(© 2016 by Rohan Tabish.

A REAL-TIME SCRATCHPAD-CENTRIC OS FOR MULTI-CORE EMBEDDED SYSTEMS

BY

ROHAN TABISH

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Professor Marco Caccamo

Abstract

Multicore processors have been increasing in development by the industry to meet the ever-growing processing re-
quirements of various applications because these processors offer benefits such as reduced power consumption, more
processing power and efficient parallel task execution for general purpose work- loads. However, in hard real time
systems where predictability is a key aspect, the average performance of these multicore processors is even worse
than the scenarios in which the same task set is executed on a single core processor. This performance degradation
is due to the fact that the multicore systems have shared resources such as DRAM, BUS and caches which make the
system highly unpredictable. One way to achieve predictability in such systems is to serialize the access of the cores
to the shared resources such that there is no contention. Another widely emerging approach is the integration of the
scratchpad memory. Using scratchpad, at run time, the code and data for the requested task is made available in the
scratchpad and contention can be avoided.

In this thesis, we approach the problem of shared resource arbitration at an OS-level and propose a novel scratchpad-
centric OS design for multi-core platforms. In the proposed OS, the predictable usage of shared resources across
multiple cores represents a central design-time goal. Hence, we show (i) how contention-free execution of real-time
tasks can be achieved on scratchpad-based architectures, and (ii) how a separation of application logic and I/O oper-
ations in the time domain can be enforced. To validate the proposed design, we implemented the proposed OS using
a commercial-off-the-shelf (COTS) platform. Experiments show that this novel design delivers predictable temporal

behavior to hard real-time tasks, and it improves performance up to 2.1x compared to traditional approaches.

ii

To my Parents and all those who are important to me.

il

Acknowledgments

I would like to express my deep gratitude to Professor Marco Caccamo, my research supervisor, for his patient guid-
ance, enthusiastic encouragement, and useful critiques of this research work. My grateful thanks are also extended to
Renato Mancuso, a PhD student in Department of Computer Science, at UIUC for his constant support in building our
system. I would also like to thank Professor Lui Sha and other CS faculty members for their continuous support and
encouragement. My special thanks are also extended to all my friends including Fardin Abdi, Or Dantsker, C.Y. Chen
and others.

This thesis is dedicated to my parents for their continuous support and encouragement throughout my graduate
studies, and to my supernatural mother especially. Without her support it would not be possible to be this successful
in my life. I would also like to dedicate this thesis to Dr. Fatima Ayub for her continuous support during rough times.

Finally, the work in this thesis is also dedicated to my brother Hasan Javed and to my sister Senia Shafaq.

v

Table of Contents

... vi
) T Y i Y Y 1 S S vii
[Chapter I Introduction]0 i i i i it it ittt it e e ottt o oo sossaneees 1
[Chapter 2 Related Work| @ i i i i ittt it et ettt st oo s an s 3
[Chapter 3 System Model and Assumptions| v v i v vttt vt vttt oot oot aoeees 6
3.1 Scratchpad Memories| 6
3.2 DMA Engines|. e e 7
B3 Dedicated /O Busl. e 7
3.4 Memory Organization|. 8
BS TaskModell o oot e e 8
[Chapter 4 Proposed OS Design| 0 v i i i it ittt et e e ettt e o oo ossaneeeas 10
... 10

4.2 Scratchpad and CPU Co-scheduling| 11
FE3TTOSubsystem Design] e 13

15

15

16

18

19

. 22

. xample Showing The Process of Defining Relocatable Tasks| 22
[Chapter 6 Evaluation|0 i i i i ittt it ittt ettt toeesensaneeas 30
6.1 SPM-Centric OS Overhead Evaluation| 30
6.2 Results of Achievable I/O Bandwidthl 30
6.3 Results of Synthetic Benchmarks|. oo oo oo 31
6.4 Results of EEMBC Benchmarksl 32
6.5 Schedulability Analysis| 33
[Chapter 7 Conclusion] 0 i 0 i i i i i i ittt it ettt o oo aoosososenensos 35
RefErences« o v vttt et e e e e e e e e 36

List of Figures

3.1 Multicore architecture satistying our hardware assumptions| 8
4.1 Scheduling CPU, DMA and local memory| 12
172 Interaction between 1/0 Core and Core 1 for task scheduling)] 13
[5.T T/O SPM partition showing task and device buffers| 20
6.1 Experimental execution time for synthetic benchmarks.| 32
EZ Exﬁenmenta! execution time for EEMEE’ Eencﬁmargsj 33
[6.3 ScEeHu|a51|1ty with SPM-based and traditional scﬁeauhng models. | 34

vi

List of Tables

3.1 Suitable Commercial Multicore COTS platforms|
B2 Task’s Parameters| L e e

vii

Chapter 1

Introduction

Multi-core platforms are mainstream products. Multi-core chips allow different processing tasks to execute in parallel
while accessing a set of shared hardware resources, including: main memory, buses, caches, and I/O peripherals.
Unfortunately, when one or more of these resources is utilized up to its saturation point, severe and unpredictable
inter-core interference can heavily affect the system’s temporal behavior. From a real-time point of view, unregulated
contention on shared resources induces significant execution time variance. Hence, specific mechanisms to manage
and schedule shared resources need to be designed and validated. This problem has also been acknowledged by the
Federal Aviation Administration (FAA), which currently imposes the use of a single core for safety-critical avionic
applications unless proper analysis and mitigation of inter-core interference channels are demonstrated [/1]].

The problem of shared resource contention in a multicore environment has been approached in literature from
different perspectives: a) novel multi-core hardware platforms have been designed [5.23]], b) new OS-level techniques
have been developed to perform shared resource partitioning and management on commercial-off-the-shelf (COTS)
platforms [16]]. While a hardware solution might be desirable to meet the needs of modern real-time systems, however,
it is not a cost-effective solution for embedded industry. Conversely, enforcing determinism at software level on a
general-purpose COTS architecture may trade some performance with execution time predictability. In this work, we
propose an approach that lies in between the methodologies mentioned above. In fact, (i) we consider a segment of
COTS platforms that are designed to support desirable features for hard real-time computation and (ii) redesign parts
of the operating system (OS), leveraging such features to guarantee predictability and preserve performance. With
these objectives in mind, we focus on scratchpad-based multi-core platforms. Scratchpad memories, in fact, have
been proven to provide better temporal isolation when compared to traditional caches [17,{19]. Alongside, we exploit
additional hardware features that vendors now include in some modern families of multi-core platforms designed for
the embedded market, such as separate I/O and memory buses, the presence of dual-port memories with DMA support,

and core specialization.

1. A novel operating system design is built ground-up to achieve temporal predictability. Our OS design targets
multi-core embedded COTS platforms and exploits core specialization and low level resource management

policies.

2. To the best of our knowledge, this is the first OS that integrates a scratchpad-based CPU scheduling mechanism

with a task schedule-aware I/O subsystem.

3. A novel analysis is derived to calculate the response time of real-time tasks under the proposed scheduling

strategy.

4. Finally, a full implementation of the proposed OS has been performed using a commercially available multi-core

micro-controller. Its design has been validated using a combination of synthetic tasks and EMBC benchmarks.

The rest of the thesis is organized as follows. Chapter[2]briefly reviews the related work. Next, Chapter[3|introduces
the considered system model and architectural assumptions. The design of the proposed OS is described in Chapter[d]
We describe the performed implementation in Chapter [5] and discuss the experimental results in Chapter [§] Finally,

the thesis concludes in Chapter|[7]

Chapter 2

Related Work

Temporal predictability is a crucial design-time constraint for real-time operating systems (RTOS). Several RTOS
designs have been proposed, and a number of implementations are available, such as: QNX Neutrin(ﬂ FreeRTOﬂ
Wind River VxWorkﬂ These RTOS were designed for single-core platforms, where the use of real-time schedul-
ing policies, efficient inter-process communication and prioritized interrupt handling were enough to ensure temporal
predictability. Support for multi-core platforms was later introduced without a substantial change in design. Unfortu-
nately, however, a new set of challenges (mainly related to shared hardware resource management [5}/16,23])) is faced
when trying to achieve predictability on multi-core systems.

In avionic standards such as ARINC 653 and ARINC 651, the concept of resource partitioning is central for
the design of safety-critical systems. Even if different partitions execute on the same physical processor, the behav-
ior/misbehavior of a software component should not affect the execution of another component running on a separate
partition [28]]. In single-core systems, requirement for inter-partition isolation can be achieved by employing time divi-
sion and fault containment strategies. On multi-core systems, however, how to enforce and certify strong partitioning
across different cores is still an active research topic.

