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ABSTRACT

Previous research on free chlorination and chloramination of nanofiltration

(NF) and reverse osmosis (RO) polyamide membranes has conclusively shown

that these water disinfectants damage the structural integrity of membranes

and adversely affect their performance. Secondary oxidants formed from re-

actions of chlorine disinfectants with bromide and iodide ions have also been

found to transform the active layers and affect the performance of fully aro-

matic polyamide membranes, but the effects on semi-aromatic polyamide mem-

branes are still unreported. This work investigates how exposure to a sec-

ondary oxidant, hypoiodous acid (HOI), changes the active layer and rejection

performance of the semi-aromatic polyamide membrane NF270. Small coupons

of membrane were contacted with HOI solutions at various exposure levels. Ex-

posed coupons were analyzed by X-ray photoelectron spectroscopy, Rutherford

backscattering spectrometry, and attenuated total reflectance - Fourier trans-

form infrared spectroscopy to monitor the chemical structure of the membrane

active layer. Changes in membrane performance were assessed by performing

permeation experiments with Rhodamine-WT (R-WT) and sodium chloride

(NaCl) solutions. Structural analysis revealed iodination of the active layer,

but at levels that did not result in changes in water permeability or the rejec-

tion of R-WT and NaCl.
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CHAPTER 1

INTRODUCTION

Pressure Driven Membranes Systems

Pressure driven membrane processes are promising technologies that can re-

move components present in freshwater and seawater as small as monovalent

ions through physicochemical separation [1]. As Figure 1.1 shows, different

classes of pressure driven membranes are capable of varying degrees of con-

taminant removal. Membranes classified as microfiltration (MF) and ultra-

filtration (UF) require less energy for operation and target relatively large

contaminants,whereas membranes classified as nanofiltration (NF) and reverse

osmosis (RO) require more energy for operation but they are capable of re-

moving small molecules and ions [1]. NF membranes are unique in that they

can be manufactured for contaminant removal across a large spectrum. NF

membranes can perform similar to UF membranes or RO membranes depend-

ing on how they are manufactured; the difference in selectivity comes from

the composition and structure of the membrane active layer. NF membranes

commonly have a thin-film composites, structure with three distinct layers: a

thick polyester backing layer, a thinner polysulfone UF support membrane,

and an ultrathin polyamide active layer (Figure 1.2).
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Figure 1.1: Size ranges of pressure driven membrane processes and
contaminants [1]

Figure 1.2: Schematic of a membrane cross-section [2, 3, 4]

The active layer is formed by an interfacial polymerization (IP) reaction

resulting in either a fully or semi-aromatic polyamide layer. Fully aromatic

polyamide membranes are created through the IP reaction of trimesoyl chloride

(TMC) and m-phenylene diamine (MPD) with the resulting polymer having a

cross-linked structure with the repeating unit shown in Figure 1.3 [5]. Semi-

aromatic polyamide membranes are created through an IP reaction of TMC

and an aliphatic amine, such as piperazine (PIP) for the membrane used in this

study, to form a different cross-linked structure seen in Figure 1.4. Incomplete

cross-linking would result in the occurrence of carboxylic and amine groups

capable of becoming charged as a function of pH.
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Figure 1.3: Fully aromatic
polyamide active layer repeating

unit chemical
structure,C36H24N6O6 [5]

Figure 1.4: Semi-aromatic
poly(piperazinamide) active layer

repeating unit chemical
structure,C30H30N6O6 [5]

Several properties of the membrane active layer affect membrane perfor-

mance. Surface roughness, hydrophilic/hydrophobic tendencies and surface

charge of the active layer [5, 6] affect the membrane’s permeability and selec-

tivity as well as the membrane’s susceptibility to fouling [5, 7]. Fouling occurs

when unwanted material accumulates on the membrane surface, decreasing

the flux through the membrane [6]. Polyamide NF membranes suffer from

organic, inorganic and biological fouling issues [6, 8]. Natural organic matter,

iron or aluminum and bacteria in water can form organic, inorganic, or bio-

fouling layers, respectively, on the membrane surface. Surface fouling occurs

when the negative surface charge associated with incomplete cross-linking is

limited, the membrane is hydrophobic or the surface is rough [7]. Fouling re-

sults in decreases of both water flux and solute rejection by the membrane,

requiring higher maintenance and resulting in higher operational costs for the

system to run efficiently [8].

Fully aromatic and semi-aromatic polyamide membranes undergo different

reactions with foulants. The semi-aromatic poly(piperazinamide) membrane,

NF270 [9] used in this study, has more hydrophilic tendencies and less sur-

face roughness than fully aromatic polyamide counterparts [10], making the

semi-aromatic membrane less susceptible to fouling than the fully aromatic

membranes. Additionally, differences in active layer chemistry of fully aro-
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matic and semi-aromatic polyamide membranes results in different reactivity

with chemicals used in membrane system operation. To clean or eliminate

fouling layers accumulating on membrane surfaces, it is common to expose the

membrane to disinfecting agents [11, 12]. Free chlorine and chloramines and

secondary oxidants formed from their reactions with bromide and iodide ions

have been shown to react with polyamide active layers. As a result, mem-

brane performance can deteriorate after contact with chlorine disinfectants

[4, 11, 13, 14, 15, 16].

The impact of chlorination and chloramination on fully aromatic polyamide

membranes is well documented. Previous work has found that both free chlo-

rine and chloramines degrade membrane performance through at least two

agreed upon mechanisms: (1) reversible N-chlorination and (2) irreversible

ring chlorination [4, 13, 17]. In N-chlorination, the amidic nitrogen takes in

chlorine creating N-chloro products that are prone to dechlorination in the

absence of the disinfectant. Ring chlorination occurs through either direct

aromatic substitution or the Orton rearrangement. In the Orton rearrange-

ment, after the amide nitrogen is chlorinated, there is a rapid intermolecular

rearrangement resulting in irreversible chlorination of the amide ring (Figure

B.1 in Appendix B) [4, 14, 16].

With semi-aromatic polyamide membranes, different mechanisms of chlori-

nation occur due to the absence of the aromatic ring in the PIP structure.

