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Abstract

This thesis is structured into two parts. In the first two chapters, we prove the noncommutative version

of the Arithmetic Geometric Mean (AGM) inequality (this is a joint work with Mingyue Zhao and Maruis

Junge). We start Chapter 2 by giving some background about the partition and Möbius function. We

then prove the two main theorems: The AGM inequality for the norm and for the order. In Chapter 3, we

provide some applications from random matrices such as Wishart random matrices, vector-valued moments

of convex bodies, and freely independent operators.

The second part is about a ternary ring of operators (TRO). After giving a quick survey for the work

of Todorov on the operator space version of Zettl’s decomposition theorem, we introduce crossed products

of ternary ring of operators (the full crossed product and the reduced crossed product). We also prove that

V oαV G as the off-diagonal corner of the C∗-algebra A(V )oαA(V )G. Equivalently, we have the ∗-isomorphism

between the two linking C∗-algebras, i.e. A(V oαV G) = A(V )oαA(V ) G. By using this identity, we obtain

that if the group G is amenable, some local properties for TRO’s preserve with the crossed product. We also

provide a counter example which shows that if the linking C∗-algebras A(V ) and A(W ) are ∗-isomorphic or

if their diagonal components are ∗-isomorphic, then their TRO’s are not isomorphic. Similar example will

be applied for W ∗-TRO’s.
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Chapter 1

Introduction

The focus of the first part of this exposition is to study the arithmetic geometric mean inequality in

a noncommutative context. As pointed out by Ré and Recht in [RR12], noncommutative versions of the

AGM inequalities are relevant to machine learning. In particular, their proof, which employed the classical

MacLaurin inequalities, led to improved convergence rate of the algorithms in machine learning.

Let us recall the famous MacLaurin inequalities for positive real numbers x1, ..., xn and the normalized d-th

symmetric sums as

Sd(xi1 , ..., xin) =

(
n

d

)−1 ∑
τ⊂{1,...,n}
|τ |=d

∏
i∈τ

xi.

where 1 ≤ d ≤ n and |τ | := the cardinality of τ . According to the MacLaurin inequalities, we have

S1 ≥
2
√
S2 ≥

3
√
S3 ≥ ... ≥

n
√
Sn.

In particular, S1 ≥ n
√
Sn is the standard AGM inequality. For more details about the classical AGM

inequality see [HLP52]. In this project, we will discuss noncommutative versions of MacLaurin’s inequalities.

Indeed, we will consider a generalized AGM inequality for the norm and the order. It may come as a surprise

to the operator algebra community that these inequalities are motivated by problems in machine learning,

stochastic gradient method (see Buttou [Bot98] and the reference there is in [RR12]), and randomized

coordinates descent (see Nesterov [Nes12]). This interesting connection along with an overview of known

results on this topic can be found in [RR11] and [RR12]. In fact, these methods contain an iteration

procedure which can be performed with or without replacement samples. Recht and Ré, in [RR11], study

the performance of both. They show that the expected convergence rate without replacement is faster than

that with replacement. They proved this result by using a particular AGM inequality.

In the effort to generalize the classical AGM inequality to the noncommutative setting, a standard but

naive procedure in noncommutative analysis is to replace scalars by operators. Famous examples of this
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strategy are Cauchy-Schwarz type inequalities for C∗-modules, Khintchine, and martingale inequalities.(See

e.g. [Lus86], [LPP91], [PX03], [Ran02], [Jun02] , [JX03], [JX03]. For a general survey see [PX03].) Proving

these noncommutative extensions often employs a combination of functional analytic and combinatorial

methods. In fact, the key results of this project heavily rely on Pisier’s interpretation of Rota’s Möbius

formulae for partitions in the setting of martingales in non-commutative Lp-spaces. A NC-AGM inequality

would ask whether

A1 · · ·An
?
≤ (

1

n

n∑
j=1

Aj)
n (1.0.1)

holds for positive operators A1, ..., An on a Hilbert space. (In this context we shall interpret x ≤ y as

requiring that y − x is positive semi-definite.) However, for positive operators A and B, the product AB

may not be positive or even self-adjoint. Thus, the inequality (1.1) may not make sense. Inspired by Recht

and Ré, we modify (1.0.1) by replacing the left hand side with the average of all the products of the operators

Ai, which turns out to be self-adjoint. Following the MacLaurin approach, we may now ask whether the

AGM inequality holds on average, i.e.

1

n!

∑
σ∈Sn

Aσ(1) · · ·Aσ(n)

?
≤ (

1

n

n∑
j=1

Aj)
n. (1.0.2)

1

n!

∑
σ∈Sn

Aσ(1) · · ·Aσ(n)

?
≤ (

1

n

n∑
j=1

Aj)
n. (1.0.3)

Unfortunately, we can not prove (1.0.3) in general. A milder version of (1.0.3) is to ask for

‖ 1

n!

∑
σ∈Sn

Aσ(1) · · ·Aσ(n)‖
?
≤ ‖( 1

n

n∑
j=1

Aj)
n‖, (1.0.4)

where ‖x‖ = ‖x‖B(H) refers to the standard operator norm of bounded operators on a Hilbert space H. The

inequality (1.0.4) is a particular case of the noncommutative MacLaurin inequalities discussed in [RR11].

Indeed, for fixed d we may consider the following average product of noncommutative operators of length d:

Pd(A1, ..., An) =
1

n · · · (n− d+ 1)

∑
1≤j1,...,jd≤n all different

Aj1 · · ·Ajd .

We refer to the example in [RR12] for the fact that the symmetrization for the operators in the AGM
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inequality is required. In [RR11], Ré and Recht posed the following question: Is it true that for positive

bounded operators A1, ..., An on a Hilbert space one has

‖Pd(A1, ..., An)‖1/d ≤ ‖P1(A1, ..., An)‖. (1.0.5)

They proved that (1.0.5) holds when A1, ..., An are matrices that mutually commute. Moreover, they ob-

served that for operators A1, ..., An on an m-dimensional Hilbert space one has

‖Pd(A1, ..., An)‖1/dB(`m2 ) ≤ m ‖P1(A1, ..., An)‖.

We have two goals in this project. First, is to prove the AGM inequality for the norm for more general

operators with a constant independent of the dimension m. Second, is to prove the AGM for the order with

constant equal one.

The AGM inequalities for noncommutative operators will be covered in Chapter 2 and Chapter 3. In

Chapter 2, we collect the important definitions for partitions and identities that we will use throughout

these two chapters. Then at the last section, we prove the AGM inequality for the norm and for the order.

In Chapter 3, we provide some interesting applications for the AGM inequality. We prove a version of the

NC-AGM inequality for random matrices. For these examples, we prove first a deviation inequality. Then

with additional assumptions, we have the AGM inequality for the norm.

The second part of this exposition focuses on the study of a ternary ring of operators (or simply TRO’s).

A concrete definition for the ternary ring of operators V is a norm closed subspace V of B(H,K) where

both H,K are complex Hilbert spaces, which is closed under the triple product

(x, y, z) ∈ V × V ] × V 7→ xy∗z ∈ V

for all x, y, z ∈ V. Note that V ] is the conjugate space of V that is contained in B(K,H). In general, a TRO

is defined as the off-diagonal corner of its linking C*-algebra which is

A(V ) =

C(V ) V

V ] D(V )


where C(V ) and D(V ) are both C*-algebras generated by V V ] and V ]V respectively. The readers are re-

ferred to Hestenes [Hes62], Harris [Har81] , Zettl [Zet83], Hamana [Ham99] [Ham11], Exel [Exe97], Kirchberg

[Kir95], and Effros, Ozawa and Ruan [EOR01] for more details. It is important to know that every TRO has
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a natural operator space structure, i.e. if we define a TRO V ⊂ B(H,K), then Mn(V ) ⊂ Mn(B(H,K)) =

B(Hn,Kn) is also a TRO. This imply that V has a natural canonical operator space structure (V, ‖.‖n). Then

V ] = {x∗ ∈ B(K,H) : x ∈ V } is a TRO where its canonical TRO matrix norm satisfies ‖[x∗ij ]‖ = ‖[xji]‖ for

all [x∗ij ] ∈ Mn(V ]). It was proved by Ruan [Rua89] that an injective operator space is a TRO. Therefore,

TRO’s are considered as a special class of operator spaces.

Given V and W are two TRO’s and a linear map θ : V → W , then θ from V to W is called a TRO-

homomorphism if it preserves the triple product as follows:

θ(xy∗z) = θ(x)θ(y)∗θ(z)

for all x, y, z ∈ V. Moreover, if θ is bijection then we call θ a TRO-isomorphism from V onto W . Also,

from [Zet83] a map θ : V →W is called an anti-TRO homomorphism if it satisfies

θ(xy∗z) = −θ(x)θ(y)∗θ(z).

If, in addition, θ : V →W is a TRO-homomorphism, then θn : Mn(V )→Mn(W ) is a TRO-homomorphism

for each n. Thus, it is contraction for each n (by Harries [Har81]), i.e. θ is a complete contraction. This

shows that every TRO-homomorphism is a complete contraction (see appendix A for the proof). We can

obtain the following important result of Hamana and Ruan for TRO-isomorphism [Ham99]. If V and W are

two TRO’s and θ : V →W is an onto linear map, then the following are equivalent:

θ is a 2-isometry ⇔ θ is a triple isomorphism ⇔ θ is a complete isometry.

