn − I
τ

)
σn + σn

(
Pn − I
τ

)
(G.2)

In the τ → 0 limit we will have

σ̇ =
{
Ṗ (t) , σ

}
(G.3)
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Here Ṗ (t) = lim
τ→0

(
Pn−I
τ

)
and it’s not hard to prove

Ṗ (t) = −1

2
σ−− (Γ+ − Γ−)P+ −

1

2
σ++ (Γ− − Γ+)P−. (G.4)

Next, after considering the intrinsic dynamical evolution of the density matrix, namely σ̇′, we will get the

full version of density matrix evolution, namely

σ̇ = σ̇′ +
{
Ṗ (t) , σ

}
. (G.5)

It’s not hard to check that (G.5) is consistent with Eq.(2.68) and Eq.(2.69).
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Appendix H

A pictorial way to understand the
entanglement change during the
measurement
We can understand how the entanglement (between qubit and SQUID) changes during the measurement by

comparing two average “positions” of SQUID wave functions, x̄± = 〈ψ±|x |ψ±〉. Here |ψ±〉 represent for

SQUID wave functions corresponding to the two qubit states |±〉 and x is the SQUID phase. Please note

that we have ψ± (x+ 2π) = ψ± (x). To simplify the analysis, let’s assume that the wave functions inside

and outside the well respectively are centered at 0 and l, where l can be larger than 2π and increases with

time as long as the wave function outside the well keeps propagating. Moreover, as a further simplification

we assume these centers are independent of the qubit states.( More accurately, l should depend on qubit

states: l = l±.) Then we can use these assumptions to derive the average position of SQUID wave function

for qubit being in ± states, namely

x̄± = 0×W± + l × (1−W±) = l (1−W±) . (H.1)

Here W± are the probabilities of SQUID phase being in the well, which is defined in Eq.(2.49). Based on

these formulas, we can obtain the difference between the two average positions of two qubit states:

∆x̄ = l (W+ −W−) . (H.2)

Ideally, we wish ∆x̄ to be large if the two SQUID wave functions |ψ±〉 are more entangled with qubit states

|±〉. Although the change of the SQUID potential due to the qubit state is really small, so that the wave

functions inside the well have negligible difference, the distance l can be very large and increases with time

such that it can amplify the value of (W+ −W−) and gives large ∆x̄. Basically, our strategy is to enlarge

(W+ −W−) and l at same time to give the maximum ∆x̄.

Because (W+ −W−) increases at the beginning and then decreases to zero eventually as both W+ and

W− go to zero, we expect ∆x̄ will have a maximum value. To find the maximum value of ∆x̄ we need to
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set its time derivative equal to zero, which gives

d∆x̄

dt
=
dl

dt
(W+ −W−) + l

dy

dt
(P− − P+) = 0 (H.3)

Here we have applied the relation between the switching probability P± (y) and W± (y) as given by Eq.(E.2),

namely

P± (y) = − d

dy
W± (y) . (H.4)

If dl
dt = 0, then from Eq.(H.3) we can conclude that the maximum entanglement appears at the moment

where the two switching probabilities are equal, that’s P+ = P− or Γ+W+ = Γ−W−, and it’s approximately

around the middle between the two peaks of switching current distributions for qubit ± states. But actually

we have dl
dt 6= 0. Therefore the maximum entanglement should appear after P− = P+, and its exact position

depends on the experimental details of SQUID.

In principle, if Γ+ > Γ− the peak of P+ appears earlier than P−’s, i.e. at a lower bias current, and

the wave function |ψ+〉 is distributed farther (from the well) than that of |ψ−〉. As we know, the ∆x̄

increases until it reaches its maximum. After the maximum entanglement, ∆x̄ decreases and finally reaches

an equilibrium value that depends on the terminal velocity of wave function outside the well. Here we

assume that the two corresponding terminal velocities are the same. Of course, different terminal velocities

can cause the increasing of |l+ − l−|.

Besides, we naively expect that a longer measurement time can induce larger entanglement between qubit

and SQUID. Therefore we expect that the measurement at smaller bias current, which has smaller escape

rate, will give larger maximum ∆x̄ of SQUID wave function after the measurement. Let’s check it in the

special case where dl
dt = 0 and the SQUID escapes at fixed bias current, that gives

∆x̄ = l (W+ −W−) = l
(
e−Γ+t − e−Γ−t

)
. (H.5)

The maximum of this expectation value appears at t =
ln

Γ+
Γ−

(Γ+−Γ−) , and then we use it to derive the maximum

value of (W+ −W−) as a function of Γ+ and Γ−:

(W+ −W−) =

(
Γ+

Γ−

) Γ+

(Γ−−Γ+)
−
(

Γ+

Γ+

) Γ+

(Γ−−Γ+)
. (H.6)

According to this we can find the following diagram for the maximum value of (W+ −W−) as a function of
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y.

