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ABSTRACT

We define and study the K-theory of exact categories with coefficients in endofunctors of

spectra in analogy with Mitchell’s homology of categories. Generalizing computations of

McCarthy, we determine, for a discrete ring R, the K-theory of the exact category of finitely-

generated projective R-modules with coefficients in the n-fold smash product functor. This

computation allows us to analyze the effects of applying this functorial construction to the

Goodwillie Taylor tower of a homotopy endofunctor of spectra. In the case of Σ∞Ω∞, the

associated tower recovers the Taylor tower of relativeK-theory as computed by Lindenstrauss

and McCarthy.
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CHAPTER 1

INTRODUCTION

Whether algebraic K-theory [19] properly belongs to the field of algebraic topology, algebraic

geometry, or geometric topology is a matter of debate within some mathematical circles.

The applications in seemingly disparate fields are numerous. Since its creation, algebraic

K-theory’s input has continuously changed, from algebro-geometric objects like rings and

schemes to their categorical counterparts, exact categories, Waldhausen categories, and even

recently ∞-categories. This rising tide of “homotopical richness” has also been reflected in

K-theory’s output, from abelian groups to spaces and spectra (see [60] and [18] for historical

and modern perspectives, respectively). In any case, there is some consensus: this “supped

up” version of linear algebra is very difficult to compute; even knowledge of K(Z) would be

welcome news. New approaches to tackling these invariants are thus highly sought after.

One approach that has proven fruitful is the use of trace methods [40]. Mapping out of

algebraic K-theory into more computable invariants has been systematically studied over

the last six decades with ever greater information being encoded by and in the map and tar-

get, respectively. By working with homotopical invariants like Hochschild homology (HH)

and cyclic homology (HC) [36], and later their topological analogues, topological Hochschild

homology (THH) and topological cyclic homology (TC) [9], the trace approach culminated

in the proof of Goodwillie’s conjecture (Conjecture 9 [24]) by Dundas and McCarthy ([13]

and [45], respectively):

Theorem (Theorem 7.2.2.1 [14]) Let f : B → A be a map of connective ring spectra inducing

a surjection π0(B)→ π0(A) with nilpotent kernel. Then the square induced by the naturality

of the cyclotomic trace

K(B) TC(B)

K(A) TC(A)

is homotopy cartesian.
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This result has been the backbone of subsequent computations, notably the work of Hes-

selholt and Madsen [27]. An intermediate step in their computations involved the invariant

TR(R) (Section 4.1 [27]) defined from the pieces making up TC, and which recovered on π0

the (p-typical) Witt vectors [11] of a ring. This ring was known to be related to the reduced

Grothendieck group of endomorphisms by work of Almkvist [3]. Motivated by these results,

Lindenstrauss and McCarthy [34] generalized the construction to include an R-bimodule

variable M . Though it broke the cyclic symmetry of TR(R), this new invariant W (R;M),

defined by a tower of “truncated” Witt vectors, still behaved like in the classical setting.

Lindenstrauss and McCarthy showed that their topological Witt vector tower recovered, for

connected bimodules, the Goodwillie Taylor tower of the (suitably defined) reduced K-theory

of endomorphisms (Theorem 9.2 [34]):

K̃(R;M) ' W (R;M)

thereby lifting Almkvist’s result to higher K-theory. More importantly, the equivalences of

Goodwillie n-excisive approximations Pn(K(R;−))(M) ' Wn(R;M) presented a computa-

tionally feasible way to analyze K(R;M). Indeed, their building blocks, denoted Un(R;M),

are very tractable, with several computations already in the literature (see [33]). By work-

ing with the Wn(R;M), Lindenstrauss and McCarthy were able to successfully analyze the

K-theory of formal power series [35].

Another approach that has garnered significant attention recently is the study of algebraic

K-theory’s universal properties. Though undoubtedly of a more categorical flavor, these

characterizations of algebraic K-theory as encoding universal higher additive invariants have

shed light on its structural properties. For example, work of McCarthy [44] in the exact cate-

gory setting and Blumberg, Gepner and Tabuada [7] in the∞-categorical one makes it clear

why K-theory is best studied by mapping out of it, rather than to it. Specifically, they show

that algebraic K-theory is the universally initial functor satisfying Waldhausen additivity.

Furthermore, in the case of [44], an additivization procedure is described, providing a con-

crete model for the universal additive approximation of any functor.

The aim of this thesis is to try and understand better the relationship between these two

approaches. We do so by mixing the models of K-theory used in the former (developed by

Dundas and McCarthy in [17]), and the stabilization procedures of the [44]. We define a

K-theory of exact categories with coefficients in endofunctors of spectra (4.1.2) and study
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the traditional case of finitely generated projective R-modules. We use Goodwillie’s calculus

of homotopy functors ([22],[25],[26]) to approximate our functors by means of a Taylor tower,

and then apply this new K-theory construction to it. Our main result is that when applied to

the endofunctor Σ∞Ω∞, this procedure recovers the Lindenstrauss-McCarthy tower relating

K̃(R;M) and W (R;M):

Theorem 4.2.5 Let R be an associative and unital ring, M an R-bimodule, and n ≥ 1.

There is an equivalence of S-bimodules

K(P ;D(M);Pn(Σ∞Ω∞)) ' Wn(R;M)

compatible with restrictions from n to n − 1. Therefore the tower associated to the K-

theory with coefficients in the endofunctor Σ∞Ω∞ is weakly equivalent to the Lindenstrauss-

McCarthy Taylor tower of relative K-theory:

K̃(R;M)

. . . Wn+1(R;M) Wn(R;M) Wn−1(R;M) . . .

Un+1(R;M)hCn+1
Un(R;M)hCn Un−1(R;M)hCn−1

The crux of the proof is a detailed analysis of the case of n-homogeneous functors. In the

case of chain complexes, this had already been done in [46], with an element-based proof

that does not generalize to the spectral setting. We re-derive the result with one that does:

Theorem 4.2.2 Let R be an associative and unital ring, M an R-bimodule, and n ≥ 1.

There is a feeble equivalence of �n-bimodules

K(P ;D(M); (−)∧n) 'fΣn U
n(R;M) ∧Cn �n

This thesis is organized as follows. In Chapter 2 we give a new proof of the main result in

[46]. In Chapter 3 we show that this proof generalizes well to the spectral setting (Theorem

3.3.7). In Chapter 4 we introduce K-theory with coefficients in endofunctors, prove the

structural results that arise from Goodwillie calculus, and use the result from the previous

chapters to recover the tower from [34]. In the appendices we give the necessary background

used throughout the chapters.
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CHAPTER 2

THE ALGEBRAIC CASE

In this chapter we recall the main results of [46], giving an alternate proof to the main result

there (Theorem 3.4), which generalizes to the spectral setting.

2.1 Exact Categories, Additivity and S•

Let E be an exact category (§2.1 [53]) considered as a category with cofibrations (1.1 [59]).

Let S•E be Waldhausen’s S•-construction (1.3 [59]). Let Ext be the category of (small)

exact categories, sAb the category of simplicial abelian groups, and sMod-R the category

of simplicial (right) R-modules for R a discrete ring. We give sMod-R the projective model

structure (as described in 2.3 [29]) along the forgetful functor to simplicial sets (see Appendix

A).

Notation If X is an n-multi-simplicial set, abelian group, or R-module we will denote by dX

its diagonal.

Let F : Ext→ sMod-R be a reduced functor (see Appendix C.3). Suppose E∗ is a simplicial

exact category, that is, a simplicial object in Ext (so face and degeneracy maps are exact

functors). Then F (E∗)• is a bisimplicial R-module, which we can consider as an R-module

by taking diagonals d(F (E∗)•).

Let E and E ′ be two exact categories. There is a natural exact category E ×E ′ corresponding

to the product in Ext, with natural projections (exact functors) ρE and ρE ′ . This induces a

surjective map of simplicial R-modules F (E × E ′)
(
F (ρE),F (ρE′ )

)
−−−−−−−−−→ F (E)×F (E ′) (in particular,

it’s a fibration). We say a functor F is product preserving if F (ρ) (for ρ := (ρE , ρE ′)) is a weak

equivalence. We say F is a p-product functor if F (ρ) is (p + 1)-connected (for connectivity

conventions see 2.6 [49], specially Remark 2.6.8).
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Definition 2.1.1 Using the notation of the previous paragraph, the second cross effect of

F , denoted cr2F , is a bi-functor Ext× Ext→ sMod-R, given by:

cr2F (E , E ′) := hofib(F (ρ))

= hofib
(
F (E × E ′)

(
F (ρE),F (ρE′ )

)
−−−−−−−−−→ F (E)× F (E ′)

)
(since simplicial groups are Kan complexes we use the uncorrected homotopy fiber; see

Appendix B.3 for details).

Observation cr2F is a symmetric bi-functor reduced in each variable. F is a p-product

functor if and only if cr2F takes values in p-connected simplicial R-modules.

Let E be any exact category. Consider the exact category of short exact sequences in E ,

S2(E), and the exact functor (d2, d0) : S2(E)→ E × E sending

(A� B � C) 7→ (A,C)

Waldhausen’s additivity theorem (Theorem 1.4.2 [59]) says that, upon applying the S•-

construction, we get a homotopy equivalence (of the classifying spaces):

S•
(
S2(E)

) '−→ S•(E × E)

Since S• preserves products, S•(E × E)
∼=−→ S•E × S•E as simplicial exact categories. Any

functor F will preserve simplicial homotopy equivalences, so we get weak equivalences of

bisimplicial R-modules:

F
(
S•
(
S2(E)

)) '−→ F
(
S•(E × E)

) ∼=−→ F
(
S•E × S•E

)

Combining with the maps

F
(
S•E × S•E

) (F (ρS•E),F (ρS•E)
)

−−−−−−−−−−−→ F (S•E)× F (S•E)

we get maps of bisimplicial R-modules, denoted the same by abuse of notation:

F
(
S•
(
S2(E)

)) (d2,d0)−−−−→ F (S•E)× F (S•E)
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Observation If F is a p-product functor then by a spectral sequence argument the first map

is (p+ 1)-connected, so that the second is also (p+ 1)-connected.

Definition 2.1.2 We say a functor F is additive if the map F (S2(−))
(d2,d0)−−−−→ F (−)× F (−)

is a weak equivalence. We say F is p-additive if it is (p+ 1)-connected.

Observation If F is a product preserving functor, then by the previous remark dF (S•(−))

is an additive functor. More generally, if F is a p-product functor, then dF (S•(−)) is a

p-additive functor. In general, a functor need not be additive.

Lemma 2.1.3 Let n ≥ 1. Then dF (S
(n)
• −) : Ext → sMod-R is a reduced (2n − 1)-

product functor (and also (2n− 1)-additive). Furthermore, if F is a p-product functor, then

dF (S
(n)
• −) : Ext→ sMod-R is a (p+ 2n− 1)-product functor.

Proof. This is an application of the Eilenberg-Zilber theorem. Here it is crucial that F is

reduced (see Lemma 1.3 [44]).

Notation Let ΩR := Ω : sMod-R → sMod-R be the model for the simplicial loop space

induced from sSets∗(S
1,−) : sSets∗ → sSets∗ given the point-wise simplicial module struc-

ture (see Appendix A.3). Note that if F is an additive functor, then so is ΩF .

Definition 2.1.4 Given a reduced functor F : Ext → sMod-R, define a new functor

F st : Ext→ sMod-R given by

F st(E) := hocolim
n

Ω(n)
(
dF
(
S(n)
• (E)

))
(since F need not take cofibrant values, we use the corrected homotopy colimit; see Appendix

B.2 for details).

Remark By Lemma 2.1.3, F st is a reduced, product preserving, additive functor. If we let

α : F → F st be the natural transformation induced from the homotopy colimit system, then

one can show F is an additive functor if and only if α is an equivalence for all exact categories.

Furthermore, combining the previous two observations, we see that if F is a product preserv-

ing functor, then Ω(dF (S•(−))) is an additive functor. Therefore, α : ΩdFS• → (ΩdFS•)
st is

an equivalence. On the other hand, for any functor F , F st → (ΩdFS•)
st is an equivalence by

homotopy cofinality. So we conclude that for a product preserving functor F , F st ' ΩdFS•.
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Example 2.1.5 Consider the functor R : Ext→ sMod-R which takes an exact category E
to the reduced free R-module generated by the set of objects of E (thought of as a constant

simplicial module). That is,

R(E) := coker
(
R[0]→ R[Obj(E)]

)
Then Rst is the stable homology functor with coefficients in R:

π∗(R
st(E)) ∼= H∗(K(E);R)

where K(E) is the algebraic K-theory spectrum of E .

Example 2.1.6 Consider the functor Hom : Ext→ sAb which takes an exact category E
to the constant simplicial group of endomorphisms of objects in E . That is,

Hom(E) :=
⊕

E∈Obj(E)

HomE(E,E)

This functor is utilizing the “linear” structure of the category, i.e. the fact that every

exact category is Ab-enriched. The Dundas-McCarthy theorem (Section 2 [15] and Erratum

[16]) then states that stabilization of Hom is the (simplicial abelian group version of the)

topological Hochschild homology of the category:

Homst(E) := hocolim
n

Ω(n)
(
dHom

(
S(n)
• (E)

))
' THH(E)

Notation Let E be a subcategory of Ext which contains 0 (the trivial exact category), is

closed under isomorphisms, and is closed under the S•-construction. That is, if E ∈ Obj(E),

then S•(E) is a simplicial object in E. Given these constraints, the stabilization functor,

(−)st : Func∗
(
Ext, sMod-R

)
→ Func∗

(
Ext, sMod-R

)
gives a well-defined endofunctor on the subcategory of reduced functors Func∗

(
E, sMod-R

)
.

Given an exact category E we can form such a subcategory SE of Ext by taking the smallest

subcategory containing E closed under isomorphisms and S•. Every object in this (skele-

tally small) subcategory is equivalent to S[n1]S[n2] . . . S[nt]E for some finite sequence. Suppose
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T : E → E ′ is an exact functor. Then we get an induced functor on the subcategories of Ext,

ST : SE → SE ′ , given by:

S[n1]S[n2] . . . S[nt](T ) : S[n1]S[n2] . . . S[nt]E → S[n1]S[n2] . . . S[nt]E ′

on each object (so S(−) is a functor from Ext to the category of small subcategories of

all exact categories). Say A ∈ Obj(SE), so A ∼= S[n1]S[n2] . . . S[nt]E for some finite non-

negative sequence (n1, n2, . . . , nt). Let ST |A be the functor A → ST (A) induced by ST (e.g.

S[n1]S[n2] . . . S[nt](T ) above). Let A ∈ Obj(A). Abusing notation, set ST (A) := ST |A(A) ∈
Obj(ST (A)).

Example 2.1.7 Let M be an R-bimodule and P be the category of finitely generated

projective rightR-modules. Both P and Mod-R can be considered exact categories by taking

short exact sequences in them (the former is split-exact), and there are two distinguished

exact functors:

I : P →Mod-R and TM : P →Mod-R

which are the (fully faithful) inclusion functor, and tensoring with M , (−) ⊗
R
M . We get

induced functors: SI ,STM : SP → SMod-R. Define a functor HomM : SP → sAb which

takes an exact category E to the constant simplicial group of endomorphisms of objects in

E with coefficients in M . That is,

HomM(E) :=
⊕

E∈Obj(E)

HomSI(E)(SI(E),STM (E))

Then (Section 3 [15] and [16]) states that this stabilized Hom at P is the topological

Hochschild homology of R with coefficients in M :

(
HomM

)st
(P) ' THH(R;M)

2.2 Homology of a Category and Local Coefficient Systems

In fact, in [15],
(
HomM

)st
(P) is taken to be the definition of THH(R;M). However, they

show it is naturally weak homotopy equivalent to the space given by geometrically realizing
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the simplicial abelian group

Fp(P ;M) =
⊕
−→
P ∈NpP

HomMod-R(P0, Pp ⊗
R
M)

−→
P := P0 ← · · · ← Pp

with the homotopy equivalence coming from inclusion of the 0-simplices by degeneracies.

Work of Waldhausen and Pirashvili shows (Theorem 3.2 [51]) that this space is weakly

equivalent to Bökstedt’s definition (see [8]) of topological Hochschild homology of R with

coefficients in M .

Remark This example highlights a more general relationship between stabilized functors and

the Hochschild-Mitchell homology of categories defined by Baues and Wirsching [6] that we

will now discuss.

Definition 2.2.1 Let C be a small category and let D : Cop × C → Ab be a bi-functor. We

let F∗(C;D) be the simplicial abelian group defined by:

Fp(C;D) =
⊕
−→
C∈NpC

D(C0, Cp)
−→
C := C0

α1←− C1
α2←− . . .

αp−1←−−− Cp−1
αp←− Cp

with face and degeneracy maps given by:

di( (g;α1, . . . , αp) ) =


(D(α1, idCp)(g);α2, . . . , αp) i = 0

(g;α1, . . . , αiαi+1, . . . , αp) 1 ≤ i ≤ p− 1

(D(idC0 , αp);α1, . . . , αp−1) i = p

si( (g;α1, . . . , αp) ) = (g;α1, . . . , αi, idCi , αi+1, . . . , αp) 0 ≤ i ≤ p

The homotopy groups of F∗(C;D) are called the (Hochschild-Mitchell) homology of the cat-

egory C with coefficients in the bi-functor D, denoted H∗(C;D).

Remark Suppose D′ : Cop × C → Ab is another bi-functor, and η : D ⇒ D′ a natural trans-

formation of bi-functors. Then we get induced maps of simplicial abelian groups F∗(C;D)→
F∗(C;D′), and therefore maps of Hochschild-Mitchell homologies H∗(C;D)→ H∗(C;D′).

Example 2.2.2 Let G be an abelian group, C a category, and let D : Cop × C → Ab be the

constant functor with value G. Then H∗(C;D) ∼= H∗(BC;G), the singular homology of the

classifying space BC = |N(C)| (see Appendix A.1.4) with coefficients in G. If φ : G → G′
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is a group homomorphism, and D′ the constant bi-functor associated to G′, the map on

Hochschild-Mitchell homologies from the previous remark is simply the change of coefficients

for singular homology under the previous isomorphism.

Remark Let C,C ′ be small categories, Λ : C → C ′ a functor, and D : Cop × C → Ab and

D′ : C ′op×C ′ → Ab be bi-functors. Consider the functor Λ̃ := (Λop,Λ) : Cop×C → C ′op×C ′.
Suppose we are given a natural transformation η : D ⇒ D′ ◦ Λ̃ of functors Cop × C → Ab.

Then, applying η(C0,Cp) to each factor of the p-simplices, we get induced maps of simplicial

abelian groups F∗(C;D)→ F∗(C ′;D′), and therefore maps of Hochschild-Mitchell homologies

H∗(C;D)→ H∗(C ′;D′).

Definition 2.2.3 Let E be an exact category. A local coefficient system D at E associates

to each C ∈ SE a bi-functor DC : Cop × C → Ab to abelian groups such that:

i DC is bi-reduced, that is, DC(C, 0) = DC(0, C) = 0 for all C ∈ C.

ii D(−) is “natural”. Given a morphism Λ : C → C ′ in SE , let Λ̃ := (Λop,Λ) : Cop × C →
C ′op × C ′. Then we have a natural transformation DΛ : DC ⇒ DC′ ◦ Λ̃ of functors

Cop × C → Ab satisfying:

(a) DidC = idDC .

(b) If Λ′ : C ′ → C ′′ is another morphism in SE , we have DΛ′ ◦ Λ̃ ◦DΛ = DΛ′◦Λ.

Example 2.2.4 The illuminating example to keep in mind is that of Hom. Indeed, let E
be an exact category. Then HomE(−,−) : Eop × E → Ab is a bi-functor, reduced in each

variable, and can be extended by naturality to all of SE . Therefore, every exact category

carries a natural local coefficient system.

Example 2.2.5 Let R be a ring, and let M1, . . . ,Mn be R-bimodules. Define a local coeffi-

cient system D(M1, . . . ,Mn) at P by setting, for C ∈ SP and C,C ′ ∈ C,

D(M1, . . . ,Mn)C(C,C
′) =

n⊗
i=1

HomSI(C)(SI(C),STMi (C
′))

Definition 2.2.6 Let E be an exact category, and D and D′ be local coefficient systems at

E . A morphism of local coefficient systems H : D → D′ consists of a natural transformation

HC : DC ⇒ D′C of bi-functors Cop × C → Ab for each C ∈ SE such that, for each morphism
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Λ : C → C ′ in SE , the following square of natural transformations commutes:

DC DC′ ◦ Λ̃

D′C D′C′ ◦ Λ̃

DΛ

HC HC′◦Λ̃

D′Λ

Example 2.2.7 Let D(M1, . . . ,Mn) be the local coefficient system at P of Example 2.2.5.

Let Σn be the symmetric group on n letters, and let τ ∈ Σn. For C ∈ SP set (τ∗)C to be

the natural transformation D(M1, . . . ,Mn)C → D(Mτ−1(1), . . . ,Mτ−1(n))C given by reordering

the tensor factors, i.e. α1 ⊗ · · · ⊗ αn 7→ ατ−1(1) ⊗ · · · ⊗ ατ−1(n). Then τ∗ : D(M1, . . . ,Mn)→
D(Mτ−1(1), . . . ,Mτ−1(n)) is a morphism of local coefficient systems.

Example 2.2.8 Let E , E ′ be exact categories, D′ a local coefficient system at E ′, and let

T : E → E ′ be an exact functor. As before, T induces a functor ST : SE → SE ′ , and for

C ∈ SE the assignment

(T ∗(D′))C := D′ST (C) ◦ S̃T |C

defines a local coefficient system on E , called the pullback along T. Pullbacks behave nicely

under composition. That is, suppose E , E ′, E ′′ are exact categories, with T : E → E ′ and

T ′ : E ′ → E ′′ exact functors, and that D′′ is a local coefficient system on E ′′. Then

T ∗
(
(T ′)∗(D′′)

) ∼= (T ′ ◦ T )∗(D′′).

Remark Pullbacks allow us to compare local coefficient systems over different categories.

Indeed, as above, let E , E ′ be exact categories, D′ a local coefficient system at E ′, and T :

E → E ′ an exact functor. Then, by the remark following 2.2.2 we get a natural transformation

of functors SE → sAb:

F∗(−; (T ∗(D′))(−))⇒ F∗(ST (−);D′ST (−))

Example 2.2.9 Let E be an exact category, and D,D′ local coefficient systems at E . We

can define a new local coefficient system at E , denoted D ⊕D′. For C ∈ SE it is given by:

Cop × C ∆−→ (Cop × C)× (Cop × C) DC×D′C−−−−−→ Ab× Ab ⊕−→ Ab

Pullbacks preserve sums of local coefficient systems. That is, if we have T : E → E ′ an exact

functor, and D,D′ local coefficient systems at E ′, then T ∗(D ⊕D′) ∼= T ∗(D)⊕ T ∗(D′) at E .

Example 2.2.10 Let E be an exact category and D,D′ be local coefficient systems at E .

11



We can define a new local coefficient system at E , denoted D ⊗
Z
D′. For C ∈ SE it is given

by:

Cop × C ∆−→ (Cop × C)× (Cop × C) DC×D′C−−−−−→ Ab× Ab ⊗−→ Ab

In the case of 2.2.5, as local coefficient systems over P , D(M1, . . . ,Mn) ∼= D(M1) ⊗
Z
. . . ⊗

Z
D(Mn).

Remark Let D be a local coefficient system at E . For each C ∈ SE we get a bi-functor DC

to which we can associate a Hochschild-Mitchell homology, F∗(C;DC). By condition ii in the

definition of local coefficient systems and by the remark above it, F∗(−;D(−)) becomes a

functor from SE to simplicial abelian groups. Furthermore, if D′ is another local coefficient

system at E and H : D → D′ is a morphism of local coefficient systems, then H induces a

natural transformation F∗(−;D(−))⇒ F∗(−;D′(−)) of functors SE → sAb.

Example 2.2.11 The morphism τ∗ : D(M1, . . . ,Mn) → D(Mτ−1(1), . . . ,Mτ−1(n)) of local

coefficient systems over P defined in 2.2.7 induces a natural transformation of functors

SP → sAb:

F∗(−;D(M1, . . . ,Mn)(−))⇒ F∗(−;D(Mτ−1(1) . . . ,Mτ−1(n))(−)
)

In the case that M1 = · · · = Mn = M this gives F∗(−;D(M, . . . ,M)(−)) a (right) Σn-action.

Notation In Section 3 [46], the simplicial abelian group F∗(C;D(M1, . . . ,Mn)C) is denoted

F n.

Example 2.2.12 In the case of 2.2.9, we have a canonical natural isomorphism F∗(−;D(−))⊕
F∗(−;D′(−)) ∼= F∗(−;D ⊕D′(−)) of functors SE → sAb.

Observation Let C be a small category and D : Cop × C → Ab a bi-functor. Consid-

ering F0(C;D) as a constant simplicial group, we have a map of simplicial groups δ :

F0(C;D) → F∗(C;D) given by inclusion by degeneracies. Explicitly, at simplicial level k,

δk :
⊕

C∈Obj(C)
D(C,C)→

⊕
−→
C∈NkC

D(C0, Cp) is given by

(g;C) 7→ (g;

k−times︷ ︸︸ ︷
idC , idC , . . . , idC).

The following proposition (Proposition 2.1 [46]) says the degeneracies capture the (stabilized)

homotopy type:
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Proposition 2.2.13 Let D be a local coefficient system at E. Consider the natural trans-

formation of functors SE → sAb

δ : F0(−;D(−))→ F∗(−;D(−))

If we iterate the S•-construction, the natural transformation of functors SE → sAb

δ(S(n)
• ) : dF0

(
S(n)
• (−);D

S
(n)
• (−)

)
→ dF∗

(
S(n)
• (−);D

S
(n)
• (−)

)
is 2n− 1-connected, and hence δst is an equivalence.

Remark We can rewrite both Example 2.1.6 and 2.1.7 in terms of this new construction. Let

R be a ring, and M an R-bimodule. We can construct two local coefficient systems at P ,

D(R) and D(M) (in the notation of 2.2.5). Then:

F0(−;D(R)(−)) = Hom(−) and F0(−;D(M)(−)) = HomM(−)

The proposition recovers the Dundas-McCarthy results mentioned earlier, that

(
F0(−;D(R)(−))

)st
(P) ' THH(R) and

(
F0(−;D(M)(−))

)st
(P) ' THH(R;M)

Observation In the case of 2.2.11, the stabilizations of F∗(−;D(M, . . . ,M)(−)) and its 0-

simplices inherit a (right) Σn-action as well, and the map δst is Σn-equivariant as δ was

originally.

The stabilization procedure can greatly simplify the homotopy type of a functor and their

local coefficient systems. Indeed, let E , E ′ be exact categories and D,D′ local coefficient

systems over them, respectively. Let πE : E × E ′ → E and πE ′ : E × E ′ → E ′ be the exact

projection functors from the product category. We may form the new local coefficient system

π∗E(D)⊗
Z
π∗E ′(D

′) over E × E ′ by pulling back along projections. Then, evaluating on E × E ′

we get

F0(E × E ′; π∗E(D)⊗
Z
π∗E ′(D

′)E×E ′) =
⊕

(E,E′)∈Obj(E×E ′)

DE(E,E)⊗
Z
D′E ′(E

′, E ′)

Though this abelian group may not be 0, stabilization makes it contractible. We show this

in two steps.
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Lemma 2.2.14 Let X•,...,• be a n-multi-simplicial abelian group. Suppose that in simplicial

direction i, X is mi-reduced (that is, Xk1,...,ki−1,ki,ki+1,...,kn = 0 for ki ≤ mi). Then dX is

(n− 1 +
∑n

i=1 mi)-connected.

Proof. Recall that we may compute the homotopy groups of X•,...,• as the homologies of a

chain complex by taking the associated Moore chain complex in each simplicial direction

(ending up with an n-multidimensional chain complex), and then taking Tot (see I.1.1 and

I.1.4 [21]). An m-chain in this complex lives in⊕
k1+···+kn=m

Xk1,...,kn

The first possible non-zero summand is Xm1+1,...,mn+1.

Lemma 2.2.15 Let E , E ′ be exact categories and let D,D′ be local coefficient systems over

them, respectively. Then

(
F0(−; π∗E(D)⊗

Z
π∗E ′(D

′)(−)

)st
(E × E ′) ' 0

Proof. We work with the associated chain complexes. First, recall that the n-th chain com-

plex in the homotopy colimit system defining the stabilization iterates the S•-construction

on E × E ′ n-times. Recall that the chain complex F0

(
S

(n)
• (E × E ′); π∗E(D)⊗

Z
π∗E ′(D

′)
S

(n)
• (E×E ′)

)
is obtained by considering the n-multi-simplicial abelian group with [k1]×· · ·× [kn] simplices

given by

F0

(
S[k1] . . . S[kn](E × E ′); π∗E(D)⊗

Z
π∗E ′(D

′)S[k1]...S[kn](E×E ′)
)

The resulting chain complex is chain homotopy equivalent to the associated Moore chain

complex of the diagonal simplicial abelian group. Note, however, that

S[k1] . . . S[kn](E × E ′) ∼= S[k1] . . . S[kn](E)× S[k1] . . . S[kn](E ′)

and therefore our chain complex F0

(
S

(n)
• (E ×E ′); π∗E(D)⊗

Z
π∗E ′(D

′)
S

(n)
• (E×E ′)

)
is actually chain

homotopy equivalent to the associated Moore chain complex of the diagonal of a 2n-multi-

simplicial abelian group. This 2n-multi-simplicial abelian group is equal to, in simplicial

degree [k1]× · · · × [kn]× [t1]× · · · × [tn],

F0

(
S[k1] . . . S[kn](E)× S[t1] . . . S[tn](E ′);π∗E(D)⊗

Z
π∗E ′(D

′)(S[k1]...S[kn](E)×S[t1]...S[tn](E ′))
)
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=
⊕

(E,E′)∈Obj
(
S[k1]...S[kn](E)

)
×Obj

(
S[t1]...S[tn](E ′)

)DS[k1]...S[kn](E)(E,E) ⊗
Z
D′S[t1]...S[tn](E ′)(E

′, E ′)

Since D,D′ and ⊗
Z

are all bi-reduced functors, this 2n-multi-simplicial abelian group is

0-reduced in each simplicial direction. By 2.2.14 its associated Moore chain complex is

(2n − 1)-connected. Therefore Ω(n)
(
F0

(
S

(n)
• (E × E ′);π∗E(D) ⊗

Z
π∗E ′(D

′)
S

(n)
• (E×E ′)

))
is (n − 1)-

connected.

The stabilization functor

(−)st : Func∗
(
Ext, sMod-R

)
→ Func∗

(
Ext, sMod-R

)
takes natural transformations of functors F ⇒ G to natural transformations F st ⇒ Gst.

This is homotopically well-behaved:

Lemma 2.2.16 If η : F ⇒ G is natural transformation of functors Ext→ sMod-R which is

a point-wise weak equivalence (that is, that F (E)
ηE−→ G(E) is a weak equivalence of simplicial

(right) R-modules for all E ∈ Ext), then so is ηst : F st ⇒ Gst.

Proof. For each finite sequence (k1, . . . , kt) of non-negative integers we have a weak equiva-

lence

F (S[k1]S[k2] . . . S[kt]E)
η−→ G(S[k1]S[k2] . . . S[kt]E)

and hence we get, for each E ∈ Ext, a weak equivalence dF (S
(n)
• E)

η−→ dG(S
(n)
• E). Since

simplicial groups are always fibrant, we get an induced weak equivalence Ω(n)
(
dF (S

(n)
• E)

)
→

Ω(n)
(
dG(S

(n)
• E)

)
. The induced map

hocolim
n

Ω(n)
(
dF
(
S(n)
• (E)

)) ηst

−→ hocolim
n

Ω(n)
(
dG
(
S(n)
• (E)

))
is then a weak equivalence by construction.

When η : F ⇒ G is not a point-wise weak equivalence it can be difficult to get a hold on

their stabilizations. However, when we restrict to the subcategory SE (for some E ∈ Ext),

we need only check their homotopy types on a single value:

Lemma 2.2.17 If η : F ⇒ G is natural transformation of functors Ext → sMod-R such

that for some E ∈ Ext ηst
E : F st(E)→ Gst(E) is a weak equivalence, then ηst|SE is point-wise

weak equivalence.
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Proof. Let k ≥ 1, 1 ≤ i ≤ k, and Ji : S[k]E → E be the exact functor Ji = d
(i−1)
0 ◦di+1 ◦di+2 ◦

· · · ◦dk. Set r :=
k∏
i=1

Ji : S[k]E → E×k. A corollary of Waldhausen’s additivity theorem is that

S•r : S•(S[k]E) → S•(E×k) is a weak equivalence. Therefore ΩF (S•(S[k]E))
'−→ ΩF (S•(E×k))

is a weak equivalence. Iterating the S•-construction and using the realization lemma we

get that F st(S[k]E) → F st(E×k) is a weak equivalence. By 2.1.3 F st is product preserving,

and so we get F st(S[k]E)
'−→ F st(E)×k. Let C ∈ SE . Then there is a sequence k1, . . . , kt

of non-negative integers such that C is equivalent to S[k1]S[k2] . . . S[kt]E , and so F st(C) '
F st(S[k1]S[k2] . . . S[kt]E). The naturality of η : F ⇒ G gives a commutative diagram:

F st(S[k1]S[k2] . . . S[kt]E) F (E)×k1k2...kt

Gst(S[k1]S[k2] . . . S[kt]E) G(E)×k1k2...kt

'

ηst
S[k1]S[k2]...S[kt]

E
∏
ηst
E

'

Since the product of weak equivalences is a weak equivalence, if ηst
E is a weak equivalence,

then so is the left hand map, and hence ηst
C : F st(C) '−→ Gst(C).

Lastly, we get that stabilization is well-behaved with colimits:

Lemma 2.2.18 Let I be a small category, and F : I → Func∗
(
Ext, sMod-R

)
a functor.

Then we have an isomorphism of simplicial R-modules:

colim
i∈I

(
(F(i,−))st(E)

) ∼= ( colim
i∈I
F(i,−)

)st
(E)

Proof. Expressing the stabilization as a coend by the Bousfield-Kan formula, we obtain the

desired result from the fact that colimits commute.

2.3 n-fold Tensor Product

For the rest of this section, we will concentrate on trying to understand what happens when

we stabilize the functor F∗(−;D(M1, . . . ,Mn)(−)) : SP → sAb and evaluate at P . By

Proposition 2.2.13, up to homotopy, we need only consider
(
F0(−;D(M1, . . . ,Mn)(−))

)st
.