In [12], Jean et al. provide a high-level discussion of the main issues for the extension of existing avionic standards
to multi-core systems. The work considers multi-core integrated modular avionic IMA) systems were partitions may
run in parallel on different cores. The authors raise the concern that in the presence of faults, the use of shared
hardware resources may lead to a violation of strict inter-partition isolation requirements. In multi-core systems,
interference channels (if not carefully mitigated) are also present under normal operating conditions. This has been
acknowledged by certification authorities [|/1] and it represents a source of concern for the use of multi-core processors
in avionics systems. In this work, we propose a RTOS design that leverages co-scheduling techniques of shared
resources to mitigate inter-core performance interference. Although we envision that some of the proposed design
principles could be reused to enhance temporal protection in multi-core avionics systems, the proposed OS design

rather targets embedded platforms suitable for automotive systems and its extension to IMA is currently out of the

Ihttp://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html
Zhttp://www.freertos.org/
3http://www.windriver.com/products/vxworks/

scope of this work.

The proposed layer of OS-level strategies to perform co-scheduling of shared resources is in line with the concept
of Deterministic Platform Software (DPS) as defined in [11]. Specifically, in our system we enforce a deterministic
execution model for running applications, constructing a DPS that actively controls and schedules access to shared
resources. Following the nomenclature proposed in [11], since tasks need to be specifically engineered and compiled
to comply with our task model, the proposed solution is application aware. In this work, the multi-stage task model
is also consistent with the Acquisition Execution Restitution (AER) task model proposed in [8].

The AER model proposed in [8] achieves predictability by executing tasks from local core memories (scratchpads),
while shared memory resources are only used for inter-core communication and device I/O during acquisition and/or
restitution phases. Inter-core interference arising from unregulated access to shared memory is mitigated by ensuring
that: (i) the execution phase of different tasks can progress in parallel on multiple cores; and (ii) at most one acquisition
or restitution phase is in execution at any instant of time. In [8]], the fundamental assumption is that the total footprint
of all the tasks assigned to a core fits inside the core’s local memory. In this work, we relax this constraint and only
require that a task fits in half of the local memory space. This relaxation leads to important differences in the RTOS
design: in fact, dynamic loading and unloading of tasks from/to local memories (together with I/O data) need to be
handled. For these reasons, tasks’ execution phases are parallelized; additionally, task loading/unloading is pipelined
with execution by using DMA engines. Finally, asynchronous I/O device activity is deconflicted from applications by
exploiting hardware specialization at the bus level and by handling system-to-device interaction inside an isolated I/O
subsystem.

Techniques to derive WCET bounds on a multi-core system accounting for the major sources of unpredictability
have been thoroughly analyzed in [6]. The latter work provides an in-depth overview of the state-of-the-art analysis
methodologies for shared buses, shared caches as well as scratchpad memories. Its focus, however, is the derivation
of safe WCET bounds in presence of typical platform features and given a known task set. However, there is no
discussion on how a real-time OS can be designed on multi-core platforms to support multi-tasking subject to temporal
constraints.

The design of multi-core architectures that are able to provide worst-case execution time guarantee have been
proposed in [5}/23]. Specifically, the precision timed (PRET) architecture [3]] introduces task runtime control and
deadline enforcement at the instruction set (ISA) level. Additional hardware modifications allow to achieve better
performance without sacrificing predictability. Similarly, in the MERASA project [23]29], predictability is achieved
at hardware level by controlling inter-core interference. These works propose architectural features that have been
prototyped on field-programmable gate array (FPGA), but unfortunately such features cannot be found in COTS

system-on-chips (SoC).

In [15[16,30431] the authors presented the Single-Core Equivalence framework: that is a set of OS-level techniques
that can be implemented on COTS platforms to enforce spatial and temporal partitioning of shared memory resources.
Derived analysis and experimental validation showed that WCET of tasks can be bounded and that inter-core temporal
isolation can be achieved. Three main differences exist with respect to the proposed approach. First, the work in [[16]]
assumes a traditional task execution model, while in this work this assumption is relaxed using a three-phase execution
model. Second, in this thesis we focus on scratchpad-based architectures. Finally, this work also proposes the design
of a novel I/O subsystem.

The proposed work is a contribution to existing literature on the usage of scratchpad memories (SPM) for real-time
systems [[17,[19[22,24]126}27]]. In fact, a number of works have explored the benefits of scratchpad memories over
traditional caches for multi-core platforms [[17,/19]. Other works on embedded systems exist that propose scratchpad
memory allocation strategies targeting real-time applications [3/7,9,/14,[21]. In [22] the authors propose a scratchpad
memory management technique for preemptive multi-tasking systems where they introduce three methods for SPM
partitioning that are: (i) spatial, (ii) temporal, and (iii) hybrid approaches.

By employing these three methodologies on a real-time operating system the authors show that they were able
to save 73% of energy when compared to the standard approach. The authors also conclude that hybrid approaches
outperform the other two approaches. However, this work has not been applied to multi-core processors. Moreover,
the focus of [22] is not predictability but energy efficiency, making its contribution substantially different from the
proposed work.

Finally, our design shares some similarities with scratchpad scheduling approaches that have been proposed in [[24-
27]. Compared to these works, our approach mainly differs in three aspects: (i) it is not focused exclusively on
scratchpad management, but we rather show how a scratchpad can be integrated within an overall OS design; (ii) a
full OS design is implemented on a commercially available (COTS) micro-controller; and (iii) it is also discussed how

I/0 traffic issued by different cores is deconflicted.

Chapter 3

System Model and Assumptions

This chapter summarizes the task model that we use and the hardware assumptions we rely on for the design of the

proposed predictable operating system, namely SPM-centric OS.

3.1 Scratchpad Memories

The first assumption we make is the presence of scratchpad memory (SPM). We assume that each core in our system
features a block of private scratchpad memory. Moreover, in this work we assume that the size of each per-core
scratchpad memory is big enough to fully contain the footprint of any two tasks in the system. Hence, the footprint
of the largest task in the system is at most half the size of the scratchpad memory. Although this assumption may
appear restrictive, we make the following considerations. First, modern scratchpad-based micro-controllers provide
scratchpad memories that have a size in the same order of magnitude as the main memory. For instance, in the
MPC5777M that we use for our evaluation, each core includes 80 KB of scratchpad with a total main memory size of
about 400 KB. Second, hard real-time control tasks typically are compact in terms of memory size. Third, if a task
violates this size constraint, known methodologies exist [2}/13]] to split a large application into smaller sub-tasks that
are individually compliant with the imposed constraint.

As we will discuss in chapterEi], before tasks can be executed from SPM, their code and data need to be transferred
from main memory. Thus, we adopt a task model that is composed of three phases: a load phase, an execution phase
and an unload phase. First, during the load phase, the code and data image for the activated task is copied from
main memory to the SPM. Next, during the execution phase, the loaded task executes on the CPU by relying on in-
scratchpad data. Finally, the portion of data that has been modified and needs to remain persistent across subsequent

activations of the task is written back to main memory during the unload phase.

3.2 DMA Engines

To avoid to stall the CPU when load/unload operations are performed, we assume that copy operations toward/from
the scratchpad memories can proceed in parallel with task executions. This can be achieved as long as execution and
load/unload phases belong to two distinct tasks. In order to parallelize load/unload operations with task execution, we
rely on direct memory access (DMA) engines. We assume that the hardware provides DMA engines that are able to
transfer data from the main memory into the scratchpad and vice versa. By exploiting (i) the capability of parallelizing
load/unload operations together with task execution, and (ii) the assumption that any task image can fit in half of the
scratchpad memory, it is possible to hide task loading/unloading overhead during task execution, as we discuss in

chapter[4]

3.3 Dedicated I/0O Bus

The next made assumption is about the organization of the I/O subsystem. Since the activity of I/O devices is typically
triggered by external events, it is inherently asynchronous. Unfortunately, unregulated I/O activity on the system bus
can lead to unpredictable contention with CPU activity [4]]. Hence, unarbitrated I/O traffic represents one of the major
sources of unpredictability in real-time systems. To deconflict the inherently asynchronous activity of I/O devices
from application cores’ activity, we assume that a dedicated bus exists to route I/O traffic without directly interfering
with CPU-originated memory requests. The idea of co-scheduling CPU activity and I/O traffic is not new and specific
solutions have been proposed in [4}|18]]. However, the increased awareness of chip manufacturers about this problem
has resulted in the design of COTS platforms that use dedicated buses to handle I/O transactions. Table shows
a non-exhaustive list of COTS platforms with this feature. In this work, we assume that suitable hardware exists to
enforce a separation between I/O and CPU-originated memory transactions. Furthermore, traffic transmitted over the
dedicated I/O bus needs to be handled, pre-processed and scheduled before reaching the application cores. Thus, we
assume that an I/O processor exists, which we hereafter refer to as I/O core. Just like the application cores, the I/O
core features a scratchpad memory that is used to buffer I/O data before they are delivered to applications.

