
c© 2016 Mengqi Gu

A CHARACTERISTIC STUDY OF PERFORMANCE BUGS IN
APPLICATION-DATABASE INTERACTIONS

BY

MENGQI GU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Associate Professor Tao Xie

ABSTRACT

Environmental interactions (e.g., file I/O, network communication, database

querying) are common bottlenecks of software applications. These interac-

tions are also prone to performance bugs because developers may not un-

derstand the performance implication of the information sent to or from the

environment (e.g., a database query sent to a database or a result set returned

from the database). As a result, the performance bugs can further magnify

the bottlenecks. Understanding the characteristics of these performance bugs

is crucial for developers and testers to better address performance problems.

Such understanding also provides guidance for researchers and tool vendors

to develop effective tool support. However, there has been no study for un-

derstanding such characteristics in real-world software.

To fill this gap, in this thesis, we present the first empirical study of bug

reports for database-related performance bugs collected from popular real-

world open-source projects (i.e., BugZilla, DNN , Joomla! , MediaWiki , Word-

Press , Simple Machines , and Roundcube). We study common optimization

opportunities, types of database-related performance bugs, and difficulties of

fixing these bugs. Among the studied bug reports, we identify nine common

bug types and seven common fix strategies. We also observe that bugs of cer-

tain types require more effort to diagnose and fix. Furthermore, we identify

various opportunities for tool support to identify and diagnose these bugs.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

I would especially thank my adviser, Associate Professor Tao Xie, for his

support and guidance. I would also acknowledge the contribution from two

teammates that I have been working with on this project. Xiao (Lester) Yu

and Wei Yang were the initial members when this project started. They

structured the preliminary conceptual framework of this study. Xiao and

Wei also contributed during the bug report investigation. I would like to

Xiao and Wei for their help and support.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 MOTIVATING EXAMPLES 4

CHAPTER 3 METHODOLOGY . 7
3.1 Subjects . 7
3.2 Analysis Process . 8

CHAPTER 4 RESULTS AND ANALYSIS 10
4.1 Terminology . 10
4.2 RQ1: Bug Categorization . 13
4.3 RQ2: Fix Strategies . 21
4.4 RQ3: Time and Developers 27
4.5 Threats To Validity . 30

CHAPTER 5 RELATED WORK . 31

CHAPTER 6 CONCLUSION . 33

REFERENCES . 34

v

CHAPTER 1

INTRODUCTION

A large number of popularly used software applications need to store and

process data produced or consumed by users. For example, web applications

typically store data such as user information and usage data. Software ap-

plications commonly use databases as the back-end of data processing and

storage. Such software applications are referred to as database applications.

Performance of database applications is critical for their success because it

can directly affect the user experience. Web database applications can lose

users if the applications cannot efficiently load web pages. Online transaction

systems may not be able to process enough transactions if their databases suf-

fer from performance problems. These performance problems can also crash

the applications and affect the daily lives of thousands or millions of users.

For example, after the initial deployment of the Obamacare website Health-

care.gov, consumers suffered “widespread performance issues when trying to

create accounts and enroll in health plans,” according to the official report

released by the U.S. Government Accountability Office [1]. The report also

indicated that various critical software defects were identified from the main

system, whose core is a transactional database.

Performance bottlenecks of database applications can be attributed to two

main aspects. First, the database management systems (DBMS) itself can be

decisive to the overall application performance. The database research com-

munity has been addressing the performance issues in DBMSs for many years,

e.g., by improving storage systems [19] and leveraging GPU powers [10, 18].

On the other hand, database administrators are also equipped with the prac-

tical knowledge of tuning DBMS instances to run in optimal configurations.

Second, the application-database interactions can be another major source

of performance bottlenecks. For example, query instances and database

result-set instances are commonly transferred over the network. As the size

of an instance or the number of these instances increases, increased network

1

overheads are incurred. This problem is exacerbated when the result-set in-

stances are large: it may require more time for the database to prepare and

for the application to process the results.

By investigating bug reports, we observe an alarming fact that many per-

formance problems in database applications are caused by performance bugs

of the second aspect: application database interactions. As a result, these

bugs further increase the bottlenecks of the interactions. Following a previous

convention [9], performance bugs are defined as software defects where cer-

tain changes of source code can significantly speed up software. Although the

previous convention also specifies that these changes should preserve func-

tionality, our observation indicates that for a non-trivial number of perfor-

mance bug reports, the accepted fixes do modify functionality. Performance

bugs can be introduced when developers are implementing interactions (e.g.,

queries, schema designs) between an application and a DBMS. We refer to

these kinds of bugs as database-related performance bugs.

Understanding the characteristics of database-related performance bugs

can greatly benefit developers, testers, researchers, and tool vendors. First,

developers can understand what types of application-database interactions

are more prone to database-related performance bugs. This understanding

can provide guidance for developers to avoid, diagnose, and fix these bugs.

Second, testers can understand what types of input are more likely to trigger

database-related performance bugs, and thus they can more effectively test

against such bugs. Third, researchers and tool vendors can gain a deep

understanding of the bug characteristics to produce new solutions of tool

support to detect or fix database-related performance bugs.

However, there has been no characteristic study of database-related per-

formance bugs. Worse still, findings from previous studies [9, 14] of general

performance bugs are not applicable to database-related performance bugs.

Database applications use a Data Manipulation Language such as SQL to-

gether with application programming languages to interact with databases.

Studying such interactions requires studying multiple programming languages

together. Existing techniques and studies focus on applications written in

one single programming language. Furthermore, critical performance-related

information from the database side can be hidden behind the database in-

terface. These characteristics of database applications are unique and may

not be observed among general performance bugs.

2

To address this issue of lacking a characteristic study, we present the

first empirical study of database-related performance bugs in open-source

database applications. This study covers 183 database-related performance

bugs collected from seven popular real-world open-source database applica-

tions: BugZilla, DNN , Joomla! , MediaWiki , WordPress , Simple Machines ,

and Roundcube. Note that the number of real-world performance bugs (183)

in our study is comparable with the number of real-world bugs studied in

other state-of-the-art empirical studies (e.g., in the study published in a

PLDI 2012 paper [9], Jin et al. studied 109 real world general performance

bugs), and studying each bug report consumes many man hours. Given the

common belief that optimization opportunities may commonly exist in the

design and implementation of application-database interactions, we address

three main research questions through our study:

• RQ1: What are common categories of database-related performance

bugs?

• RQ2: What are common fix strategies of database-related performance

bugs?

• RQ3: How much time elapses and how many developers are involved in

the discussion before a category of database-related performance bugs

is fixed?

Identifying common types or fix strategies of database-related performance

bugs can provide guidance for detecting and fixing database-related perfor-

mance bugs. The elapsed time and involved developers can suggest the diffi-

culty of fixing a category of database-related performance bugs. It can also

suggest the priority of allocating bug-fixing efforts and resources.

This thesis makes the following major contributions:

• We conduct the first empirical study of bug reports for database-related

performance bugs collected from popular real-world open-source database

applications.

• We identify common categories of database-related performance bugs

along with fix strategies and fix difficulties for these bugs. Such find-

ing can provide guidance for avoiding and diagnosing database-related

performance bugs, and for research in tool support for detecting and

fixing these bugs.

3

CHAPTER 2

MOTIVATING EXAMPLES

Real-world database-related performance bugs are very diverse in their causes.

Such diversity reflects the intrinsic complexity in the implementation of

application-database interactions. As missing indexes from database schema

is well known to cause slow queries, there are other causes that are more

complex and more difficult to diagnose.