Definition 2.3.1 Let R,M1, . . . ,Mn be as before. We will define a local coefficient system,

denoted D1n(M1, . . . ,Mn), at P×n by setting D1n(M1, . . . ,Mn)P×n : (P×n)op × (P×n) ∼=
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(Pop)×n × (P×n)→ Ab to be given by:

(C1, . . . , Cn)× (C ′1 . . . , C
′
n) 7→ HomMod-R(C1, C

′
1 ⊗
R
M1)⊗

Z
. . .⊗

Z
HomMod-R(Cn, C

′
n ⊗
R
Mn)

and extending by naturality to all of SP×n . Let σ, σ′ ∈ Σn. Consider the functor: σ ×
σ′ : (P×n)op × (P×n) → (P×n)op × (P×n) that permutes the contravariant and covariant

variables by σ and σ′, respectively (we act on the left, so (C1, . . . , Cn) × (C ′1, . . . , C
′
n) 7→

(Cσ(1), . . . , Cσ(n))× (Cσ′(1), . . . , Cσ′(n))). We define another local coefficient system at P×n by

setting Dσ,σ′(M1, . . . ,Mn)P×n := D1n(M1, . . . ,Mn)P×n ◦ σ × σ′ and extending by naturality.

Finally, set DΣn(M1, . . . ,Mn) :=
⊕
σ∈Σn

D1n×σ(M1, . . . ,Mn) at P×n, that is, where we only

permute the covariant variables. By abuse of notation, we will often write Dσ(M1, . . . ,Mn)

in place of D1n×σ(M1, . . . ,Mn), when it is clear we are only permuting the covariant variables.

Example 2.3.2 Let n = 2, and R = M1 = M2 = Z (so P is the category of free abelian

groups of finite rank). Then DΣ2 := DΣ2(M1,M2) :=
⊕
σ∈Σ2

Dσ(M1,M2) sends:

(C1, C2)×(C ′1, C
′
2) 7→

(
HomAb(C1, C

′
1)⊗

Z
HomAb(C2, C

′
2)
)
⊕
(
HomAb(C1, C

′
2)⊗

Z
HomAb(C2, C

′
1)
)

Example 2.3.3 Let R,M1, . . . ,Mn be as before. Consider the (exact) diagonal functor

P ∆−→ P×n. For any σ ∈ Σn we have that ∆∗(Dσ(M1, . . . ,Mn)) ∼= D(M1, . . . ,Mn) as lo-

cal coefficient systems at P , recovering 2.2.5. By our previous remarks we get a natural

transformation of functors SP → sAb:

F∗(−; (D(M1, . . . ,Mn))(−))⇒ F∗(S∆(−);Dσ(M1, . . . ,Mn)S∆(−))

Taking the coproduct of each such natural transformation of functors, produces:

F∗(−; (D(M1, . . . ,Mn))(−))⇒
⊕
σ∈Σn

F∗(S∆(−);Dσ(M1, . . . ,Mn)S∆(−))

∼= F∗(S∆(−);
⊕
σ∈Σn

Dσ(M1, . . . ,Mn)S∆(−))

= F∗(S∆(−);DΣn(M1, . . . ,Mn)S∆(−))

Denote by � the induced natural transformation of functors SP → sAb:

F∗(−; (D(M1, . . . ,Mn))(−))⇒ F∗(S∆(−);DΣn(M1, . . . ,Mn)S∆(−))
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Notation In Section 3 [46], the simplicial abelian group F∗(S∆(C);DΣn(M1, . . . ,Mn)S∆(C))

(for C ∈ SP) is denoted FΣn .

Example 2.3.4 Let τ ∈ Σn. We define a morphism of local coefficient systems at P×n, by

reordering tensor factors. That is, for C ∈ SP set (τ∗)C to be the natural transformation

Dσ(M1, . . . ,Mn)C → Dτ−1×στ−1

(Mτ−1(1), . . . ,Mτ−1(n))C

given by α1⊗· · ·⊗αn 7→ ατ−1(1)⊗· · ·⊗ατ−1(n). Taking the coproduct of each such morphism

for every σ ∈ Σn produces a morphism of local coefficient systems:

τ∗ : DΣn(M1, . . . ,Mn) =
⊕
σ∈Σn

Dσ(M1, . . . ,Mn)→
⊕
σ∈Σn

Dτ−1×στ−1

(Mτ−1(1), . . . ,Mτ−1(n))

As we’ve seen, this induces a natural transformation of functors SP×n → sAb:

F∗(−;DΣn(M1, . . . ,Mn)(−))⇒ F∗
(
−;
⊕
σ∈Σn

Dτ−1×στ−1

(Mτ−1(1), . . . ,Mτ−1(n))(−)

)
However, by permuting the index set of the nerve, we get that as simplical abelian groups,

F∗
(
−;
⊕
σ∈Σn

Dτ−1×στ−1

(Mτ−1(1), . . . ,Mτ−1(n))(−)

)
∼= F∗

(
−;
⊕
σ∈Σn

D1n×τστ−1

(Mτ−1(1), . . . ,Mτ−1(n))(−)

)
= F∗(−;

⊕
σ′∈Σn

D1n×σ′(Mτ−1(1), . . . ,Mτ−1(n))(−))

= F∗(−;DΣn(Mτ−1(1), . . . ,Mτ−1(n))(−))

Therefore τ ∈ Σn induces a natural transformation of functors SP×n → sAb:

F∗(−;DΣn(M1, . . . ,Mn)(−))⇒ F∗(−;DΣn(Mτ−1(1), . . . ,Mτ−1(n))(−))

which by abuse of notation we also denote τ∗. For example, in degree 0, we have:

(
(C1, . . . , Cn);σ;α1 ⊗ · · · ⊗ αn

)
∗ τ :=

(
(Cτ−1(1), . . . , Cτ−1(n)); τστ

−1;ατ−1(1) ⊗ · · · ⊗ ατ−1(n)

)
In the case that M1 = · · · = Mn = M this gives F∗(−;DΣn(M, . . . ,M)(−)) a (right) Σn-

action.
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Observation The choice of natural transformation τ∗ is compatible with our pullback compar-

ison map �. That is, the following square of natural transformations SP → sAb commutes:

F∗(−;D(M1, . . . ,Mn)(−)) F∗(S∆(−);DΣn(M1, . . . ,Mn)S∆(−))

F∗(−;D(Mτ−1(1), . . . ,Mτ−1(n))(−)) F∗(S∆(−);DΣn(Mτ−1(1), . . . ,Mτ−1(n))S∆(−)
)

�

τ∗ τ∗

�

Therefore, in the case that M1 = · · · = Mn, the map � is equivariant.

Example 2.3.5 Continuing the previous example, by making a choice of direct sum for every

n-tuple in P , we get an exact functor P×n ⊕−→ P . We can pull back D(M1, . . . ,Mn) to get a

local coefficient system over P×n,
⊕∗(D(M1, . . . ,Mn)). It is defined, as (P×n)op× (P×n)→

Ab, by:

(C1, . . . , Cn)× (C ′1 . . . , C
′
n) 7→

HomMod-R

( n⊕
i=1

Ci,
n⊕
i=1

(C ′i ⊗
R
M1)

)
⊗
Z
. . .⊗

Z
HomMod-R

( n⊕
i=1

Ci,
n⊕
i=1

(C ′i ⊗
R
Mn)

)
where we’ve extended by naturality to all of SP×n . From our previous remarks we know this

induces a natural transformation of functors SP×n → sAb:

F∗
(
−;
⊕∗

(D(M1, . . . ,Mn))(−)

)
⇒ F∗(S⊕(−);D(M1, . . . ,Mn)S⊕(−))

We will now construct a morphism of local coefficient systems (at P×n), φσ : Dσ(M1, . . . ,Mn)→⊕∗(D(M1, . . . ,Mn)) as follows: for (C1, . . . , Cn)× (C ′1 . . . , C
′
n) ∈ (P×n)op × (P×n)

α1 ⊗ · · · ⊗ αn ∈ HomMod-R(C1, C
′
σ(1) ⊗

R
M1)⊗

Z
. . .⊗

Z
HomMod-R(Cn, C

′
σ(n) ⊗

R
Mn)

7→ α̃1 ⊗ · · · ⊗ α̃n

where α̃j :
n⊕
i=1

Ci →
n⊕
i=1

(C ′i ⊗
R
Mj) is given by α̃j := ισ(j) ◦ αj ◦ πj, that is, it is αj on Cj and
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0’s elsewhere.
C1 C ′1 ⊗Mj

⊕ ⊕
...

⊕ ...

Cj Cj

⊕
⊕

... C ′σ(j) ⊗Mj C ′σ(j) ⊗Mj

⊕
...

⊕ ⊕
Cn C ′n ⊗Mj

πj

αj

ισ(j)

One easily checks that φσ is natural, preserves the chosen ⊕−action, and therefore extends

to a morphism of local coefficient systems. Then φ := Σφσ is a morphism of local coefficient

systems (at P×n),

φ : DΣn(M1, . . . ,Mn) =
⊕
σ∈Σn

Dσ(M1, . . . ,Mn)→
⊕∗

(D(M1, . . . ,Mn))

Composing the induced map on F∗ with the previous one produces a natural transformation

of functors SP×n → sAb, denoted Φ:

F∗(−;DΣn(M1, . . . ,Mn)(−))⇒ F∗(S⊕(−);D(M1, . . . ,Mn)S⊕(−))

Remark Composing the maps � and Φ we get a natural transformation of functors: SP → sAb

F∗(−; (D(M1, . . . ,Mn))(−))
Φ◦�
==⇒ F∗(−; (D(M1, . . . ,Mn))(−))

and a natural transformation of functors: SP×n → sAb

F∗(−;DΣn(M1, . . . ,Mn)(−))
�◦Φ
==⇒ F∗(−;DΣn(M1, . . . ,Mn)(−))

Proposition 2.3.6 The natural transformations Φ ◦ � and � ◦Φ are stably equivalent to the

identity, that is, � and Φ are stably weak homotopy inverses.

Proof. First, by 2.2.13 we need only check on simplicial degree 0, F0. That is, we need to
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check that

F0(−; (D(M1, . . . ,Mn))(−))
st (Φ◦�)st

====⇒ F0(−; (D(M1, . . . ,Mn))(−))
st

and

F0(−;DΣn(M1, . . . ,Mn)(−))
st (�◦Φ)st

====⇒ F0(−;DΣn(M1, . . . ,Mn)(−))
st

are equivalent to the identity, as natural transformations of SP → sAb and SP×n → sAb, re-

spectively. To that end, we will factor our natural transformations through S[2]P and S[2]P×n

and exploit additivity. Let us deal with the former first. Consider the functor S[2] : SP →
SS[2]P , sending C 7→ S[2]C. Define a natural transformation ρ : F0(−; (D(M1, . . . ,Mn))(−))→
F0(S[2](−); (D(M1, . . . ,Mn))S[2](−)) of functors SP → sAb given, on C ∈ SP , by:

(C;α1 ⊗ · · · ⊗ αn) 7→ (Ĉ; α̂1 ⊗ · · · ⊗ α̂n)

where Ĉ ∈ S[2]C is the short exact sequence C
∆
−� C⊕n

±
−� C⊕(n−1):

C

⊕ C

C ⊕
⊕ C

C C ⊕

⊕ ...

...

C

C

−1

−1

−1

where ∆ is the diagonal map and ± the alternating multiplication by 1 or −1, and α̂i ∈
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Hom(Ĉ, Ĉ ⊗
R
Mi) is the map of short exact sequences:

C C ⊗Mi

C⊕n (C ⊗Mi)
⊕n

C⊕(n−1) (C ⊗Mi)
⊕(n−1)

αi

∆ ∆n∑
j=1

ιj◦αi◦πi

± ±

0

A calculation shows that ρ is in fact a natural transformation of functors (i.e. respect-

ing the face and degeneracy maps of S•-constructions which generate the morphisms of

SP). Now, let (d2, d0) be the induced natural transformation (of functors SP → sAb)

F0(S[2](−); (D(M1, . . . ,Mn))S[2](−))→ F0(−; (D(M1, . . . ,Mn))(−))×F0(−; (D(M1, . . . ,Mn))(−))

by taking the source and target of the short exact sequences, and let

d1 : F0(S[2](−); (D(M1, . . . ,Mn))S[2](−))→ F0(−; (D(M1, . . . ,Mn))(−))

be the total map. Then, for each C ∈ SP we have a non-commutative diagram:

F0(C;D(M1, . . . ,Mn)C) F0(S[2]C;D(M1, . . . ,Mn)S[2]C) F0(C;D(M1, . . . ,Mn)C)
×2

F0(C;D(M1, . . . ,Mn)C)

ρ

d1

(d2,d0)

+

where the last map is the sum map. The outside composite + ◦ (d2, d0) ◦ ρ is the identity,

whilst d1 ◦ ρ is the map

(C;α1 ⊗ · · · ⊗ αn) 7→
(
C⊕n; (

n∑
j=1

ιj ◦ α1 ◦ π1)⊗ · · · ⊗ (
n∑
j=1

ιj ◦ αn ◦ πn)
)

=
(
C⊕n;

n∑
j1=1

· · ·
n∑

jn=1

(ιj1 ◦ α1 ◦ π1)⊗ · · · ⊗ (ιjn ◦ αn ◦ πn)
)

=
(
C⊕n;

∑
λ∈Mn

α̃
λ(1)
1 ⊗ · · · ⊗ α̃λ(n)

n

)

where Mn is the set of all functions {1, . . . , n} → {1, . . . , n} and α̃
λ(i)
i := ιλ(i) ◦ αi ◦ πi.
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Observe that by Proposition 1.3.2 [59], (d1)st ' (+ ◦ (d2, d0))st and therefore:

(d1 ◦ ρ)st = (d1)st ◦ ρst

' (+ ◦ (d2, d0))st ◦ ρst

= (+ ◦ (d2, d0) ◦ ρ)st

= idst = id

So the map F0(−; (D(M1, . . . ,Mn))(−)) → F0(−; (D(M1, . . . ,Mn))(−)) given by (C;α1 ⊗
· · · ⊗ αn) 7→

∑
λ∈Mn

α̃
λ(1)
1 ⊗ · · · ⊗ α̃

λ(n)
n is stably equivalent to the identity. Let’s analyze

this natural transformation. Suppose λ ∈ Mn isn’t surjective. Pick u ∈ {1, . . . , n} not

in the image. Consider the natural transformation ρλ : F0(−; (D(M1, . . . ,Mn))(−)) →
F0(S[2](−); (D(M1, . . . ,Mn))S[2](−)) of functors SP → sAb given, on C ∈ SP , by:

(C;α1 ⊗ · · · ⊗ αn) 7→ (C̄; ᾱ1 ⊗ · · · ⊗ ᾱn)

where C̄ ∈ S[2]C is the short exact sequence C⊕(n−1) � C⊕n
πu−� C, where the first map is

inclusion into the non−u coordinates, and ᾱi ∈ Hom(C̄, C̄ ⊗
R
Mi) is the map of short exact

sequences:

C⊕(n−1) (C ⊗Mi)
⊕(n−1) C⊕(n−1) (C ⊗Mi)

⊕(n−1) C⊕(n−1) (C ⊗Mi)
⊕(n−1)

C⊕n (C ⊗Mi)
⊕n C⊕n (C ⊗Mi)

⊕n C⊕n (C ⊗Mi)
⊕n

C C ⊗Mi C C ⊗Mi C C ⊗Mi

α̃
λ̄(i)
i

α̃
λ̄(i)
i−1 0

α̃
λ(i)
i

πu πu

α̃
λ(i)
i

πu πu

α̃
λ(i)
i

πu πu

0 0 0

for i < u, i > u, and i = u, respectively. Here λ̄(i) is λ(i) if λ(i) < u and λ(i)− 1 otherwise.

Again, a calculation shows that ρλ is a natural transformation of functors SP → sAb, and
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we have, for each C ∈ SP a non-commutative diagram:

F0(C;D(M1, . . . ,Mn)C) F0(S[2]C;D(M1, . . . ,Mn)S[2]C) F0(C;D(M1, . . . ,Mn)C)
×2

F0(C;D(M1, . . . ,Mn)C)

ρλ

d1

(d2,d0)

+

The outside composite + ◦ (d2, d0) ◦ ρλ is 0, whilst d1 ◦ ρλ is the map (C;α1 ⊗ · · · ⊗ αn) 7→
(C⊕n; α̃

λ(1)
1 ⊗ · · · ⊗ α̃

λ(n)
n ). This map, therefore, is stably equivalent to 0. So the map

F0(−; (D(M1, . . . ,Mn))(−)) → F0(−; (D(M1, . . . ,Mn))(−)) given by (C;α1 ⊗ · · · ⊗ αn) 7→(
C⊕n;

∑
λ∈Mn

α̃
λ(1)
1 ⊗ · · · ⊗ α̃λ(n)

n

)
is stably equivalent to the one given by only surjective maps

(C;α1 ⊗ · · · ⊗ αn) 7→
(
C⊕n;

∑
σ∈Σn

α̃
σ(1)
1 ⊗ · · · ⊗ α̃σ(n)

n

)
= (Φ ◦ �)

(
C;α1 ⊗ · · · ⊗ αn

)
Therefore id = idst ' (d1 ◦ ρ)st ' (Φ ◦ �)st on F0(−; (D(M1, . . . ,Mn))(−))

st.

Notation Let X, Y be simplicial sets with Σn-action. We say X and Y are feebly Σn-weak

equivalent, denoted X 'fΣn Y , is there is a zig-zag of weak equivalences of simplicial sets

between X and Y , each of which is a Σn equivariant map. Since we make no claim on

restriction to subgroups, this not the same as a weak equivalence in the equivariant homotopy

theory setting.

Remark By 2.3.6 and 2.3.4, we have a feeble Σn-weak equivalence between the stabilization of

F∗(−; (D(M1, . . . ,Mn))(−)) and F∗(S∆(−);DΣn(M1, . . . ,Mn)S∆(−)) when M1 = · · · = Mn =

M . Thus, we will now concentrate on analyzing the latter.

Definition 2.3.7 Let R,M1, . . . ,Mn be as before and let Sn ⊂ Σn be the subset of full

length cycles. Define a local coefficient system at P×n by:

DSn(M1, . . . ,Mn) :=
⊕
σ∈Sn

D1n×σ(M1, . . . ,Mn)

There is an inclusion of local coefficient systems DSn(M1, . . . ,Mn) ↪→ DΣn(M1, . . . ,Mn)

inducing an injective natural transformation of functors SP×n → sAb:

F∗(−;DSn(M1, . . . ,Mn)(−))⇒ F∗(−;DΣn(M1, . . . ,Mn)(−))
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Since Sn is invariant under conjugation, for each τ ∈ Σn the maps τ∗ descend to give a

commutative diagram:

F∗(−;DSn(M1, . . . ,Mn)(−)) F∗(−;DΣn(M1, . . . ,Mn)(−))

F∗(−;DSn(Mτ−1(1), . . . ,Mτ−1(n))(−)) F∗(−;DΣn(Mτ−1(1), . . . ,Mτ−1(n))(−))

τ∗ τ∗

Therefore, in the case that M1 = · · · = Mn, the inclusion F∗(−;DSn(M1, . . . ,Mn)(−)) ⇒
F∗(−;DΣn(M1, . . . ,Mn)(−)) is Σn-equivariant. We now seek to show that this inclusion is an

equivalence upon stabilization.

Proposition 2.3.8 The map of simplicial abelian groups F∗(−;DSn(M1, . . . ,Mn)(−)) ⇒
F∗(−;DΣn(M1, . . . ,Mn)(−)) is a weak equivalence after stabilization.

Proof. First, by 2.2.13 we need only case about the stabilization of the degree 0-simplices.

Second, by 2.2.12 we can equivalently show that for σ ∈ Σn \ Sn, F0(−;Dσ(M1, . . . ,Mn)(−))

is stably contractible. If σ ∈ Σn \ Sn, then there exist distinct τ, τ ′ ∈ Σn, disjoint cycles

of shorter length, such that σ = τ · τ ′. Let s = |τ |, s′ = |τ ′| (so that s + s′ = n), and

let u = Im(τ), u′ = Im(τ ′) be the images of the disjoint cycles in n. There is an exact

natural isomorphism A : P×n ∼= P×s × P×s′ such that A ◦ σ = idP×s×P×s′ which extends to

a natural isomorphism SA : SP×n ∼= SP×s × SP×s′ . Let π1 and π2 be the projection functors

P×s×P×s′ → P×s and P×s×P×s′ → P×s′ , respectively. We then get a natural isomorphism

of functors

F0(−;Dσ(M1, . . . ,Mn)(−)) ∼= F0(−; π∗1(D1s(Ma1 , . . . ,Mas))⊗
Z
π∗2(D1s′ (Mb1 , . . . ,Mbs′

))
(−)

)

where u = {a1, . . . , as} and u′ = {b1, . . . , bs′}. By 2.2.15 we get our desired conclusion.

Remark Let ω = (n . . . 2 1) ∈ Σn be the standard full-length cycle. Then Sn = {τωτ−1 | τ ∈
Σn}. When M1 = · · · = Mn the local coefficient system Dω(M1, . . . ,Mn) acquires a

Cn-action, and so F∗(C;Dω(M1, . . . ,Mn)C) becomes a simplicial Z[Cn]-module. Since Cn

is abelian, the inclusion map F∗(C;Dω(M1, . . . ,Mn)C) ↪→ F∗(C;DSn(M1, . . . ,Mn)C) is Cn-

equivariant. Therefore restriction/extension-of-scalars adjunction gives a map of simplicial

(right) Z[Σn]-modules

F∗(C; (Dω(M1, . . . ,Mn))C) ⊗
Z[Cn]

Z[Σn]
ν−→ F∗(C;DSn(M1, . . . ,Mn)C)
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which is natural in C ∈ SP×n . By analyzing the Σn-action from 2.3.4, the following claim is

easily checked:

Claim 2.3.9 The map of simplicial right Z[Σn]-modules ν is an isomorphism.

Combining this with 2.2.18 it follows that we have a Σn-isomorphism of the associated

stabilizations:

(
F∗(−; (Dω(M1, . . . ,Mn))(−))

)st
(C) ⊗

Z[Cn]
Z[Σn] ∼=

(
F∗(−; (DSn(M1, . . . ,Mn))(−))

)st
(C)

Altogether, in the case when M1 = · · · = Mn, we get the following chain of feeble Σn-weak

equivalences:

(
F∗(−; (D(M1, . . . ,Mn))(−))

)st
(P) '

(
F∗(−; (DΣn(M1, . . . ,Mn))(−))

)st
(P×n)

'
(
F∗(−; (DSn(M1, . . . ,Mn))(−))

)st
(P×n)

'
(
F∗(−; (Dω(M1, . . . ,Mn))(−))

)st
(P×n) ⊗

Z[Cn]
Z[Σn]

' Ω
(
dF∗(S•P×n;Dω(M1, . . . ,Mn)S•P×n)

)
⊗

Z[Cn]
Z[Σn]

' F∗(P×n;Dω(M1, . . . ,Mn)P×n) ⊗
Z[Cn]

Z[Σn]

where the last two weak equivalences follow from Corollary 3.7 [46]. This recovers the main

result of McCarthy in [46], which we generalize in the next chapter.
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CHAPTER 3

THE SPECTRUM CASE

In this chapter we translate many of the algebraic concepts from the previous section to the

case of spectra. Though many of the definitions and propositions carry through directly;

we will be careful in those places where we feel confusion may arise. Our model of stable

homotopy will be functors with stabilization (FST) and functor with smash product (FSP),

as in [34] (see Appendix E for details).

3.1 Additivity Revisited

Let F : Ext → S-BiMod be a reduced functor. We can define p-product and product

preserving functors just as in Chapter 2, and mimic the construction of 2.1.1 for the second

cross effect of F , cr2F . Just as in the algebraic case we get, for each exact category E , a

natural map of S-bimodules F (S2(E))
(d2,d0)−−−−→ F (E)× F (E).

Definition 3.1.1 A functor F : Ext → S-BiMod is additive if the map F (S2(−))
(d2,d0)−−−−→

F (−)× F (−) is a weak equivalence. We say F is p-additive if it’s (p+ 1)-connected.

Observation If F is a product preserving functor, then dF (S•(−)) is an additive functor.

More generally, if F is a p-product functor, then dF (S•(−)) is a p-additive functor. In

general, a functor need not be additive, however, just as before, there is a universal additive

approximation:

Definition 3.1.2 Given a reduced functor F : Ext → S-BiMod define a new functor

F st : Ext→ S-BiMod given by

F st(E) := hocolim
n

Ω(n)
(
dF
(
S(n)
• (E)

))
(we use the corrected homotopy colimit; see Appendix B.2).
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Remark By our choice of homotopy colimit, F st is a reduced functor. By lemmas 5.7 and

5.8 in [44], F st is a product preserving and additive functor, and the natural transformation

α : F → F st is universally initial (up to homotopy) among additive functors. Exactly as

the algebraic case, if F is a product preserving functor, then Ω(dF (S•(−))) is an additive

functor. Therefore, α : ΩdFS• → (ΩdFS•)
st is an equivalence. Combining this with the

cofinality isomorphism for product preserving functors, F st → (ΩdFS•)
st, we conclude that

for a product preserving functor F st ' ΩdFS•.

Example 3.1.3 Analogous to the case of Example 2.1.5, let E be an FST, and consider the

functor E : Ext→ S-BiMod given by E 7→ Obj(E)∧E. Then by the Hurewicz isomorphism,

we have

πi(E
st(E)) ∼= Hi(K(E); E)

In particular, if E = S is the sphere FST, then Sst(E) ' K(E)

Example 3.1.4 Since exact categories are Ab-enriched (and therefore, by prolongation,

also sAb-enriched), we can use the Eilenberg-Maclane functor construction to give it an

enrichment over S-BiMod (see Appendix E.4.4). If E is an exact category, we denote the

associated FSP over E by Ẽ . We define a functor Hom : Ext→ S-BiMod by

Hom(E) :=
∨

E∈Obj(E)

ẼE,E

=
∨

E∈Obj(E)

˜HomE(E,E)

in analogy with Example 2.1.6. The stabilization of this functor recovers the (spectral)

topological Hochschild homology of E , THH(E). Indeed, by Dundas-McCarthy we have

that Homst(E) ' N cy(E), the spectrally-enriched cyclic nerve of E . Since the spectral

enrichment of E , Ẽ , is pointwise cofibrant, the natural map in the stable category from

THH(E) to N cy(E) is an isomorphism by the “many-objects” version of Proposition 4.2.8

[58] (see also correction in Theorem 3.6 [50]).

Example 3.1.5 If R is a ring, and M an R-bimodule, we can generalize Example 2.1.7 to

the spectral setting, defining a functor HomM : SP → S-BiMod in analogy with HomM , but

made with the associated FSTs as in the previous example. By work of Dundas-McCarthy
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(and the aforementioned [58], [50]), we get that:

(
HomM

)st
(P) ' THH(R;M)

3.2 Homology and Local Coefficient Systems in Spectra

Much of the same story of local coefficient systems over categories and their associated

Hochschild-Mitchell-type homologies can be translated mutatis mutandis to the spectral

setting.

Definition 3.2.1 Let C be a small category and let D : Cop × C → S-BiMod be a (globally

stable) bi-functor (see Appendix E.3). We let F∗(C;D) be the simplicial FST defined by:

Fp(C;D) =
∨
−→
C∈NpC

D(C0, Cp)
−→
C := C0

α1←− C1
α2←− . . .

αp−1←−−− Cp−1
αp←− Cp

with face and degeneracy maps given by:

di ◦ ια1,...,αp =


ια2,...,αp ◦D(α1, idCp) i = 0

ια1,...,αi◦αi+1,...,αp 1 ≤ i ≤ p− 1

ια1,...,αp−1 ◦D(idC0 , αp) i = p

si ◦ ια1,...,αp = ια1,...,αi,idCi ,αi+1,...,αp 0 ≤ i ≤ p

We denote the geometric realization of F∗(C;D) by F (C;D). The homotopy groups of

F (C;D) are called the spectral (Hochschild-Mitchell) homology of the category C with coeffi-

cients in the bi-functor D, denoted H∗(C;D).

Remark Just as in the algebraic case, a natural transformation η : D ⇒ D′ of bi-functors,

Cop × C → S-BiMod induces maps of simplicial FSTs, F∗(C;D)→ F∗(C;D′), and thus maps

H∗(C;D)→ H∗(C;D′).

Definition 3.2.2 Let E be an exact category. A spectral local coefficient system D (at E)

associates to each C ∈ SE a (globally stable) bi-functor DC : Cop × C → S-BiMod to FSTs

such that:

i DC is bi-reduced, that is, DC(C, 0) = DC(0, C) = 0 for all C ∈ C.
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ii D(−) is “natural”. Given a morphism Λ : C → C ′ in SE , let Λ̃ := (Λop,Λ) : Cop × C →
C ′op × C ′. Then we have a natural transformation DΛ : DC ⇒ DC′ ◦ Λ̃ of functors

Cop × C → S-BiMod satisfying:

(a) DidC = idDC .

(b) If Λ′ : C ′ → C ′′ is another morphism in SE , we have DΛ′ ◦ Λ̃ ◦DΛ = DΛ′◦Λ.

Example 3.2.3 Recall that we have the “Eilenberg-Maclane” functor Ab
H−→ S-BiMod

associating an FST to each abelian group, A 7→ Ã. Let E be an exact category, and D

a local coefficient system (of abelian groups) over E . Post-composing with H, we get a

spectral local coefficient system, D̃ over E . Indeed, H is reduced, and given a morphism

Λ : C → C ′ in SE , horizontal composition of DΛ : DC ⇒ DC′ ◦ Λ̃ with H gives the desired

natural transformation D̃Λ : D̃C ⇒ D̃C′ ◦ Λ̃. Some of the main spectral local coefficient

systems we work with arise in this manner.

Example 3.2.4 A central example is the spectral analogue of 2.2.4, denoted H̃om. More

generally, the notion of spectral local coefficient system makes sense for any FSP over a small

pointed category C (see Appendix E.4). Every “spectrally-enriched” category, therefore,

carries a natural local coefficient system, and furthermore, a module over such an FSP

defines a spectral local coefficient system (see Appendix E.4.4).

Example 3.2.5 Let R be a ring, and let M1, . . . ,Mn be R-bimodules. Define a spectral

local coefficient system D(M1, . . . ,Mn) at P by setting, for C ∈ SP and C,C ′ ∈ C,

D(M1, . . . ,Mn)C(C,C
′) =

n∧
i=1

H̃omSI(C)(SI(C),STMi (C
′))

where the wedge means tensoring over the sphere FSP S (see Appendix E.1). Note that

D(M1, . . . ,Mn) is globally stable.

Observation We can define morphisms of spectral local coefficient systems in direct analogy

with 2.2.6. Since H : (Ab,⊗
Z
,Z)→ (S−BiMod,⊗Day,S) is a lax symmetric monoidal functor,

we get a morphism of spectral local coefficient systems at P :

D(M1, . . . ,Mn)⇒ D̃(M1, . . . ,Mn)

which (up to natural isomorphism) is the universal map from the extension and restriction-

of-scalars adjunction from S→ Z̃ (it’s the smash product of the counits).
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Example 3.2.6 Let Σn be the symmetric group on n letters, and let τ ∈ Σn. Reordering of

smash factors defines a morphism of spectral local coefficient systems τ∗ : D(M1, . . . ,Mn)→
D(Mτ−1(1), . . . ,Mτ−1(n)), which in the case that M1 = · · · = Mn, makes D(M1, . . . ,Mn) into

a Σn-spectral local coefficient system, and the morphism D(M1, . . . ,Mn)⇒ D̃(M1, . . . ,Mn)

Σn-equivariant.

Remark The main point of spectral local coefficient systems is that they interact well with

spectral homology of categories. Indeed, just as before, given a spectral local coefficient

system D at an exact category E , we can form a functor F (−;D(−)) : SE → S-BiMod

sending

C 7→ F (C;DC) := |F∗(C;DC)|

Since the Eilenberg-Maclane functor Ab
H−→ S-BiMod commutes with coproducts, given an

exact category E and a local coefficient systemD (of abelian groups) at E , we have a canonical

isomorphism of functors SE → S-BiMod:

˜F (−;D(−)) ∼= F (−; D̃(−))

Furthermore, if D′ is another local coefficient system at E and H : D → D′ is a morphism

of spectral local coefficient systems, then H induces a natural transformation F (−;D(−))⇒
F (−;D′(−)) of functors SE → S-BiMod. For example, in the case of 3.2.5 we obtain a natural

transformation

F (−;D(M1, . . . ,Mn)(−))⇒ F (−;D(Mτ−1(1) . . . ,Mτ−1(n))(−)
)

such that, in the case that M1 = · · · = Mn = M , F (−;D(M, . . . ,M)(−)) has a (right)

Σn-action.

Example 3.2.7 We can develop in the spectrum case many of the same constructions

from the algebraic case. We can define for an exact functor T : E → E ′ and a spectral

local coefficient system over E ′, D′, a pullback along T , T ∗(D′), as a spectral local coefficient

system over E . Given two D and D′ over E we can construct a “sum” spectral local coefficient

system, D∨D′ as in 2.2.9, and it interacts well with both pullbacks (T ∗(D⊕D′) ∼= T ∗(D)⊕
T ∗(D′)) and spectral homology, i.e. F∗(−;D(−)) ∨ F∗(−;D′(−)) ∼= F∗(−;D ∨D′(−)). We also

have smash products of D and D′, given by

Cop × C ∆−→ (Cop × C)× (Cop × C) DC×D′C−−−−−→ S−BiMod× S−BiMod
∧−→ S−BiMod
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The main computation tool is the spectrum analogue of 2.2.13, whose proof in [46] translates

directly to the spectrum case.

Proposition 3.2.8 Let D be a spectral local coefficient system at E. The natural transfor-

mation

δ : F0(−;D(−))→ F∗(−;D(−))

of functors SE → sS-BiMod given by inclusion of degeneracies is a stable equivalence. Specif-

ically,

δ(S(n)
• ) : dF0

(
S(n)
• (−);D

S
(n)
• (−)

)
→ dF∗

(
S(n)
• (−);D

S
(n)
• (−)

)
is 2n− 1-connected.

With this result, we shift focus to the 0-simplices of the F•-construction; for example, Hom

and HomM can be similarly rewritten. The following lemmas are proved by reducing to their

algebraic counterparts (2.2.14, 2.2.15 and 2.2.16) through a spectral sequence argument (see

Section 4.3 [31], specifically Corollary 4.22), or by direct inspection (for 3.2.12 and 3.2.13):

Lemma 3.2.9 Let X•,...,• be a n-multi-simplicial S-bimodule. Suppose that in simplicial

direction i, X is mi-reduced (that is, Xk1,...,ki−1,ki,ki+1,...,kn = ∗ for ki ≤ mi). Then dX is

(n− 1 +
∑n

i=1 mi)-connected.

