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Abstract

A functor from finite sets to chain complexes is called atomic if it is completely determined by its value on a

particular set. We present a new resolution for these atomic functors, which allows us to easily compute their

Goodwillie polynomial approximations. By a rank filtration, any functor from finite sets to chain complexes

is built from atomic functors. Computing the linear approximation of an atomic functor is a classic result

involving partition complexes. Robinson constructed a bicomplex, which can be used to compute the linear

approximation of any functor. We hope to use our new resolution to similarly construct bicomplexes that

allow us to compute polynomial approximations for any functor from finite sets to chain complexes.
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Chapter 1

Introduction

As a way to better understand the behavior of a large class of functors, Goodwillie developed the calculus of

homotopy functors. Analogous to calculus of real-valued functions, in which a crucial tool is approximation

by polynomials, we have a notion of polynomial functors, whose behavior is easier to understand, and we

use these to approximate other functors. A functor F can be approximated by a degree n functor, denoted

PnF , in a way that is analogous to the degree n Taylor polynomial, pnf , of a real-valued function f . Taylor

polynomials of functions assemble into the Taylor series. The analogous construction for functors is the

Taylor tower, for which the approximation PnF is called the n-th level of the tower.

The difference of the degree n and degree n − 1 Taylor polynomials of a function, pnf − pn−1f , is a

homogeneous degree n term. In order to define the degree n homogeneous layer DnF , we use the homotopy

fiber

DnF = hofib(PnF → Pn−1F ).

Unlike adding together the homogeneous terms of a function to reconstruct the Taylor series, reassembling

the Taylor tower from the homogeneous layers is a nontrivial problem.

It can be shown that a large class of functors can be reduced down to the study of discrete modules, which

are functors from pointed finite sets to chain complexes. This thesis studies such functors.

We consider two properties of discrete modules: rank and degree. In order to better understand the

behavior of a real valued function, we might approximate it with a sum of easier to understand functions.

The intuition here is the same. We break down a discrete module into elemental functors based on rank and

degree. We do this in an orderly way, preserving structure so that the original functor can be reassembled

from these pieces.

To motivate the definition of rank, consider a method of approximating real-valued functions called La-

grangian approximation, or polynomial interpolation. For a real valued function f , the n-th Lagrangian

approximation, lnf , is the degree n polynomial that agrees with f at n+ 1 points. There is also an analog

for Lagrangian approximation in Goodwillie calculus. For a functor F from finite pointed sets to chain

complexes, there is a unique functor LnF that agrees with F on sets of size at most n+1 and its behavior on

larger sets is completely determined by this information. To be more explicit, LnF is the left Kan extension

of the restriction of F to the subcategory of sets of size at most n+ 1. If a functor is completely determined
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by its behavior on sets of size at most n+ 1, we say it has rank n.

The rank n approximations of a functor F fit into a filtration of F :

L1F → L2F → · · · → lim
n
LnF ∼= F.

The quotients of successive terms, CnF = LnF
Ln−1F

, in this rank filtration are called atomic functors, that

is, they are completely determined by their value on one set and are zero on all smaller sets. When we talk

about breaking down a discrete module F in terms of rank, we mean computing the atomic pieces C0F ,

C1F , C2F , and so on. Atomic functors can be shown to have the following form, [IJM08]

CnF (X) =
LnF (X)

Ln−1F (X)
∼= In(X)⊗Σn crnF ([1]),

where In(X) = R̃ [Inj+([n], X)], Inj+([n], X) denotes the set of basepoint preserving injections from [n] =

{0, 1, . . . , n} to X, crnF ([1]) is the n-th cross effect of F composed with the diagonal map evaluated at

[1] = {0, 1}, and R̃ [X] is the reduced free R-module on the finite pointed set X.

Now that we have dissected the discrete modules by rank, we further dismantle them in terms of degree.

More precisely, we wish to compute the Taylor Tower of the atomic functors.

We start by computing the homogeneous layers of the tower. From the classification of atomic functors,

we have

DkCnF (X) ' DkIn(X)⊗hΣn crnF [1].

Thus, in order to compute the k-homogeneous layer of an atomic functor, we first compute DkIn and its

Σn action.

Based on a combinatorial result on partially ordered sets, it was previously known that

D1CnF (X) = Σn−1εLie∗n ⊗ R̃ [X]⊗Σn
crnF ([1]),

where ε indicates that the standard Σn action is twisted by the sign representation and Lie∗n is the dual of

the n-multilinear part of the free Lie algebra on n letters [Rob03].

Multilinearization, a tool from Goodwillie calculus, enables us to compute general DkIn given D1In by

taking the k-th cross effect, applying D1(i.e. linearizing) in each variable, and taking homotopy orbits. The

general statement for multilinearization is

DkF ' (D
(k)
1 crkF )hΣk

.

In order to state the result, we will need to introduce some more notation. We define Ord(n, k) as the set

of ordered surjections n→ k, where n = {1, 2, . . . , n}. Alternatively, it is the set of partitions of {1, 2, . . . , n}

into k nonempty blocks, where we describe the partitions by surjections n→ k with a particular order fixed
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on the blocks.

Let

An−k(n)F (X) =
⊕

α∈Ord(n,k)

εLie(α−1(1))∗ ⊗ · · · ⊗ εLie(α−1(k))∗ ⊗ R̃
[
Xk
]
⊗hΣn

crnF ([1]).

The chain complex D1CnF (X) above is equivalent to Σn−1A1(n)F (X).

Theorem 1.0.1. For a functor F from finite pointed sets to chain complexes,

DkCnF (X) ' Σn−kAn−k(n)F (X).

We further show the existence of a resolution of CnF , where the terms of the resolution are the layers

DkCnF and such that truncations of the resolution allow us to compute PkCnF for any k.

Theorem 1.0.2. There exists a unique resolution as functors

0→ An−1(n)F → An−2(n)F → · · · → A0(n)F → CnF → 0

and the chain complex

0→ An−1(n)F → An−2(n)F → · · · → An−k(n)F → 0→ · · · → 0

is quasi-isomorphic to PkCnF for all k ≥ 0.

In order to use the resolution effectively, we need to know that it is suitably natural with respect to n. To

that end, we give an explicit description of both the groups and the maps in the resolution.

Our resolution captures the layers and levels of the Goodwillie-Taylor tower for any atomic functor.

However, we are interested in discrete modules in general. Through the rank filtration, such functors can be

broken down into atomic functors. We conjecture that the layers DkCiF , for i = 1, . . . , n, can be assembled

as the columns of a bicomplex that has the same homology as DkF . Inspiration for this conjecture comes

from a bicomplex defined by Robinson in [Rob03], and modified by Intermont, Johnson, and McCarthy

in [IJM08], which is just such a construction for D1F . For any k and any discrete module F , we use

multilinearization to construct a multi-complex from the Robinson bicomplex that is quasi-isomorphic to

DkF . Totalizing this multi-complex yields a complex with entries quasi-isomorphic to the entries of our

degree resolutions of atomic functors. Future work will be to describe the maps in the bicomplexes for DkF

and to check if they can be assembled, using the boundary maps of the resolution we have constructed, into

a tricomplex that computes PnF up to homology.
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Chapter 2

Functor Calculus

2.1 Intro

Just like real calculus was developed to help us understand a large class of functions, functor calculus helps

us better understand a large class of functors, namely homotopy functors.

The analog to the Taylor series of a function is the Taylor Tower for a functor F , which is a tower of

functors and natural transformations:

��
PkF

��

Pk−1F

��F

##

((

44

::

•

•
•
•
•

��
P1F

��
P0F

Each PkF , called a level of the tower, is the “degree k” approximation of F , where our notion of degree will

vary depending on the setting we are working in. Each PkF is universal for degree k functors with natural

transformations from F . The level PkF is the analog of the degree k partial expansion, pkf , of a the Taylor

series of a function f . For functions, one could take the difference of partial expansions pkf − pk−1f and

arrive at a single degree k homogeneous term. The analog for functors is the k layer of the tower, DkF ,

defined by

DkF = hofib(PkF → Pk−1F ).

Unlike Taylor series, which can be easily recovered by summing the homogeneous terms, reassembling the

Taylor tower from its layers is difficult.

The notion of degree k that we will here comes from [JM04]. In order to define degree, we must first define
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the cross effect of a functor.

2.2 Cross effects and degree

For a functor F : A → B with A a category with finite coproducts and B an abelian category, the k-th cross

effect crkF : A×k → B is defined recursively in the following manner:

cr0F = F (+),

cr1F (X)⊕ F (+) = F (X),

cr2F (X,Y )⊕ cr1F (X)⊕ cr1F (Y ) = cr1F (X ∨ Y ),

and in general

crkF (X1, . . . , Xk)⊕ crk−1F (X1, X3, . . . , Xk)⊕ crk−1F (X2, X3, . . . , Xk)

= crk−1F (X1 ∨X2, X3, . . . , Xk).

If cr0F ∼= 0, then we say that F is reduced, and it follows that cr1F (X) ∼= F (X). Let crkF (X) denote

crkF (X, . . . ,X), where all k inputs are the same object X. The following example demonstrates a calculation

of cross effects.

Example 2.2.1. Consider the functor of R-modules, T : ModR → ModR, defined by

T (M) = M ⊗RM.

The 0-th cross effect is given by the what the functor does on the basepoint, in this case

cr0T ∼= 0.

Since T is reduced,

cr1T (M) ∼= T (M) ∼= M ⊗M.

Considering the second cross effect on two R-modules M and N ,

cr2T (M,N)⊕ (M ⊗M)⊕ (N ⊗N) = ⊗2(M ⊕N).

Expanding the right side, we get a direct sum of several modules, including M ⊗ M and N ⊗ N . The
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remaining terms are the second cross effect,

cr2T (M,N) ∼= (M ⊗N)⊕ (N ⊗M).

It can be shown that cr3T ∼= 0, and it follows all higher cross effects are as well.

It will sometimes be helpful to have another way of calculating cross effects.

Lemma 2.2.2.

crkF (X1, . . . , Xk) ' ker
(
F (X1 ∨ · · · ∨Xk)→

k∨
i=1

F (X1 ∨ · · · ∨ X̂i ∨ · · · ∨Xk)
)
.

We say that F is degree k if crk+1F (X1, . . . , Xk+1) ∼= 0, for all choices of Xi. The tensor functor in

Example 2.2.1 is degree 2. Since T (M) = M ⊗M is reminiscent of the degree two function f(x) = x ∗ x,

this fits with analogy to real valued calculus.

2.3 The Taylor tower for functors to abelian categories

The definition of Taylor tower for abelian functors is given in [JM04]. An equivalent construction is given

in [BJO+], which we will state here. For F : A → B a functor of abelian categories, let

⊥k+1 F (X) = ∆∗ ◦ crk+1F (X),

where ∆∗ denotes precomposition with the diagonal functor. The k-th polynomial approximation PkF :

A → ChB is

· · · →⊥×3
k+1 F (X)→⊥×2

k+1 F (X)→⊥k+1 F (X)→ F (X).

There maps here are given by alternating sums involving the counit map of the cotriple defined by ⊥k+1.

Details about the cotriple construction can be found in [JM04, BJO+].

For the purposes of this thesis, we will rely heavily on multilinearization, which is stated in the following

proposition from [JM04].

Proposition 2.3.1.

DkF ' (D
(k)
1 crkF )hΣk

.
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Chapter 3

Discrete Modules, Rank Filtration, and Atomic functors

3.1 Discrete Modules

Let F+ denote the category of finite pointed sets with basepoint preserving maps and let CModR denote the

category of chain complexes of R-modules. A discrete module is a functor F : F+ → CModR

We use the notation [n] for the set {0, 1, . . . , n} in F+, where 0 is regarded as the basepoint, and n =

{1, 2, . . . , n}. For X ∈ F+, R̃ [X] is the reduced free R module on X.

The discrete module In is essential to our constructions.

In(−) = R̃ [Inj([n],−)+]

= R̃

[∧n
X

∆nX

]
,

where ∆n is the fat diagonal ∆n = {(x1, . . . , xn) ∈ ∧nX : xi = xj for some i 6= j}. As shown in the next

section, discrete modules can be broken down into atomic functors by means of a filtration.

3.2 Rank Filtration

Returning briefly to calculus of real valued functions, there is a method of approximating functions by

polynomials called Lagrangian approximation, or polynomial interpolation. For a function

f : R→ R,

let lnf be the degree n polynomial such that

lnf(k) = f(k)

for k = 0, 1, . . . , n. In other words, lnf the unique polynomial that depends only on the value of f at these

points, 0, 1, . . . , n.

From Lagrangian approximation comes an analogous construction for functors, the discrete module LnF
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that depends only on the behavior of F at [0], [1], . . . , [n]. Following [IJM08], we construct the approximation

LnF by restricting F to the subcategory Fn+ of sets of size at most n+1 and then taking the left Kan extension

back to the category F.