On the application side, the implementation of application logic should

take into account the potential performance impact from the application’s

database interactions. Figure 2.1 shows a simplified code snippet extracted

from the patch for BugZilla #286625 (BugZilla is implemented in Perl, with

MySQL as its database back-end). The original code contains a performance

bug that executes queries inside a nested loop to obtain the status and reso-

lution for each bug entity (to avoid confusion, we use “bug entity” to refer to

a bug managed and stored in the BugZilla database). This implementation is

functionally correct according to the application logic. However, the imple-

mentation can submit too many query instances to the back-end database,

causing significant overheads in processing query instances and transferring

data.

The fix for this bug is to reduce the number of query instances by obtain-

ing and storing the status and resolution information for all the bug entities

beforehand in one query. Later, each loop iteration reads the stored infor-

mation instead of querying the database repeatedly. After the fix, this code

snippet “take[s] minutes instead of hours or days,” according to the discus-

sion in the bug report. Note that the developers mis-diagnosed the problem

at first and it took years before this bug was finally fixed.

On the database side, an improper combination of schema design and

query instances can result in significant performance loss. Such problems can

reflect a certain level of information hiding, which is rooted from developers’

not knowing how a database handles the application-database interactions

4

Before fix

for (my $day = $start + 1; $day <= $end; $day++)

for my \$bug (@bugs)

my $status = $dbh->selectrow_array($sth_bug, undef, $bug,

’bugStatus’);

my $resolution = $dbh->selectrow_array($sth_bug, undef, $bug,

’resolution’);

After fix

my (%bugStatus, %bugResolution);

%bugResolution = {$dbh->selectcol_arrayref(’SELECT bugId,

resolution FROM bugs’, {Columns=>[1,2]}) };

%bugStatus = {$dbh->selectcol_arrayref(’SELECT bugId, bugStatus

FROM bugs’, {Columns=>[1,2]})};

for (my $day = $start + 1; $day <= $end; $day++)

for my \$bug (@bugs)

use_data_structure(%bugStatus, %bugResolution);

Figure 2.1: BugZilla #288625 (Simplified)

Before fix

CREATE TABLE IF NOT EXISTS ’#__associations’ (’id’ varchar(50) NOT

NULL, ...)

After fix

CREATE TABLE IF NOT EXISTS ’#__associations’ (’id’ INT(11) NOT

NULL, ...)

Figure 2.2: Joomla! #29845 (Simplified)

internally. Figure 2.2 shows a patch from Joomla! #29845. Developers are

able to identify a slow query that contains a join operation. This operation

joins column ‘id’ in table ‘ associations’ with a column in another table,

where the type of column ‘id’ is string, but the type of other column is integer.

When the database performs the join operation, it has to do an extra type

conversion on the two columns with different data types, causing significant

performance loss. This extra computation was initially unnoticed by the

developers. The fix is simply changing the column type from “varchar” to

“INT,” but it brings from 85 to 166 times of speedup according to the tests

in the bug report.

In general, database-related performance bugs can have a huge impact

on performance. Fixing these bugs may require non-trivial changes to the

5

query, database schema, and the application logic itself. Furthermore, the

mechanism of information hiding makes it hard for developers to conduct

effective and efficient diagnosis without understanding these bugs’ character-

istics. Understanding such characteristics can provide guidance for detecting

and fixing database-related performance bugs.

6

CHAPTER 3

METHODOLOGY

In this chapter, we describe the subjects used for our study and the process

that we adopt to collect and analyze bug reports.

3.1 Subjects

We select seven popular open-source database applications on the Internet:

BugZilla, DNN , Joomla! , MediaWiki , WordPress , Simple Machines , and

Roundcube (shown in Table 4.1). Joomla! and MediaWiki are content-

management systems and are used as subjects in a previous study [16].

Joomla! is also very popular and won the Open Source Award in 2011 [16].

DNN and WordPress are also popular content-management systems. DNN ’s

customers include large companies such as Bank of America, Canon, and BP

while WordPress is used by the New York Times, CNN, and Ebay. Sim-

ple Machines is an online community system with 3,659,864 total posts as of

July 2016 [5]. BugZilla is a bug-management system heavily used by Mozilla.

Roundcube is a browser-based email client. We classify these applications as

database applications because their features heavily rely on databases.

To identify database-related performance bugs, we first search bug repos-

itories of the subjects with the keywords “timeout”, “slow”, and “perfor-

mance” in order to retrieve performance bugs. If a repository explicitly

has a specific category of performance bugs, we directly use such category

without a keyword search. Across all the subjects, only Simple Machines

has a performance category in its repository. After obtaining an initial set

of performance bug reports, we filter out bug reports that are irrelevant

to application-database interactions. Specifically, we keep only the reports

whose description and comments contain the keywords “database”, “query”,

or “schema”. We observe that developers tend to use acronyms while de-

7

scribing a database or a query. Therefore, we also include keywords “db”

and “sql” in our search. Note that our search is case-insensitive.

We include every bug report that we identify as database-related perfor-

mance bugs. Our final subject set contains 183 bug reports. In Table 4.1,

column “Versions of Study” shows the range of affected versions involved in

the studied bug reports; column “Length of Study” shows the range of time

shown by the reported and fixed dates in the studied bug reports; column

“Version Control Availability” shows whether a public version control system

is available for us to extract revisions for bug fixes. The last column shows

the total number of bug reports that we study. We observe that the num-

ber of bug reports tends not to distribute evenly across the entire lifetime.

For example, project BugZilla was initially started 15 years ago. However,

over half of the bug reports were created from 2005 and 2009. One possi-

ble explanation can be that the BugZilla developers put more emphasis on

performance during that time period.

3.2 Analysis Process

A bug report typically contains a bug description, followed by multiple com-

ments on possible causes and fixes, and the committed fix. Our study cen-

ters around these parts to investigate the research questions. Depending on

whether or not the version control system of an open-source application is

public, a committed fix may or may not be available for our inspection. If

such information is not publicly available, we then heavily rely on the bug

description and comments in order to infer the concrete situation in the ap-

plication as well as the potential fix. More specifically, there are in total 4

bug reports from DNN and 17 bug reports from Simple Machines for which

we are unable to locate the corresponding source code for the bug and the

fix. However, 16 of these bug reports contain the problematic query code and

fixes in the bug descriptions. Note that every bug report is inspected and

discussed by at least two authors to ensure objectivity of the conclusions.

To address RQ1, our analysis centers around queries as the starting point.

Database-related performance bugs may manifest directly from query execu-

tions, and correlate with various attributes of queries. To categorize those

performance bugs, we start from investigating what attributes of queries are

8

related to the reported performance problems. We manually investigate each

bug report, look for what attributes have been observed regarding queries,

and then conclude what particular reasons in the program code, schemas, or

the database behaviors cause the performance problems. We use the observ-

able attributes of queries and the concluded reasons to label all collected bug

reports. Such labeling naturally leads to a multi-level categorization system,

which starts from observable attributes to possible reasons.

To address RQ2, we focus on the types of changes, which include the place

of changes (program code, queries, or schemas), and the detailed changes in

the three parts. To identify how a bug report was fixed, we first manually

inspect the bug description and developer comments to locate the patch that

contains the final fix. We review the patch submitter’s description of the fix

and then inspect the code in the patch to look for changes in the program

code, queries, or the schema. We leverage the patch submitter’s description

to help us understand the code. By analyzing the relations between change

types and bug categorizations, we are able to learn how those performance

bugs are fixed.

To address RQ3, we collect the following metrics:

• The amount of time between the creation and closing of a bug report

(measured in days).

• The number of developers involved in the discussion prior to the fix.

9

CHAPTER 4

RESULTS AND ANALYSIS

We start this chapter with our terminology for application-database inter-

actions and their optimization opportunities. Such terminology lays a foun-

dation for our later-presented taxonomy. Our empirically based terminology

and taxonomy are grounded from our empirical observations on the studies

subjects. Finally, we present the detailed study results centered around such

terminology and taxonomy.