Lemma 3.2.10 Let E , E ′ be exact categories and let D,D′ be spectral local coefficient systems

over them, respectively. Then

(
F0(−; π∗E(D) ∧ π∗E ′(D′)(−)

)st
(E × E ′) ' 0

Lemma 3.2.11 If η : F ⇒ G is natural transformation of functors Ext→ S-BiMod which

is a point-wise weak equivalence, then so is ηst : F st ⇒ Gst.

Lemma 3.2.12 If η : F ⇒ G is natural transformation of functors Ext → S-BiMod such

that for some E ∈ Ext ηst
E : F st(E)→ Gst(E) is a weak equivalence, then ηst|SE is point-wise

weak equivalence.

Lemma 3.2.13 Let I be a small category, and F : I → Func∗
(
Ext,S-BiMod

)
a functor.

Then we have an isomorphism of S-bimodules:

colim
i∈I

(
(F(i,−))st(E)

) ∼= ( colim
i∈I
F(i,−)

)st
(E)
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3.3 n-fold Smash Product

We now turn to the functor F (−;D(M1, . . . ,Mn)(−)) : SP → S-BiMod and understanding

its stabilization at P . By 3.2.8 we need only care about
(
F0(−;D(M1, . . . ,Mn)(−))

)st
, up to

homotopy. The majority of the lemmas and propositions for F (−;D(M1, . . . ,Mn)(−)) carry

through.

Definition 3.3.1 Let R,M1, . . . ,Mn be as before. Define a spectral local coefficient system,

denoted D1n(M1, . . . ,Mn), at P×n by setting D1n(M1, . . . ,Mn)P×n : (P×n)op × (P×n) ∼=
(Pop)×n × (P×n)→ S-BiMod

(C1, . . . , Cn)× (C ′1 . . . , C
′
n) 7→ H̃omMod-R(C1, C

′
1 ⊗
R
M1) ∧ · · · ∧ H̃omMod-R(Cn, C

′
n ⊗
R
Mn)

and extending by naturality to all of SP×n . For σ, σ′ ∈ Σn we set Dσ,σ′(M1, . . . ,Mn)P×n :=

D1n(M1, . . . ,Mn)P×n ◦ σ × σ′ as in the algebraic case, and define a spectral local coefficient

system at P×n by

DΣn(M1, . . . ,Mn) :=
∨
σ∈Σn

D1n×σ(M1, . . . ,Mn)

We again abuse of notation and write Dσ(M1, . . . ,Mn) in place of D1n×σ(M1, . . . ,Mn).

As in the algebraic case, we now compare the spectral homologies F (−;D(M1, . . . ,Mn)(−))

and F (−;DΣn(M1, . . . ,Mn)(−)). Note that ∆∗(Dσ(M1, . . . ,Mn)) ∼= D(M1, . . . ,Mn) as spec-

tral local coefficient systems at P , and so we get a natural transformation of functors SP → S-

BiMod:

F (−; (D(M1, . . . ,Mn))(−))⇒ F (S∆(−);Dσ(M1, . . . ,Mn)S∆(−))

We construct the diamond map � as before, taking note that it is now a zig-zag of maps

F (−; (D(M1, . . . ,Mn))(−))⇒
∏
σ∈Σn

F (S∆(−);Dσ(M1, . . . ,Mn)S∆(−))

'←−
∨
σ∈Σn

F (S∆(−);Dσ(M1, . . . ,Mn)S∆(−))

∼= F (S∆(−);
∨
σ∈Σn

Dσ(M1, . . . ,Mn)S∆(−))

= F (S∆(−);DΣn(M1, . . . ,Mn)S∆(−))

Each of these maps is natural in C ∈ SP , and we denote the generalized map by � as in

the algebraic case. Additonally, the maps of 2.3.4 generalize to the spectral setting, and
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therefore τ ∈ Σn induces a natural transformation of functors SP×n → S-BiMod:

F (−;DΣn(M1, . . . ,Mn)(−))⇒ F (−;DΣn(Mτ−1(1), . . . ,Mτ−1(n))(−))

such that � is Σn-equivariant when M1 = · · · = Mn.

Example 3.3.2 We construct a map backwards, Φ, as before however care is needed in

re-defining it in the spectral setting. Making a choice of exact functor
⊕

: P×n → P we

define a morphism of spectral local coefficient systems (at P×n), φσ : Dσ(M1, . . . ,Mn) →⊕∗(D(M1, . . . ,Mn)) by

∧nj=1(ισ(j))∗ ◦ π∗j

on each (C1, . . . , Cn)× (C ′1 . . . , C
′
n) spectral summand. Here we’re using the functoriality of

the Eilenberg-MacLane construction. More generally, φσ is given by using the con/covariant

directions of the “spectral” enrichment of the category. Taking coproducts we get a natural

transformations of functors SP×n → S-BiMod:

F (−; (DΣn(M1, . . . ,Mn))(−))⇒
∨
σ∈Σn

F (−;
⊕∗

(D(M1, . . . ,Mn))(−)

δ−→ F (−;
⊕∗

(D(M1, . . . ,Mn))(−)

→ F (S⊕(−);D(M1, . . . ,Mn)S⊕(−))

where δ is the fold map. We denote this map by Φ, as it exactly mirrors the one from the

algebraic case.

Proposition 3.3.3 The generalized natural transformation � is stably a zig-zag of weak

equivalences.

Proof. This is the spectral analogue of 2.3.6. Though care is taken when distinguishing

between products and coproducts, the proof mimics the algebraic one closely. We begin by

defining a natural transformation of functors SP → S-BiMod:

ρ : F0(−; (D(M1, . . . ,Mn))(−))→ F0(S[2](−); (D(M1, . . . ,Mn))S[2](−))

and using the face maps in the S•-construction. Let C ∈ SP and consider the following two

exact functors: H : C → S[2]C given by C 7→ Ĉ (as defined in 2.3.6) and s1 : C → S[2]C
the 1st-degeneracy map. Let 1 ≤ i ≤ n and define the following natural transformations of
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functors: H pi=⇒ s1
e

=⇒ H given by:

C C C C

C⊕n C C C⊕n

C⊕(n−1) 0 0 C⊕(n−1)

∆ ∆

πi

±

∆

±

0 0

respectively. Since H̃omMod-R(−, ?⊗
R
M) is a spectral local coefficient system at P , we get,

for C ∈ C ∈ SP , a sequence of maps:

H̃omMod-R(C,C ⊗
R
M)→H̃omS[2]Mod-R(s1(C), s1(C ⊗

R
M))

(e⊗idM )∗−−−−−→H̃omS[2]Mod-R(s1(C), Ĉ ⊗
R
M)

(pi)
∗

−−→H̃omS[2]Mod-R(Ĉ, Ĉ ⊗
R
M)

which in the algebraic case is precisely the map α 7→ α̂. Smashing together the maps gives

ρC:

F0(C; (D(M1, . . . ,Mn))C) :=
∨

C∈Obj(C)

D(M1, . . . ,Mn)C(C,C)

=
∨

C∈Obj(C)

H̃omS[2]Mod-R(C,C ⊗
R
M1) ∧ · · · ∧ H̃omS[2]Mod-R(C,C ⊗

R
Mn)

∨
ŝ1−−→

∨
C∈Obj(C)

H̃omS[2]Mod-R(s1(C), s1(C ⊗
R
M1)) ∧ · · · ∧ H̃omS[2]Mod-R(s1(C), s1(C ⊗

R
Mn))

∨
(
∧
i

(e⊗idMi )∗)

−−−−−−−−−→
∨

C∈Obj(C)

H̃omS[2]Mod-R(s1(C), Ĉ ⊗
R
M1) ∧ · · · ∧ H̃omS[2]Mod-R(s1(C), Ĉ ⊗

R
Mn)

∨
(
∧
i

(pi)
∗)

−−−−−−→
∨

C∈Obj(C)

H̃omS[2]Mod-R(Ĉ, Ĉ ⊗
R
M1) ∧ · · · ∧ H̃omS[2]Mod-R(Ĉ, Ĉ ⊗

R
Mn)

→ F0(S[2]C; (D(M1, . . . ,Mn))S[2]C)

Let d1 : F0(S[2]C;D(M1, . . . ,Mn)S[2]C) → F0(C;D(M1, . . . ,Mn)C) be the 1st face map of the
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S•-construction. Composing with ρC gives a self-map

F0(C;D(M1, . . . ,Mn)C)
d1◦ρC−−−→ F0(C;D(M1, . . . ,Mn)C)

Because of the naturality of d1 we can identify ρC on each smash factor of each summand.

Indeed, on the ith smash factor we get a map

H̃omMod-R(C,C ⊗
R
Mi)→ H̃omMod-R(C⊕n, (C ⊗

R
Mi)

⊕n)

weakly equivalent to:

H̃omMod-R(C,C ⊗
R
Mi)

∆−→
n∏
j=1

H̃omMod-R(C,C ⊗
R
Mi)

'←−
n∨
j=1

H̃omMod-R(C,C ⊗
R
Mi)

∨(πi)
∗

−−−→
n∨
j=1

H̃omMod-R(C⊕n, C ⊗
R
Mi)

∨(ιj)∗−−−→
n∨
j=1

H̃omMod-R(C⊕n, (C ⊗
R
Mi)

⊕n)

δ−→H̃omMod-R(C⊕n, (C ⊗
R
Mi)

⊕n)

where δ is the fold map. Let Mn be the set of all functions {1, . . . , n} → {1, . . . , n}. By

distributivity, we have:

n∧
i=1

( n∨
j=1

H̃omMod-R(C,C⊗Mi)
)
'
∨

λ∈Mn

H̃omMod-R(C,C⊗M1)∧· · ·∧H̃omMod-R(C,C⊗Mn)

and similarly:

n∧
i=1

( n∨
j=1

(πi)
∗ ◦ (ιj)∗

)
=

n∧
i=1

( n∨
j=1

(ιj)∗ ◦ (πi)
∗)

'
∨

λ∈Mn

(ιλ(1))∗ ◦ (π1)∗ ∧ · · · ∧ (ιλ(n))∗ ◦ (πn)∗
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=:
∨

λ∈Mn

lλ

Hence d1 ◦ ρC is weakly equivalent to the generalized map δ ◦
∨

λ∈Mn

lλ ◦∆. We now show that

if λ ∈Mn is not surjective, lλ is stably contractible. Indeed, for such a λ, let u ∈ {1, . . . , n}
not be in the image. Let Hu : C → S[2]C be the exact functor given by C 7→ C./ where C./

is the short exact sequence C⊕(n−1) � C⊕n � C where the first map is inclusion into the

non-u coordinates, and the second is projection onto the uth-coordinate. Let 1 ≤ i ≤ n and

define the following natural transformations of functors: Hu

pui=⇒ s1
eu
=⇒ Hu given by:

C⊕(n−1) C C C⊕(n−1)

C⊕n C C C⊕n

C 0 0 C

πī ιλ̄(i)

πi

πu

ιλ(i)

πu

0 0

where ī is i if i < u, i − 1 if i > u, and −1 if i = u, where we interpret π−1 as the zero

map. Since H̃omMod-R(−, ? ⊗
R
M) is a spectral local coefficient system at P , we get, for

C ∈ C ∈ SP , a sequence of maps:

H̃omMod-R(C,C ⊗
R
M)→H̃omS[2]Mod-R(s1(C), s1(C ⊗

R
M))

(eu⊗idM )∗−−−−−−→H̃omS[2]Mod-R(s1(C), C./ ⊗
R
M)

(pui )∗

−−−→H̃omS[2]Mod-R(C./, C./ ⊗
R
M)

which in the algebraic case is precisely the map α 7→ ᾱ. Smashing together the maps for

M1, . . . ,Mn gives a morphism

H̃omMod-R(C,C ⊗
R
M1) ∧ · · · ∧ H̃omMod-R(C,C ⊗

R
Mn)

→ H̃omS[2]Mod-R(C./, C./ ⊗
R
M1) ∧ · · · ∧ H̃omS[2]Mod-R(C./, C./ ⊗

R
Mn)

and therefore a map ρλ : F0(C; (D(M1, . . . ,Mn))C)→ F0(S[2]C; (D(M1, . . . ,Mn))S[2]C). Com-
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posing with d1 we get a morphism F0(C; (D(M1, . . . ,Mn))C) → F0(C; (D(M1, . . . ,Mn))C)

which on the C-summand is weakly equivalent to lλ. Now, consider the following diagram

of natural transformations of functors SP → S-BiMod:

F0(C;D(M1, . . . ,Mn)C) F0(S[2]C;D(M1, . . . ,Mn)S[2]C) F0(C;D(M1, . . . ,Mn)C)
×2

F0(C;D(M1, . . . ,Mn)C)
2∨
s=1

F0(C;D(M1, . . . ,Mn)C)

ρλ

d1

(d2,d0)

'

δ

Consider the composite (d2, d0) ◦ ρλ. Projection onto the second factor gives a map, which

on the ith-smash factor of the C-summand, is the composite d0 ◦ (pui )
∗ ◦ (eu ⊗ idMi

)∗ ◦ ŝ1 :

H̃omMod-R(C,C ⊗
R
Mi)→ H̃omMod-R(C,C ⊗

R
Mi). Horizontal composition with the natural

transformations

C S[2]C C C S[2]C C

Hu

s1

⇒

pui
d0

s1

Hu

⇒

eu
d0

shows that

d0 ◦ (pui )
∗ ◦ (eu ⊗ idMi

)∗ ◦ ŝ1 =(d0 ◦h pui )∗ ◦ d0 ◦ (eu ⊗ idMi
)∗ ◦ ŝ1

=(d0 ◦h pui )∗ ◦ (d0 ◦h eu ⊗ idMi
)∗ ◦ d0 ◦ ŝ1

=(d0 ◦h pui )∗ ◦ (d0 ◦h eu ⊗ idMi
)∗ ◦ 0

= 0

Thus π2◦(d2, d0)◦ρλ is the zero map. On the other hand, π1◦(d2, d0)◦ρλ is, on the uth-smash

factor of the C-summand, the composite d2 ◦ (puu)
∗ ◦ (eu ⊗ idMu)∗ ◦ ŝ1. Now, d2 ◦ (puu)

∗ =

(d2 ◦h puu)∗ ◦ d2 and d2 ◦h puu is the natural transformation between d2 ◦ Hu : C 7→ C⊕(n−1)

and d2 ◦ ŝ1 = idC given by C⊕(n−1) 0−→ C. Since the uth-factor is the zero map, and the

n-fold smash is reduced in each variable, the induced map is on each summand is the zero

map. Therefore π1 ◦ (d2, d0) ◦ ρλ is the zero map, and hence (d2, d0) ◦ ρλ is also. Since the

above square commutes in the homotopy category after stabilization, we see by 3.2.11 that

(lλ)
st ' (d1 ◦ ρλ)st ' 0.

38



Therefore,

(d1 ◦ ρC)st ' (δ ◦
∨

λ∈Mn

lλ ◦∆)st ' (δ)st ◦
∨

λ∈Mn

(lλ)
st ◦ (∆)st ' (δ)st ◦

∨
λ∈Σn

(lλ)
st ◦ (∆)st

By checking on each C-summand, we see that the effect on F0 of the zig-zag δ ◦
∨

λ∈Σn

lλ ◦∆

is the same as the zig-zag Φ ◦ �:

F0(C; (D(M1, . . . ,Mn))C)⇒
∏
σ∈Σn

F0(C×n;Dσ(M1, . . . ,Mn)C×n)

'←−
∨
σ∈Σn

F0(C×n;Dσ(M1, . . . ,Mn)C×n)

⇒
∨
σ∈Σn

F0(C×n;
⊕∗

(D(M1, . . . ,Mn))C×n)

δ−→ F0(C×n;
⊕∗

(D(M1, . . . ,Mn))C×n)

→ F0(C;D(M1, . . . ,Mn)C)

Therefore (d1 ◦ ρC)st ' (Φ ◦ �)st by 3.2.11. The stabilization of of d1 ◦ ρC is easily analyzed.

Indeed, consider the following diagram of natural transformations of functors SP → S-

BiMod:

F0(C;D(M1, . . . ,Mn)C) F0(S[2]C;D(M1, . . . ,Mn)S[2]C) F0(C;D(M1, . . . ,Mn)C)
×2

F0(C;D(M1, . . . ,Mn)C)
2∨
s=1

F0(C;D(M1, . . . ,Mn)C)

ρC

d1

(d2,d0)

'

δ

Consider the composite (d2, d0) ◦ ρC. Projection onto the second factor gives a map, which

on the ith-smash factor of the C-summand, is the composite d0 ◦ (pi)
∗ ◦ (e ⊗ idMi

)∗ ◦ ŝ1 :

H̃omMod-R(C,C ⊗
R
Mi) → H̃omMod-R(C,C ⊗

R
Mi). Doing horizontal composition with the

first pair of natural transformations

C S[2]C C C S[2]C C

H

s1

⇒

pi
d0

s1

H

⇒

e
d0

shows that this map is the zero map (similar to the case of ρλ). The first projection, on the
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ith-smash factor of the C-summand, is the composite d2 ◦ (pi)
∗ ◦ (e⊗ idMi

)∗ ◦ ŝ1 and we have

d2 ◦ (pi)
∗ ◦ (e⊗ idMi

)∗ ◦ ŝ1 =(d2 ◦h pi)∗ ◦ d2 ◦ (e⊗ idMi
)∗ ◦ ŝ1

=(d2 ◦h pi)∗ ◦ (d2 ◦h e⊗ idMi
)∗ ◦ d2 ◦ ŝ1

=(d2 ◦h pi)∗ ◦ (d2 ◦h e⊗ idMi
)∗ ◦ idC

= id

by inspection. Therefore the map (d2, d0) ◦ ρC factors through as

F0(C;D(M1, . . . ,Mn)C)
q−→

2∨
s=1

F0(C;D(M1, . . . ,Mn)C)

such that δ ◦ q = id. Using 3.2.11 again, since the above square commutes in the homotopy

category after stabilization, we see that (Φ ◦ �)st ' (d1 ◦ ρC)st ' (id)st ' id.

Remark By 3.3.3, we have, when M1 = · · · = Mn = M ,

(F (−; (D(M1, . . . ,Mn))(−)))
st 'fΣn (F (S∆(−);DΣn(M1, . . . ,Mn)S∆(−)))

st

at P . Thus, we will now concentrate on analyzing the latter in much the same manner as

was done in the algebraic case.

Definition 3.3.4 Let R,M1, . . . ,Mn and Sn ⊂ Σn be as before. We can define

DSn(M1, . . . ,Mn) :=
∨
σ∈Sn

D1n×σ(M1, . . . ,Mn)

as a spectral local coefficient system (at P×n) as before, with the canonical inclusion

DSn(M1, . . . ,Mn) ↪→ DΣn(M1, . . . ,Mn)

inducing an injective natural transformation of functors SP×n → S-BiMod:

F (−;DSn(M1, . . . ,Mn)(−))⇒ F (−;DΣn(M1, . . . ,Mn)(−))

Again we have that for each τ ∈ Σn the maps τ∗ descend to make the aforementioned

inclusion Σn-equivariant when M1 = · · · = Mn,.
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Proposition 3.3.5 The natural transformation of functors SP → S-BiMod

F (−;DSn(M1, . . . ,Mn)(−))⇒ F (−;DΣn(M1, . . . ,Mn)(−))

is a weak equivalence after stabilization.

Proof. The proof is identical to the algebraic one. First, by 3.2.8 we need only case about

the stabilization of the degree 0-simplices. Second, by 3.2.13 we can equivalently show that

for σ ∈ Σn \ Sn, F0(−;Dσ(M1, . . . ,Mn)(−)) is stably contractible. If σ ∈ Σn \ Sn, then there

exist distinct τ, τ ′ ∈ Σn, disjoint cycles of shorter length, such that σ = τ · τ ′. We then have

an exact natural isomorphism A : P×n ∼= P×s × P×s′ such that A ◦ σ = idP×s×P×s′ which

extends to a natural isomorphism SA : SP×n ∼= SP×s×SP×s′ . We have a natural isomorphism

of functors

F (−;Dσ(M1, . . . ,Mn)(−)) ∼= F (−; π∗1(D1s(Ma1 , . . . ,Mas)) ∧ π∗2(D1s′ (Mb1 , . . . ,Mbs′
))

(−)
)

where u = {a1, . . . , as} and u′ = {b1, . . . , bs′} defined analogously, and πi are the projections

as before. By 3.2.10 and 3.2.12 we get our desired conclusion.

Remark Let ω = (n . . . 2 1) ∈ Σn be as before. When M1 = · · · = Mn the local coeffi-

cient system Dω(M1, . . . ,Mn) acquires a Cn-action, and so F (C;Dω(M1, . . . ,Mn)C) becomes

a simplicial Cn-module (recall from Appendix E.2.4 that Cn is the FSP with associated

spectrum Cn ∼= Σ∞+Cn). The Cn-equivariant inclusion map F (C;Dω(M1, . . . ,Mn)C) ↪→
F (C;DSn(M1, . . . ,Mn)C) and the restriction/extension-of-scalars adjunction gives a map of

(right) �n-modules

F (C; (Dω(M1, . . . ,Mn))C) ∧Cn �n
ν−→ F (C;DSn(M1, . . . ,Mn)C)

which is natural in C ∈ SP×n . The following claim is easily checked:

Claim 3.3.6 The map of right �n-modules ν is an isomorphism.

Combining this with 3.2.13 it follows that we have a Σn-isomorphism of the associated

stabilizations:

(
F (−; (Dω(M1, . . . ,Mn))(−))

)st
(C) ∧Cn �n '

(
F (−; (DSn(M1, . . . ,Mn))(−))

)st
(C)

Altogether, in the case when M1 = · · · = Mn, we get the following chain of feeble Σn-weak
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equivalences:

(
F (−; (D(M1, . . . ,Mn))(−))

)st
(P) '

(
F (−; (DΣn(M1, . . . ,Mn))(−))

)st
(P×n)

'
(
F (−; (DSn(M1, . . . ,Mn))(−))

)st
(P×n)

'
(
F (−; (Dω(M1, . . . ,Mn))(−))

)st
(P×n) ∧Cn �n

Notation The spectral homology of P×n with coefficients in Dω(M1, . . . ,Mn) is weakly

equivalent to a known functor. Shifting momentarily to the notation of [34], let P (i) for

i = 1, . . . , n be the P-bimodules (=P̃-bimodules in our notation) given, for C,C ′ ∈ P , by

P (i)C,C′ := H̃omMod-R(C,C ′ ⊗
R
Mi)

We have a zig-zig of weak equivalences

F0(P×n;Dω(M1, . . . ,Mn)) ' Un
0 (P ;P (1), . . . , P (n))

which is Cn-equivariant when M1 = · · · = Mn. Indeed, the zig-zag of equivalences is given

by Shipley’s detection functor D (see Theorem 3.1.6 [58]). We thus have:

(
F (−; (Dω(M1, . . . ,Mn))(−))

)st
(P×n) '

(
F0(−;Dω(M1, . . . ,Mn)(−))

)st
(P×n)

' hocolim
k

Ω(k)
(
dUn

0

(
S(k)
• P ;S(k)

• P (1), . . . , S(k)
• P (n)

))
' hocolim

k
Ω(k)

(
dUn

(
S(k)
• P ;S(k)

• P (1), . . . , S(k)
• P (n)

))
' Un(P ;P (1), . . . , P (n))

where the second and third weak equivalences come from Corollary 6.17 and Proposition

6.14 in [34], respectively. When M1 = · · · = Mn = M , we have a Cn-weak equivalence

Un(P ;P (1), . . . , P (n)) ' Un(R;M) by Proposition 6.13 [34].

We have shown:

Theorem 3.3.7 Let R be an associative and unital ring, M an R-bimodule, and n ≥ 1.

There is an equivalence of �n-bimodules

(
F (−; (D(M, . . . ,M))(−))

)st
(P) ' Un(R;M) ∧Cn �n
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CHAPTER 4

K-THEORY WITH COEFFICIENTS

In this chapter we reinterpret the F -construction used in the definition of spectral homology

to incorporate “twists” by endofunctors of spectra. After reviewing the case of homogeneous

functors in the sense of Goodwillie, we recast the main results of [34] as results about stabi-

lization of towers. Finally, we discuss an approach to tackle the case of general polynomial

functors.

4.1 Endofunctor Coefficients

Let C be a small category and let D : Cop×C → S-BiMod be a (globally stable) bi-functor. If

F ∈ Funh(S-BiMod,S-BiMod) (see Appendix C.3 for details) we may form a new (globally

stable) bi-functor: (C,C ′) ∈ Cop × C 7→ F(D(C,C ′)). We can thus form a simplicial FST,

denoted F∗(C;D;F), just as in 3.2.1 with p-simplices:

Fp(C;D;F) =
∨
−→
C∈NpC

F(D(C0, Cp))

and face and degeneracies given just as before but with F acting on the D(α1, idCp) and

D(idC0 , αp). The geometric realization is then simply the spectral homology of C with co-

efficients in F ◦ D. Similarly, if E is an exact category and D is a spectral local coefficient

system at E , the composite F ◦ D is as well. Some known coefficient systems arise in this

manner:

Example 4.1.1 Let R, M , and P be as in 2.1.7. Let C ∈ SP , and consider the spectral

local coefficient system at P from 3.2.5. Let F ∈ Funh(S-BiMod,S-BiMod) be the n-fold

(derived) smash product:

X 7→ X∧Sn =

n−times︷ ︸︸ ︷
X ∧ · · · ∧X
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Then we have F ◦D(M) ∼= D(

n−times︷ ︸︸ ︷
M, . . . ,M) as spectral local coefficient systems at P . Further-

more, reordering smash factors makes F a (right) Σn-object in Funh(S-BiMod,S-BiMod),

and thus gives F ◦ D(M) an induced (right) Σn-action which agrees with 3.2.6, under the

previous isomorphism.

Notation If C is a “spectrally-enriched” category (given by a fixed FSP C over C) we will

write F (C;F) in place of F (C;C;F) when no confusion will arise (see 3.2.4). In particular, if

E is an exact category with the natural Eilenberg-Maclane FSP over it (Ẽ = H̃om), F (E ;F)

will denote F (E ; H̃om;F). On the other hand, when using a specified bimodule D over the

FSP C, we denote that by F (C;D;F).

Definition 4.1.2 Let E be an exact category and F ∈ Funh(S-BiMod,S-BiMod). The

K-theory of E with coefficients in F, denoted K(E ;F), is the S-bimodule given by the stabi-

lization:

K(E ;F) :=
(
F (−;F)

)st
(E)

Notation In accordance with the previous notation, if we wish to work with a different choice

of bimodule D over the FSP H̃om, we will use K(E ;D;F) :=
(
F (−;D;F)

)st
(E).

Observation The definition of K(E ;F) is functorial in both arguments. Indeed, if η : F→ F′

is a natural transformation in Funh(S-BiMod,S-BiMod) it induces a morphism of spec-

tral local coefficient systems F ◦ Ẽ → F′ ◦ Ẽ and therefore a map on spectral homolo-

gies, K(E ;F) → K(E ;F′). Also, if T : E → E ′ is an exact functor, the spectral lo-

cal coefficient system F ◦ Ẽ induces a natural transformation of functors SE → S-BiMod,

F (−; (F ◦ ˜Hom)(−)) ⇒ F (ST (−); (F ◦ ˜Hom)ST (−)). Stabilizing and evaluating at E , we get

our desired map K(E ;F)→ K(E ′;F).

Remark The definition uses the stabilization of F (−;F) as a functor SE → S-BiMod. There-

fore by 3.2.8, K(E ;F) can just as well be defined using
(
F0(−;F)

)st
(E) instead. However, we

will have occasion to use non-reduced homotopy functors F as our endofunctor coefficients.

In such cases, the inclusion by degeneracies δ : F0 ↪→ F need not be an equivalence, and so

we define:

K̃(E ;F) := hocofiber (K(0;F)→ K(E ;F))

induced from the unique exact functor 0 → E . Since F∗(0;F) is the constant simplicial

S-bimodule F0(0;F) = F (∗), we see that K̃(E ;F) ∼= K(E ;F) if F is reduced.

Several results from 3.2 apply directly. For example, if η : F → F′ is a point-wise weak

equivalence, then by 3.2.11 we get a weak equivalence K(E ;F)
'−→ K(E ;F′). Additionally, if
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F is given by a homotopy colimit of functors Fi (i ∈ I, a small category), then by 3.2.13 we

have:

K(E ;F) ' hocolim
i∈I

K(E ;Fi)

The name is justified from the following example:

Example 4.1.3 Let E be an exact category, and F = cE : S-BiMod → S-BiMod the (non-

reduced) constant functor at a non-trivial S-bimodule E. Then:

K̃(E ; cE) = hocofiber (K(0; cE)→ K(E ; cE))

= hocofiber
(

hocolim
n

Ω(n)
(
dF
(
S(n)
• (0); cE

))
→ hocolim

n
Ω(n)

(
dF
(
S(n)
• (E); cE

)))
∼= hocolim

n

(
hocofiber

(
Ω(n)

(
dF
(
S(n)
• (0); cE

))
→ Ω(n)

(
dF
(
S(n)
• (E); cE

))))
(?) ' hocolim

n

(
Ω(n)

(
hocofiber

(
dF
(
S(n)
• (0); cE

)
→ dF

(
S(n)
• (E); cE

))))
= hocolim

n

(
Ω(n)

(
hocofiber

(
cE → dF

(
S(n)
• (E); cE

))))

Where (?) uses the fact that loops commute with cofiber sequences in a stable model category.

The map cE → dF
(
S

(n)
• (E); cE

)
is the geometric realization of a map which is given on p-

simplices by the inclusion of E into the (0← 0← · · · ← 0)-summand of Np(S[p]S[p] . . . S[p]E).

Letting C = S[p]S[p] . . . S[p]E , its homotopy cofiber then is weakly equivalent to∧
−→
C∈NpC\(0←···←0)

E

Now, using the sSets∗-tensored structure of S-BiMod we get:∧
−→
C∈NpC\(0←···←0)

E ∼=
∧

−→
C∈NpC\(0←···←0)

(S ∧ E)

∼=
( ∧
−→
C∈NpC\(0←···←0)

S
)
∧ E

∼=
( ∧
−→
C∈NpC\(0←···←0)

Σ∞S0
)
∧ E

∼= Σ∞

 ∧
−→
C∈NpC\(0←···←0)

S0

 ∧ E
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∼= Σ∞(NpC) ∧ E
∼= NpC ∧ E

And so,

K̃(E ; cE) ' hocolim
n

(
Ω(n)

(
|[p] 7→ NpC ∧ E|

))
Since the functor Ext→ S-BiMod given by E 7→ N(E) ∧E is reduced, we can approximate

it by 0-simplices using3.2.8. Therefore K̃(E ; cE) is weakly equivalent to the stabilization of

the functor E 7→ Obj(E) ∧ E. By 3.1.3, we conclude that

K̃(E ; cE) ' K(E) ∧ E

that is, the E-homology of the K-theory spectrum of E . In particular, we recover classical

K-theory, K̃(E ; cS) ' K(E).

Example 4.1.4 Let E be an exact category, and F = Id ∈ Funh(S-BiMod,S-BiMod) the

identity functor. Then:

K(E ; Id) =
(
F (−; Id)

)st
(E)

'←−
(
F0(−; Id)

)st
(E) = Homst(E)

using the notation of 3.1.4. Therefore, K(E ; Id) ' THH(E).

Example 4.1.5 Consider the functor F = lE ∈ Funh(S-BiMod,S-BiMod) given by smashing

with a fixed S-bimodule E, that is, X 7→ X ∧ E. Then replacing E by a good S-bimodule

E ′, and filtering E ′ by its finite skeleta, we see that

K(E ; lE) ' K(E ; lE′)

' K(E ; lhocolim
n

En)

∼= K(E ; hocolim
n

lEn)

' hocolim
n

K(E ; lEn)

= hocolim
n

(
F (−; lEn)

)st
(E)

'←− hocolim
n

(
F0(−; lEn)

)st
(E)

' hocolim
n

(
F0(−; Id) ∧ En

)st
(E)

' hocolim
n

(
F0(−; Id)

)st
(E) ∧ En
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' hocolim
n

THH(E) ∧ En

Thus, generalizing the previous example, we have K(E ; lE) ' THH(E) ∧ E, that is, the

E-homology of the topological Hochschild homology of E .

The previous example is characteristic of a general phenomenon whose proof is identical:

Lemma 4.1.6 Let E be an exact category, F ∈ Funh(S-BiMod,S-BiMod), and E a good

S-bimodule. Let E ∧ F be the pointed reduced simplicial homotopy functor given by X 7→
E ∧ F(X). Then

K(E ;E ∧ F) ' E ∧K(E ;F)

Additionally, if F is a Σn-object in Funh(S-BiMod,S-BiMod), then we can consider the asso-

ciated homotopy orbits functor FhΣn ∈ Funh(S-BiMod,S-BiMod). Recall that we construct

homotopy orbits by viewing the Σn-object F as a functor from the groupoid Σ̃n (see Remark

following Appendix A.1.7) into Funh(S-BiMod,S-BiMod) and applying the homotopy col-

imit coend formula from Appendix B.2. Since homotopy pullbacks commute with homotopy

orbits (Theorem 1 [41]), we get:

Lemma 4.1.7 Let E be an exact category and F a Σn-object in Funh(S-BiMod,S-BiMod).

Then

K(E ;FhΣn) ' K(E ;F)hΣn

Notation Let l be a positive integer, and P∞(Z/lZ) be the lth-Moore spectrum. From 4.1.3

we see that, if E is an exact category, K̃(E ; cP∞(Z/lZ)) is weakly equivalent to the K-theory

of E with coefficients “mod l” as defined in Chapter IV, §2 [61].

Lastly, the cotensoring of S-bimodules with sSets∗ (last observation of Appendix E.3) in-

teracts well with stabilization:

Lemma 4.1.8 Let Y ∈ sSets∗
fin be s-connected and F ∈ Funh(S-BiMod,S-BiMod) take

s-connected values. If E is an exact category, then

K(E ; Map(Y,F)) ' Map
(
Y,K(E ;F)

)
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Proof.