F≤n+

ι

��

F |≤n

##
F+

LnF
// CModR

If a discrete module depends only on its values for the sets [0], . . . , [n] in the proceeding way, then we say

it is rank n.

From ιn : F≤n → F≤n+1, we have natural transformations LnF → Ln+1F . We assemble these into a

filtration

L0F → L1F → · · · → LnF → Ln+1F → · · · → colimLnF ∼= F

This is called the rank filtration of F .

We say a discrete module F is atomic if its behavior is completely determined by its value at a particular

set and is 0 for smaller sets. That is, if there is some n such that F is rank n and F ([k]) = 0 for all k < n.

Atomic functors are classified by quotients of successive terms of the rank filtration [IJM08].

CnF (X) =
LnF (X)

Ln−1F (X)

∼= In(X)⊗Σn
crnF ([1]).

By Lemma 3.2.1, we could instead consider the derived tensor.

Lemma 3.2.1. If M and N are R modules, and the action of R on N is free, then

M ⊗R N 'M ⊗hR N.

Proof. If N is a free R[Σn]-module, then it is flat and thus ⊗R[Σn]N is an exact functor. Therefore,

Tor
R[Σn]
• (M,N) = 0 for • ≥ 1 and M ⊗R N 'M ⊗hR N .

So, we have

CnF (X) ' In(X)⊗hΣn crnF ([1])

' In(X)⊗̂Σn
crnF ([1]), (3.1)
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where ⊗̂Σn denotes the two-sided bar construction. That is, the simplicial module

m 7→ In(X)⊗R[Σmn ]⊗ crnF ([1])

with face maps

d0(f, σ1, . . . , σm, c) = (σ1 · f, σ2, . . . , σm, c),

for 1 ≤ i ≤ m− 1

di(f, σ1, . . . , σm, c) = (f, σ1, . . . , σi ◦ σi+1, . . . , σm, c),

dm = (f, σ1, . . . , σm, c) = (f, σ1, . . . , σm−1, σm · c),

and the face maps correspond to inserting a new coordinate with the identity permutation.

For a filtration

F0C → F1C → F2C → · · ·

of chain complex C, there is a natural way of constructing a spectral sequence with

E0
pq =

FpCp+q
Fp−1Cpq

,

as described in [Wei94, Theorem 5.4.1]. By [Wei94, Theorem 5.5.1], if the filtration is bounded below and

colimFpC ∼= C, then the spectral sequence converges naturally to H∗(C). For a discrete module F , the

quotients of successive terms of the rank filtration are atomic functors. So, as we seek to describe the Taylor

tower of any discrete module F , we will do so by assembling the towers for the atomic pieces, CnF , of F .

3.3 Lie algebras

3.3.1 Lien

Recall that a Lie bracket is a binary operation satisfying three axioms:

1. Bilinearity:

[ax+ by, z] = [ax, z] + [by, z] = a[x, z] + b[yz],

[x, ay + bz] = [x, ay] + [x, bz] = a[x, y] + b[x, z].

2. Alternating:

[x, x] = 0.

9



3. Jacobi Relation:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Note, axioms 1 and 2 imply antisymmetry:

[x, y] = −[y, x].

Let R be a commutative ring with unit. A Lie algebra over R is a R-module L together with a R-bilinear

Lie bracket

[−,−] : L× L→ L.

For a set A, recursively generate a collection of expressions, M(A) such that A ⊂M(A) and if a, b ∈M(A),

then [a, b] ∈ M(A). The free Lie algebra L(A) over A can be constructed by taking the free R-module M

generated by M(A) and applying the three Lie bracket relations above.

We are concerned with a particular Lie algebra, LieA, generated by the expressions a ∈M(A), such that

each letter of A appears in a exactly once.

It can be shown that Lien is a free R module of rank (n−1)! and one can take as a basis the right justified

brackets on A, i.e. terms of the form

[σ(1), [σ(2), [. . . , [σ(n− 1), n] . . .]]],

where A = n and σ ∈ Σn−1.

We denote the dual of Lien with its Σn action twisted by ε by εLie∗n. This is well known to be the

cohomology of the partition poset, where the twist is tied to the fact that the blocks in a partition are not

ordered.

For a surjection of sets, ϕ : A→ k, we will sometimes use the notation εLie∗ϕ as shorthand for

εLie∗ϕ−1(1) ⊗ · · · ⊗ εLie∗ϕ−1(k).

For p1, . . . pk ∈ N and ~p = (p1, . . . , pk),

εLie∗~p = εLie∗p1 ⊗ · · · ⊗ εLie∗pk .

10



3.3.2 Alternative vocabulary for Lie

A Lie monomial in Lie(A) is a bracketing, in some order, of the symbols in A. For example, if A = {a, b, c}

some monomials in Lie(A) would be

[a, [b, c]], [[a, b]c], [b, [c, a]], etc.

Rather than as a word consisting of letters and brackets, we can think of a monomial as a bracketing of

slots defined for n inputs and evaluated on an n-tuple of letters. For example

[a, [b, c]] = [−1, [−2,−3]](a, b, c) = [−2, [−1,−3]]](b, a, c) = · · ·

For an arbitrary finite set A = {a1, a2, . . . , an}, we define a Σn action on Lie(A) by

ρ · f(a1, . . . , an) = f(aρ(1), . . . , aρ(n)),

for every ρ ∈ Σn and monomial f(a1, a2, . . . , an) in Lie(A).

The Σn module εLie(A) is the same underlying R-module as Lie(A), with the Σn action twisted by the

sign representation, i.e.

ρ · f(a1, . . . , an) = (−1)|ρ|f(aρ(1), . . . , aρ(n)),

for every ρ ∈ Σn and monomial f(a1, a2, . . . , an) in εLie(A).

3.4 Taylor Tower for Discrete Modules

We will build up a description of the Taylor Tower for discrete modules starting with the n-homogeneous

terms of atomic functors.

DkCnF (X) ' DkIn(X)⊗̂ΣncrnF [1]

For k = 1, it is shown in [Rob03] that

D1In(X) ' Σn−1εLie∗n ⊗R R̃ [X] ,

where εLie∗n is the n-multilinear free Lie algebra discussed in Section 3.3.

In general, by multilinearizing we can compute DkIn(−).
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Proposition 3.4.1.

DkIn(X) ' Σn−k
⊕

ϕ∈Ord(n,k)

εLie∗ϕ−1(1) ⊗ · · · ⊗ εLie∗ϕ−1(k) ⊗ R̃
[
∧kX

]
The case where k = 2 gives a good illustration of the proof.

Example 3.4.2. Let X1 = X2 = X. We start by noticing that an injection from [n] into a wedge X1 ∨X2

can be defined by first choosing which Xi each element of [n] is mapped to, then choosing an injection into

X1 and an injection into X2. This defines an isomorphism:

In(X1 ∨X2) ∼=
⊕
ϕ:n→2

R̃
[
Inj(ϕ−1(1), X1)+

]
⊗ R̃

[
Inj(ϕ−1(2), X2)+

]
.

The second cross effect kills the elements corresponding to sending all elements of [n] to X1 or all to X2, so

cr2In(X1, X2) ∼=
⊕
ϕ:n�2

R̃
[
Inj(ϕ−1(1), X1)+

]
⊗ R̃

[
Inj(ϕ−1(2), X2)+

]
.

We already know how to calculate D1In, so we can linearize in each variable:

D
(2)
1 cr2In(X1, X2) '

⊕
ϕ:n�2

(
Σ|ϕ

−1(1)|−1εLie∗ϕ−1(1) ⊗ R̃ [X1]
)
⊗
(

Σ|ϕ
−1(2)|−1εLie∗ϕ−1(2) ⊗ R̃ [X2]

)
.

Simplify by recalling X1 = X2.

' Σn−2
⊕
ϕ:n�2

εLie∗ϕ−1(1) ⊗ εLie∗ϕ−1(2) ⊗ R̃
[
∧2X

]
Finally, taking homotopy orbits computes D2In by multilinearization.

D2In(X) ' Σn−2
⊕

ϕ∈Ord(n,2)

εLie∗ϕ−1(1) ⊗ εLie∗ϕ−1(2) ⊗ R̃
[
∧2X

]
,

where Ord(n, 2) = Surj(n, 2)/Σ2.

Proof of Proposition 3.4.1. Let X = X1 = · · · = Xk. Notice that a basepoint preserving injection from [n]

to X1∨ · · ·∨Xk can be defined by deciding which Xi each element of [n] should be sent to, and then picking

an injection from those elements into Xi. This defines an equivalence of sets

(
Inj+([n],

k∨
i=1

Xi)
)

+
∼=

∨
ϕ:n→k

k∧
i=1

(
Inj+(ϕ−1(i), Xi)

)
+
,

12



which induces an isomorphism

In(

k∨
i=1

Xi) = R̃

[(
Inj+([n],

k∨
i=1

Xi)
)

+

]

∼= R̃

 ∨
ϕ:n→k

k∧
i=1

(
Inj+(ϕ−1(i), Xi)

)
+


∼=
⊕
ϕ:n→k

k⊗
i=1

R̃
[(
Inj+(ϕ−1(i), Xi)

)
+

]
.

By Lemma 2.2.2,

crkIn(X1, . . . , Xk) '
⊕
ϕ:n�k

k⊗
i=1

R̃
[(
Inj+(ϕ−1(i), Xi)

)
+

]
.

Linearize in each variable, making use of the calculation D1In(X) ' Σn−1εLie∗n ⊗ R̃ [X], and simplify by

recalling that X1 = · · · = Xk:

D
(k)
1 crkIn(X1, . . . , Xk) '

⊕
ϕ:n�k

k⊗
i=1

Σ|ϕ
−1(i)|−1εLie∗|ϕ−1(i)| ⊗ R̃ [Xi]

∼= Σ|ϕ
−1(1)|−1+···+|ϕ−1(k)|−1

⊕
ϕ:n�k

k⊗
i=1

εLie∗|ϕ−1(i)| ⊗ R̃ [X]

∼= Σn−k
⊕
ϕn�k

εLie∗ϕ ⊗ R̃
[
∧kX

]
.

Take homotopy orbits Σk and apply Proposition 2.3.1,

DkIn(X) ' Σn−k
⊕

ϕ∈Ord(n,k)

εLie∗ϕ ⊗ R̃
[
∧kX

]

Let

An−k(n)(X) =
⊕

ϕ∈Ord(n,k)

εLie∗ϕ−1(1) ⊗ · · · ⊗ εLie∗ϕ−1(k) ⊗ R̃
[
∧kX

]
.

In order to describe the Taylor tower for any atomic functor, we first construct a resolution of In.

Theorem 3.4.3. There exists a resolution

· · · → 0→ An−1(n)→ An−2(n)→ · · · → A0(n)→ In → 0,

such that the truncation at An−k(n) is equivalent as a complex of Σn-modules to PkIn, for all k.
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By truncations we mean

An−1 → 0→ · · · → 0 ' D1In = P1In,

An−1 → An−2 → 0→ · · · → 0 ' P2In,

and so on.

Combining Theorem 3.4.3 with the characterization of atomic functors in (3.1), we also have a resolution

for any atomic functor.

Corollary 3.4.4. For atomic functor G, there exists a resolution

· · · → 0→ An−1(n)⊗̂Σn
crnG([1])→ · · · → A0(n)⊗̂Σn

crnG([1])→ In(−)⊗̂Σn
crnG([1]),

such that the truncation at An−k(n)G is equivalent as a complex of Σn-modules to PkG, for all k.
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Chapter 4

The Construction

In this chapter, we give a construction of the degree resolution of In of Theorem 3.4.3. We show that it is a

chain complex, that the boundary maps are Σn-equivariant, and finally that it is indeed a resolution of In.

4.1 The Chain Complex

To construct the complex

0→ An−1(n)
∂∗n−1−→ · · · → A0(n)

∂∗0−→ In,

define

An−k(n)(X) =
⊕

α∈Ord(n,k)

εLie∗α ⊗ R̃
[
∧kX

]
.

Note, A0(n)(X) ∼= R̃ [∧nX]. A basis element of In(X) can be written as an n-tuple of distinct elements

of X. Define ∂∗0 : A0(n)→ In by

∂∗0(x1, . . . , xn) =

 (x1, . . . , xn) if xi are all distinct

0 else

To define ∂∗k : Ak(n) → Ak−1(n) for k > 0, we will consider the dual complex and define ∂k. In the dual

complex,

An−k(n)∗(X) =
⊕

α∈Ord(n,k)

εLieα ⊗ R̃
[
∧kX

]∗
.

Writing R̃
[
Xk
]

is perhaps more natural when thinking of these modules as coming from the multilin-

earization. However, we will introduce some notation that will make it easier to keep track of the symmetric

group actions later.