4.1 Terminology

Application-database interactions. Typical interactions between a soft-

ware application and its back-end database involve a set of query instances

and their result-set instances. The application constructs and sends each

query instance to the database, and the database executes the query in-

stance and sends back its result-set instance to the application for further

processing. As depicted by Figure 4.1, to implement a specific feature, an ap-

plication (APP) and its database (DB) may have multiple round trips, each

of which consists of a query instance (i.e., Q0, Q1, or Qn), and its result-set

instance (i.e., R0, R1, or Rn).

Performance-affecting attributes. Based on our empirical observa-

tions of the studies subjects, we model the cost C(Q) of an application in-

teracting with its database as follows:

C(Q) =
∑
q∈Q

[CDB(q, R(q)) +
∑

r∈R(q)

CAPP (r)]

With a set of query instances Q that implement a specific application

feature, the overall cost is composed by the costs of the database’s executing

10

Figure 4.1: Interactions between Application and Database

each query instance (represented by CDB) and the application’s processing

each data entry in the result-set instance (represented by CAPP).

The database cost CDB is parameterized by each query instance q and its

result-set instance R(q), since the database needs to both execute the query

and transfer the query result. The application cost CAPP is parameterized

by each data entry r in result-set instance R(q) from the database.

This conceptual equation essentially shows several attributes that may af-

fect the performance of application-database interactions: the cardinality of

Q, the characteristics of individual instances in Q, the cardinality of R(q),

and the characteristics of individual entries in R(q). In addition, as the

number of query instances increases, the latency of transferring the query

instances over the network also increases. Similarly, an increased number

of result-set instances can also result in a higher latency due to transmit-

ting more data over the network. In the subsequent sections, we provide a

categorization that studies these attributes in detail.

Optimization opportunities. We refer to optimization opportunities

as possible changes in performance-affecting attributes for reducing over-

all costs. Optimization opportunities essentially suggest possible fixes for

database-related performance bugs. For instance, different query instances

may be combined into one query instance to reduce the overall cost. To

understand what optimization opportunities can exist in database-related

performance bugs, we empirically construct a taxonomy using a bottom-up,

iterative style while studying the bug reports.

11

T
ab

le
4.

1:
S
u
b

je
ct

s

A
p
p
li
ca

ti
on

D
es

cr
ip

ti
on

V
er

si
on

s
of

S
tu

d
y

L
en

gt
h

of
S
tu

d
y

V
er

si
on

C
on

tr
ol

A
va

il
ab

il
it

y
#

of
S
tu

d
ie

d
B

u
gs

B
u
gZ

il
la

B
u
g

m
an

ag
em

en
t

sy
st

em
2.

13
-

4.
5

20
00

-
20

15
Y

62
D

N
N

C
on

te
n
t

m
an

ag
em

en
t

sy
st

em
5.

3.
0

-
7.

3.
0

20
12

-
20

15
Y

39
J
o
om

la
!

C
on

te
n
t

m
an

ag
em

en
t

sy
st

em
1.

6
-

2.
5

20
10

-
20

15
Y

18
R
ou

n
dc
u
be

W
eb

m
ai

l
0.

x
-

1.
1.

2
20

05
-

20
15

Y
5

M
ed

ia
W

ik
i

C
on

te
n
t

m
an

ag
em

en
t

sy
st

em
1.

11
.x

-
1.

21
.3

20
05

-
20

15
Y

15
S
im

p
le

M
ac

h
in

es
(S

M
F

)
C

om
m

u
n
it

y
fo

ru
m

2.
0

20
07

-
20

15
Y

17
W

or
d
P

re
ss

C
on

te
n
t

m
an

ag
em

en
t

sy
st

em
2.

9
-

3.
5.

1
20

07
-

20
15

Y
27

T
ot

al
18

3

T
ab

le
4.

2:
B

u
g

C
la

ss
ifi

ca
ti

on

H
ig

h
-l

ev
el

C
at

eg
or

y
Q

u
er

y
A

tt
ri

b
u
te

B
u
g

T
y
p

e
A

p
p
li
ca

ti
on

-Q
u
er

y
N

u
m

b
er

of
Q

u
er

ie
s

(Q
N

)
U

n
n
ec

es
sa

ry
Q

u
er

ie
s

(U
n
Q

)
R

ep
et

it
iv

e
Q

u
er

ie
s

(R
eQ

)
It

er
at

iv
e

Q
u
er

ie
s

(I
tQ

)
S
iz

e
of

Q
u
er

y
R

es
u
lt

s
(Q

D
)

U
n
n
ec

es
sa

ry
Q

u
er

ie
d

D
at

a
(U

n
D

)
L

ar
ge

R
es

u
lt

S
et

(L
aR

)
Q

u
er

y
-D

at
ab

as
e

E
x
p

ec
te

d
In

d
ex

es
(I

N
)

M
is

si
n
g

In
d
ex

es
(M

iI
)

In
d
ex

es
N

ot
L

ev
er

ag
ed

(N
lI

)
P

er
fo

rm
an

ce
-S

en
si

ti
ve

O
p

er
at

io
n
s

(O
P

)
U

n
n
ec

es
sa

ry
O

p
er

at
io

n
s

(U
n
O

)
E

x
p

en
si

ve
O

p
er

at
io

n
s

(E
x
O

)

12

4.2 RQ1: Bug Categorization

Table 4.2 shows the detailed statistics of our findings on bug categorization.

We present the bug categorization in a multilevel category. In particular,

we first categorize the bugs into two High-level Categories depending on

whether the symptoms of performance problem occur during the application-

database interactions or during the databases’ execution of query instances.

We name the two High-level Categories as Application-Query and Query-

Database (shown in the left column of Table 4.2). For each High-level Cat-

egory, we further categorize the bugs based on the different metrics that we

observe from the problematic query instances. We refer to such metrics as

Query Attributes (shown in the center column of Table 4.2). Finally, we

categorize the bugs in each Query Attribute based on one or more bug types

(shown in the right column of Table 4.2). The bug types are identified by

observing how the code is changed from the proposed patch(es) for each

bug report. Using this multi-level hierarchy, we can associate a detailed bug

type with a generally observable attribute and a symptom of performance

problem.

In Table 4.3, each row represents a Query Attribute or a bug type. Each

column in the middle section corresponds to a subject. Column “Total”

shows the total number of bug reports in each category, and column “CV”

shows the coefficient of variation of the classified bugs across different sub-

jects in the corresponding category. Coefficient of variation (CV) measures

the dispersion of a frequency distribution, in this case, the distribution of the

number of bug reports across the seven subjects for each bug type. CV is

independent of the unit of the measurement and can be used to compare the

dispersion of frequency distributions with different mean values. In particu-

lar, a lower value of coefficient of variation indicates more-evenly distributed

occurrences. The CV for an evenly distributed frequency distribution is 0

while the value of CV cannot exceed
√
n− 1, where n is the number of data

points in the distribution (in our case n is equal to seven). Generally, a

CV greater than 1 is considered high but the threshold varies for different

applications. In our case, there is one bug category that has exceptionally

high CV. 17 out of 19 bugs in this category are reported for BugZilla. Bug

reporting and fixing usually involve human factors. A lower value of CV in-

13

creases the confidence that the specific bug type is more generalizable across

subjects.

Note that there are 11 bug reports being classified to dual categories be-

cause of the complexity of the reported bugs. Therefore, the total number of

bugs in Table 4.3 is 194, whereas the total number of bug reports in Table 4.1

is 183.