Typically, devices that support high-bandwidth operations are DMA-capable. Instead, slower devices expose
memory-mapped input/output buffers that can be read/written using generic platform DMA engines. Without loss of
generality, we assume I/O data transfers from/to the I/O core are performed by DMA engines and that data from I/O
devices can directly be transferred into the I/O core’s scratchpad memory. In other words, I/O devices are not allowed
to initiate asynchronous transfers directly towards main memory. As previously discussed, this design choice allows
us to perform co-scheduling of CPU and I/O activities to achieve higher system predictability. A summary of the

architectural assumptions discussed so far is provided in Figure [3.1]

ova

m :—:SPM m:—jspm m :—:SPM
Peripherals
e.g. Ethernet, CAN, UART

Applicative Cores 1/0 Core

Figure 3.1: Multicore architecture satisfying our hardware assumptions

«— TVAQ

3.4 Memory Organization

As micro-controllers evolve into complex multi-core systems, more advanced support of memory protection schemes
is provided. However, for the purpose of this work, no specific assumption needs to be made about platform memory
protection features. Hence, the presence of a memory management unit (MMU) is not a necessary requirement. We
discuss in Chapter [5| how task relocation from main memory to scratchpads can be achieved without MMU support.
Intuitively, MMU support allows for a straightforward implementation of task relocation by relying on page table
manipulation. Usually, systems without MMU include a memory protection unit (MPU). MPUs support the definition
of per-core access permissions based on linear ranges of physical memory addresses. Although they are not necessary
to implement our system, MPUs can be easily supported within our design.

The hardware assumptions described so far represent desirable features that are becoming increasingly common in
modern COTS micro-controllers used for safety-critical applications. Table[3.T]provides a list of some of the available

COTS platforms that satisfy the described assumptions.
Table 3.1: Suitable Commercial Multicore COTS platforms

Features MPC5777M | MPC5746M | TMS320C6678
Scratchpad v v v
DMA engines v v v
Dedicated I/0 bus v v X

3.5 Task Model

For the proposed design, we consider a partitioned and fixed priority scheduling policy; additionally, each core has a
set I of NV sporadic tasks, {71,, 7n }, each with different priority whereby 7 has the highest priority and 7 has
the lowest priority. The deadline of each task is assumed to be less than or equal to its minimum inter arrival time.
Table 3.2 summarizes the notation used for task parameters. As discussed in chapter [d tasks follow a three-phases

model. Hence, to satisfy temporal constraints, the last phase (unload) of a task needs to complete before the deadline.

For ease of implementation, this work assumes non-preemptive tasks, although we plan to relax this assumption as

part of our future work.

Table 3.2: Task’s Parameters

Term | Definition

T a task in the system

;. | task’s MIT or period(if task is periodic)

Ti-C task’s execution time including all overheads
o TDMA slot size for the DMA operation

Chapter 4

Proposed OS Design

In this chapter, we describe the design of the proposed SPM-centric OS by relying on the previously discussed as-

sumptions.

4.1 Overview

The central idea of the proposed SPM-centric OS is resource specialization. As previously mentioned, a specialized
I/O core and I/0 bus are used to handle peripheral traffic. Similarly, a specific role is assigned to different memory
resources in the system. Specifically, three types of memory resources exist in our system, as depicted in Figure|3.1
First, flash memories are used to persistently store application/OS code, read-only data, as well as initialization values
of read-write portions of main memory. Next, the SRAM (main) memory contains writable application and system
data that represent the time-variant state of the system. Finally, scratchpad memories temporarily store a copy of code
and data images for those tasks that are currently being scheduled for execution.

In our solution, applications are never executed directly from main memory, thus we adopt the following strategy:
(1) task images are permanently stored in flash and loaded into main memory at system boot; (2) a dedicated DMA
engine is used to move task images to/from SPM upon task activation; (3) a secondary DMA engine is used to perform
I/O data transfers between devices and I/O core; (4) tasks always execute from SPM; (5) only task-relevant I/O data
are transferred upon task load from the I/O subsystem. The benefit of this design is twofold. First, it allows high-level
scheduling of accesses to main memory, ultimately achieving conflict-free execution of tasks from local memories.
Second, performance benefits derived from the usage of fast scratchpad memories are exploited, ultimately combining
better performance with higher temporal determinism.

We refer to the capability of our SPM-centric OS to dynamically move applicative tasks in and out of the SPM
memories as support for relocatable tasks. As mentioned in Chapter 3] if hardware MMU support exists, task reloca-
tion can be achieved using page table manipulation. Otherwise, advanced compiler level techniques can be exploited
to generate position independent code, as described in Chapter [5]

In the proposed SPM-centric OS, a DMA engine is used to position the image of a relocatable task inside a SPM

10

for execution. We refer to this DMA engine as application DMA. Similarly, we refer to the platform DMA used for I/O
transfers as peripheral DMA. Typically, a single DMA engine is capable of utilizing the full main memory bandwidth
in micro-controller platforms. Nonetheless, the design constraint that imposes the use of a single applicative DMA
can be relaxed if the main memory subsystem allows two or more DMA engines to transfer data concurrently without

saturating the main memory bandwidth.

4.2 Scratchpad and CPU Co-scheduling

Load/unload operations for tasks running on the M applicative cores need to be serialized to prevent unregulated
contention over the memory bus. Hence, only a single DMA is required as application DMA for all the M applicative
cores. Several schemes are known to fairly share a single resource across different consumers. For the scope of our
design, we employ a time division multiple access (TDMA) scheme to serialize task load/unload operations among
M applicative cores. The main advantage of the TDMA scheme lies in its simplicity of implementation. Although in
this work we restrict our discussion to TDMA sharing of the applicative DMA, the proposed OS can be extended to
consider round-robin policies as well as budget-based schemes.

In order to perform TDMA-based scheduling of the application DMA, time is partitioned into slots of fixed size.
In each slot, only a single DMA operation can be performed, either a task load or unload. The slot size is chosen to
ensure that the task with the largest footprint in the system can be loaded within the slot time window. Figure [4.]
depicts the sequence of operations in our TDMA scheme for a system with M = 2 application CPUs. Note that the
TDMA enforcement needs to be centralized. Hence, in our design, the I/O core is responsible for interfacing with
application cores’ schedulers through active/ready queues, programming the application DMA as well as enforcing
the time-triggered TDMA slots. In particular, Figure 4. 1|depicts three tasks scheduled on one core. Up arrows in blue
color represent the arrival times of the considered tasks; we use colors for two different partitions. A task can only
run after its load operation has been completed and the previous task on the other partition has completed, (see 5 to
73 and 71 to 7 for example of the two cases). There might be slots where no load/unload is performed. This happens
at time 8: 7y finishes right after the beginning of the slot, so both partitions are full at the beginning of the slot and the
I/0 core can neither load nor unload any applicative core scratchpad. Effectively, the slot is 4AIJwastedaAl.

Since tasks need to be loaded/unloaded in parallel with respect to CPU activity, two partitions are created on the
scratchpad. There is logically no difference between the two scratchpad partitions. Thereby, tasks may execute from
either one of the two, depending on their arrival time. Interchangeably, one of them contains the image of the task
which is currently being executed, while the second half is used to load (unload) the image of the next (previous)

task to be executed (that was completed). Note that when a task is executing on the CPU while a second task is

11

loaded/unloaded in background, CPU and DMA contend for scratchpad access. However, the impact of this contention
on the timing of the tasks is typically negligible for two main reasons. First, scratchpads are often implemented as
dual-ported memories; thus, they are able to support stall-free CPU and DMA operations. In fact, on the considered
MPC5777M platform we have verified this by experimentation and found that both the core and the DMA module
do not suffer any delay when they access the SPM simultaneously. Second, in a system with A/ CPUs, DMA-CPU
contention over scratchpad involves only two masters, as opposed to the traditional approach where up to M masters
could contend for main memory.

As depicted in Figure[d.T] the application DMA is alternatively assigned to transfer data for a specific core. Within
a single slot, either an unload operation for a previously running task or a load operation for the next scheduled task is

performed. The specific operation to be performed is decided as follows:

Rule 1: If a load operation can be performed, a load operation is programmed on the application DMA;

Rule 2: If a load cannot be performed and there is a previously running task to be unloaded, an unload operation is

programmed on the application DMA.

Note that Rule 1 can be activated by the following conditions: (i) at least one of the two SPM partitions is available
(i.e. has been previously unloaded), and (ii) a task has been released and is ready to be loaded. Similarly, Rule 2 can
be activated if no load can be performed, at least one partition is not empty and the task loaded on that partition has
completed.

In the proposed design, the next task to be executed is loaded in background while the foreground running task is
not interrupted until its completion. The described mechanism allows to hide the DMA loading overhead, avoiding
contention in main memory and exploiting performance benefits deriving from SPM usage.

The work-flow followed by an applicative core and the I/O core at the boundary of each TDMA slot is depicted in

»

: DMA Unload

: DMA Load

: CPU Execution
: Empty Slot

: Don't Care

X~

Task's Priority

Partition #1

o Colour
Partition #2 Codes

l
0 1 2 3 4 5 6 7 8 9 10 1l 12 13 14 15 16 17 18 19 20 QOther Core

A

Figure 4.1: Scheduling CPU, DMA and local memory

12

Slots For sPM Core 1activity ~ Ready & active 1/0 Core activity during
Ccore1 of Core 1 queue of Core 1 TDMA slot of Corel

. Load t1 to Empty P1

Copy 11 to ready queue

Empty
Partition

Tell Core 1 to find T in P1

. To be loaded

ive Queue
\ . Load 12 to Empty P2
E:

Copy T2 to ready queue
Loaded and
Tell Core 1 to find 12 in P2 Ready

[I] Unload Partition (P1) .
J Running

Slot#4

[~ Actve Queve ~ |22 T) vreas
‘ ‘ . Load 13 to Empty P1

Copy 13 to ready queue

3
Tell Core 1 to find 13 in P1
8w | Load

Figure 4.2: Interaction between I/O Core and Core 1 for task scheduling.