For α ∈ Ord(n, k), we write R̃ [Xα] for the submodule of R̃ [∧nX] such that, for (x1, . . . xn) ∈ R̃ [∧nX], if

α(i) = α(j) then xi = xj . Note that this is isomorphic to R̃
[
∧kX

]
.
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Example 4.1.1. For ϕ : 3 � 2 defined by

ϕ :
1, 3 7→ 2

2 7→ 1

and X = {x, y, z}, some examples of elements of R̃ [Xϕ] are (x, x, x) and (x, y, x), but not (x, y, z) or (x, x, z).

To construct ∂k, let α ∈ Ord(n, k + 1), β ∈ Ord(k + 1, k), and g < h the unique pair in k + 1 such that

β(g) = β(h). For w = w1 ⊗ w2 ⊗ · · · ⊗ wk+1 an element of εLie(α−1(1))⊗ · · · ⊗ εLie(α−1(k + 1)), define

∂β(w) = (−1)g+1w1 ⊗ w2 ⊗ · · · ⊗ ŵg ⊗ · · · ⊗ wh−1 ⊗ [wg, wh]⊗ · · · ⊗ wk+1.

Note, β ◦ α ∈ Ord(n, k). For x = (x1, x2, . . . , xn)∗ a basis element of R̃ [Xα]
∗
, define

tβ(α;x) =

 0 if x 6∈ R̃
[
Xβ◦α]∗

x else

We define the boundary map for the chain complex by

∂n−k(w ⊗ x) =
∑

β∈Ord(k+1,k)

∂β(w)⊗ tβ(α;x).

Example 4.1.2. Consider

w ⊗ ~x = 1⊗ 2⊗ 3⊗ 4⊗ 5⊗ (x, x, y, x, y)∗

∂4(w ⊗ ~x) =
(
[1, 2]⊗ 3⊗ 4⊗ 5 + 2⊗ 3⊗ [1, 4]⊗ 5

− 1⊗ 3⊗ [2, 4]⊗ 5 + 1⊗ 2⊗ 4⊗ [3, 5]
)
⊗ (x, x, y, x, y)∗

Proposition 4.1.3. A∗(n)(X) is a chain complex.

Proposition 4.1.3 is proved by observing that the terms of ∂ ◦∂(w⊗x) can be grouped based on surjections

and then showing cancellation either due to signs or Lie bracket relations, as shown in the following example.

Example 4.1.4. Continuing from Example 4.1.2,

w ⊗ ~x = 1⊗ 2⊗ 3⊗ 4⊗ 5⊗ (x, x, y, x, y)∗.
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Apply the boundary map a second time:

∂3 ◦ ∂4(w ⊗ ~x) = 3⊗ [[1, 2], 4]⊗ 5⊗ (y, x, y)∗ − [1, 2]⊗ 4⊗ [3, 5]⊗ (x, x, y)∗

+ 3⊗ [2, [1, 4]]⊗ 5⊗ (y, x, y)∗ − 2⊗ [1, 4]⊗ [3, 5]⊗ (x, x, y)∗

− 3⊗ [1, [2, 4]]⊗ 5⊗ (y, x, y)∗ + 1⊗ [2, 4]⊗ [3, 5]⊗ (x, x, y)∗

+ [1, 2]⊗ 4⊗ [3, 5]⊗ (x, x, y)∗ + 2⊗ [14]⊗ [3, 5]⊗ (x, x, y)∗

− 1⊗ [2, 4]⊗ [3, 5]⊗ (x, x, y)∗.

Group the terms by the composition β of indexing surjections and see that they all cancel.

β = 3|1, 2, 4|5 :

+ 3⊗ [[1, 2], 4]⊗ 5 + 3⊗ [2, [1, 4]]⊗ 5− 3⊗ [1, [2, 4]]⊗ 5

β = 1, 2|4|3, 5 :

− [1, 2]⊗ 4⊗ [3, 5] + [1, 2]⊗ 4⊗ [3, 5]

β = 2|1, 4|3, 5 :

− 2⊗ [1, 4]⊗ [3, 5] + 2⊗ [14]⊗ [3, 5]

β = 1|2, 4|3, 5 :

+ 1⊗ [2, 4]⊗ [3, 5]− 1⊗ [2, 4]⊗ [3, 5]

Proof of Proposition 4.1.3. Fix an ordered surjection α : n ◦�k + 1 and let

w ∈ εLie(α−1(1))⊗ · · · ⊗ εLie(α−1(k + 1))

be a basis element, i.e. a pure tensor where w = w1⊗· · ·⊗wk+1 and each wi is a Lie bracket in εLie(α−1(i)).

Let x = (x1, x2, . . . , xn)∗ be a basis element of R̃ [Xα]
∗
.

∂ ◦ ∂(w ⊗ x) =
∑

ϕ′∈Ord(k,k−1)

∑
ϕ∈Ord(k+1,k)

∂ϕ′ ◦ ∂ϕ(w)⊗ tϕ′ ◦ tϕ(α;x).

The terms ∂ϕ′∂ϕ of ∂ ◦ ∂ can be partitioned based on the composition of the indexing surjections,

β = ϕ′ ◦ ϕ : k + 1 ◦�k − 1.

We will show that the terms of each block of this partition cancel.

Consider β : k + 1 ◦�k − 1. We can factor β as a composition of ordered surjections in either two ways or
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three ways, depending on which of the following two types of surjection it is.

We will say β is Type 1 if there exists 1 ≤ a ≤ k− 1 such that |β−1(a)| = 3. The first β in Example 4.1.4

was Type 1.

Let {g, h, i} = β−1(a) and g < h < i. There are three ways of factoring β, corresponding to each choice of

a pair of elements that map to the same element in k, i.e. a choice of ϕ. Let these factorizations be ϕ′ ◦ ϕ

where ϕ(g) = ϕ(h), ψ′ ◦ ψ where ψ(g) = ψ(i), and γ′ ◦ γ where γ(h) = γ(i). We can describe all of these

pairs of surjections explicitly.

ϕ(`) =


` if ` < g

h− 1 if ` = g

`− 1 if g < `

, ϕ′(m) =


m if m < ϕ(h) = h− 1

ϕ(i)− 1 = i− 2 if m = h− 1

m− 1 if h− 1 < m

ψ(`) =


` if ` < g

i− 1 if ` = g

`− 1 if g < `

, ψ′(m) =


m if m < ψ(h) = h− 1

ψ(i)− 1 = i− 2 if m = h− 1

m− 1 if h− 1 < m

γ(`) =


` if ` < h

i− 1 if ` = h

`− 1 if h < `

, γ′(m) =


m if m < γ(g) = g

γ(i)− 1 = i− 2 if m = g

m− 1 if g < m

We can describe the corresponding boundary map terms. Note that if x ∈ R̃
[
Xβ◦α]∗, then it is also in

R̃ [Xϕ◦α]
∗
, R̃

[
Xψ◦α]∗, and R̃ [Xγ◦α]

∗
. If x 6∈ R̃

[
Xβ◦α]∗, then tϕ′tϕ(α;x) = tψ′tψ(α;x) = tγ′tγ(α;x) = 0,

and trivially the corresponding boundary map terms are 0. Assume x ∈ R̃
[
Xβ◦α]∗.

∂ϕ′ ◦ ∂ϕ(w)⊗ tϕ′tϕ(x)

= ∂ϕ′
(
(−1)g+1w1 ⊗ · · · ⊗ wg−1 ⊗ ŵg ⊗ · · · ⊗ wh−1 ⊗ [wg, wh]⊗ · · · ⊗ wi ⊗ · · · ⊗ wk+1

)
⊗ x

= (−1)(h−1)+1+g+1w1 ⊗ · · · ⊗ ŵg ⊗ · · · ⊗ ŵh ⊗ · · · ⊗ wi−1 ⊗ [[wg, wh], wi]⊗ · · · ⊗ wk+1 ⊗ x

∂ψ′ ◦ ∂ψ(w)⊗ tψ′tψ(x)

= ∂ψ′
(
(−1)g+1w1 ⊗ · · · ⊗ wg−1 ⊗ ŵg ⊗ · · · ⊗ ⊗wh ⊗ · · · ⊗ wi−1 ⊗ [wg, wi]⊗ · · · ⊗ wk+1

)
⊗ x

= (−1)(h−1)+1+g+1w1 ⊗ · · · ⊗ ŵg ⊗ · · · ⊗ ŵh ⊗ · · · ⊗ wi−1 ⊗ [wh, [wg, wi]]⊗ · · · ⊗ wk+1 ⊗ x

∂γ′ ◦ ∂γ(w)⊗ tγ′tγ(x)

= ∂γ′
(
(−1)h+1w1 ⊗ · · · ⊗ wg ⊗ · · · ⊗ wh−1 ⊗ ŵh ⊗ · · · ⊗ wi−1 ⊗ [wh, wi]⊗ · · · ⊗ wk+1

)
⊗ x

= (−1)g+1+h+1w1 ⊗ · · · ⊗ ŵg ⊗ · · · ⊗ ŵh ⊗ · · · ⊗ wi−1 ⊗ [wg, [wh, wi]]⊗ · · · ⊗ wk+1 ⊗ x
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Adding the three together, we have

w1 ⊗ · · · ⊗ ŵg ⊗ · · · ⊗ ŵh ⊗ · · · ⊗ wi−1 ⊗ u⊗ · · · ⊗ wk+1 ⊗ x,

where

u = (−1)h+g+2 (−[[wg, wh], wi]− [wh, [wg, wi]] + [wg, [wh, wi]]) .

From the Jacobi relation, we get

0 = [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = −[[b, c], a] + [b, [c, a]]− [c, [b, a]].

Thus, u = 0 and it follows that

∂ϕ′ ◦ ∂ϕ(w) + ∂ψ′ ◦ ∂ψ(w) + ∂γ′ ◦ ∂γ(w) = 0.

This completes the proof for the Type 1 case. We now consider the second case.

We say β is Type 2 if there exist 1 ≤ a < b ≤ k − 1 such that |β−1(a)| = |β−1(b)| = 2. The last three β

in Example 4.1.4 were Type 2.

Let {g, h} = β−1(a), with g < h, and {i, j} = β−1(b), with i < j.

There are two ways of factoring β, namely, ϕ′ ◦ ϕ where ϕ(g) = ϕ(h), and ψ′ ◦ ψ where ψ(i) = ψ(j). We

can describe these surjections explicitly.

ϕ(`) =


` if ` < g

h− 1 if ` = g

`− 1 if g < `

, ϕ′(m) =


m if m < ϕ(i)

ϕ(j)− 1 if m = ϕ(i)

m− 1 if ϕ(i) < m

and

ψ(`) =


` if ` < i

j − 1 if ` = i

`− 1 if i < `

, so ψ′(m) =


m if m < ψ(g)

ψ(h)− 1 if m = ψ(g)

m− 1 if ψ(g) < m

Because of the antisymmetry relationship for Lie brackets and the pairs of surjections came from factoring

β, both ∂ϕ′∂ϕ(w) and ∂ψ′∂ψ(w) will result in the same element of εLie(βα)−1 , up to a sign. For example,

when g < h < i < j we have

±w1 ⊗ · · · ⊗ ŵg ⊗ · · · ⊗ [wg, wh]⊗ · · · ⊗ ŵi ⊗ · · · ⊗ [wi, wj ]⊗ · · · ⊗ wk+1,
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when g < i < h < j we have

±w1 ⊗ · · · ⊗ ŵg ⊗ · · · ⊗ ŵi ⊗ · · · ⊗ [wg, wh]⊗ · · · ⊗ [wi, wj ]⊗ · · · ⊗ wk+1,

etc.

Similarly to Part 1, we only have non-trivial terms if x ∈ R̃
[
Xβ◦α]. What remains is to check that the

two factorizations result in different signs, and thus in canceling terms.

The signs can be calculated as follows

sgn(∂ϕ′ ◦ ∂ϕ) = sgn(∂ϕ′)sgn(∂ϕ) = (−1)ϕ(i)+1(−1)g+1 = (−1)ϕ(i)+g+2

and

sgn(∂ψ′ ◦ ∂ψ) = sgn(∂ψ′)sgn(∂ψ) = (−1)ψ(g)+1(−1)i+1 = (−1)i+ψ(g)+2.

If g < i,

ϕ(i) + g + 2 = i− 1 + g + 2 = i+ g + 1 and ψ(g) + i+ 2 = g + i+ 2.

If i < g

ϕ(i) + g + 2 = i+ g + 2 and ψ(g) + i+ 2 = g − 1 + i+ 2 = g + i+ 1.

So, in both cases

sgn(∂ϕ′ ◦ ∂ϕ) = −sgn(∂ψ′ ◦ ∂ψ)

as desired.

4.2 Σn equivariance

4.2.1 Alternative notation for the complex

Any basis element w ⊗ x of

An−k(n)∗(X) =
⊕

α∈Ord(n,k)

εLieα ⊗ R̃
[
∧kX

]∗
,

corresponds to some ordered surjection α. In this section, we will write (α;w ⊗ x) for w ⊗ x to improve the

bookkeeping.