K(E ; Map(Y,F)) =
(
F (−; Map(Y,F))

)st
(E)

'←−
(
F0(−; Map(Y,F))

)st
(E)

=

 ∨
C∈Obj(−)

Map(Y,F(H̃om(−)(C,C)))

st

(E)

(?)
'−→

Map

Y, ∨
C∈Obj(−)

F(H̃om(−)(C,C))

st

(E)

= hocolim
n

Ω(n)

dMap

Y, ∨
C∈Obj(S

(n)
• E)

F(H̃om
S

(n)
• E

(C,C))


(†) ' hocolim

n
Ω(n)

Map

Y, d ∨
C∈Obj(S

(n)
• E)

F(H̃om
S

(n)
• E

(C,C))


∼= hocolim

n
Map

Y,Ω(n)

d
∨

C∈Obj(S
(n)
• E)

F(H̃om
S

(n)
• E

(C,C))


' Map

Y, hocolim
n

Ω(n)

d
∨

C∈Obj(S
(n)
• E)

F(H̃om
S

(n)
• E

(C,C))


= Map

(
Y,
(
F0(−;F)

)st
(E)
)

Here (?) is the map induced from the canonical maps out of the coproduct, which is a weak

equivalence by the standard trick of Boardman to reduce to finite wedges (see Proposition

3.11 and 3.14 [1]). On the other hand, (†) comes from iterating the π∗-Kan condition (see

the remarks following Corollary A.6.0.4 [14]).

4.2 The Lindenstrauss-McCarthy Tower

Let F ∈ Funh(S-BiMod,S-BiMod). Recall that the theory of calculus of homotopy functors,

as developed by Goodwillie ([22], [25], [26]), constructs a sequence of reduced homotopy

functors, P0F, P1F, . . . , PnF, . . . fitting into a tower under F:
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F

. . . Pn+1F PnF Pn−1F . . .

such that each PnF is n-excissive, and that for X ∈ S-BiMod suitably connected, we have

F(X) ' holim
n

PnF(X). Though in general identifying PnF is difficult, McCarthy gives in

[47] a model:

PnF(−) ' hocolim
k

MapMn
((Sk)∧∗, (ĉr∗F)(Sk ∧ −))

Additionally, the layers of the tower, DnF := hofiber (PnF → Pn−1F), are obtained in this

model from restriction to subcategories, and we have

DnF(−) '
(

hocolim
k

Map((Sk)∧n, (ĉrnF)(Sk ∧ −))
)
hΣn

when F is finitary.

Remark The model we use from [47] for general PnF was inspired by Arone’s work on the

Goodwillie Taylor tower of Σ∞Ω∞. The case of Σ∞Ω∞ follows from work in [4] though it is

not directly mentioned there (for a published account see Corollary 1.3 and Section 3 [2]).

If F is n-excissive, then ĉrnF is n-multilinear (Lemma 4.1 [47]), and therefore there is an

S-bimodule, ∂nF, with Σn-action, so that

ĉrnF(X) 'fΣn ∂nF ∧X∧n

Hence, if F is degree n:

DnF(−) '
(

hocolim
k

Map((Sk)n, (ĉrnF)(Sk ∧ −))
)
hΣn

'
(

hocolim
k

Map((Sk)∧n, ∂nF ∧ (Sk ∧ −)∧n)
)
hΣn

'
(

hocolim
k

Map((Sk)∧n, (Sk)∧n ∧ ∂nF ∧ (−)∧n)
)
hΣn

When F is homogeneous of degree n, we have F ' DnF.

Proposition 4.2.1 Let E be an exact category and F ∈ Funh(S-BiMod,S-BiMod) a homo-

geneous degree n functor. Then

K(E ;F) ' (∂nF ∧K (E ; (−)∧n))hΣn
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Proof. Using the lemmas from the previous section, we can reduce to:

K(E ;F) ' K(E ;DnF)

' K

(
E ;
(

hocolim
k

Map((Sk)∧n, (Sk)∧n ∧ ∂nF ∧ (−)∧n)
)
hΣn

)
'
(
K
(
E ; hocolim

k
Map((Sk)∧n, (Sk)∧n ∧ ∂nF ∧ (−)∧n)

))
hΣn

'
(

hocolim
k

K
(
E ; Map((Sk)∧n, (Sk)∧n ∧ ∂nF ∧ (−)∧n)

))
hΣn

'
(

hocolim
k

Map
(
(Sk)∧n, K

(
E ; (Sk)∧n ∧ ∂nF ∧ (−)∧n

)))
hΣn

'
(

hocolim
k

Map
(
(Sk)∧n, (Sk)∧n ∧ ∂nF ∧K (E ; (−)∧n)

))
hΣn

and we conclude using the Freudenthal suspension theorem.

Remark If R is a ring and P the category of finitely generated projective right R-modules,

K(P , (−)∧n) is the spectral homology of P with coefficients in the bi-functor D(

n−times︷ ︸︸ ︷
R, . . . , R)

by 4.1.1. This was computed in 3.3.7. Choosing the bimodule D(M) (over the FSP P̃) over

P , we rewrite that result in the current notation:

Theorem 4.2.2 Let R be an associative and unital ring, M an R-bimodule, and n ≥ 1.

There is a feeble equivalence of �n-bimodules

K(P ;D(M); (−)∧n) 'fΣn U
n(R;M) ∧Cn �n

The following innocuous-looking lemma is actually very powerful:

Lemma 4.2.3 Let F� F′ � F′′ be a homotopy fiber sequence in Funh(S-BiMod,S-BiMod).

Then for each exact category E we have a natural homotopy fiber sequence in S-BiMod

K(E ;F)� K(E ;F′)� K(E ;F′′)

Proof. Since S-BiMod is stable, F� F′ � F′′ is a homotopy fiber sequence if and only if it

is a homotopy cofiber sequence. We have already observed by 3.2.13 that K(E ;−) preserves

homotopy cofiber sequences, and so K(E ;F)� K(E ;F′)� K(E ;F′′) is a homotopy cofiber

sequence, whence it is a homotopy fiber sequence also.
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Observation We have already encountered a homotopy fiber sequence of endofunctors, mainly

DnF� PnF� Pn−1F, therefore using 4.2.1 we get homotopy fiber sequences:

K(E ;DnF)�K(E ;PnF)� K(E ;Pn−1F)

(∂nF ∧K (E ; (−)∧n))hΣn
�K(E ;PnF)� K(E ;Pn−1F)

Applying K(E ;−) to the Goodwillie Taylor tower, we obtain:

K(E ;F)

. . . K(E ;Pn+1F) K(E ;PnF) K(E ;Pn−1F) . . .

(∂n+1F ∧K (E ; (−)∧n+1))hΣn+1
(∂nF ∧K (E ; (−)∧n))hΣn

(∂n−1F ∧K (E ; (−)∧n−1))hΣn−1

Notation Let R and P be as before, and M be an R-bimodule. We let End(R;M) be the

category with:

• Obj(End(R;M)) = {(P, α) | P ∈ P , α ∈ HomMod-R(P, P ⊗
R
M)}

• End(R;M)
(
(P, α), (P ′, α′)

)
= {f | f ∈ HomMod-R(P, P ′) and α′ ◦ f = (f ⊗

R
idP ) ◦ α}

This is an additive category, and inherits the structure of an exact category by the (a

posteriori) exact projection functor π : End(R;M)→ P , given by (P, α) 7→ P .

Example 4.2.4 Let F ∈ Funh(S-BiMod,S-BiMod) be the functor Σ∞Ω∞. The K-theory

with coefficientsK(P ;D(M); Σ∞Ω∞) is nothing more than the relative version of End(R;M).

Indeed, let P ∈ P . Then:

Σ∞Ω∞(H̃omMod-R(P, P ⊗
R
M)) 'Σ∞(HomMod-R(P, P ⊗

R
M))

∼=HomMod-R(P, P ⊗
R
M) ∧ S

∼=
∨

HomMod-R(P,P⊗
R
M)\0

S
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and so∨
P∈Obj(P)

Σ∞Ω∞(H̃omMod-R(P, P ⊗
R
M)) '

∨
P∈Obj(P)

∨
HomMod-R(P,P⊗

R
M)\0

S

∼=
∨

(P,α)∈End(R;M)\(P,0)

S

∼= hocofiber

 ∨
(P,0)∈End(R;M)

S→
∨

(P,α)∈End(R;M)

S


= hocofiber

 ∨
P∈Obj(P)

S→
∨

(P,α)∈End(R;M)

S



By analyzing the total homotopy cofiber of the diagram

S S

∨
P∈Obj(P) S

∨
(P,α)∈End(R;M) S

and the fact that homotopy colimits commute, we conclude that:

K(P ;D(M); Σ∞Ω∞) ' hocofiber
(
K̃(P ; cS)→ K̃(P ; Σ∞Ω∞)

)
' hocofiber

(
K(P)→ K(End(R;M))

)
' K̃(End(R;M))

So, using the notation of [34], we have that K(P ;D(M); Σ∞Ω∞) ' K̃(R;M), the relative

K-theory of endomorphisms of R parametrized by M . We now analyze the tower under

K(P ;D(M); Σ∞Ω∞). Directly from the definitions in Appendix D.2 we get that

ĉrn(Σ∞Ω∞)(X) 'fΣn (Σ∞Ω∞(X))∧n

Therefore ∂n(Σ∞Ω∞) ' S for all n. The layers are completely understood. Indeed, by the
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previous results we know the layers to be:

(∂n(Σ∞Ω∞) ∧K (P ;D(M); (−)∧n))hΣn

and so by Chapter 3 are:

(Un(R;M) ∧Cn �n)hΣn

The homotopy orbits of an induced representation collapse down to the homotopy orbits of

the restriction, and so we conclude that the layers look like:

Un(R;M)hCn

Now, viewing K(P ;D(−); Σ∞Ω∞) as a homotopy functor of bimodules Mod-R→ S-BiMod,

we seek to compare K(P ;D(M);Pn(Σ∞Ω∞) with Pn
(
K(P ;D(−); Σ∞Ω∞)

)
(M). To do so

we introduce some auxiliary subcategories.

Notation Let m, k ∈ Surj (see definitions in Appendix D.3) be such that k|m. Let φm,k :

k � m be the surjection given by r = kq+ t+ 1 ∈ m 7→ t+ 1, where q, t are unique integers

with 0 ≤ q < m
k

and 0 ≤ t < k. We let Cyc be the wide subcategory of Surj generated by the

cyclic automorphisms and the φ−,?-maps. That is, those evenly-covered surjections defining

group homomorphisms of the associated cyclic groups (after giving n the cyclic abelian group

structure of Z/nZ):

Cyc(m, k) =

{
0 if k - m
τ ◦ φm,k : m� k, such that τ ∈ Ck if k|m

Note that φm,m = idm and 1 is final. Denote its opposite category by E := Cycop. Similarly,

we set Cycn to be the full subcategory of Cyc with objects of size ≤ n, and denote En :=

Cycn
op.

Remark For any endofunctor F ∈ Funh(S-BiMod,S-BiMod), the McCarthy model for Pn

gives a map, induced by restriction of subcategories En ⊂Mn (see Appendix D.5):

PnF(−) ' hocolim
k

MapMn
((Sk)∧∗, (ĉr∗F)(Sk ∧ −))

∼= hocolim
k

lim
tw(Mn)

Homtw(Mn)((S
k)∧∗, (ĉr∗F)(Sk ∧ −))
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→ hocolim
k

lim
tw(En)

(
Homtw(Mn)((S

k)∧∗, (ĉr∗F)(Sk ∧ −))
)
|tw(En)

= hocolim
k

lim
tw(En)

Homtw(En)((S
k)∧∗, (ĉr∗F)(Sk ∧ −))

∼= hocolim
k

MapEn((Sk)∧∗, (ĉr∗F)(Sk ∧ −))

In particular, in the case of F = Σ∞Ω∞, we have a comparison map, denoted τ ,

Pn(Σ∞Ω∞)(−)→ hocolim
k

MapEn((Sk)∧∗, (Σ∞Ω∞(Sk ∧ −))∧∗)

Note also that from the commutative diagram of categories:

En−1 En

Mn−1 Mn

we get a commutative diagram of S-bimodules:

hocolim
k

MapMn
((Sk)∧∗, (ĉr∗F)(Sk ∧ −)) hocolim

k
MapEn((Sk)∧∗, (ĉr∗F)(Sk ∧ −))

hocolim
k

MapMn−1
((Sk)∧∗, (ĉr∗F)(Sk ∧ −)) hocolim

k
MapEn−1

((Sk)∧∗, (ĉr∗F)(Sk ∧ −))

and so, induced maps:

PnF(−) hocolim
k

MapEn((Sk)∧∗, (ĉr∗F)(Sk ∧ −))

Pn−1F(−) hocolim
k

MapEn((Sk)∧∗, (ĉr∗F)(Sk ∧ −))

Fact Let Y ∈ S-BiMod. Then Sk ∧ Y is a k-connected S-bimodule. From Corollary 1.3

[2], we get that the counit map Σ∞Ω∞(Sk ∧ Y ) → Sk ∧ Y is (2k + 2)-connected and so its

∗-fold smash, (Σ∞Ω∞(Sk ∧ Y ))∧∗ → (Sk ∧ Y )∧∗, is (2k ∗+3 ∗−1)-connected. Therefore, the

associated map

MapEn((Sk)∧∗, (Σ∞Ω∞(Sk ∧ Y ))∧∗)→ MapEn((Sk)∧∗, (Sk ∧ Y )∧∗)
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is (k + 3)-connected (the connectivity of the smallest smash product appearing, namely

∗ = 1). Since the connectivity is linear in k, taking homotopy colimits over k we get a weak

equivalence:

hocolim
k

MapEn((Sk)∧∗, (Σ∞Ω∞(Sk ∧ Y ))∧∗)
'−→ hocolim

k
MapEn((Sk)∧∗, (Sk ∧ Y )∧∗)

From the previous fact and remark, we have a comparison map, also denoted τ :

Pn(Σ∞Ω∞)(−)→ hocolim
k

MapEn((Sk)∧∗, (Sk∧−)∧∗) ∼= hocolim
k

MapEn((Sk)∧∗, (Sk)∧∗∧(−)∧∗)

which is natural in the restrictions from n to n− 1. For K(P ;D(M);Pn(Σ∞Ω∞)), taking a

coproduct of τ ’s we get a sequence of maps:

∨
P∈Obj(P)

Pn(Σ∞Ω∞)(H̃omMod-R(P, P ⊗
R
M))

τ−→
∨

P∈Obj(P)

hocolim
k

MapEn((Sk)∧∗, (Sk)∧∗ ∧ (H̃omMod-R(P, P ⊗
R
M))∧∗)

∼= hocolim
k

∨
P∈Obj(P)

MapEn((Sk)∧∗, (Sk)∧∗ ∧ (H̃omMod-R(P, P ⊗
R
M))∧∗)

→ hocolim
k

∏
P∈Obj(P)

MapEn((Sk)∧∗, (Sk)∧∗ ∧ (H̃omMod-R(P, P ⊗
R
M))∧∗)

∼= hocolim
k

MapEn((Sk)∧∗,
∏

P∈Obj(P)

(Sk)∧∗ ∧ (H̃omMod-R(P, P ⊗
R
M))∧∗)

← hocolim
k

MapEn((Sk)∧∗,
∨

P∈Obj(P)

(Sk)∧∗ ∧ (H̃omMod-R(P, P ⊗
R
M))∧∗)

∼= hocolim
k

MapEn((Sk)∧∗, (Sk)∧∗ ∧
∨

P∈Obj(P)

∗∧
(H̃omMod-R(P, P ⊗

R
M)))

We also have a canonical inclusion given by including “diagonal” elements:

∨
P∈Obj(P)

∗∧
(H̃omMod-R(P, P ⊗

R
M)) ↪→

∨
(P1,...,P∗)∈Obj(P×∗)

H̃omMod-R(P1, P∗⊗
R
M)∧H̃omMod-R(P2, P1⊗

R
M)∧· · ·∧H̃omMod-R(P∗, P∗−1⊗

R
M)
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However, recall that the latter is by definition F0(P×∗;Dω(M, . . . ,M)) and so is connected

by a zig-zag of weak equivalences to U∗0 (P ;P (1), . . . , P (n)) (using the notation from the end

of Chapter 3). Therefore we get a generalized map, labeled
ג
99K, from∨

P∈Obj(P)

Pn(Σ∞Ω∞)(H̃omMod-R(P, P ⊗
R
M))

to

hocolim
k

MapEn((Sk)∧∗, (Sk)∧∗ ∧ U∗0 (P ;P (1), . . . , P (n)))

Now, each of the morphisms involved in these generalized maps are natural in SP , and so

taking stabilizations we get a generalized map:

K(P ;D(M);Pn(Σ∞Ω∞))

:=
(
F (−;D(M);Pn(Σ∞Ω∞))

)st
(P)

'←−↩
(
F0(−;D(M);Pn(Σ∞Ω∞))

)st
(P)

:= hocolim
t

Ω(t)

 ∨
−→
P ∈Obj(S

(t)
• P)

Pn(Σ∞Ω∞)(H̃om
S

(t)
• Mod-R

(
−→
P ,
−→
P ⊗

R
M))


ג
99K hocolim

t
Ω(t)

(
hocolim

k
MapEn((Sk)∧∗, (Sk)∧∗ ∧ U∗0 (P ;P (1), . . . , P (n)))

)
(?) ' hocolim

k
hocolim

t
Ω(t)

(
MapEn((Sk)∧∗, (Sk)∧∗ ∧ U∗0 (P ;P (1), . . . , P (n)))

)

where in (?) we have used the fact that homotopy colimits commute with homotopy colimits

and that finite homotopy limits (like the ones defining Ω(t)) commute with directed homotopy

colimits. Similarly, rewriting our mapping diagram as an inverse limit over the finite twisted

arrow category, we obtain a weak equivalence:

hocolim
t

Ω(t)
(
MapEl((S

k)∧∗, (Sk)∧∗ ∧ U∗0 (P ;P (1), . . . , P (n)))
)

' MapEl((S
k)∧∗, (Sk)∧∗ ∧ hocolim

t
Ω(t) (U∗0 (P ;P (1), . . . , P (n))))

and the latter is weakly equivalent to U∗(R;M) again by the work of [34] (compare with the

remarks immediately preceding Theorem 3.3.7). So our generalized map is:

K(P ;D(M);Pn(Σ∞Ω∞))
ג
99K hocolim

k
MapEn((Sk)∧∗, (Sk)∧∗ ∧ U∗(R;M))
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and is natural with respect to the restriction from n to n− 1. There is a canonical map into

the homotopy colimit system

MapEn((S0)∧∗, (S0)∧∗ ∧ U∗(R;M))→ hocolim
k

MapEn((Sk)∧∗, (Sk)∧∗ ∧ U∗(R;M))

Let N×≤n be the partially ordered set {1, . . . , n} with l′ < l if and only if l|l′. Then a quick

check shows MapEn((S0)∧∗, (S0)∧∗ ∧U∗(R;M)) ∼= lim
l∈N×≤n

(U l(R;M)Cl). Recall from Definition

4.6 [34] that Wn(R;M) := holim
l∈N×≤n

(U l(R;M)Cl). Composing with the canonical map from a

limit into its homotopy limit we get a generalized map:

K(P ;D(M);Pn(Σ∞Ω∞))
ג
99K Wn(R;M)

which we also denote by ג and which is natural with respect to restriction from n to n− 1.

That is, we have diagrams:

K(P ;D(M);Pn(Σ∞Ω∞)) Wn(R;M)

K(P ;D(M);Pn−1(Σ∞Ω∞)) Wn−1(R;M)

ג

ג

Both homotopy fibers have been analyzed previously. Up to weak equivalence, the homotopy

fiber of the vertical map on the left is

(∂n(Σ∞Ω∞) ∧K (P ;D(M); (−)∧n))hΣn

while the homotopy fiber of the vertical map on the right is Un(R;M)hCn (see Corollary 5.9

[34]). The induced map on homotopy fibers:

(∂n(Σ∞Ω∞) ∧K (P ;D(M); (−)∧n))hΣn

ג̂
99K Un(R;M)hCn

is the map induced on homotopy orbits by the stabilization of the map on 0-simplices given

by the diagonal inclusion:

F0(P ;D(M, . . . ,M))→ F0(P×n;Dω(M, . . . ,M))

This is precisely the � map from Chapter 3, which by virtue of Theorem 3.3.7 is an equiva-

lence. Therefore the square
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K(P ;D(M);Pn(Σ∞Ω∞)) Wn(R;M)

K(P ;D(M);Pn−1(Σ∞Ω∞)) Wn−1(R;M)

ג

ג

is homotopy cartesian. In the case of n = 1, we have P1(Σ∞Ω∞) ' Id '
∧1(−) a 1-

homogeneous functor, and so ג is an equivalence by our previous work. Using the long exact

sequence of homotopy groups associated to a homotopy fiber sequence and the 5-lemma, we

induct up the ladder to obtain:

K(P ;D(M);Pn(Σ∞Ω∞)) ' Wn(R;M)

Therefore, K(P ;D(−);Pn(Σ∞Ω∞)) is n-excisive, and recalling how the n-truncated) topo-

logical Witt vectors appear in the Lindenstrauss-McCarthy tower:

Pn
(
K(P ;D(−); Σ∞Ω∞)

)
(M) ' K(P ;D(M);Pn(Σ∞Ω∞))

We have shown:

Theorem 4.2.5 Let R be an associative and unital ring, M an R-bimodule, and n ≥ 1.

There is an equivalence of S-bimodules

K(P ;D(M);Pn(Σ∞Ω∞)) ' Wn(R;M)

compatible with restrictions from n to n − 1. Therefore the tower associated to the K-

theory with coefficients in the endofunctor Σ∞Ω∞ is weakly equivalent to the Lindenstrauss-

McCarthy Taylor tower of relative K-theory:

K̃(R;M)

. . . Wn+1(R;M) Wn(R;M) Wn−1(R;M) . . .

Un+1(R;M)hCn+1
Un(R;M)hCn Un−1(R;M)hCn−1
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APPENDIX A

SIMPLICIAL SETS

A.1 Simplex Category

Simplicial objects are the non-linear generalizations of chain complexes.

Notation For n ∈ N, let [n] denote the ordered set {0 < 1 < · · · < n}. For any category C
the set of maps between X, Y ∈ C will be denoted C(X, Y ).

Definition A.1.1 The simplex category, denoted ∆∆, is the category with:

• Obj(∆∆) = {[n] | n ∈ N}

• ∆∆([n], [m]) = {f ∈ Sets([n], [m]) | f(i) ≤ f(j) for i ≤ j}

that is, non-empty finite totally ordered sets and order-preserving functions.

There are morphisms in ∆∆ of particular interest.

Definition A.1.2 Fix n ∈ N. The ith coface map, denoted δni (= δi), is the morphism in

∆∆([n− 1], [n]) given by

δi(j) =

{
j for j < i

j + 1 for j ≥ i

while the ith codegeneracy map, denoted σni (= σi), is the morphism in ∆∆([n+ 1], [n]) given

by

σi(j) =

{
j for j ≤ i

j − 1 for j > i
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Remark The cofaces and codegeneracies generate all other morphisms in ∆∆. Indeed, given

any f ∈ ∆∆([n], [m]) there is a unique epi-monic factorization

f = δi1 ◦ · · · ◦ δis ◦ σj1 ◦ · · · ◦ σjt

where 0 ≤ is < · · · < i1 ≤ m, 0 ≤ j1 < · · · < jt < n, and m = n− t + s. Here i1, . . . , is are

the elements of [m] not in the image of f , in reverse order, and j1, . . . , jt are the elements

of [n] such that f(j) = f(j + 1), in order. Therefore to understand the morphisms and

compositions in ∆∆ we need only understand how the δi and σj compose.

Observation We have the following identities in ∆∆:

δi ◦ δj = δj+1 ◦ δi for i ≤ j

σj ◦ σi = σi ◦ σj+1 for i ≤ j

σj ◦ δi =


δi ◦ σj−1 for i < j

id for i = j, j + 1

δi−1 ◦ σj for i > j + 1

Definition A.1.3 Let C be a category. A simplicial object in C is a functor X : ∆∆op → C.

Notation If X a simplicial object in C, for ease of notation we will denote X([n]) by Xn, the

(now) faces X(δi) by di, and the (now) degeneracies X(σj) by sj.

Remark By the unique epi-monic factorization mentioned above, a simplicial object X is

determined by:

• A sequence of objects Xn ∈ C, for n ∈ N.

• Face and degeneracy operators, di : Xn → Xn−1 and si : Xn → Xn+1 for i = 0, . . . , n,

for every n.

• The “simplicial” identities:

– dj ◦ di = di ◦ dj+1 for i ≤ j.

– si ◦ sj = sj+1 ◦ si for i ≤ j.

– di ◦ sj =


sj−1 ◦ di for i < j

id for i = j, j + 1

sj ◦ di−1 for i > j + 1

60



Example A.1.4 Let C be a small category. The nerve of the category, denoted N(C), is

the simplicial set constructed as follows: The n-simplices are the collection of all diagrams

of n-composable morphisms in C,

C0
f1←− C1

f2←− . . .
fn−1←−− Cn−1

fn←− Cn

That is, as a set, Nn(C) ∼=
∐
C(C1, C0)×C(C2, C1)×· · ·×C(Cn, Cn−1), where the coproduct

is taken over all n + 1-tuples of objects (C0, . . . , Cn) ∈ C. The internal faces are given by

composing morphisms, while the outer ones are dropping the first/final morphism. That is,

di(f1, . . . , fi, fi+1, . . . , fn) = (f1, . . . , fi ◦ fi+1, . . . , fn) for 0 < i < n, while d0(f1, f2 . . . , fn) =

(f2, . . . , fn) and dn(f1, . . . , fn−1, fn) = (f1, . . . , fn−1). The degeneracies are given by adding

identities. That is, si(f1, . . . , fi, fi+1, . . . , fn) = (f1, . . . , fi, idCi , fi+1, . . . , fn).

Example A.1.5 The standard (simplicial) n-dimensional simplex is the representable func-

tor formed from [n]. That is, for [n] ∈ ∆∆ we can form the presheaf on ∆∆, ∆n(−) :=

∆∆(−, [n]) : ∆∆op → Sets.

Example A.1.6 A classic example of a simplicial object comes from the simplicial bar

construction. Using the notation of [39] VII.1, let (C,⊗,1, α, λ, ρ) be a monoidal category,

(A, µ, e) be a monoid in C, (M, ν) a right A-module, and (N, κ) a left A-module. The bar

construction, denoted B(M,A,N), is the simplicial object given by:

[n] 7→ Bn(M,A,N) := (M ⊗ A⊗ · · · ⊗ A︸ ︷︷ ︸
n−times

)⊗N

where A0 is the empty symbol and all A-parentheses are taken grouped on the left. Let

αi,jn be the chain of associator isomorphisms αi,jn : A⊗n → (A⊗i ⊗ A⊗j) ⊗ A⊗(n−i−j) with all

(internal) parentheses grouped to the left (by the coherence theorem there’s no ambiguity

in choice). Let µin be the multiplication of two object after i objects, that is,

µin = (idA⊗i ⊗ µ)⊗ idA⊗(n−i−2) : (A⊗i ⊗ A⊗2)⊗ A⊗(n−i−2) → (A⊗i ⊗ A)⊗ A⊗(n−i−2)

The face maps di : Bn(M,A,N)→ Bn−1(M,A,N) are given by:

di =


((ν ⊗ idA⊗(n−1)) ◦ (α−1

M,A,A⊗(n−1)) ◦ (idM ⊗ α1,n−1
n ))⊗ idN for i = 0

(idM ⊗ (αi,1n )−1 ◦ µin ◦ αi,2n )⊗ idN for 0 < i < n

α−1
M,A⊗(n−1),N

◦ (idM ⊗ (idA⊗(n−1) ⊗ κ) ◦ αA⊗(n−1),A,N) ◦ αM,A⊗n,N for i = n
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In essence, internal faces are the monoid multiplication and the initial/final faces are the

actions of right/left modules. The degeneracies, si : Bn(M,A,N)→ Bn+1(M,A,N), involve

the the left and right unitors, λ and ρ, as well as the monoid’s unit, e.

si =


(
(idM ⊗ (α1,0

n+1)−1) ◦ αM,A,A⊗n ◦ (idM ⊗ e) ◦ ρ−1
M ⊗ idA⊗n

)
⊗ idN for i = 0(

idM ⊗ ((αi,2n+1)−1 ◦ (idA⊗i ⊗ (e⊗ idA) ◦ λ−1
A ⊗ idA⊗(n−i−1)) ◦ αi,1n )

)
⊗ idN for 0 < i < n

(αM,A⊗n,A ⊗ idN) ◦ α−1
M⊗A⊗n,A,N ◦ idM⊗A⊗n ⊗ ((e⊗ idN) ◦ λ−1

N ) for i = n

That these morphisms satisfy the simplicial identities is exactly the commutativity and

coherence conditions in the definitions of α, λ, ρ, µ, e, . . . etc. Because of the generality

of this construction we can get many examples in common monoidal categories. Lastly,

because of MacLane’s coherence theorem (VII.2 [39]), any of diagrams constructed involving

the associators will commute, and therefore subsequently we may drop the “coherence part”

of the data.

Example A.1.7 Let (C,⊗,1) be the monoidal category (Sets,×, ∗) of sets with cartesian

product, and a chosen one-element set as unit. Let (G, µ, e) be a monoid in this category,

with unit e(∗) = 1G ∈ G (i.e. a “monoid” in the traditional sense). Take ∗ as both trivial

right G-module and trivial left G-module. Then Bn(∗, G, ∗) = ∗×G×n×∗ ∼= G×n (with the

0-simplex the point ∗). The face maps are given, under the previous isomorphism, by:

di(g1, . . . , gn) =


(g2, . . . , gn) for i = 0

(g1, . . . , gigi+1, . . . , gn) for 0 < i < n

(g1, . . . , gn−1) for i = n

and degeneracies by si(g1, . . . , gn) = (g1, . . . , gi, 1G, gi+1, . . . , gn), that is, sticking a 1G in the

ith-spot. This construction is typically referred to as the “bar construction on G”, denoted

BG.

Remark The bar construction on G can also be achieved by means of the nerve construction

mentioned before. A monoid can be seen as a one element category. Indeed, letG be a monoid

in (Sets,×, ∗). Denote by G̃ the category with object +, and morphisms G̃(+,+) = G,

where the composition is the monoid multiplication (the monoid axioms on G ensure this is

a category). Then we have an isomorphism of simplicial sets N(G̃) ∼= BG.

Example A.1.8 Fix a commutative ring k. Let (C,⊗,1) be the monoidal category (k-

Mod,⊗
k
, k) of k-modules and tensoring over k. A monoid in this category is a (possibly
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non-commutative) k-algebra A. Let M and N be right and left A-modules, respectively

(they are symmetric over k since k is commutative). Then B(M,A,N) is the “simplicial bar

resolution” of M ⊗
k
N . The name comes from the fact that the nth-homology of the chain

complex associated to this simplicial object in k-Mod computes TorAn (M,N).

A.2 Simplicial Maps and Homotopies

Definition A.2.1 Let C be a category, X, Y simplicial objects in C. A simplicial map from

X to Y , denoted F : X → Y , is a natural transformation of the functors ∆∆op → C. By the

previous remark, this is determined by a collection of morphisms in C, Fn : Xn → Yn for

n ∈ N, commuting with the face and degeneracy operators. That is, dYi ◦ Fn = Fn−1 ◦ dXi
and sYi ◦ Fn = Fn+1 ◦ sXi for i = 0, . . . , n. The category of simplicial objects in C together

with simplicial maps will be denoted sC.

Observation If X ∈ sSets, then by the Yonneda Lemma we have an isomorphism of sets

sSets(∆n, X) ∼= Xn, natural in n and X. So an n-simplex in X determines a unique

simplicial map from ∆n.

Example A.2.2 Let F : C → D be a functor between small categories. Then there is an

induced simplicial map of nerves, N(F ) : N(C)→ N(D) given by

C0
f1←− C1

f2←− . . .
fn−1←−− Cn−1

fn←− Cn 7→

F (C0)
F (f1)←−−− F (C1)

F (f2)←−−− . . .
F (fn−1)←−−−− F (Cn−1)

F (fn)←−−− F (Cn)

That is, N(F )n(f1, . . . , fn) = (F (f1), . . . , F (fn)).

Example A.2.3 Going back to the case of a monoidal category (C,⊗,1), suppose given

two triples (M,A,N), (M ′, A′, N ′) of monoids in C with right and left modules, respectively.

Suppose φ : A → A′ is a morphism of monoids (so that it preserves the multiplication and

the unit), and f : M → M ′ and g : N → N ′ are morphisms of right modules and left

modules, respectively (so they preserve the action of the chosen monoid). The morhpisms

Bn(M,A,N)
f⊗φ⊗···⊗φ⊗g−−−−−−−−→ Bn(M ′, A′, N ′)

then assemble to give a simplicial map of the simplicial bar constructions B(M,A,N) →
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B(M ′, A′, N ′). In particular, when working in (Sets,×, ∗), a map of monoids φ : G → H

induces a map of bar constructions BG→ BH

Definition A.2.4 Let C be a small category, X, Y simplicial objects in C, and F,G : X → Y

simplicial maps. F is simplicially homotopic to G, denoted F ' G, if for each n ∈ N and

i = 0, . . . , n there exist morphisms in C, hi ∈ C(Xn, Yn+1), such that:

• d0 ◦ h0 = F and dn+1 ◦ hn = G.

• di ◦ hj =


hj−1 ◦ di for i < j

dj+1 ◦ hj+1 for i = j + 1

hj ◦ di−1 for i > j + 1

• si ◦ hj =

{
hj+1 ◦ si for i ≤ j

hj ◦ si−1 for i > j

Example A.2.5 Let F,G : C → D be functors between small categories, and η : F ⇒
G a natural transformation between them. We get two induced maps of simplicial sets,

N(F ), N(G) : N(C) → N(D). We define a simplicial homotopy between them as follows.

For every n ∈ N, i = 0, . . . , n, let hi ∈ Sets(Nn(C), Nn+1(D)) be given by:

hi(f1, . . . , fn) = (G(f1), . . . , G(fi), ηCi , F (fi+1), . . . , F (fn))

One readily checks the identities and finds that N(F ) ' N(G).

A.3 Pointed Simplicial Sets

Let sSets be the category of simplicial sets, and consider the standard 0-simplex ∆0. Since

there is only one morphism from [n] to [0] in ∆∆, ∆0 is the terminal object in sSets.

Definition A.3.1 A pointed simplicial set is a simplicial set X together with a choice of

simplicial map ∆0 → X.

Observation This is equivalent to a choice of distinguished basepoint ∗ ∈ X0 (by the Yonneda

Lemma); this determines the ∗ in each other simplicial degree, so we make no notational

distinction.