Figure H.1: The maximum value of (W+ −W−) at fixed bias current seems not a monotonically decreasing
function of y, although it indeed decreases for y > 0.6. This result implies that a longer duration of the
measurement may not induce a larger entanglement if we assume dl

dt = 0.

The result of this special case seems not consistent with our expectation. But actually we need to

take the time dependence of l into account. Usually l increases with time, then we may conclude that the

displacement in either Eq.(H.5) or Eq.(H.2) should be larger for measurement at lower bias current.
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Appendix I

Transition between energy eigenstates
during non-adiabatic current ramping

In order to preserve the qubit staying in its initial state until the SQUID escape take place, we need the

current ramping rate r ≡ dy
dt faster than the qubit tunnelling rate ∆/h, which is similar to the Landau-Zener

problem. According to our numerical analysis with k/h = 0.7GHz, ω = 0.9GHz, and gπ = 0.005, which

are almost the same parameters as the Delft group’s, this requires r ≥ 10∆/h( for 106Hz < ∆/h < 109Hz)

to reach the situation where over 99% population of qubits remain staying in its initial flux state after

current ramping to the maximum. To simplify the problem, here we only considered the typical case that

the qubit always starts in a flux eigenstate and the net bias energy of the qubit is zero at zero bias current.

It can be generalized to other cases. In principle it’s not a bad estimation to use Vutha’s approximation of

the Landau-Zener problem[43] to analytically evaluate the probability of the qubit remaining in the flux

eigenstate after the bias current is ramped to the maximum; the derivation is shown as follows.

As we know from the Eq.(2.31), the qubit bias energy has a contribution from the qubit-SQUID coupling

energy and therefore changes with the SQUID bias current Ib (t); let’s write the net qubit bias energy as

ε̄ (y) ≈ εH00 = ε(fq) + gπk (y)

(
1− ω (y) h̄

4k (y)

)
(I.1)

with k (y) = k0

√
1− y2 and ω (y) = ω0

(
1− y2

)1/4
, where ε(fq) is given by Eq.(2.2) and y ≡ Ib(t)

2IC0 cosπfSQ

is the current parameter. To understand the behaviour of the qubit state due to a sudden change of the

current parameter y from 0 to 1 with the constant rate r ≡ dy
dt , we can consider the special situation in

which the qubit starts at zero bias current in a flux eigenstate and zero net bias energy(ε̄ (0) = 0) at zero

bias current. Since then ε̄ (0) = 0 we can derive

ε̄ (y) = πgk0

(√
1− y2 − 1

)
+
πgω0h̄

4

(
1−

(
1− y2

)1/4)
(I.2)

Next, let’s make our first approximation based on the assumption that most of the transitions of the state

happen around the region y � 1 (or ε̄ (y) ≤ ∆ ), then we can write the approximate form of ε̄ (y) in the

small y limit:
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ε̄ (y) = −πg
2

(
k0 −

ω0h̄

8

)
y2 (I.3)

To estimate the probability of the qubit remaining in its initial flux state during the sudden change of

bias current we will use the formula derived by Vutha [43]

P (tf ) = exp

(
−Ω2

∫ tf

ti

γ

W 2 + γ2
/

4
dt

)
(I.4)

, where the Landau-Zener problem is simplified by dephasing Rabi oscillations with the virtual detuning

W (y) = −2ε̄ (y)/h̄ =
πg

h̄

(
k0 −

ω0h̄

8

)
y2 (I.5)

, the Rabi frequency Ω = ∆/h̄, and the decay rate of the Rabi oscillations is obtained from the inverse

dephasing time:

γ (t) ≈

√
Ẇ (t)

4π
=

√
dε̄(y)
dy

dy
dt

−2πh̄
=

√
πgr

2πh̄

(
k0 −

ω0h̄

8

)
y. (I.6)

Here we always have y = rt.

To evaluate P (tf ) in Eq.(I.4), we need to make another approximation to the integral in the exponent

and therefore divide the integral into two parts. The first part is the integral from ti to te, where W 2 (te) =

γ(te)
2
/

4 and W 2 (t) ≤ γ(t)
2
/

4 for all ti ≤ t ≤ te; we make an approximation to this part by assuming

W 2 (t)� γ(t)
2
/

4.