Figure 2] Specifically, at each time slot, the I/O core checks the status of the queue of active tasks belonging to the
considered core. If a task that is active for execution but not ready (i.e. not relocated in scratchpad) is found, the I/O
core checks which SPM partition (P1 or P2) is empty on the application core. If any partition is found to be empty
(Slot #1), the I/O core programs the application DMA to load the topmost active task to the empty partition. Once
the load is complete, the I/O core updates the active and ready queues of the considered application core. The latter
operation allows the application core to begin the execution of the task (Slot #2). Note that since only one task can be

in running state on the CPU, there is always a SPM partition that is available for load/unload operations.

4.3 1/O Subsystem Design

Together with memory resources, applications typically need to communicate with peripherals and thus require I/O
data to operate. We propose an I/O subsystem design that enforces a complete separation between task execution and
the asynchronous activity of I/O peripherals: this goal is achieved by offering to application tasks a synchronous view
of I/O data. It is achieved by distinguishing between data production and their dispatch to/from tasks. In fact, we
allow I/O data to flow from/to I/O subsystem to tasks only at the boundary of load/unload operations.

As mentioned in Chapter [3] we assume that a dedicated bus connects the SPM of I/O core with peripherals.
Hence, asynchronous peripheral traffic can reach the I/O subsystem without interfering with task execution. For each
device used in the proposed system, the OS defines a statically positioned device buffer on the I/O core scratchpad. A
device buffer is further divided into a input device buffer and a output device buffer. The input (output) device buffer
represents the position in memory where data produced by devices (tasks) is accumulated before being dispatched to
tasks (devices).

In our design, peripheral drivers can operate with an interrupt-driven or polling mechanism. For DMA-capable

peripherals supporting interrupt-driven interaction, the driver only needs to specify the address in SPM of the device

13

buffer from/to where data are transferred. The driver is also responsible for updating device-specific buffer pointers to
prevent a subsequent data event from overwriting unprocessed data. For interrupt-driven interaction with non-DMA-
capable devices, the driver uses the platform peripheral DMA to perform data movement. Similarly, the device driver
is periodically activated and the peripheral DMA is used to perform data transfer for polling-based interaction with
devices.

In general, device-originated interrupts as well as timer interrupts for device driver activations are prioritized
according to how critical is the interaction with the considered device. Nonetheless, all the device-related events are
served with priority levels that are lower than task-scheduling events, such as: (i) TDMA slot timer events and (ii)
completion of application DMA loads/unloads.

In order to interface with a peripheral, application tasks define subscriptions to I/O flows. A subscription represents
an association between a task and a stream of data at the I/O device. For instance, a given task could subscribe for all
the packets arriving at a network interface with a specific source address prefix. Task subscriptions are metadata that
are stored within the task descriptor.

For each task in the system, a pair of buffers (for input and output respectively) is defined on the SPM of the
I/O core to temporarily store data belonging to subscribed streams. Since the content of these buffers will be copied
to/from the application cores upon task load/unload, we refer to them as task mirror buffers. Consider the arrival of
I/O data from a device. As soon as the interaction with the driver is completed, the arrived data is present in the
corresponding device buffer. According to task subscriptions, the OS is responsible for copying the input data to all
the mirror buffers of those tasks subscribed to the flow.

The advantage of defining mirror buffers lies in the fact that when a task needs to be loaded, all the peripheral
data that need to be provided are clustered in a single memory range. Consequently, during the loading phase of a
task, the application DMA is programmed to copy the content of the mirror input buffer together with task code and
data images to the application core. The reverse path is followed by task-produced output data during the task unload

phase.

14

Chapter 5

Implementation

In this chapter, we provide the details of SPM-centric OS implemented using a COTS platform that supports the

hardware assumptions described in chapter 4]

5.1 Architectural Overview of Considered Platform

The MPC5777M is a system-on-chip (SoC) produced by Freescale and represents the highest performing chip in
the MPC production line as of Q1 2016. A brief summary of the architectural features of the MPC5777M MCU is
provided in Table The chip includes four processors: two independent E200Z710 cores operating at 300 MHz,
a single 300 MHz delayed lockstep core and a single E200Z425 1/O core operating at 200 MHz. The two E200Z710
cores are part of the computational shell and are considered applicative cores, whereas the single E200Z425 is part of
the peripheral control shell and embeds an ISA extension for DSP operations as well as a floating point unit (FPU).
The I/0 core also represents the master core that is active at boot time and is responsible for performing the bootstrap
sequence for the rest of the system (peripherals and applicative cores). The core running in delayed lockstep mode
cannot be configured to run in decoupled parallel mode.

Each core features a private instruction cache (16 KB, 8KB on the master core). Also, a 4 KB data cache is
available on the applicative cores. Apart from local instruction and data caches, each core features independent fast
local memories (scratchpads) for instructions and data: [-RAM (16KB) and D-RAM (64KB). No memory translation
unit (MMU) is available on this platform; hence, no virtual memory can be defined. However, by using the MPU
(Memory Protection Unit), masters can be allowed/denied to access linear regions of physical memory. All the cores
present on the computational and peripheral control shell share a SRAM array of 404KB. Application cores can access
the SRAM directly through a high bandwidth XBAR switch that operates at a frequency of 200MHz. A separate and
slower XBAR is dedicated for transferring peripheral data to and from the I/O core. The slower XBAR operates at

100MHz.

15

Table 5.1: Characteristics of Freescale MPC5777M SoC

Chip Name MPC5777M (Matterhorn)
Manufacturer Freescale
Architecture Power-PC, 32-bit

. 2x E200-Z2710 + 1x E200-Z709 +
CPU Unit 1x E200-Z425 (1/O)
Processing Unit CPUs, DMA, Interrupt Controller, NIC
Operational Modes Parallel + Lockstep (on one applicative core)
ECC Protection Cache, RAM, Flash Storage
Cache Hierarchy L1 (Private Instructions + Data) +

Local Memory

Local Memory (SPMs) Instructions (16 KB) + Data (64 KB)
L1 Cache Size Instructions (16 KB) + Data (4 KB)
SRAM Size 404 KB
Flash Size 8 MB
Main Peripherals Ethernet, FlexRay, CAN, I12C, STUL

5.2 Preliminary Development Efforts

The proposed SPM-centric OS was implemented using Evidence Erika Enterprise{ﬂ Erika Enterprise is an open-
source RTOS that is compliant with the AUTOSARE] (Automotive Open System Architecture) standard. AUTOSAR
is an open standard for automotive architectures that provides an essential infrastructure for vehicular software. Erika
Enterprise OS features a small memory footprint, can run on multi-core platforms, and supports the definition of
periodic, preemptive tasks with both RM and EDF scheduling.

The default Erika OS implementation does not support the considered MPC5777M microcontroller. Therefore, the
first part of our implementation effort focused on setting up the required development environment. This included: (A)
installation and test-compilation using the WindRiver DIAB compiler; (B) instantiation of an experimental version of
RT-DRUID used internally at Evidence Erika Enterprise; (C) instantiation of an experimental Erika OS porting for the
MPC5777C (unfortunately, the direct porting to MPC5777M was not developed by Evidence). Finally, we performed
the duplication of architecture-specific resources to port Erika OS to the new MCUs.

Next, our implememtation efforts focused on porting the main functionalities of the OS that are architecture-
dependent. Specifically, we focused on: (A) adapting the boot sequence used for the MPC5777C to the differences
in the cores included in the MPC5777M platform; (B) rewriting the architecture-specific code to bootstrap the two
applicative cores (slaves) of the MCU from the master core (I/O core); (C) performing proper clock initialization
of the I/O subsystem and peripherals, with particular focus on the GPIO pads which can provide a visual feedback

of the operational state of the board and be used as a basic input/output mechanism; (D) configuring and assessing

'http://erika.tuxfamily.org/drupal/
Zhttp://www.autosar.org/

16

http://erika.tuxfamily.org/drupal/

the operational state of the System Timer Module (STM) that can be used to generate periodic interrupts and thus
the activation of tasks; (E) adding support for the Periodic Interrupt Timer (PIT) in order to support general timing
functionality within the task; and (F) rewriting the architecture-specific code to initialize and configure the Interrupt
Controller (INTC), which can be used to dispatch tasks on CPUs, as well as to perform inter-core communication.