A morphism of pointed simplicial sets will be a morphism in sSets making the requisite

triangle commute (i.e. preserving the basepoints ∗X ∈ X0, ∗Y ∈ Y0). We denote the category

of pointed simplicial sets and pointed simplicial maps by sSets∗.
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Remark Given an unbased simplicial set X we can canonically add a basepoint by defining

X+ := X q∆0. This functor (−)+ : sSets → sSets∗ is left adjoint to the forgetful functor

U : sSets∗ → sSets from pointed simplicial sets to simplicial sets (that is, that forgets the

choice of morphism ∆0 → X).

The category sSets∗ is symmetric monoidal. The monoidal functor is the smash product:

given two pointed simplicial sets X, Y , we form the pointed simplicial set X ∧ Y with n-

simplices Xn ∧ Yn, where Xn ∧ Yn is the quotient (Xn × Yn)/(Xn ∨ Yn) that collapses the

simplicial subset Xn ∨ Yn = Xn × ∗Y ∪ ∗X × Yn of the cartesian product. The face and

degeneracies are given by dX∧Yi := dXi ∧ dYi and sX∧Yi := sXi ∧ sYi . This is clearly a bifunctor

sSets∗ × sSets∗ → sSets∗. The 0-sphere, S0 := ∆0/∂∆0 (“=” ∆0
+, since we collapsed the

empty set), is the unit with respect to the smash product. The smash product is associative,

X ∧ (Y ∧ Z) ∼= (X ∧ Y ) ∧ Z and there is a twist isomorphism X ∧ Y ∼= Y ∧X. All of these

isomorphisms satisfy the necessary coherence conditions of VII.2 [39].

Furthermore, it is closed symmetric monoidal. That is, for each simplicial set Y , the func-

tor − ∧ Y : sSets∗ → sSets∗ has a right adjoint, denoted sSets∗(Y,−). Explicitly, it is

given by [n] 7→ (sSets∗(Y,−))n := sSets∗(Y ∧ ∆n
+,−). Note that the ∆n assemble into a

cosimplicial object in sSets, ∆− : ∆∆ → sSets, i.e. a cosimplicial simplicial set. Adding a

disjoint basepoint and putting it in the contravariant entry gives a simplicial set. Closure

then specializes to an adjunction:

sSets∗(X ∧ Y, Z) ∼= sSets∗(X, sSets∗(Y, Z))

Furthermore, this bijection of sets extends to an enriched adjunction, i.e. we have an iso-

morphism of simplicial sets :

sSets∗(X ∧ Y, Z) ∼= sSets∗(X, sSets∗(Y, Z))

Observation By pre- and post-composing with the twist isomorphism included in the sym-

metric monoidal structure, we also obtain an adjunction:

sSets∗(Y ∧X,Z) ∼= sSets∗(X, sSets∗(Y, Z))

denoted by ψ 7→ ψ] (with inverse φ 7→ φ[).

Notation The (simplicial) 1-sphere will be denoted S1 := ∆1/∂∆1. The n-sphere is defined
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to be the n-fold smash of S1, Sn :=

n−times︷ ︸︸ ︷
S1 ∧ · · · ∧ S1. Lastly, when we’ll have occasion to talk

about the enriched category of pointed simplicial sets (enriched over itself, as any closed

symmetric monoidal category is), we will denote it by sSets∗.

A.4 A Convenient Category of Spaces

Definition A.4.1 A topological space X is compactly generated if it is a weak Hausdorff

k-space (Definition 6.1.8 [54]). The category of compactly generated spaces will be denoted

Top, and the category of pointed compactly generated spaces (with non-degenerate base-

points) and pointed continuous maps will be denoted Top∗.

Remark Limits in Top∗ are simply the k-ification of the usual limits in the category of

topological spaces (limits of weak Hausdorff spaces are weak Hausdorff), while colimits are

the weak Hausdorffication of the usual colimits (colimits of k-spaces are k-spaces). Often

these will reduce to the usual limits and colimits. For example, if X, Y ∈ Top∗ and one

happens to be locally compact, then their product in the ordinary category of topological

spaces is already in Top∗, so k-ification does nothing. On the other hand, if a diagram in

Top∗ is given by a sequence of closed inclusions or by a pushout along a closed inclusion,

then its colimit in the ordinary category of topological spaces is already in Top∗, so weak

Hausdorffication does nothing (5.2 [42]).

The main purpose of working in Top∗ rather than a more general category of topological

spaces is that we have a closed symmetric monoidal structure on Top∗ directly analogous to

the one in sSets∗, given by the smash product of spaces. Indeed, we have an adjunction

Top∗(Y ∧X,Z) ∼= Top∗(X,Top∗(Y, Z))

where the “internal hom” is the k-ification of the compact-open topology of the set of con-

tinuous maps Y → Z (it is already weak Hausdorff if Y is as well).

Just as before, by pre- and post-composing with the twist isomorphism included in the

symmetric monoidal structure, we again obtain an adjunction:

Top∗(Y ∧X,Z) ∼= Top∗(X,Top∗(Y, Z))
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denoted by ψ 7→ ψ] (with inverse φ 7→ φ[). It will be clear when working with either

topological spaces or simplicial sets, so that no confusion may arise. Lastly, because we’re

working in Top∗, this bijection of sets extends to an enriched adjunction, i.e. we have a

homeomorphism:

Top∗(Y ∧X,Z) ∼= Top∗(X,Top∗(Y, Z))

Notation We define the (topological) n-sphere, Sn as the one-point compactification of Rn,

and the loop spaces ΩnX := Top∗(S
n, X). Just as with sSets∗, when we’ll have occasion to

talk about the enriched category of pointed topological spaces (enriched over itself, as any

closed symmetric monoidal category is), we will denote it by Top∗.

A.5 Geometric Realization

Definition A.5.1 The standard (topological) n-dimensional simplex, denoted ∆n, is the

topological space defined as the subspace

∆n :=
{

(x0, . . . , xn) ∈ Rn+1
∣∣∣ xi ≥ 0,

∑
xi = 1

}
⊂ Rn+1

Let vi = (0, . . . , 0, 1, 0, . . . , 0) be the ith-vertex of ∆n. Then we have (closed) inclusions δi :

∆n−1 → ∆n, called the ith-coface, given by including into the face opposite vi, that is, setting

xi = 0 (there are n + 1 total such maps). We also have n + 1 surjections σi : ∆n+1 → ∆n,

called the ith-codegeneracy, given by projecting linearly from vertices with σi(vi+1) = vi and

σi(vj) = vj otherwise.

Observation ∆n is a (locally) compact Hausdorff space, and hence compactly generated, for

all n.

One readily checks that the cofaces and codegeneracies assemble to make ∆− into a cosim-

plicial space, that is, we have a covariant functor ∆− : ∆∆→ Top. Now, let X be a (possibly

unpointed) simplicial set. By using the inclusion Sets ↪→ Top (giving a set the discrete

topology, which is clearly compactly generated) and the fact that Top has finite products

(the ∆n are locally compact, so the usual product of spaces works without the k-ification),

we get a functor X− ×∆− : ∆∆op ×∆∆→ Top.

Definition A.5.2 Let X be a simplicial set. The geometric realization of X, denoted

|X|, is the coend
∫ [n]:∆∆op

Xn × ∆n. By the coend formula and the fact that (co)faces and
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(co)degeneracies generate ∆∆, it can be explicitly computed as

|X| =
∞∐
n=0

Xn ×∆n

/
∼

where (x, δi(p)) ∼ (di(x), p) and (x, σi(p)) ∼ (si(x), p).

Remark The coend actually exists in the target category, that is, |X| is a compactly generated

space (one sees this by noting that the filtration by partial realization gives |X| the structure

of a CW-complex). Also, geometric realization takes the standard simplicial n-simples to

the topological one. That is, |∆n| ∼= ∆n (so our notation is in agreement). If f : X → Y is

a morphism of simplicial sets, then the universal property for dinatural transformations of

the coend induces a continuous map |f | : |X| → |Y |, which is simply f on the representing

simplex. We thus have a functor | − | : sSets → Top. In addition, if X was a pointed

simplicial set, with specified map f : ∆0 → X, then |f | : |∆0| ∼= ∗ → |X| makes |X| into a

pointed topological space. Therefore, geometric realization gives a functor | − | : sSets∗ →
Top∗.

Example A.5.3 There is an important functor Sing(−) : Top→ sSets, called the “singular

complex”, whose n-simplices on X are given by [n] 7→ Top(∆n, X), that is, the set of maps

from the standard topological n-simplex into X. Note that this is the composition of the

covariant functor ∆− : ∆∆ → Top and the representable (contravariant) functor hX =

Top(−, X) : Top→ Sets. Hence, for fixed X, gives a functor ∆∆op → Sets, i.e. a simplicial

set. If f : X → Y is a countinuous map of topological spaces, we get an induced natural

transformation of representing functors hX ⇒ hY , and therefore a natural transformation

of functors ∆∆op → Sets, i.e. a map of simplicial sets Sing(X)
Sing(f)−−−−→ Sing(Y ). On an

n-simplex, this is simply given by post composing ∆n g−→ X with X
f−→ Y . The face and

degeneracy operators on Sing(X) are pre-compositions with the coface and codegeneracy

maps, δi and σi, of ∆−.

Fact The functor Sing(−) : Top → sSets is left adjoint to geometric realization, | − | :

sSets → Top. That is, for a simplicial set X and a topological space Y , we have an

bi-natural isomorphism

Top(|X|, Y ) ∼= sSets(X, Sing(Y ))

Immediately we get for free that geometric realization commutes with colimits (as a left

adjoijnt) while the singular complex commutes with limits (as a right adjoint). On the other
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hand, more is known: by Theorem 2 [48] geometric realization commutes with finite limits

(here the use of compactly generated spaces is crucial).

Observation Since Sing(∆0)n = Top(∆n,∆0) = ∗, we have an isomorphism of simplicial sets

Sing(∆0) ∼= ∆0. A pointed topological space, ∗ ∼= ∆0 → X is then sent to ∆0 ∼= Sing(∆0)→
Sing(X), a pointed simplicial set, and we get an induced functor Sing(−) : Top∗ → sSets∗.

We have a similar adjunction in the pointed case. That is, for a pointed simplicial set X

and a pointed topological space Y , we have an bi-natural isomorphism

Top∗(|X|, Y ) ∼= sSets∗(X, Sing(Y ))

Lastly, the homeomorphisms making geometric realization finitely continuous descend to the

pointed setting, making | − | : sSet∗ → Top∗ strong symmetric monoidal.

Remark The singular complex functor allows us to view Top∗ as a simplically enriched

category also, by taking, for X, Y ∈ Top∗, the simplicial mapping space Sing(Top∗(X, Y )).

Example A.5.4 We define an explicit homeomorphism f : (∆1)◦ → R, from the interior

of the standard topological 1-simplex to R, given by f(x, y) := x
y
− y

x
. Post-composing with

the homeomorphism |∆1| ∼= ∆1 we see that |∂∆1| is identified with the boundary of ∆1, and

we obtain a homeomorphism |∆1|/|∂∆1| ∼= S1. But since | − | commutes with colimits we

obtain a homemorphism |S1| ∼= S1 (so our notation is in agreement). Similarly, using the

strong symmetric monoidal structure of | − |, we have:

|Sn| := |S1 ∧ · · · ∧ S1| ∼= |S1| ∧ · · · ∧ |S1| ∼= S1 ∧ · · · ∧ S1 ∼= Sn

Notation Let X be a simplicial set. Denote by ΩnX := Sing
(
Top∗(|Sn|, |X|)

)
the (simplicial)

nth-loop space of X. By the previous example, we have that ΩnX ∼= Sing(Ωn|X|).

Example A.5.5 Let G be a group and G̃ its one-element category. A simplicial set X with

a G-action can be described as a G-object in simplicial sets, that is, a functor X̃ : G̃ →
Fun(∆∆op,Sets) = sSets. Composing with geometric realization we get a functor

G̃
X̃−→ sSets

|−|−→ Top

Since geometric realization is finitely continuous, we have an isomorphism | lim X̃|
∼=−→ lim |X̃|.

Now taking the limit of any G-object (functor G̃→ C into a category) is the fixed-points of

the action. So we have an isomorphism |XG| ∼= |X|G, meaning we can take the fixed points
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as a simplicial set and realize, or simply as the associated topological space. The same holds

true in the pointed case.

A.6 Model Structure on Simplicial Sets

Definition A.6.1 A map of simplicial sets f : X → Y is a weak equivalence if |f | : |X| →
|Y | is a weak equivalence of spaces, or equivalently a homotopy equivalence. It is called a

cofibration if f is a categorical monomorphism, or equivalently, a level-wise injection of sets.

It is called a (Kan) fibration if it has the right-lifting-property with respect to all trivial

cofibrations. A simplicial set X is fibrant if X → ∗ is a fibration.

The main purpose of simplicial sets is to be able to do “combinatorial” homotopy theory.

That mainly comes from the following result of Quillen (Theorems 1 and 3, Chapter II [52]):

Theorem A.6.2 The cofibrations, weak equivalences, and fibrations make sSets∗ into a

proper model category. The model structure is monoidal with respect to the smash product.

The adjoint functors:

sSets∗ Top∗

|−|

Sing(−)

a

are a Quillen equivalence.

Fact The units and counits from the above adjunction are weak equivalences. In particular

by the counit map we have |ΩnX| '−→ Ωn|X| for any simplicial set X. If f : X → Y is a weak

equivalence of pointed simplicial sets then combining the previous fact with the 2-out-of-3

property for weak equivalences in Top∗ shows that ΩnX → ΩnY is a weak equivalence of

pointed simplicial sets.

Remark If X, Y are simplicial sets, with X cofibrant (trivially) and Y fibrant (not true in

general), then as a consequence of A.6.2 the induced map |sSets∗(X, Y )| → Top∗(|X|, |Y |)
is a weak equivalence of topological spaces. Taking the singular complex functor and pre-

composing with the unit map, we get a chain of weak equivalences:

sSets∗(X, Y )
'−→ Sing

(
|sSets∗(X, Y )|

) '−→ Sing
(
Top∗(|X|, |Y |)

)
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In particular, taking the simplicial set Sn and a fibrant simplicial set X we have:

sSets∗(S
n, X)

'−→ Sing
(
|sSets∗(S

n, X)|
) '−→ ΩnX

We therefore have a weak equivalence between the internal hom object of simplicial sets

sSets∗(S
n, X) and the simplicial loop space functor ΩnX. However, it only holds true for X

a fibrant simplicial set. So the realization does not in general commute with taking internal

homs, and we lose out on the above fact. This is why internal hom were used for topological

loop spaces, but not in the case of simplicial sets.

Because of the above constraints, it will be convenient for us moving forward to fix a func-

torial way to exchange a simplicial set X for a weakly equivalent fibrant one.

Definition A.6.3 The functorial fibrant replacement functor, denoted −̂, will be the functor

Sing(|−|) : sSets∗ → sSets∗. So for any simplicial set X, we have the unit weak equivalence

X → X̂ with X̂ fibrant.
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APPENDIX B

HOMOTOPY COLIMITS AND LIMITS

The main references for this appendix are [10] and [28].

B.1 Slice and Coslice Categories

Definition B.1.1 Let F : C → D be a functor, and d ∈ D. The slice category (over d),

denoted F ↓ d, is the category with:

• Obj(F ↓ d) = {(c, α) | c ∈ C, α ∈ D(F (c), d)}

• (F ↓ d)
(
(c, α), (c′, α′)

)
= {β | β ∈ C(c, c′) and α′ ◦ F (β) = α}

That is, the morphisms (c, α)
β̃−→ (c′, α′) are the morphisms β : c → c′ in C making the

following triangle commute:

F (c) F (c′)

d

α

F (β)

α′

Definition B.1.2 Let F : C → D be a functor, and d ∈ D. The coslice category (under d),

denoted d ↓ F , is the category with:

• Obj(d ↓ F ) = {(c, α) | c ∈ C, α ∈ D(d, F (c))}

• (d ↓ F )
(
(c, α), (c′, α′)

)
= {β | β ∈ C(c, c′) and F (β) ◦ α = α′}

That is, the morphisms (c, α)
β̃−→ (c′, α′) are the morphisms β : c → c′ in C making the

following triangle commute:

d

F (c) F (c′)

α α′

F (β)
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Notation In the case of F = Id : C → C, we denote (c ↓ C) := (c ↓ Id), and similarly for the

slice category.

Remark The slice and coslice categories are covariant and contravariant, respectively, in

the object d ∈ D. Indeed, if d
f−→ d′ is a morphism in D, then we have induced functors

f∗ : (F ↓ d) → (F ↓ d′) and f ∗ : (d′ ↓ F ) → (d ↓ F ) given by f∗(c, α) = (c, f ◦ α) and

f ∗(c, α) = (c, α ◦ f). Also, if d′
g−→ d, then g∗ ◦ f∗ = (g ◦ f)∗ and f ∗ ◦ g∗ = (g ◦ f)∗. Lastly, if

F : C → D is a functor, and c ∈ C there are induced functors F̂ : (C ↓ c)→ (D ↓ F (c)) and

F̃ : (c ↓ C)→ (F (c) ↓ D).

On the other hand, if η : F → G is a natural transformation of functors C → D, then

we have induced functors of slice categories in the opposite direction, (G ↓ d) → (F ↓ d),

given by (c, α) 7→ (c, α ◦ ηc). For coslice categories the behavior is functorial; the induced

functor is η̃ : (d ↓ F )→ (d ↓ G) given by (c, α) 7→ (c, ηc ◦ α).

Observation Slice and coslice categories are “dual”. Specifically, (c ↓ C) ∼= (Cop ↓ c)op.

The nerve of slice and coslice categories is going to be very important. By the previous note,

we need only consider the case of coslice categories. Let F : C → D be a functor, d ∈ D,

and consider the simplicial nerve N•(d ↓ F ). In simplicial degree n, it consists of the sets of

diagrams:

d

F (c0) F (c1) · · · F (cn)

α0
α1

αn

β1 β2 βn

which by commutativity consists of an n-simplex in the nerve of D, (β1, . . . , βn) and a

morphism d
αn−→ F (cn). If d

f−→ d′ is a morphism in D, the functor f ∗ : (d′ ↓ F ) → (d ↓ F )

induces maps of simplicial sets N(f ∗) : N(d′ ↓ F )→ N(d ↓ F ), and assembles into a presheaf

of simplicial sets N(− ↓ F ) : Dop → sSets.

Also by the previous remarks, if c ∈ C then we have an induced map of nerves F̃ : N(c ↓
C) → N(F (c) ↓ D), which, for a morphism c

f−→ c′ in C, fits into a commutative square of

simplicial sets:

N(c′ ↓ C) N(c ↓ C)

N(F (c′) ↓ D) N(F (c) ↓ D)

f∗

F̃ F̃

F (f)∗

That is, we have a natural transformation of functors (map of simplicial presheaves on C)
N(− ↓ C)⇒ N(F (−) ↓ D).
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B.2 Homotopy Colimits as Coends

Definition B.2.1 Let C be a small category and X : C → sSets∗ a C-diagram of pointed

simplicial sets. Consider the bifunctor X (−) ∧ N(− ↓ C)+ : C × Cop → sSets∗. The

(uncorrected) homotopy colimit of X , denoted hocolimCX , is the coend

hocolimCX :=

∫ c∈C
X (c) ∧N(c ↓ C)+

By the coend formula this is given by:

hocolimCX = coeq

 ∨
c0

f−→c1∈C

X (c0) ∧N(c1 ↓ C)+

φ

⇒
ψ

∨
c∈C

X (c) ∧N(c ↓ C)+


where on a summand c0

f−→ c1, φ is given by X (f) ∧ idN(c1↓C)+ into the c1-summand, and ψ

is given by idX (c0) ∧ f ∗ into the c0-summand.

Fact Since geometric realization is a left adjoint, we have |hocolimCX| ∼= hocolimC|X |. If Y
is another C-diagram in pointed simplicial sets, and η : X → Y is a natural transformation,

then by the universal property of colimits, we get an induced map hocolimCX
η̃−→ hocolimCY .

If η is a point-wise weak equivalence (meaning for each object c, ηc : X (c)→ Y(c) is a weak

equivalence of simplicial sets), then η̃ is a weak equivalence. Some additional properties of

the homotopy colimit include:

• If X ∈ sSets∗
C has X (c) = ∗ for all c, then hocolimCX ∼= ∗.

• If X ∈ sSets∗
C has X (c) = S0 for all c (with identity maps), then hocolimCX ∼= N(C)+.

• More generally, if X ∈ sSets∗
C has X (c) = X for all c for some fixed X ∈ sSets∗, then

hocolimCX ∼= X ∧N(C)+.

• If C is the trivial category with a single object • and identity morphism	, hocolimCX ∼=
X(•).

• For any X ∈ sSets∗
C we have a map of pointed simplicial sets hocolimCX → colimCX

such that, if η : X → Y is a natural transformation of C-diagrams, the following square

commutes:
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hocolimCX hocolimCY

colimCX colimCY

η̃

• If X ∈ sSets∗
C and F : sSets∗ → sSets∗ is a simplicially enriched functor, then we

get natural maps of pointed simplicial sets hocolimC(F ◦X )→ F (hocolimCX ) induced

by the assembly maps

F (X (c)) ∧N(c ↓ C)+ → F
(
X (c) ∧N(c ↓ C)+

)
that come from the tensoring of the category over simplicial sets, such that the following

square commutes:

hocolimC(F ◦ X ) F (hocolimCX )

colimC(F ◦ X ) F (colimCX )

where the bottom map is the one induced by the universal property of the colimit.

• If F : C → D is a functor and X ∈ sSets∗
D, then there is a map of pointed simplicial

sets hocolimC(X ◦F )
F̃−→ hocolimDX induced from the map of presheaves N(− ↓ C)⇒

N(F (−) ↓ D), such that, if η : X → Y is a natural transformation of D-diagrams, the

following square commutes:

hocolimC(X ◦ F ) hocolimDX

hocolimC(Y ◦ F ) hocolimDY

F̃

η̃

F̃

Furthermore, if F satisfies homotopy cofinality (that is, if (D ↓ F ) is contractible

for all D ∈ D), then the induced map hocolimC(X ◦ F )
F̃−→ hocolimDX is a weak

equivalence. This occurs, for example, whenD has a final object D, and we let C = {D}
with F the inclusion functor. We conclude that the induced map hocolimC(X ◦ F ) ∼=
X (D)

F̃−→ hocolimDX is a weak equivalence. Since it’s a section to the natural map

hocolimDX → colimDX ∼= X (D), we have that this map is a weak equivalence as well,

and so X (D) ↪→ hocolimDX is a deformation retraction.
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• If F,G : C → D are functors, η : F → G is a natural transformation, and X ∈ sSets∗
D,

then there is a map of pointed simplicial sets hocolimC(X ◦F )
η̃−→ hocolimC(X ◦G) such

that the following triangle:

hocolimC(X ◦ F )

hocolimDX

hocolimC(X ◦G)

η̃

F̃

G̃

commutes up to homotopy. Indeed, the simplicial homotopy hi comes from the one

induced on nerves by the natural transformation, together with the fact that we’ve

identified the “different” images of dn+1(hn(X (F (c)); c0
β1←− c1

β2←− . . .
βn←− cn;αn)) in

the coequalizer.

Observation The coend definition of the uncorrected homotopy colimit works equally well

when X is replaced by a diagram in a pointed simplicial model category, with the pointed

smash being replaced by the tensoring over sSets∗. In particular we can use this to define

“homotopy colimit” objects in Top∗ and Spec (in Top∗ the tensoring with pointed simplicial

sets is given by − ∧ |K|).

Remark Though our definition of hocolimCX works for any X : C →M diagram in a pointed

simplicial model category, for arbitrary M it is only homotopy invariant for cofibrant dia-

grams. For example, given a map of C-diagrams η : X → Y which is point-wise equivalence,

if X (c),Y(c) are cofibrant objects inM for all c, then the induced map of homotopy colimits

is a weak equivalence. It is not true for arbitrary X ,Y , hence the name uncorrected homo-

topy colimit (however, the properties in the bullets above, excepting the second, still hold).

Since every object in sSets∗ is cofibrant in the Quillen model structure, we don’t need to

impose constraints to achieve homotopy invariance.

Notation When working with sSets∗
C, hocolimCX will mean the above construction. When

working with another pointed simplicial model category M, care will be taken to indicate

when the notation hocolimCX means the above construction applied to −̃ ◦ X , where −̃ :

M → M is the (functorial) cofibrant replacement functor that is a part of the data of

the simplicial model category. In this case the bulleted properties carry through with the

obvious changes. For example, if X is the constant functor at X ∈ M then we have
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hocolimCX ∼= X̃ ∧ N(C)+, or that the canonical map from the homotopy colimit to the

colimit factors through the canonical map colimCX̃ → colimCX .

Lastly, there is a useful enriched adjunction. For X ∈ sSets∗
C, K ∈ sSets∗

Cop

, and Z a

pointed simplicial set, there is an isomorphism of simplicial sets:

sSets∗

(∫ c:C
X (c) ∧K(c), Z

)
∼= sSets∗

Cop

(K, sSets∗(X , Z))

Again, this adjunction really holds in any pointed simplicial model category M, by taking

X ∈ MC, Z ∈ M, replacing ∧ with the tensoring over simplicial sets, and taking the

simplicial mapping space in M:

M
(∫ c:C

X (c) ∧K(c), Z
)
∼= sSets∗

Cop

(K,M(X , Z))

The main purpose of using this alternate definition of the homotopy colimit is the following

proposition (analogous to Property 1, Appendix A [5]):

Proposition B.2.2 Let C,D be small categories, X ∈ sSets∗
C×D. Then we have an iso-

morphism of pointed simplicial sets

hocolimC×DX ∼= hocolimC(hocolimDX )

Proof. Recall that we have an isomorphism of simplicial sets N((c, d) ↓ C × D) ∼= N(c ↓
C) × N(d ↓ D) natural in both c and d. Let Z be a pointed simplicial set. We have the

following sequence of natural isomorphisms of pointed simplicial sets:

sSets∗(hocolimC×DX , Z) = sSets∗

(∫ (c,d):C×D
X (c, d) ∧N

(
(c, d) ↓ C × D

)
+
, Z
)

∼= sSets∗
Cop×Dop

(
N((∗,−) ↓ C × D)+, sSets∗(X (∗,−), Z)

)
∼= sSets∗

Cop×Dop
((
N(∗ ↓ C)×N(− ↓ D)

)
+
, sSets∗(X (∗,−), Z)

)
∼= sSets∗

Cop×Dop
(
N(∗ ↓ C)+ ∧N(− ↓ D)+, sSets∗(X (∗,−), Z)

)
(?) ∼= sSets∗

Cop
(
N(∗ ↓ C)+, sSets∗

Dop
(
N(− ↓ D)+, sSets∗(X (∗,−), Z

))
∼= sSets∗

Cop
(
N(∗ ↓ C)+, sSets∗

(∫ d:D
X (∗, d) ∧N(d ↓ D)+, Z

))
∼= sSets∗

(∫ c:C (∫ d:D (
X (c, d) ∧N(d ↓ D)+

)
∧N(c ↓ C)+, Z

)
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∼= sSets∗

(∫ c:C (
hocolimDX (c,−)

)
∧N(c ↓ C)+, Z

)
∼= sSets∗(hocolimC(hocolimDX (∗,−)), Z)

where (?) is the exponential law adjunction induced from the evaluation map (see Proposition

II.5.1 [20]). Therefore by the Yoneda Lemma, we conclude that there is an isomorphism of

pointed simplicial sets hocolimC×DX ∼= hocolimC(hocolimDX ).

Corollary B.2.3 Let C,D be small categories, X ∈ sSets∗C×D. Then we have an isomor-

phism of pointed simplicial sets

hocolimD(hocolimCX ) ∼= hocolimC(hocolimDX )

Remark In other competing definitions of the homotopy colimit of a diagram both objects

would be weakly equivalent, but not necessarily isomorphic. Additionally, since the previous

adjunction for coends works in any pointed simplicial model category, we have the analogous

results for the uncorrected homotopy colimits there as well. Unfortunately, in a general

pointed simplicial model category it is not true that
˜̃
X ∼= X̃, and so the results for the

corrected homotopy colimits don’t hold. Nevertheless, they are still weakly equivalent.

B.3 Homotopy Limits as Ends

Definition B.3.1 Let C be a small category and X : C → sSets∗ a C-diagram of pointed sim-

plicial sets. Since the functorN(C ↓ −)op is covariant, the assignment (c, c′) 7→ X (c)(N(C↓c′)op)+ ,

where KT is the pointed simplicial set of maps from T to K, defines a bifunctor C × Cop →
sSets∗. The (uncorrected) homotopy limit of X , denoted holimCX , is the end

holimCX :=

∫
c∈C
X (c)(N(C↓c)op)+

By the end formula this is given by:

holimCX = eq

∏
c∈C

X (c)(N(C↓c)op)+
φ

⇒
ψ

∏
c0

f−→c1∈C

X (c1)(N(C↓c0)op)+


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where the projection of the map φ on the factor c0
f−→ c1 is given by X (f)(N(C↓c0)op)+ ◦

πc0 (i.e. post-composing a map (N(C ↓ c0)op)+ → X (c0) with X (f)), and ψ is given by

(idX (c1))
N(f∗) ◦ πc1 (i.e. pre-composing a map (N(C ↓ c1)op)+ → X (c1) with the map N(f∗)

defined previously).

Fact If Y is another C-diagram in pointed simplicial sets, and η : X → Y is a natural

transformation, then by the universal property of limits, we get an induced map holimCX
η̃−→

holimCY . If η is a point-wise weak equivalence of fibrant simplicial sets, then η̃ is a weak

equivalence. Some additional properties of the homotopy limit (see Lemma 2.5 [5]) include:

• If X ∈ sSets∗
C has X (c) = ∗ for all c, then holimCX ∼= ∗.

• More generally, if X ∈ sSets∗
C has X (c) = X for all c (with identity maps) for some

fixed X ∈ sSets∗, then holimCX ∼= XN(Cop)+ .

• If C is the trivial category with a single object • and identity morphism 	, holimCX ∼=
X(•).

• For any X ∈ sSets∗
C we have a map of pointed simplicial sets limCX → holimCX ,

such that, if η : X → Y is a natural transformation of C-diagrams, the following square

commutes:

limCX limCY

holimCX holimCY
η̃

• If X ∈ sSets∗
C and F : sSets∗ → sSets∗ is a simplicially enriched functor, then we

get natural maps of pointed simplicial sets F (holimCX ) → hocolimC(F ◦ X ) induced

by the adjoints of the evaluation maps

(N(C ↓ c)op)+ ∧ F
(
sSets∗((N(C ↓ c)op)+, F (X (c)))

)
→ F (X (c))

that come from the cotensoring of the category over simplicial sets, such that the

following square commutes:

F (limCX ) limC(F ◦ X )

F (holimCX ) holimC(F ◦ X )
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where the top map is the one induced by the universal property of the limit.

• If F : C → D is a functor and X ∈ sSets∗
D, then there is a map of pointed simplicial

sets holimDX
F̂−→ holimC(X◦F ) induced from the natural transformationN(C ↓ −)op ⇒

N(D ↓ F (−))op, such that, if η : X → Y is a natural transformation of D-diagrams,

the following square commutes:

holimDX holimC(X ◦ F )

holimDY holimC(Y ◦ F )

F̂

η̃

F̂

Furthermore, if F satisfies homotopy finality (that is, if (F ↓ D) is contractible for all

D ∈ D), then the induced map holimDX
F̂−→ holimC(X ◦F ) is a weak equivalence. This

occurs, for example, when D has an initital object D, and we let C = {D} with F the

inclusion functor. We conclude that the induced map holimDX
F̂−→ holimC(X ◦ F ) ∼=

X (D) is a weak equivalence. In this case the natural map X (D) ∼= limDX → holimDX
is a section of the restriction map, and so it is a weak equivalence as well. Therefore

X (D) ↪→ holimDX is a deformation retraction.

• If F,G : C → D are functors, η : F → G is a natural transformation, and X ∈ sSets∗
D,

then there is a map of pointed simplicial sets holimC(X ◦ F )
η̂−→ holimC(X ◦ G) such

that the following triangle:

holimC(X ◦ F )

holimDX

holimC(X ◦G)

η̂

F̂

Ĝ

commutes up to homotopy. Indeed, the simplicial homotopy hi comes from the one

induced on nerves by the natural transformation, together with the fact that the two

“different” images of dn+1(hn((c0
β1−→ c1

β2−→ . . .
βn−→ cn;α0) → X (c))) agree, since our

source is in the equalizer.

Additionally, since the singular complex is a right adjoint, if X is a C-diagram of spaces, we

have Sing(holimCX ) ∼= holimCSing(X ).
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Observation The end definition works equally well when X is replaced by a diagram in

a pointed simplicial model category, with the simplicial mapping space being replaced by

the cotensoring over sSets∗. In particular, we can use this to define “homotopy limit”

objects in Top∗ and Spec (in Top∗ the cotensoring with pointed simplicial sets is given by

(−)K := Top∗(|K|,−)).

Remark Though our definition of holimCX works for any X : C →M diagram in a pointed

simplicial model category, for arbitraryM it is only homotopy invariant for fibrant diagrams.

For example, given a map of C-diagrams η : X → Y which is point-wise equivalence, if

X (c),Y(c) are fibrant objects in M for all c, then the induced map of homotopy limits is a

weak equivalence. It is not true for arbitrary X ,Y , hence the name uncorrected homotopy

limit (however, the properties in the bullets above still hold). Since every object in Top∗ is

fibrant in the Quillen model structure, we don’t need to impose constraints to these types

of diagrams to achieve homotopy invariance.

Notation When working with sSets∗
C (or another pointed simplicial model category M

that isn’t Top∗), care will be taken to indicate when the notation holimCX means the above

construction applied to −̂ ◦ X , where −̂ : M →M is the (functorial) fibrant replacement

functor that is a part of the data of the simplicial model category. In this case, the bulleted

properties carry through with the obvious changes. For example, if X is the constant functor

at X ∈ M then we have holimCX ∼= X̂N(Cop)+ , or that the canonical map from the limit to

the homotopy limit factors through the canonical map limCX → limCX̂ .