TRO’s have many common properties with its linking C∗-algebras. For instance, we know that every

C∗-homomorphisms are completely contraction maps and every TRO homomorphisms are a completely con-

traction maps. Also, C∗-homomorphisms which are onto maps are quotient maps and TRO-homomorphisms

which are onto maps are completely quotient maps (see appendix A for the proof).

An Abstract characterization for TRO’s is given first by Zettl [Zet83]. Zettl introduced the concept of

C∗-ternary ring of operators which is defined as follows:

A C∗-ternary ring is a Banach space X with ternary product

〈., ., .〉 : X ×X∗ ×X → X

4



which is linear on the first and third variables and conjugate linear on the second such that it is associative

〈〈a, b∗, c〉, d∗, e〉 = 〈a〈d, c∗, b〉∗e〉 = 〈a, b∗, 〈c, d∗, e〉〉

and satisfies the following conditions

‖〈x, x∗, x〉‖ ≤ ‖x‖‖y‖‖z‖ and ‖〈x, x∗, x〉‖ = ‖x‖3.

Then he proved a decomposition theorem for C∗-ternary ring. This theorem states that every C∗-ternary ring

can be written as a decomposition of two sub-ternary rings where the first part is isometrically isomorphic

to a TRO and the second part is isometrically anti-isomorphic to a TRO. In 2002, Todorov proved the

cb-version of Zettl’s decomposition theorem. Todorov first introduced a ternary operator system which is

an operator space X equipped with a triple product X ×X∗×X → X which is linear on the first and third

variables and conjugate linear on the second such that

1. ‖〈[xij ], [y∗jk], [zkl]〉‖ ≤ ‖[xij ]‖‖[y∗jk]‖‖[zkl]‖ for all [xij ], [ykj ], [zkl] ∈Mn(X)

2. 〈〈[xij ], [y∗jk], [zkl]〉, [d∗ls], [est]〉 = 〈[xij ], 〈[dsl], [z∗lk], [ykj ]〉∗, [est]〉 = 〈[xij ], [y∗jk], 〈[zkl], [d∗ls], [est]〉〉

for all [xij ], [ykj ], [zkl], [dls], [est] ∈Mn(X)

3. ‖[xij ]� [xij ]� [xij ]‖ = ‖[xij ]‖3 for all [xij ] ∈Mn(X), and n ∈ N.

Here � denotes the formal matrix product. For n = 1, the above definition is for C∗-ternary ring. It turns

out that with these conditions we will have the cb-version of Zettl’s decomposition theorem. Moreover,

Todorov proved that any ternary operator system is completely isometric to a TRO. This means these con-

ditions for ternary operator system are not enough to obtain the isomorphism as we expected. More details

about C∗-ternary ring and its decomposition theorem will be covered in section 4.2.

Motivated by C∗-algebras theory, we define the crossed product of TRO’s. There is an increasing interest

to study the crossed product for operator spaces and TRO’s. The crossed product of W*-TRO’s has been

studied recently by Salmi and Skalski [SS17]. Since TRO is a special class of operator space, it is also

considered as an approach to study the crossed product of operator spaces. We were interested to study this

topic to answer a question related to Morita equivalent theory. Let us first recall the definition of Morita

equivalent between two C∗-algebras A and B in the sense of Rieffel [Rie82]. Let A, B be a C∗-algebras. These

algebras are called strong Morita equivalent in the sense of Rieffel, if there exists injective ∗-homomorphisms

π : A → B(H) and ρ : B → B(K) where H, K are two different Hilbert spaces and there exists a TRO

5



V ⊂ B(H,K) such that

π(A) = [V ]V ]
‖.‖

and ρ(B) = [V V ]]
‖.‖
.

It is important to know that this TRO V is not necessarily unique and we proved that in Theorem 4.3.5 for

TRO’s and Theorem 4.4.6 for W ∗-TRO’s. Back to our question that we stated as follows:

If we have two C∗-algebras C(V ) and D(V ), denoted as the diagonal components of the linking C∗-algebra

of the TRO V , which are Morita equivalent (M.E) via V , i.e.

C(V )
M.E∼= D(V ),

does this imply that their crossed product are Morita equivalent via V oα G, i.e.

C(V )oG
M.E∼= D(V )oG

for certain action α on a TRO V. It turns out that the answer of this question is connected to the existence

of this identity

A(V oα G) = A(V )oα G,

which means that the TRO V oα G is defined to be the off diagonal corner of the linking C∗-algebra

A(V )oα G. We prove this identity for the conditional crossed product and the reduced crossed product of

C∗-algebras at Chapter 5 (see section 5.2 and 5.4 for more details). By using this identity, we prove that

some local properties preserve with the crossed product when G is amenable.

In Chapter 4, we start by preliminary parts for TRO’s theory. It is known that if two TRO’s V and W

are TRO-isomorphic, then their linking C∗-algebras are also ∗-isomorphic:

V ∼= W ⇒ A(V ) ∼= A(W ).

On the other hand, it’s a natural question to ask if the other direction is also true. Quiet surprisingly, this

direction is not true in general. We prove this by giving a counter example for TRO’s and corresponding

result works for W*-TRO’s. The first example of TRO’s is based on the CAR algebra theory (see [Dav96] for

more details) and the second example of W*-TRO’s is based on one of the important Ruan’s result in [Rua04].

We start Chapter 5 by introducing the definition of TRO’s crossed product. We discuss the reduced

crossed product of a TRO (which is denoted as V oα,r G) and the full crossed product of a TRO (which
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is denoted as V oα,f G). Also we obtain the definition of a conditional crossed product for the linking

C∗-algebra which is characterized by its representation.

Since local properties like nuclearity and exactness behave nicely in the level of C∗-algebras crossed

product. Then, one of our goals of this project is to see how this local properties behave in the level of

TRO’s crossed product. Using an important result for Ruan and Kaur [KR02], which proves that local

properties of TRO’s have strong connections with the local properties of their linking C∗-algebras, we prove

the strong connections between the local properties of the crossed product of TRO’s and its linking C∗-

algebras. In order to prove that, we use the following an identity,

A(V oα G) = A(V )oα G.

Based on this result, it is easy to show the connection between local properties for crossed product of TRO’s

and its linking C∗-algebras. We end up this section of this chapter discussing about the conditional crossed

product for the linking C∗-algebras. The important things about this class that we can relate the covariant

representation of TRO’s with the covariant representation of its linking C∗-algebras.
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Chapter 2

Non commutative Arithmetic
Geometric Mean Inequality

In this section, we are proving the following two main theorems: The first theorem is the norm version of

the AGM inequality.

Theorem 2.0.1. For operators A1, ..., An ≥ 0 on a Hilbert space H,

‖Pd(A1, ..., An)‖1/d ≤ d ‖P1(A1, ..., An)‖.

and the second is the order version of the AGM inequality

Theorem 2.0.2. Fix n and d. Suppose A1, ..., An and ai are as above,
∑
i

Ai = n, ai = Ai − 1 and

i) P1(A1, ..., An) =
∑
i Ai
n = 1,

ii) ‖(
∑
a2
j )

1
2 ‖ ≤ n

3d .

Then the AGM inequality holds in the order sense:

Pd(A1, ..., An) ≤ P1(A1, ..., An)d = 1.

Let us now consider an example for the order version of the AGM inequality. In the second theorem we

added the additional assumption
∑
Ai = n. In order to illustrate the technique we use generally, it is good

to start with d = 3.

Theorem 2.0.3. Let n ≥ 6. If A1, ..., An are self-adjoint operators such that
∑
iAi = n. Then

P3(A1, ..., An)1/3 ≤ 1.

For the proof we consider the mean-zero operators ai := Ai−1. Observe the operators ai are self-adjoint
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and
n∑
i=1

ai = 0. It follows easily that

P3(A1, ..., An) = 1 +

(
3

1

)
P1(a1, ..., an) +

(
3

2

)
P2(a1, ..., an) +

(
3

3

)
P3(a1, ..., an).

Straightforward computations using
∑
ai = 0 reveal that

P1(a1, ..., an) = (n−1)!
n!

∑
i

ai = 0

P2(a1, ..., an) = (n−2)!
n!

∑
i 6=j

aiaj = (n−2)!
n!

(
(
∑
ai)

2 −
∑
a2
i

)
= − (n−2)!

n!

∑
a2
i

P3(a1, ..., an) =
(n− 3)!

n!
(
∑
i6=j 6=k

aiajak)

=
(n− 3)!

n!

(
(
∑
i 6=j 6=k

ai)
3 − (

∑
i=j

a2
i )(
∑
k

ak)− (
∑
i

ai)(
∑
j=k

a2
j )−

∑
j

∑
i=k 6=j

aiajai + 2(
∑
i=j=k

a3
i )
)

= 2
(n− 3)!

n!

(∑
i

a3
i

)
.

This leads to the form P3(A1, ..., An) = 1− 3
n(n−1)

∑
a2
i + 2

n(n−1)(n−2)

∑
a3
i . Together with

∑
a3
i ≤ ‖ai‖

∑
a2
i ≤ n

∑
a2
i ,

this yields

P3(A1, ..., An) ≤ 1− 3

n(n− 1)

∑
a2
i +

2n

n(n− 1)(n− 2)

∑
a2
i . (2.0.1)

Since 2n
n(n−1)(n−2) ≤

3
n(n−1) holds for all n ≥ 6, the right side of (2.0.1) is at most 1 and we are done.