Unlike the fully aromatic polyamide membranes, when exposed to chlorine,

the poly(piperazinamide) semi-aromatic membrane incorporates a lower con-

centration of the halogen signifying that the tertiary nitrogen is less prone to

chlorination [11]. In the absence of the amide ring, the chlorine attaches by two

mechanisms: (1) reversible N-chlorination of amine nitrogen resulting from in-

complete cross-linking (Figure B.2 in Appendix B) and (2) irreversible chlorine
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attachment to amide nitrogen resulting in hydrolysis of the C-N bond (Figure

B.3 in Appendix B) [11]. The hydrolysis degrades the membrane performance

to a smaller extent than ring chlorination, but with quantifiable impact [11].

In addition to directly impacting the performance of polyamide membranes,

chlorination also indirectly affects membrane performance via interactions with

naturally occurring compounds found in water. Both freshwater and seawa-

ter contain natural components that can also react with chlorine disinfectant.

For example, iodide (I-) and bromide (B-) can both be oxidized by free chlo-

rine or chloramines to become hypoiodous acid (HOI) and hypobromous acid

(HOBr) or bromochloramine (NHBrCl) by the reactions summarized in Ta-

ble 1.1. The impact of oxidized iodide and bromide species on fully aromatic

polyamide membranes has been assessed. Both halogens attack the fully aro-

matic structure, through N-halogenation or ring halogenation, resulting in

membrane degradation [4, 18]. Interestingly, bromide species appear to re-

act at a similar magnitude as chlorine compounds [4, 15, 18], whereas HOI

showed less influence on membrane performance [4, 18]. Limited investigation

has been conducted on reactions of semi-aromatic polyamide membranes to

secondary oxidants like HOBr and HOI.

Table 1.1: Possible reactions between free chlorine, monochloramine,
bromide, and iodide compounds in water

Reaction Rate Constant Source

HOCl + Br- −→ HOBr + Cl- 5.1 * 105 M-1H-1 [19]

HOBr + NH2Cl −→ NHBrCl +H2O ’fast’ [19]

HOCl + I- −→ HOI + Cl- 4.3 * 108 M-1s-1 [20]

NH2Cl + I- −→ HOI + Cl- + NH3 2.4 * 1010 * [H+] M-2s-1 [20]
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Chlorine Oxidation of Iodide

Iodide (I-) can be oxidized by either free chlorine or monochloramine during

water treatment. Free chlorine is a strong oxidant and common disinfectant

that is prone to combine with natural organic matter in water to form disinfec-

tion by-products (DBPs) [21]. Due to the high occurrence of regulated bromi-

nated and chlorinated DBPs, many water treatment facilities have started to

use monochloramine, a weaker disinfectant [21]. Whereas free chlorine will

oxidize I- to iodate (IO3
-), monochloramine will oxidize (I-) to HOI [20]. The

formed HOI reacts with natural organic matter to form iodinated DBPs, which

are not yet regulated, as well as with the polyamide membranes. Figure 1.5

below shows the fate of iodine after monochloramine exposure.

Figure 1.5: Fate of iodine during oxidative water treatment [20]
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XPS and RBS

X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spec-

trometry (RBS) are both analytical instruments used to obtain elemental in-

formation about material composition. XPS analysis uses an X-ray beam to

excite electrons in the sample up to six nanometers in depth [3]. The binding

energy (BE) of elements in the sample are calculated from the photon energy

of the X-ray source (hν), the measured specific kinetic energy of the excited

electrons (KE), and the instrument’s calibration (φspec) via Eq.1.1:

BE = hν(known)−KE(measured)− φspec(calibrated) (1.1)

Figure 1.6 shows a survey scan of all elements, except hydrogen, in a pristine

(not exposed to any solution) NF270 membrane. The raw data can be inter-

preted using CasaXPS software to obtain information in terms of counts per

second (CPS) as a function of binding energy. High resolution scans can be

obtained for elements of interest, which allow the user to determine the area

of each element peak. With this information, relative atomic concentration

percent of each element can be used to determine the composition of the sam-

ple. Although XPS is capable of providing surface level compositional data, it

cannot provide the depth-average composition of the membrane.

Alternatively, RBS analysis is capable of layered compositional data acquisi-

tion to a depth of about 2 µm into the sample [3]. This instrument can measure

the average atomic composition as a function of the depth of the sample. The

RBS uses an ion scattering technique that results from elastic collisions be-

tween the ion beam, helium in this study, and sample nuclei. When the beam

hits the sample, the helium ions are scattered with specific energies that cor-

respond to individual atoms. Based on the mass and depth of the atom, the
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peaks and plateaus shown in Figure 1.7 are obtained. RBS spectra are ana-

lyzed with the SIMNRA software to obtain elemental composition from the

height of peaks and plateaus. The RBS’ ability to relay depth information is

demonstrated in Figure 1.7 with a sulfur plateau, representing the polysulfone

support layer (C27H26O6S), while the XPS scan shows no sulfur peak (∼200 -

250 eV range).

Figure 1.6: Pristine NF270 XPS characterization. Elements are labeled as
they appear in the spectra
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Figure 1.7: Pristine NF270 RBS characterization. Elements are labeled as
they appear in the spectra. Raw data points obtained during RBS analyses

are denoted using symbols, and simulated data curves obtained using
SIMNRA are illustrated with solid lines

Objectives

The primary objective of this study is to understand the physical or structural

changes occurring in the membrane active layer resulting from the exposure to

varying concentrations of HOI. Structural changes are assessed through XPS

and RBS analyses for elemental compositional data of membranes, which pro-

vides insight into the location of the iodine within the semi-aromatic polyamide

structure. These techniques are paired with ATR-FTIR, which assesses changes

in functional groups of the polymeric membrane.

An additional objective is to assess the membrane performance before and

after exposure to HOI. Membrane permeation experiments using aqueous so-

lutions of water, Rhodamine-WT (R-WT) and sodium chloride (NaCl) as

feed solutions are conducted to understand how membrane rejection capability

changes with increasing exposure to HOI.
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CHAPTER 2

MATERIALS AND METHODS

Membranes Permeation Experiments

Permeation experiments were performed with coupons (44.5 mm diameter;

13.4 cm2 effective area) cut from the thin-film composite membrane NF270 [9].

Membrane coupons were installed in 50-mL amicon stirred cells [22] and tested

with aqueous feed solution of Rhodamine-WT (R-WT) solution or sodium

chloride (NaCl).

Membrane Characterization

Membrane coupons (5 mm x 5 mm for XPS and 25 mm x 25 mm for RBS)

were exposed to target concentration (see next section) of secondary oxidizing

agent HOI or blank solution, rinsed in a 10-6 dilution of sodium iodide (NaI)

and dried for at least 24 hours prior to instrument analysis. All membranes

were rinsed in 18 MΩ-cm Milli-Q water for at least 24 hours prior to use.