The next step of our implementation focused on including functionalities that are required for the evaluation of
time-sensitive code and high-level debugging. Specifically, we performed: (A) the development of a basic driver for
the UART communication interface. A Print statement can be inserted in any section of the OS and in user-defined
tasks. The corresponding output then can be captured through a serial interface; (B) the development of the L1 cache
initialization code (for all the three cores) and assessment of timing behavior, in terms of: (1) time to execute cached
instructions and (2) the time to reference cached data; and (C) the timing behavior of local memories (scratchpads)
with respect to the baseline (timing for SRAM access). The results obtained in steps B and C are reported in the next
Chapter.

To deepen our understanding of the main memory bus (fast XBAR), we developed benchmarking code to syn-
thetically enforce a series of corner-case memory access patterns on applicative code and implemented performance
monitoring mechanism leveraging on the support introduced in the new Freescale E200Z425 and E200Z710 cores.
Using this mechanism made it possible to correlate runtime data from the benchmarks with measurement on their
resource usage. Specifically, each benchmark was able to produce data for the following metrics: the runtime in CPU
cycles; the number of executed instructions; the number of generated SRAM memory fetches for instructions (used
to estimate instruction cache misses); and the number of generated SRAM memory fetches for data (used to estimate
data cache misses). The results of these experiments are reported in the Evaluation chapter.

As a part of our implementation efforts, we also added the support of the high speed I/O device on the I/O core.
The main goal is to transition towards an I/O subsystem that aggregates peripheral events asynchronously one one
side, while synchronously transmitting peripheral data to and from applicative cores on the other side. Various high
bandwidth I/O peripherals exist within MPC5777M. These include the CAN adapter, the FlexRay adapter and the Fast
Ethernet Controller (FEC). For our implementation, we selected FEC as a suitable candidate since it is capable of data
transfers of upto 100Mbps. The Erika OS does not provide native support for the FEC. Therefore, as a preliminary
part of the development effort we added the support for FEC into the Erika OS. The functionality of the FEC module

was verified by transferring the data between a commodity laptop and the development board.

17

5.3 Implementation of SPM-Centric OS Using Erika Enterprise

From the results, provided in the Evaluation chapter it emerges that 3.5x speedup can be introduced on applicative tasks
if their code is executed from local memories (scratchpads 4AS see Figure . Since this is an extremely constrained
resource (16 KB for instructions, 64 KB for data), we propose a solution in which: (A) task images are permanently
stored in SRAM (or flash); (B) a dedicated DMA channel is used to move task images to and from the local memories
upon task activation; and (C) a secondary DMA channel is used to perform task-related transfers of I/O data from the
peripheral shell. This solution would allow the deployment of complex applicative code by exploiting the performance
benefits of local memories, while at the same time hiding their constrained size using advanced scheduling techniques
at OS-level as explained in the proposed OS design chapter.

In order to move the tasks images to and from SRAM to the local memories, we had to define position indepen-
dent (relocatable) tasks. The Erika OS by default does not support relocatable tasks. In order to generate position
independent tasks, we rely on compilelﬂ support for far-data and far-code addressing modes. In this way, tasks
are compiled to perform program-counter-relative jumps and indirect data addressing with respect to an OS-managed
base register. For basic implementation, we verified this by moving the tasks in and out of the SPM from and to the
SRAM using CPU. Once proper functionality of relocatable tasks was verified and tested, the task movement from in
and out of the SPM was extended using eDMA module.

Each relocatable task in our OS is assigned a set of specific metadata. These metadata allow the system software
to locate the data and code image of a relocatable task in SRAM. Moreover, they contain information about the status
of the task and its position in SPM (if already relocated). The code listing shows the structure with different feilds
containing this information. To move relocatable tasks at runtime and in parallel with respect to applicative CPU
activity from the main memory to scratchpad memory, we use the eDMA module.

Since there is only one eDMA module that can be used to move data on the behalf of two applicative cores, a
scheduling strategy is required. As discussed in Chapter 4, we have implemented TDMA based scheduling of the I/O.
Nevertheless, we believe that more efficient strategies can be investigated as a part of the future work. As described
in Figure 4.2 during a particular TDMA slot of a specific core either a load or an unload operation is performed. The
load operation includes movement of the code and data of a task from the SRAM to the SPM memory, whereas, the

unload operation only requires copy back of the task’s data from the SPM to the SRAM.

3 Applications and OS are compiled using the WindRiver Diab Compiler version 5.9.4 thttp://www.windriver.com/products/
development—-tools/

18

http://www.windriver.com/products/development-tools/
http://www.windriver.com/products/development-tools/

Listing 5.1: Metadata containing relocatable task definition

struct reloc_entry {
/x Base Register for program—counter—relative jumps and indirect data =/
EE_INT32 rl13val;
/+* Function pointer to the body of task x/
void (x funct) (void);
/% Unique id of the task in the system x/
unsigned int task_id;
/+x Flags for different options. One options is to transfer the task image
from/to SPM using eDMA or the CPU x/
EE_TYPELOADFLAGS flags;
/% Pointer to code location in the SPM where the code is loaded x/
void * code_loaded_at;
/x Pointer to data location in the SPM where the task is loaded x/
void * data_loaded_at;
/+* Pointer to code start and end location of a task in the SRAM x/
void * code_start;
void * code_end;
/+* Pointer to data start and end location of a task in the SRAM x/
void * data_start;

void * data_end;

5.4 Integrating I/0 to SPM-Centric OS

Together with memory resources, applications typically need to communicate with peripherals and thus require I/O
data to operate. We propose an I/O subsystem design that enforces a complete separation between task execution and
the asynchronous activity of I/O peripherals. This goal is achieved by offering application tasks a synchronous view
of I/O data. This is achieved by distinguishing between data production and their dispatch to and from tasks. In fact,
we allow I/0O data to flow from and to I/O subsystem to tasks only at the boundary of load/unload operations.

On MPC5777M, a dedicated bus connects the SPM of I/O core to peripherals. Hence, asynchronous peripheral

traffic can reach the I/O subsystem without interfering with task execution. For each device used in the proposed

19

Computational Shell 1/0 Shell

1/0 Core

Task 1 RX BUF

Task N RX BUF
Task 1 TX BUF
Task N TX BUF
Device RX BUF 0
Device RX BUF1
Device TX BUF 0
Device TX BUF 1

pue ao1A3p

siayng Jouw
Buuieuod NdS 0/l

yse}

Taskl ==--- TaskN
Ethernet
SRAM containing task’s local data

Figure 5.1: I/O SPM partition showing task and device buffers

system, the OS defines a statically positioned device buffer on the I/O core scratchpad. A device buffer is further
divided into a input device buffer and a output device buffer. The input (output) device buffer represents the position in
memory where data produced by devices (tasks) are accumulated before being dispatched to tasks (devices). Figure[5.1]
shows the partitioning of the I/O scratchpad. In particular, we have considered FEC device for our implementation.
However, the procedure for any I/O device will be same.

In our design, peripheral drivers can operate with interrupt-driven or polling mechanisms. For DMA- capable
peripherals supporting interrupt-driven interaction, the driver only needs to specify the address in the SPM of the
device buffer from orto where data are transferred. The driver is also responsible for updating device-specific buffer
pointers to prevent a subsequent data event from overwriting unprocessed data. For interrupt-driven interaction with
non-DMA-capable devices, the driver uses the platform peripheral DMA to perform data movement. Similarly, the
device driver is periodically activated and the peripheral DMA is used to perform data transfer for polling-based
interaction with devices.

In general, device-originated interrupts as well as timer interrupts for device driver activations are prioritized
according to how critical the interaction with the considered device is. Nonetheless, all the device-related events are
served with priority levels that are lower than task-scheduling events, such as the T DMA slot timer event and the
completion event of application DMA loads/unloads.

In order to interface with a peripheral, application tasks define subscriptions to I/O flows. A subscription represents
an association between a task and a stream of data at the I/O device. For instance, a given task could subscribe for
all the packets arriving at a network interface with a specific source address prefix. In order for a relocatable task to
subscribe to a I/O data, we have updated the metadata shown in Listing[5.1]to that in Listing [5.2] For each task in the

system, a pair of buffers (for input and output respectively) is defined on the SPM of the I/O core to temporarily store

20

data belonging to subscribed streams. Since the content of these buffers will be copied to and from the application

cores upon task load/unload, we refer to them as task mirror buffers. Consider the arrival of I/O data from a device.

As soon as the interaction with the driver is completed, the new data is present in the corresponding device buffer.

According to task subscriptions, the OS is responsible for copying the input data to all the mirror buffers of those tasks

subscribed to the flow.

Listing 5.2: Metadata containing relocatable task definition with I/O

struct reloc_entry {

/x Base Register for program—counter—relative jumps and indirect data =/
EE_INT32 rl13val;

/% Function pointer to the body of task x/

void (x funct) (void);

/x Unique id of the task in the system x/

unsigned int task_id;

/+x Flags for different options. One options is to transfer the task image
from/to SPM using eDMA or the CPU x/

EE_TYPELOADFLAGS flags;

/¥ Pointer to code location in the SPM where the code is loaded x/
void * code_loaded_at;

/+* Pointer to data location in the SPM where the task is loaded x/
void * data_loaded_at;

/% Pointer to code start and end location of a task in the SRAM x/
void * code_start;

void * code_end;

/+* Pointer to data start and end location of a task in the SRAM x/
void * data_start;

void * data_end;

/+* Contains the Input device buffer of the task in 1/0 SPMx/
unsigned int inpData;

/+x Contains the Output device buffer of the task in 1/0 SPM x/

unsigned int outData;

21

The advantage of defining mirror buffers lies in the fact that when a task needs to be loaded, all the peripheral data
that need to be provided are clustered within a single memory range. Consequently, during the loading phase of a task,
the application DMA is programmed to copy the content of the mirror input buffer together with task code and data

images to the applicative core. The reverse path is followed by task output data during the task unload phase.