We similarly have a useful enriched adjunction. For X ∈ sSets∗
C, K ∈ sSets∗

C, and Z a

pointed simplicial set, there is an isomorphism of simplicial sets:

sSets∗

(
Z,

∫
c:C
X (c)K(c)

)
∼= sSets∗

C(K, sSets∗(Z,X ))

Again, this adjunction really holds in any pointed simplicial model category M, by taking

X ∈MC, Z ∈M, replacing the simplicial mapping space X (c)K(c) with the cotensoring over

simplicial sets, and taking the simplicial mapping spaces in M for the natural transforma-

tions:

M
(
Z,

∫
c:C
X (c)K(c)

)
∼= sSets∗

C(K,M(Z,X ))

The analogous Fubini theorems hold for uncorrected homotopy limits:

Proposition B.3.2 Let C,D be small categories, X ∈ sSets∗
C×D. Then we have an iso-
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morphism of pointed simplicial sets

holimC×DX ∼= holimC(holimDX )

Corollary B.3.3 Let C,D be small categories, X ∈ sSets∗C×D. Then we have an isomor-

phism of pointed simplicial sets

holimD(holimCX ) ∼= holimC(holimDX )

Remark In other competing definitions of the homotopy limit of a diagram both objects

would be weakly equivalent, but not necessarily isomorphic. Additionally, since the previous

adjunction for ends works in any pointed simplicial model category, we have the analogous

results for the uncorrected homotopy limits there as well. Unfortunately, in a general pointed

simplicial model category it is not true that
̂̂
X ∼= X̂, and so the results for the corrected

homotopy limits don’t hold. Nevertheless, they are still weakly equivalent.

B.4 Adjunction between Both

These models of the homotopy colimit and homotopy limits allow us to switch between each

by means of an adjunction.

Proposition B.4.1 Let C be a small category, X ∈ sSets∗C, and Y ∈ sSets∗. Then there

is a natural isomorphism of pointed simplicial sets

sSets∗(hocolimCX , Y ) ∼= holimCopsSets∗(X , Y )

Proof. In simplicial degree n, sSets∗(hocolimCX , Y )n, we have a chain of natural isomor-

phisms:

= sSets∗((hocolimCX ) ∧∆n
+, Y )

∼= sSets∗(hocolimCX , sSets∗(∆
n
+, Y ))

= sSets∗

(
coeq

( ∨
c0

f−→c1∈C

X (c0) ∧N(c1 ↓ C)+

φ

⇒
ψ

∨
c∈C

X (c) ∧N(c ↓ C)+

)
, sSets∗(∆

n
+, Y )

)
∼= eq

(
sSets∗

(∨
c∈C

X (c) ∧N(c ↓ C)+, sSets∗(∆
n
+, Y )

)
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φ∗

⇒
ψ∗

sSets∗

( ∨
c0

f−→c1∈C

X (c0) ∧N(c1 ↓ C)+, sSets∗(∆
n
+, Y )

))
∼= eq

(∏
c∈C

sSets∗

(
X (c) ∧N(c ↓ C)+, sSets∗(∆

n
+, Y )

)
φ∗

⇒
ψ∗

∏
c0

f−→c1∈C

sSets∗

(
X (c0) ∧N(c1 ↓ C)+, sSets∗(∆

n
+, Y )

))
∼= eq

(∏
c∈C

sSets∗
(
X (c) ∧N(c ↓ C)+ ∧∆n

+, Y
)

φ∗

⇒
ψ∗

∏
c0

f−→c1∈C

sSets∗
(
X (c0) ∧N(c1 ↓ C)+ ∧∆n

+, Y
))

∼= eq
(∏
c∈C

sSets∗

(
N(c ↓ C)+ ∧∆n

+, sSets∗(X (c), Y )
)

φ∗

⇒
ψ∗

∏
c0

f−→c1∈C

sSets∗

(
N(c1 ↓ C)+ ∧∆n

+, sSets∗(X (c0), Y )
))

∼= eq
( ∏
c∈Cop

sSets∗

(
N(Cop ↓ c)op

+ ∧∆n
+, sSets∗(X (c), Y )

)
φ∗

⇒
ψ∗

∏
c1

f−→c0∈Cop

sSets∗

(
N(Cop ↓ c1)op

+ ∧∆n
+, sSets∗(X (c0), Y )

))

∼= eq

∏
c∈Cop

(
sSets∗(X (c), Y )N(Cop↓c)op

+

)
n

φ∗

⇒
ψ∗

∏
c1

f−→c0∈Cop

(
sSets∗(X (c0), Y )N(Cop↓c1)op

+

)
n


∼=
(

eq
( ∏
c∈Cop

sSets∗(X (c), Y )N(Cop↓c)op
+

φ∗

⇒
ψ∗

∏
c1

f−→c0∈Cop

sSets∗(X (c0), Y )N(Cop↓c1)op
+

))
n

∼=
(
holimCopsSets∗(X , Y )

)
n

Remark We emphasize here that we are working with the uncorrected homotopy limit and

colimit above. With these, this property also holds in an arbitrary pointed simplicial model

category M. That is, for X ∈ MC and Y ∈ M we have a natural isomorphism of pointed

simplicial sets:

M(hocolimCX , Y ) ∼= holimCopM(X , Y )
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by taking the induced Cop-diagram given by pointed simplicial mapping spaces. When work-

ing with the corrected homotopy limits and colimits we hit a snag; it is not true in an

arbitrary pointed simplicial model category M that if X̃
'−→ X is a functorial cofibrant re-

placement of X, then given Y ∈ M, the induced map M(X, Y ) →M(X̃, Y ) is the fibrant

replacement of M(X, Y ).
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APPENDIX C

NAIVE SPECTRA

C.1 Definition and Enrichment

Definition C.1.1 A spectrum, X, is a sequence of pointed simplicial sets, X0, X1, . . . , Xn, . . . ,

together with structure maps σn : S1 ∧ Xn → Xn+1 for each n ≥ 0. A map of spectra

f : X → Y is a collection of maps fn : Xn → Yn making the following diagram commute for

each n ≥ 0:

S1 ∧Xn Xn+1

S1 ∧ Yn Yn+1

id∧fn

σXn

fn+1

σYn

Notation The category of spectra with maps of spectra will be denoted Spec0.

Observation The trivial spectrum, denoted ∗, is the spectrum that has the trivial simplicial

set in each spectrum degree. That is, (∗)n := ∗, and the structure maps are the trivial maps

S1 ∧ ∗ ∼= ∗. For any spectrum X there is a unique map of spectra ∗ → X (since each Xn is

pointed), and a unique map X → ∗, making Spec0 a pointed category.

Example C.1.2 Let S be the spectrum given by Sn := Sn for each n ≥ 0, with structure

maps σn : S1 ∧ Sn ∼= Sn+1 (recall the definition of Sn in pointed simplicial sets). Then S is

a spectrum called the “sphere spectrum.”

Example C.1.3 Let X ∈ sSets∗. We construct a spectrum, denoted Σ∞X, by setting

(Σ∞X)n := Sn ∧ X with structure maps σn : S1 ∧ (Sn ∧ X) ∼= Sn+1 ∧ X (the associator).

This spectrum is the “suspension spectrum” of X. Note that the previous example is just

an instance of this, with S ∼= Σ∞S0.

The category of spectra is not just a category but carries an enrichment with it. Indeed, let

∆n be the standard simplicial n-simplex, and let X be a spectrum. We form a new spectrum,

85



∆n
+ ∧X, defined as (∆n

+ ∧X)m := ∆n
+ ∧Xm and structure maps σ

∆n
+∧X

m : S1 ∧ (∆n
+ ∧X)m →

(∆n
+ ∧X)m+1 given by:

S1 ∧ (∆n
+ ∧Xm) ∼= (S1 ∧∆n

+)∧Xm
∼= (∆n

+ ∧ S1)∧Xm
∼= ∆n

+ ∧ (S1 ∧Xm)
id∧σXm−−−→ ∆n

+ ∧Xm+1

where the first three isomorphisms are the associator, twist, and associator (respectively)

of the symmetric monoidal structure on pointed simplicial sets. Note that we have an

isomorphism of spectra ∆0
+ ∧ X ∼= X (given by level-wise unit isomorphisms). For a

fixed spectrum X, ∆−+ ∧ X assembles into a cosimplicial object in Spec0. Therefore, for

spectra X, Y , we define the simplicial set of maps from X to Y , denoted Spec(X, Y ), by

Spec(X, Y )n := Spec0(∆n
+ ∧ X, Y ). This simplicial set is canonically pointed, by taking

∗ ∈ Spec0(X, Y ) to be the constant map of spectra (factoring through the zero object ∗ in

Spec0).

There is a composition Spec(Y , Z) ∧ Spec(X, Y )→ Spec(X,Z) (induced by the diagonal

∆n → ∆n × ∆n) which at simplicial degree 0 recovers the composition in Spec0. A quick

check shows that this gives an enrichment of Spec0 over sSets∗, which we’ll denote by Spec.

Remark The simplicially enriched category Spec is also tensored and cotensored over sSets∗.

Indeed, for K ∈ sSets∗ and X ∈ Spec we may form K ∧X in exactly the same manner as

we did for ∆n
+ ∧X obtaining an isomorphism of simplicial sets:

Spec(K ∧X, Y ) ∼= sSets∗(K,Spec(X, Y ))

defining the tensoring.

Observation By using the n-fold twisting map in sSets∗, K ∧ Sn ∼= Sn ∧ K, we get

an isomorphism of spectra K ∧ S ∼= Σ∞K, so that the suspension spectrum is simply

the tensored sSets∗-structure on Spec (and therefore makes Σ∞(−) : sSets∗ → Spec

into a functor). On the other hand, Spec(S, Y ) is a simplicial set whose n-simplices are

Spec(S, Y )n = Spec0(∆n
+ ∧ S, Y ) ∼= Spec0

(
Σ∞∆n

+, Y
)
. We denote this simplicial set by

Ω
′∞(Y ) := Spec(S, Y ). By the functorality of the simplicial enrichment internal mapping

space, we get that Ω
′∞(−) : Spec→ sSets∗ is a functor Explicitly, the definition is isomor-

phic to the 0th-space of the spectrum, Y 7→ Y0. The tensored structure then reads:

Spec(Σ∞(K), Y ) ∼= sSets∗(K,Ω
′∞(Y ))

That is, we have a simplicially enriched adjunction between the suspension spectrum functor
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and the 0th-space functor.

Remark It is also cotensored. Let Spec(K,X) be the spectrum whose mth-pointed simplicial

set is defined as Spec(K,X)m := sSets∗(K,Xm) with structure maps given by:

S1 ∧ sSets∗(K,Xm)→ sSets∗(K,S
1 ∧Xm)→ sSets∗(K,Xm+1)

where the first map is the assembly map and the second the image of σXm under sSets∗(K,−).

Here we’re using the fact that the internal hom in a closed symmetric monoidal category

(enriched over itself) is an enriched endofunctor, e.g. that sSets∗(K,−) is a simplicial

functor. The cotensoring comes from the natural isomorphism of simplicial sets:

Spec(X,Spec(K,Y )) ∼= sSets∗(K,Spec(X, Y ))

Fact Since Spec is tensored and cotensored over sSets∗ we have some natural isomorphisms

(true for any enriched tensored and cotensored category). For K,K ′ ∈ sSets∗ and X, Y ∈
Spec we have:

(K ∧K ′) ∧X ∼= K ∧ (K ′ ∧X) and Spec(K ∧K ′, X) ∼= Spec(K,Spec(K ′, X))

Remark When the notion of symmetric spectrum is introduced together with its associative,

symmetric, and unital smash product, we will see that for K ∈ sSets∗ and X ∈ Spec, we

have Σ∞(K) ∧ X ∼= K ∧ X, where the left-hand side is the smash product of symmetric

spectra, and the right-hand side is the tensoring of Spec over sSets∗.

C.2 Naive Equivalences

Definition C.2.1 Let X be a spectrum. Let σ]n : Xn → ΩXn+1 be the maps obtained from

the adjoints of the structure map:

Xn → sSets∗(S
1, Xn+1)

'−→ Sing(|sSets∗(S
1, Xn+1)|)→ Sing(Top∗(|S1|, |Xn+1|)) = ΩXn+1

Consider the directed system of maps

X0

σ]0−→ ΩX1

Ω(σ]1)
−−−→ Ω2X2

Ω2(σ]2)
−−−−→ Ω3X3 −→ . . .
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Taking homotopy groups, and using the (adjunction) isomorphisms πi(Ω
sX) ∼= πi+s(X), we

get a directed system of (abelian) groups

πi(X0)
πi(σ

]
0)

−−−→ πi+1(X1)
πi(Ω(σ]1))
−−−−−→ πi+2(X2)

πi(Ω
2(σ]2))

−−−−−−→ πi+3(X3) −→ . . .

The ith-homotopy group of the spectrum, denoted πi(X), is the colimit of the previous sys-

tem, i.e. πi(X) := colimjπi+j(Xj). A map of spectra f : X → Y is a stable weak equivalence

if the induced map of homotopy groups πi(f) : πi(X) → πi(Y ) is an isomorphism for all i.

It is a levelwise equivalence if fn : Xn → Yn is a weak equivalence of pointed simplicial sets

for all n.

Observation A levelwise equivalence of spectra is automatically a stable weak equivalence.

Definition C.2.2 Let X be a spectrum. We say it is n-connected if π∗(X) = 0 for ∗ ≤ n.

It is connective if it is −1-connected. It is bounded below if it is n-connected for some n.

Example C.2.3 If a spectrum X has the property that Xn is (n + k)-connected for large

n, then X is k-connected.

Definition C.2.4 Let f : X → Y be a map of spectra. The homotopy fiber of f is the

homotopy limit of the cospan:

X

∗ Y

f

while the homotopy cofiber of f is the homotopy colimit of the span:

X Y

∗

f

Notation A map of spectra f : X → Y is said to be n-connected if the homotopy fiber is

(n− 1)-connected.

Definition C.2.5 Let σ]n : Xn → ΩXn+1 be the adjoints of the structure maps in the

spectrum X as defined in C.2.1. An Ω-spectrum is a spectrum such that all σ]n are weak

equivalences of simplicial sets.
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Consider the directed system of maps

Xn
σ]n−→ ΩXn+1

Ω(σ]n+1)
−−−−→ Ω2Xn+2

Ω2(σ]n+2)
−−−−−→ Ω3Xn+3 −→ . . .

and define (Ω∞X)n := hocolimj ΩjXn+j. We have weak equivalences φn:

hocolimj ΩjXn+j
'−→ hocolimj Ωj+1Xn+1+j

'−→ Ω(hocolimj ΩjXn+1+j)

were both maps are the canonical maps induced by the homotopy colimits, and are weak

equivalences by homotopy cofinality and the fact that the loops functor commutes with

directed homotopy colimits, respectively. Then the adjoint maps φ[n : S1 ∧ (Ω∞X)n →
(Ω∞X)n+1 define an Ω-spectrum, Ω∞X. There are natural maps Xn → (Ω∞X)n for each n,

and they assemble into commuting squares:

Xn ΩXn+1

(Ω∞X)n Ω((Ω∞X)n+1)

σ]n

φn

Taking the adjoint of these squares, we get a map of spectra X → Ω∞X, which represents

our “fibrant replacement functor”. Indeed, by comparing homotopy groups, we see that

X → Ω∞X is a weak equivalence. This replacement is functorial; if f : X → Y is a map of

spectra, we can construct commuting ladder diagrams as above, to obtain induced maps of

Ω-spectra, and a commuting square:

X Ω∞X

Y Ω∞Y

f Ω∞(f)

Definition C.2.6 A spectrum X is called good if, for all n ≥ 0, the structure map S1 ∧

Xn
σXn−−→ Xn+1 is an inclusion, or equivalently, if the same is true for σ]n.

Remark Good spectra are homotopically well-behaved. For example, if X is good, the

“fibrant replacement functor” Ω∞X can be defined using the colimit instead of the homotopy

colimit.

Definition C.2.7 Let Ω∞(−) : Spec→ sSets∗ be the composite functor X 7→ Ω
′∞(Ω∞X),

i.e. taking the 0th-space of the Ω-spectrum associated to X.
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Remark We again obtain a simplicially-enriched adjunction,

Spec(Σ∞(K), Y ) ∼= sSets∗(K,Ω
∞(Y ))

C.3 Functor Category

Definition C.3.1 Let F : Spec → Spec be a pointed simplicial functor. We say it is a

homotopy functor if it preserves weak equivalences of spectra.

Remark Recall that we have defined Spec as the pointed simplicial category of spectra

of pointed simplicial sets. In particular, since its enrichment is pointed simplicial, an en-

riched functor F : Spec → Spec must send the basepoint in Spec(X, Y ) to the one in

Spec(F (X), F (Y )). That is, we must have F (∗) = ∗. In the general literature, when work-

ing in the unpointed setting (so that our categories are simplicial, but not necessarily pointed

simplicial), simplicial functors F need not satisfy the condition F (∗) = ∗. If it holds, F is

said to be reduced, while F is said to be weakly reduced if the weaker condition F (∗) ' ∗ is

true.

Notation We will denote by Funh(Spec,Spec) the category of pointed simplicial homotopy

functors of spectra taking good values. To avoid set-theoretic difficulties, what we will mean

here (by abuse of notation) are the functors defined on the category of finite spectra; since

Specfin is skeletally small, this is a well-defined functor category. The morphisms between

functors F,G : Spec→ Spec are natural transformations η : F ⇒ G. Note that since Spec

is sSets∗-enriched, one can give Funh(Spec,Spec) a pointed simplicial enrichment as well,

which denote by Funh(Spec,Spec).

Example C.3.2 Let F be the composite of the (Σ∞,Ω∞)-adjunction, given by Σ∞Ω∞ :

Spec→ Spec. Then F ∈ Funh(Spec,Spec).
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APPENDIX D

CUBICAL HOMOTOPY THEORY

D.1 Total Fibers and Cofibers

Definition D.1.1 Let S be a finite set. The cubical category of S, denoted P(S) is the

category with objects all subsets of S and morphisms inclusions of sets (it’s the category

associated to the poset). We let P0(S) ⊂ P(S) be the full subcategory consisting of all

non-empty subsets, and P1(S) ⊂ P(S) the full subcategory of proper subsets. An S-cube in

a category C is a functor X : P(S)→ C.

Example D.1.2 Let S = {1, 2, 3} be the three-element set. The category P(S) is repre-

sented by the poset:

∅ {3}

{2} {2, 3}

{1} {1, 3}

{1, 2} {1, 2, 3}

while P0(S) and P1(S), respectively, are represented by:

{3} ∅ {3}

{2} {2, 3} {2} {2, 3}

{1} {1, 3} {1} {1, 3}

{1, 2} {1, 2, 3} {1, 2}
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Observation Let X : P(S) → C be an S-cube in a category. Then limP(S)X ∼= X (∅) while

colimP(S)X ∼= X (S). Suppose C is a simplicially enriched category (like sSets∗ or Spec)

so we can talk about uncorrected homotopy limits and colimits. Then the inclusion of the

subcategory P0(S) ⊂ P(S) induces a map holimP(S)X → holimP0(S)(X|P0(S)), and therefore

maps:

X (∅) ∼= limP(S)X → holimP(S)X → holimP0(S)(X|P0(S))

Similarly, the inclusion of the subcategory P1(S) ⊂ P(S) induces a map hocolimP1(S)(X|P1(S))→
hocolimP(S)X , and therefore maps:

hocolimP1(S)(X|P1(S))→ hocolimP(S)X → colimP(S)X ∼= X (S)

Definition D.1.3 Let X be an S-cube in sSets∗ or Spec. If the natural map X (∅) →
holimP0(S)(X|P0(S)) is n-connected, we say X is n-Cartesian; it is Cartesian if the map

is an equivalence. If the natural map hocolimP1(S)(X|P1(S)) → X (S) is n-connected, we

say X is n-coCartesian; it is coCartesian if the map is an equivalence. We say X is

strongly coCartesian if every subcube is coCartesian.

Fact S-cubes in spectra are much better behaved than in simplicial sets. Indeed, a cube in

spectra is Cartesian if and only if it is coCartesian (see Lemma 2.6 [37]).

In the case that X is not Cartesian or coCartesian the fibers and cofibers of the natural

maps described above will be of importance:

Definition D.1.4 Let X be an S-cube in sSets∗ or Spec. The total fiber of X , denoted

tfibX , is defined as tfibX := hofib
(
X (∅) → holimP0(S)(X|P0(S))

)
, while the total cofiber of

X , denoted tcofibX , is defined as tcofibX := hocofib
(
hocolimP1(S)(X|P1(S))→ X (S)

)
.

Fact An S-cube X is n-Cartesian if and only if tfibX is (n−1)-connected. It is n-coCartesian

if and only if tcofibX is (n− 1)-connected.

Remark Recall our convention for taking homotopy limits and colimits. If X is valued in

pointed simplicial sets and is not object-wise fibrant, then the total fiber is applied only

after replacing X by the equivalent, object-wise fibrant, S-cube {U ⊂ S 7→ X̂ (U))}. The

total cofiber in this setting requires no change. Similarly, if X is valued in Spec and is not

object-wise fibrant, tfibX refers to the total fiber of the S-cube {U ⊂ S 7→ Ω∞(X (U))}. If

X is valued in Spec and is not object-wise cofibrant, tcofibX will refer to the total cofiber

of the the S-cube {U ⊂ S 7→ X̃ (U))}
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Observation Let Θ : S → T be a bijection of sets. We get an induced functor P(S)→ P(T )

with a commutative square of categories:

P0(S) P(S)

P0(T ) P(T )

Let X be a T -cube in sSets∗ or Spec. By considering the restriction of X to both P0(T )

and P0(S), we get a commutative square:

X (∅) holimP0(T )(X|P0(T ))

X (∅) holimP0(S)(X|P0(S))

and therefore maps on homotopy fibers, tfibX → tfib Θ∗X . It is clear that this is functorial

in S, and so the induced map is a homeomorphism. In particular, if S = T = n, Θ = σ ∈ Σn,

and X has the property that X ◦Θ = X , then the induced maps tfibX σ−→ tfibX make tfibX
into a (right) Σn-object. Similarly, the commutative square of categories:

P1(S) P(S)

P1(T ) P(T )

gives a commutative square:

hocolimP1(S)(X|P0(S)) X (∅)

hocolimP1(T )(X|P0(T )) X (∅)

and therefore maps on homotopy cofibers, tcofib Θ∗X → tcofibX . In the aforementioned

case of S = T = n, Θ = σ ∈ Σn, and X ◦ Θ = X , the induced maps tcofibX σ−→ tcofibX
make tcofibX into a (right) Σn-object.

Remark There is an alternate formulation of the total fibers and total cofibers of a cube

which is remarkably useful. Let X be an S-cube in a category C, and pick a distinguished

element s ∈ S. Then we can construct two (S − s)-cubes in C, denoted Xsource and Xtarget,
as follows: for U ⊂ S − s, Xsource(U) := X (U) and Xtarget(U) := X (U q {s}) with the maps

induced from those in X . Note also that the inclusion U ⊂ U q{s} for U ⊂ S − s induces a
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map of (S− s)-cubes Xsource → Xtarget. On the other hand, given a map of S-cubes X → Y ,

we can form the finite set T := Sq∗ by adding a disjoint element. Then we can view X → Y
as a single cube, Z : P(T )→ C by sending, for U ⊂ T

Z(U) =

{
X (U) if ∗ /∈ U
Y(U − ∗) if ∗ ∈ U

In particular, if S = {1, . . . , n− 1}, then a map of (n− 1)-cubes is equivalent to an n-cube,

by taking ∗ = n or s = n. This is used extensively and successfully to induct on the size of

cubes (see p. 300 [25]). In particular, we have the following result:

Proposition D.1.5 Let X be an n-cube in sSets∗ or Spec, and view it as a map of (n−1)-

cubes Xsource → Xtarget. Then we have natural homeomorphisms

tfibX ∼= hofib
(
tfib (Xsource)→ tfib (Xtarget)

)
and

tcofibX ∼= hocofib
(
tcofib (Xsource)→ tcofib (Xtarget)

)
Proof. These homeomorphisms come directly from the end and coend formulas for the ho-

motopy limits and colimits, much in the same manner that Goodwillie shows Definitions 1.1

and 1.1b in [25] are equivalent.

D.2 Co-cross Effects

Notation Throughout this section, let T denote either sSets∗ or Spec.

Definition D.2.1 Let S be a finite non-empty set and f : S → T be a function. Define an

S-cube in T , denoted Sf , by:

U ⊂ S 7→
∏
u∈U

f(u) and V ⊂ U ⊂ S 7→
∏
v∈V

f(v)→
∏
u∈U

f(u)

is given by inclusion into the basepoint (∅ is sent to ∗).

Example D.2.2 Let S = {1, 2}, X, Y ∈ sSets∗, and f : S → sSets∗ be given by f(1) =

X, f(2) = Y . Then Sf is the 2-cube:
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∗ Y

X X × Y

∗×idY

idX×∗

If S ′
α−→ S is a function, we get an induced S ′-cube, S ′f◦α

Example D.2.3 Continuing with the previous example, if S ′ = {1, 2, 3} and α : {1, 2, 3} →
{1, 2} is given by α(1) = α(3) = 1, α(2) = 2, then S ′f◦α is the 3-cube:

∗ X

Y Y ×X

X X ×X

X × Y X × Y ×X

∗×idX

∗×idX

idY ×∗

∗×idY ∗×idY×X

idX×∗

idX×∗

idX×∗×idX

idX×Y ×∗

Observation We also get an induced functor P(S) → P(S ′) given by taking the pre-image

of a subset under α. If S ′
α−→ S is surjective, then we define an S-subcube of the S ′-cube,

S ′f◦α, as the composite P(S)→ P(S ′)
S′f◦α−−−→ C. That is,

U ⊂ S 7→
∏

u′∈α−1(U)

f(α(u′))

We denote this S-subcube by Sf (α)

Example D.2.4 If S = {1, 2} S ′ = {1, 2, 3} and α : S ′ → S is given by α(1) = α(3) =

1, α(2) = 2, then Sf (α) is the 2-subcube given by (in blue):

∗ X

Y Y ×X

X X ×X

X × Y X × Y ×X

∗×idX

∗×idX

idY ×∗

∗×idY ∗×idY×X

idX×∗

idX×∗

idX×∗×idX

idX×Y ×∗

We let α̃ : Sf → Sf (α) be the map of S-cubes given by:

U ⊂ S 7→
∏
u∈U

f(u)
α̃U−→

∏
u′∈α−1(U)

f(α(u′))
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where α̃U(x1, . . . , xt) = (xα(1), . . . , xα(s)), and t = |U |, s = |α−1(U)|.

Example D.2.5 In our previous example, the induced map of 2-cubes α̃ : Sf → Sf (α) is:

∗ Y

∗ Y

X ×X X × Y ×X

X X × Y

∆ ∆

This is not the map induced from two subcubes sitting inside the 3-cube S ′f◦α.

Definition D.2.6 Let F : T → T ′ be a reduced homotopy functor. Let S be a finite set,

and f : S → T a function. We define:

ĉrfF := tcofibF (Sf )

Example D.2.7 Let S = {1, 2}, X, Y ∈ sSets∗, and f : S → sSets∗ be given by f(1) =

X, f(2) = Y . Let F be a reduced functor. Then ĉrfF is the the iterated cofiber of the

2-cube:

∗ F (Y )

F (X) F (X × Y )

∗×idY

idX×∗

In the case that F = IdsSets∗ , then ĉrfId ' X ∧ Y .

Let α : S ′ → S be a surjective map of sets. We have constructed thus far three cubes from

this data: Sf , S ′f◦α, and the S-cube sitting inside it, Sf (α). Taking F we obtain three

cubes in the T ′, mainly, F (Sf ), F (S ′f◦α), and F (Sf (α)). Note that we have a morphism

of S-cubes with the first and last, that is, F (α̃) : F (Sf ) → F (Sf (α)), and therefore we get

induced maps of total cofibers:

tcofib(F (Sf ))
F̃ (α̃)−−→ tcofib(F (Sf (α)))

On the other hand, since Sf (α) is defined as the composite P(S)
α−1(−)−−−−→ P(S ′)

S′f◦α−−−→ C, by

the properties of the homotopy colimit with respect to change of indexing category, we get
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an induced map:

tcofib(F (Sf (α)))→ tcofib(F (S ′
f◦α

))

Combining both maps, we get a map in T ′:

α̂ : ĉrfF −→ ĉrf◦αF

Example D.2.8 Let S = {1, 2}, X, Y ∈ sSets∗, and f : S → sSets∗ be given by f(1) =

X, f(2) = Y . Let S ′ = {1, 2, 3} and α : S ′ → S is given by α(1) = α(3) = 1, α(2) = 2. Let

F = IdsSets∗ . Then, ĉrfId ' X ∧Y , and, by taking the iterated cofibers of the 3-cube S ′f◦α,

we see that ĉrf◦αId ' (X ∧ Y ) ∧X. The map α̂ is then the composite of:

ĉrfId ' X ∧ Y ∆×idY−−−−→ (X ×X) ∧ Y π×idY−−−→ (X ∧X) ∧ Y ∼= (X ∧ Y ) ∧X ' ĉrf◦αId

Fact Let α : S ′ → S and β : S ′′ → S ′ be surjections of finite sets. Then for any f : S → T ,

α̂ ◦ β = β̂ ◦ α̂.

Notation For X ∈ T , denote also by X the function from {1} to T given by 1 7→ X. For S

any finite non-empty set, there is a unique surjective map τS : S → {1}.

Definition D.2.9 Let F : T → T ′ be a reduced homotopy functor, and X ∈ T . For S a

finite non-empty set, define

ĉrSF (X) := ĉrX◦τSF

Example D.2.10 Let F = IdsSets∗ . Then ĉrSId(X) '
∧
S X, the smash product of X

indexed over the elements of S.

Observation If α : S ′ → S is a surjective map, we get an induced map ĉrSF (X)→ ĉrS
′
F (X)

by the map α̂ : ĉrX◦τSF → ĉrX◦τS◦αF (since τS ◦ α = τS′), which was induced from the

diagonals, in the map of S-cubes F (SX◦τS)
F (α̃)−−→ F (SX◦τS(α)).

Example D.2.11 Let S = {1, 2}, S ′ = {1, 2, 3} and α : S ′ → S is given by α(1) = α(3) =

1, α(2) = 2. Fix X ∈ sSets∗. Then the induced map α̂ : ĉrSId(X)→ ĉrS
′
Id(X) is the map:

X ∧X → X ∧X ∧X

(x1, x2) 7→ (x1, x2, x1)
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D.3 As M-diagrams

Notation Let Surj be the category with:

• Obj(Surj) = {n | n := {1, . . . , n}, n ∈ N}

• Surj
(
n,m

)
= {α | α : n→ m surjective}

Denote its opposite category by M := Surjop. Similarly, we set Surjn to be the full subcate-

gory of Surj with objects of size ≤ n, and denote Mn := Surjn
op.

Claim D.3.1 For a fixed non-empty finite set S, and F ∈ Funh(T , T ′), the assignment

X 7→ ĉrSF (X) is in Funh(T , T ′) again.

Proof. Let f : X → Y be a map in T . There is a map of S-cubes in T , SX◦τS → SY ◦τS

given by, for U ⊂ S,
∏

u∈U Xu
f×···×f−−−−→

∏
u∈U Yu, and therefore maps of S-cubes in T ′,

F (SX◦τS)→ F (SY ◦τS). The induced map on total cofibers

ĉrSF (X) = tcofibF (SX◦τS)→ tcofibF (SY ◦τS) = ĉrSF (Y )

makes ĉrSF (−) : T → T ′ into a functor. Also, note that ĉrSF (∗) = tcofibF (S∗◦τS). Since F

is reduced, then F (S∗◦τS) is the constant S-cube of ∗, so by the properties of our model of the

homotopy colimit, tcofibF (S∗◦τS) ∼= ∗, and therefore ĉrSF (−) is a reduced functor. Lastly,

suppose that X
'−→ Y is a weak equivalence in T . Then since F is a homotopy functor, the

map of S-cubes in T ′, F (SX◦τS)→ F (SY ◦τS), is a weak equivalence in the diagram category

Func(P(S), T ′). Since homotopy colimits preserve weak equivalences we get that:

ĉrSF (X) = tcofibF (SX◦τS)
'−→ tcofibF (SY ◦τS) = ĉrSF (Y )

Claim D.3.2 For a fixed F ∈ Funh(T , T ′), the assignment S ∈ M 7→ ĉrSF (−) defines a

functor M→ Funh(T , T ′).

Proof. Let αop : S → S ′ be a morphism in M (so α : S ′ → S is a surjective map of sets).

Then for every X ∈ T we have an induced map α̂ : ĉrSF (X) → ĉrS
′
F (X) defined earlier

as ĉrX◦τSF → ĉrX◦τS′F . If βop : S ′ → S ′′ is another morphism in M (so β : S ′′ → S ′ is a

surjective maps of sets), and β̂ : ĉrX◦τS′F → ĉrX◦τS′′F its induced map, we’ve already seen
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that α̂ ◦ β = β̂ ◦ α̂, and therefore,

ĉrSF (X)→ ĉrS
′
F (X)→ ĉrS

′′
F (X)

has β̂op ◦ α̂op = ̂βop ◦ αop. Now, we need to check that for αop : S → S ′ in M we have a

morphism in Funred(T , T ′), that is, a natural transformation of the functors ĉrSF (−) →
ĉrS

′
F (−). For each X ∈ T , we’ll denote the previous map α̂ by the object X, by α̂X :

ĉrSF (X)→ ĉrS
′
F (X). Recall that that map was induced from the map of S-cubes induced

from diagonals α̃X : SX◦τS → SX◦τ (α). Let f : X → Y be a map in T . Since the “diagonals

of the f’s are the f’s of the diagonals” we have a commutative square of S-cubes:

SX◦τS SX◦τS(α)

SY ◦τS SY ◦τS(α)

α̃X

α̃Y

and therefore a commutative square of S-cubes in T ′

F (SX◦τS) F (SX◦τS(α))

F (SY ◦τS) F (SY ◦τS(α))

F (α̃X)

F (α̃Y )

Taking total cofibers, we get a commutative square in T ′:

tcofibF (SX◦τS) tcofibF (SX◦τS(α))

tcofibF (SY ◦τS) tcofibF (SY ◦τS(α))

On the other hand, the map f : X → Y induces a map of S ′-cubes in T , S ′X◦τS′ → S ′Y ◦τS′

as in the previous claim. Since the homotopy colimit of the pre-composition is natural with

respect to natural transformations of diagrams before composition, we have a commutative

square:

tcofibF (SX◦τS(α)) tcofibF (SX◦τS′ )

tcofibF (SY ◦τS(α)) tcofibF (SY ◦τS′ )

Pasting this square next to the previous one, we get that:
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ĉrSF (X) ĉrS
′
F (X)

ĉrSF (Y ) ĉrS
′
F (Y )

α̂X

α̂Y

Therefore α̂− : ĉrSF (−) → ĉrS
′
F (−) is a natural transformation of functors T → T ′, and

this concludes the claim.