Chemicals

Hypoiodous Acid (HOI)

HOI solutions were prepared by reacting NaI with monochloramine (NH2Cl).

Concentrations used can be found in Table A.3. NaI solutions were prepared
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by dissolving sodium iodide in phosphate buffer solution. NH2Cl solutions

were prepared as stated below.

Monochloramine (NH2Cl)

A monochloramine stock solution of 1000 mg/L as Cl2 was prepared daily by

mixing equal volumes of 0.75 M ammonium chloride (NH4Cl) and 0.706 M

hypochlorous acid (HOCl) solutions in 18 MΩ-cm Milli-Q water. The HOCl

solution was slowly pipetted into the NH4Cl solution under continuous mi-

ing by magnetic stirring. Resulting NH2Cl solutions had a target N:Cl ratio

of 1.1:1. The actual final concentration of NH2Cl was determined by mea-

suring the UV absorbance at 243 nm in a ultra-violet visible light (UV-Vis)

spectrophotometer (Shimadzu UV-2550). Absorbance values were converted

to concentrations with the Beer-Lambert law equation using a NH2Cl molar

absorptivity of 433 cm-1. Table A.1, Table A.2 and Tables A.4 - A.7 display

sample calculations and raw data in NH2Cl preparation.

Phosphate Buffer

Phosphate buffer solutions were prepared by dissolving disodium phosphate

salt in 18 MΩ-cm Milli-Q water. The target buffer concentration was 15 mM

and the pH was adjusted to 8.3 using HCl or NaOH as needed.

Analytical Techniques

Ion Chromatography

A Thermo Scientific Dionex ICS-2100 Ion Chromatography (IC) was used to

analyze permeation samples from NaCl experiments. Duplicate samples were
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filtered through 0.45 µm filters [23] and placed into 1.5 mL autosampler vials

[24].

Spectrofluorometry

A Shimadzu RF-5301PC Spectrofluorophotometer was used to analyze per-

meation samples from R-WT experiments. R-WT samples underwent a 1:10

dilution for permeate samples and 1:1000 dilution for feed samples in order to

obtain readings in the RF-5301PC. The excitation wavelength was set to 550

nm and the emission wavelength was set to 580 nm for proper analysis of R-

WT fluorescence. Triplicates of each sample were taken with the RF-5301PC.

X-ray Photoelectron Spectroscopy (XPS)

XPS analyses were performed with a Kratos Axis ULTRA spectrometer equipped

with a MgKα X-ray source (hν = 1253.6 eV). Membrane samples were cut into

5 mm x 5 mm squares and mounted on double sided copper tape [25]. Survey

scans and high resolution scans for oxygen, nitrogen, carbon and iodine were

obtained for all XPS samples.

Rutherford Backscattering Spectrometry (RBS)

RBS analyses were performed with a 3SDH NEC Pelletron. A stable, 2.0 MeV

helium (He+) beam with a 3 mm diameter and 50 nA current were used to

analyze all samples. Membrane samples were cut into 25 mm x 25 mm squares

and mounted on double sided aluminum tape [26]. At least 1000 counts of

carbon were collected for each sample. The system was set up with incident,

exit, and scattering angles of 22.50◦, 52.50◦, and 150.0◦, respectively. Using

SIMNRA software, raw data was fit with a simulated line that was normalized
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to the sulfur plateau as previous studies have shown [3, 4]

Attenuated Total Reflection-Fourier Transform Infrared
Spectroscopy (ATR-FTIR)

ATR-FTIR analyses were performed with a Nexus 670 FTIR spectrometer

(Thermo Nicolet Corporation) equipped with a smart golden gate single-

reflection diamond ATR accessory, DTGS-KBR detector, KBr beam-splitter

and an IR source of 45◦. Spectrum software was programmed to take 50 scans

in 0.1 increments over a 400 - 4000 nm wavelength range at a resolution of 2

cm-1. Data was normalized to a peak at 1488 cm-1 that corresponds to the

polysulfone support layer that is known to remain unchanged from chlorine

exposure [12].
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CHAPTER 3

RESULTS AND DISCUSSION

Structural Changes

XPS

Pristine and iodinated membrane coupons were first analyzed by XPS to deter-

mine the atomic concentration of pristine and iodinated membranes near the

exposed surface of the membrane active layer. Two iodine peaks were visible

in the 616-620 eV range and the 628-632 eV range as seen in the high resolu-

tion scans in Figures 3.1a and 3.1b. These scans show that the CPS values

increased with increasing exposure to HOI in the range of 0 - 300 mM·h inves-

tigated. The presence of iodine peaks indicates halogenation of the polyamide

active layer. Absence of the iodine peaks in both the pristine membranes

and control membrane experiments, membranes only exposed to NaI solution,

supports the conclusion that halogenation of the membranes is a result of the

interaction with HOI produced from oxidation of iodide by monochloramine.
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Figure 3.1: (a) All high resolution XPS scans of the iodine spectra (b)
Individual high resolution XPS scans of iodine spectra

Using CasaXPS, concentrations of iodine within the membrane could be

assessed. Figure 3.2 displays the relationship between HOI exposure and io-

dine incorporation. There is a rapid growth in iodine uptake as HOI exposure

increases, but the relative percent of iodine within the membrane structure re-

mains relatively low; exposure to 300 mM·h HOI results in only 0.40% iodine.