A far-reaching generalization of this idea leads to the following result. Note that these techniques work

efficiently when d is very large. This chapter is organized as the following: we first give an introduction for

Partition and Möbius Formula

2.1 Partition and Möbius Formula

In this section, we review the analytic and combinatorial tools needed to prove Theorem 2.0.1, especially

Pisier’s interpretation of Rota’s results on Möbius transforms for partitions. We need some definitions from

the combinatorial theory of partitions. Let Pd be the lattice of all the partitions of {1, ..., d}. For two

partitions σ and π, we write σ ≤ π if every block of the partition σ is contained in some block of π (i.e., any

block of the partition of π can be written as a union of blocks of σ). In other words, π is a refinement of σ.

There are two trivial partitions, 0̇ and 1̇, where 0̇ is the partition into n singletons and 1̇ is the partition of a

9



single block. For a partition π, ν(π) is the number of the blocks of the partition π and ri(π) is the number

of blocks of π with cardinality i such that
∑d
i=1 iri(π) = d; and

∑d
i=1 ri(π) = ν(π). Also, we need to recall

the definition of crossing and non-crossing partition.

Definition 2.1.1. A partition π ∈ Pd is called a crossing partition if there exist four numbers 1 ≤ i < k <

j < l ≤ d such that i and j are in the same block, k and l are in the same block but i, j and k, l belong to

two different blocks. If this situation does not happen, then we call π non-crossing.

Example 2.1.2. • 0̇ and 1̇ are the smallest and largest non-crossing partition.

• The partition σ = {{1, 3}, {2, 4}} = 1 2 3 4 is crossing.

• The partition σ = {{1, 4}, {23}} = 1 2 3 4 is non-crossing.

For more information on partitions, see [Spe97] [And98] and [Rot64].

Let us recall two results on the Möbius function µ in [Pis00] which are crucial for our paper.

Proposition 2.1.3. [[Pis00], Proposition 1.1] For any d ∈ N there exists a function µ : Pd × Pd −→ Z such

that for every vector space V and functions φ : Pd −→ V and ψ : Pd −→ V , we have the following properties:

1. If ψ(σ) =
∑
π≤σ

φ(π), then φ(σ) =
∑
π≤σ

µ(π, σ)ψ(π);

2. If ψ(σ) =
∑
π≥σ

φ(π), then φ(σ) =
∑
π≥σ

µ(σ, π)ψ(π);

3. Moreover, ∀σ 6= 0̇,
∑

0̇≤π≤σ
µ(π, σ) = 0.

Theorem 2.1.4. [[Pis00], Proposition 1.2]

The Möbius function satisfies the following properties:

1. µ(0̇, 1̇) = (−1)d−1(d− 1)!.

2. µ(0̇, π) =
∏d
i=1[(−1)i−1(i− 1)!]ri(π), and consequently,

3.
∑
π∈Pd |µ(0̇, π)| = d!.

If σ is a partition of {1, ..., d}, then there exists a coordinate function f : {1, ..., d} → {1, ..., ν(σ)} such

that f−1(t) = At where each At represents a block in our partition. Note that this coordinate function isn’t

unique. For every partition σ we can fix an enumeration of the blocks f : {1, 2, ..., d} −→ {1, 2, ..., |σ|} where

σ:=〈j1, j2, ..., jd〉. This means jr = js if and only if r, s ∈ Ar,s where Ar,s is a block in σ = 〈j1, j2, ..., jd〉.
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Using this notation for partitions, we are able to define the restricted and full partition for operators xiji

from an algebra A where the operators are written according to the blocks Ak in the partition σ. Note that

the upper indices for the operator xiji refer to the position of the operator and the lower indices refer to a

block Ak in the partition σ where ji ∈ Ak.

Definition 2.1.5. Let A be an algebra and xiji ∈ A. The restricted partition is defined by:

〈σ〉 =
∑

〈j1,j2,...,jd〉=σ
ji 6=jk if ji∈Ai,jk∈Ak and i 6=k

x1
j1 ...x

d
jd
,

where the sum run over all the partition σ where indices in the same block are equal and indices in different

blocks are not equal. This is considered as a restricted condition. Unlike the restricted partition, the full

partition run over all the partitions π such that π ≥ σ. consider all the cases of partitions. This can be

written in the form

[σ] =
∑
π≥σ

〈π〉.

The restricted and full partitions, which are denoted as 〈σ〉 and [σ] respectively, give expressions for the

operators in the given B(H) according to the algebraic combinatorial partition σ. In order to understand

the difference between the definition of restricted partition and full partition, consider the following example.

Example 2.1.6. Let both the numbers of total samples and chosen samples be 3 (n = d = 3). For the full

partition [1 2, 3] with the assumption that xij = xj we have

[1 2, 3] =
∑

π≥[1 2,3]

〈π〉 = 〈1 2, 3〉+ 〈1 2 3〉.

This can be written in terms of operators as

(
∑

x2
i )(
∑

xi) =
∑

i1=i2 6=i3

x2
i1xi3 +

∑
i1=i2=i3

x3
i1 ,

where the restricted partition 〈1 2, 3〉 is defined as 〈1 2, 3〉 =
∑
i1=i2 6=i3 x

2
i1
xi3 . Also, we can write the

restricted partition in term of the full partition as follows

〈1 2, 3〉 = [1 2, 3]− 〈1 2 3〉.
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We reformulate Proposition 2.1.3 in our context.

Proposition 2.1.7. Let xkj ∈ A as above. Then we have

〈π〉 =
∑
ν≥π

µ(π, ν)[ν], where [π] =
∑
ν≥π

〈ν〉,

〈π〉 =
∑
ν≤π

µ(π, ν)[ν], where [π] =
∑
ν≤π

〈ν〉.

Moreover, we have

〈0̇〉 = [0̇] +
∑

0̇�ν≤1̇

µ(0̇, ν)[ν]. (2.1.1)

Let’s give another example, if we have the restricted partition 〈1, 2, 3〉 ∼= {{1}, {2}, {3}}, then by using

the previous formula (2.1.1):

〈1, 2, 3〉 = [1, 2, 3]− [12, 3]− [1, 23]− [13, 2] + 2[123]

∑
i1,i2,i3 all distinct

xi1xi2xi3 = (
∑

xi)
3 − (

∑
x2
i )(
∑

xi)− (
∑

xi)(
∑

x2
i )

−
∑
i, j

xixjxi + 2(
∑

x3
i ).

The coefficients (-1,-1,-1,+2) are computed by using the the Möbius function formula (2). For instance, the

Möbius function for the partition [1 2, 3] is computed as follows

µ(0̇, [1 2, 3]) =

3∏
i=1

[(−1)i−1(i− 1)!]ri(π) = −1.

In [Pis00], in order to separate different partition blocks into disjoint subspaces, Pisier uses a trick to

embed operators xik ∈ B(H) into B(K ⊗ H) (for another Hilbert space K). Our first goal is to modify

Pisier’s trick by using matrix units.

Consider first the trivial partition that has only one block [1 2 · · · d]. We can write

1̇ = [1 2 · · · d] =
∑

x1
i1x

2
i2 · · ·x

d
id

= (
∑

e1i1 ⊗ x1
i1)× (

∑
ei2i2 ⊗ x2

i2)× · · ·

× (
∑

eid−1id−1
⊗ xd−1

id−1
)× (

∑
eid1 ⊗ xdid).
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Now if we have 6 elements and our partition σ has two crossing blocks, one containing {1, 3, 4, 6} and

the other containing {2, 5} as seen in the following graph:

1 2 3 4 5 6

then the full partition of σ will be of the form:

[σ] =
∑

i1=i3=i4=i6
i2=i5

xi1xi2xi3xi4xi5xi6 .

We rewrite these elements into a tensor form, as follows:

Zi1 = e1i1 ⊗ 1⊗ xi1 , Zi2 = 1⊗ e1i2 ⊗ xi2

Zi3 = ei3i3 ⊗ 1⊗ xi3 , Zi4 = ei4i4 ⊗ 1⊗ xi4

Zi5 = 1⊗ ei51 ⊗ xi5 , Zi6 = ei61 ⊗ 1⊗ xi6 .

With this new notation, we get

[σ] =
∑

i1=i3=i4=i6
i2=i5

xi1xi2xi3xi4xi5xi6

=
∑

i1,i2,i3,i4,i5,i6

Zi1Zi2Zi3Zi4Zi5Zi6

=

6∏
j=1

(
∑
ij

Zij ) =

6∏
j=1

Zj , (Zj :=
∑
ij

Zij ).

In a more general setting, assume σ has more than one block. Denote A1,. . . ,A|σ| as the blocks of the

partition σ with cardinality larger than one.

Then we define

Zkjk ∈ B(H)⊗
|σ|
⊗B(H)

as follows:

∀ k ∈ A1, Z
k
jk

= tA1(jk)⊗ 1⊗ · · · ⊗ xkjk

∀ k ∈ A2, Z
k
jk

= 1⊗ tA2(jk)⊗ 1 · · · ⊗ xkjk
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∀ k ∈ A|σ|, Zkjk = 1⊗ · · · ⊗ tA|σ|(jk)⊗ xkjk ,

tAm(jk) =


e1jk jk = minAm

ejkjk otherwise

ejk1 jk = maxAm.