5.5 Support For OS Configurator to Manage Relocatable Tasks

The traditional RTOSs lack support for relocatable tasks, same is the case with Erika OS. In the current implmentation
of Erika OS, the process of manually defining the relocatable tasks is relatively complex and extremely error-prone.
In fact, it is requires manual modifications in nine different files of the Erika source. In order to simplify this process,
we have implemented a basic OS configurator. The OS configurator takes in the input definition of as set of tasks
(one per file). Next, it generates Erika OS source files that contain the necessary logic and metadata to configure the
user-defined tasks as relocatable.

Specifically, in Erika OS, each core specifies two configuration files, named eecfg.h and eecfg. ¢, to describe
system related structures: the number of tasks, their priority, task entry points, the initial status and task chaining.
When adding relocatable tasks (and normal tasks) these files need to be configured accordingly. The body of all the
relocatable tasks configured in the system is defined in a custom file named reloc_tasks.c. The implemented
tool is responsible for merging the body of all the user-defined tasks inside the mentioned file.

For linking purposes, the data addressed by the relocatable tasks are defined in a different file namely
reloc_tasks.h and surrounded with appropriate compiler-specific PRAGMAs. This is fundamental to ensure
that: (A) task-specific data are placed in the correct linker section, and (B) that the code referring to these data uses
position-independent addressing. The latter file also contains the definition of the relocatable task table which holds
the status of each relocatable task as shown in Listing

Finally, appropriate sections to place data and code for tasks need to be added in the linker script for the I/O core
only. For a 3-core system like the one considered in our implementation, a total of nine files need to be updated upon
task configuration change. The developed tool is able to perform this operation automatically upon modification of

any of the user-defined tasks.

5.6 Example Showing The Process of Defining Relocatable Tasks

Each core in the Erika OS runs its own RM scheduler and a separate copy of the OS. As mentioned before, the Erika
OS does not have the support of the relocatable tasks, so adding the support for the relocatable tasks is one of the main

contributions of this work. Basically, each core has its own main file that defines the main for each core. The name

22

of these files for our current implementation are defined as master.c, app_corel.c and app_core2.c. The
file master.c belongs to the I/O core, whereas app_corel.c and app_core?2. c belong to the applicative core one
and applicative core two respectively. The main file for each core also includes two configuration files named eecfg.h
and eecfg.c. These files contain system related structures such as: the number of tasks, their priority, task entry points,
the initial status and task chaining. As mentioned before, the relocatable tasks are defined in a custom file named
reloc_tasks.c. However, the reloc_tasks.c and reloc_tasks.h files are populated with the definition
of the task, which is defined separately in a file named taskX.c, where X is the number of task.

As an example we will show the different steps associated with integrating the taskX.c file for two tasks on one
of the applicative core. The process is same for both applicative core. At first the tasks, along with their body and
other parameters such as priority, taskID, corelD, stack and global variables is defined in the separate taskX.c file. For
a two-task system, we define two seperate files named task1.c and task2.c. These two files are shown in Listings[5.3|
and [5.4] From the Listings[5.3]and [5.4] we can see that each parameter of the task is encoded with /* and ends with
*/. This is done to help the OS configurator find out the begining and end of various parameters.

The files shown in Listings and are read by the OS configurator as part of the make process. The OS
configurator reads each unique taskX.c file and merges it to generate reloc_tasks.c and reloc_tasks.h
files. For this example the OS configurator generated reloc_tasks.c and reloc_tasks.h files that contain
definitions of all the relocatable tasks as shown in Listings [5.5]and [5.6] The file reloc_tasks.h also shows the
updated structure reloc_entry defined as reloc_table[RELOCTASKS]. In our example RELOCTASKS is
defined as 2, since we only have two relocatable tasks. This reloc_entry structure shown in reloc_tasks.h
is same as the one shown in Listing [5.2] We can clearly see how the structure reloc_entry is filled based upon
the various parameters of the task. The reloc_table is used by the TDMA schduler running on the I/O core to

program the eDMA module to move the tasks in and out of the SPM.

23

Listing 5.3: taskl.c

/% @name: _test_one */
/x @core: 1 x/

/x @prio: 1 %/

/x @stack: 128 x/

/% Body x/

int i = 0, count = 50UL;
actcountl ++;
global_var = 1111;

for (i=0; i<count; ++i) {

++relvar;
}
arloc [0] = 1;
urelvar = 1;
ttl ();

}
/x Variables x/

int relvar = 0;

int arloc[2] = {0, 0};
int urelvar;

int actcountl = 0;

/x End x/

24

/% @name: _test_two */

/x @core: 1 %/

/x @prio: 2 x/

/% @stack: 128 x/

/% Body x/

int i = 0,
actcount2 ++;
global_var = 2222;
for (i=0; i<count;

++t2_a;

)
=
I

\‘[\)

ttl ();
}
/+x Variables x/
int t2_a = 0;
int t2_b;
int t2_c;
int actcount2 = 0;

/x End x/

count =

Listing 5.4: task2.c

50;

++i) |

25

Listing 5.5: reloc_tasks.h

#ifndef _ RELOC_TASKS_HEADER__

#define _ RELOC_TASKS_HEADER__

/x Definitions of functions for the dynamic loader x/
int load_task (int taskid);

void unload_task (int taskid);

int start_task (int taskid);

int load_start_task ();

/x Variables for Task: _test_onex/
extern void * reloc_test_one_cstart;
extern void * reloc_test_one_cend;
extern void * reloc_test_one_istart;
extern void x reloc_test_one_uiend;
/x Variables for Task: _test_two x/
extern void x reloc_test_two_cstart;
extern void * reloc_test_two_cend;
extern void * reloc_test_two_istart;
extern void * reloc_test_two_uiend;
#if EE CURRENTCPU == 0

#pragma option —Xsmall—data=0
#pragma option —Xsmall—const=0

/+* Definition for Relocatable task: _test_one x/

#pragma section DATA "reloc_test_one_init" "reloc_test_one_uinit"
int relvar = 0;

int arloc[2] = {0, 0};

int urelvar;

int actcountl = 0;

#pragma section CODE "reloc_test_one_code" far—code

DeclareTask (_test_one);
/x Definition for Relocatable task: _test_two x/

"

#pragma section DATA "reloc_test_two_init" "reloc_test_two_uinit"

26

far—data

far—data

Listing 5.5 reloc_tasks.h (cont’d)

int t2_a = 0;

int t2_b;

int t2_c;

int actcount2 = O;

#pragma section CODE "reloc_test_two_code" far—code
DeclareTask (_test_two);
#define RELOCTASKS 2

struct reloc_entry reloc_table [RELOCTASKS] = {

{
0, /* R13 reg val at load—filled by loader =x*/
Func_test_one , /+ Task entry point %/
10L, /+ task ID %/

LOAD_ASYNC | LOAD DMA, /+ load flags x*/

0, /* code load location — filled by loader =/
0, /+ data load location — filled by loader =x/
&reloc_test_one_cstart , /+ beginning of task code =x/
&reloc_test_one_cend , /+ end of task code =x/
&reloc_test_one_istart , /* beginning of task data =x/
&reloc_test_one_uiend , /+ end of task data =x/
TASKO_RXDATA, /+ begginning of task I/0O data =/
TASKO_TXDATA, /+ begginning of task I/O data =/

}s

{
0, /* R13 reg val at load—filled by loader =x/
Func_test_two , /+ Task entry point x/
2UL, /+x task ID %/

LOAD_ASYNC | LOAD DMA, /% load flags =x/

0, /+ code load location — filled by loader =x/
0, /+ data load location — filled by loader =/
&reloc_test_two_cstart , /+ beginning of task code x*/
&reloc_test_two_cend , /* end of task code =x/

27

Listing 5.5 reloc_tasks.h (cont’d)

&reloc_test_two_istart , /x

&reloc_test_two_uiend , /x

TASKI1_RXDATA,
TASKI1_TXDATA,

/+ beginning

/+ beginning

28

beginning of task data x/
end of task data =x/
of task I/O data x/
of task I/O data x/

Listing 5.6: reloc_tasks.c

#include "reloc_tasks.h"
#if EE_CURRENTCPU ==
extern int global_var;
unsigned char EE_SHARED_IDATA (% ttO) (void) = TerminateTask;
unsigned char EE SHARED UDATA (x ttl) (void);
unsigned char EE SHARED UDATA (x tt2) (void);
/x START of relocatable task definition x/
DeclareTask (_test_one) {

int i = 0, count = 50UL;

actcountl ++;

global_var = 1111;

for (i=0; i<count; ++i) {

++relvar;
}
arloc [0] = 1;
urelvar = 1;
tel ()

}

DeclareTask (_test_two) {
int i = 0, count = 50;
actcount2 ++;
global_var = 2222;

for (i=0; i<count; ++i) {

++t2_a;
}
t2_. b = 2;
t2_¢c = 1;
tel ()

29

Chapter 6

Evaluation

To validate the proposed design and implementation, we performed a series of experiments, whose results are sum-
marized in this section. First we investigate the overhead of SPM management. Next, we consider the performance
and predictability benefits of our approach with synthetic as well as real benchmarks. The achievable I/O bandwidth

supported by our design is also measured. Finally, we investigate the schedulability results of the proposed strategy.