Taking the known percentages of iodine in the membrane, summarized in Ta-

ble 3.1, and knowing the structure of the semi-aromatic poly(piperazinamide)

membrane (Figure 1.4), approximately 1.4-28.0 percent of the polyamide re-

peating unit has one iodine attached or C30H29N6O6I, while the rest remains

in the original form C30H30N6O6. This suggests that most repeating units of

the semi-aromatic polyamide do not have any halogens attached and at most,

have one iodine after an exposure to HOI of 300 mM·h.
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Figure 3.2: XPS results of atomic percent of iodine incorporated into NF270
structure

Table 3.1: Atomic percent of oxygen, nitrogen, and iodine found in pristine
and exposed membrane samples for both XPS and RBS

XPS RBS XPS RBS XPS RBS XPS RBS

CT (mM·h HOI) %O %N O/N Ratio* %I

0 14.95 5.00 12.07 3.00 1.24 1.67 0.02 0.00

10 15.82 5.00 11.55 3.00 1.37 1.67 0.12 0.05

100 15.86 5.00 12.16 3.00 1.30 1.67 0.27 —

300 15.42 5.00 11.99 3.00 1.29 1.67 0.40 0.32

*O/N ratio describes the degree of crosslinking in membrane; Values close to 1 are

completely crosslinked and values close to 2 are completely linear

RBS

Following the XPS analysis, RBS was utilized to gain more information about

iodine incorporation into the polysulfone support layer.
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The first set of RBS analyses were conducted on membranes exposed to 0

(pristine), 10 and 300 mM·h HOI. These membranes were prepared in the same

manner as those analyzed with XPS, through exposure to the HOI solution

followed by a sodium iodide rinse. An iodine peak is very visibly seen at 1.8

MeV in the survey scan, Figure 3.3a. Zooming into that region in Figure

3.3b, the RBS data supports that exposure to higher concentrations of HOI

result in higher iodine incorporation into the membrane (Table 3.1). The lower

atomic concentration obtained by RBS (0.05% and 0.32%) compared to those

observed with XPS samples (0.12% and 0.40%) reveals a lack of homogeneity in

the iodine profile with the concentration near the active layer surface obtained

by XPS being higher than the average in the entire active layer obtained by

RBS. The greater depth characterization by RBS also allows for small amounts

of iodine incorporated into the polysulfone support to be seen. The increase in

the plateau leading into the iodine peak, seen clearly in Figure 3.3b, represents

the iodine attached to the polysulfone support. The percentages of iodine

present in the support layers as a function of HOI exposure are summarized

in Table 3.2.
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(b)

Figure 3.3: RBS analysis of pristine, 10 mM·h HOI and 300 mM·h HOI
exposed membranes with NaI rinse. (a) Full spectra (b) iodine spectra
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Table 3.2: Iodine concentrations in active and support layers from RBS
analysis for permeation and non permeation experiments

No Permeation Permeation

NaI rinse NaCl rinse R-WT perm NaCl perm

10

Active Layer 0.053% 0.045% 0.02% 0.03%

Support Layer 0.0043% 0.004% 0.003% 0.003%

100

Active Layer — 0.11% 0.07% 0.055%

Support Layer — 0.005% 0.006% 0.005%

300

Active Layer 0.32% 0.225% 0.11% 0.06%

Support Layer 0.018% 0.01% 0.01% 0.007%

The stability of the iodine in the membranes was then assessed. Exposed

membranes underwent permeation experiments to understand the effect of

iodination on organic and salt rejection. As shown in Figures 3.4a and 3.4b and

Figures B.5 and B.6 in the appendix, RBS analysis of exposed membranes after

roughly 50 hours of permeation, showed lower iodine concentrations compared

with those observed for the membranes before permeation experiments Figures

3.3a and 3.3b.
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Figure 3.4: RBS analysis of pristine, 10, 100, and 300 mM·h HOI exposed
membranes followed by NaCl permeation. (a) Full spectra (b) iodine spectra

Over the course of the permeation experiment, the iodine is removed from

the membrane. A control test was performed to understand whether the iodine

was being removed simply due to the amount of time feed solution passed

through the membrane or if the feed solution, in particular the chloride ion, was

responsible. Instead of rinsing the exposed membrane with the NaI solution,

the membrane was rinsed in a 400 mg/L NaCl solution (the same concentration

used in permeation experiments) for 30 minutes. Figure 3.5 below and Figures

B.7 and B.8 in the appendix show the permeation and rinse analysis results

for 300,10, and 100 mM·h HOI, respectively. Graphically and from the values

found in Table 3.2, there is a decline in iodine uptake after the NaCl rinse.

This would indicate that the solution plays a role in the release of iodine from

the membrane, and the prolonged exposure in the permeation experiments

removes the iodine almost entirely.
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Figure 3.5: RBS analysis of 300 mM·h HOI exposed membranes after NaI
rinse, NaCl rinse, R-WT permeation, and NaCl permeation

The instability of iodine attachment to the semi-aromatic polyamide struc-

ture indicates that the iodine is attaching in a reversible location, such as the

non-crosslinked nitrogen atoms. To verify that no irreversible modifications

occurred in the membrane after iodine exposure, ATR-FTIR analyses were

conducted. Pristine membranes and membranes exposed to 10, 100, and 300

mM·h HOI showed no changes in any bonds as seen in Figure 3.6.
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Figure 3.6: FTIR analysis of pristine, 10, 100, and 300 mM·h HOI exposed
membranes

In previous studies in which NF270 membrane samples were exposed to the

stronger oxidizing agent, free chlorine, the semi-aromatic structure showed a

flattening of the amide I band (1630 cm-1) in ATR-FTIR spectra with increased

exposure to the halogen [12]. This flattening occurs due to the hydrolysis of

the C-N bonds of the piperazine structure. The C-N hydrolysis results in

increased oxygen and less cross-linking and ultimately changes the membrane

composition and performance. None of these changes occur in membranes

exposed to HOI, supporting the conclusion that iodine is not a strong enough

oxidant to facilitate the hydrolysis of the C-N bonds and therefore it only

attaches to an easily reversible position such as on the non-crosslinked nitrogen.
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Membrane Performances

Transport Model

Performance for the NF270 membrane was characterized by inputting raw data

found in Appendix C.1 - C.12 into the solution-diffusion model Eq. 3.1 [27]

Rejection = 1− cp
cf

=
100

1 + ( B
1−α ·

1
Jv

+ α
1−α)e

Jv
k

(3.1)

Where B is the solute transport parameter, α is the total product wa-

ter flux due to feed solution leakage, Jv is the solution flux, and k is the

solute mass transfer coefficient. This equation takes into account three dis-

tinct mechanisms controlling membrane performance: (1) diffusion through

the membrane, (2) advection through the membrane, and (3) concentration

polarization in the feed solution laminar film adjacent to the exposed active

layer interface [27]. Concentration polarization refers to the buildup of solute

within the laminar film next to the membrane surface due to membrane selec-

tivity, which results in higher solute concentration next to the membrane wall

compared to that in the bulk feed solution and corresponding lower water flux

and lower solute rejection [28].

