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ABSTRACT 
 

Longitudinal water quality monitoring is important for understanding seasonal variations 

in water quality, waterborne disease transmission, and future implications for climate change and 

public health. In this study, microfluidic quantitative PCR (MFQPCR) was used to assess the 

presence of human enteric pathogens in protected springs, a public tap, drainage channels, and 

surface water in Kampala, Uganda from November 2014 to May 2015. Because waterborne 

disease incidence in Uganda has been shown to increase during the wet seasons, we assessed the 

differences in relative abundance of multiple waterborne pathogens during the wet and dry 

seasons. All water sources tested contained multiple pathogens, with drainage channels and 

surface waters containing higher abundance over protected springs and the public tap. Pathogens 

detected included Enterohemorrhagic E. coli, Shigella spp., Salmonella spp., Vibrio cholerae, 

and Enterovirus. Drainage channels were found to be significantly more contaminated during the 

wet season compared to the dry season, whereas drinking water sources contained little to no 

seasonal variation. These results suggest that individual water source types respond uniquely to 

seasonal variability, and that human interaction with contaminated water sources, rather than 

direct ingestion, is a major contributor to waterborne disease transmission. These findings direct 

public health and climate change adaptation efforts towards sanitation, solid waste management, 

and education about water and food safety.   
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CHAPTER 1: INTRODUCTION 
 

Globally in 2010, diarrheal diseases were responsible for 810,000 deaths among children 

under the age of five, with about 90% of these deaths occurring in Sub-Saharan Africa and South 

Asia (1). It is estimated that approximately 88% of all diarrhea-attributable diseases are 

preventable through safe water, sanitation, and hygiene (2). While the Millennium Development 

Goal which aimed to have 88% of the global population with access to improved drinking water 

was met in 2010 (3), climate change introduces unique challenges in creating safe and resilient 

water sources necessary in maintaining and surpassing development goals. As the climate 

changes, higher average sea and ambient temperatures, as well as frequency of flood and drought 

events are projected to increase, putting pressure on water resources for drinking and agriculture, 

and posing public health risks (4-7). Developing effective climate change adaptation strategies is 

critical to maintaining economic stability, food security, and public health, but data to guide 

adaptation is limited and largely uncertain (8-10). To provide robust climate change 

recommendations for public health, water, and sanitation sectors, the epidemiological 

relationship between local climate and waterborne disease must be well understood (8, 11). 

Furthermore, this relationship must be well understood especially in developing countries, where 

climate change is argued to have the greatest impact on water and food security, and public 

health (4, 5). Previous research has emphasized the importance of empirical field-based 

measurements for designing effective climate change interventions (12, 13). We hypothesized 

that field-based water quality measurements would provide the greatest impact if assessed over 

time to capture seasonal variability in water quality. One of the goals of the study presented here 

is to provide empirical seasonal water quality data that may contribute to continued climate and 
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waterborne disease analysis, particularly for Kampala, Uganda and other developing tropical 

regions.  

The population of Uganda is approximately 34.9 million people and is growing nationally 

at a rate of 3.0% (14), and in urban areas at a rate of 5.6% (14, 15). The rapid urbanization of 

Kampala, exacerbated by poverty and inadequate physical planning, has given rise to the 

expansion of informal settlements, substandard housing often subjected to overcrowding, poor 

water and sanitation conditions, and limited access to basic health, energy, and security services. 

Populations that reside in informal settlements are the most at risk to water and food insecurity, 

infrastructure failure, and disease transmission (15-17). A national report in 2008 concluded that 

63.1% of households in slum settlements of Uganda do not have access to designated solid waste 

locations (18). The health hazards posed by poor solid waste management are severely 

compounded by the lack of improved water access, with only 13.9% of informal settlement 

residents in Uganda having access to piped water (18). Limited access to safe water due to lack 

of coverage and high costs (19) forces urban residents to collect water from contaminated water 

sources and as a result, urban areas are frequently afflicted with waterborne diseases such as 

cholera, dysentery, cryptosporidiosis, and rotavirus (20-23). Waterborne disease prevalence in 

Uganda has characteristically increased immediately before and during the rainy season (17, 21, 

24), suggesting that seasonal variability is an important component of disease transmission in 

Uganda. Furthermore, the effects of seasonal variability on water quality may provide insight 

about the implications of climate change with respect to water quality and waterborne disease 

transmission. Given that climate change is likely to exacerbate health risks in urban poor 

populations due to inadequate economic capacity, infrastructure resilience and health services (4, 
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25), studying microbial reservoirs, such as community water sources, that harbor pathogenic 

microorganisms, is imperative.  

The climate change preparation capacity for Kampala, Uganda would likely be enhanced 

by an increased and longitudinal understanding of water quality in urban communities. 