4.2.1 Application-Query Category

Performance bugs in the Application-Query High-level Category commonly

causes symptoms of performance problem in application-database interac-

tions. There exist two observable metrics to measure the severity of the per-

formance slowdown for this symptom. In particular, bugs in the Application-

Query High-level Category can be associated to Query Attributes: the num-

ber of query instances and size of query result-set instances. These bugs

are commonly introduced when developers are not able to construct or issue

query instances in an efficient manner under certain workloads. We identify

five bug types in this category (shown in Table 4.2). We introduce them

based on the related query attributes as follows.

Query Attribute: Number of Queries (Total: 51, CV: 1.42). The cost

of issuing and executing one query instance includes the cost to construct the

query in the database application through database driver libraries, trans-

mitting the query instance to the database across the network, processing

the query instance and fetching the result in the database, and finally trans-

mitting the result-set instance back to the database application across the

network. A large number of query instances may lead to poor performance

due to the latency of transferring query instances and result-set instances

back and forth over the network, in addition to the latency of executing the

query instances on the database side. From the studied bug reports, we

identify three bug types belonging to this Query Attribute, as shown below.

Unnecessary Queries (Total: 15, CV: 0.95). In the application logic, some

particular queries do not need to be executed when the program execution

follows some paths. However, the developers may misplace such queries and

these queries are executed. If the executions of such queries happen to be

expensive, the overheads can be significant.

14

T
ab

le
4.

3:
C

la
ss

ifi
ed

B
u
g

R
ep

or
ts

(B
:B
u
gZ

il
la

,
D

:D
N
N

,
J
:J
oo
m
la
!,

M
:M

ed
ia
W
ik
i,

S
M

F
:S
im

pl
e
M
ac
hi
n
es

,
W

:W
or
dP

re
ss

,
R

:R
ou

n
dc
u
be

)

C
la

ss
ifi

ca
ti

o
n

B
D

J
M

S
W

R
T

o
ta

l
C

V

E
x
p

e
ct

e
d

In
d
e
x
e
s

4
5

0
.5

7
IN

-M
iI

5
13

2
2

8
5

0
35

0.
81

IN
-N

lI
1

0
3

4
1

1
0

10
0.

97

P
e
rf

o
rm

a
n

ce
-S

e
n
si

ti
v
e

O
p

e
ra

ti
o
n
s

4
7

0
.6

9
O

P
-E

x
O

12
6

3
3

6
6

0
36

0.
67

O
P

-U
n
O

4
2

3
0

0
2

0
11

0.
95

S
iz

e
o
f

Q
u
e
ry

R
e
su

lt
s

2
6

0
.6

8
Q

D
-L

aR
3

3
0

3
1

3
0

13
0.

72
Q

D
-U

n
D

6
1

3
0

0
2

1
13

1.
05

N
u
m

b
e
r

o
f

Q
u
e
ri

e
s

5
1

1
.4

2
Q

N
-U

n
Q

6
1

2
0

0
4

2
15

0.
95

Q
N

-R
eQ

9
5

1
0

0
2

0
17

1.
30

Q
N

-I
tQ

17
0

1
0

0
1

0
19

2.
15

O
th

e
rs

5
9

3
3

1
2

2
2
5

-

15

Figure 4.2 shows the patch for BugZilla #528918. In the original version,

the method check field contains an expensive query. It turns out that the

invocation of this method can be bypassed under some conditions: “If the

field being passed to match() is ID FIELD, then this field is safe, and there is

no need to validate it.”

Before fix

$class->_check_field($field, ’match’);

After fix.

$class->_check_field($field, ’match’) unless $field eq

$class->ID_FIELD;

Figure 4.2: BugZilla #528918 (Simplified)

Repetitive Queries (Total: 17, CV: 1.30). It is possible that result-set

instances may be identical across multiple executions of different query in-

stances. Such query instances are repetitive and their issuing can be avoided

by caching the result value in the database application. Figure 4.3 shows

a simplified version of the fix for Joomla! #20675. The author of the fix

comments that “I noticed that about half of the queries were just the same

query executed again and again ... added in a static variable that keeps track

of the different userIds called and saves their results, thereby saving Joomla

from repeating those queries over and over.”

Before fix.

$query->select($recursive ? ’b.id’ : ’a.id’);

$query->from(’#__user_usergroup_map AS map’);

$query->where(’map.user_id = ’.(int) $userId);

$db->setQuery($query);

$result = $db->loadResultArray();

After fix.

static $results = array();

$storeId = $userId . ’:’ .(int) $recursive;

if(!isset($results[$storeId]))

$query->select($recursive ? ’b.id’ : ’a.id’);

$query->from(’#__user_usergroup_map AS map’);

$query->where(’map.user_id = ’.(int) $userId);

$db->setQuery($query);

$result = $db->loadResultArray();

$results[$storeId] = $result;

Figure 4.3: Joomla! #20675 (Simplified)

16

Before fix.

sub new{... $self->{’attachments’} =

Bugzilla::Attachment::query($self->{bug_id});...}

After fix.

sub attachments () {

my ($self) = @_;

return $self->{’attachments’} if exists $self->{’attachments’};

$self->{’attachments’} =

Bugzilla::Attachment::query($self->{bug_id});

return $self->{’attachments’}; }

Figure 4.4: BugZilla #282145 (Simplified)

Iterative Queries (Total: 19, CV: 2.15). We observe that it is common

for developers to execute queries within loops, whose total numbers of iter-

ations may be input dependent. BugZilla #286625 mentioned in Chapter 2

Figure 2.1 is an example for Iterative Queries. Note that for the problem

of Iterative Queries, the issued queries can return different results, so they

cannot be simply cached.

Query Attribute: Size of Query Results (Total: 26, CV: 0.68). The

size of query result-set instances can also have an impact on the performance

of application-database interactions. Typically, as the size of a result-set

instance increases, the performance overhead of fetching the data and trans-

mitting the result-set instance data increases as well. We observe the two

common bug types for this Query Attribute.

Unnecessary Queried Data (Total: 13, CV: 1.05). One common mistake

that developers make is querying for more data than actually needed (e.g.,

SELECT * but not using all the column data). BugZilla #282145 (Figure 4.4)

is an example. The developers initially put the initialization code of all fields

of a bug entity in the constructor. However, not all fields are actually used

every time in reality, making such all-field initialization a waste of database

resources. In the patch, the developers introduce a method attachments to

retrieve and cache the data for each field on-demand.

Large Result Set (Total: 13, CV: 0.72). Although it is possible that some

of the data returned in result-set instances are unnecessary, we observe that

in some cases the performance problem is introduced because the application

logic requires using a large amount of data. The size of such result-set in-

stances cannot be reduced without affecting functionality. Figure 4.5 shows

17

my $limit = $self->_params->{limit};

Code added in the fix to specify a max upper bound.

my $max = Bugzilla->params->{’max_search_results’};

if (!$self->{allow_unlimited} && (!$limit || $limit > $max))

$limit = $max;

Figure 4.5: BugZilla #632717 (Simplified)

an example of BugZilla #632717. A developer reports that “One frequently-

reported problem is that you can do searches that return so many bugs that

the search never actually completes”. The final fix “set a maximum upper

bound for how many results a search can return”.

4.2.2 Query-Database Category

The symptoms of the performance bottlenecks for bugs in the Query-Database

Category mainly come from the database’s executions of query instances.

The performance of a database’s execution of query instances can be af-

fected by the design of queries and database schemas. We observe that the

design mismatch between queries and database behaviors commonly exists

in all studied projects. In particular, bug reports with the Query-Database

Query Attribute occur more frequently than those with the Application-

Query Query Attribute. Specifically, Missing Indexes and Expensive Op-

erations in queries are most commonly reported bug types.