Recall that for an arbitrary surjection ϕ : n � k, there is a unique factorization of ϕ = σ ◦α where σ ∈ Σk
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and α ∈ Ord(n, k). These unique factorizations give the isomorphism

An−k(n)n(X) ∼=
⊕

ϕ∈Surj(n,k)

εLieϕ ⊗ R̃ [Xϕ]
∗
/ ∼,

where

(ϕ;w1 ⊗ · · · ⊗ wk ⊗ x) ∼ (−1)|σ|(α;wσ(1) ⊗ · · · ⊗ wσ(k) ⊗ x)

for all σ ∈ Σk. So, we can consider representatives, (ϕ;w1 ⊗ · · · ⊗wk ⊗ x), of these equivalence classes such

that ϕ is not ordered.

Example 4.2.1. For n = 3.

1⊗ 2⊗ 3⊗ (x, y, z) ∼ −2⊗ 1⊗ 3⊗ (x, y, z) ∼ 2⊗ 3⊗ 1⊗ (x, y, z)

[1, 2]⊗ 3⊗ (x, x, y) ∼ −3⊗ [1, 2]⊗ (x, x, y)

4.2.2 Symmetric group action on Ak(n)(X)

There is an action of Σn on An−k(n)(X) by permuting letters, which will be denoted with ·, and an action

of Σk on An−k(n)(X) permuting blocks (wi), which will be denoted with ?.

Fix ϕ ∈ Surj(n, k), a basis element w ∈ εLieϕ, and a basis element x ∈ R̃ [Xϕ]
∗
. Recall, w = w1⊗· · ·⊗wk,

where wi ∈ εLie(ϕ−1(i)) and x = (x1, . . . , xn)∗. Adapting notation from Lie monomials in Section 3.3.2,

w = (w1 ⊗ · · · ⊗ wk)(aτ(1), . . . , aτ(n))

= w1(aτ(1), . . . , aτ(d1))⊗ · · · ⊗ wk(aτ(dk−1+1), . . . , aτ(n))

where τ is some ordering of the alphabet n, di = |ϕ−1{1, 2, . . . , i}| and {aτ(di−1+1), . . . , aτ(di)} = ϕ−1(i).

The Σn action is defined by

ρ · (w ⊗ x) = (ρ · w)⊗ ρ∗(x)

= (−1)|ρ|w
(
aρ◦τ(1), . . . , aρ◦τ(n)

)
⊗
(
xρ−1(1), . . . , xρ−1(n)

)∗
for ρ ∈ Σn. Note, ρ · w ∈ Lieϕ◦ρ−1 .

Example 4.2.2. Let

w ⊗ x = [1, 3]⊗ 4⊗ [2, 5]⊗ (x, z, x, y, z)∗.

For ρ1 = (23),

ρ1 · (w ⊗ x) = −[1, 2]⊗ 4⊗ [3, 5]⊗ (x, x, z, y, z)∗.
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For ρ2 = (35),

ρ2 · (w ⊗ x) = −[1, 5]⊗ 4⊗ [2, 3]⊗ (x, z, z, y, x)∗

∼ [2, 3]⊗ 4⊗ [1, 5]⊗ (x, z, z, y, x)∗.

For ρ3 = (35)(34),

ρ3 · (w ⊗ x) = [1, 4]⊗ 5⊗ [2, 3]⊗ (x, z, z, x, y)∗

∼ [2, 3]⊗ [1, 4]⊗ 5⊗ (x, z, z, x, y)∗.

Suppose 1 ≤ i < j ≤ n such that ϕ◦ρ−1(i) = ϕ◦ρ−1(j). If x ∈ R̃ [Xϕ]
∗
, then by definition xρ−1(i) = xρ−1(j).

So, whenever x ∈ R̃ [Xϕ]
∗
, ρ∗(x) ∈ R̃

[
Xϕ◦ρ−1

]∗
.

The Σk action is defined by

σ ? (ϕ;w ⊗ x) = (−1)sgn(σ)(σ ◦ ϕ;wσ−1(1) ⊗ · · · ⊗ wσ−1(k) ⊗ x).

The equivalence relation in Section 4.2.1 can be written as

σ ? (ϕ;w ⊗ x) ∼ (ϕ;w ⊗ x).

Observation 4.2.3. Because σ ∈ Σk permutes the various Lie blocks and ρ ∈ Σn permutes the letters that

are plugged into the blocks,

ρ · (σ ? w ⊗ x) = σ ? (ρ · w ⊗ x).

Alternatively, this could be argued by the associativity of composition, σ ◦ (ϕ ◦ ρ) = (σ ◦ ϕ) ◦ ρ.

4.2.3 Alternative Notation for ∂

To work with the symmetric group action, it will be helpful to write the map ∂ in terms of indexes, rather

than surjections.

For 1 ≤ g < h ≤ k, let sg,h : k � k− 1 be the ordered surjection such that g 7→ h− 1 and h 7→ h− 1. Let

sg,h = sh,g.

Let ϕ : n � k be a surjection, possibly not ordered. Define

Brg,h : εLieϕ → εLiesg,h◦ϕ

by

Brg,h(ϕ;w) = (sg,h ◦ ϕ;w1 ⊗ w2 ⊗ · · · ⊗ ŵg ⊗ · · · ⊗ wh−1 ⊗ [wg, wh]⊗ · · · ⊗ wk),
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where w = w1 ⊗ w2 ⊗ · · · ⊗ wk ∈ εLieϕ is a basis element. Let Brh,g = Brg,h.

This Brg,h notation can be used to write an equivalent definition of ∂. Let α ∈ Ord(n, k), and 1 ≤ g <

h ≤ k. For w = w1 ⊗ w2 ⊗ · · · ⊗ wk an element of εLieα,

∂sg,h(w) = (−1)g+1Brg,h(w)

and so

∂k(α;w ⊗ x) =
∑

1≤g<h≤k+1

(−1)g+1(sg,h ◦ α;Brg,h(w)⊗ tg,h(α;x)),

where

tg,h(α;x) =

 x if x ∈ R̃ [Xsg,h◦α]
∗

0 else

for x = (x1, x2, . . . , xn)∗ a basis element of R̃ [Xα]
∗

This definition is only for w ∈ εLieα where α is ordered. If σ ∈ Σk and w ∈ Lieσ◦α, then

(σ ◦ α;w ⊗ x) = (σ ◦ α;w1 ⊗ · · · ⊗ wk ⊗ x)

∼ (−1)|σ|(α;wσ(1) ⊗ · · · ⊗ wσ(k) ⊗ x)

= σ−1 ? (σ ◦ α;w ⊗ x)

so we use

∂k(σ ◦ α;w ⊗ x) = ∂k(σ−1 ? (σ ◦ α;w ⊗ x))

= (−1)|σ|∂k(α;wσ(1) ⊗ · · · ⊗ wσ(k) ⊗ x).

4.2.4 Naturality

For an injection ι : [m]→ [n] and for α ∈ In(X), α ◦ ι ∈ Im(X). So, ι induces a map ι∗ : In(X)→ Im(X)

and dualizing gives us a map ι∗ : Im(X)∗ → In(X)∗. We want to show ∂ ◦ ι∗ = ι∗ ◦ ∂, i.e. naturality with

respect to all injections.

The injection ι : m → n can be factored as a composition σι ◦ ιn−m ◦ · · · ◦ ι1, where σι ∈ Σn and

ιi : [m + i − 1] → [m + i] is defined by ιi(j) = j for all j ∈ [m + i − 1]. The choice of permutation σι may

not be unique, but we will define it to be the unique permutation so that σι ◦ ιn−m ◦ · · · ◦ ι1 = ι and σι is

strictly order preserving when its domain is restricted to {m+ 1,m+ 2, . . . , n}. Using this factorization, we

need only check that ∂ ◦ (ιi)∗ = (ιi)∗ ◦ ∂ for all i and that ∂ ◦ σι = σι ◦ ∂.

Proposition 4.2.4. For ρ ∈ Σn,

∂(ρ · (w ⊗ x)) = ρ · ∂(w ⊗ x).
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In order to prove Proposition 4.2.4, we first prove several supporting lemmas.

Let ϕ : n � k, w ∈ εLieϕ, x ∈ R̃ [Xϕ]
∗
, and ρ ∈ Σn. For now, ϕ does not have to be ordered. There

exists a unique σ ∈ Σk such that σ ◦ ϕ is ordered.

Recall,

σ ? (ϕ;w) = σ ? (ϕ;w1 ⊗ · · · ⊗ wk)

= (−1)|σ|(σ ◦ ϕ;wσ−1(1) ⊗ · · · ⊗ wσ−1(k)).

Combining this with the definition of ∂,

∂(ϕ;w ⊗ x) = ∂ (σ ? (ϕ;w ⊗ x))

=
∑

1≤g<h≤k+1

(−1)g+1Brg,h (σ ? (ϕ;w))⊗ tg,h(σ ◦ ϕ;x)

=
∑

1≤g<h≤k+1

(−1)g+1+|σ|Brg,h(σ ◦ ϕ;wσ−1(1) ⊗ · · · ⊗ wσ−1(k))⊗ tg,h(σ ◦ ϕ;x) (4.1)

Lemma 4.2.5.

tg,h(σ ◦ ϕ;x) = tσ−1(g),σ−1(h)(ϕ;x)

Proof. The surjection ϕ determines a partition of n into k ordered blocks, Bi = ϕ−1(i). The composition

σ ◦ ϕ determines the same partition with a different order on the blocks. If x ∈ R̃ [Xϕ]
∗
, then x associates

the same element of X to every element in a block of the partition. The map tgh(ϕ;−) checks whether the

g-th block has the same element of X associated to it as the h-th block.

If B1, . . . , Bk are the blocks from ϕ and B′1, . . . , B
′
k are the blocks from σ◦ϕ, then B′i = Bσ−1(i). Therefore,

checking that B′g and B′h are associated with the same element of X is equivalent to checking Bσ−1(g) and

Bσ−1(h).

Lemma 4.2.6.

tgh(ρ · x;ϕ ◦ ρ−1) = ρ · (tgh(x;ϕ))

Proof. Recall, ρ · x = (xρ1(1), . . . , xρ−1(n))
∗ We consider x ∈ R̃ [Xϕ]

∗
. There is an ordered partition

B1, . . . , Bk+1 of n defined by ϕ. So x = (x1, . . . , xn)∗ has an element of X for each element of n. If

x ∈ R̃ [Xϕ], then x assigns a single element of X to each block of the partition. Then tg,h tests whether Bg

and Bh are assigned the same element of X. The surjection ϕ ◦ ρ−1 defines another partition B′1, . . . , B
′
k+1.

x ∈ R̃ [Xϕ] if and only if ρ(x) ∈ R̃
[
Xϕ◦ρ−1

]
. In fact, x assigns the same element of X to Bi as ρ · x

does to B′i. So, Bg and Bh have same corresponding element of X exactly when B′g and B′h do. So,

tgh(ρ · x) = 0 = ρ · tg,h(x) or tg,h(ρ · x) = ρ · x = ρ · tg,h(x).
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Example 4.2.7.

σ :

2 7→ 3

1 7→ 2

3 7→ 1

(−1)|σ|+g+1Brg,h
(
wσ−1(1) ⊗ · · · ⊗ wσ−1(k)

)
= (−1)2+g+1Brg,h(w3 ⊗ w1 ⊗ w2)

g = 1, h = 2:

(−1)2+1+1Br1,2(w3 ⊗ w1 ⊗ w2) = [w3, w1]⊗ w2

∼ −w2 ⊗ [w3, w1]

∼ w2 ⊗ [w1, w3]

= Br1,3(w1 ⊗ w2 ⊗ w3)

g = 1, h = 3:

(−1)2+1+1Br1,3(w3 ⊗ w1 ⊗ w2) = w1 ⊗ [w3, w2]

∼ −w1 ⊗ [w2, w3]

= (−1)2+1Br2,3(w1 ⊗ w2 ⊗ w3)

g = 2, h = 3:

(−1)2+2+1Br2,3(w3 ⊗ w1 ⊗ w2) = −w3 ⊗ [w1, w2]

∼ [w1, w2]⊗ w3

= Br1,2(w1 ⊗ w2 ⊗ w3)

Lemma 4.2.8. w = w1 ⊗ w2 ⊗ · · · ⊗ wk ∈ εLieϕ, with w possibly not ordered.

(−1)|σ|+g+1Brg,h
(
wσ−1(1) ⊗ · · · ⊗ wσ−1(k)

)
= (−1)min(σ−1(g,h))+1Brσ−1(g,h)(w)

Proof. Consider a transposition τ = ( a b ) ∈ Σk and suppose that a < b. Applying the transposition to w,

we have

τ ? w = −w1 ⊗ · · · ⊗ wa−1 ⊗ wb ⊗ wa+1 ⊗ · · · ⊗ wb−1 ⊗ wa ⊗ wb+1 ⊗ · · · ⊗ wk

Let 1 ≤ g < h ≤ k. We want to show

Brg,h(τ ? w) = (−1)min(τ(g),τ(h))+gBrτ(g),τ(h)(w). (4.2)
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If {g, h} and {a, b} are disjoint, then Brg,h(τ ? w) ∼ Brg,h(w).