Here, minAm means the smallest index number and maxAm means the largest index number in the

partition Am. Finally, if k belongs to singleton block of the partition σ, then we set

Zkjk = 1⊗ · · · ⊗ 1⊗ xkjk .

To sum up, the method places each element into larger spaces, which will allow us to interchange the

summation and multiplication as in the above example and the following lemma.

Lemma 2.1.8. For an arbitrary partition σ for d elements, we have

[σ] =
∑

i1,...,id

Z1
i1 ...Z

d
id
.

Indeed, this immediately follows from

Ziij · Z
k
ik

= 0, if ij 6= ik.

Follow Pisier’s approach in [Pis00], we deduce the following norm estimate.

Theorem 2.1.9. For an arbitrary partition σ for d elements, we have

‖[σ]‖B(H) ≤
d∏
k=1

(
‖
∑
jk

Zkjk‖ · 1σs(k) + ‖
∑
jk

Zkjk‖ · 1σns(k)
)
.

Moreover,

‖[σ]‖B(H) ≤
∏
k∈σs

‖
∑
jk

Zjk‖ ×
∏
k∈σns

‖|(Zjk)|‖,

where ‖|(Zjk)|‖ = max{‖
∑
Zjk1Z

∗
jk1
‖ 1

2 , ‖
∑
Z∗jkpZjkp‖

1
2 , supjk ‖Zjk‖}. Here σs means the set of single-

tons in the partition σ, and σns means the set of non-singleton elements in the partition σ. The functions

1σns(k), 1σs(k) represent the characteristic functions, i.e.
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1σns(k) =


1 k ∈ σns

0 otherwise

, 1σs(k) =


1 k ∈ σs

0 otherwise.

Proof. Taking the norm for the full partition, we have

‖[σ]‖ = ‖
∑
π≥σ

〈π〉‖ = ‖
∑

〈j1,··· ,jd〉≥σ

x1
j1 · · ·x

d
jd
‖

= ‖
∑

j1,j2,...,jd

Z1
j1 · · ·Z

d
jd
‖ (2.1.2)

= ‖
∏
k∈σs

∑
jk

Zkjk ·
∏
k∈σns

∑
jk

Zkjk‖ (2.1.3)

≤ ‖
∏
k∈σs

∑
jk

Zkjk‖ · ‖
∏
k∈σns

∑
jk

Zkjk‖

≤
∏
k∈σs

‖
∑
jk

Zkjk‖ ·
∏
k∈σns

‖
∑
jk

Zkjk‖.

The equality (2.1.2) comes from Lemma 2.1.8. The equality (2.1.3) follows from the definition of Zkjk , which

means it allows us to perform summation first and then multiplication. Next,

‖[σ]‖B(H) ≤
∏
k∈σs

‖
∑
jk

Zjk‖ ·
∏
k∈σns

‖
∑
jk

Zjk‖

≤
∏
k∈σs

‖
∑
jk

Zjk‖ ×
∏

k∈Am⊂σns

‖
∑
jk

Zjk‖ · (1minAm + 1maxAm + 1mid Am)

≤
∏
k∈σs

‖
∑
jk

Zjk‖×

∏
k∈Am⊂σns

(
‖
∑
jk

Zjk‖ · 1minAm + ‖
∑
jk

Zjk‖ · 1maxAm + ‖
∑
jk

Zjk‖ · 1mid Am

)
≤
∏
k∈σs

‖
∑
jk

Zjk‖×

∏
k∈Am⊂σns

(
‖
∑
jk

ZjkZ
∗
jk
‖ 1

2 · 1minAm + ‖
∑
jk

Z∗jkZjk‖
1
2 · 1maxAm + sup

jk

‖Zjk‖ · 1mid Am

)
≤
∏
k∈σs

‖
∑
jk

Zjk‖ ×
∏
k∈σns

‖|(Zjk)|‖,

where ‖|(Zjk)|‖ = max{‖
∑
Zjk1Z

∗
jk1
‖ 1

2 , ‖
∑
Z∗jkpZjkp‖

1
2 , supjk ‖Zjk‖}.

The next corollary states the norm estimate in B(H) rather than in B(K⊗H). For simplicity we replace

xkik by xik .

15



Corollary 2.1.10. If σ is a partition and xjk is a self-adjoint operator for arbitrary k ∈ {1, ..., d}, then

‖[σ]‖B(H) ≤
∏
k∈σs

‖
∑

xjk‖ ·
∏
k∈σns

‖
∑

x2
jk
‖ 1

2 .

Proof. We need to discuss two cases:

(i) For k ∈ σs, ‖
∑
j

Zjk‖ = ‖
∑

1⊗ · · · ⊗ xjk‖ = ‖1⊗ · · · ⊗
∑
xjk‖ = ‖

∑
xjk‖.

(ii) For Am ∈ σns,

‖
∑

Zjk1Z
∗
jk1
‖ 1

2 = ‖
∑

[1⊗ · · · ⊗ e1jk1
⊗ · · · ⊗ xjk1 ] · [1⊗ · · · ⊗ ejk11 ⊗ · · · ⊗ x∗jk1 ]‖ 1

2

= ‖
∑

1⊗ · · · ⊗ e11 ⊗ · · · ⊗ xjk1x
∗
jk1
‖ 1

2

= ‖1⊗ · · · ⊗
∑

xjk1x
∗
jk1
‖ 1

2 = ‖
∑

xjk1x
∗
jk1
‖ 1

2 = ‖
∑

x2
jk1
‖ 1

2 . (2.1.4)

and

‖
∑

Z∗jkpZjkp‖
1
2 = ‖

∑
[1⊗ · · · ⊗ e1jkp

⊗ · · · ⊗ x∗jkp ] · [1⊗ · · · ⊗ ejkp1 ⊗ · · · ⊗ xjkp ]‖ 1
2

= ‖
∑

1⊗ · · · ⊗ e11 ⊗ · · · ⊗ x∗jkpxjkp‖
1
2 = ‖1⊗ · · · ⊗

∑
x∗jkpxjkp‖

1
2

= ‖
∑

x∗jkpxjkp‖
1
2 = ‖

∑
x2
jkp
‖ 1

2 .

For the middle term, we have

sup
k∈{k2,...,kp−1}

sup
jk

‖Zjk‖ = sup
k∈{k2,...,kp−1}

sup
jk

‖Z∗jkZjk‖
1
2 = sup

k∈{k2,...,kp−1}
sup
jk

‖x∗jkxjk‖
1
2

≤ sup
k∈Am

‖
∑

x2
jk
‖ 1

2 .

Combining (i) and (ii) finishes the proof.

2.2 AGM inequality for the norm

In this section we prove the AGM inequality for the norm and for the order. We need the following lemma

which handles positive or self-adjoint operators {xik} in a C*-algebra A.

Lemma 2.2.1. (i) If xjk ≥ 0, then ‖
∑
x2
jk
‖ 1

2 ≤ ‖
∑
xjk‖.
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(ii) If xjk are self-adjoint, then ‖
∑
x2
jk
‖ 1

2 = ‖(
∑
x2
jk

)
1
2 ‖.

Proof. (i) Indeed, we have

‖
∑

x2
jk
‖ 1

2 = ‖
∑

x
1
2
jk
xjkx

1
2
jk
‖ 1

2

≤ (‖
∑

xjk‖
1
2 · ‖

∑
xjk‖ · ‖

∑
xjk‖

1
2 )

1
2

= ‖
∑

xjk‖.

(ii) Holds trivially using ‖x2‖ = ‖x‖2, for x = (
∑
x2
jk

)
1
2 .

Now we have done all the preparation to prove the NC-AGM inequality for the norm.

Theorem 2.2.2. Suppose x1, . . . , xn are positive operators in B(H). Then

‖Pd(x1, ..., xn)‖1/dB(H) ≤ d ‖P1(x1, ..., xn)‖B(H).

Proof. From Corollary 2.1.10 and Lemma 2.2.1, we deduce that for a given arbitrary partition σ and positive

elements xjk = xj , we have

‖[σ]‖B(H) ≤ ‖
∑

xj‖d.

Recall identity 2.1.1 from Proposition 2.1.7:

〈1, · · · , d〉 = [1, · · · , d] +
∑
υ	0̇

µ(0̇, ν)[ν], where
∑
υ	0̇

|µ(0̇, ν)| = d!− 1. (2.2.1)

Taking the norm of both sides of the equality (2.2.1) we get

‖〈1, · · · , d〉‖B(H) = ‖[1, · · · , d] +
∑
υ	0̇

µ(0̇, ν)[ν]‖B(H)

≤ ‖[1, · · · , d]‖B(H) +
∑
υ	0̇

|µ(0̇, ν)|‖[ν]‖B(H)

≤ ‖
∑

xj‖dB(H) + (d!− 1)‖
∑

xj‖dB(H)

≤ d!‖
∑

xj‖dB(H)

= d!nd‖ 1

n

∑
xj‖dB(H)

= d!nd‖P1(x1, ..., xn)‖dB(H).
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Thus,‖Pd(x1, ..., xn)‖B(H) ≤ d!nd(n−d)!
n! ‖P1(x1, ..., xn)‖B(H). Denote C(n, d) := d!nd(n−d)!

n! , and for fixed d

define f(n) :=
d−1∑
i=0

log n
n−i . Then

C(n, d) =
d!nd(n− d)!

n!
=

d!nd

n(n− 1)(n− 2) · · · (n− d+ 1)

= d! · n
n
· n

n− 1
· n

n− 2
· · · n

n− d+ 1

= d! · exp(f(n)).