Currently, much biological monitoring of water sources in the developing world is focused on 

culture-based enumeration of fecal indicator bacteria (FIB) such as E. coli, fecal coliforms, and 

thermotolerant coliforms (26-29). However, numerous publications have shown that FIB do not 

consistently or precisely represent the presence of bacteria, viruses, and protozoa (30-32) 

particularly in tropical environments with higher temperatures and greater nutrient and organic 

matter content, and in situations of non-point source contamination (33, 34). High-sensitivity and 

high-throughput methods to monitor water quality over the long-term is necessary to observe 

seasonal variation of water quality. Furthermore, efficient and representative water quality 

monitoring in developing regions will have a greater global impact on improving water security 

in the context of climate change. Microfluidic quantitative polymerase chain reaction 

(MFQPCR) is a high-throughput chip-based PCR assay that is a promising monitoring tool for 

global biological water quality. MFQPCR utilizes microfluidics technology to increase 

sensitivity and specificity, and reduce cost, reagent and sample consumption, and time compared 

to conventional singleplex and multiplex qPCR (35). The high-throughput nature of this method 

allows for rapid and thorough detection of up to 96 target sequences in 96 samples, performing 

over 2,000 qPCR reactions in parallel. Previous environmental water studies have shown that 

MFQPCR maintains and may surpass overall sensitivity compared to conventional qPCR (36, 

37). Applying this method to water quality analysis results in the simultaneous detection of 

multiple waterborne pathogens across multiple water samples (37-39).  
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The objectives of this study were 1) to identify and quantify human enteric pathogens in 

drinking water, drainage channels, and surface water over seven months during seasonal 

variation in Kampala, Uganda and 2) to demonstrate the use of MFQPCR as an effective long-

term biological water quality monitoring tool. Water samples were collected from drinking 

water, drainage channels, and surface water in Kampala, Uganda from November 2014 through 

May 2015. The variation of waterborne pathogen presence among water sources was measured 

over time. To the best of our knowledge, this is the first study to longitudinally measure 

waterborne pathogen presence in multiple water source types in a developing tropical region.  
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CHAPTER 2: MATERIALS AND METHODS 
 
2.1 Location and Sampling 

The city of Kampala is comprised of five administrative divisions: Central, Kawempe, 

Nakawa, Makindye, and Rubaga. Water samples from eight protected springs, one treated public 

tap, two drainage channels, and one lake were collected from November 2014 through May 

2015. These water source types were selected to monitor the variation of water quality 

parameters as well as pathogen presence among different water sources over time. Water sources 

in informal settlements and densely populated neighborhoods were selected over water sources 

in neighborhoods with lower population density. Six neighborhoods in the Central, Kawempe, 

Makindye and Nakawa divisions were chosen due to proximity between sampling sites and 

capacity to process samples. Sampling locations and water source types are indicated in Figure 1.  
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Figure 1. Sampling map indicates the location of all sampling sites and water source types. a) Bwaise 
contained two protected springs (B1, B2) and one drainage channel (B3). b) Kalerwe contained one 

drainage channel (Ka1) and one public tap that is treated drinking water supplied by the National Water 
and Sewerage Corporation (Ka2). c) Luzira contained two protected springs (L1, L2). d) Mengo 

contained 2 protected springs (M1, M2). e) Namowongo contained two protected springs (N1, N2). f) 
Ggaba contained a lake with two sampling locations (G1, G2). 

!
Two-liter water samples were collected from protected springs and the public tap using 

reusable sterilized bags (Boli, Zhejiang, China). Bags were sterilized 24h prior to sample 

collection according to EPA guidelines (40). Drainage channel and Lake Victoria water samples 

were collected in 0.5 L aliquots in sterile Whirlpak (Nasco, Fort Atkinson, WI) bags. Upon 

collection, all samples were stored at 4°C and were processed within 24h. The dates and seasons 

of collected samples are summarized in Table 1. 
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Table 1. Summary of collected water samples. Season was determined based on supporting 
literature (41, 42). 

Sample Set Dates Collected Season 

SS1 10 Nov - 20 Nov (2014) Wet 

SS2 24 Nov - 5 Dec (2014) Wet 

SS3 4 Dec - 18 Dec (2014) Wet 

SS4 6 Jan - 7 Jan (2015) Dry 

SS5 19 Jan - 23 Jan (2015) Dry 

SS6 3 Feb -10 Feb (2015) Dry 

SS7 17 Feb - 2 Mar (2015) Dry 

SS8 3 Mar- 17 Apr (2015) Wet 

SS9 22 Apr - 11 May (2015) Wet 

SS10 20 May - 27 May (2015) Wet 
 

Water samples were concentrated onto 47 mm diameter filters to capture and preserve 

microorganisms for downstream qPCR and MFQPCR. Within 24h of collection, water samples 

were treated with sterile 25mM MgCl2-6H20 (Sigma-Aldrich, St. Louis, MO) for 30 min with 

periodic mixing to coagulate particles and microorganisms (43, 44). Thereafter, water samples 

were sequentially vacuum filtered through a 1.6 µm glass fiber filter (Millipore, Ballerica, MA) 

followed by a 0.45 µm nitrocellulose filter (GVS Maine, Sanford, ME) placed in a 47-mm 

filtration funnel (Pall Corporation, New York, NY) (45). The filtration housing and flasks to 

catch filtrate were sterilized prior to each sample filtration according to EPA guidelines (40). 

Filters were treated with 500 µl RNAlater (Qiagen, Helden, Germany) to preserve microbial 

genomes and were stored in sterile Whirpak (Nasco) bags at -20°C until transport to University 

of Illinois (UIUC). At UIUC, filters were stored at -80°C until DNA/RNA extraction.  
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2.2 Genome Extraction and cDNA Synthesis 

1.6 µm membrane filters from protected springs in the same community (B1, B2; L1, L2; 

N1, N2; M1, M2)  and Lake Victoria water samples (G1, G2) were combined during extraction 

to expedite sample processing and pathogen enumeration. 0.45 µm filters were similarly 

combined for protected springs and Lake Victoria water samples. 1.6 µm and 0.45 µm 

membrane filters from drainage channel water samples and public tap water samples (B3; Ka1; 

Ka2) were extracted individually. Table 2 shows the manner in which samples were combined 

and the distances between the water sources of combined samples. 