The values for intrinsic rejection, Jv and k are found experimentally. So-

lute rejection is calculated from permeate and feed concentrations (cp and cf)

found for R-WT or NaCl. The water flux is calculated from gravimetric mea-

surements as solution passes through the membrane. The solute mass transfer

coefficient for R-WT, k = 0.9 m/d, was obtained by fitting permeation data,

and k = 2.6 m/d was calculated from from the relationship between solute

mass transfer coefficients and diffusion coefficients seen in Eq. 3.2 [27].
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kNaCl

kR-WT
=

(
DNaCl

DR-WT

) 2
3

(3.2)

The values for α and B must be determined through a Sigmaplot regression

using Eq. 3.1.

R-WT Experiments

R-WT was used as a surrogate for organic solutes to assess the membranes

rejection capabilities before and after exposure to iodine. Two interesting

results are observed from the R-WT performance data. First, the α, B and k

parameters determined do not properly represent how these NF270 membranes

performed, and second, the iodine exposure resulted in no measureable change

in membrane performance.

In Figures 3.7a, 3.8a, and 3.9a, the raw data points (Tables C.1, C.3 and

C.5) were run through a Sigmaplot regression to obtain viable values for α

and B, with the known value of k for R-WT.

The parameters found for α and B (Table 3.3) using the low flux data do

not fit the higher flux points of the experimental data. The front portion of

the curve (approximately 0.0 - 0.4 m/d) represents the diffusive aspect of the

membrane, whereas, the later portion of the curve represents the advective

portion. The decline in the fitting lines shows the role concentration polariza-

tion is supposed to have on membrane performance. This fitting shows that

concentration polarization is not influencing the advective transport of solute

through the membrane in the higher flux points. Since the values of α and

B are intrinsic to the membrane, the only variable that can be adjusted to

improve the fit is the k value. Since k signifies the solute mass transfer across

the membrane and it is clear that the solute transfer changes over the course
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of the experiment, the k value would need to be adjusted to account for the

change in concentration polarization. Figures 3.7b, 3.8b, and 3.9b, show the

new rejection fittings when the Sigmaplot regression was processed again with

α and B constrained to determine the correct value for k. All parameter values

can be found in Table 3.3.
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Figure 3.7: R-WT Rejection: 10 mM·h HOI (a) k = 0.9 (b) Adjusted k values
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Figure 3.8: R-WT Rejection: 100 mM·h HOI (a) k = 0.9 (b) Adjusted k
values
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Figure 3.9: R-WT Rejection: 300 mM·h HOI (a) k = 0.9 (b) Adjusted k
values

Table 3.3: Membrane water and solute transport parameters for R-WT rejection

R-WT

CT(mM·h HOI) A(m/(d ∗MPa)) B(m/d) α
k(m/d)

*

k(m/d)

**

0 (Pristine of 10) 3.289 0.001817 0.02107 1.386

10 3.589 0.001265 0.02293 1.502

0 (Pristine of 100) 3.297 0.005596 0.02983 1.996

100 3.369 0.002945 0.02861 2.485

0 (Pristine of 300) 3.278 0.000925 0.02771 1.736

300 3.240 0.002210 0.02463

0.9

1.212

A = water transport parameter

* k value for Figure 3.7a,Figure 3.8a, and Figure 3.9a

** k value for Figure 3.7b, Figure 3.8b, and Figure 3.9b

The water permeability through the membrane is shown in Figure 3.10 and

the corresponding water permeation parameters (slopes of the regression lines

in Figure 3.10) are summarized in Table 3.4. Similar to the R-WT rejection

data, there is no measurable change in the water flow through the membrane.
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Figure 3.10: R-WT water permeation for pristine and exposed membranes

Table 3.4: R-WT water permeation parameters

CT (mM·h HOI) slope R2

R-WT

0 (Pristine of 10) 3.6207 0.99941

10 3.4632 0.99006

0 (Pristine of 100) 3.4040 0.99997

100 3.5390 0.99997

0 (Pristine of 300) 3.5152 0.99994

300 3.6469 0.99992

NaCl Experiments

NaCl was used to assess the membranes salt rejection capabilities before and

after exposure to iodine. Since the salt molecules are smaller than the R-WT

molecules, diffusion is the dominant process controlling salt rejection, as seen

by the curves in Figure 3.11. When the raw data points (Tables C.7 - C.12)

were processed through the Sigmaplot regression, values for B, the parameter
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representing diffusion, were found but values for α could not be determined.

Since the α parameter signifies advection, and advection represents the im-

perfections through the membrane, the average of the advective values found

in the R-WT experiments was used as the value of α for the NaCl experi-

ments. Similar to the R-WT experiments, there was no observable change in

membrane performance after iodination.
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Figure 3.11: NaCl rejection for pristine and exposed membranes
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Table 3.5: Membrane water and solute transport parameters for
NaCl rejection

NaCl

CT(mM·h HOI) A(m/(d ∗MPa)) B(m/d) α k(m/d)

0 (Pristine of 10) 3.024 0.1787

10 3.072 0.301

0 (Pristine of 100) 3.391 0.4556

100 3.228 0.4212

0 (Pristine of 300) 3.058 0.3264

300 3.304 0.4008

0.0258 2.6

A = water transport parameter

The water permeability observed for the NaCl experiments was not affected

by HOI exposure as seen in Figure 3.12 and Table 3.6.
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Figure 3.12: NaCl water permeation for pristine and exposed membranes
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Table 3.6: NaCl water permeation parameters

CT (mM·h HOI) slope R2

NaCl

0 (Pristine of 10) 3.2970 0.99733

10 3.2726 0.99911

0 (Pristine of 100) 3.6507 0.9999

100 3.5550 0.99997

0 (Pristine of 300) 3.2997 0.99979

300 3.5199 0.99981

The results of the permeation experiments revealed that HOI exposure up

to 300 mM·h had no effect on membrane performance. This observation is

consistent with the membrane structure analysis experiments; since no bond

breakage within the membrane structure is observed and the iodine is released

form the membrane throughout the course of the permeation experiments.
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CHAPTER 4

CONCLUSIONS

This research focuses on the effects of HOI exposure on the semi-aromatic

poly(piperazinamide) membrane structure and performance. Previous research

has been conducted on the influence of chlorination and chloramination of both

semi-aromatic and fully aromatic polyamide membranes, as well as limited

research on bromination and iodination on fully aromatic membranes. Due

to the unique performance change associated with iodination of fully aromatic

polyamide membranes, the present study is undertaken to understand whether

the semi-aromatic polyamide would behave in the same manner.