Since f(n) is a decreasing function in n, C(n, d) is also a decreasing function with respect to the variable

n. From the definition of d, we know n ≥ d, so max
n≥d

C(n, d) = C(d, d) = dd.

2.3 AGM inequality for the order

Recall that the average product is defined by:

Pd(x1, x2, ..., xn) =
(n− d)!

n!

∑
〈σ〉=0̇

xi1 ...xid .

Lemma 2.3.1. Let {xi} be a finite family of positive operators in B(H) which satisfy the condition
n∑
i=1

xi =

n. If ai := xi − 1 then

Pd(x1, x2, ..., xn) = 1 +

d∑
k=1

(
d

k

)
Pk(a1, a2, ..., an). (2.3.1)

Proof. This lemma can be proved by two methods. The first method is by induction. For d = 1, the equation

is trivial. Since
∑
i

xi =
∑
i

ai + 1, it follows that

P1(x1, x2, ..., xn) =
(n− 1)!

n!

n∑
i=1

xi =
1

n

n∑
i=1

xi

= 1 +
1

n

n∑
i=1

ai = 1 +

1∑
k=1

(
1

k

)
Pk(a1, ..., an).

Assume now this is true for d = m,

Pm(x1, x2, ..., xn) = 1 +

m∑
k=1

(
m

k

)
Pk(a1, a2, ..., an),
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where Pk(a1, a2, ..., an) = (n−k)!
n!

∑
〈σ〉=0̇

ai1 ...aik . Then we need to check it is also true when d = m+1. Indeed,

n!

(n−m− 1)!
Pm+1(x1, x2, ..., xn) =

n∑
i=1

xi
∑
〈σ〉=0̇
xi /∈σ

x1...x̌i...xm+1

=
(n− 1)!

(n− 1−m))!

n∑
i=1

(ai + 1)Pm(x1, x2, ...x̌i..., xn),

and

nPm+1(x1, x2, ..., xn)

=

n∑
i=1

(ai + 1)Pm(x1, x2, ...x̌i..., xn)

=

n∑
i=1

(ai + 1)
[
1 +

m∑
k=1

(
m

k

)
Pk(a, ...ǎi, ..., an)

]
=

n∑
i=1

ai +

n∑
i=1

[ m∑
k=1

(
m

k

)
aiPk(a, ..., ǎi, ..., an) + 1 +

m∑
k=1

(
m

k

)
Pk(a1, a2, ..., ǎi, ..., an)

]
=

n∑
i=1

ai +

n∑
i=1

m∑
k=1

(
m

k

)
aiPk(a1, ..., ǎi, ..., an) + n+

n∑
i=1

m∑
k=1

(
m

k

)
Pk(a1, a2, ..., ǎi, ..., an)

= n+

n∑
i=1

ai +

m∑
k=1

(
m

k

)
Pk+1(a1, ..., an).n+

m∑
k=1

(
m

k

)
Pk(a1, ..., an).n

= n+

n∑
i=1

ai + n

[m+1∑
k=2

(
m

k − 1

)
Pk(a1, ..., an) +

m∑
k=1

(
m

k

)
Pk(a1, ..., an)

]
.

Here Pk(a1, ..., ǎi, ..., an) means we consider all the elements except ai. Dividing both sides by n yields

Pm+1(x1, x2, ..., xn) = 1 +
1

n

n∑
i=1

ai +

m+1∑
k=2

(
m

k − 1

)
Pk(a1, ..., an) +

m∑
k=1

(
m

k

)
Pk(a1, ..., an)

= 1 +

m+1∑
k=1

(
m

k − 1

)
Pk(a1, ..., an) +

m∑
k=1

(
m

k

)
Pk(a1, ..., an)

= 1 +

m∑
k=1

[( m

k − 1

)
+

(
m

k

)]
Pk(a1, ..., an) + Pm+1(a1, ..., an)

= 1 +

m∑
k=1

(
m+ 1

k

)
Pk(a1, ..., an) + Pm+1(a1, ..., an)

= 1 +

m+1∑
k=1

(
m+ 1

k

)
Pk(a1, ..., an).
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For the second proof, we use the binomial identity. Then we have

Pd(x1, ..., xn) =
(n− d)!

n!

∑
〈σ〉=0̇

xi1 ...xid

=
(n− d)!

n!

∑
〈σ〉=0̇

(ai1 + 1)(ai2 + 1)...(aid + 1) = 1 +

d∑
k=1

λkPk(a1, ..., an).

Let x1 = x2 = .... = xn = t, where t = a+ 1. Then

Pd(x1, ..., xn) = td = (1 + a)d = 1 +

d∑
k=1

(
d

k

)
ak,

which implies that λk =
(
d
k

)
, so Pd(x1, ..., xn) = 1 +

∑d
k=1

(
d
k

)
Pk(a1, ..., an).

In Theorem 2.0.3 for d=3, we deduce that each term in P3(x1, ..., xn) has an upper bound of some scalar

multiple of
∑
a2
i . For d > 3, we need the following lemma.

Lemma 2.3.2. If {xi}, {ai} are defined as above, then

max
i
‖ai‖ ≤ ‖

∑
a2
i ‖

1
2 ≤ ‖

∑
i

x2
i ‖

1
2 .

In particular, ‖ai‖k ≤ nk‖ 1
n2

∑
i x

2
i ‖

k
2 .

Proof. Since we have a2
j ≤

∑
a2
i ,

‖ai‖ = ‖a2
i ‖

1
2 ≤ ‖

∑
a2
i ‖

1
2 .

Moreover, for each ai, we have xi = ai + 1. Thus, we have

∑
x2
i =

∑
a2
i + n ≥

∑
a2
i .

This finishes the proof.

Note that for a partition with d = 3, the proof of the AGM inequality in the order sense was easily done

in the introduction. However, the proof is much more complicated for d ≥ 4. The complication comes from

crossing partitions, so we need the following useful known lemma [Pau02].

Lemma 2.3.3. Assume a, b ∈ B(H) and t ≥ 0. Then

(1) −(a∗a+ b∗b) ≤ a∗b+ b∗a ≤ a∗a+ b∗b.
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(2) ab+ b∗a∗ ≤ t2aa∗ + t−2b∗b.

To prove (1), we start by observing (a+ b)∗(a+ b), (a− b)∗(a− b) ≥ 0. This directly gives −(a∗a+ b∗b) ≤

a∗b+ b∗a and a∗b+ b∗a ≤ a∗a+ b∗b. It is clear that (2) is a special case of (1), using the assumptions that

a = ta∗ and b = t−1b for the upper bound of (1).

The two previous lemmas will help in establishing our result for general case of the AGM inequality for

the order. For convenience, we will write Ai :=
∑
i Zi where Zi is defined as at the beginning of Section 2.1.

We now provide upper and lower bounds for Pd(ai1 , ..., ain).

Lemma 2.3.4. If {ai} and {xi} are defined as above, then for S = ‖
∑
x2
i ‖1/2

− (n− d)!

n!
d! Sd−2

∑
a2
i ≤ Pd(a1, a2, · · · , an) ≤ (n− d)!

n!
d! Sd−2

∑
a2
i .

Proof. From Proposition 2.1.7, we know that

n!

(n− d)!
Pd(a1, a2, · · · , an) = 〈0̇〉d = [0̇]d +

∑
0̇�ν≤1̇

µ(0̇, ν)[ν]d.

We will prove first the case when µ(0̇, ν) ≥ 0. We will obtain an upper bound for the sum [ν]d by introducing

[ν̄]d as the following:

[ν]d =
∑

〈 ˙i1,i2,··· ,id〉≥ν

ai1ai2 · · · aid ,

[ν̄]d :=
∑

〈 ˙i1,i2,··· ,id〉≥ν

aidaid−1
· · · ai1 .

Here the ν̄ can be viewed as the transposition of the partition ν. By Theorem 2.1.4, we have µ(0̇, π) =∏d
i=1[(−1)i−1(i− 1)!]ri(π). So µ(0̇, ν) = µ(0̇, ν̄). Thus, we can sum these two items together.

Claim: For every partition ν and S = ‖
∑
x2
i ‖1/2 we have

− 2 Sd−2
∑

a2
i ≤ [ν]d + [ν̄d] ≤ 2 Sd−2

∑
a2
i .

The idea here is to use our modification of Pisier’s trick for these two partitions. Recall that Zi1 = e1i1 ⊗ai1

is for the first component in the partition, Zij = ejj ⊗ aij is for the elements in the middle of the partition,
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and Zid = eid1 ⊗ aid is for the last element in the partition. Then we have

[ν]d + [ν̄]d =
∑

〈 ˙i1,i2,··· ,id〉≥ν

ai1ai2 · · · aid + aidaid−1
· · · ai1

=
∑
i1

Zi1 ...
∑
id

Zid +
∑
id

Z∗id ...
∑
i1

Z∗i1

= A1...Ad +A∗d...A
∗
1.