Query Attribute: Expected Indexes (Total:45, CV: 0.57). Index-

ing plays an important role to speed up a database’s processing of query

instances. For example, MySQL provides a documentation [2] on how the

DBMS leverages indexes to improve performance. In addition, one metric

that developers commonly use to debug performance problems in database

applications is what indexes are used in the corresponding databases. For

the performance bugs in this Query Attribute, we observe three major bug

types.

Missing Indexes (Total: 35, CV: 0.81). One common cause of performance

bottlenecks of query processing in the database is that the developers forget

to add certain indexes. However, the developers may not be aware of what

the most effective index is. Worse still, a badly-created index may degrade

performance. If a badly-created index is not leveraged during database ex-

18

Before fix.

$query->where(’(a.id = ’.(int)$asset.($recursive ? ’OR

a.parent_id=0’:’’).’)’);

After fix.

$query->where(’a.id = ’.(int)$asset);

...

if ($recursive && empty($result))

$query = $db->getQuery(true);

$query->select(’rules’);

$query->from(’#__assets’);

$query->where(’parent_id=0’);

$db->setQuery($query);

$result = $db->loadResultArray();

Figure 4.6: Joomla! #25617 (Simplified)

ecution, the index can significantly slow down the performance of INSERT,

UPDATE, and DELETE operations.

Indexes Not Leveraged (Total: 10, CV:0.97). Even if necessary indexes are

in place for the database, an improperly designed query instance may cause

the existing indexes not to be fully leveraged. Figure 4.6 shows an example

from Joomla! #25617. The query condition shown in Line 1 is supposed to

include both query criteria in one query. According to the developer com-

ments, combining these two query criteria can prevent the query execution

from using the index on column id, leading to bad performance when the

database table grows large. The fix splits the original query condition into

two different queries to solve this problem.

Query Attribute: Performance-Sensitive Operations (Total: 47,

CV: 0.69). When constructing a query instance, a developer may specify

certain operations inside the query string. In certain cases, the specified

operations can incur performance overhead when the database is processing

the query instances. For example, the clause ORDER BY in SQL instructs

databases to sort queried data. As the size of data increases, the performance

overhead of such operations can become significant. We identify two major

bug types for the Query Attribute Performance-Sensitive Operation.

Unnecessary Operations (Total: 11, CV: 0.95). Bugs of this bug type

are introduced by developers when specifying unnecessary operations in the

query string when constructing the query. Figure 4.7 describes WordPress

#12557, where an unnecessary SQL CALC FOUND ROWS keyword instructs the

19

This if condition is removed in the patch

if (!empty($limits))

New if condition added in the patch

if (!$q[’no_found_rows’] && !empty($limits))

$found_rows = ’SQL_CALC_FOUND_ROWS’;

Figure 4.7: WordPress #12557 (Simplified)

database to calculate the total number of rows satisfying a SELECT query

without considering its LIMIT clause that is used to limit the size of result

set. The fix adds an option to bypass the SQL CALC FOUND ROWS operation.

Expensive Operations (Total: 36, CV: 0.67). Although some operations

specified in a query string can be unnecessary, in some cases such opera-

tions are not avoidable unless the functionality is sacrificed. Such operations

may be expensive and can cause performance bottlenecks. Joomla! #29845

mentioned in Chapter 2 (Figure 2.2) is an example of Expensive Operations.

4.2.3 Optimization Opportunities and Bug Types

Conceptually, optimization opportunities can be viewed as abstractions to

the nine bug types. Relationship between R and APP suggests that the

data returned and its usage may contain performance bugs. In particular,

these performance bugs tend to belong to categories QD-UnD and QD-LaR.

Relationship between APP and Q suggests that some query instances may be

unnecessary based on the application logic. Such unnecessary query instances

trigger performance bugs of category QN-UnQ. Relationship between R and

R indicates that many returned result-set instances may be redundant. Since

each result-set instance is associated with a query instance, many query

instances should also be redundant as well. This optimization opportunity

can be associated with a bug of category QN-ReQ. Relationship between

Q and Q suggests that redundancies may exist between query instances.

Although these query instances may not be associated with redundant result-

set instances, these query instances may also be combined to a single query

instance. Particularly, these query instances are likely issued iteratively:

QN-ItQ. Relationship between Q and DB indicates that certain features in

a single query instance may trigger performance problems in the database

20

execution. More specifically, the query instance may contain unnecessary or

expensive features (OP-ExO, OP-UnO) or the query may not fully use the

existing index on database (IN-MiI, IN-NlI).

4.3 RQ2: Fix Strategies

In this section, we present our finding on categorization of fix strategies. We

aim to study whether there exist common fix strategies for each bug type

presented in RQ1. To identify and categorize fix strategies, we start with rea-

soning about the performance purpose of the fix for each of the four Query

Attributes. For Number of Queries, the fix purpose should be reducing the

number of query instances. For Size of Query Results, the fix purpose should

be reducing the queried data. For Expected Indexes, the fix purpose should

be modifying the database schema or existing indexes. For Performance-

Sensitive Operations, the fix purpose should be optimizing the problematic

query. When implementing a fix for each fix purpose, there may be different

ways to change the code. We investigate the changes to the code, queries,

or the database schema that occur in the fix for each bug report. Then, we

group similar fixes together to obtain several fix strategies for each fix pur-

pose. More specifically, we identify seven fix strategies: Bypassing Queries,

Consolidating Queries, Limiting Results, Decomposing Queries, Performant

Alternatives, Query Elimination, and Changing Indexes for the four fix pur-

poses. Table 4.4 shows the fix strategies for each fix purpose.

4.3.1 Fix-Strategy Classification

Executing Fewer Queries. The fix strategy of Bypassing Queries (ByQ)

introduces guard conditions and caching, in order to bypass the issuing of

certain query instances. The fix strategy of Consolidating Queries (CoQ)

modifies the application code and the query string to combine repetitive

query instances. One common scenario is removing a loop, and batching the

query issued within the loop with a single loop-free query that performs the

same functionality. Figure 4.2 shows an example for ByQ while Figure 2.1

shows an example for CoQ.

21

T
ab

le
4.

4:
F

ix
C

la
ss

ifi
ca

ti
on

F
ix

P
u
rp

o
se

F
ix

st
ra

te
g
y

D
e
sc

ri
p
ti

o
n

E
x
ec

u
ti

n
g

F
ew

er
Q

u
er

ie
s

B
y
p
as

si
n
g

Q
u
er

ie
s

(B
y
Q

)
A

d
d

co
n
d
it

io
n
s

to
b
y
p
as

s
so

m
e

q
u
er

ie
s.

C
on

so
li
d
at

in
g

Q
u
er

ie
s

(C
oQ

)
U

se
fe

w
er

q
u
er

ie
s

to
lo

ad
/m

o
d
if

y
d
at

a.
Q

u
er

y
in

g
L

es
s

D
at

a
L

im
it

in
g

R
es

u
lt

s
(L

iR
)

M
o
d
if

y
q
u
er

y
to

re
d
u
ce

th
e

am
ou

n
t

of
re

tu
rn

ed
d
at

a.
O

p
ti

m
iz

in
g

Q
u
er

ie
s

D
ec

om
p

os
in

g
Q

u
er

ie
s

(D
eQ

)
D

ec
om

p
os

e
a

si
n
gl

e
sl

ow
q
u
er

y
in

to
se

ve
ra

l
fa

st
er

q
u
er

ie
s.

P
er

fo
rm

an
t

A
lt

er
n
at

iv
es

(P
eA

)
U

se
al

te
rn

at
iv

e
an

d
m

or
e

p
er

fo
rm

an
t

q
u
er

y
op

er
at

io
n
s.

Q
u
er

y
E

li
m

in
at

io
n

(E
lQ

)
R

em
ov

e
u
n
n
ee

d
ed

q
u
er

y
p
ar

ts
or

q
u
er

ie
s.