∫ te
ti

γ

W 2+γ2/4
dt ' 4

∫ te
ti

1
γ dt

= 4√
πgr
2πh̄ (k0−ω0h̄

8 )

∫ te
ti

1√
rt
dt

= 8
√
te

r
√

πg
2πh̄ (k0−ω0h̄

8 )

(I.7)

Here we have assumed ti = 0 and since te � 1 for most relevant experimental parameters this integral is

neglectable.

The second part of integral is within the range te ≤ t ≤ tf and to approximate it we assume σ2 (t) �
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γ(t)
2
/

4.

Then we have

∫ tf
te

γ

W 2+γ2/4
dt '

∫ tf
te

γ
W 2 dt =

∫ tf
te

√
πgr
2πh̄ (k0−ω0h̄

8 )y

(πgh̄ (k0−ω0h̄
8 )y2)

2
dt
dydy

=
(
πg
h̄

(
k0 − ω0h̄

8

))−3/2
√

1
2πr

∫ yf
ye
y−7/2dy

=
(
πg
h̄

(
k0 − ω0h̄

8

))−3/2
√

1
2πr

2
5 y
−5/2

∣∣ye
yf

(I.8)

Here we will let yf = 1 (which is a good approximation because most of transition appears at values of

y such that ε̄ (y) is of the same order as ∆ ), neglect the corresponding term, and keep only the term with

ye
−5/2 because we usually have ye

−5/2 � 1. Then we get

∫ tf

ti

γ

W 2 + γ2
/

4
dt '

(
πg

h̄

(
k0 −

ω0h̄

8

))−3/2
√

1

2πr

2

5
ye
−5/2

On the other hand we can derive ye by the relationW (ye)
2

= γ2 (ye)
/

4, which gives ye =
(
rh̄
/(

8π2g
(
k0 − ω0h̄

8

)))1/3
.

Finally we can put this value of ye into the formula and get

P = exp

[
−8

5
π1/3

(
∆

h̄

)2

r−4/3

(
πg

h̄

(
k0 −

ω0h̄

8

))−2/3
]

(I.9)

This is our approximate formula for the probability of the qubit remaining in its initial flux state after the

change of current parameter from 0 to 1. At least it works well for the current ramping rate r ≥ ∆/h for

106Hz < ∆/h < 109Hz, and is more accurate for lower ∆. Here we are more interested in the limit with

sudden change(r ≥ ∆/h approximately) of bias energy to preserve the qubit state.

112



Appendix J

The maximum resonance pumping
probability under the relaxation to
the ground state
To find the maximum value of ρ11 (t)(the probability of staying in excited state) after resonance pumping,

the first step is to find the time tmax at which ρ̇11 (tmax) = 0 , that is

ρ̇11 (tmax) = e−Γt Ω2
0

|Ω|2

∣∣∣∣sin(Ωt

2

)∣∣∣∣× (−Γ sin

(
Ωt

2

)
+ Ω cos

(
Ωt

2

))
= 0

This implies

tan

(
Ωtmax

2

)
=

Ω

Γ
⇒ tmax =

2

Ω|∆=0

tan−1 Ω|∆=0

Γ

Put this formula into ρ11 (t) :

ρ11 (tmax) = e−
2Γ
Ω tan−1 Ω

Γ

∣∣∣∣sin(tan−1 Ω

Γ

)∣∣∣∣2 Ω2
0

|Ω|2

Because the system is on resonance, we have ∆ = 0 ⇒ Ω2 ≡ Ω2
0 − Γ2, so the equation can be rewritten

as

ρ11 (tmax) =e
− 2Γ√

Ω2
0−Γ2

tan−1

√
Ω2

0−Γ2

Γ

∣∣∣∣∣sin
(

tan−1

√
Ω2

0 − Γ2

Γ

)∣∣∣∣∣
2

Ω2
0

Ω2
0 − Γ2

.

In the limit Γ
Ω0
� 1 , we will have:

ρ11 (tmax)

=

(
1− 2Γ√

Ω2
0−Γ2

tan−1

√
Ω2

0−Γ2

Γ

) ∣∣∣∣sin(tan−1

√
Ω2

0−Γ2

Γ

)∣∣∣∣2 Ω2
0

Ω2
0−Γ2

≈
(

1− πΓ√
Ω2

0−Γ2

) ∣∣sin (π2 )∣∣2 (1 + Γ2

Ω2
0

)
≈
(

1− πΓ
Ω0

(
1 + Γ2

2Ω2
0

))(
1 + Γ2

Ω2
0

)
≈ 1− πΓ

Ω0
≈ 1− πΓ1

2Ω0
≡ 1− ε0

Here we have assume Γ ≈ 1
2Γ1 in the limit of Γ1 > γ10 (≡ Γd) > γϕ > Γ0 .
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Appendix K

The off resonance pumping of
dcSQUID for the qubit in the
negative state
We are going to analyze the pumping of the dcSQUID with negative (qubit) state, which is off resonance [47].