Table 2. Membrane filters from protected spring and Lake Victoria water samples were 
combined during genome extraction. Membrane filters from drainage channels and the public tap were 

genome extracted individually. 

Water Source Type 
Sample 
Name 
(Pre) 

Sample  
Name 
(Post) 

Distance 
Between Two 
Water Sources 
(km) 

Protected Spring B1 B12 0.21 B2 
Surface Water B3 Single Site 
Surface Water Ka1 Single Site 

Public Tap Ka2 Single Site 

Protected Spring 
L1 

L12 0.014 L2 

Lake Victoria G1 G12 0.068 
G2 

Protected Spring N1 N12 0.14 N2 

Protected Spring 
M1 

M12 0.052 M2 

 

Two extraction methodologies were applied due to the difference in the two membrane 

filter materials. The 1.6 µm glass fiber filters were extracted for DNA only using the FastDNA 

Spin Kit for Soil (MP Biomedicals, Santa Ana, CA) according the manufacturer’s instructions 
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with minor modifications. The 0.45 µm nitrocellulose filters were extracted for RNA and DNA 

with the PowerWater RNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA) according to the 

manufacturer’s instructions with minor modifications. All DNA/RNA genome extracts were 

stored at -80°C. 

DNA/RNA extracts eluted from the 0.45 µm nitrocellulose filters underwent reverse 

transcription (RT) prior to enumeration by MFQPCR. cDNA synthesis was performed in a 

MyCycler Thermal Cycler (Bio-Rad, Hercules, CA) using the iScript cDNA Synthesis Kit (Bio-

Rad). The reaction mixture (20 µl) contained 5X iScript Reaction Mix, 1 µl iScript Reverse 

Transcriptase, and 2 µl template DNA/RNA, and was performed under the following thermal 

cycle conditions: 25°C for 5 min, 42°C for 30 min, and 85°C for 5 min. cDNA/DNA samples 

were stored at -20°C. 

 

2.3 Conventional qPCR and MFQPCR Assays  

The objective of the MFQPCR assay was to detect 21 genes corresponding to 14 total 

pathogens including 6 viruses, 7 bacteria, and 1 protozoon, and one nonpathogenic bacteria used 

as an internal control. Assay designs for all target genes were adapted from previous studies (38, 

39, 46-55) to detect Adenovirus types 40 and 41, Enterovirus, Human Norovirus types GI and 

GII, Rotavirus Group A, Hepatitis A Virus (all genotypes), Hepatitis E Virus (all genotypes), 

General E. coli, Enterohaemorrhagic E. coli (EHEC), Shigella spp., Salmonella spp., 

Campylobacter jejuni, Legionella pneumophila, Vibrio cholerae, Cryptosporidium, and 

Pseudogulbenkiania sp. NH8B. A list of target genes and primer and probe sequences are 

summarized in Table 3. 
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Forward and reverse primers for all assays were obtained as Custom DNA Oligos 

(Integrated DNA Technologies, Coralville, IA). Three fluorogenic probe types were used as 

indicated in Table 3. Double quenched hydrolysis probes were labeled with 6-fluorescein (6-

FAM) at the 5’ end, Iowa Black FQ quencher at the 3’ end, and an internal ZEN quencher 

located 9 nucleotides from the 5’ end (Integrated DNA Technologies). TaqMan hydrolysis 

probes were labeled with 6-FAM at the 5’ end, and nonfluorescent quencher and minor groove 

binder (NFQ-MGB) at the 3’ end (Thermo Fisher Scientific, Waltham, MA). Probes obtained 

from the Universal Probe Library (UPL) (Roche, Basel, Switzerland) were labeled with 6-FAM 

at the 5’ end and a dark quencher dye at the 3’ end and contained a short sequence (8-9 

nucleotides) of locked nucleic acids (56).   

Plasmid standards were graciously obtained from Dr. Satoshi Ishii (University of 

Minnesota, St. Paul, MN) and Dr. Daisuke Sano (Hokkaido University, Sapporo, Japan) and 

were transformed into E. coli JM109 (Promega, Madison, WI) chemically competent cells or E. 

coli BL21 (DE3) (Promega) electrocompetent cells using an electroporator (Bio-Rad). Plasmids 

were linearized using the Plasmid Miniprep Kit (Qiagen) and were quantified using Qubit 

fluorometric quantitation (Thermo Fisher) prior to use in qPCR and MFQPCR. All other 

standards were obtained as gBlock Gene Fragments (Integrated DNA Technologies). Standard 

curves were generated by qPCR using serial dilutions (3 x 100 to 3 x 106 copies/µl) of a standard 

pool containing 17 plasmid DNA and 4 gBlock DNA standards to validate the assays prior to use 

in MFQPCR.  

The average efficiency achieved by conventional qPCR for standard curves of plasmid 

standards and gBlock standards was 103% ± 12.3% (n=17) and 96.8% ± 10.1% (n=4), 

respectively. The average lower limit of detection for plasmid standards and gBlock standards 
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was 46 ± 8.1 copies/µl and 47± 12 copies/µl, respectively. Conventional TaqMan real-time 

qPCR was performed using a MiniOpticon Real-Time PCR System (Bio-Rad). The final reaction 

mixture (20 µl) contained 2X TaqMan Universal PCR Master Mix (Thermo Fisher), 500 nM of 

each forward/reverse primer, 250 nM hydrolysis probe, and 3 µl template DNA/cDNA. qPCR 

reactions were conducted under the following thermal conditions: 50°C for 2 min,  95°C for 10 

min, followed by 40 cycles of 95°C for 15 sec, and 60°C for 1 min.  