By applying Lemma 2.3.3 with S = ‖
∑
x2
i ‖1/2, we obtain

[ν]d + [ν̄]d = A1 · · ·Ad +A∗d · · ·A∗1 (2.3.2)

≤ t2A1A
∗
1 + t−2A∗d · · ·A∗2A2 · · ·Ad

≤ t2A1A
∗
1 + t−2

d−1∏
j=2

‖A∗jAj‖A∗dAd

≤ t2A1A
∗
1 + t−2

d−1∏
j=2

‖Aj‖2A∗dAd

≤ t2A1A
∗
1 + t−2

d−1∏
j=2

‖
∑

a2
j‖A∗dAd (2.3.3)

≤ t2A1A
∗
1 + t−2‖

∑
a2
i ‖d−2A∗dAd (2.3.4)

≤ ‖
∑

a2
i ‖d/2−1(A1A

∗
1 +A∗dAd) ≤ 2

∑
a2
i S

d−2.

Indeed, if our partition contains the singleton then [ν]d+[ν̄]d is already zero. Hence we may assume there are

no singletons in our partition as it also can be noticed in inequality (2.3.4). Indeed, if the index is a singleton

in partition ν, then it is controlled by the summation norm ‖
∑
ai‖ which is zero by our construction. On

the other hand, if the index is in a non-singleton block, then by Theorem 2.1.10 it is controlled by the square

norm ‖
∑
a2
i ‖. Therefore, in both cases, ‖Ai‖ is controlled by the square norm of ai. To get inequality

(2.3.3), we may apply the norm equality as in equality (2.1.4) from section 2. For the inequality (2.3.4), we

use Lemma (2.3.3) by choosing t2 = Sd/2−1. Then we have

n!

(n− d)!
Pd(a1, a2, · · · , an) = [0̇]d +

∑
0̇�ν≤1̇

µ(0̇, ν)[ν]d

=
∑

0̇�ν≤1̇

µ(0̇, ν)[ν]d

=
∑

µ(0̇,ν)≥0

µ(0̇, ν)[ν]d +
∑

µ(0̇,ν)≤0

µ(0̇, ν)[ν]d
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=
1

2

( ∑
µ(0̇,ν)≥0

µ(0̇, ν)[ν]d +
∑

µ(0̇,ν̄)≥0

µ(0̇, ν̄)[ν̄]d

)
+

1

2

( ∑
µ(0̇,ν)≤0

µ(0̇, ν)[ν]d +
∑

µ(0̇,ν̄)≤0

µ(0̇, ν̄)[ν̄]d

)
≤

∑
µ(0̇,ν)≥0

µ(0̇, ν)Sd−2
∑

a2
i −

∑
µ(0̇,ν)≤0

µ(0̇, ν)Sd−2
∑

a2
i

=
∑
|µ(0̇, ν)| Sd−2(

∑
a2
i ) = d! Sd−2

∑
a2
i .

For the lower bound, the proof is similar to the one above replacing A1 by −A1.

Theorem 2.3.5. (AGM inequality for the order) Fix n and d. Let x1, ..., xn be self-adjoint operators such

that
∑
i

xi = n and ai = xi − 1 as above. Assume the following conditions hold:

i) P1(x1, ..., xn) =
∑n

1 xi
n = 1,

ii) ‖(
∑
x2
i )

1
2 ‖ ≤ n

3d .

Then the AGM inequality holds in the order sense:

Pd(x1, x2, · · · , xn) ≤

(∑n
1 xi
n

)d
= 1.

Proof. According to Lemma 2.3.2, we have ‖
∑
a2
i ‖1/2 ≤ n

3d . Using this upper bound for the average of

noncommutative operators ai with the identity (2.3.1) where S = ‖
∑
x2
i ‖1/2 ≤ ∆n and let ∆ := 1

3d , we

have

Pd(x1, x2, ..., xn) = 1 +

d∑
k=1

(
d

k

)
Pk(a1, a2, ..., an)

= 1−
(
d

2

)
(n− 2)!

n!
(
∑

a2
i ) +

d∑
k=3

(
d

k

)
Pk(a1, a2, ..., an)

≤ 1−
(
d

2

)
(n− 2)!

n!
(
∑

a2
i ) +

d∑
k=3

(
d

k

)
(n− k)!

n!
k!∆k−2nk−2(

∑
a2
i ).

Now we need the following condition:

(
d

2

)
(n− 2)!

n!

?
≥

d∑
k=3

(
d

k

)
(n− k)!

n!
k!∆k−2nk−2.

Simplifying the right hand side gives
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d∑
k=3

(
d

k

)
(n− k)!

n!
k!∆k−2nk−2 =

d∑
k=3

d!

(d− k)!k!

(n− k)!k!

n!
∆k−2nk−2

=

d∑
k=3

d!

(d− k)!

(n− k)!

n!
∆k−2nk−2

=
1

n(n− 1)

d∑
k=3

d!

(d− k)!

nk−2

(n− 2) · · · (n− k + 1)
∆k−2. (2.3.5)

Fix k, and denote f(n) := nk−2

(n−2)···(n−k+1) . Then, by taking the logarithm, we have g(n) := log f(n) =∑k−1
i=2 log n

n−i . Observe that g(n) is a decreasing function and thus f(n) is a decreasing function as well.

Therefore, we get the inequality:

nk−2

(n− 2) · · · (n− k + 1)
≤ dk−2

(d− 2) · · · (d− k + 1)
. (2.3.6)

We continue the calculation in (2.3.5) with the help of inequality (2.3.6), we have

d∑
k=3

(
d

k

)
(n− k)!

n!
k!∆k−2nk−2 =

1

n(n− 1)

d∑
k=3

d!

(d− k)!

nk−2

(n− 2) · · · (n− k + 1)
∆k−2

≤ 1

n(n− 1)

d∑
k=3

d!

(d− k)!

dk−2

(d− 2) · · · (d− k + 1)
∆k−2

≤ 1

n(n− 1)

d∑
k=3

d(d− 1)dk−2∆k−2

=
d(d− 1)

n(n− 1)

d∆(1− (d∆)d−2)

1− d∆
≤ d(d− 1)

n(n− 1)

d∆

1− d∆
.

With our choice of ∆ = 1
3d we deduce indeed d(d−1)

n(n−1)
d∆

1−d∆ ≤
(
d
2

) (n−2)!
n! and this completes the proof.
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Chapter 3

AGM inequalities in application

In this section we show that a combination of Pisier’s partition method and probabilistic results allow AGM

inequalities hold in many different scenarios. We confirm the AGM inequality up to ε for many random

matrices, in particular for Wishart random matrices, more general vector-valued moments of convex bodies,

and freely independent operators. We should point out that in contrast to results on averages of random

matrices in Ré and Recht in [RR12], our estimates hold with high probabilities. In this section, we prove a

version of the non-commutative AGM inequality for random matrices. We start with a deviation inequality.

Let us use the norm |||X|||p = (E‖X‖pB(H))
1/p defined for a random variable X : Ω→ B(H).

3.1 AGM inequality for random matrices

Proposition 3.1.1. Let {ai} be a family of self-adjoint random operators. Let ε > 0, p ≥ 2, pd = p
d and

xi = ai + 1. Define

(i) εp :=
∣∣∣∣∣∣ 1
n

∑
ai − E 1

n

∑
ai
∣∣∣∣∣∣
p

,

(ii) δp := 1
n

∣∣∣∣∣∣(∑ a2
i )

1/2
∣∣∣∣∣∣
p

,

(iii) γp := max(εp, δp).

Assume
∑
i

Eai = 0, γp ≤ 1
3d and ε = 3dγp.

Then, |||Pd(x1, ..., xn)− EPd(x1, ..., xn)|||pd ≤ ε.

Proof. From the assumption above, we get that
∣∣∣∣∣∣( 1

n

∑
ai)
∣∣∣∣∣∣
p

= εp. Fix a partition ν. According to Corollary

2.1.10 and by using Hölder’s inequality we have that

E‖[ν]‖pd∞ ≤ E

(
‖(
∑

a2
i )

1/2‖(d−|νs|)pd∞ ‖(
∑

ai)‖|νs|pd∞

)

= E

(
‖(
∑

a2
i )

1/2‖
(d−|νs|)pdd

d∞ · ‖(
∑

ai)‖
|νs|pdd

d∞

)
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≤

(
E(‖(

∑
a2
i )

1/2‖pdd∞

) pd(d−|νs|)
pdd

(
E‖(

∑
ai)‖pdd∞

) pd|νs|
pdd

=

(
E(‖(

∑
a2
i )

1/2‖p∞

) pd(d−|νs|)
p

(
E‖(

∑
ai)‖p∞

) pd|νs|
p

=

(∣∣∣∣∣∣∣∣∣(∑ a2
i )

1/2
∣∣∣∣∣∣∣∣∣
p

)pd(d−|νs|)(∣∣∣∣∣∣∣∣∣∑ ai

∣∣∣∣∣∣∣∣∣
p

)pd|νs|
= (δp · n)pd(d−|νs|).(εp · n)pd|νs|

= δpd(d−|νs|)
p εpd|νs|p np = δpd(d−|νs|)

p εpd|νs|p npdd.

Since γp = max(δp, εp),

|||[ν]|||pd = (E‖[ν]‖pd∞)
1
pd ≤ γdpdd · n

d (3.1.1)

By using our definition of γp and the upper bound for inequality (3.1.1) we obtain

(E‖Pk(a1, ..., an)− EPk(a1, ..., an)‖pd∞)1/pd

≤ (n− k)!

n!