O
p
ti

m
iz

in
g

S
ch

em
a

C
h
an

gi
n
g

In
d
ex

es
(C

h
I)

A
d
d

or
re

m
ov

e
in

d
ex

es
.

T
ab

le
4.

5:
F

ix
S
tr

at
eg

ie
s

b
y

B
u
g

C
la

ss
ifi

ca
ti

on

C
la

ss
ifi

ca
ti

o
n

B
y
Q

D
e
Q

C
o
Q

L
iR

P
e
A

E
lQ

C
h
I

O
th

e
rs

M
o
d
e

C
-I

n
d
e
x

IN
-M

iI
-

-
-

2
-

-
32

1
C

h
I

91
.4

2%
IN

-N
lI

-
2

-
1

1
3

2
1

E
lQ

30
.0

0%

O
P

-E
x
O

2
4

-
1

17
4

-
8

P
eA

47
.2

2%
O

P
-U

n
O

1
-

-
-

-
10

-
-

E
lQ

90
.9

1%

Q
N

-R
eQ

10
-

4
-

-
-

-
1

B
y
Q

66
.6

7%
Q

N
-I

tQ
1

1
16

-
-

-
-

1
C

oQ
84

.2
1%

Q
N

-U
n
Q

15
-

1
-

-
-

-
1

B
y
Q

88
.2

3%

Q
D

-L
aR

-
2

-
7

-
-

-
4

L
iR

53
.8

5%
Q

D
-U

n
D

-
2

-
8

-
-

-
3

L
iR

61
.5

4%

O
th

er
s

1
-

1
-

2
-

1
20

-
-

22

Querying Less Data. For performance bugs with bug type Limiting

Results (LiR), a corresponding fix strategy is to modify the functionality

and query for less data. Typically, such fix strategy is achieved by adding

or modifying the LIMIT clause in the original query. Figure 4.5 shows an

example for LiR.

Optimizing Queries. Some complex subqueries can increase the perfor-

mance cost of certain query operations. For example, MySQL experienced a

case of poor performance [4] caused by the IN subquery, which would induce a

high intermediate cost. We observe one common fix strategy, Decomposing

Queries (DeQ), which avoids such subqueries by decomposing the original

query string. BugZilla #819432 is such a case with some detailed discus-

sions on the effect of decomposing queries. Although decomposing queries

increases the number of query executions, the performance gain can still be

much higher than the overhead where this strategy is applicable. For other

expensive operations specified in a query string, the fix strategy of Perfor-

mant Alternatives (PeA) substitutes these operations with efficient ones. In

some cases, using a different type of JOIN clause can improve the query per-

formance. For the unnecessary operations specified in a query string, the fix

strategy of Query Elimination (ElQ) eliminates the unneeded and/or slow

query parts or queries. Figure 4.7 shows an example of ElQ.

Optimizing Schemas. The fix strategy of Changing Indexes (ChI) mod-

ifies the existing indexes on the database so that the indexes can be fully

leveraged when processing query instances.

4.3.2 Analysis

In this section, we study whether there are common fix strategies for each

category of database-related performance bug.

Table 4.5 shows the statistics of the fix strategies for each bug type. Each

row represents the data for each root cause. Specifically, each cell indicates,

for the corresponding row (bug type), how many bug reports are fixed by the

corresponding column (fix strategy). We refer to Mode as the most common

fix strategy for a bug category while C-Index presents the percentage of bugs

that are fixed by the Mode for that category.

23

The Mode of most bug types agrees with our expectation. Among the

nine bug types, eight of them have C-Index greater than 50%, while five of

them has C-Index greater then 70%. Therefore, we conclude that most of

the bugs for each bug type are fixed by a common fix strategy, which is the

corresponding Mode. The existence of a common fix strategy for a bug type

may also suggest that it could be easier to develop tool support to fix bugs

of that particular bug type.

The C-Index of bug type Indexes Not Leveraged(IN-NlI) is extremely lower

than that of other bug types. A closer look at the bug reports reveals that

the reason for preventing a query from leveraging existing indexes may vary

greatly, and thus the corresponding fixes can also be very different from each

other. For example, the query in Joomla! #25617 (Figure 4.6) has an OR

statement, which prevents the existing index from being leveraged. The fix

was to decompose the problematic query. The index in Simple Machines

#3602 had an incorrect data type specified. As a result, some of the queries

were unable to leverage that index. The fix was to modify the index. Due

to this special property of IN-NlI, the fixes for this root cause spread evenly

across may fix strategies.

4.3.3 Optimization Opportunities and Fix Strategies

Optimization opportunities can also be viewed as abstractions to the fixing

strategies. For relationship between R and APP, the general fixing strategy

of this optimization opportunity is to remove the performance bottlenecks

caused by redundant data: LiR. For relationship between APP and Q, the

common fixing strategy to optimize this optimization opportunity is to by-

pass these unnecessary query instances: ByQ. For relationship between R

and R, common fix strategies aim to remove the redundancy by bypassing or

consolidating these query instances: ByQ, CoQ. For relationship between Q

and Q, a common fix is to combine these query instances: CoQ. For relation-

ship between Q and DB, fixing these bugs requires changing the database

index or removing the redundant features in query instances: ChI, ElQ.

24

4.3.4 Lessons Learned

In this section, we discuss lessons learned from studying how the developers

fix the database-related performance bugs.

Diagnosing database-related performance bugs. We observe that

profiling is widely used when diagnosing a database related performance bug.

In particular, profiling can show the severity of the problem and provide in-

formation to aid developers while debugging. Furthermore, without profiling

information, a developer typically hypothesizes the bug to be in one of the

common bug types. But such hypothesis may not necessarily be correct. In

BugZilla #851267, a developer comments that the database-related perfor-

mance bug may be of bug type Large Result Set (QD-LaR) and suggests a fix

of Limiting Results (LiR). In a later comment, another developer comments

that “I did some profiling and there are major bottlenecks in the Voting code.

I think I fixed them all in my patch”. This comment reflects a number of

places to be optimized, instead of a single one.

Related to the severity of a problem, we also observe that the level of

acceptable performance can vary across different developers. In BugZilla

#528918, a developer submits a patch that has 20% improvement: “Com-

menting this call out (see attached patch), takes us from 144ms to 110ms, or

about 20%.” However, another developer disagrees: “you’re talking about

the difference between 144ms and 110ms, a totally insignificant number to

a Bugzilla user”. We also observe that developers may not treat perfor-

mance bugs as real bugs if the perceived performance problems are not severe

enough, as commented by a developer in BugZilla #286625: “Let’s take it

on the 3.4 branch as it fixes a bug. And the huge perf problem can also be

seen as a bug.” Note that the first “bug” refers to another functional bug

fixed by the proposed fix for the performance bug as a side benefit. In addi-

tion, some developers may not consider being slow as “broken”: “nothing is

broken here, just slow.”

Fixing database-related performance bugs. Profiling is also fre-

quently used by developers to demonstrate the performance boost after the

fix. After the patch for BugZilla #851267, the developer posts the pro-

filing results before and after fix and concluds that “numbers reported by

Devel::NYTProf are divided by 2 with my patch. With Devel::NYTProf dis-

abled, page.cgi now takes 0.9 second to load instead of 3.0 seconds. That’s a

25

huge win”. In fact, developers may explicitly ask for profiling results when

deciding whether or not to accept a fix for database-related performance

bugs: “Could you show some statistics for how this helps performance on

your sites?”.

We also observe that when deciding whether a fix should be accepted, de-

velopers consider many factors other than the performance boost of the fix.