6.1 SPM-Centric OS Overhead Evaluation

A crucial parameter of the proposed system is the size of the TDMA slot. This should be long enough to allow the
completion of a load (or unload) operation for the task with the largest footprint in the system. However, in order to
derive an upper-bound, we assume that a task footprint is constrained by the size of an SPM partition. Thereby, we
measured the time to copy from/to half SPM (one partition) of an applicative core and derive the TDMA slot size
accordingly. The results are reported in Table [6.1]

The application DMA needs to be programmed by the I/O Core to perform task relocation. Hence, DMA pro-
gramming time represents an overhead introduced by our design. The time required to program the DMA has been
measured and is reported in Table [6.1] Similarly, Table [6.1] reports the measured context-switch overhead of the

implemented scheduler.
Table 6.1: Details of OS Parameters

Parameter Time (us)
Partition load time 432
Partition unload time 432
DMA setup 3.16
Context switch 0.46

6.2 Results of Achievable I/0 Bandwidth

The performance of the proposed I/O subsystem (see Section[d.3)) depends on the frequency of load/unload operations.

In order to measure the achievable I/O bandwidth of the proposed design, we have implemented support for the

30

onboard Fast Ethernet Controller (FEC). The FEC is capable of transmitting data at the highest bandwidth among all
the devices of the considered MCU. Hence, it represents the best /O component to stress-test our design.

We have connected the FEC to an external node which generates constant-rate traffic. Specifically, the traffic
source generates a 1 KB packet every 100 ps (1000 Hz, about 82 Mb/s). The payload of each packet contains a
flow-ID chosen from 4 different values in round-robin. On used MCU, each applicative core runs two tasks that
have subscribed to I/O data flows based on packets’ flow-IDs. Device buffers and task (mirror) I/O buffers have been
dimensioned to accommodate a single packet per task, with an overwrite policy.

With this setup, we have derived the raw achievable bandwidth considering two different values of TDMA slot
size. Specifically, we measured the data rate of packets that are processed and looped back on the network interface
using the Wireshark packet analyzelﬂ Our experiments revealed an achievable bandwidth for the outgoing traffic of
4 Mb/s with a TDMA slot of 800 ps, and 8 Mb/s with a TDMA slot of 400 ps. Although this represents a fraction
of the physically available bandwidth (100 Mb/s), being able to sustain a bandwidth higher than 1 Mb/s constitutes a

promising result given that the platform operates at a clock frequency of few hundred Hz.

6.3 Results of Synthetic Benchmarks

We investigate the performance of SPM-based execution as opposed to a traditional execution model. For this purpose,
we have developed a set of synthetic benchmarks that exhibit different memory access patterns. Figure[6.1]depicts the
runtime for such benchmarks on one of the two applicative cores. The first cluster of bars refer to the runtime of the
benchmark that exhibits good data locality. Hence, when it is executed from SRAM, caches are effective at hiding
SRAM access latency and significantly reduce task execution time. The next two clusters of bars show that misses
suffered for only instruction fetches or only data fetches already induce a significant execution slowdown (around
2x). The need for accessing SRAM data also introduces runtime fluctuation (about 25%) as a result of inter-core
interference. Such effect becomes even more severe with applicative code that experiences misses while accessing
both instructions and data. If the cost of accessing SRAM memory together with the slowdown due to inter-core
interference are considered, an overall 3.5x slowdown is experienced when compared to what has been observed in
the ideal case (100% cache hits). Finally, notice that if a task is able to entirely execute from scratchpad, its execution
time is comparable to the ideal case and inter-core interference is prevented. These results are a strong motivation to

best use available scratchpads in order to improve performance and avoid inter-core interference.

31

Synthetic benchmark execution time: SPM vs. SRAM

[[[
| | 1 Active Core IS
% |
o . . .
S ; ; ;
S 400l |
o)
S
= ;
=
100 -
0 4 4 / &
o & & & %,
%o %% %% %% %,
% %, %> %S o
XY X
Benchmarks

Figure 6.1: Experimental execution time for synthetic benchmarks.
6.4 Results of EEMBC Benchmarks

Next, we investigate the behavior of EEMBC benchmarks on the selected platform. For this purpose, we have ported
and measured the execution time of the full suite of automotive EEMBC benchmarks under two scenarios: traditional
contention-based execution from SRAM and the proposed SPM-based execution. The results of normalized execution
times are shown in Figure[6.2] From the results, we note that computation intensive benchmarks do not benefit from
SPM-based execution. Conversely, for memory intensive benchmarks SPM-based execution determines substantial
speed-ups (up to 2.1x).

Table [6.2] shows the execution time of the full suite of EEMBC automotive benchmarks. Furthermore, Table
also provides the footprint size of the considered benchmarks. It can be noted that all the considered benchmarks fit

into a single scratchpad partition. These results validate the applicability of the proposed design in real scenarios.

https://www.wireshark.org/

32

https://www.wireshark.org/

Normalized Time

EEMBC benchmark execution time: SPM vs. SRAM

I I I I I I I
25 | SPM mmmm |
' Contention Based SRAM
.| . . : : : : : .
186 i -
1+ B
05 %, . 2, L %y Cs b Mo O S e s Q)
W) v} 0/ (\y //>’ () // % (4 7R 7/
og Ty T, Vg g T Ty %o, % 2 %% % O
Benchmarks

Figure 6.2: Experimental execution time for EEMBC benchmarks.

Table 6.2: Details of EEMBC Benchmarks.

Benchmark | SPM | SRAM | Code Size | Relocatable | Data Size
Time | Time (bytes) Code Size (bytes)
(us) | (ps) (bytes)

tblook 1013 1015 1804 1892 10516
matrix 1053 1054 4430 4774 4488
a2time 1002 1029 2175 2538 1704
pntrch 1036 1145 1000 1398 4924
ttsprk 383 425 4124 4772 8160
iirflt 1040 1189 3288 3512 1000

canrdr 1009 1359 1370 1562 12440
bitmnp 990 1389 3152 3282 1116

rspeed 1012 1457 710 1208 13212
puwm 1036 1540 1716 2500 2412
aifirf 1005 1564 1554 2286 1552
aifftr 916 1642 3720 4458 8448
aiifft 1170 2092 2796 3540 9224
idct 1045 2126 4498 4690 244

6.5 Schedulability Analysis

For the schedulability evaluation of our approach, we compare our system against the contention-based system, in

which cores use caches but are left unregulated when accessing main memory. Standard response time analysis is

applied on both our system and the contention-based system for the same simulated workload. We have considered

33

1.0 T
S — Contention
N - - Our approach
® \
0.8} \
\
\
\
=)
o— \
o 06 \\
L \
> ‘\
8 \
\
c 04f \
O \
\
(D \
\
\
0.2+ \
\
\\
N
0.0t ‘ ‘ ‘ ‘ —= ‘
0.5 0.6 0.7 0.8 0.9 1.0

Utilization
Figure 6.3: Schedulability with SPM-based and traditional scheduling models.

the applications in Table [6.2]to generate sets of random tasks (workloads). Given a system utilization, each application
is randomly selected and assigned a random period in the range between 10 ms to 100 ms. The task’s utilization is
then computed based on the measured execution time of each application and its selected period. At every iteration
a new task is randomly generated. The generation stops when the sum of the individual tasks’ utilizations reaches
the required system utilization. After that, the overhead is added, such as context-switch and DMA setup. For the
contention-based system, the execution times reported in SRAM column in Table[6.2] are used to represent the worst-
case execution time including the contention overhead.

Figure [6.3]shows the result of the schedulability analysis when using the proposed SPM-centric OS versus a
contention based SRAM system. The figure shows the results in terms of proportion of schedulable task sets for both
approaches. Each point in the graph represents 1000 task sets. The results show that the schedulability of the system
increases significantly when the proposed SPM-centric approach is used. Hence, the described SPM-centric OS not
only improves the predictability of task execution, but it also improves task set schedulability by hiding the main

memory access latency, especially for memory intensive applications.