∑
|µ(0, ν)|

(
E(‖[ν]− E[ν]‖∞)pd

)1/pd

≤ (n− k)!

n!

∑
|µ(0, ν)| · 2(E‖[ν]‖pd∞)1/pd

≤ 2
(n− k)!

n!
k!γkpdkn

k.

From the above we will have

|||Pd(x1, ..., xn)− EPd(x1, ..., xn)|||pd

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d∑
k=1

(
d

k

)
(Pk(a1, ..., an)− EPk(a1, ..., an))

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
pd

= (E‖
d∑
k=1

(
d

k

)
(Pk(a1, ..., an)− EPk(a1, ..., an))‖pd∞)1/pd

≤
d∑
k=1

(
d

k

)
(E‖(Pk(a1, ..., an)− EPk(a1, ..., an))‖pd∞)1/pd

≤ 2

d∑
k=1

(
d

k

)
(n− k)!

n!
k!γkpdk · n

k = 2

d∑
k=1

d!

k!(d− k)!

(n− k)!

n!
k!γkpdk · n

k

≤ 2

d∑
k=1

d!(n− k)!nk

(d− k)!n!
γkp . (3.1.2)

Recall the definition γpdk = max(δpdk, εpdk). Each δpdk, εpdk is increasing since Lpdk is defined as probability
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space which is norm increasing in probability measure. Thus γpdk ≤ γpdd = γp,∀ 1 ≤ k ≤ d, which

justifies the last inequality (3.1.2). Let f(n) = d!(n−k)!nk

(d−k)!n! . This function is a decreasing function in n, so

f(d) = max f(n) = dk. Then we have

|||Pd(x1, ..., xn)− EPd(x1, ..., xn)|||pd

≤ 2

d∑
k=1

(d · γp)k = 2 · d · γp
(1− (d · γp)d)

1− d · γp
≤ 2 · d · γp

1− d · γp
≤ ε.

The last inequality follows from d · γp ≤ ε
1−ε/2 .

We now present conditions for positive random operators {xi} where ai = xi − 1. Note that for A :=∑n
i=1

ai
n , we have E‖A−EA‖p = E‖(

∑
xj
n )−E(

∑
xj
n )‖p. Therefore, whenever we control the xi’s, we control

the ai’s.

Lemma 3.1.2. Let {xi} be a family of self-adjoint random operators. Then

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(

n∑
1

(xi − 1)2)1/2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
p

≤ 6

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(

n∑
1

x2
i )

1/2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
p

.

Proof. Observe that
∣∣∣∣∣∣(∑x2

i )
1/2
∣∣∣∣∣∣
p

= |||
∑
ei,1 ⊗ xi|||p is given by the column norm. Define operators φ :

Cn(B(H))→ Cn(B(H)) and Φ : Cn → Cn such that Φ(αi) = ( 1
n

∑
i

αi)j where φ = Φ⊗ Id. Then it is easy

to check that ‖Φ‖cb = ‖φ‖cb ≤ 1. Indeed

‖
n∑
j=1

ej,1 ⊗ Φ(yi)j‖ = ‖
n∑
j=1

ej,1 ⊗ (
1

n

n∑
i=1

yi)‖ =
1√
n
‖

n∑
j=1

yj‖ ≤ ‖
∑
i

e1,i ⊗ yi‖.

Denote zi := xi − Exi, so ‖
∑
i

e1,i ⊗ (Id+ φ)(zi)‖ ≤ 2‖
∑
i

e1,i ⊗ xi‖. Also,

(Id+ φ)(zi) = xi − Exi +
1

n

∑
xi −

1

n

∑
Exi = xi − 1− Exi +

1

n

∑
xi,

(xi − 1) = (Id+ φ)(zi) + Exi −
1

n

∑
xi.

By the triangle inequality, we can get

∣∣∣∣∣∣∣∣∣∑(xi − 1)⊗ ei,1
∣∣∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣∣∣∣∑(Id+ φ)(zi)⊗ ei,1

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣∑Exi ⊗ ei,1

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j

(
1

n

∑
xi)⊗ ej,1

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
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≤ 2
∣∣∣∣∣∣∣∣∣∑ zi ⊗ ei,1

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣∑Exi ⊗ ei,1

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j

(
1

n

∑
xi)⊗ ej,1

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

= 2
∣∣∣∣∣∣∣∣∣∑(xi − Exi)⊗ ei,1

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣∑Exi ⊗ ei,1

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j

(
1

n

∑
xi)⊗ ej,1

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

≤ 2
∣∣∣∣∣∣∣∣∣∑xi ⊗ ei,1

∣∣∣∣∣∣∣∣∣+ 3
∣∣∣∣∣∣∣∣∣∑Exi ⊗ ei,1

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣(∑x2

i )
1
2

∣∣∣∣∣∣∣∣∣
≤ 2
∣∣∣∣∣∣∣∣∣(∑x2

i )
1
2

∣∣∣∣∣∣∣∣∣+ 3
∣∣∣∣∣∣∣∣∣∑xi ⊗ ei,1

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣(∑x2

i )
1
2

∣∣∣∣∣∣∣∣∣ = 6
∣∣∣∣∣∣∣∣∣(∑x2

i )
1
2

∣∣∣∣∣∣∣∣∣.
The second-to-last inequality |||

∑
Exi ⊗ ei,1||| ≤ |||

∑
xi ⊗ ei,1||| follows from the fact that the conditional

expectation from E : L∞(Ω, B(H)) → B(H) is a complete contraction. The inequality
∣∣∣∣∣∣ 1
n

∑
xi
∣∣∣∣∣∣ ≤∣∣∣∣∣∣∣∣∣(∑x2

i )
1
2

∣∣∣∣∣∣∣∣∣ is true by the Cauchy-Schwarz inequality.

Thanks to Theorem 3.1.1 and Lemma 3.1.2 we obtain the following deviation result.

Theorem 3.1.3. Let p ≥ 2, pd := p
d , and {xi} be a random family of positive operators such that Exi = 1.

Define

(i) εp :=
∣∣∣∣∣∣ 1
n

∑
xi − E 1

n

∑
xi
∣∣∣∣∣∣
p
,

(ii) δp := 1
n

∣∣∣∣∣∣(∑x2
i )

1/2
∣∣∣∣∣∣
p

,

(iii) γp := max(εp, 4δp).

If 3d · γp ≤ 1 then

|||Pd(x1, ..., xn)− EPd(x1, ..., xn)|||pd ≤ 3d · γp.

Corollary 3.1.4. If in addition {xi} are matrix-valued i.i.d. Then

|||Pd(x1, ..., xn)|||pd ≤ 1 + 3d · γp.

Proof. Since xi’s are matrix-valued i.i.d, then E(Pd(x1, ..., xn)) = Pd(Ex1, ..., Exn). Moreover, for ε := 3d·γp

by (ii) in the above Theorem 3.1.3, we have

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(

n∑
1

Ex2
i )

1/2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
p

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
1

E(xi)⊗ ei,1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
Cn⊗B(H)

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
1

xi ⊗ ei,1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
Cn⊗B(H)

≤ δp · n.

Then we can use Theorem 2.3.5 for E(xi)’s and the classical AGM inequality (here δp ≤ 1
4γp ≤

1
4d<

1
3d ).

E(Pd(x1, ..., xn)) ≤ P1(Ex1, ..., Exn) =

n∑
1

Exi
n

= 1.

28



Using the upper bound above and Theorem 3.1.3, we have the required inequality.

|||Pd(x1, ..., xn)|||pd ≤ |||P1(Ex1, ..., Exn)|||pd + ε ≤ 1 + ε.

3.2 Applications for log concave measures

In this section we want to study random AGM inequalities for log-concave measures.

Definition 3.2.1. A Borel measure µ on n-dimensional Euclidean space Rn is called logarithmically concave

(or log-concave) if for any compact subsets A and B of Rn and 0 ≤ λ ≤ 1 we have

µ
(
λA+ (1− λ)B

)
≥ µ

(
A
)λ
µ
(
B
)(1−λ)

.

Let us recall the isotropic measure µ in Rn.

Definition 3.2.2. The isotropic measure µ is the measure which satisfies

∫
Rn
|〈θ, x〉|2dµ(x) = Lµ‖θ‖2,

for all θ ∈ Rn where Lµ is denoted as isotropic constant.

Also let us recall Rosenthal’s inequality, which will be used frequently in this section.

Theorem 3.2.3. [JZ13] Let Ai be a fully independent sub-algebra over N where N ⊂ M and M is a von

Neumann algebra, and 1 ≤ p <∞. Let xi ∈ Lp(Ai) with EN (xi) = 0. Then

‖
n∑
i=1

xi‖p ≤ C max{√p‖
n∑
i=1

EN (x∗i xi + xix
∗
i )

1/2‖p, p(
n∑
i=1

‖xi‖pp)1/p}.

We can prove the following result.