Prior to enumeration by MFQPCR, all cDNA/DNA samples and standard pool dilutions 

underwent a standard target amplification (STA) PCR to increase template DNA yields. Standard 

pool dilutions (3 x 100 to 3 x 106 copies/µl) amplified in the 14-cycle STA were used to generate 

standard curves for MFQPCR. 20X assays (18 µM of each primer and 5 µM probe) were pooled 

using 1 µl  per assay and 179 µl of DNA Suspension Buffer (Teknova, Hollister, CA) to make a 

0.2X TaqMan primer probe mix. The reaction (5 µl) contained 2.5 µl 2X TaqMan PreAmp 

Master Mix (Thermo Fisher), 0.5 µl 0.2X TaqMan primer probe mix and 1.25 µl of template 

cDNA/DNA. The PCR plate was processed with the following thermal cycle on an MJ Research 

Tetrad thermal cycler (MJ Research, Waltham, MA): 95°C for 10 min, and 14 cycles of 95°C for 

15 sec and 60°C for 4 min. The STA products were diluted 5-fold with 20 µl of nuclease free 

water and were used for MFQPCR.  

The sample premix (5 µl) contained 2.5 µl 2X TaqMan Master Mix, 0.25 µl 20X Gene 

Expression Sample Loading Reagent (Fluidigm, South San Francisco, CA), and 2.25 µl 5-fold 

diluted STA product. The assay mix (5 µl) contained 2.5 µl 2X Assay Loading Reagent 

(Fluidigm) and 2.25 µl 20X TaqMan primer probe mix. Aliquots (5 µl) of each sample and 

quadruplicates of each assay were loaded onto a 96.96 chip (Fluidigm). MFQPCR was 
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performed in a Biomark HD Real-Time PCR (Fluidigm) using the following thermal conditions: 

70°C for 30 min, 25°C for 10 min, 95°C for 1 min, followed by 35 cycles of 96°C for 5 sec and 

60°C for 20 sec. ROX was used as a passive dye reference.  

 

2.4 Genome Extraction, RT and qPCR Inhibition Analysis 

Control experiments were conducted to measure the efficiency of genome extraction, and 

to determine whether potential inhibitors present in water sample extracts had an effect on cDNA 

synthesis (reverse transcription) and qPCR.  

Reverse transcription (RT) inhibition was evaluated by comparing RT and qPCR in 

extracted environmental samples, which contained both DNA and RNA, and in nuclease free 

water. Human rotavirus Wa was obtained and propagated as described elsewhere (57). Virus 

particles were extracted using the E.Z.N.A. Total RNA Kit I (Omega Bio-tek, Norcross, GA) and 

quantified using Qubit fluorometric quantitation (Thermo Fisher). Human rotavirus Wa extracts 

(<0.2 ng/µl) were spiked into nuclease free water and Kampala water sample extracts. cDNA 

synthesis and conventional qPCR were run in parallel as described previously. Following 

enumeration, quantification cycle (Cq) values from nuclease free water versus environmental 

water were compared for statistical differences using a two-way ANOVA in Origin 2016. 

Differences in standard curves was determined to be significant for p-values less than 0.05.  

PCR inhibition was evaluated for the STA and MFQPCR analysis by including an 

internal amplification control (IAC) in environmental sample extracts. Serial dilutions of 

Pseudogulbenkiania NH8B standard were spiked into 1.6 µm sample extracts and 0.45 µm  

sample extracts prior to STA and MFQPCR. Following enumeration, IAC and 

Pseudogulbenkiania NH8B standard Cq values were compared for statistical differences using a 
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two-way ANOVA in Origin 2016. Differences in standard curves was determined to be 

significant for p-values less than 0.05. 

Genome extraction was evaluated by measuring an internal control before and after the 

extraction procedure. Pseudogulbenkiania sp. NH8B bacteria was graciously obtained from Dr. 

Satoshi Ishii (University of Minnesota, St. Paul, MN) and was grown in R2A agar (Sigma-

Aldrich) with a kanamycin antibiotic marker (Sigma-Aldrich). Pseudogulbenkiania was spiked 

directly onto membrane filters prior to genome extraction to achieve a final concentration of 2 x 

105 particles/µl in 100 µl of eluate assuming 100% extraction recovery. Extracted samples and 

known concentrations of Pseudogulbenkiania sp. NH8B standard were enumerated using 

conventional qPCR. Extraction efficiency was calculated by dividing the fraction of quantified 

Pseudogulbenkiania by the theoretical concentration assuming 100% efficiency. 

 

2.5 qPCR and MFQPCR Data Analysis  

Quantification cycle (Cq) values and standard pool dilutions (log copies/µl) were used to 

generate standard curves for each assay. Cq values were determined by Bio-Rad CFX Manager 

software (Bio-Rad) and Real-Time PCR Analysis software (Fluidigm) for qPCR and MFQPCR, 

respectively. Linear regression analysis was performed to fit standard curves and calculate the 

goodness of fit (r2). Assay efficiencies were calculated based on the slopes of the standard curves 

for each qPCR and MFQPCR assay to validate adequate target amplification (58). Standard 

curves were accepted as quantifiable if the efficiency achieved was greater than or equal to 90% 

and if the lower limit of detection was less than or equal to 30 copies/µl. Data points were 

accepted if at least two of the four replicates were found to be positive, and if Cq values fell into 

the accepted standard curve range. Data points with Cq values outside of the standard curve range 
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(i.e. detectable but not quantifiable) were considered negative (36, 59). Positive data points 

detected by MFQPCR were evaluated for seasonal significance using a two-sample t-test in 

Origin 2016 software. Data points from each water source that contained positive detection of 

target genes in both seasons were compared by grouping wet season samples versus dry season 

samples. Positive data points that were present in only one season were not evaluated for 

statistical significance. Seasonal variation was determined to be significant for p-values less than 

0.05. 
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CHAPTER 3: RESULTS AND DISCUSSION 
 
3.1 Sensitivities of Genome Extraction and qPCR Assays 

Efficiency of genome extraction methods and sensitivity of the applied RT and qPCR 

assays contribute to the effectiveness of detection of target sequences in environmental samples. 