Suppose b = g.

Brg,h(τ ? w) = Brg,h(τ ? w1 ⊗ · · · ⊗ wa−1 ⊗ wa ⊗ wa+1 ⊗ · · · ⊗ wg−1 ⊗ wg ⊗ wg+1 ⊗ · · · ⊗ wh ⊗ · · · ⊗ wk)

= −Brg,h(w1 ⊗ · · · ⊗ wa−1 ⊗ wg ⊗ wa+1 ⊗ · · · ⊗ wg−1 ⊗ wa ⊗ wg+1 ⊗ · · · ⊗ wh ⊗ · · · ⊗ wk)

= −w1 ⊗ · · · ⊗ wa−1 ⊗ wg ⊗ wa+1 ⊗ · · · ⊗ wg−1 ⊗ wg+1 ⊗ · · · ⊗ wh−1 ⊗ [wa, wh]⊗ · · · ⊗ wk

In order to make this look more like Br applied to w, move wg to be between wg−1 and wg+1. To do this,

apply g − 1− a transpositions to switch wg with wa+1, then wg with wa+2 and so on.

= (−1)g−1−a+1w1 ⊗ · · · ⊗ wa−1 ⊗ wa+1 ⊗ · · · ⊗ wg−1 ⊗ wg ⊗ wg+1 ⊗ · · · ⊗ wh−1 ⊗ [wa, wh]⊗ · · · ⊗ wk

= (−1)a+gBra,h(w)

= (−1τ(g)+gBrτ(g),h(w).

Suppose a = h.

Brg,h(τ ? w) = Brg,h(τ ? w1 ⊗ · · · ⊗ wg ⊗ · · · ⊗ wh−1 ⊗ wh ⊗ wh+1 ⊗ · · · ⊗ wb−1 ⊗ wb ⊗ wb+1 ⊗ · · · ⊗ wk)

= −Brg,h(w1 ⊗ · · · ⊗ wg ⊗ · · · ⊗ wh−1 ⊗ wb ⊗ wh+1 ⊗ · · · ⊗ wb−1 ⊗ wh ⊗ wb+1 ⊗ · · · ⊗ wk)

= −w1 ⊗ · · · ⊗ ŵg ⊗ · · · ⊗ wh−1 ⊗ [wg, wb]⊗ wh+1 ⊗ · · · ⊗ wb−1 ⊗ wh ⊗ · · · ⊗ wk

∼ w1 ⊗ · · · ⊗ ŵg ⊗ · · · ⊗ wh−1 ⊗ wh ⊗ · · · ⊗ wb−1 ⊗ [wg, wb]⊗ · · · ⊗ wk

= Brg,b(w)

Suppose a = g. We have

Brg,h(τ ? w) = Brg,h(τ ? w1 ⊗ · · · ⊗ wg−1 ⊗ wg ⊗ wg+1 ⊗ · · · ⊗ wb−1 ⊗ wb ⊗ wb+1 ⊗ · · · ⊗ wk)

= −Brg,h(w1 ⊗ · · · ⊗ wg−1 ⊗ wb ⊗ wg+1 ⊗ · · · ⊗ wb−1 ⊗ wg ⊗ wb+1 ⊗ · · · ⊗ wk).

Case b < h:

Brg,h(τ ? w)

= Brg,h(τ ? w1 ⊗ · · · ⊗ wg−1 ⊗ wg ⊗ wg+1 ⊗ · · · ⊗ wb−1 ⊗ wb ⊗ wb+1 ⊗ · · · ⊗ wh ⊗ · · · ⊗ wk)

= −Brg,h(w1 ⊗ · · · ⊗ wg−1 ⊗ wb ⊗ wg+1 ⊗ · · · ⊗ wb−1 ⊗ wg ⊗ wb+1 ⊗ · · · ⊗ wh ⊗ · · · ⊗ wk)

= −w1 ⊗ · · · ⊗ wg−1 ⊗ wg+1 ⊗ · · · ⊗ wb−1 ⊗ wg ⊗ wb+1 ⊗ · · · ⊗ wh−1 ⊗ [wb, wh]⊗ wh+1 ⊗ · · · ⊗ wk.

We want to move wg to be in between wg−1 and wg+1 in order to make this look more like a bracketing
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of w. To do this, we apply b− 1− g transpositions to switch wg with wb−1, then switch wg with wb−2 and

so on. We arrive at

Brg,h(τ ? w)

= (−1)b−gw1 ⊗ · · · ⊗ wg−1 ⊗ wg ⊗ wg+1 ⊗ · · · ⊗ wb−1 ⊗ wb+1 ⊗ · · · ⊗ wh−1 ⊗ [wb, wh]⊗ wh+1 ⊗ · · · ⊗ wk

= (−1)b−gBrb,h(w)

= (−1)τ(g)+gBrτ(g),h(w).

Case b = h:

Brg,h(τ ? w) = Brg,h(τ ? w1 ⊗ · · · ⊗ wg−1 ⊗ wg ⊗ wg+1 ⊗ · · · ⊗ wh−1 ⊗ wh ⊗ wh+1 ⊗ · · · ⊗ wk)

= −Brg,h(w1 ⊗ · · · ⊗ wg−1 ⊗ wh ⊗ wg+1 ⊗ · · · ⊗ wh−1 ⊗ wg ⊗ wh+1 ⊗ · · · ⊗ wk)

= −w1 ⊗ · · · ⊗ wg−1 ⊗ wg+1 ⊗ · · · ⊗ wh−1 ⊗ [wh, wg]⊗ wh+1 ⊗ · · · ⊗ wk

Using Lie bracket properties, [wh, wg] = −[wg, wh].

= w1 ⊗ · · · ⊗ wg−1 ⊗ wg+1 ⊗ · · · ⊗ wh−1 ⊗ [wg, wh]⊗ wh+1 ⊗ · · · ⊗ wk

= Brg,h(w).

Case h < b:

Brg,h(τ ? w) = Brg,h(w1 ⊗ · · · ⊗ wg−1 ⊗ wg ⊗ wg+1 ⊗ · · · ⊗ wh ⊗ · · · ⊗ wb−1 ⊗ wb ⊗ wb+1 ⊗ · · · ⊗ wk)

= −Brg,h(w1 ⊗ · · · ⊗ wg−1 ⊗ wb ⊗ wg+1 ⊗ · · · ⊗ wh ⊗ · · · ⊗ wb−1 ⊗ wg ⊗ wb+1 ⊗ · · · ⊗ wk)

= −w1 ⊗ · · · ⊗ wg−1 ⊗ wg+1 ⊗ · · · ⊗ wh−1 ⊗ [wb, wh]⊗ wh+1 ⊗ · · · ⊗ wb−1 ⊗ wg ⊗ wb+1 ⊗ · · · ⊗ wk

Using Lie bracket properties, [wh, wb] = −[wb, wh]

= w1 ⊗ · · · ⊗ wg−1 ⊗ wg+1 ⊗ · · · ⊗ wh−1 ⊗ [wh, wb]⊗ wh+1 ⊗ · · · ⊗ wb−1 ⊗ wg ⊗ wb+1 ⊗ · · · ⊗ wk

In order to make this look more like Br applied to w, wg needs to be between wg−1 and wg+1.

= (−1)b−1−gw1 ⊗ · · · ⊗ wg−1 ⊗ wg ⊗ wg+1 ⊗ · · · ⊗ wh−1 ⊗ [wh, wb]⊗ wh+1 ⊗ · · · ⊗ wb−1 ⊗ wb+1 ⊗ · · · ⊗ wk
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Since b > h, use transpositions to move [wh, wb] to be between wb−1 and wb+1

= (−1)b−1−g+b−1−hw1 ⊗ · · · ⊗ wg ⊗ · · · ⊗ wh−1 ⊗ wh+1 ⊗ · · · ⊗ wb−1 ⊗ [wh, wb]⊗ wb+1 ⊗ · · · ⊗ wk

= (−1)h+gBrh,b(w)

= (−1)τ(h)+gBrτ(h),τ(g)(w).

Proof of Proposition 4.2.4. Let α ∈ Ord(n,k), w ∈ Lieα, x ∈ R̃ [Xα]
∗
, and ρ ∈ Σn. Let σ ∈ Σk be the

unique permutation such that σ ◦ α ◦ ρ−1 is ordered.

By applying (4.1)

∂g,h(ρ · w ⊗ ρ(x)) = (−1)|σ|∂gh(ρ · wσ−1(1) ⊗ · · · ⊗ wσ−1(k+1) ⊗ ρ · x)

= (−1)|σ|+g+1Brg,h
(
ρ · wσ−1(1) ⊗ · · · ⊗ wσ−1(k+1)

)
⊗ tgh(ρ · x;σ ◦ α ◦ ρ−1)

ρ commutes with Br:

= (−1)|σ|+g+1ρ ·Brg,h
(
wσ−1(1) ⊗ · · · ⊗ wσ−1(k+1)

)
⊗ tgh(ρ(x);σ ◦ α ◦ ρ−1)

By Lemma 4.2.8, we can write this as a bracketing of w instead of σ ? w:

= (−1)min(σ−1(g,h))+1ρ ·Brσ−1(g,h)(w)⊗ tgh(ρ(x);σ ◦ α ◦ ρ−1)

By Lemma 4.2.6, ρ commutes with tg,h:

= ρ ·
(

(−1)min(σ−1(g,h))+1Brσ−1(g,h)(w)⊗ tg,h(x;σ ◦ α)
)

By Lemma 4.2.5, we can move σ to the index on t so that the surjection used in t is the same as the one

determined by w

= ρ ·
(

(−1)min(σ−1(g,h))+1Brσ−1(g,h)(w)⊗ tσ−1(g,h)(x;α)
)

Now, this looks like the definition:

= ρ · ∂σ−1(g,h)(w ⊗ x)
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4.3 Proof of Resolution

Theorem 4.3.1.

0→ An−1(n)
∂∗n−1−→ · · · → A0(n)

∂∗0−→ In → 0

is a long exact sequence.

To prove Theorem 4.3.1, we will show there is a natural quasi-isomorphism η : A•(n)→ In. We will apply

several results from [IJM08] to reduce the quasi-isomorphism problem to the easier problem of showing

crtA•(n)([1])
'→ crtIn[1] for all 1 ≤ t ≤ n. By the calculations in Lemmas 4.3.2 and 4.3.3, this can be

further reduced to showing A•(`)([1])
'→ I`([1]) for all 1 ≤ ` ≤ n. For the case ` > 1, since I`([1]) ∼= 0, we

can further reduce this to showing that A•(`)([1]) ' 0, which is done in Lemma 4.3.4.

Lemma 4.3.2.

crtIn(X1, . . . , Xt) '
⊕

α∈Surj(n,t)

t⊗
i=1

I |α
−1(i)|(Xi)

Proof. Consider a wedge
∨t
i=1Xi, where X1 = · · ·Xt = X for some finite set X.

In(

t∨
i=1

Xi) ∼=
⊕

α∈Hom(n,t)

t⊗
i=1

I |α
−1(i)|(Xi)

The isomorphism can be seen in the following way. In order to write an injection n →
∨
Xi, we can first

decide which elements of n map to each Xi, thus producing an ordered partition α ∈ Hom(n, t), and then

pick an injection on each Xi.

From the cokernel formulation of cross effect, we see that the only basis elements of In(
∨
Xi) that survive

taking the cokernel are the ones that map an element of n to each Xi, i.e. such that α is a surjection.

Lemma 4.3.3.

crtA•(n)[1] '
⊕

α∈Surj(n,t)

t⊗
i=1

A•(|α−1(i)|)[1]

Proof. Consider Ak(n) on a wedge ∨t[1].

Ak(n)(∨t[1]) ∼=
⊕

ϕ∈Ord(n,n−k)

εLie∗ϕ ⊗ R̃
[
∧n−k(∨t[1])

]

∼=
⊕

ϕ∈Ord(n,n−k)

εLie∗ϕ ⊗ (⊗n−k(⊕tR̃ [1]))

∼=
⊕

ϕ∈Ord(n,n−k)

εLie∗ϕ ⊗
⊕

β∈hom(n−k,t)

R̃ [1]
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Taking the cokernel

crtAk(n)([1], . . . , [1]) '
⊕

ϕ∈Ord(n,n−k)

εLie∗ϕ ⊗
⊕

β∈Surj(n−k,t)

R̃ [1]

'
⊕

ϕ∈Ord(n,n−k)

⊕
β∈Surj(n−k,t)

εLie∗ϕ

Let

A =
⊕

ϕ∈Ord(n,n−k)

⊕
β∈Surj(n−k,t)

εLie∗ϕ

and

B =
⊕

α∈Surj(n,t)

Totk(A•(α
−1(1))⊗ · · · ⊗A•(α−1(t)))

=
⊕

α∈Surj(n,t)

⊕
k1+···+kt=k

Ak1(α−1(1))⊗ · · · ⊗Akt(α−1(t)))

We will show A ∼= B, motivating the isomorphism with examples.