Using techniques such as XPS, RBS, and ATR-FTIR to analyze the struc-

tural changes iodination had on the semi-aromatic membrane in conjunction

with performance permeation experiments to track changes in organic and salt

rejection, the effect of iodination is assessed.

The results of the structural analysis determined that increasing exposure to

HOI resulted in increased iodine incorporation to both the active and support

membrane layers. This iodination was not stable in the membrane structure,

and throughout the permeation process, nearly all of the iodine was released

from the membrane. This indicates that the iodine attaches in an easily re-

versible position, such as the non-crosslinked nitrogen atoms.

In the permeation experiments, raw data was fit with the solution-diffusion

model to understand the role of diffusion, advection, and concentration polar-

ization in the membrane. Before and after iodination, the membrane parame-
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ters and rejection capabilities did not change. This finding is consistent with

the structural analysis data.

In conclusion, unlike chlorine, iodine is not a strong enough oxidant to cause

any structural or performance changes in the semi-aromatic poly(piperazinamide)

NF270 membrane for HOI exposures up to 300 mM·h. Although a small

amount of halogenation occurs, the bond location does not inhibit the mem-

brane performance and is easily reversible over a short period of time. It

would be beneficial to conduct further research on this topic to understand

how higher concentrations of iodine influence the membrane performance and

to gain a better understanding about how and why iodine is released from the

semi-aromatic membrane.
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APPENDIX A

CHEMICAL PREPARATION

Table A.1: Sample calculations for monochloramine solution (1)

Cl2 Stock Solution NH4Cl Stock Solution

g NH4Cl — 1.001

concentration (M) 0.7060 0.749069276

concentration (mg/L) 50,055 20,020

Table A.2: Sample calculations for monochloramine solution (2)

Target MCA

(ppm as Cl2)

Target MCA

(M)

[NH4Cl]

(M)

[HOCl]

(M)

NH4Cl stock

(M)

HOCl stock

(M)

0.01408 0.03098 0.02817 0.7491 0.7060

Volume (mL)1000

50 25 25 1.034 0.997
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Table A.3: Hypoiodous acid (HOI) and monochloramine (NH2Cl
concentrations

Desired CT Time Concentration Needed

Value Unit Value Unit
Compound

Value Unit Value Unit

I- 3.33 µM 0.42 mg/L
0.08 mM·h HOI 24 hour

NH2Cl 3.53 µM 0.25 mg/L

I- 0.04 mM 5.3 mg/L
1 mM·h HOI 24 hour

NH2Cl 0.04 mM 3.0 mg/L

I- 0.42 mM 52.9 mg/L
10 mM·h HOI 24 hour

NH2Cl 0.42 mM 30 mg/L

I- 4.17 mM 528.8 mg/L
100 mM·h HOI 24 hour

NH2Cl 4.23 mM 300 mg/L

I- 12.5 mM 1586.3 mg/L
300 mM·h HOI 24 hour

NH2Cl 12.7 mM 900 mg/L
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Table A.4: UV-Vis Raw Data 1

Constants

e 433.19
Path length

(cm)
1

Experiment
UV

Absorbance
Dilution

Concentration

(M)

[MCA] stock

(ppm)

Target [MCA]

(ppm)

Volume Added

(mL)

Reactor Volume

(mL)

XPS 0.757 8 0.01398 992.5806 0.25 0.01259 50

XPS 0.7849 8 0.01449 1029.16 3 0.14575 5037



Table A.5: UV-Vis Raw Data 2: 10 mM·h HOI Experiments

Constants

e 433.19
Path length

(cm)
1

Experiment
UV

Absorbance
Dilution

Concentration

(M)

[MCA] stock

(ppm)

Target [MCA]

(ppm)

Volume Added

(mL)

Reactor Volume

(mL)

0.7849 8 0.014495256 1029.163185 30 1.45749481 50

0.7602 8 0.014039105 996.7764722 30 1.504850929 50

0.7624 8 0.014079734 999.6611187 30 1.500508494 50

0.766 8 0.014146218 1004.381449 30 1.493456496 50

Permeation

RBS

XPS

0.7943 8 0.014668852 1041.488492 30 0.28804927 10
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Table A.6: UV-Vis Raw Data 3: 100 mM·h HOI Experiments

Constants

e 433.19
Path length

(cm)
1

Experiment
UV

Absorbance
Dilution

Concentration

(M)

[MCA] stock

(ppm)

Target [MCA]

(ppm)

Volume Added

(mL)

Reactor Volume

(mL)

0.757 8 0.013980009 992.5806228 300 15.11212254 50

0.7943 8 0.014668852 1041.488492 300 2.880492701 10

0.7758 8 0.014327201 1017.231238 300 7.37295486 25

0.6159 8 0.011374224 807.5698885 300 18.57424381 50

Permeation

RBS

XPS

0.778 8 0.014367829 1020.115884 300 7.352105887 25
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Table A.7: UV-Vis Raw Data 4: 300 mM·h HOI Experiments

Constants

e 433.19
Path length

(cm)
1

Experiment
UV

Absorbance
Dilution

Concentration

(M)

[MCA] stock

(ppm)

Target [MCA]

(ppm)

Volume Added

(mL)

Reactor Volume

(mL)

0.7887 8 0.014565433 1034.145756 900 43.51417558 50

0.778 8 0.014367829 1020.115884 900 44.11263532 50

0.757 8 0.013980009 992.5806228 900 45.33636761 50

0.7943 8 0.014668852 1041.488492 900 8.641478102 10

0.7042 8 0.013004917 923.3491078 900 24.36781474 25

Permeation

RBS

XPS

0.7522 8 0.013891364 986.2868487 900 9.125134348 10
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APPENDIX B

STRUCTURAL ANALYSES

Figure B.1: Irreversible ring halogenation by Orton rearrangement. Initial
chlorination of the amide nitrogen followed by rapid rearrangement to the

aromatic ring. X represents the halogen (Cl, Br, I)

Figure B.2: Reversible chlorination of semi-aromatic polyamide membrane at
the non-crosslinked nitrogen
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Figure B.3: C-N hydrolysis through chlorination of semi-aromatic polyamide
membrane
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CasaXPS (This string can be edited in CasaXPS.DEF/PrintFootNote.txt)Figure B.4: XPS survey scans of pristine membranes (top) and 300 mM·h
HOI exposed membranes (bottom)
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Table B.1: Molar concentrations of iodine incorporated into membranes for
permeation and non permeation experiments from RBS analysis