One important factor is security. Developers may not accept a fix that may

cause security issues, even it can boost the performance substantially. For

BugZilla #528918, one developer submits a patch that can boost the perfor-

mance by 20%. However, this patch is not accepted and another developer

comments “No, definitely not, this regresses a major security fix–a severe

SQL injection in the WebService”. Another factor is the design quality and

the software architecture. Developers tend to be careful in not compromis-

ing the design quality when fixing performance bugs (would be willing to do

that only when the benefits, i.e., performance improvement, are substantial):

“No, I’m against putting it too far up in the call chain, because that adds

complexity. If there’s a *significant* performance impact, I’d consider it,

but for minor performance differences I don’t think the complexity would

be justified”. Another developer also explicitly mentions that “The most

important thing is profiling and good, maintainable architecture. That will

lead to good performance”.

Tool support for diagnosing and fixing database-related perfor-

mance bugs. We observe that there exist several tools that are commonly

used by developers when diagnosing and fixing database-related performance

bugs. Slow Query Log1 is often used to detect queries that are slow. The de-

velopers can specify a time limit and then the log can report queries that take

more than the specified time to execute. EXPLAIN2 is also commonly used

to obtain information about how the database executes the query. Typically,

developers use EXPLAIN to observe whether a particular index is leveraged

during the execution of the query. EXPLAIN can help developer debug and

fix database-related performance bugs that have query attribute Expected

Indexes (IN).

Although these tools provide useful information to the developers regarding

the cause of the performance bugs and the potential fixes, these tools cannot

1http://dev.mysql.com/doc/refman/5.7/en/slow-query-log.html
2http://dev.mysql.com/doc/refman/5.7/en/explain.html

26

Table 4.6: Elapsed Time and Involved Developers for each Bug Type

Bug Type Avg Time Avg Time Avg #
Closed Devs

IN-MiI 222.69 194.65 4.31
IN-NlI 156.10 232.00 4.10
OP-ExO 316.94 238.33 4.58
OP-UnO 39.55 17.43 3.00
QD-LaR 213.77 345.17 5.38
QD-UnD 205.85 301.71 4.46
QN-UnQ 253.90 100.01 3.69
QN-ReQ 273.00 18.75 3.06
QN-ItQ 394.26 758.00 3.47

automate the bug detection and fixing process. Developers still need to

discuss with each other and manually diagnose or fix the performance bug.

Therefore, there are still opportunities for new techniques along with tool

supports that can improve the efficiency of bug detection and bug fixing.

To demonstrate an example benefit of our study, we implement a simple

rule checker to statically detect the occurrences of database-related perfor-

mance bugs caused by QN-ItQ. Our checker performs static code checking

on PHP code to detect queries that are issued inside a loop. We apply the

checker on the source code of Joomla! and are able to identify nine potential

Iterative Queries bugs. In practice, this checker can be used during develop-

ment to notify developers of potential bugs in their code. We describe the

implementation and evaluation details on our project website [3].

4.4 RQ3: Time and Developers

In this section, we report the results for RQ3.

4.4.1 Elapsed Time

The time elapsed before fixing a bug in a bug report is measured in days

and is calculated from the date when the bug report is created to the date

when the bug report is closed. Depending on the used bug tracking system,

a bug report may be (1) closed with an explicit closing date, (2) closed but

27

without an explicit closing date, or (3) not closed. To determine how much

time elapses before a bug is fixed, we consider only closed bug reports. If

a closed bug report contains an explicit closing date, we use that date to

calculate the time of fixing. Otherwise, we use the date of the last comment

in the developer’s discussions related to bug fixing as the closing date. We

report the calculated time for both types of bug reports. For our seven

subjects, DNN , Joomla! , WordPress , and Roundcube have explicit indication

of closing date in their bug reports. Note that 13 out of the 183 bug reports

in our subject are not closed. Please refer to the project website [3] for more

information on these bug reports.

We observe that developers may post some comments not relevant to the

bug fixing a long time after the bug was fixed. To identify the last comment,

we filter out these irrelevant comments. Typically, comments fall into the

following categories:

• Some other bugs marked as duplicate of the current bug.

• The details of the current bug added to the release note when a new

update is released.

• The current bug mentioned in other discussion.

The consequence of this design decision is that the measurements for some

bug reports may not reflect the actual time elapsed prior to the fix. In the

case of no closed date specified, deciding which developer comment suggests

that the bug report is closed may be a subjective judgment. To ensure

objectivity, we enforce the design decision to determine the time spent for

all the bug reports without a clearly marked closed date.

In Table 4.6, column Avg Time shows the average time elapsed for each

bug type, while column Avg Time Closed shows the average time elapsed for

bug reports with explicit closed date only. The values show that bugs of type

Iterative Queries (QN-ItQ) tend to have a larger average value while bugs of

type Unnecessary Operations (OP-UnO) have a smaller average value.

Longer time elapsed before fixing Iterative Queries (QN-ItQ) bugs may

be that these bugs are harder to diagnose. For example, the developers

in BugZilla #286625 incorrectly diagnosed the performance bug as Missing

Index (IN-MiI) and spent a large amount of time fixing the bug by changing

index. After a few years, the developers finally discovered the real cause: “As

usual, what is ACTUALLY slow is not what you might think”, and fixed the

28

performance bug: “This makes –regenerate take minutes instead of hours

or days” (regenerate is an option that can be passed in while executing the

code). We also observe that some of the Iterative Queries (QN-ItQ) bugs

are of low priority. The comments suggest that the developers might not

have worked on these bugs in a timely manner because of the low priority.

Although the time elapsed before fixing is used as a metric for bug fixing

difficulty in an earlier empirical study [11], a longer time elapsed may also

be caused by a bug report having lower priority. Some additional analysis

may be needed to use the time elapsed as a metric for fixing difficulty.

4.4.2 Number of Developers Involved

In Table 4.6, column Avg # Devs shows the average number of developers

that took part in the discussion for each bug report across all bug types. The

average values of the number of developers across all bug types are very close

to each other: the majority of average values lie between 3 and 5.

We hypothesize that the reason why the numbers of developers for each

bug type are very similar is that there is a certain fixed number of regular

developers and that the number of regular developers is very close to the

average number of discussion-participating developers whom we observe. For

example, in the bug reports that we study, these regular developers could be

the developers who are mainly responsible for implementing the database

interactions. Each of the regular developers took part in the discussion of

a majority number of the bug reports. For each bug report, it is usually

reported by an arbitrary user or developer and discussed by a few of the

regular developers. The number of regular developers that took part in the

discussion may vary for each bug type, but may not vary significantly.

To validate our hypothesis, we investigate the number of regular developers

for each project. For each project, five or six regular developers commented

in from 82.14% to 92.31% of the collected bug reports for that project. Due

to the small number of regular developers, if a bug that is harder to fix,

it may attract only one or two more regular developers into the discussion.

Therefore, the resulting average numbers of developers in the discussion may

be very similar across all bug types and the differences in the average num-

bers may be only around one developer. The detailed statistics of regular

29

developers and some other statistics related to RQ3 can be found on the

project website [3].

4.5 Threats To Validity

The validity of our study results may be subject to several threats. The first

is the representativeness of our selected database applications. To minimize

this threat, we select seven popular real-world open-source database appli-

cations, which cover different categories. The second threat is that we may

miss relevant bug reports during our search for database-related performance

bugs. We mitigate this problem by using keyword search together with bug

categories and tags. We also search the bug description and comments in

addition to the bug report summary since developers tend to use common

terms in the description and comments. The third threat is related to our

manual inspection of the collected bugs reports. The manual inspection is

independently performed by at least two authors to alleviate this issue. If

the two authors have different opinions on a bug report, multiple inspectors

discuss the bug report to reach an agreement. We follow this process from a

previous empirical study on performance bugs [9]. For bug reports without

publicly available source control information, there are only five bug reports

(one for Simple Machines , four for DNN) for which we cannot locate the

source code for the bugs. The percentage of such bug reports is very small

given that we study 183 bug reports in total.