34

Chapter 7

Conclusion

In this thesis, we presented a novel OS design, namely SPM-centric OS. Proposed SPM-centric OS aims at providing
predictability for hard real-time applications on multi-core embedded systems. In order to achieve this goal, we
combined resource specialization, high-level scheduling of shared hardware resources as well as a three-phases task
execution model. Theoretical results on how to perform schedulability analysis of the proposed scheduling strategy
were presented. A complete implementation using a commercially available multi-core platform was also performed
to assess the feasibility of our design.

Finally, in order to validate proposed OS design, we have combined experimental results from synthetic and au-
tomotive EEMBC benchmarks on the considered platform. In addition to the strong temporal predictability achieved
by enhancing inter-core isolation, we are able to exploit the performance benefits of scratchpad memories. Hence, a
schedulability improvement over traditional contention-based approaches was obtained. As part of our future work on
SPM-centric OS, we plan to investigate the following aspects: support for task preemption, inter-process communica-

tion, and compliance with standard application interfaces (e.g. AUTOSAR, POSIX).

35

References

[1] FAA position paper on multiAAR—core processors, CASTAAR32 (rev 0). |http://www.faa.gov/
aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/
cast8AR32.pdfl Accessed: 2015-01-26.

[2] Software techniques for scratchpad memory management. http://memsys.io/wp-content/
uploads/2015/09/p98-sebexen.pdf. Accessed: 2015-01-26.

[3] Bai, Ke and Lu, Jing and Shrivastava, Aviral and Holton, Bryce. CMSM: an efficient and effective code manage-
ment for software managed multicores. In Hardware/Software Codesign and System Synthesis (CODES+ ISSS),
2013 International Conference on, pages 1-9. IEEE, 2013.

[4] E. Betti, S. Bak, R. Pellizzoni, M. Caccamo, and L. Sha. Real-time I/O management system with COTS periph-
erals. Computers, IEEE Transactions on, 62(1):45-58, 2013.

[5] D.Bui, E.A. Lee, I. Liu, H. Patel, and J. Reineke. Temporal isolation on multiprocessing architectures. In Design
Automation Conference (DAC), pages 274 — 279, June 2011.

[6] S. Chattopadhyay, A. Roychoudhury, J. Rosén, P. Eles, and Z. Peng. Time-predictable embedded software on
multi-core platforms: Analysis and optimization. Foundations and Trends in Electronic Design Automation,
8(3-4):199-356, July 2014.

[7] Deverge, J-F and Puaut, Isabelle. WCET-directed dynamic scratchpad memory allocation of data. In Real-Time
Systems, 2007. ECRTS’07. 19th Euromicro Conference on, pages 179-190. IEEE, 2007.

[8] Durrieu, G. and Faugere, M. and Girbal, S. and Pérez, D. G. and Pagetti, C. and Puffitsch, W. Predictable flight
management system implementation on a multicore processor. ERTSS 14, 2014.

[9] Falk, H. and Kleinsorge, J. C. Optimal static WCET-aware scratchpad allocation of program code. In Proceed-
ings of the 46th Annual Design Automation Conference, pages 732-737. ACM, 2009.

[10] David Geer. Chip makers turn to multicore processors. Computer, 38(5):11-13, May 2005.

[11] Girbal, S. and Jean, X. and Le Rhun, J. and Perez, D. G. and Gatti, M. Deterministic platform software for hard
real-time systems using multi-core COTS. In Digital Avionics Systems Conference (DASC), 2015 IEEE/AIAA
34th, pages 8D4—1. IEEE, 2015.

[12] Jean, X. and Faura, D. and Gatti, M. and Pautet, L. and Robert, T. Ensuring robust partitioning in multicore
platforms for ima systems. In Digital Avionics Systems Conference (DASC), 2012 IEEE/AIAA 31st, pages 7TA4—
1. IEEE, 2012.

[13] L. Li, L. Gao, and J. Xue. Memory coloring: A compiler approach for scratchpad memory management. In
Farallel Architectures and Compilation Techniques, 2005. PACT 2005. 14th International Conference on, pages
329-338. IEEE, 2005.

[14] Lu, J. and Bai, K. and Shrivastava, A. SSDM: smart stack data management for software managed multicores
(SMMs). In Proceedings of the 50th Annual Design Automation Conference, page 149. ACM, 2013.

36

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast‐32.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast‐32.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast‐32.pdf
http://memsys.io/wp-content/uploads/2015/09/p98-sebexen.pdf
http://memsys.io/wp-content/uploads/2015/09/p98-sebexen.pdf

[15] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time cache management
framework for multi-core architectures. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2013 IEEE 19th, pages 45-54. IEEE, 2013.

[16] R.Mancuso, R. Pellizzoni, M. Caccamo, Lui Sha, and Heechul Yun. WCET(m) estimation in multi-core systems
using single core equivalence. In Real-Time Systems (ECRTS), 2015 27th Euromicro Conference on, pages 174—
183, July 2015.

[17] S. Metzlaff, I. Guliashvili, S. Uhrig, and T. Ungerer. A dynamic instruction scratchpad memory for embedded
processors managed by hardware. In Architecture of Computing Systems-ARCS 2011, pages 122—-134. Springer,
2011.

[18] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A predictable execution model
for COTS-based embedded systems. In Proceedings of the 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS ’11, pages 269-279, Washington, DC, USA, 2011. IEEE Computer Society.

[19] I. Puau and C. Pais. Scratchpad memories vs locked caches in hard real-time systems: a quantitative comparison.
In Design, Automation & Test in Europe Conference & Exhibition, 2007. DATE 07, pages 1-6. IEEE, 2007.

[20] Bryan Schauer. Multicore processors—a necessity. ProQuest discovery guides, pages 1-14, 2008.

[21] Suhendra, Vivy and Roychoudhury, Abhik and Mitra, Tulika. Scratchpad allocation for concurrent embedded
software. ACM Transactions on Programming Languages and Systems (TOPLAS), 32(4):13, 2010.

[22] Takase, H. and Tomiyama, H. and Takada, H. Partitioning and allocation of scratch-pad memory for priority-
based preemptive multi-task systems. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2010, pages 1124-1129. IEEE, 2010.

[23] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange, E. Quinones, M. Gerdes, M. Paolieri,
J. Wolf, H. Casse, S. Uhrig, I. Guliashvili, M. Houston, F. Kluge, S. Metzlaff, and J. Mische. MERASA:
Multicore execution of hard real-time applications supporting analyzability. IEEE Micro, 30(5):66-75, 2010.

[24] S. Wasly and R. Pellizzoni. A dynamic scratchpad memory unit for predictable real-time embedded systems. In
Real-Time Systems (ECRTS), 2013 25th Euromicro Conference on, pages 183—192. IEEE, 2013.

[25] S. Wasly and R. Pellizzoni. Hiding memory latency using fixed priority scheduling. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2014 IEEE 20th, pages 75-86. IEEE, 2014.

[26] J. Whitham and N.C Audsley. Explicit reservation of local memory in a predictable, preemptive multitasking
real-time system. In Real-Time and Embedded Technology and Applications Symposium (RTAS), 2012 IEEE
18th, pages 3—12. IEEE, 2012.

[27] J. Whitham, R.I. Davis, N.C. Audsley, S. Altmeyer, and C. Maiza. Investigation of scratchpad memory for
preemptive multitasking. In Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd, pages 3—13. IEEE, 2012.

[28] Wilding, M. M. and Hardin, D. S. and Greve, D. A. Invariant performance: A statement of task isolation useful
for embedded application integration. In dcca, page 287. IEEE, 1999.

[29] J. Wolf, M. Gerdes, F. Kluge, S. Uhrig, J. Mische, S. Metzlaff, C. Rochange, H. Cassé, P. Sainrat, and T. Ungerer.
RTOS support for parallel execution of hard real-time applications on the MERASA multi-core processor. In
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), 2010 13th IEEE International
Symposium on, pages 193-201. IEEE, 2010.

[30] H. Yun, R. Mancuso, Z.P. Wu, and R. Pellizzoni. PALLOC: DRAM bank-aware memory allocator for perfor-
mance isolation on multicore platforms. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2014 IEEFE 20th, pages 155-166. IEEE, 2014.

[31] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory bandwidth reservation system for
efficient performance isolation in multi-core platforms. In Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), 2013 IEEE 19th, pages 55-64. IEEE, 2013.

37

	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Related Work
	Chapter 3 System Model and Assumptions
	Scratchpad Memories
	DMA Engines
	Dedicated I/O Bus
	Memory Organization
	Task Model

	Chapter 4 Proposed OS Design
	Overview
	Scratchpad and CPU Co-scheduling
	I/O Subsystem Design

	Chapter 5 Implementation
	Architectural Overview of Considered Platform
	Preliminary Development Efforts
	Implementation of SPM-Centric OS Using Erika Enterprise
	Integrating I/O to SPM-Centric OS
	Support For OS Configurator to Manage Relocatable Tasks
	Example Showing The Process of Defining Relocatable Tasks

	Chapter 6 Evaluation
	SPM-Centric OS Overhead Evaluation
	Results of Achievable I/O Bandwidth
	Results of Synthetic Benchmarks
	Results of EEMBC Benchmarks
	Schedulability Analysis

	Chapter 7 Conclusion
	References