CT (mM·h HOI)

No Permeation Permeation

NaI Rinse NaCl Rinse NaCl R-WT

I- [M]

10 0.0728 0.0520 0.0361 0.0208

100 — 0.1144 0.0586 0.0676

300 0.3328 0.2374 0.0639 0.1144

Figure B.5: RBS analysis of pristine, 10 mM·h HOI and 300 mM·h HOI
exposed membranes followed by R-WT permeation - full spectra
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Figure B.6: RBS analysis of pristine, 10 mM·h HOI and 300 mM·h HOI
exposed membranes followed by R-WT permeation - iodine spectra
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Figure B.7: RBS analysis of 10 mM·h HOI exposed membranes after NaI
rinse, NaCl rinse, R-WT permeation and NaCl permeation
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Figure B.8: RBS analysis of 100 mM·h HOI exposed membranes after NaCl
rinse, R-WT permeation and NaCl permeation
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APPENDIX C

PERFORMANCE ANALYSES
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Table C.1: 10 mM·h HOI Pristine R-WT Rejection Raw Data

Pressure

(MPa)

Feed

(mg/L)

Perm. 1

(mg/L)

Perm. 2

(mg/L)

Rej. (%)

Perm. 1

Rej. (%)

Perm. 2

Flux

(m/d)

0.07 2.83274581 0.10560394 0.108466736 96.27202909 96.17096827 0.24001394

0.0715 2.195109729 0.080084845 0.080742872 96.35167006 96.32169313 0.246427709

0.103 2.660342146 0.108395887 0.099174356 95.92549073 96.27212024 0.337008836

0.208 2.042370831 0.102209435 0.094879558 94.99554961 95.35444023 0.670179533

0.307 1.709694142 0.082736997 0.079435459 95.16071356 95.3538205 0.981913968

0.409 2.153844825 0.093482806 0.096714014 95.65972417 95.50970371 1.297228155
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Table C.2: 10 mM·h HOI Exposed R-WT Rejection Raw Data

Pressure

(MPa)

Feed

(mg/L)

Perm. 1

(mg/L)

Perm. 2

(mg/L)

Rej. (%)

Perm. 1

Rej. (%)

Perm. 2

Flux

(m/d)

0.077 2.700316561 0.093561572 0.092029138 96.53516283 96.59191299 0.27734547

0.109 2.763611242 0.112357242 0.107628767 95.93440494 96.10550263 0.38723836

0.208 2.173916085 0.109871802 0.107815905 94.94590418 95.04047531 0.71396443

0.307 2.476590237 0.125501513 0.122336954 94.93248778 95.06026665 1.0197015

0.403 1.795984399 0.089493678 0.089493678 95.01701251 95.01701251 1.3384665848



Table C.3: 100 mM·h HOI Pristine R-WT Rejection Raw Data

Pressure

(MPa)

Feed

(mg/L)

Perm. 1

(mg/L)

Perm. 2

(mg/L)

Rej. (%)

Perm. 1

Rej. (%)

Perm. 2

Flux

(m/d)

0.032 1.952291305 0.168220626 0.16737049 91.38342596 91.42697152 0.105031405

0.054 1.68917513 0.12356651 0.124067377 92.68480174 92.65515016 0.171469348

0.077 1.724135084 0.125600859 0.126451821 92.71513816 92.66578229 0.250003869

0.104 1.763818017 0.109307406 0.10078342 93.80279567 94.28606471 0.3429324

0.208 1.748641731 0.109307406 0.107343737 93.74901076 93.8613076 0.656173682

0.301 1.695912807 0.088003798 0.087959871 94.81083002 94.81342019 0.986010467

0.405 1.867162084 0.113077368 0.112102551 93.94389118 93.99609962 1.293390202
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Table C.4: 100 mM·h HOI Exposed R-WT Rejection Raw Data

Pressure

(MPa)

Feed

(mg/L)

Perm. 1

(mg/L)

Perm. 2

(mg/L)

Rej. (%)

Perm. 1

Rej. (%)

Perm. 2

Flux

(m/d)

0.032 1.972640701 0.116432038 0.116146353 94.09765608 94.11213847 0.091314704

0.055 2.104600191 0.142280781 0.138698208 93.23953396 93.4097598 0.169095699

0.07 1.983641524 0.110063318 0.107116441 94.45145121 94.60001016 0.226265375

0.11 1.990611511 0.095953209 0.083019264 95.17971195 95.82945926 0.348273235

0.205 2.034094154 0.095953209 0.101575721 95.28275481 95.00634124 0.625812121

0.301 1.788582657 0.100923901 0.102228716 94.3573253 94.28437283 0.944671997

0.401 1.777128365 0.076781378 0.071514419 95.67946925 95.97584395 1.325373145
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Table C.5: 300 mM·h HOI Pristine R-WT Rejection Raw Data

Pressure

(MPa)

Feed

(mg/L)

Perm. 1

(mg/L)

Perm. 2

(mg/L)

Rej. (%)

Perm. 1

Rej. (%)

Perm. 2

Flux

(m/d)

0.032 1.886415555 0.074033253 0.075613095 96.07545366 95.99170529 0.093788543

0.053 1.827725391 0.07537246 0.072199378 95.87616058 96.04976882 0.1674338

0.075 2.046855945 0.099084351 0.096140911 95.15919275 95.30299572 0.243719205

0.102 1.763418698 0.06606362 0.065599698 96.25366229 96.27997039 0.327212918

0.206 1.829941087 0.10130726 0.102220161 94.46390591 94.41401902 0.637515132

0.302 2.019391628 0.094177874 0.094118617 95.33632443 95.33925883 0.940846794

0.408 2.015819034 0.111003246 0.10192233 94.4933923 94.94387499 1.260244243
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Table C.6: 300 mM·h HOI Exposed R-WT Rejection Raw Data

Pressure

(MPa)

Feed

(mg/L)

Perm. 1

(mg/L)

Perm. 2

(mg/L)

Rej. (%)

Perm. 1

Rej. (%)

Perm. 2

Flux

(m/d)