30

CHAPTER 5

RELATED WORK

Performance Empirical Study. There are multiple pieces of work on

studying real-world performance bugs. Jin et al. [9] studied 109 performance

bugs that were randomly sampled from five open-source software suites. In

particular, they studied the root causes of performance bugs, how the bugs

were introduced, how the bugs manifested, and how the bugs were fixed. In

addition, they proposed a rule-checking-based detection approach for com-

mon performance bugs.

Nistor et al. [14] studied the detecting and fixing process of performance

bugs. They particularly investigated the difficulties in fixing performance

bugs versus fixing non-performance bugs. They also investigated how per-

formance bugs are discovered by developers.

Liu et al. [11] studied 70 performance bugs collected from popular Android

applications. They categorized these performance bugs by common causes.

They also investigated the debugging and fixing effort, and proposed an

approach that could detect two categories of these bugs.

Performance Bug Detection. Xiao et al. [20] proposed a technique to

detect performance bottlenecks that are input-dependent. In particular, the

proposed approach detects loops with slow operations that are sensitive to the

input workloads. Nistor et al. [15] developed Toddler, an approach to detect

loops causing repetitive memory-access patterns. These repetitive accesses

are likely to be unnecessary, and may be optimized. Nguyen and Xu [13]

proposed a run-time profiling approach to detect operations that keep pro-

ducing identical values. Such identical values expose caching opportunities

for removing memory bloats.

Performance of Database Applications. Manjhi et al. [12] proposed

an approach to transform database queries to reduce latency in web appli-

cations. To this end, they proposed two transformations: merging and non-

31

blocking, to reduce and re-schedule queries. They evaluated their approach

on three benchmarks and identified various optimization opportunities.

Bowman and Salem [6] proposed the Scalpel system to optimize database

queries by prediction. In particular, the Scalpel system monitors queries in

a query stream to detect optimization opportunities. Scalpel then chooses

an optimal strategy to re-write the query. The modified query has a lower

latency and a lower cost of query evaluation.

Ramachandra and Sudarshan [17] improved the existing approaches on

prefetching query results by introducing an approach to identify the earliest

program location where a query result could be prefetched. Prefetching at the

earliest program location can boost the benefit of prefetching since the query

result would likely be available when it is actually needed. The proposed

approach performs an inter-procedural data-flow analysis to identify such

program locations, and rewrites the queries to perform prefetching.

Cheung et al. [8] proposed Sloth, an approach to reduce round-trip latency

for database queries by extending traditional lazy evaluation. As the appli-

cation executes, Sloth delays the execution of queries until their results are

needed. These delayed queries are kept in a query store, and executed later

in a batch, thus reducing round-trip latency.

Cheung et al. [7] proposed Pyxis, an approach to automatically partition

database application code to extract stored procedures. Invoking stored pro-

cedures can reduce query latency since these procedures are running on the

database server. Pyxis leverages both static and dynamic analyses to collect

relevant application data. The data is used to formulate a linear program,

whose objective is to minimize latency. The solved linear program produces

a partitioning of the original application code.

32

CHAPTER 6

CONCLUSION

In this thesis, we have conducted an empirical study of 183 bug reports

for database-related performance bugs collected from seven real-world open-

source projects: BugZilla, DNN , Joomla! , MediaWiki , WordPress , Simple

Machines , and Roundcube. We have studied the common optimization op-

portunities, types of database-related performance bugs, time elapsed before

fixing these bugs, and number of developers involved in the discussions prior

to the fixes.

In particular, we have identified nine common bug types and seven com-

mon fix strategies. We have studied the characteristics of each bug type

and fix strategy. Our findings can provide guidance to avoid and diagnose

database-related performance bugs, and to develop new bug-detection tech-

niques. More information of our study such as evaluation results is available

on our project website [3].

33

REFERENCES

[1] HEALTHCARE.GOV CMS Has Taken Steps to Address Problems,
but Needs to Further Implement Systems Development Best Practices.
http://www.gao.gov/assets/670/668834.pdf.

[2] How MySQL Uses Indexes. https://dev.mysql.com/doc/refman/5.

0/en/mysql-indexes.html.

[3] Project Website. https://sites.google.com/site/

databaseperformancestudy.

[4] Restrictions on Subqueries. http://dev.mysql.com/doc/refman/5.5/
en/subquery-restrictions.html.

[5] Simple Machines Member Statistics. http://www.simplemachines.

org/community/index.php?action=stats.

[6] I. T. Bowman and K. Salem. Optimization of query streams using se-
mantic prefetching. ACM Trans. Database Syst., 30(4):1056–1101, Dec.
2005.

[7] A. Cheung, S. Madden, O. Arden, and A. C. Myers. Automatic parti-
tioning of database applications. Proc. VLDB Endow., 5(11):1471–1482,
July 2012.

[8] A. Cheung, S. Madden, and A. Solar-Lezama. Sloth: Being lazy is a
virtue (when issuing database queries). In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’14, pages 931–942, New York, NY, USA, 2014. ACM.

[9] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and
detecting real-world performance bugs. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’12, pages 77–88, New York, NY, USA, 2012. ACM.

[10] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey,
V. W. Lee, S. A. Brandt, and P. Dubey. FAST: fast architecture sensitive
tree search on modern CPUs and GPUs. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data, SIGMOD
’10, pages 339–350, New York, NY, USA, 2010. ACM.

34

[11] Y. Liu, C. Xu, and S.-C. Cheung. Characterizing and detecting per-
formance bugs for smartphone applications. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages
1013–1024, New York, NY, USA, 2014. ACM.

[12] A. Manjhi, C. Garrod, B. M. Maggs, T. C. Mowry, and A. Tomasic.
Holistic query transformations for dynamic web applications. In Pro-
ceedings of the 2009 IEEE International Conference on Data Engineer-
ing, ICDE ’09, pages 1175–1178, Washington, DC, USA, 2009. IEEE
Computer Society.

[13] K. Nguyen and G. Xu. Cachetor: Detecting cacheable data to remove
bloat. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages 268–278, New York, NY,
USA, 2013. ACM.

[14] A. Nistor, T. Jiang, and L. Tan. Discovering, reporting, and fixing
performance bugs. In Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, pages 237–246, Piscataway, NJ,
USA, 2013. IEEE Press.

[15] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler: Detecting perfor-
mance problems via similar memory-access patterns. In Proceedings of
the 2013 International Conference on Software Engineering, ICSE ’13,
pages 562–571, Piscataway, NJ, USA, 2013. IEEE Press.

[16] D. Qiu, B. Li, and Z. Su. An empirical analysis of the co-evolution of
schema and code in database applications. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2013, pages 125–135, New York, NY, USA, 2013. ACM.

[17] K. Ramachandra and S. Sudarshan. Holistic optimization by prefetching
query results. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12, pages 133–144, New
York, NY, USA, 2012. ACM.

[18] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and
P. Dubey. Fast sort on CPUs and GPUs: a case for bandwidth oblivious
SIMD sort. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, SIGMOD ’10, pages 351–362, New
York, NY, USA, 2010. ACM.

[19] L. Woods, J. Teubner, and G. Alonso. Less watts, more performance:
an intelligent storage engine for data appliances. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’13, pages 1073–1076, New York, NY, USA, 2013. ACM.

35

[20] X. Xiao, S. Han, D. Zhang, and T. Xie. Context-sensitive delta infer-
ence for identifying workload-dependent performance bottlenecks. In
Proceedings of the 2013 International Symposium on Software Testing
and Analysis, ISSTA 2013, pages 90–100, New York, NY, USA, 2013.
ACM.

36