Genome extraction efficiencies were found to be higher for the 1.6 µm filters compared to the 

0.45 µm filters. The extraction efficiency achieved was 36.6% ± 14.9% (n=6) for 0.45 µm 

nitrocellulose filters and 71.4% ± 11.7% (n=6) for 1.6 µm glass fiber filters. These results 

suggest that the extraction techniques used for the 1.6 µm glass fiber filters resulted in greater 

retention of genomic material, or that 0.45 µm sample extracts contained more PCR inhibitors.       

Reverse transcription and qPCR inhibition was evaluated to measure the presence or 

absence of contaminants that may interfere with RT and qPCR performance. A two-way 

ANOVA analysis showed that reverse transcription of RNA in environmental samples versus 

nuclease free water was not significantly different (p=0.22), suggesting that sample extracts did 

not contain reverse transcription inhibitors. A negative control was also included to validate that 

the internal control (Human Rotavirus Wa) was not previously present in the sample. The PCR 

inhibition analysis revealed that some environmental samples contained PCR inhibition. A two-

way ANOVA analysis comparing standards versus environmental samples were not statistically 

different for the 1.6 µm MFQCPR plate (p=0.203), but were statistically different for the 0.45 

µm MFQPCR plate (p=0.01) These findings suggest that PCR inhibitors were present in 0.45 µm 

sample extracts. The difference in PCR inhibitor presence between the 1.6 µm and 0.45 µm 

sample extracts is potentially due to the differences in genome extraction, which may result in 

excess PCR inhibitors, such as salts and phenol in sample extracts (60). This is consistent with 
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the MFQPCR results, which showed a greater number of positive data points in 1.6 µm sample 

extracts. 

The average lower limit of quantification (LLQ) of detection for the final selected 

MFQPCR assays was 5 ± 8 copies/µl. This detection limit corresponds to an average LLQ of 

approximately 2.65-2.95 log copies/L in drinking water and 3.26-3.56 log copies/L in drainage 

channel waters and Lake Victoria water. These detection limits are comparable to similar studies 

(37-39). 

 

3.2 Occurrence of Waterborne Pathogens 

Standard curves that were accepted based on efficiency and linear dynamic range 

included assays detecting EHEC (eaeA, stx1, stx2), Shigella spp. (ipaH 7.8, ipaH all), 

Salmonella spp. (invA, ttrC), E. coli (ftsZ), Vibrio cholerae (ctxA) and Enterovirus (Table 4). The 

average efficiency achieved for standard curves of the final selected assays was 99.2% ± 4.96% 

(n=12). Assays for the detection of Rotavirus and Legionella pneumophila were rejected due to 

positive detection in negative controls indicating contamination. The standard curves and 

corresponding sample quantifications for Enterovirus, Vibrio cholerae, E. coli, and Salmonella 

spp. (invA) were based on data obtained from the MFQCPR chip run with 0.45 µm sample 

extracts. The standard curves and corresponding sample quantifications for EHEC (eaeA, stx2) 

and Shigella spp. (ipaH 7.8, ipaH all) were based on data obtained from the MFQPCR chip run 

with 1.6 µm sample extracts. The standard curves and corresponding sample quantification for 

Salmonella spp. (ttrC) and EHEC (stx1) were based on data obtained from each MFQPCR chip 

containing 1.6 or 0.45 µm sample extracts. Data was analyzed by comparing relative amounts of 
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target pathogens in water sources in the dry season versus the wet season. Positive data points 

were expressed as gene copies/L of water.  

Of the accepted positive-detection data points (n=441), 14% were positive for EHEC 

eaeA, 4% were positive for EHEC stx1, 29% were positive for EHEC stx2, 7% were positive for 

Shigella spp. ipaH 7.8, 10% were positive for Shigella spp. ipaH all, 0.5% were positive for 

Salmonella spp. invA, 2% were positive for Salmonella spp. ttrC, 0.2% were positive for Vibrio 

cholerae ctxA, and 7% were positive for Enterovirus (Figures 2-9). The positive detection of 

target pathogens was found to depend on water source type. The number of positive data points 

was normalized for the number of water sources of the corresponding type. Of total data points 

in both MFQPCR chips (n=441), 12% ± 3% were positive for protected springs, 6% ± 4% were 

positive for the public tap, 53% ± 8% were positive for drainage channel waters, and 29% ± 1% 

were positive for Lake Victoria. Drainage channel waters, B3 and Ka1, contained the most target 

pathogens over the seven-month period, followed by Lake Victoria water samples, G12. 

Protected springs, B12, L12, N12 and M12, and the public tap, Ka2, contained the least number 

of positive data points. Performing seasonal variation analysis for drinking water samples was 

limited because 36% and 38% of positive data points for protected springs and public tap, 

respectively, were only found in one season.  