Example B → A: Consider n = 5, k = 2, t = 2. Let (α,~k;u⊗ v) be element of

B =
⊕

α∈Surj(5,2)

⊕
k1+k2=2

Ak1(α−1(1))⊗Ak2(α−1(2)))

with α defined by

α =

 1, 3, 4 7→ 2

2, 5 7→ 1
,

~k = (1, 1), u = [2, 5] ∈ A1({2, 5}), and v = [1, 3] ⊗ 4 ∈ A1({1, 3, 4}). Suppose u ∈ εLie∗ϕ1
and v ∈ εLie∗ϕ2

.

We have

ϕ1

∐
ϕ2 =


4 7→ 3

1, 3 7→ 2

2, 5 7→ 1

.

Then α = γ ◦ ϕ1

∐
ϕ2, where γ ∈ Ord(3, 2) defined by

γ =

 2, 3 7→ 2

1 7→ 1
.

Can factor ϕ1

∐
ϕ2 = σ ◦ ϕ, where σ ∈ Σ3 is defined by

σ =


2 7→ 3

1 7→ 2

3 7→ 1
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and ϕ ∈ Ord(5, 3) is defined by

ϕ =


2, 5 7→ 3

4 7→ 2

1, 3 7→ 1

.

Let β = γ ◦ σ. Explicitly, β ∈ Surj(3, 2) is defined by

β =

 1, 2 7→ 2

3 7→ 1
.

Reorder subwords in u⊗ v :

[2, 5] ⊗ [1, 3] ⊗ 4 7→ [1, 3] ⊗ 4 ⊗ [2, 5]

v1 v2 v3 v2 v3 v1

Then w = [1, 3]⊗ 4⊗ [2, 5] ∈ εLie∗ϕ.

The element(α,~k;u⊗ v) ∈ B goes to (ϕ, β;w) in A.

Proof for B → A: Consider (α,~k;u) ∈ B, where

u = (u1
1 ⊗ · · · ⊗ u1

k′1
)⊗ (u2

1 ⊗ · · · ⊗ u2
k′2

)⊗ · · · ⊗ (ut1 ⊗ · · · ⊗ utk′t)

and k′i = |α−1(i)| − ki for all i.

For all i, we have ui1 ⊗ · · · ⊗ uik′i ∈ εLie∗ϕi
, for some ϕi : α−1(i) ◦�k′i. Let `i = k′1 + · · · k′i. The subwords

of u can be re-indexed as u = v1 ⊗ · · · ⊗ vn−k, where v`i−1+1 ⊗ · · · ⊗ v`i = ui1 ⊗ · · · ⊗ uiki . Following

this re-indexing, we can think of ϕi equivalently as an ordered surjection α−1(i) ◦�{`i−1 + 1, . . . , `i}. Since∑
i k
′
i =

∑
i(|α−1(i)|−ki) = n−k, the coproduct ϕ1

∐
· · ·
∐
ϕt is a surjection n→ n−k. Given ϕ1

∐
· · ·
∐
ϕt,

there is a unique strictly order preserving γ : n− k � t such that α = γ ◦ (ϕ1

∐
· · ·
∐
ϕt). More explicitly,

γ : j 7→ i if `i−1 < j ≤ `i.

Although each ϕi is an ordered surjection, ϕ1

∐
· · ·
∐
ϕt may not be ordered. There exists a unique σ ∈ Σn−k

and ϕ ∈ Ord(n, n− k) such that σ ◦ϕ = ϕ1

∐
· · ·
∐
ϕt. Let β = γ ◦ σ and w = vσ(1)⊗ · · · ⊗ vσ(n−k) ∈ εLie∗ϕ.

We have defined an element (ϕ, β;w) ∈ A.

Proof A → B: Consider (ϕ, β;w) ∈ A. Let α = β ◦ ϕ. There exists ρ ∈ Σn−k and a unique strictly order

preserving η ∈ Ord(n− k, t) such that β = η ◦ ρ. Letting `i =
∑i
j=1 |β−1(i)|, we can explicitly define η by

η : j 7→ i if `i−1 < j ≤ `i.

If we further require ρ to be order preserving when restricted to each of β−1(1), . . . , β−1(t), then the choice
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of ρ is unique. If we let ki(β, ϕ) = |α−1(i)| − |β−1(i)| for all i, then

∑
i

ki(β, ϕ) =
∑
i

(|α−1(i)| − |β−1(i)|) = n− (n− k) = k.

Let u = wρ−1(1) ⊗ · · · ⊗ wρ−1(n−k). We have defined an element (α,~k(β, ϕ);u) ∈ B

Check B → A → B = id: Start with (α,~k, u) ∈ B. Following the description above,

(α,~k, u) 7→ (σ−1 ◦
∐

ϕi, γ ◦ σ, vσ(1) ⊗ · · · ⊗ vσ(n−k)).

Mapping back to B, we get

(σ−1 ◦
∐

ϕi, γ ◦ σ, vσ(1) ⊗ · · · ⊗ vσ(n−k)) 7→ (β ◦ ϕ,~k(β, ϕ), wρ−1(1) ⊗ · · · ⊗ wρ−1(n−k)),

where

β ◦ ϕ = (γ ◦ σ) ◦
(
σ−1 ◦

∐
ϕ
)

= α.

By the definition of γ, |γ−1(i)| = k′i. Since

ki(β, ϕ) = |(β ◦ ϕ)−1(i)| − |β−1(i)|

= |α−1(i)| − |(γ ◦ σ)−1(i)|

= |α−1(i)| − k′i

= ki,

we conclude ~k(β, ϕ) = ~k. Notice that if we factor β as β = η ◦ ρ such that ρ ∈ Σn−k is strictly order

preserving on each β−1(i) and η : n− k � t, then η = γ and ρ = σ. Since wρ−1(i) = vσ(ρ−1(i)) = vi, we have

(β ◦ ϕ,~k(β, ϕ), wρ−1(1) ⊗ · · · ⊗ wρ−1(n−k)) = (α,~k, u)

as desired.

Check A → B → A = id: Consider (ϕ, β, w) ∈ A. Following the description above,

(ϕ, β, w) 7→ (β ◦ ϕ,~k(β, ϕ), wρ−1(1) ⊗ · · · ⊗ wρ−1(n−k)).

Mapping back to A, we get

(β ◦ ϕ,~k(β, ϕ), wρ−1(1) ⊗ · · · ⊗ wρ−1(n−k)) 7→ (σ−1 ◦
∐

ϕi, γ ◦ σ, vσ(1) ⊗ · · · ⊗ vσ(n−k)).

The tensor wρ−1(1) ⊗ · · · ⊗ wρ−1(n−k determines a partition of n into n − k blocks, which determines a
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unique ordered surjection, σ−1 ◦ (
∐
ϕi). Since w1⊗· · ·⊗wn−k is just a reordering of blocks, it describes the

same ordered surjection. So ϕ = σ−1 ◦ (
∐
ϕi) and it follows that vσ(1) ⊗ · · · ⊗ vσ(n−k) = w1 ⊗ · · · ⊗ wn−k.

The strictly ordered surjection γ is defined by γ ◦ (
∐
ϕi) = α, so

γ ◦ (
∐

ϕi) = α

= β ◦ ϕ

= β ◦ σ−1 ◦ (
∐

ϕi)

and γ = β ◦ σ−1. We have

(σ−1 ◦
∐

ϕi, γ ◦ σ, vσ(1) ⊗ · · · ⊗ vσ(n−k)) = (ϕ, β, w)

as desired.

Lemma 4.3.4. For n > 1, the chain complex

0→ An−1(n)[1]→ · · · → A0(n)[1]→ 0

is a long exact sequence.

Proof. Fix n > 1. Let Ak = Ak(n)∗[1]. Because X = [1], R̃ [X] = R, and we can drop the R̃ [X] coordinates

when we write elements of Ak. In other words, Ak ∼=
⊕

ϕ∈Ord(n,n-k) εLieϕ.

We will use the dual complex

0← An−1 ← An−2 ← · · · ← A0 ← 0

and construct a contracting homotopy.

Define s : Ak → Ak−1 recursively in the following way. Let w ∈ Ak be a basis element, i.e. w =

w1⊗ · · ·⊗wn−k ∈ εLieϕ for some ϕ ∈ Ord(n, n− k) such that each wi is a bracket in εLieϕ−1(i). If w1 = [a],

where a ∈ ϕ−1(1), then

s(w) = 0.

If |w1| > 1, then we can write w1 = [a,w′1] and let

s(w) = a⊗ w′1 ⊗ w2 ⊗ · · · ⊗ wn−k −
n−k+1∑
h=3

s(∂1,h(a⊗ w′1 ⊗ w2 ⊗ · · · ⊗ wn−k)).
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For indexing reasons, sometimes it is convenient to use the equivalent definition

s(w) = a⊗ w′1 ⊗ w2 ⊗ · · · ⊗ wn−k −
n−k∑
h=2

s(∂1,h+1(a⊗ w′1 ⊗ w2 ⊗ · · · ⊗ wn−k)).

We will show ∂s+ s∂ = Id.

First, consider the case where w1 = [a]. By definition,

∂s(w) = ∂(0) = 0.

We also have

s∂(w) =
∑

1≤g<h≤n−k

s (∂g,h(w)) (4.3)

=
∑

2≤h≤n−k

s (∂1,h(w)) +
∑

2≤g<h≤n−k

s
(
(−1)g+1a⊗ w2 ⊗ · · · ⊗ [wg, wh]⊗ · · · ⊗ wn−k

)
(4.4)

=
∑

2≤h≤n−k

s (∂1,h(w)) (4.5)

= s ([a,w2]⊗ w3 ⊗ · · · ⊗ wn−k) +
∑

3≤h≤n−k

s (∂1,h(w)) (4.6)

= [a]⊗ w2 ⊗ · · · ⊗ wn−k −
n−k∑
h=3

s(∂1,h(a⊗ w2 ⊗ w3 ⊗ · · · ⊗ wn−k)) +
∑

3≤h≤n−k

s (∂1,h(w)) (4.7)

= w (4.8)

where (4.3) and (4.6) follow from definition of ∂ and ∂g,h, (4.5) follows from the first part of the definition of

s, and (4.7) from the second part of the definition of s. So, in the case where w1 = [a], we have ∂s+s∂ = Id.

We will induct on the number of letters in w1. Suppose we have shown ∂s(w) + s∂(w) = w for all w with

|w1| ≤ m. Consider w = w1 ⊗ w2 ⊗ · · · ⊗ wn−k, where |w1| = m+ 1. Let w1 = [a,w′1]. To simplify some of

the writing, let w′ = a⊗ w1 ⊗ · · · ⊗ wn−k.

Consider ∂s(w). Applying s,

s(w) = w′ −
n−k+1∑
h=3

s∂1,h(w′).

Applying ∂,

∂s(w) = ∂(w′)−
n−k+1∑
h=3

∂s∂1,h(w′).

Since |w′1| = m and w′1 will be the first factor in ∂1,h(w′) for all 3 ≤ h ≤ n− k + 1, by assumption

∂s(∂1,h(w′)) = ∂1,h(w′)− s∂(∂1,h(w′)). (4.9)
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Then we have

∂s(w) = ∂(w′)−
n−k+1∑
h=3

∂s∂1,h(w′) (4.10)

=
∑

1≤i<j≤n−k+1

∂i,j(w
′)−

n−k+1∑
h=3

∂s∂1,h(w′) (4.11)

=
∑

1≤i<j≤n−k+1

∂i,j(w
′)−

n−k+1∑
h=3

∂1,h(w′) +

n−k+1∑
h=3

s∂∂1,h(w′) (4.12)

= w +
∑

2≤i<j≤n−k+1

∂i,j(w
′) +

n−k+1∑
h=3

s∂∂1,h(w′) (4.13)

= w +
∑

2≤i<j≤n−k+1

∂i,j(w
′) +

n−k∑
h=2

s∂∂1,h+1(w′) (4.14)

where (4.11) comes from definition of ∂, (4.12) follows from (4.9), and (4.14) shifts the index on the second

sum in (4.13) down by 1 and the indexes on to make the terms easier to match up later.

Expand the second term in (4.14) by cases for possible values for the index i.