We have the relation

Ω2 = Ω2
0 −

(
Γ− i∆̄

)2
=
(
Ω2

0 + ∆̄2 − Γ2
)

+ i2∆̄Γ

=

√(
Ω2

0 + ∆̄2 − Γ2
)2

+
(
2∆̄Γ

)2
eiθ

Here we have defined

cos θ =

(
Ω2

0 + ∆̄2 − Γ2
)√(

Ω2
0 + ∆̄2 − Γ2

)2
+
(
2∆̄Γ

)2 ,
sin θ =

2∆̄Γ√(
Ω2

0 + ∆̄2 − Γ2
)2

+
(
2∆̄Γ

)2 .
Basically, we can rewrite Ω into the following form:

Ω =

((
Ω2

0 + ∆
2 − Γ2

)2

+
(
2∆̄Γ

)2)1/4

eiθ/2 = |Ω| eiθ/2.

Inserting this into the formula for ρ11 (t):

ρ11 (t) = e−Γt Ω2
0

|Ω|2

∣∣∣∣sin(Ωt

2

)∣∣∣∣2 = e−Γt Ω2
0

|Ω|2

∣∣∣∣sin( t |Ω| eiθ/22

)∣∣∣∣2

= e−Γt Ω2
0

|Ω|2

∣∣∣∣∣sin
(
t |Ω|

(
cos θ2 + i sin θ

2

)
2

)∣∣∣∣∣
2

= e−Γt Ω2
0

|Ω|2

∣∣∣∣∣sin
(
t |Ω| cos θ2

2

)
cos

(
t |Ω| i sin θ

2

2

)
+ cos

(
t |Ω| cos θ2

2

)
sin

(
i |Ω| t sin θ

2

2

)∣∣∣∣∣
2

= e−Γt Ω2
0

|Ω|2

∣∣∣∣∣sin
(
t |Ω| cos θ2

2

)
cosh

(
t |Ω| sin θ

2

2

)
+ i cos

(
t |Ω| cos θ2

2

)
sinh

(
|Ω| t sin θ

2

2

)∣∣∣∣∣
2
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= e−Γt Ω2
0

|Ω|2

(
sin2

(
t |Ω| cos θ2

2

)
cosh2

(
t |Ω| sin θ

2

2

)
+ cos2

(
t |Ω| cos θ2

2

)
sinh2

(
|Ω| t sin θ

2

2

))

= e−Γt Ω2
0

|Ω|2

(
sin2

(
t |Ω| cos θ2

2

)(
1 + sinh2

(
t |Ω| sin θ

2

2

))
+ cos2

(
t |Ω| cos θ2

2

)
sinh2

(
|Ω| t sin θ

2

2

))

= e−Γt Ω2
0

|Ω|2

(
sin2

(
t |Ω| cos θ2

2

)
+ sinh2

(
t |Ω| sin θ

2

2

))

≈ e−Γt Ω2
0

∆̄2

(
sin2

(
t∆̄

2

)
+ sinh2

(
tΓ

2

))
(K.1)

In the last equation, we have used the approximations |Ω|2 ≈ ∆̄2, |Ω| cos θ2 ≈ ∆̄ , and |Ω| sin θ
2 ≈ Γ in

the limit ∆̄2 � Ω2
0andΓ2. If we denote t = tmax = 2

Ω|
∆̄=0

tan−1 Ω|∆̄=0

Γ ≈ 2
Ω0

tan−1 Ω0

Γ1
as the pumping time

for the state on resonance, and assume Γ
Ω0
≈ Γ1

Ω0
as in appendix J, the off resonance upper dcSQUID states

(corresponding to the negative qubit state) can still have a nonzero probability of being excited, namely

ρ11 (tmax)

= e
− 2Γ

Ω|
∆̄=0

tan−1 Ω|
∆̄=0
Γ Ω2

0

∆̄2

(
sin2

(
∆̄

Ω|∆̄=0

tan−1 Ω|∆̄=0

Γ

)
+ sinh2

(
Γ

Ω|∆̄=0

tan−1 Ω|∆̄=0

Γ

))
≈ Ω2

0

∆̄2
e
− πΓ

Ω|
∆̄=0

(
sin2

(
π∆̄

2Ω|∆̄=0

)
+ sinh2

(
πΓ

2Ω|∆̄=0

))
(K.2)

Basically, we have ρ11 ≈ ζ2 ≡
Ω2

0

∆
2 as the largest term of approximation.
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