Positive detection of target genes was evaluated for each season and water source (Figure 

10). Positive detection of EHEC stx2 occurred in all water sources in wet and dry seasons, 

indicating the widespread prevalence stx2 containing EHEC strains in diverse water sources. 

Positive detection of Salmonella (invA, ttrC) occurred only during the wet season in afflicted 

water sources, and positive detection of Vibrio cholerae (ctxA) occurred only once during the 

study period. 
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Figure 2. Waterborne pathogen presence in drainage channel B3. The shaded area indicates the 

dry season.  
 

 
Figure 3. Waterborne pathogen presence in drainage channel Ka1. The shaded area indicates the 

dry season. 
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Figure 4. Waterborne pathogen presence in Lake Victoria G12. The shaded area indicates the dry season. 

 

 
Figure 5. Waterborne pathogen presence in public tap Ka2. The shaded area indicates the dry season. 
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Figure 6. Waterborne pathogen presence in protected springs L12. The shaded area indicates the dry 

season. 
 

 
Figure 7. Target pathogen presence in protected springs B12. The shaded area indicates the dry season. 
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Figure 8. Waterborne pathogen presence in protected springs N12. The shaded area indicates the dry 

season. 
 

 
Figure 9. Waterborne pathogen presence in protected springs M12. The shaded area indicates the dry 

season. 
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Figure 10. Abundance of target genes in water sources during the wet and dry seasons. EHEC stx2 and E. 

coli ftsZ genes were the most prevalent across all water source types. 
 

3.3 Seasonal Variation in Waterborne Pathogen Occurrence 

Data from the MFQPCR was used to determine if seasonal variations including 

precipitation and runoff, among others, were attributable to observed increases or decreases in 

target pathogen concentrations in each water source. Overall, both drainage channels were found 

to contain higher concentrations of target pathogens in the wet season versus the dry season. 

Positive detection of Shigella spp. ipaH 7.8 and ipaH all, EHEC eaeA, E. coli ftsZ, and 

Enterovirus was significantly higher in the wet season compared to the dry season for drainage 

channel B3 (Figure 11). Single occurrences for positive detection of EHEC stx1 and Salmonella 

spp. invA and ttrC in B3 during the wet season only (Figures 2, 10) support this data analysis. 

Drainage channel Ka1 showed similar trends for the presence of EHEC eaeA (Figure 12), but did 

not exhibit statistically significant seasonal trends for the presence of E. coli ftsZ (p=0.55) and 

EHEC stx2 (p=0.26). While both eaeA and stx2 genes are used for the detection of EHEC, both 

genes are not present in all strains of EHEC, potentially resulting in the differences observed 
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(61). Similar to drainage channel B3, single occurrences for positive detection of EHEC stx1 and 

Salmonella spp. ttrC was observed in the wet season only (Figures 3, 10). 

Positive detection of EHEC eaeA and E. coli ftsZ in Lake Victoria water samples was 

significantly higher in the dry season compared to the wet season (Figure 13). However, positive 

detection of EHEC stx2 gene in Lake Victoria water samples was not significantly higher in 

either season (n=29, p=0.31), and Shigella spp. ipaH all was observed as a single occurrence 

during the wet season (Figures 4, 10).  

The public tap was observed to have significantly higher positive detection of EHEC stx2 

gene during the dry season compared to the wet season (n=12, p=0.004) as shown in Figure 14. 

Salmonella spp. ttrC and E. coli ftsZ were observed only in the wet season, and Vibrio cholerae 

ctxA was observed only in the dry season. Observations of ttrC, ftsZ and ctxA were all single 

occurrences (Figures 5, 10).  

Protected springs containing positive detection of pathogenic microorganisms in wet and 

dry seasons were not found to have statistically significant seasonal variation (Figure 15). 

Statistical analysis comparing seasonal flux could not be performed for data points showing 

positive detection in only one season. For positively detected protected spring water samples 

(n=116), 5% of data points contained positive detection in the wet season only, 31% of data 

points contained positive detection in the dry season only, and 64% of data points contained 

positive detection in the wet and dry seasons.  
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!
Figure 11. The concentrations of Shigella spp., EHEC, E. coli, and Enterovirus in drainage 

channel B3 suggest that pathogen loading increases during the wet season compared to the dry season.  
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Figure 12. The concentrations of EHEC eaeA in drainage channel Ka1 suggest that pathogen 

loading increases during the wet season compared to the dry season. 
 
 

!
Figure 13. The concentrations of EHEC eaeA and E. coli ftsZ in Lake Victoria suggest that pathogen 

loading increases during the dry season compared to the wet season.!
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Figure 14. The concentrations of EHEC stx2 in the public tap suggest that pathogen loading 

increases during the dry season compared to the wet season, or that there was a breach in the drinking 
water treatment facility or water distribution system. 
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Figure 15. The concentrations of EHEC stx2 and E. coli ftsZ in protected springs suggest that 
pathogen loading is not significantly influenced by the dry season or wet season. 
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CHAPTER 4: DISCUSSION 

While seasonal variation of waterborne disease incidence is well accepted (62), there has 

been little research examining the impact of seasonality on waterborne pathogen presence in 

environmental waters in developing countries. Previous studies provide insight regarding the 

presence of FIB in environmental waters (63-66), but seasonal analysis of robust microbial water 

quality measurements is needed, particularly in developing countries where climate change is 

expected to have the greatest impact on water and food security, and public health (4, 5). 