∑
2≤i<j≤n−k+1

∂i,j(w
′) =

∑
1≤i<j≤n−k

∂i+1,j+1(w′) (4.15)

= −a⊗ [w′1, w2]⊗ · · · ⊗ wn−k (4.16)

−
n−k∑
j=3

a⊗ w2 ⊗ · · · ⊗ [w′1, wj ]⊗ · · · ⊗ wn−k (4.17)

−
n−k∑
j=3

j−1∑
i=2

a⊗ w′1 ⊗ · · · ⊗ ŵi ⊗ · · · ⊗ [wi, wj ]⊗ · · · ⊗ wn−k (4.18)

Expand
∑
∂∂1,h+1(w′):
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n−k∑
h=2

s∂∂1,h+1(w′) =

n−k∑
h=2

s∂(w′1 ⊗ w2 ⊗ · · · ⊗ wh−1 ⊗ [a,wh]⊗ · · · ⊗ wn−k)

=

n−k∑
h=2

∑
1≤i<j≤n−k

s∂i,j(w
′
1 ⊗ w2 ⊗ · · · ⊗ wh−1 ⊗ [a,wh]⊗ · · · ⊗ wn−k)

=

n−k∑
h=3

s([w′1, w2]⊗ w3 ⊗ · · · ⊗ wh−1 ⊗ [a,wh]⊗ · · · ⊗ wn−k) (4.19)

+

n−k∑
h=2

h−1∑
j=3

s(w2 ⊗ · · · ⊗ [w′1, wj ]⊗ · · · ⊗ [a,wh]⊗ · · · ⊗ wn−k) (4.20)

+

n−k∑
h=2

h−1∑
j=2

j−2∑
i=2

s(w′1 ⊗ · · · ⊗ ŵi ⊗ · · · ⊗ [wi, wj ]⊗ · · · ⊗ [a,wh]⊗ · · · ⊗ wn−k) (4.21)

+ s([w′1, [a,w2]]⊗ w3 ⊗ · · · ⊗ wn−k) (4.22)

+

n−k∑
h=3

s(w2 ⊗ · · · ⊗ wh−1 ⊗ [w′1, [a,wh]]⊗ · · · ⊗ wn−k) (4.23)

+

n−k∑
h=3

h−1∑
i=2

(−1)i+1s(w′1 ⊗ · · · ⊗ ŵi ⊗ · · · ⊗ [wi, [a,wh]]⊗ · · · ⊗ wn−k) (4.24)

+

n−k∑
j=3

s([a,w2]⊗ w3 ⊗ · · · ⊗ [w′1, wj ]⊗ · · · ⊗ wn−k) (4.25)

+

n−k∑
h=3

n−k∑
j=h+1

s(w2 ⊗ · · · ⊗ [a,wh]⊗ · · · ⊗ wj−1 ⊗ [w′1, wj ]⊗ · · · ⊗ wn−k) (4.26)

+

n−k∑
h=3

n−k∑
j=h+1

(−1)i+1s(w′1 ⊗ · · · ⊗ ŵi ⊗ · · · ⊗ [a,wh]⊗ · · · ⊗ [wi, wj ]⊗ · · · ⊗ wn−k) (4.27)

+

n−k∑
h=2

n−k∑
j=h+1

(−1)h+1s(w′1 ⊗ · · · ⊗ [̂a,wh]⊗ · · · ⊗ [[a,wh], wj ]⊗ · · · ⊗ wn−k) (4.28)

+

n−k∑
h=2

n−k∑
j=h+1

j−1∑
i=h+1

(−1)i+1s(w′1 ⊗ · · · ⊗ [a,wh]⊗ · · · ⊗ ŵi ⊗ · · · ⊗ [wi, wj ]⊗ · · · ⊗ wn−k) (4.29)

We want a contracting homotopy with s∂, so we will expand that also in order to compare terms.

s∂(w) =

n−k∑
j=2

s(w2 ⊗ · · · ⊗ [[a,w′1], wj ]⊗ · · · ⊗ wn−k)

+

n−k∑
j=3

j−1∑
i=2

(−1)i+1s([a,w′1]⊗ · · · ⊗ ŵi ⊗ · · · ⊗ [wi, wj ]⊗ · · · ⊗ wn−k. (4.30)
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Apply the definition of s to (4.30).

s∂(w) = s([[a,w′1], w2]⊗ · · · ⊗ wn−k) (4.31)

+

n−k∑
j=3

s(w2 ⊗ · · · ⊗ [[a,w′1], wj ]⊗ · · · ⊗ wn−k) (4.32)

+

n−k∑
j=3

j−1∑
i=2

(−1)i+1a⊗ w′1 ⊗ · · · ⊗ ŵi ⊗ · · · ⊗ [wi, wj ]⊗ · · · ⊗ wn−k (4.33)

−
n−k∑
j=2

j−1∑
i=2

n−k∑
g=j+1

(−1)i+1s(w′1 ⊗ · · · ⊗ [wi, wj ]⊗ · · · ⊗ [a,wg]⊗ · · · ⊗ wn−k) (4.34)

−
n−k∑
j=3

j−1∑
i=2

(−1)i+1s(w′1 ⊗ · · · ⊗ wj−1 ⊗ [a, [wi, wj ]]⊗ · · · ⊗ wn−k) (4.35)

−
n−k∑
j=3

j−1∑
i=2

j−1∑
g=i+1

(−1)i+1s(w′1 ⊗ · · · ⊗ ŵi ⊗ · · · ⊗ [a,wg]⊗ · · · ⊗ [wi, wj ]⊗ · · · ⊗ wn−k) (4.36)

−
n−k∑
j=3

j−1∑
i=2

i−1∑
g=2

(−1)i+1s(w′1 ⊗ · · · ⊗ [a,wg]⊗ · · · ⊗ ŵi ⊗ · · · ⊗ [wi, wj ]⊗ · · · ⊗ wn−k) (4.37)

Our goal is to show ∂s(w) + s∂(w) = w. As desired, w shows up in (4.14), but we need to show that

everything else will cancel. It is immediate that the following pairs cancel: (4.21) and (4.34), (4.27) and

(4.36), (4.18) and (4.33), and (4.29) and (4.37). With some re-indexing of the sums,

(4.24) + (4.28) + (4.35) =

n−k∑
h=3

h−1∑
i=2

(−1)i+1s(w′1 ⊗ · · · ⊗ [wi, [a,wh]]⊗ · · · ⊗ wn−k)

+

n−k∑
h=2

n−k∑
j=h+1

(−1)h+1s(w′1 ⊗ · · · ⊗ [[a,wh], wj ]⊗ · · · ⊗ wn−k)

−
n−k∑
j=3

j−1∑
i=2

(−1)i+1s(w′1 ⊗ · · · ⊗ [a, [wi, wj ]]⊗ · · · ⊗ wn−k)

=

n−k∑
j=3

j−1∑
i=2

(−1)i+1s(w′1 ⊗ · · · ⊗ [wi, [a,wj ]]⊗ · · · ⊗ wn−k)

+

n−k∑
i=2

n−k∑
j=i+1

(−1)i+1s(w′1 ⊗ · · · ⊗ [[a,wi], wj ]⊗ · · · ⊗ wn−k)

−
n−k∑
j=3

j−1∑
i=2

(−1)i+1s(w′1 ⊗ · · · ⊗ [a, [wi, wj ]]⊗ · · · ⊗ wn−k)

=

n−k∑
j=3

j−1∑
i=2

(−1)i+1s(w′1 ⊗ · · · ⊗ ([wi, [a,wj ]] + [[a,wi], wj ]− [a, [wi, wj ]])⊗ · · · ⊗ wn−k).

By the Jacobi relation,

(4.24) + (4.28) + (4.35) = 0.
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Apply the definition of s to (4.25).

(4.25) =

n−k∑
j=3

s([a,w2]⊗ w3 ⊗ · · · ⊗ [w′1, wj ]⊗ · · · ⊗ wn−k)

=

n−k∑
j=3

a⊗ w2 ⊗ · · · ⊗ [w′1, wj ]⊗ · · · ⊗ wn−k (4.38)

−
n−k∑
j=3

j−1∑
h=3

s(w2 ⊗ · · · ⊗ [a,wh]⊗ · · · ⊗ [w′1, wj ]⊗ · · · ⊗ wn−k) (4.39)

−
n−k∑
h=3

s(w2 ⊗ · · · ⊗ [a, [w′1, wh]]⊗ · · · ⊗ wn−k) (4.40)

−
n−k∑
j=3

n−k∑
h=j+1

s(w2 ⊗ · · · ⊗ [w′1, wj ]⊗ · · · ⊗ [a,wh]⊗ · · · ⊗ wn−k) (4.41)

The following pairs cancel: (4.38) and (4.17), (4.26) and (4.39), and (4.20) and (4.41). By a similar argument

to (4.24) + (4.28) + (4.35) = 0, by the Jacobi relation,

(4.23) + (4.32) + (4.40) = 0.

Applying the Jacobi relation to (4.31) and (4.22), and then applying the definition of s,

(4.22) + (4.31) = s([w′1, [a,w2]]⊗ w3 ⊗ · · · ⊗ wn−k) + s([[a,w′1], w2]⊗ · · · ⊗ wn−k)

= s([a, [w′1, w2]]⊗ · · · ⊗ wn−k)

= a⊗ [w′1, w2]⊗ · · · ⊗ wn−k (4.42)

−
n−k∑
h=3

s([w′1, w2]⊗ · · · ⊗ [a,wh]⊗ · · · ⊗ wn−k (4.43)

Finally, (4.42) + (4.16) = 0 and (4.43) + (4.19) = 0. We have shown ∂s(w) + s∂(w) = w for all w.

With the special case of X = [1] complete, we can prove Theorem 4.3.1.

Proof of Theorem 4.3.1. We wish to show there is a quasi-isomorphism η : A•(n)→ In.

Since In is a chain complex concentrated in degree 0, (η)k : Ak(n) → (In)k must be trivial for k > 0.

Then (η)0 should be ∂∗0 .

This problem can be reduced to consider only a finite number of sets. Both A•(n) and In are degree n

discrete modules. By [IJM08, Corollary 2.4], in order to show this is a quasi-isomorphism, it suffices to show

η[s] : A•(n)[s]
'→ In[s]
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for all s ≤ n.

We can further reduce to a question on the cross effects of A•(n) and In evaluated at the set [1]. There

is a result [JM04, Proposition 1.2] that lets us write a functor in terms of its cross effects.

F (

s∨
i=1

Xi) ∼= F (0)⊕

 ⊕
{s1,...,st}⊂ s

crtF (Xs1 , . . . , Xst)

 .

In this case,

[s] =

s∨
i=1

[1]

and

A•(n)([0]) ' 0 ' In[0],

so we can rewrite both A•(n)[s] and In[s] as

A•(n)(

s∨
i=1

[1]) ∼=

 ⊕
{s1,...,st}⊂ s

crtA•(n)([1], . . . , [1])


and

In(

s∨
i=1

[1]) ∼=

 ⊕
{s1,...,st}⊂ s

crtIn([1], . . . , [1])

 .

Therefore, we only need to show that the restriction of η to crtA•(n)[1]
'→ crtIn[1] for 1 ≤ t ≤ n. We show

this quasi-isomorphism by the following cases.

Case t = 1 and n = 1: This is automatic because cr1A•([1]) is a copy of R concentrated at 0, cr1I1([1]) ∼=

R, and η in this case sends 1 to 1.

Case t = 1 and n > 1: Reduced functors are equivalent to their first cross effects. For n > 1, In([1]) = 0.

In Lemma 4.3.4, we show A•(n)[1]
'→ 0 via contracting homotopy.

Case t > 1:

From the lemmas we have

crtA•(n)[1] '
⊕

α∈Surj(n,t)

t⊗
i=1

A•(|α−1(i)|)([1])

and

crtIn([1], . . . , [1]) '
⊕

α∈Surj(n,t)

t⊗
i=1

I |α
−1(i)|([1]).

From the previous cases, we have quasi-isomorphisms A•(|α−1(i)|)([1])
'→ I |α−1(i)|([1]). So, we have a

quasi-isomorphism on the whole thing.
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Chapter 5

Tricomplex

5.1 Generalized Robinson Complex

Let Ξ denote the (reduced) Robinson bicomplex. We know from [IJM08] that there is a quasi-isomorphism

ΞF ' D1F.

We will use this fact and multilinearization to compute DkF for any k.

Proposition 5.1.1. [JM04]

DkF (X) ' (D
(k)
1 crkF ([1]))⊗̂Σk

R̃
[
∧kX

]
Given the proposition and ΞF ' D1F , we have the following corollary.

Corollary 5.1.2. For a discrete module F ,

DkF (X) ' Tot(Ξ(k)crkF ([1]))⊗̂Σk
R̃
[
∧kX

]
,

where the exponent on Ξ(k) indicates that the Robinson complex should be applied to each of the k inputs of

crkF .

The Robinson bicomplex, ΞF , is the following complex of chain complexes:

· · · → εLie∗3⊗̂Σ3cr3F (X)→ εLie∗2⊗̂Σ2cr2F (X)→ εLie∗1⊗̂Σ1cr1F (X).

If instead of F we consider cr2F (−, ?) and apply Ξ in one variable and then the other, we get the following
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bicomplex of bicomplexes:

...
...

...