0.03 1.882899843 0.091349517 0.092850797 95.14846648 95.06873416 0.089819412

0.053 1.819816696 0.104452977 0.102809677 94.26024737 94.35054765 0.174269757

0.07 1.855437206 0.074951697 0.072994963 95.96042935 96.06588878 0.213821715

0.109 1.79991743 0.074286847 0.070212699 95.87276364 96.09911555 0.341791048

0.202 1.928544299 0.106683181 0.107827595 94.46820171 94.40886088 0.614646399

0.301 1.910395508 0.112805218 0.108253654 94.09519035 94.33344283 0.913432843

0.409 1.783007184 0.119134506 0.11002923 93.31833843 93.82900806 1.218933912
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Table C.7: 10 mM·h HOI Pristine NaCl Rejection Raw Data

Pressure

(MPa)

Feed

(mg/L)

Perm. 1

(mg/L)

Perm. 2

(mg/L)

Rej. (%)

Perm. 1

Rej. (%)

Perm. 2

Flux

(m/d)

0.081 377.21995 236.59615 232.97105 37.27899333 38.23999765 0.208517597

0.106 721.48175 204.94125 202.7052 71.59439584 71.90432052 0.274029853

0.203 413.2685 142.39205 141.1268 65.54490604 65.85106293 0.551130068

0.305 436.8528 118.2784 119.21865 72.92488454 72.70965186 0.834115145

0.407 551.2329 105.08665 106.18835 80.93607076 80.73620969 1.18208956153



Table C.8: 10 mM·h HOI Exposed NaCl Rejection Raw Data

Pressure

(MPa)

Feed

(mg/L)

Perm. 1

(mg/L)

Perm. 2

(mg/L)

Rej. (%)

Perm. 1

Rej. (%)

Perm. 2

Flux

(m/d)

0.069 359.9722 251.7543 248.4131 30.0628493 30.99103209 0.179651363

0.108 310.32615 212.34185 211.94215 31.57461915 31.70341913 0.302650018

0.205 438.52895 157.0772 157.8079 64.18088247 64.01425721 0.5824915

0.301 547.11485 126.9975 128.1872 76.78778048 76.57033071 0.895522395

0.396 409.13425 107.27695 109.9989 73.77952347 73.1142284 1.17669104754



Table C.9: 100 mM·h HOI Pristine NaCl Rejection Raw Data

Pressure

(MPa)

Feed

(mg/L)

Perm. 1

(mg/L)

Perm. 2

(mg/L)

Rej. (%)

Perm. 1

Rej. (%)

Perm. 2

Flux

(m/d)

0.036 302.3106 269.53365 268.5529 10.84214381 11.16656181 0.118686568

0.055 332.30675 260.87745 259.89195 21.49498919 21.79155253 0.174253733

0.07 332.3882 235.7082 234.36165 29.08647178 29.49158544 0.222179106

0.104 363.91175 217.49355 217.3593 40.23453488 40.2714257 0.335113907

0.206 381.1615 176.92815 175.21055 53.58184129 54.03246393 0.657313438

0.307 407.0922 166.8745 167.3078 59.00818046 58.90174265 1.035223889

0.35 435.26235 174.09525 168.3607 60.00222624 61.31971902 1.164818773

0.403 408.69355 151.7946 153.02155 62.85857704 62.55836433 1.375522399

0.502 416.2094 139.18065 141.2983 66.55994555 66.05115118 1.730197032
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Table C.10: 100 mM·h HOI Exposed NaCl Rejection Raw Data

Pressure

(MPa)

Feed

(mg/L)

Perm. 1

(mg/L)

Perm. 2

(mg/L)

Rej. (%)

Perm. 1

Rej. (%)

Perm. 2

Flux

(m/d)

0.028 307.02145 264.3712 263.52885 13.89161897 14.16598091 0.085731344

0.049 329.63745 254.1235 257.1367 22.90818291 21.99408775 0.142878483

0.075 340.1428 250.97885 246.46915 26.21368143 27.53950694 0.223205631

0.106 348.9024 215.14985 216.5715 38.33523358 37.92777006 0.311641794

0.197 373.8904 172.36 173.7598 53.90092926 53.52654147 0.600526783

0.302 398.9614 181.96705 185.0834 54.38981064 53.60869498 0.955223888

0.345 420.00685 151.6779 154.9031 63.88680327 63.11891104 1.059275061

0.401 395.62575 136.12335 136.55245 65.59289935 65.48443826 1.246567174

0.498 414.0914 129.304 129.5315 68.7740436 68.71910404 1.552835833
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Table C.11: 300 mM·h HOI Pristine NaCl Rejection Raw Data

Pressure

(MPa)

Feed

(mg/L)

Perm. 1

(mg/L)

Perm. 2

(mg/L)

Rej. (%)

Perm. 1

Rej. (%)

Perm. 2

Flux

(m/d)

0.031 344.80075 279.77995 279.6897 18.85749958 18.88367412 0.086796786

0.052 348.3864 283.9427 284.35165 18.4977657 18.38038167 0.151952567

0.07 406.3749 254.2982 252.88555 37.42275913 37.77038149 0.197789824

0.104 352.3939 220.36215 218.67085 37.46709293 37.94703881 0.302553548

0.206 400.22115 172.35775 173.31165 56.93437241 56.69602918 0.607462691

0.303 402.30645 137.90495 139.5539 65.72141709 65.31154298 0.928358216

0.351 423.51095 127.858 128.90745 69.80998956 69.56219196 1.052003151

0.403 423.243 118.3756 119.6316 72.03129172 71.73453548 1.214328368

0.5 493.8502 103.97465 108.729 78.94611564 77.98340468 1.522388072
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Table C.12: 300 mM·h HOI Exposed NaCl Rejection Raw Data

Pressure

(MPa)

Feed

(mg/L)

Perm. 1

(mg/L)

Perm. 2

(mg/L)

Rej. (%)

Perm. 1

Rej. (%)

Perm. 2

Flux

(m/d)

0.035 298.24985 273.0393 271.4128 8.452829063 8.998177199 0.114357549

0.057 309.80505 249.74325 247.6988 19.38696609 20.0468811 0.175456054

0.08 328.01295 232.6093 233.8454 29.08533032 28.70848544 0.243402987

0.106 348.8965 218.6384 218.3596 37.33430975 37.41421883 0.316579268

0.2 382.468 180.07625 180.4136 52.91730289 52.82909943 0.601492542

0.3 427.468 153.6926 135.19115 64.04582331 68.37397185 0.946268664

0.357 456.3373 133.8528 129.8461 70.66801245 71.54602528 1.098614081

0.4 413.00925 128.627 124.2069 68.85614547 69.92636363 1.262686577

0.502 413.2156 120.4495 124.2069 70.85068908 69.94138169 1.601194043
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