Furthermore, high sensitivity and high throughput means of measuring longitudinal microbial 

water quality in limited resource settings is a knowledge gap that this study was designed to 

address.   

The drainage channels in this study were observed to have a strong relationship to season, 

with greater target pathogen presence during the wet seasons compared to the dry seasons. Five 

genes found in drainage channel B3 and one gene found in drainage channel Ka1 showed greater 

presence in the wet seasons. Also, genes found only as single occurrences in both drainage 

channels were all during the wet season. Some target genes, such as E. coli ftsZ and EHEC stx2 

were not found to be seasonally variable for drainage channel Ka1. This can potentially be 

explained by the widespread and consistent prevalence of these genes observed in many of the 

studied water sources (Figure 10). It is likely that these genes were found to be more consistently 

at drainage channel Ka1 due to greater direct human activity and interaction compared to 

drainage channel B3. Drainage channel Ka1 was smaller in size and experienced more direct 

human activity due to a market surrounding the drainage channel. Despite the lack of observed 

seasonal variation for genes ftsZ and stx2, the majority of the results show greater occurrence of 

pathogens in the wet season. These results suggest that both drainage channels become more 
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contaminated in the wet season as a result of increased runoff into the channel caused by an 

increase in precipitation.  

For surface water samples collected at Lake Victoria, G12, target genes showed 

inconclusive seasonal variability. Two target genes increased presence in the dry season, and two 

showed no seasonal variation or only a single occurrence in the wet season. In two Lake Victoria 

studies, total and fecal coliforms were found to increase in the wet season (67), while the 

presence of culturable Vibrio cholerae was found to increase in the dry season (68). However, 

these conflicting results could be due to the differences in sampling location. Further 

investigations of longitudinal microbial water quality in Lake Victoria should include multiple 

sample collection points along the coast.  

  While the public tap was observed to have higher positive detection of EHEC stx2 gene 

during the dry season, the rest of the positive data points were single occurrences in the wet or 

dry season resulting in inconclusive seasonal variability. Potential variability at the water 

treatment plant or in the water distribution system was also considered. A quantitative microbial 

risk assessment (QMRA) conducted by the water treatment plant found that the risk associated 

with bacterial contamination in the drinking water distribution system was 2-3 orders of 

magnitude greater than the risk associated with contamination at the treatment facility (69). This 

suggests that single occurrences of pathogens in the public tap are more likely due to breaches in 

the drinking water distribution system, rather than seasonal variability.   

  Protected springs containing pathogenic microorganisms in wet and dry seasons were not 

found to be seasonally variable. Overall, the protected springs investigated in this study 

contained E. coli ftsZ and EHEC stx2 semi-regularly with single occurrences of other pathogens. 

These data suggest that seasonal variations play little role in altering the water quality of the 
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protected springs, and hence may not contribute to observed increase in waterborne disease 

during the wet season. 
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CHAPTER 5: CONCLUSIONS 
 

In this study, multiple waterborne pathogens were detected in different water sources for 

a period of seven-months, demonstrating that MFQPCR is a useful technique for long-term 

biological water quality monitoring, even in resource limited settings. However, there were 

limitations to the study. A number of MFQPCR assays used for the detection of viruses and 

bacteria were not used due to poor efficiencies during the MFQPCR plate run. Although all 

assays achieved approximately 90% efficiency when run with conventional qPCR, some assays 

did not perform as expected in the final MFQPCR plate. To overcome these limitations, 

MFQPCR assays should be run with standards only to validate assays prior to sample 

enumeration. Future studies should also aim to increase sample volume to achieve lower 

quantification limits. While quantification limits reported were comparable to similar studies, 

sample processing, reverse transcription, and optional sample clean-up methods all contribute to 

increasing the lower limit of detection in the original sample. Despite these limitations, the 

results of this study contributed to the understanding of seasonal effects on microbial water 

quality of different water source types.   
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APPENDIX A: SUPPLEMENTAL DATA 
 

Table 3. Primer and probe sequences for qPCR and MFQPCR assays. 

Target Microorganism 
  
Sequence (5'-3') Ref. 

Adenovirus 40/41b,d FP GGACGCCTCGGAGTACCTGAG  (47) 

 
RP ACIGTGGGGTTTCTGAACTTGTT 

 
 

Flu. Pr. FAM-CTGGTGCAG/ZEN/TTCGCCCGTGCCA-IBFQ 
 

 Enterovirusa,d FP CCCCTGAATGCGGCTAATC  (48) 

 
RP GATTGTCACCATAAGCAGC 

 
 

Flu. Pr. FAM-CGGAACCGA/ZEN/CTACTTTGGGTGTCCGT-IBFQ 
 

 Human norovirus GIb,d FP ATGTTCCGCTGGATGCG  (49) 

 
RP CCTTAGACGCCATCATCATTTAC 

 

 
Flu. Pr. FAM-TGTGGACAG/ZEN/GAGAYCGCRATCT-IBFQ 

 
 Human norovirus GIIa,d FP ATGTTCAGRTGGATGAGRTTCTC  (49) 

 
RP TCGACGCCATCTTCATTCACA 

 
 

Flu. Pr. FAM-AGCACGTGG/ZEN/GAGGGCGATCG-IBFQ 
 

 Hepatitis A virusa,f FP TCACCGCCGTTTGCCTAG  (50) 

 
RP GGAGAGCCCTGGAAGAAAG 

 
 

Flu. Pr. FAM-CCTGAACCTGCAGGAATTAA-NFQ-MGB 
 

 Hepatitis E virusb,d FP CGGCGGTGGTTTCTGGRGTG  (51) 

 
RP GGGCGCTKGGMYTGRTCNCGCCAAGNGGA 

 
 

Flu. Pr. FAM-CCCCYATAT/ZEN/TCATCCAACCAACCCCTTYGC-IBFQ 
 



!