... εLie∗3⊗̂Σ3cr1
3

(
εLie∗3⊗̂Σ3cr2

3cr2F
)
//

��

εLie∗3⊗̂Σ3cr1
3

(
εLie∗2⊗̂Σ2cr2

2cr2F
)
//

��

εLie∗3⊗̂Σ3cr1
3

(
εLie∗1⊗̂Σ1cr2

1cr2F
)

��
... εLie∗2⊗̂Σ2cr1

2

(
εLie∗3⊗̂Σ3

cr2
3cr2F

)
//

��

εLie∗2⊗̂Σ2cr1
2

(
εLie∗2⊗̂Σ2

cr2
2cr2F

)
//

��

εLie∗2⊗̂Σ2cr1
2

(
εLie∗1⊗̂Σ1

cr2
1cr2F

)
��

... εLie∗1⊗̂Σ1
cr1

1

(
εLie∗3⊗̂Σ3

cr2
3cr2F

)
// εLie∗1⊗̂Σ1

cr1
1

(
εLie∗2⊗̂Σ2

cr2
2cr2F

)
// εLie∗1⊗̂Σ1

cr1
1

(
εLie∗1⊗̂Σ1

cr2
1cr2F

)
given by

(Ξ1Ξ2cr2F (−, ?)p−1,q−1 ' εLie∗p⊗̂Σp
cr1
p

(
εLie∗q⊗̂Σq

cr2
qcr2F (−, ?)

)
.

Let − = ? = [1]. To get a chain complex of bicomplexes, we take the total complex:

Tn(2)F : = Tot
(
Ξ1Ξ2cr2F ([1], [1])

)
n

'
⊕

p+q=n+2
p,q,≥1

εLie∗p⊗̂Σpcr1
p

(
εLie∗q⊗̂Σqcr2

qcr2F ([1])
)

([1]).

In general, we can consider crkF , apply Ξ in each variable to get a k-complex of k-complexes, and then

take the total complex to get a chain complex of k-complexes:

Tn(k)F : = Tot
(
Ξ1 · · ·ΞkcrkF ([1], . . . , [1])

)
n

'
⊕

p1+···+pk=n+k
p1,...,pk≥1

εLie∗p1⊗̂Σp1
cr1
p1

(
· · ·
(
εLie∗pk⊗̂Σpk

crkpkcrkF ([1])
)
· · ·
)

([1]).

We will show that (T•(k))hΣk
is quasi-isomorphic to a chain complex of k-complexes whose entries match

up with our resolution.

We start with a lemma on cross effects.

Lemma 5.1.3.

cr1
k1 · · · crnkncrnF ∼= crk1+···knF.

Proof. In [JM04, Example 1.8], they show there is an adjunction between precomposition with the diagonal

functor ∆∗n and crn. In other words,

Homfunctors(F ◦∆n, G) ∼= Homn−reduced(F, crnG). (5.1)
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Note F : An → B, so F = (−1,−2, . . . ,−n). Applying (5.1) to cr1
n1

,

Hom(F, cr1
n1
· · · crknk

crkG) ∼= Hom(F (∆n1
,−n1+1, . . . ,−n), cr2

n2
· · · crknk

crkG).

We can repeat this for cr2
n2

and so on:

Hom(F, cr1
n1
· · · crknk

crkG) ∼= Hom(F (∆n1 ,−n1+1, . . . ,−n), cr2
n2
· · · crknk

crkG)

∼= Hom(F (∆n1
,∆n2

,−n1+n2+1, . . . ,−n), cr3
n3
· · · crknk

crkG)

...

∼= Hom(F (∆n1
, . . . ,∆nk

), crkG)

∼= Hom(F ◦∆n, G).

From these two natural(in F and G) isomorphisms with Hom(F ◦∆n, G), we get a natural isomorphism

Homn−red.(F, cr1
n1

cr2
n2
· · · crknk

crkG) ∼= Homn−red.(F, crnG).

That is an isomorphism in

Nat(Hom(−, cr1
n1

cr2
n2
· · · crknk

crk),Hom(−, crn)),

which corresponds to a natural isomorphism Hom(cr1
n1

cr2
n2
· · · crknk

crk, crn).

In order to make use of Lemma 5.1.3, we re-write the entries of T•(2) with the following lemma.

Lemma 5.1.4.

⊕
p1+···+pk=n+k

cr1
pk

(
· · ·
(

crkpkcrkF ⊗̂Σpk
εLie∗pk

)
· · ·
)
⊗̂Σp1

εLie∗p1

'
⊕

p1+···+pk=n+k

(
cr1
p1 · · · crkpkcrkF

)
⊗̂Σpk

εLie∗pk · · · ⊗̂Σp1
εLie∗p1

Proof. Since crpi is an exact functor, it preserves derived functors.[Wei94, Ex 2.4.2]

We need another lemma to take this bisimplicial complex to a complex.

Lemma 5.1.5.

F ⊗̂SM⊗̂TN ' F ⊗̂S×T (M ⊗N).
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Proof. Let F be a S × T -module, M be a S-module, and N be an T -module. Consider

(F ⊗̂SM)⊗̂TN.

This is a bisimplicial complex where

(m,n) 7→ F ⊗R[S]⊗m ⊗M ⊗R[T ]⊗n ⊗N.

We get a simplicial complex by diagonalizing:

n 7→ F ⊗R[S]⊗n ⊗M ⊗R[T ]⊗n ⊗N

and

F ⊗R[S]⊗n ⊗M ⊗R[T ]⊗n ⊗N ∼= F ⊗R[S]⊗ ×n· · · ⊗R[S]⊗M ⊗R[T ]⊗ ×n· · · ⊗R[T ]⊗N

∼= F ⊗ (R[S]⊗R[T ])⊗n(M ⊗N)

∼= F ⊗R[S × T ]⊗n ⊗ (M ⊗N).

So, the diagonalization of (F ⊗̂SM)⊗̂TN is isomorphic as a simplicial module to F ⊗̂S×T (M ⊗N). The fact

that the diagonalization of (F ⊗̂SM)⊗̂TN is equivalent to the total complex of the associated bicomplex is

precisely the Eilenberg-Zilber Theorem [Wei94, Theorem 8.5.1]. Thus,

Tot((F ⊗̂SM)⊗̂TN) ' F ⊗̂S×TM ⊗N.

By repeatedly apply Lemma 5.1.5, we have the following corollary.

Corollary 5.1.6.

M⊗̂Σpk
εLie∗pk · · · ⊗̂Σp1

εLie∗p1 'M⊗̂Σp1
×···×Σpk

(εLie∗p1 ⊗ · · · ⊗ εLie∗pk)

Lemma 5.1.7 follows from Corollary 5.1.6, Lemma 5.1.3, and Lemma 5.1.4.

Lemma 5.1.7.

Tn(k)F [1] '
⊕

p1+···+pk=n+k

εLie∗p1 ⊗ · · · ⊗ εLie∗pk⊗̂Σp1
×···×Σpk

crn+kF ([1])
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5.2 Isomorphism between Tn(k) and Ak(n)

In this section, we show that the entries of the total complex of the generalized Robinson complex are

quasi-isomorphic to the entries from the degree resolution.

Theorem 5.2.1.

(Tn−k(k)F )⊗̂Σk
R̃
[
Xk
] ∼= An−k(n)F (X)

as R[Σn]-modules.

In order to prove Theorem 5.2.1, we will use the following more general propositions for R-modules.

Suppose we have an R-module, Mi, for every positive integer i such that Mi has a Σi action. Fix n.

Consider

A =
⊕

α∈Surj(n,k)

M|α−1(1)| ⊗ · · · ⊗M|α−1(k)|

and

B =
⊕

`1+`2+···+`k=n

M`1 ⊗ · · · ⊗M`k ⊗Σ`1
×···×Σ`k

Σn,

where all `i ≥ 1.

Proposition 5.2.2. There is an isomorphism f : A→ B that commutes with the Σn actions.

Proof. Consider (α;m1 ⊗ · · · ⊗mk) be an element of the summand of A corresponding to α ∈ Surj(n,k).

If we let `j = |α−1(j)| for 1 ≤ j ≤ k, then `1 + · · · + `k = n. Let ` = (`1, . . . , `k). Define a strictly order

preserving surjection b` : n→ k corresponding to ` by

b`(i) =



1 if i ≤ `1
2 if `1 < i ≤ `1 + `2

...

k if `1 + `2 + · · ·+ `k−1 < i ≤ n

The surjection α defines a partition of n into k blocks, where the i-th block is α−1(i). We can factor

α = b` ◦ τα, where τα ∈ Σn. If τ and τ ′ differ only by transpositions within blocks of α, then b` ◦ τ = b` ◦ τ ′.

So, the factorization may not be unique. We pick τα such that the restriction of τα to α−1(i) is order

preserving for each i.

Define f : A→ B by

f(α;m1 ⊗ · · · ⊗mk) = (`;m1 ⊗ · · · ⊗mk ⊗ τα).

To find an inverse for f , consider (`;m1⊗· · ·⊗mk⊗σ), an element of the summand of B corresponding to

` = (`1, . . . , `k). By the same construction as above, we have a strictly order preserving surjection b` : n→ k.

The composition b` ◦ σ is another surjection n → k. The restriction of σ to (b` ◦ σ)−1(i) may not be order
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preserving for all i. However, we can write σ as a composition τρ, where τ is order preserving on blocks of

b` ◦ σ and ρ ∈ Σn permutes elements within blocks. We can think of ρ as (ρ1, . . . , ρk) ∈ Σ`1 × · · · × Σ`k .

Because we are tensoring over Σ`1 × · · · × Σ`k , we have

(`;m1 ⊗ · · · ⊗mk ⊗ σ) ∼ (`;m1 · ρ−1
1 ⊗ · · · ⊗mk · ρ−1

k ⊗ τ).

Define g : B → A by

g(`;m1 ⊗ · · · ⊗mk ⊗ σ) = g(`;m1 · ρ−1
1 ⊗ · · · ⊗mk · ρ−1

k ⊗ τ) = (b` ◦ τ ;m1 · ρ−1
1 ⊗ · · · ⊗mk · ρ−1

k ).

Note g is the inverse of f , so f is an isomorphism. We also have that f commutes with the Σn action.

(`;m1 ⊗ · · · ⊗mk ⊗ σ) · µ = (`;m1 ⊗ · · · ⊗mk ⊗ σ ◦ µ)

∼ (`;m1ρ
−1
1 ⊗ · · · ⊗mkρ

−1
k ⊗ τσµ)

f(`;m1ρ
−1
1 ⊗ · · · ⊗mkρ

−1
k ⊗ τσµ) = (b`τσµ;m1ρ

−1
1 ⊗ · · · ⊗mkρ

−1
k )

= (b`τσ;m1 ⊗ · · · ⊗mk) · µ

∼ f(`;m1 ⊗ · · · ⊗mk ⊗ σ) · µ.

Proposition 5.2.3. For a group G with a subgroup H, if M is an H module, and N is a G module, then

(M ⊗H G)⊗̂GN 'M⊗̂HN.

Proof. Since H is a subgroup of G, the action of H on G is free. By Lemma 3.2.1,

M ⊗H G 'M⊗̂HG.

45



So,

(M ⊗H G)⊗̂GN ' (M⊗̂HG)⊗̂GN

∼= M⊗̂H(G⊗̂GN)

'M⊗̂H(G⊗G N)

∼= M⊗̂HN

We now proceed with the proof of the theorem.

Proof. (of Theorem 5.2.1)

Recall

An−k(n)F (X) = crnF ([1])⊗̂Σn

 ⊕
ϕ∈Surj(n,k)

εLie∗ϕ ⊗ R̃
[
Xk
]

hΣk

.

By Lemma 5.1.7,

(Tn−k(k)F )⊗̂Σk
R̃
[
Xk
]
'

⊕
|~p|=n

εLie∗~p⊗̂Σ~p
crnF ([1])

 ⊗̂Σk
R̃
[
Xk
]
,

where ~p = (p1, . . . , pk) such that p1 + · · ·+ pk = n, εLie∗~p = εLie∗p1 ⊗ · · · ⊗ εLie∗pk , and Σ~p = Σp1 × · · · ×Σpk .

Applying Proposition 5.2.3,

⊕
|~p|=n

εLie∗~p⊗̂Σ~p
crnF ([1]) ' crnF ([1])⊗̂Σn

⊕
|~p|=n

εLie∗~p ⊗Σ~p
R[Σn]

 .

So,

(Tn−k(k)F )⊗̂Σk
R̃
[
Xk
]
' crnF ([1])⊗̂Σn

⊕
|~p|=n

εLie∗~p ⊗Σ~p
Σn

 ⊗̂Σk
R̃
[
Xk
]
.

The final step is to show ⊕
|~p|=n

εLie∗~p ⊗Σ~p
Σn '

⊕
ϕ∈Surj(n,k)

εLie∗ϕ,

which follows from Proposition 5.2.2.
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