Claim D.3.3 The assignment F ∈ Funh(T , T ′) 7→ ĉr?F (−) ∈ Fun
(
M, Funh(T , T ′)

)
de-

fines a functor.

Proof. Let F,G ∈ Funred(T , T ′), and η : F → G be a natural transformation. We want a

natural transformation ĉr?F (−) → ĉr?G(−) of functors M → Funred(T , T ′). For S ∈ M
and X ∈ T , we have a map of S-cubes F (SX◦τS)

η̃S−→ G(SX◦τS) given, for U ⊂ S by:

F
(∏
u∈U

Xu

) η∏
u∈U Xu−−−−−−→ G

(∏
u∈U

Xu

)
The naturality of η ensures that this is a map of S-cubes. Again by the naturality of η, if

f : X → Y is a map in T , then we have a commutative square of S-cubes:

F (SX◦τS) G(SX◦τS)

F (SY ◦τS) G(SY ◦τS)

η̃S

η̃S

Taking total cofibers, we get a commuting square in T ′:

ĉrSF (X) ĉrSG(X)

ĉrSF (Y ) ĉrSG(Y )

η̃S,X

η̃S,Y

So η̃S is a natural transformation between ĉrSF (−)→ ĉrSG(−) as functors from T → T ′. If

α : S ′ → S is a surjective map of sets, by the naturality of η, we have a commutative square

of S-cubes:

F (SX◦τS) F (SX◦τS(α))

G(SX◦τS) G(SX◦τS(α))

F (α̃X)

η̃S,X η̃S,X

G(α̃X)

Taking total cofibers, we have the commutative diagram in T ′:
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tcofibF (SX◦τS) tcofibF (SX◦τS(α))

tcofibG(SX◦τS) tcofibG(SX◦τS(α))

F (α̃X)

η̃S,X η̃S,X

G(α̃X)

On the other hand, the natural transformation η induces a map of S ′-cubes in T ′, F (S ′X◦τS′ )
η̃S′,X−−−→

G(S ′X◦τS′ ). Since the homotopy colimit of the pre-composition is natural with respect to

natural transformations of diagrams before composition, we have a commutative square:

tcofibF (SX◦τS(α)) tcofibF (SX◦τS′ )

tcofibG(SX◦τS(α)) tcofibG(SX◦τS′ )

Pasting this square next to the previous one, we get that:

ĉrSF (X) ĉrS
′
F (X)

ĉrSG(X) ĉrS
′
G(X)

α̂X

η̃S,X η̃S′,X

α̂X

So η̃?,− is a natural transformation between ĉr?F (−) → ĉr?G(−) as functors from M →
Funh(T , T ′). If θ : G→ H is another natural transformation of functors Funh(T , T ′), then

we have θ̃?,− ◦ η̃?,− = θ̃ ◦ η?,− by inspection.

Altogether we have that “taking co-cross effects” defines a functor

ĉr := ĉr?(†)(−) : Funh(T , T ′)→ Fun
(
M, Funh(T , T ′)

)
We can also define another functor between these categories which behaves like the trivial

functor, denoted tr,

tr := tr?(†)(−) : Funh(T , T ′)→ Fun
(
M, Funh(T , T ′)

)
which is much easier to define. For F ∈ Funh(T , T ′), S ∈M, and X ∈ T , define trSF (X) :=

F (X) and for f : X → Y in T , we set trSF (X) → trSF (Y ) to be F (f). That is, for any

finite set S, we set trSF to be the functor F . For α : S ′ → S a surjective map of sets,

we set trSF (X) → trS
′
F (X) to be the identity map on F (X); this clearly defines the

identity natural transformation. Lastly, for F,G ∈ Funh(T , T ′) and η : F → G a natural
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transformation, we set η̃S,X := ηX : F (X) → G(X), thus defining a natural transformation

tr(F )→ tr(G) as functors M→ Funh(T , T ′).
There is a natural transformation tr → ĉr as functors Funh(T , T ′)→ Fun

(
M, Funh(T , T ′)

)
.

We define it via an auxiliary diagram; for S ∈M and X ∈ T , let trX(S) be the S-cube in T
given by, for U ⊂ S:

trX(S)(U) =

{
∗ if U 6= S

X if U = S

This diagram has the zero object in T everywhere except at the terminal point of the S-

cube, where it equals X. Let ∆ : trX(S)→ SX◦τS be the map of S-cubes determined by the

diagonal map X
∆−→
∏

s∈S Xs. If F ∈ Funh(T , T ′), we get an induced map of S-cubes in T ′,
F (trX(S))

F (∆)−−−→ F (SX◦τS), and then taking total cofibers:

trSF (X) = F (X) ∼= tcofibF (trX(S))
F (∆)−−−→ tcofibF (SX◦τS) = ĉrSF (X)

A quick check shows that this defines a natural transformation of functors (all the maps are

induced by diagonals, which are compatible with F (∆)).

Example D.3.4 Let T = T ′ = sSets∗ and let F = IdsSets∗ . Then ĉr?Id(−) is the functor

that sends a finites set S 7→ ĉrSId(X) '
∧
S X, the smash product of X indexed over

the elements of S. The maps on f : X → Y and α : S ′ → S are induced by diagonals.

Furthermore, the natural transformation tr?Id(−)→ ĉr?Id(−) is the diagonal,

trSId(X) = X
∆−→
∧
S

X ' ĉrSId(X)

D.4 As Multi-functors

Definition D.4.1 Let n ∈ N>0, and F ∈ Funh(T , T ′). Define an n-multi-functor, denoted

ĉrnF : T ×n → T ′, by sending (X1, . . . , Xn) 7→ ĉrfF , where f : n→ T is such that f(i) = Xi.

Observation Let (X1, . . . , Xn)
(f1,...,fn)−−−−−→ (X ′1, . . . , X

′
n) be a morphism in T ×n. It induces a

map of n-cubes in T , nf → nf
′
: on U ⊂ n,

∏
u∈U Xu

∏
fu−−→
∏

u∈U X
′
u. Applying F and taking
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total cofibers we get the map

ĉrnF (X1, . . . , Xn)→ ĉrnF (X ′1, . . . , X
′
n)

giving the structure of a multi-functor. The multi-functor ĉrnF is multi-reduced, that is,

reduced in each entry. Indeed, if Xi = ∗ for some i, then we can partition the n-cube F (nf )

as a map of (n− 1)-cubes by taking n− i, and defining F (nf )source → F (nf )target as in the

section on cubical homotopy theory. For each U ⊂ (n− i) the map nf source(U)→ nf target(U)

is an equivalence, since it is the inclusion into the basepoint on Xi
∼= ∗ and identity on

the remaining Xj, j 6= i. Since F is a homotopy functor, we see that for each U ⊂ (n − i),
F (nf )source(U)→ F (nf )target(U) is an equivalence. Taking total cofibers, we get that ĉrfF ∼=
∗. Furthermore, ĉrnF is a homotopy functor in each direction. That is, if Xi

'−→ X ′i is a weak

equivalence, then the induced map ĉrnF (X1, . . . , Xi, . . . , Xn) → ĉrnF (X1, . . . , X
′
i, . . . , , Xn)

is a weak equivalence. Indeed, if g : Xi
'−→ X ′i is a weak equivalence, then for any other

Z ∈ T , Z ×Xi
idZ×g−−−→ Z ×X ′i is a weak equivalence also. The map of cubes nf → nf

′
is a

weak equivalence on each vertex, and therefore so is F (nf )→ F (nf
′
). Taking total cofibers

gives the result.

Fact The nth-co-cross effect construction is compatible with natural transformations. That

is, taking nth-co-cross effects defines a functor:

ĉrn(−) : Funh(T , T ′)→ Funh(T ×n, T ′)

Example D.4.2 Let F = IdsSets∗ , then ĉrnId : sSets∗
×n → sSets∗ is the n-multi-functor:

(X1, . . . , Xn) 7→ X1 ∧ · · · ∧Xn

Remark Let σ ∈M(n, n) = Σn. For F ∈ Funh(T , T ′), define ĉrnF · σ : T ×n → T ′ by:

(ĉrnF · σ)(X1, . . . , Xn) := ĉrnF (Xσ−1(1), . . . , Xσ−1(n))

Since our iterated cofibers are isomorphic regardless of the directions taken for the homotopy

cofibers, we have that

ĉrnF (Xσ−1(1), . . . , Xσ−1(n)) ∼= ĉrnF (X1, . . . , Xn)

We call such a multi-functor symmetric, that is, invariant under permutations of the variables
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(up to isomorphism).

Observation Composing ĉrnF with the diagonal T ∆−→ T ×n gives a (right) Σn-object in

Funh(T ×n, T ′).

Fact Any nth-co-cross effect can be realized as a second co-cross effect. Indeed, we have a

weak equivalence:

ĉrnF (X1, . . . , Xn) ' ĉr2[ĉrn−1F (X1, . . . , Xn−2, ?)](Xn−1, Xn)

by D.1.5 or more directly by Lemma 5.7.6 [49].

D.5 Twisted Arrow Category

Notation Let C be a category. The category of arrows in C is denoted Ar(C) := Fun([1], C).

Definition D.5.1 Let C be a category. The twisted arrow category on C, denoted tw(C), is

the category with:

• Obj(tw(C)) = {f | f ∈ Ar(C)}

• tw(C)
(
f, g
)

= {(α, β) | α ∈ C(do, c0) g ∈ C(c1, d1) with β ◦ f ◦ α = g}

That is, the objects are arrows c0
f−→ c1 in C, and the morphisms between c0

f−→ c1 and

d0
g−→ d1 are pairs (α, β) making the following diagram commute:

c0 d0

c1 d1

f g

α

β

Composition is defined as (α′, β′) ◦ (α, β) := (α ◦α′, β′ ◦ β), i.e. from the commuting square:

c0 d0 e0

c1 d1 e1

f g

α

h

α′

β β′

Observation There is an obvious “forgetful” functor π : tw(C) → Cop × C given by (c0
f−→

c1) 7→ (c0, c1) and (α, β) 7→ (αop, β). If F : C → D is a functor, we get an induced functor

tw(C)→ tw(D) by sending (c0
f−→ c1) 7→ (F (c0)

F (f)−−→ F (c1)) and (α, β) 7→ (F (α), F (β)).
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Remark Let V be a closed symmetric monoidal category, and let D be a V -enriched category,

with V -mapping spaces denoted by D(d, d′) for objects d, d′ ∈ D. Let F,G : C → D be C-
diagrams in D. We can form an tw(C)-diagram in V , denoted Homtw(C)(F,G), as follows:

(c0
f−→ c1) 7→ D(F (c0), G(c1)) and for the morphism (c0

f−→ c1)
(α,β)−−−→ (d0

g−→ d1) in tw(C), we

get the morphism in V :

Homtw(C)(F,G)(c0
f−→ c1) = D(F (c0), G(c1))→ D(F (d0), G(d1)) = Homtw(C)(F,G)(d0

g−→ d1)

given by h 7→ G(β) ◦ h ◦ F (α).

Example D.5.2 Let V = D = sSets∗ and X, Y : C → sSets∗. The above construction

gives us a tw(C)-diagram of pointed simplicial sets, denoted Homtw(C)(X, Y ). On the other

hand, the category of C-diagrams in sSets∗ is sSets∗-enriched, tensored and cotensored.

Given X, Y : C → sSets∗, the simplicial mapping space, denoted MapC(X, Y ), is given in

simplicial degree n by (MapC(X, Y ))n := sSets∗
C(X ∧ ∆n

+, Y ). These two mapping spaces

are related:

Claim D.5.3 There is an isomorphism MapC(X, Y ) ∼= lim
tw(C)

Homtw(C)(X, Y ) (as pointed

simplicial sets).

Proof. By definition:

lim
tw(C)

Homtw(C)(X, Y ) = eq
( ∏

(c0
f−→c1)∈tw(C)

Homtw(C)(X, Y )(c0
f−→ c1)

δ0

⇒
δ1

∏
(α,β)∈tw(C)

(
c0

f−→c1,d0

g−→d1

)Homtw(C)(d0
g−→ d1)

)

= eq
( ∏
c0

f−→c1

sSets∗(X(c0), Y (c1))
δ0

⇒
δ1

∏
g=β◦f◦α

sSets∗(X(d0), Y (d1))
)

where π(α,β) ◦ δ0 = π
d0

g−→d1
and π(α,β) ◦ δ1 = Homtw(C)(α, β) ◦ π

c0
f−→c1

. The map φ :

MapC(X, Y ) → sSets∗(X(c0), Y (c1)) is given, in simplicial degree n by η ∈ sSets∗
C(X ∧

∆n
+, Y ) 7→ Y (f)◦ηc0 . Assembling the maps for all such (c0

f−→ c1) gives a simplicial map that

clearly factors through the equalizer, obtaining the desired isomorphism.
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APPENDIX E

FUNCTORS WITH SMASH PRODUCT

E.1 Enrichment and Morphisms

Notation Recall from A that sSets∗ forms a complete and cocomplete closed symmetric

monoidal category under the smash product of pointed simplicial sets. A sSets∗-enriched

category C will be called pointed simplicial. Let C,D be two pointed simplicial categories.

A sSets∗-enriched functor F : C → D will be called pointed simplicial. See [14] Appendix

10 or [32] Chapters 1 and 2 for details on enriched category theory.

Let F : C → D be a pointed simplicial functor between pointed simplicial categories. Assume

further that both C,D are tensored over sSets∗. For X ∈ sSets∗, C ∈ C we get assembly

maps λX,C : X ⊗ F (C)→ F (X ⊗ C) defined via

S0 idX⊗C−−−−→ C(X ⊗ C,X ⊗ C) sSets∗(X, C(C,X ⊗ C))

D(X ⊗ F (C), F (X ⊗ Y )) sSets∗(X,D(F (C), F (X ⊗ C)))

∼=

F◦(−)

∼=

in the underlying category of D, U0D. By the naturality of the isomorphisms defining

the closed monoidal structure on sSets∗ and from the fact that F is enriched we get that

F (`C) ◦ λS0,C ◦ `F (C)
−1 = idF (C), where ` is the left unitor of the monoidal category sSets∗.

In a tensored category we have for X, Y ∈ sSets∗, C ∈ C natural isomorphisms α̃X,Y,C :

(X∧Y )⊗C ∼= X⊗ (Y ⊗C). In particular, with (X∧Y )⊗F (C) ∼= X⊗ (Y ⊗F (C)) in D, we

get that F (α̃−1
X,Y,C) ◦ λX,Y⊗C ◦ (idX ⊗ λY,C) ◦ αX,Y,F (C) = λX∧Y,C . Furthermore, in the special

case that C = D = sSets∗, if τX,Y : X ∧ Y
∼=−→ Y ∧X is the switch isomorphism defining the

symmetric monoidal structure, we have that F (τZ,X∧Y ) ◦λZ,X∧Y ◦ τF (X∧Y ),Z ◦ (λX,Y ∧ idZ) =

F (α−1
X,Y,Z) ◦ λX,Y ∧Z ◦ (idX ∧ (F (τZ,Y ) ◦ λZ,Y ◦ τF (Y ),Z)) ◦ αX,F (Y ),Z . In this last equality it is

crucial that we use the fact that a symmetric monoidal category is closed if and only if it is

biclosed, with the right adjoint to X ∧ − given by the internal hom [X,−].
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Notation Let sSets∗
fin be the full subcategory of sSets∗ which consists of finite pointed

simplicial sets (pointed simplicial sets with finitely many non-degenerate simplices).

Fact The category sSets∗
fin is small, and inherits the structure of a (non-closed) symmetric

monoidal sSets∗-category (see [14] A.10.3).

Remark Even though sSets∗
fin is sSets∗-enriched it is not tensored or cotensored. However,

it admits “products with (finite) pointed simplicial sets” (see [17] 1.0.3), which is enough to

give assembly maps λX,C : X ⊗F (C)→ F (X ⊗C) for X ∈ sSets∗
fin, C ∈ C given a pointed

simplicial functor F : sSets∗
fin → sSets∗.

Definition E.1.1 A functor with stabilization (FST) is a pointed simplicial functor F :

sSets∗
fin → sSets∗ such that

• If X is n-connected, then F (X) is also n-connected.

• If X is n-connected, the assembly map λS1,X : S1 ∧ F (X) → F (S1 ∧ X) is (2n − c)-
connected for some number c not dependent on X.

Remark In the literature, the conditions on the assembly maps mentioned previously, F (`C)◦
λS0,C◦`F (C)

−1 = idF (C) and F (α̃−1
X,Y,C)◦λX,Y⊗C◦(idX⊗λY,C)◦αX,Y,F (C) = λX∧Y,C , are included

in the definition of an FST when the language of enriched category theory is not used.

Definition E.1.2 A functor with smash product (FSP) is a functor with stabilization which

is lax monoidal. A commutative FSP is an FST which is symmetric lax monoidal.

Unpacking the definition, an FSP F has a natural transformation of functors sSets∗
fin ×

sSets∗
fin → sSets∗, the “product”

µF−,? = µ−,? : F (−) ∧ F (?)⇒ F (− ∧ ?)

and a “unit” morphism 1S0 : S0 → F (S0) which satisfy (up to an associator):

µX∧Y,Z ◦
(
µX,Y ∧ idF (Z)

)
= µX,Y ∧Z ◦

(
idF (X) ∧ µY,Z

)
F (`X) ◦ µS0,X ◦ (1S0 ∧ idF (X)) ◦ `F (X)

−1 = idF (X)

F (rX) ◦ µX,S0 ◦ (idF (X) ∧ 1S0) ◦ rF (X)
−1 = idF (X)

However, since F is an FST (in particular, pointed simplicial) we also get assembly maps.

The assembly maps and the lax monoidal structure are not that far off; we see from the
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second equation that λS0,X = µS0,X ◦ (1S0 ∧ idF (X)). For any X we can define a morphism

1FX : X → F (X) by F (rX) ◦ λX,S0 ◦ (idX ∧ 1S0) ◦ rX−1. Since all the morphisms are natural,

we thus obtain a natural transformation of functors sSets∗
fin → sSets∗

1F− = 1− : IdsSets∗(−)⇒ F (−)

Combining the last two equations then gives µX,Y ◦
(
1X ∧ idF (Y )

)
= λX,Y (in particular,

λS1,X is given by the “product” with the unit map 1FS1 : S1 → F (S1)). Furthermore,

the relationship between assembly maps and the “twist” isomorphism from the previous

subsection gets translated to (up to associators) F (τY,X)◦µY,X◦
(
idF (Y )∧1X

)
◦τX,F (Y ) = λX,Y .

Lastly, the associativity of µ and the simplicial structure of F give µX,Y ◦
(
1X ∧1Y

)
= 1X∧Y .

Remark The conditions mentioned in these previous paragraphs regarding the two natural

transformations 1FX = 1X : X → F (X) and µFX,Y = µX,Y : F (X) ∧ F (Y ) → F (X ∧ Y ) for

the FST F are included in the definition of an FSP when the language of enriched category

theory is not used.

Observation Under this dictionary commutative FSP’s satisfy:

F (τX,Y ) ◦ µX,Y = µY,X ◦ τF (X),F (Y )

τF (X),F (Y ) ◦
(
1X ∧ idF (Y )

)
=
(
idF (Y ) ∧ 1X

)
◦ τX,F (Y )

and these again are included in older definitions in the literature.

Notation Let C,D be two pointed simplicial categories. The functor category between them

is Fun(C,D), whereas the sSets∗-enriched functor category is denoted Fun(C,D), with

objects pointed simplicial functors C → D and hom sSets∗-objects given by the sSets∗-

enriched ends:

Fun(C,D)(F,G) :=

∫
c∈C
D(F (c), G(c))

over the functor D(F (−), G(−)) : Cop × C → sSets∗.

In the case that C is small sSets∗-enriched monoidal and D = sSets∗ (or more generally,

the base closed symmetric monoidal category we are enriched over), the enriched functor

category Fun(C,D) becomes a closed monoidal category in its own right (see Theorem 3.3

[12]), under the monoidal product given by Day convolution

Fun(C,D)× Fun(C,D)→ Fun(C,D)
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(F,G) 7→
{
F ⊗Day G : c 7→

∫ (c1,c2)∈C×C
C(c1 ⊗C c2, c) ∧ F (c1) ∧G(c2)

}
that is, the left Kan extension of the external product ⊗̄ : Fun(C,D) × Fun(C,D) →
Fun(C,D) through the monoidal functor on C, ⊗C : C × C → C. In particular, from the

definition of left Kan extension, we know precisely how to map out of a Day product. Indeed,

we have a sSets∗-natural isomorphism:

Fun(C,D)(F ⊗Day G,H) ∼= Fun(C × C,D)(F ⊗̄G,H ◦ ⊗C)

Remark With the Day monoidal structure, lax monoidal functors sSets∗
fin → sSets∗ are

identified with monoids in Fun(sSets∗
fin, sSets∗). Similarly, symmetric lax monoidal func-

tors are identified with commutative monoids in Fun(sSets∗
fin, sSets∗). That is, thanks

to the Day convolution, we can identify FSTs and FSPs as the monoids and commutative

monoids, respectively, in Fun(sSets∗
fin, sSets∗) satisfying stabilization.

Definition E.1.3 The category of FSPs, denoted FSP , is the (pointed simplicial) subcat-

egory of Fun(sSets∗
fin, sSets∗) of monoids satisfying stabilization and monoid maps. The

category of commutative FSPs, FSPcom, is the full subcategory of FSP consisting of com-

mutative monoids satisfying stabilization.

Observation Concretely, a morphism between FSPs, η : F → G, is an sSets∗-enriched

natural transformation of functors sSets∗
fin → sSets∗ strictly compatible with µ and 1. That

is, ηX ◦ 1FX = 1GX and ηX∧Y ◦ µFX,Y = µGX,Y ◦
(
ηX ∧ ηY

)
. Also, since the forgetful functor from

the simplicially-enriched category sSets∗ down to its underlying category sSets∗ (taking the

0-simplices of the hom-sets) is faithful, the notions of sSets∗-enriched natural transformation

and (ordinary) natural transformation coincide.

E.2 Connection to Symmetric Spectra

Notation We take Sm := S1 ∧ · · · ∧ S1 (m-times) as our model of the simplicial sphere.

Definition E.2.1 The spectrum associated to an FSP F , denoted F , is the sequence of

spaces {F (Sm)}m∈N, with structure maps λS1,Sm : S1 ∧ F (Sm) → F (Sm+1). From the

stability conditions, this is a connective spectrum.

Remark Let Σm be the symmetric group on m-letters, and X ∈ S∗. The iterated smash X∧m

has a natural Σm-action by setting, for σ ∈ Σm, σX : X∧m → X∧m to be coordinate permu-
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tation, that is, σX(x1 ∧ · · · ∧ xm) := xσ(1) ∧ · · · ∧ xσ(m). Then F (X∧m) acquires a Σm-action

by means of functorality. In particular, F (Sm) has a Σm-action. By playing around with

(enriched) adjunctions, it is easy to see that F (idS1∧σSm)◦λS1,Sm = λS1,Sm ◦
(
idS1∧F (σSm)

)
.

In other words, λS1∧Sm is Σ1 × Σm-equivariant. In fact, a similar argument shows that, for

θ ∈ Σp, we have F (θSp ∧ σSm) ◦ λSp,Sm = λSp,Sm ◦
(
θSp ∧F (σSm)

)
; that is λSp,Sm is Σp×Σm-

equivariant.

Note that by uniqueness of adjunctions, the iterated map:

S1 ∧ · · · ∧ S1︸ ︷︷ ︸
p−times

∧F (Sm)
idSp−1∧λS1,Sm−−−−−−−−−→ S1 ∧ · · · ∧ S1︸ ︷︷ ︸

p−1−times

∧F (Sm+1)→ . . .

· · · → S1 ∧ F (Sm+p−1)
λS1,Sm+p−1

−−−−−−−→ F (Sm+p)

is simply the assembly map λSp,Sm . By the previous remark, the iterated map is Σp × Σm-

equivariant. In sum, given an FSP F , the associated spectrum F is a symmetric spectrum

in the sense of [30], and morphisms of FSP’s give morphisms of symmetric spectra (the

naturality of η guarantees the equivariance of the level-wise maps). So far, only the pointed

simplicial structure of the FSP’s and the naturality of their morphisms has been used; no µ

or 1.

Observation We actually have more structure. For each m ∈ N, we have a map 1Sm : Sm →
F (Sm) that is, by definition, Σm-equivariant. We also have for each (p, q) a map µSp,Sq :

F (Sp)∧F (Sq)→ F (Sp+q) which is, again by naturality, Σp×Σq-equivariant. The remaining

conditions for F to be an FSP make F into a symmetric ring spectrum. For example, the

last condition taken with X = Sm, Y = Sn gives the (in)famous shuffle/centraility condition:

Sm ∧ F (Sn) F (Sn) ∧ Sm

F (Sm) ∧ F (Sn) F (Sn) ∧ F (Sm)

F (Sm ∧ Sn) F (Sn ∧ Sm)

τSm,F (Sn)

1Sm∧idF (Sn) idF (Sn)∧1m

µSm,Sn µSn,Sm

F (τSm,Sn )

were F (τSm,Sn) is playing the role of χm,n, the (m,n)-shuffle that moves the first m elements

past the last n elements keeping the two blocks in order. Also, the conditions ηX ◦ 1FX = 1GX
and ηX∧Y ◦ µFX,Y = µGX,Y ◦

(
ηX ∧ ηY

)
guarantee that η : F → G is a morphism of symmetric
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ring spectra. If we are working with a commutative FSP, then F will be a commutative

symmetric ring spectrum.

The (naive) homotopy groups of an FSP F are defined to be the (naive) homotopy groups

of the associated symmetric spectrum:

πi(F ) := πi(F ) = colimmπi+mF (Sm)

Definition E.2.2 A morphism η : F → G of FSPs is a stable weak equivalence if it induces

an isomorphism of groups πi(F )→ πi(G) for all i.

Since F is connective, our FSP F has no negative homotopy groups. And since the associated

spectrum F is a symmetric ring spectrum, the multiplication µF : F ∧ F → F makes π∗(F )

into a graded ring.

Fact Let F,G be two FSPs. There is a canonical weak equivalence of symmetric spectra

F ⊗Day G
'−→ F ∧G.

E.2.1 Examples

Example E.2.3 “The universal FSP” is the sphere spectrum. It is attained by S(X) = X,

with identity maps for µ and 1 (the connectivity conditions are tautological). It is initial

among all FSP’s. Indeed, S is the inclusion functor from sSets∗
fin → sSets∗, and given any

FSP G, the natural transformation 1G is really a morphism of FSP’s from S→ G. Note that

the (commutative symmetric ring) spectrum associated to S is simply the sphere spectrum,

S = S. Also, as a silly example, there is the analogue of the zero ring, where 0(X) = ∗, and

it is final, with associated spectrum ∗.

Example E.2.4 “The group ring” FSP associated to a simplicial group G (or monoid for

that matter), denoted G. is defined by G(X) := G+∧X. Here (−)+ means adding a disjoint

basepoint to G. It is clearly pointed, and it is simplicial because of the simplicial nature of

the smash product. To see the FSP structure we need to define the multiplication and unit

maps. The unit map, 1X : X → G+ ∧ X is given by x 7→ 1 ∧ x, while the product map is
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given by:

G(X) ∧ G(Y ) := (G+ ∧X) ∧ (G+ ∧ Y )

idG+
∧τX,G+

∧idY
−−−−−−−−−−→ (G+ ∧G+) ∧ (X ∧ Y )

= (G×G)+ ∧ (X ∧ Y )

→ (G)+ ∧ (X ∧ Y ) = G(X ∧ Y )

Here we’ve used the fact that for any two spaces, A+ ∧B+
∼= (A×B)+, and the (simplicial)

multiplication map of the group G × G → G. The defining properties of a FSP are easy

to check (notice, for example, that the assembly map here λX,Y : X ∧ G(Y ) → G(X ∧ Y )

is simply the “switch” map x ∧ (g ∧ y) 7→ g ∧ (x ∧ y)). Also, the connectivity conditions

follow from the higher excision estimates on homotopy groups, and that, as in the previous

example, product with 1G
S1 is an isomorphism. Note also that if G is commutative, then G

is a commutative FSP.

Clearly, the associated spectrum is isomorphic to the suspension spectrum of the space G+,

G ∼= Σ∞+G. Because of the map of FSP’s S → G (and consequently, the map of symmetric

ring spectra S = S→ G = Σ∞+G), we think of this as the “group ring” of G over the sphere

spectrum.

Going further, if we are given a (simplicial) group homomorphism φ : G → H, we get a

natural transformation G
φ̃−→ H by G+ ∧X

φ+∧idX−−−−→ H+ ∧X. Inspection shows that this is in

fact a map of FSPs.

Example E.2.5 “Ordinary rings” have FSP’s associated to them. If R is a ring (associative

and unital), then define R̃(X) := R[X]/R[∗] to be the free (reduced) simplicial R-module

with basis the simplicial set X. That is, in simplicial degree j we have the free R-module

R[Xj] with R[∗] modded out. This functor is clearly pointed and simplicial because of the

freeness of R[−]. Let’s describe its structure as an FSP. We have a unit map 1X : X → R̃(X)

given by x 7→ 1 · x, while the product map is given by:

R̃(X) ∧ R̃(Y ) := (R[X]/R[∗]) ∧ (R[Y ]/R[∗])

→ (R[X]/R[∗])⊗ (R[Y ]/R[∗])
∼= (R⊗R)[X ∧ Y ]/(R⊗R)[∗]

→ R[X ∧ Y ]/R[∗] = R̃(X ∧ Y )
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Here we’ve used the fact that R̃(X) ⊗ R̃(Y ) ∼= R̃⊗R(X ∧ Y ), and the multiplication map

for the ring R ⊗ R → R. Just as with group rings, the defining properties of a FSP are

easy to check (e.g. that the assembly map here λX,Y : X ∧ R̃(Y )→ R̃(X ∧ Y ) is simply the

“switch” map x∧ (r · y) 7→ r · (x∧ y)). The connectivity conditions come from the Dold-Kan

theorem. Indeed, the homotopy groups of R̃(X) compute the reduced homology of the space

X with coefficients in R, and so if X is n-connected, tautologically so is R̃(X). Note also

that if R is commutative, then R̃ is a commutative FSP. Lastly, the associated spectrum,

R̃ is the Eilenberg-Maclane (commutative symmetric ring) spectrum H(R) for the (abelian)

group R.

Remark The previous construction can be carried out with simplicial rings as well. Suppose

R∗ = {Rj}j∈N is a simplicial ring, so that we have ring homomorphisms dR,ji = dRi = di :

Rj → Rj−1, 0 ≤ i ≤ j (“face maps”), and sR,ji = sRi = si : Rj → Rj+1, 0 ≤ i ≤ j

(“degeneracy maps”), satisfying the simplicial identities. Similarly, let X = {Xj}j∈N be a

(pointed finite) simplicial set, with face and degeneracy maps dX,ji and sX,ji , respectively.

Then we can also make sense of R̃∗(X). Indeed, there is a first quadrant diagram of abelian

groups:
...

...
...

. . . Rn+1[Xm−1] Rn+1[Xm] Rn+1[Xm+1] . . .

. . . Rn[Xm−1] Rn[Xm] Rn[Xm+1] . . .

. . . Rn−1[Xm−1] Rn−1[Xm] Rn−1[Xm+1] . . .

...
...

...

...

...

...

...

where in row n we have Rn[X∗]. Note that the horizontal maps are homomorphisms of

Rn-modules, and are determined by the simplicial maps of X∗, e.g. face maps are given

by rn · xm 7→ rn · dX,mi (xm). On the other hand, the vertical maps are determined by the

simplicial ring structure of R∗, e.g. face maps are given by rn · xm 7→ dR,ni (rn) · xm. Since

this is, in particular, a bisimplicial abelian group, we can take its realization component-wise

or (equivalently) diagonally, and the same is true of the reduced bicomplex. So, we define

R̃∗(X) := {Rj[Xj]/Rj[∗]}j∈N. There are no issues with the unit map, and note that the
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product map at simplicial degree j simply involves the multiplication map Rj ⊗ Rj → Rj

only.

In terms of functorality, if φ : R → S is a homomorphism of rings, then we get an induced

map R̃(X)→ S̃(X) which assembles into a morphism of FSPs R̃
φ̃−→ S̃.

Example E.2.6 We can construct “products” of FSP’s. Indeed, let F and G be FSP’s.

Define (F ×G)(X) := F (X)×G(X). This (pointed and simplicial) functor trivially satisfies

the connectivity estimates, and has an FSP structure as follows: 1F×GX : X
1FX×1GX−−−−→ F (X)×

G(X) and product map:

µF×GX,Y : (F ×G)(X) ∧ (F ×G)(Y ) := (F (X)×G(X)) ∧ (F (Y )×G(Y ))

∼=
(
F (X) ∧ F (Y )

)
×
(
G(X) ∧G(Y )

)
µFX,Y ×µ

G
X,Y−−−−−−−→F (X ∧ Y )×G(X ∧ Y ) = (F ×G)(X ∧ Y )

One can readily check the properties of an FSP (following directly from those of F and G),

and that the projection maps πF : F ×G→ F and πG : F ×G→ G are morphisms of FSP’s

(so F ×G is the categorical product).

Example E.2.7 We can construct “Matrix FSP’s”, that is, the “r × r matrix ring” of an

FSP F , denoted Mr(F ). For r ∈ N>0, let r be the finite set {1, . . . , r}. Then r can be

considered as a constant simplicial set. For X ∈ sSets∗
fin, define

Mr(F )(X) := sSets∗
(
r+, r+ ∧ F (X)

)
That is, the simplicial set of simplicial maps r+ → r+ ∧ F (X). This is clearly a functor by

post-composition. Since F is pointed and simplicial, so is Mr(F ). The structure of an FSP is

given as follows: the unit map, 1Mr(F )
X is given as the adjoint of idr+

∧1FX : r+∧X → r+∧F (X).