!
38 

Table 3 (cont). Primer and probe sequences for qPCR and MFQPCR assays. 

Target Microorganism Sequence (5'-3') Ref. 
Rotavirus Aa,d FP ACCATCTACACATGACCCTC  (55) 

 
RP GGTCACATAACGCCCC 

 
 

Flu. Pr. FAM-ATGAGCACA/ZEN/ATAGTTAAAAGCTAACACTGTCAA-IBFQ 
 

 General E. coli - ftsZa,e FP CTGGTGACCAATAAGCAGGTT  (39) 

 
RP CATCCCATGCTGCTGGTAG  

 
 Flu. Pr. UPL #71 

 
 
EHEC - eaeAa,e FP GGCGAATACTGGCGAGACTA  (39) 

 
RP GGCGCTCATCATAGTCTTTCTT  

 
 

Flu. Pr. UPL #28 
 

 EHEC - stx1a,e FP TGTAATGACTGCTGAAGATGTTGAT  (39) 

 
RP TCCATGATARTCAGGCAGGA  

 
 

Flu. Pr. UPL #60 
 

 EHEC - stx2a,e FP TCTGGCGTTAATGGAGTTYAG  (39) 

 
RP GTGACAGTGACAAAACGCAGA  

 
 

Flu. Pr. UPL #126 
 

 Shigella spp. - ipaH 7.8a,e FP TCTGAGAATCCTGACTGAATGG  (39) 

 RP AAGCAATGCCTCGCTCTTC  
 

 
Flu. Pr. UPL #7 
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Table 3 (cont). Primer and probe sequences for qPCR and MFQPCR assays. 

Target Microorganism Sequence (5'-3') Ref. 
Shigella spp. - ipaH alla,e  FP AAGGCCTTTTCGATAATGATACC  (39) 

 RP ATTTCGAGGCGGAACATTT  
 

 Flu. Pr. UPL #108 
 

 
Shigella spp. - virAa,e  FP GGCAATCTCTTCACATCACG  (39) 

 RP TTCGGACATAATTTGGGCATA  
 

 Flu. Pr. UPL #6 
 

 Salmonella spp. - invAa,d FP GCATCAATAATACCGGCCTTC  (46) 

 
RP ATGGTATGCCCGGTAAACAG  

 
 

Flu. Pr. FAM-CTCTTTCGT/ZEN/CTGGCATTATCGATCAGTACCA-IBFQ 
 

 Salmonella spp. - ttrCa,e FP GCCTTACAGGCGTTCTTCG  (39) 

 
RP ATTTTTGGCAGCCTTACCG  

 
 

Flu. Pr. UPL #149 
 

 Camplyobacter jejuni - ciaBa,e  FP GCGTTTTGTGAAAAAGATGAAGATAG  (39) 

 
RP GGTGATTTTACTTTCATCCAAGC  

 
 

Flu. Pr. UPL #137 
 

     Legionella pneumophila - mipa,e FP GGATAAGTTGTCTTATAGCATTGGTG  (39) 

 RP CCGGATTAACATCTATGCCTTG  
 

 
Flu. Pr. UPL #60 
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Table 3 (cont). Primer and probe sequences for qPCR and MFQPCR assays. 

Target Microorganism Sequence (5’-3’) Ref. 
Pseudogulbenkiania sp. NH8Bb,e FP CAGGCCGTGAAGTCAAGC  (39, 53)  

 RP GAGGCGATGTGGATGGTC  
 

 
Flu. Pr. UPL #56 

     
Vibrio Cholerae - ctxAa,d FP TTTGTTAGGCACGATGATGGAT (39) 
 RP ACCAGACAATATAGTTTGACCCACTAAG  
 Flu. Pr. FAM-TGTTTCCAC/ZEN/CTCAATTAGTTTGAGAAGTGCCC-IBFQ  
    
Cryptosporidiumb,f FP GGGTTGTATTTATTAGATAAAGAACCA (54) 
 RP AGGCCAATACCCTACCGTCT  
 Flu. Pr. FAM-TGACATATCATTCAAGTTTCTGAC-NFQ-MGB  
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Table 4. MFQPCR specifications for standards used in final quantification. 

Assay LLQ ULQ Slope r2 Efficiency Plate 

Enterovirus 3 3 x 106 -3.45 0.96 95 0.45 

E. coli ftsZ 3 3 x 106 -3.32 0.98 100 0.45 

EHEC eaeA 30 3 x 106 -3.61 0.99 89 1.6 

EHEC stx1 3 3 x 106 -3.36 0.99 99 1.6 

EHEC stx1 3 3 x 106 -3.25 0.94 103 0.45 

EHEC stx2 3 3 x 106 -3.42 0.96 96 1.6 

Shigella spp. ipaH 7.8 3 3 x 106 -3.44 0.96 95 1.6 

Shigella spp. ipaH all 3 3 x 106 -3.21 0.97 104 1.6 

Salmonella spp. invA 3 3 x 106 -3.35 0.95 99 0.45 

Salmonella spp. ttrC 3 3 x 106 -3.252 0.98 103 1.6 

Salmonella spp. ttrC 3 3 x 106 -3.16 0.94 107 0.45 

Vibrio cholerae ctxA 3 3 x 106 -3.37 0.94 98 0.45 
 