Combining the naturality of 1FX with the adjunction shows 1Mr(F )
− is natural. For the product,

µ
Mr(F )
X,Y : Mr(F )(X)∧Mr(F )(Y )→Mr(F )(X∧Y ), we use µFX,Y as follows: (A,B) 7→ C where

C is the composite

r+
B−→ r+∧F (Y )

A∧idF (Y )−−−−−→ (r+∧F (X))∧F (Y ) ∼= r+∧(F (X)∧F (Y ))
id+∧µFX,Y−−−−−−→ r+∧F (X∧Y )

Here we’ve indicated the map at 0-simplices, with higher simplices induced from the diagonals

on ∆n → ∆n ×∆n, and its naturality comes directly from that of F . Verification that this

satisfies the identities of the FSP is a (very) tedious calculation, and it reduces solely to the
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fact that F was an FSP. We think of this as a matrix as follows: Let A ∈ Mr(F )(X) and

for 1 ≤ i, j ≤ r set Ai,j by writing A(j) = i ∧ Ai,j, and setting all other Ai,j = ∗. So A is

an r× r collection of points in F (X), with at most one non-zero entry in each column. The

multiplication law can then be written

µ
Mr(F )
X,Y (A ∧B) = C, Ci,j =

∑
µFX,Y (Ai,k ∧Bk,j)

where the sum is well-defined since only one element of Bk,j, k = 1, . . . , r is 6= ∗ (the

jth-column of B). Therefore the multiplication is analogous to matrix multiplication. Ad-

ditionally, from the adjoint formula we have that 1Mr(F )
X is given by x 7→ {i 7→ i ∧ 1FX(x)}.

Therefore, in the matrix re-interpretation, 1Mr(F )
X (x) is the r × r matrix with 1FX(x) along

the diagonal and ∗ elsewhere.

Observation Even if F is a commutative FSP,Mr(F ) need not be. For, if A∧B ∈Mr(F )(X)∧
Mr(F )(Y ), then the two maps:

r+
B−→ r+ ∧ F (Y )

A∧idF (Y )−−−−−→ (r+ ∧ F (X)) ∧ F (Y ) ∼= r+ ∧ (F (Y ) ∧ F (X))

r+
A−→ r+ ∧ F (X)

B∧idF (X)−−−−−→ (r+ ∧ F (Y )) ∧ F (X) ∼= r+ ∧ (F (Y ) ∧ F (X))

need not agree.

Remark The matrix FSP Mr(F ) has the correct stable homotopy type; the product of r

copies of the coproduct of r copies of F . If F is the spectrum associated to F , then the

spectrum associated to Mr(F ) is Mr(F ) = sSets∗(r+, r+ ∧ F ), where we are using the

tensoring and cotensoring of the category of spectra by that of pointed simplicial sets. The

latter is the spectrum F tensored by the (constant) pointed simplicial set r+ and cotensored

against r+. Taking homotopy groups, we find that the ring of homotopy groups π∗(Mr(F )) is

isomorphic to the matrix ring over the graded ring π∗(F ), that is: π∗(Mr(F )) ∼= Mr(π∗(F ))

as graded rings.

E.3 Modules over FSPs

Definition E.3.1 Let F be an FSP, thought of as a monoid in Fun(sSets∗
fin, sSets∗)

satisfying stabilization. We say M ∈ Fun(sSets∗
fin, sSets∗) is a left module over F , if it

satisfies stabilization and is a left module over the monoid.
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Unpacking this definition in steps, first note thatM is a pointed simplicial functor sSets∗
fin →

sSets∗, and as such carries assembly maps, which in order to distinguish from those of F we

will denote by λMX,Y . In particular, these assembly maps satisfy all of the properties listed in

E.1:

idM(X) = M(`X) ◦ λMS0,X◦`M(X)
−1

λMX∧Y,Z = M(α−1
X,Y,Z) ◦ λMX,Y ∧Z ◦ (idX ∧ λMY,Z) ◦ αX,Y,M(Z)

M(τZ,X∧Y ) ◦ λMZ,X∧Y ◦ τM(X∧Y ),Z ◦ (λMX,Y ∧ idZ) =

M(α−1
X,Y,Z) ◦ λMX,Y ∧Z ◦ (idX ∧ (M(τZ,Y ) ◦ λMZ,Y ◦ τM(Y ),Z)) ◦ αX,M(Y ),Z

Second, since it is a left module over the monoid F in Fun(sSets∗
fin, sSets∗), we have a

morphism in Fun(sSets∗
fin, sSets∗), l : F ⊗Day M → M satisfying (up to an associator):

l ◦
(
IdF ⊗Day l

)
= l ◦ (µF ⊗Day IdM) and l ◦ (1F ⊗Day IdM) = `Day

M , where `Day is the

left unitor for the Day convolution. Recall that the unit under Day convolution is the

functor corepresenting the unit of the source monoidal category, in this case sSets∗, so

is sSets∗(S
0,−) ∼= IdsSets∗(−). Using the universal property of mapping out of a Day

convolution, we can write l as a natural transformation of functors sSets∗
fin × sSets∗

fin →
sSets∗,

l−,? : F (−) ∧M(?)⇒M(− ∧ ?)

satisfying:

lX∧Y,Z ◦ (µFX,Y ∧ idM(Z)) = M(αX,Y,Z
−1) ◦ lX,Y ∧Z ◦ (idF (X) ∧ lY,Z) ◦ αF (X),F (Y ),M(Z)

lX,Y ◦ (1FX ∧ idM(Y )) = λMX,Y

Remark Similarly, we define a right module over F to be an FST N ∈ Fun(sSets∗
fin, sSets∗)

which is a right module over F thought of as a monoid. Working through the definitions,

we get a natural transformation of functors sSets∗
fin × sSets∗

fin → sSets∗,

ρ−,? : N(−) ∧ F (?)⇒ N(− ∧ ?)

satisfying:

ρX∧Y,Z ◦ (ρX,Y ∧ idF (Z)) = N(αX,Y,Z
−1) ◦ ρX,Y ∧Z ◦ (idN(X) ∧ µFY,Z) ◦ αN(X),F (Y ),F (Z)
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N(τY,X) ◦ ρY,X ◦ (idN(Y ) ∧ 1FX) ◦ τX,Y = λNX,Y

Definition E.3.2 Let F be an FSP. We sayM ∈ Fun(sSets∗
fin, sSets∗) is a bimodule over F

if it satisfies stabilization and is a bimodule under the monoid given by F .

M is therefore both a left module and a right module as defined previously. The bimodule

compatibility (up to an associator) ρ ◦ (l ⊗Day IdF ) = l ◦ (IdF ⊗Day ρ) means that:

ρX∧Y,Z ◦ (lX,Y ∧ idF (Z)) = M(αX,Y,Z
−1) ◦ lX,Y ∧Z ◦ (idF (X) ∧ ρY,Z) ◦ αF (X),M(Y ),F (Z)

Example E.3.3 Let S be the sphere spectrum FSP, where S(X) = X with µ and 1 identity

natural transformations. Then as mentioned above S is a unit for the Day convolution

monoidal structure on Fun(sSets∗
fin, sSets∗). Recall that in any monoidal category any

object is a bimodule over the unit monoid, by means of the left and right unitors. In

particular, any functor G ∈ Fun(sSets∗
fin, sSets∗) (satisfying stabilization) is a bimodule

over S. In other words, all FSTs are S-bimodules. Also, there is a strong symmetric monoidal

functor (sSets∗,∧, S0) → (S − BiMod,⊗Day,S) sending Y to the functor X 7→ X ∧ Y . So

we may associate to each pointed simplicial set Y an FST Y. In terms of associated spectra,

we have a natural isomorphism between Y and the suspension spectrum of Y .

Example E.3.4 Let η : F → G be a morphism of FSPs. Then lX,Y := µGX,Y ◦ (ηX ∧ idG(Y ))

gives G the structure of a left F -module, while ρX,Y := µGX,Y ◦ (idG(X) ∧ ηY ) makes G into

a right F -module. Furthermore, the left and right actions are compatible (directly by the

definition of η as a map of FSPs and the multiplication associativity on G). In short, given

any morphism of FSPs η : F → G, G naturally is an F -bimodule.

Example E.3.5 Let R be a ring, and M a left R-module. Define M̃ : sSets∗
fin → sSets∗

by X 7→ M̃(X) := M [X]/M [∗], with the simplicial structure inherited from X. Then M̃ is

clearly pointed simplicial. The connectivity conditions come from the Dold-Kan theorem.

Indeed, the homotopy groups of M̃(X) compute the reduced homology of the space X with

coefficients in (the additive abelian group) M , and so if X is n-connected, tautologically so

is M̃(X). So M̃ is an FST. As such it is an S-bimodule. More is true, though. Since M is

a left R-module, we have a function R ×M → M defining the action. For X, Y ∈ sSets∗

we have a map R̃(X) ∧ M̃(Y ) ∼= ˜(R×M)(X ∧ Y )→ M̃(X ∧ Y ). A quick check shows that

M̃ acquires the structure of a left R̃-module. If M had been a right R-module, we similarly

find that M̃ is a right R̃-module. Lastly, if M were an R-bimodule, then we get that M̃ is

an R̃-bimodule.
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Definition E.3.6 Let F be an FSP, M and N left F -modules. A morphism of left F -mod-

ules, φ : M → N , is a morphism of left modules over F ∈ Fun(sSets∗
fin, sSets∗) (thought

of as a monoid).

Unwrapping this definition a bit, first and foremost φ needs to be an enriched natural trans-

formation. Indeed, M,N are pointed simplicial functors sSets∗
fin → sSets∗, so a morphism

between them is a sSets∗-enriched natural transformation:

φX : M(X)→ N(X)

for X ∈ sSets∗. Second, it must be a morphism of left modules over the module structures

defined on M and N . Using the universal property of the Day convolution, we have that for

each X, Y ∈ sSets∗ we have a commuting diagram:

F (X) ∧M(Y ) M(X ∧ Y )

F (X) ∧N(Y ) N(X ∧ Y )

idF (X)∧φY

lMX,Y

φX∧Y

lNX,Y

We can similarly defined notions of morphism of right modules and bimodules.

Definition E.3.7 Let F be an FSP, M and N right F -modules. A morphism of right

F -modules, φ : M → N , is a morphism of right modules over F ∈ Fun(sSets∗
fin, sSets∗)

(thought of as a monoid).

Again, we have a natural transformation φ, but now the compatibility condition is a com-

muting diagram:

M(X) ∧ F (Y ) M(X ∧ Y )

N(X) ∧ F (Y ) N(X ∧ Y )

φX∧idF (Y )

ρMX,Y

φX∧Y

ρNX,Y

Definition E.3.8 Let F be an FSP, M and N F -bimodules. A morphism of F -bimodules,

φ : M → N , is a morphism of bimodules over F ∈ Fun(sSets∗
fin, sSets∗) (thought of as a

monoid).

That is, we require both previous squares to commute. We can of course define the categories

of such objects.
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Definition E.3.9 Let F be an FSP. The category of left F -modules, with objects left F -

modules and morphisms the morphisms of left F -modules, will be denoted F -Mod. Similarly,

the categories of right F -modules and F -bimodules will be denoted Mod-F and F -BiMod,

respectively.

Notation In our definition of left/right modules over an FSP F we have already included the

condition on stabilization. Therefore, F -Mod/Mod-F should not be confused with the cate-

gory of left/right modules over F when viewed simply as a monoid in Fun(sSets∗
fin, sSets∗)

under Day convolution. Rather, it is the full subcategory of those modules that are also

FSTs. This distinction will not be mentioned moving forward.

Fact Since S-BiMod is equivalently the category of all FSTs, it is closed symmetric monoidal

by E.1. Its monoidal tensor is simply the Day convolution, and its internal hom is defined

as follows: If S and T are FSTs we define an FST HomS(S, T ) ∈ S-BiMod by sending

X 7→ HomS(S, T )(X) :=

∫
Y ∈sSets∗fin

sSets∗(S(Y ), T (X ∧ Y ))

This is a pointed simplicial functor, and one readily checks the connectivity conditions.

Indeed, working through the universal properties of mapping out of a coend and into an end,

we have a natural isomorphism

S−BiMod(F ⊗Day G,H) ∼= S−BiMod(F,HomS(G,H))

which extends to an enriched natural isomorphism:

HomS(F ⊗Day G,H) ∼= HomS(F,HomS(G,H))

For details see 5.1, Proposition 5.2 and Corollary 5.3 in [38].

Observation The functor (S − BiMod,⊗Day,S) → (sSets∗,∧, S0) sending T 7→ T (S0) is

strong symmetric monoidal. The induced sSets∗-enrichment on S − BiMod agrees with

the one introduced in E.1. In addition to being sSets∗-enriched, the category S-BiMod is

tensored and cotensored over sSets∗. We work the details of the tensored case, leaving the

cotensoring for the interested reader. For notational purposes we record here: the cotensoring

of T ∈ S-BiMod and Y ∈ sSets∗. is denoted Map(Y, T ). As for the tensoring, define T⊗Y ∈
Fun(sSets∗

fin, sSets∗) by X 7→ T (X) ∧ Y . This is clearly a pointed simplicial functor.

Furthermore, if X is n-connected, so is T (X) ∧ Y . Similarly, if S1 ∧ T (X) → T (S1 ∧ X)
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is (2n − c)-connected, then so is S1 ∧ T (X) ∧ Y → T (S1 ∧X) ∧ Y . So T ⊗ Y ∈ S-BiMod.

Lastly, if T ′ is another S-bimodule, we have natural isomorphisms:∫
W∈sSets∗fin

sSets∗((T ⊗ Y )(W ), T ′(W )) :=

∫
W∈sSets∗fin

sSets∗(T (W ) ∧ Y, T ′(W ))

∼=
∫
W∈sSets∗fin

sSets∗(Y, sSets∗(T (W ), T ′(W )))

∼= sSets∗

(
Y,

∫
W∈sSets∗fin

sSets∗(T (W ), T ′(W ))

)

In fact, the tensoring of S−BiMod over sSets∗ is the one induced from the strong symmetric

monoidal functor in E.3.3, as given T ∈ S-BiMod and Y ∈ sSets∗ we have T⊗Y ∼= T⊗DayY.

Remark More generally, the category F -Mod is pointed simplicial. Indeed, it is the category

of left-modules over a monoid in an enriched category with all equalizers, Fun(sSets∗
fin, sSets∗),

and so we have a pointed simplicial set of maps between two left F -modules, denoted

F -Mod(M,N). The same is true of Mod-F and F -BiMod.

Remark Let I be a small category. The category F -Mod is closed under finite products,

coproducts, and homotopy colimits. However, in general it will not be closed under arbitrary

diagrams. This is an unfortunate consequence of the generality of our definition of functor

with stabilization. Specifically, for a pointed simplicial functor F : sSets∗
fin → sSets∗ we

only suppose that the assembly maps λS1,X : S1∧F (X)→ F (S1∧X) (for X an n-connected

simplicial set) are (2n − c)-connected for some constant c not dependent on X. If we have

a diagram of FSTs A ∈ (F−Mod)I , the constants ci of each Ai can tend to infinity and

so products, coproducts, and homotopy colimits may not stabilize (other treatments in the

literature require FSTs to have 2n-connected assembly maps, in which case this is a moot

point). If A ∈ (F−Mod)I is globally stable (Section 5.4 [47]), then lim
I
A, colim

I
A, and

hocolim
I

A satisfy the stabilization criteria and therefore we get an FST again (in fact, and

F -module).

Example E.3.10 Let G be a (simplicial) group or monoid. Then one can form the the

“group ring over the sphere spectrum”, G, as defined in E.2.4. However, associated to G is

also a (simplicial) integral group ring Z(G), so one can form the Eilenberg-Maclane FSP,

Z̃(G), as defined in E.2.5. There is a natural transformation of functors G
η−→ Z̃(G) given, for

X ∈ sSets∗
fin, by: G(X) := G+ ∧X

ηX−→ Z(G)[X]/Z(G)[∗] =: Z̃(G)(X), (g ∧ x) 7→ (1 · g) · x.
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One easily checks that this is well-defined, natural in X, enriched over sSets∗, and preserves

the multiplications and identities. So we have a morphism of FSP’s G
η−→ Z̃(G) for each

(simplicial) group G. Note that the map on the associated spectra, G ∼= Σ∞+G→ H(Z(G)) =

Z̃(G), is the “base change of rings.” Indeed, we have morphisms of FSPs S→ G and S→ Z̃.

Viewing G as an S-module (via the first morphism) and base changing along the second

morphism, we get a Z̃-module, Z̃⊗Day G = Z̃ ∧S G (in fact, it is a Z̃-algebra).

We claim that Z̃ ∧S G ∼= Z̃(G) as FSPs. By the universal property of the Day convolution,

to give a map φ : Z̃ ∧S G → Z̃(G) we need a natural transformation of functors sSets∗
fin ×

sSets∗
fin → sSets∗

Z̃(X) ∧ G(Y )→ Z̃(G)(X ∧ Y )

It is given by (n·x)∧(g∧y) 7→ (n·g)·(x∧y). One readily checks that this is an isomorphism of

FSTs (i.e. S-bimodules), and furthermore that it preserves the multiplication and identities.

Remark In any symmetric monoidal category (C,⊗, 1), the monoidal product of two monoids,

M and N , is again a monoid, with the obvious multiplication. This induces a symmetric

monoidal structure on the category of monoids Mon(C) in C. However, unless both monoids

are commutative, the monoidal product M ⊗N will not be the coproduct in Mon(C). That

is, given monoid maps M
f−→ X and N

g−→ X, the unique map that exists M ⊗N f⊗g−−→ X in

C, is not going to be a morphism of monoids (and therefore a map in Mon(C)).

In our case, Z̃ is a commutative FSP. If in addition, G is commutative (so that G is a commu-

tative FSP), then they are both commutative monoids with regard to the Day convolution

monoidal structure on Fun(sSets∗
fin, sSets∗). In this case, Z̃∧SG is the coproduct in FSP :

S G

Z̃ Z̃ ∧S G
p

After composing the right-most map with the isomorphisms of FSPs φ : Z̃ ∧S G
∼=−→ Z̃(G)

defined above, we get a morphism of FSPs G → Z̃(G), which agrees with η! This justifies

our earlier comment that the map of associated spectra G ∼= Σ∞+G → H(Z(G)) = Z̃(G), is

the “base change of rings.” We can thus think of Z̃(G) as the “linearization” of G.
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E.4 FSPs over Categories

E.4.1 Enrichment

Definition E.4.1 Let C be a small category. A functor with smash product over C is a

choice of enrichment of C over the closed symmetric monoidal category S-BiMod.

Notation If no confusion arises, we will denote such a choice of enrichment by F C = F and

call it an “FSP over C.”

Unpacking this definition in steps, we have for each pair of objects in C, (A,B), an object

FA,B := F (A,B) of S-BiMod. That is, we have an FST FA,B for each pair (A,B). Further-

more, for each triple (A,B,C) in C we have a morphism of FSTs FB,C ⊗Day FA,B → FA,C

which are the “composition” maps, assembling into a natural transformation of functors. We

also have unit maps S→ FA,A for every object A, which together with the composition maps

satisfy the obvious commuting diagrams (see [14] A.10). As is the case with any enriched

category, the endomorphism objects in C are monoid objects in S-BiMod; that is, each FA,A

is an FSP. Because of this, we will denote the composition maps for a triple (A,B,C), by

µA,B,C : FB,C ⊗Day FA,B → FA,C . By the universal property of Day convolution, we get

natural transformation of functors sSets∗
fin × sSets∗

fin → sSets∗:

µA,B,C;−,? = µ−,? : FB,C(−) ∧ FA,B(?)⇒ FA,C(− ∧ ?)

as well as a unit map 1A;X : X → FA,A(X) satisfying identities similar to the ones of an FSP

(see [34] 1.3).

Remark In older treatments in the literature, where the language of enriched category was

not used, the definition of an FSP over a category C was given by means of the aforementioned

properties and identities (see the diagrams in [17] 1.1). Because each FA,A is an FSP, functors

with smash product over categories are sometimes referred to as “rings with several objects.”

Example E.4.2 Let C be the trivial category. Then an FSP over C is precisely the same

data as an FSP in the earlier sense of definition E.1.2. More generally, if F is an FSP over

a general category C and we have a functor B η−→ C, then B naturally acquires the structure

of an (S-BiMod)-enriched category. The induced FSP over B is denoted η∗F . In particular,

if F is an FSP over C and C ∈ C is an object, we have an inclusion Ctrv ↪→ C, where Ctrv is

the trivial category on C. The induced FSP over Ctrv is simply FC,C , an FSP in the earlier

definition. More generally, if we let C̃ be the full subcategory of C on the single object
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C, the induced FSP FC,C is an FSP with extra structure, mainly, natural transformations

FC,C ⇒ FC,C for each element of EndC(C) satisfying certain commutativity squares.

Remark We saw in E.2 that to an FST M we may associate a symmetric spectrum M

by evaluating on spheres. The story translates naturally to the relative setting. Indeed,

taking associated spectra gives a strong symmetric monoidal functor (S−BiMod,⊗Day,S)→
(SpecΣ,∧,S) between the category of FSTs and the closed symmetric monoidal category

of symmetric spectra (see [30]). Therefore, a category enriched in (S − BiMod,⊗Day,S)

naturally acquires an enrichment over (SpecΣ,∧,S). So an FSP over C gives C the structure

of a spectrally-enriched category.

E.4.2 Examples

Example E.4.3 Let C be a simplicial category. We define the “half-smash FSP over C”
as follows: for (A,B) ∈ Cop × C define the FST X 7→ C(A,B)+ ∧ X where C(−,−) is the

simplicial enrichment of C. The multiplication is induced via composition:

(C(B,C)+ ∧X) ∧ (C(A,B)+ ∧ Y ) ∼= (C(B,C)+ ∧ C(A,B)+) ∧ (X ∧ Y )

= (C(B,C)× C(A,B))+ ∧ (X ∧ Y )

→ C(A,C)+ ∧ (X ∧ Y )

which by assumption is a simplicial map. The unit map 1A;X : X → C(A,A)+ ∧X is given

by the unit simplicial map in the enrichment (S0 → C(A,A)). Note that over an object,

C(A,A) is a (simplicial) monoid, and the FSP associated here is the one from Example E.2.4.

Example E.4.4 Let sAb be the closed symmetric monoidal category of simplicial abelian

groups and let C be an sAb-enriched category. Recalling the Eilenberg-Maclane FSP Z̃ from

Example E.2.5, we define an FSP over C as follows: for (A,B) ∈ Cop × C construct the FST

X 7→ C(A,B) ⊗Z Z̃(X). The multiplication is given by sending smash to tensor (using the

FSP structure of Z̃) followed by composition in C:

(C(B,C)⊗Z Z̃(X)) ∧ (C(A,B)⊗Z Z̃(Y ))→ (C(B,C)⊗Z Z̃(X))⊗Z (C(A,B)⊗Z Z̃(Y ))

→ (C(B,C)⊗Z C(A,B))⊗Z Z̃(X ∧ Y )

→ C(A,C)⊗Z Z̃(X ∧ Y )
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while the unit map 1A,X is given by the composition of the (simplicial) inclusion Z→ C(A,A)

and the unit map 1X : X → Z̃(X). The (S− BiMod)-enrichment of C will be denoted C̃.

Observation The previous example is simply the fact that we have a lax symmetric monoidal

functor (sAb,⊗
Z
,Z)

H−→ (S − BiMod,⊗Day,S) from the closed symmetric monoidal category

of simplicial abelian groups to the closed symmetric monoidal category of FSTs, sending

M 7→ M̃ . Therefore, a category enriched over (sAb,⊗
Z
,Z) naturally acquires an enrichment

over S-BiMod. Objectwise, is is given by sending A,B ∈ C 7→ ˜C(A,B), the FST associated

to the Z-module C(A,B) from E.3.5.

Remark Given a (simplicial) ring R we can view it as an Ab-enriched (or even sAb-enriched)

category with a single object. In this case, the above construction exactly recovers R̃, the

Eilenberg-Maclane FSP from Example E.2.5.

Example E.4.5 There is a strong symmetric monoidal functor (Sets,×, ∗)→ (S−BiMod,⊗Day,S)

sending a set D to the FST given by X 7→ D+∧X. Let C be a category. Since any category

can be considered as (Sets)-enriched, we get a canonical FSP over C in a similar vein to the

previous note. Explicitly, for A,B ∈ C the associated FST is X 7→ C(A,B)+ ∧X with the

multiplication given by composition in the category.

Example E.4.6 Let F, F ′ be FSPs over C, C ′, respectively. We define a new FSP F × F ′

over the product category C ×C ′ by setting for (A,B)× (A′, B′) the FST FA,B×FA′,B′ , with

the multiplication defined by µ × µ′ (that is, componentwise). If C = C ′ = D, then we can

can pullback the FSP F ×F ′ along the diagonal functor D ∆−→ D×D (as in E.4.2) to obtain

the “internal product” F × F ′, which is an FSP over D. In the case that D is the trivial

category, we recover the product of FSPs in E.2.6.

Similarly, given F, F ′ FSPs over C, C ′ we can form a non-unital “FSP” F ∨ F ′ over C × C ′.
First, let us briefly recall how we form the coproduct of two FSTs. If F and G are two FSTs,

we define F ∨ G as the functor given by X 7→ F (X) ∨ G(X). This is pointed simplicial as

each F and G is. Note that if X is n-connected then F (X)∨G(X) is also n-connected. Also,

since X ∧ (Y ∨Z) ∼= (X ∧ Y )∨ (X ∧Z), tracing through the adjunctions one finds that the

assembly map λF∨GS1,X is given by:

λF∨GS1,X : S1 ∧ ((F ∨G)(X)) := S1 ∧ (F (X) ∨G(X))

∼= (S1 ∧ F (X)) ∨ (S1 ∧G(X))
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λF
S1,X

∨λG
S1,X−−−−−−−−→F (S1 ∧X) ∨G(S1 ∧X) = (F ∨G)(S1 ∧X)

Now, by the Blakers-Massey theorem, if λFS1,X is (2n − c)-connected and λGS1,X is (2n − d)-

connected, then λFS1,X ∨ λGS1,X is min(2n+ 3, 2n− c, 2n− d)-connected. In any case, F ∨G
defines an FST. Now, in our setting, we define the FSP F ∨ F ′ over C × C ′ by taking, for

(A,A′), (B,B′) ∈ C×C ′, the FST FA,B∨F ′A′,B′ . If we had a third object (C,C ′) ∈ C×C ′, then

the composition maps
(
(F ∨F ′)(B,B′),(C,C′)

)
⊗Day

(
(F ∨F ′)(A,A′),(B,B′)

)
→ (F ∨F ′)(A,A′),(C,C′)

are defined (using the universal property of mapping out of a Day convolution product) by

distributing the smash over the wedges, collapsing the “non-composable” pairs FB,C ∧F ′A′,B′
and F ′B′,C′ ∧FA,B, and using the multiplications µA,B,C and µ′A′,B′,C′ coming from the enrich-

ments in C and C ′ individually. These are associative up to natural isomorphisms. However,

the FA,B ∨ F ′A′,B′ don’t quite determine an enrichment of C × C ′ in S-BiMod. Indeed, the

desired unit map S → (F ∨ F ′)(A,A′),(A,A′) is, for X ∈ sSets∗
fin, supposed to be a map of

simplicial sets X → FA,A(X) ∨ F ′A′,A′(X) that composes to the identity natural transforma-

tion in both variables. Such a map in general does not exist (unless one of the two FSTs is

trivial). So F ∨F ′ is not an FSP in our setting. In [17], there is a distinction between “ring

functors” and “unital ring functors”, that precisely addresses this issue. Specifically, their

axioms for a ring functor are exactly that of an enrichment in (S − BiMod,⊗Day,S) that’s

missing the identity structure, i.e. when viewed as a “semigroup with many objects” instead

of a symmetric monoidal category.

In any case, for (A,A′), (B,B′) ∈ C × C ′, there is a natural map of FSTs FA,B ∨ F ′A′,B′ →
FA,B×F ′A′,B′ which is stable weak equivalence by the Blakers-Massey theorem. Furthermore,

the map is compatible with the multiplications previously defined.

Example E.4.7 Let F, F ′ be FSPs over C, C ′, respectively. We can form the disjoint union

category C q C ′ as in Example 2.2.5 [44]. Then C q C ′ acquires an (S−BiMod)-enrichment,

denoted F q F ′, taking the associated FSTs from F and F ′ if both objects are in C or C ′,
respectively. If (C,C ′) ∈ C q C ′ has C ∈ C and C ′ ∈ C ′, then (F q G′)C,C′ = ∗, that is, the

FST taking constant value at the point. The multiplication is then well-defined (since for

any FST G, ∗ ⊗Day G ∼= ∗).
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E.4.3 Morphisms in the Relative Setting

Definition E.4.8 Let F, F ′ be FSPs over C, C ′, respectively. A unital morphism of FSPs

from F to F ′ is an (S-BiMod)-enriched functor C η−→ C ′.

Remark Since C η−→ C ′ is an enriched functor, it preserves the unit. We will need to make

use at times of non-unital morphisms between FSPs. These will be functors C η−→ C ′ that

are almost enriched, in the sense that they commute with µ and µ′, but do not necessarily

preserve the unit maps.

Example E.4.9 Let F be an FSP over C. Consider an unenriched functor B η−→ C. Then, if

we give B the FSP η∗F as in E.4.2, the functor η becomes (S-BiMod)-enriched, and therefore

a unital morphism of FSPs.

Fact Let η, η′ : B → C be two functors between categories, and F an FSP over C. If ε : η ⇒ η′

is a natural transformation of functors, then ε induces a morphism of FSPs η∗F → η′∗F over

C who’s underlying functor on objects is the identity functor. Is η is a natural isomorphism,

then the induced unital morphism of FSPs is an isomorphism.

Example E.4.10 Let F, F ′ be FSPs over C, C ′, respectively. We can form the external

product FSP F × F ′ over C × C ′ as in E.4.6. Then the categorical projection functors

p : C × C ′ → C and p′ : C × C ′ → C ′ are (S-BiMod)-enriched by construction. Therefore, the

projection functors F ×F ′ to F and F ′ are unital morphisms of FSPs. Furthermore, F ×F ′

then is the categorical product in the category of (relative) FSPs.

Example E.4.11 Let C,D be simplicial categories, and η : C → D a pointed simplicial

functor. Then the simplicial maps C(A,B)→ D(F (A), F (B)) for each A,B ∈ C assemble to

give maps of the associated FSTs commuting with the multiplications and unit. That is, the

enrichment of η over pointed simplicial sets induces an (S-BiMod)-enriched functor between

the induced enrichments.

Example E.4.12 Let C, C ′ be sAb-categories and η : C → C ′ be a sAb-enriched functor (Un-

der the symmetric monoidal Dold-Kan correspondence, this might appear in the literature

under dg-categories and a dg-functor). Then from the note following E.4.4 we see that η

induces a morphism of FSPs between the associated FSPs over C and C ′, η : C̃ → C̃ ′.
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E.4.4 Modules in the Relative Setting

Just as in the case of any enriched category, we have notions of left module, right module

and bi-modules.

Definition E.4.13 Let F be a functor with smash product over C. A left F -module over C,
M , is an (S-BiMod)-enriched functor C M−→ S-BiMod. A right F -module over C, N , is an

(S-BiMod)-enriched functor Cop N−→ S-BiMod. An F -bimodule over C, P , is an (S-BiMod)-

enriched functor Cop ⊗Day C
P−→ S-BiMod.

Remark For unpacked versions of these definitions see sections 1 in both [17] and [34].

Example E.4.14 If C is the trivial category, and F an FSP over C, the notions of left/right/bi-

F -module over C coincides with the earlier notions in section E.3.

Example E.4.15 Let C be an sAb-category, and let C̃ be the (S− BiMod)-enrichment ob-

tained by composing the lax symmetric monoidal functor (sAb,⊗
Z
,Z)

H−→ (S−BiMod,⊗Day,S)

as in E.4.4. Let M be a left sAb-module over C. That is, M is a sAb-enriched functor

C → sAb. Composing with H, we get a functor C → S − BiMod which respects the en-

richment of C̃. We denote the enriched functor by M̃ . Thus we get a left C̃-module M̃ .

This similarly works for right and bimodules. For example, if A is an Ab-enriched category

(a “linear category” in the language of Example 1.4 [34]) and T an Ab-enriched functor

Aop × A → Ab (i.e. a bilinear or additive functor), the associated Ã-bimodule T̃ is given,

for A,B ∈ A, by: X 7→ T (A,B)⊗
Z
Z̃(X).

Fact A natural way to get a bimodule over an Ab-enriched category A is to have a pair of

Ab-enriched functors G1, G2 : A → B to another Ab-enriched category B. Then the abelian

group of morphisms B(G1(−), G2(?)) : Aop ×A → Ab forms an A-bimodule.

Definition E.4.16 Let F be an FSP over C, M,M ′ two left F -modules. A morphism of

left F -modules φ : M → M ′ is an (S-BiMod)-enriched natural transformation of functors

C M−→ S-BiMod. Morphisms of right F -modules and F -bimodules are defined analogously as

(S-BiMod)-enriched natural transformations of the appropriate functors. The categories of

left/right/bimodules over F will be denoted exactly as in the case of E.3.

Example E.4.17 If C is the trivial category, and F an FSP over C, the notions of morphism

of left/right/bi-F -modules over C coincide with the earlier notions in section E.3.
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Remark Let F, F ′ be FSPs over C, C ′ and let η : C → C ′ be a unital morphism of FSPs. Then it

induces unital morphisms of FSPs ηop : Cop → C ′op, and ηop⊗Dayη : Cop⊗DayC → C ′op⊗DayC ′.
If P ′ is a left/right/bi-F ′-module, then precomposing with η, ηop, or ηop⊗Day η restricts P ′ to

a left/right/bi-F -module, denoted η∗P ′, since a composition of enriched functors is enriched.

Fact For a fixed FSP F over C, the category of left F -modules is enriched over S-BiMod.

Indeed, it is the functor category of enriched functors between enriched categories, Fun(C,S−
BiMod). The (S-BiMod)-natural transformation objects are given by the end formula as in

E.1. This (S-BiMod)-category is also (S-BiMod)-tensored and cotensored, as the target

category of the enriched functor category is tensored and cotensored. Combining with the

“evaluate at S0” functor from before, we get an induced sSets∗-enrichment, tensoring and

cotensoring. For example, the tensoring is defined as follows: Let F be an FSP over C, P ∈ F -

BiMod, and Y ∈ sSets∗. Define P ⊗ Y as the F -bimodule sending C ∈ C 7→ PC(−) ⊗ Y .

That is, we utilize the tensoring of S-BiMod over Y ∈ sSets∗ mentioned in E.3.

The following definition will let us compare modules over different categories:

Definition E.4.18 Let F, F ′ be FSPs over C, C ′, respectively. Let P, P ′ be left modules over

F, F ′, respectively. A morphism of left modules (F ;P ) → (F ′;P ′) is a pair (η, φ), where

η : C → C ′ is a unital morphism of FSPs, and φ : P → η∗P ′ a morphism of left F -modules.

We define similarly pairs (η, φ) for right modules and bimodules.
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