Theorem 3.2.4. Let n, d ∈ N, p ≥ 2. Let (Rd, µ) be log-concave Borel measure µ in isotropic position on

Rd with constant L. Define random variable y : Rd → Rd by y(ω) = ω√
L

where ω ∈ Rd. Let yi be independent

copies of y. Then xi(ω) := |yi(ω)〉〈yi(ω)| is a d× d random matrix satisfying

(i) ∀i, Exi = 1,

(ii) |||
∑n

1 (xi − Exi)|||p ≤ γp · n,
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(iii)
∣∣∣∣∣∣∑x2

i

∣∣∣∣∣∣1/2
p
≤ γp · n,

where

γp =


p1/2

√
d
n + p5/2 d

n p ≥ lnn or

2C
√

ln dδ1/2 d ≤ n
lnn5

2C(lnn)3δ d ≥ n
lnn5 .

(iv) Moreover, assume γp ≤ (1− 2
2+ε ) 1

d , ε ≥ 0, and pk := p
k . Then the following hold.

(a) |||Pk(x1, ..., xn)− EPk(x1, ..., xn)|||pk ≤ ε.

(b) The AGM inequality holds |||Pk(x1, ..., xn)|||pk ≤ (1 + 2ε).

Proof. We apply Rosenthal’s inequality for q ≥ p to xi−1 instead of xi. Let us introduce the norm in the space

Lq(Sq) where Sq is the Schatten class, |x|q := (E‖xi‖qSq )
1
q = (

∫
‖x(ω)‖qSqdµ)

1
q , where ‖x(ω)‖qSq = tr(|x|q).

So, we have

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

(xi − Exi)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
q

≤ cmax{√q|
n∑
i=1

E((xi − 1)∗(xi − 1) + (xi − 1)(xi − 1)∗)|
1
2
q
2
, q(

n∑
i=1

|xi − Exi|qq)
1
q }

≤ c√q|
n∑
i=1

E((xi − 1)∗(xi − 1) + (xi − 1)(xi − 1)∗)|
1
2
q
2

+ cq(

n∑
i=1

|xi − Exi|qq)
1
q

≤ 2c
√
q|

n∑
i=1

E(xi − 1)2|
1
2
q
2

+ cq(

n∑
i=1

|xi − Exi|qq)
1
q

≤ 2c
√
q|

n∑
i=1

Ex2
i |

1
2
q
2

+ 2cqn1/q|x1|q

By Rosenthal’s inequality, we need to separately estimate the two terms of the right side. We denote

I = |(
n∑
1

Ex2
i )

1/2)|q and II = |x1|q.

We claim that (ii) holds for γq and Ex2
i ≤ dExi ≤ cd · 1Md

. Using Borel inequality (see [MS86] where ‖.‖ is

seminorm), we have

(E‖y‖qX)
1
q ≤ CqE‖y‖X ≤ Cq(E‖y‖2X)

1
2 .

Recall that E‖y‖2 =
d∑
i=1

E|〈ei, ω√
L
〉|2 = d. So, we have for xi := x1 = |y〉〈y|

〈θ,Ex2
1θ〉 = E〈θ, y〉〈y, y〉〈θ, y〉 = E‖y‖2|〈θ, y〉|2
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(by Cauchy Shwarz inequality ) ≤ (E‖y‖4)
1
2 (E|〈θ, y〉|4)

1
2

(by Borel inequality) ≤ C4
4 E‖y‖2E(|〈θ, y〉|2) = C4

4 · d ‖θ‖2.

i.e. Ex2
i ≤ dExi ≤ cd · 1Md

. This implies

|(
n∑
1

Ex2
i )

1/2)|q ≤ C · d1/2+1/q

which proves our claim for (I). For (II), note that the q-norm is defined to be |x|q = (Etr|x|q)
1
q . We use

a Bra-ket notation where |yi〉 and 〈yi| represent a row and column operators such that 〈yi, yi〉 ∈ C and

|yi〉〈yi| ∈Mn. Let’s first take q = m be an integer. We have

xmi =(|yi〉〈yi|)m = |yi〉〈yi, yi〉 · · · 〈yi, yi〉〈yi|

=|yi〉‖yi‖2(m−1)〈yi|.

Then, by using the Borel inequality (where C2m := C · 2m )(see [MS86] for details about C2m), we have

Etr(xmi ) =Etr(yi〉‖yi‖2(m−1)〈yi) = E(‖yi‖2m2 )

≤ (C · 2m)2m((E‖y‖22)1/2)2m

≤ (C · 2m)2mdm.

So we get the inequality |x|m ≤ (C · 2m)2d for arbitrary integer m. Then for any real number q, we can find

an integer m, such that m ≤ q ≤ m+ 1, and by interpolation between m and m+ 1, we get

|x|q ≤ (C · 2q)2 d. (3.2.1)

Thanks to (3.2.1), we can now prove condition (iii).

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(

n∑
1

x2
i )

1/2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
q

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
1

x2
i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1/2

q
2

≤ (

n∑
1

∣∣∣∣∣∣x2
i

∣∣∣∣∣∣
q
2

)1/2

≤ (

n∑
1

|||xi|||q)
1/2 =

√
n|||x1|||q

≤
√
n|x1|q ≤

√
nd (C · 2q)2.
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Combining (I) and (II) we obtain

∣∣∣∣∣∣∣∣∣∑(xi − 1)
∣∣∣∣∣∣∣∣∣
q
≤c̃(qnd)1/2d1/q + cqCn1/qq2d

=C̃(qn)1/2d
1
2 + 1

q + C ′n1/qq3d.

And then divide each term by n, we have

|||
∑

(xi − 1)|||q
n

=
|||
∑

(xi − Exi)|||q
n

≤ C(q, d, n) :=
( q
n

)1/2

d
1
2 + 1

q + n
1
q−1q3d

=
( q
n

)1/2

d
1
2 + 1

q +
qd

n
q2n

1
q

= d1/q
(
q1/2

( d
n

)1/2

+ q3 d

n

n1/q

d1/q

)
= d1/q

(
q1/2

( d
n

)1/2

+ q3
( d
n

)1−1/q)
.

If we denote d
n = δ, then

|||
∑

(xi − Exi)|||q
n

≤ d
1
q (q

1
2 δ

1
2 + q3δ1− 1

q )

= d1/qq1/2δ1/2(1 + q5/2δ1/2−1/q).

Now our goal is to find γ̂q = inf
q≥q0

d1/qq1/2δ1/2(1 + q5/2δ1/2−1/q) by optimization over q where q0 ≥ 2. Define

f(q, δ) := q5/2δ1/2−1/q and consider g := ln f(q, δ) = 5
2 ln q + ( 1

2 −
1
q ) ln δ, with derivative g′ = 5

2
1
q + 1

q2 ln δ.

The critical point for f(q, δ) is q(δ) = 2
5 ln 1

δ . Since f(q, δ) is a convex function then it has no more than one

minimum point which is q(δ). Then we have to consider the following cases for the choices of q,

1. q0 ≤ ln d ≤ q1 where q1 = ( 1
δ )1/5

2. ln d ≤ q0 ≤ lnn

3. ln d ≤ lnn ≤ q0.

This can be done by using optimization over q for the term d1/qq1/2δ1/2. For the first case, we choose q = ln d

and C(q, δ) = 2C
√

ln dδ1/2 where f(q, δ) ≤ 1. We also calculate q1 which represents the upper bound for

our choice of q from q5/2δ1/2 = 1. For the second case, if (nd )1/5 ≥ ln n
d , then we simply choose q = lnn.

This leads to d
n w

1
lnn4 ≤ 1

lnn5 . We can summarize the cases in the following

γ̂q =


q1/2

√
d
n + q5/2 d

n q ≥ lnn or

2C
√

ln dδ1/2 d ≤ n
lnn5

2C(lnn)3δ d ≥ n
lnn5 .
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We apply the estimate for q ≥ p and appeal to Theorem 3.1.3 and Corollary 3.1.4 to deduce the AGM

inequality.

3.3 Wishart random variable matrices

Let us recall the definition of Wishart random matrices. Let [gir,s] is a family of d ×m Gaussian random

matrices such that i ∈ [1, n], r ∈ [1, d] and s ∈ [1,m]. Define Gi = 1√
m

[girs] and xi = GiG
∗
i . We call the d×d

matrices xi Wishart random matrices. Then we have Exi = EGiG
∗
i = 1, which implies that

∑n
i=1Exi = n.

In this section we assume that m ≥ n. Let us start with some useful lemmas which will be used in the main

theorem. Each of these lemmas proves one of the conditions of Theorem 3.1.3 separately.

Lemma 3.3.1. Let εq,m,n,d =
(√

d+
√
m√

m

)2
q√
n

. Those d×d Wishart random matrices {xi} from above satisfy

1

n

∣∣∣∣∣∣∣∣∣(∑x2
i )

1/2
∣∣∣∣∣∣∣∣∣
q
≤ εq,m,n,d.

Proof. Denote A = 1√
m

∑
r,s
gr,ser,s. Then for all h ∈ H, and x = AA∗

E(h, x2h) =E(h, |AA∗|2h) = E(h,AA∗AA∗h) = E(AA∗h,AA∗h)

=E‖AA∗h‖2 ≤ E(‖A‖2op · ‖A∗h‖2) ≤ E‖A‖2op · E‖A∗h‖2.

Note that E‖A∗h‖2 = E(h,A∗Ah) = ‖h‖2. Using Chevet’s inequality [Gor85],

E‖A‖ = E‖
d∑
r=1

m∑
s=1

gr,ser⊗es‖X⊗̌Y ≤ E(‖
m∑
s=1

gr,ses‖) + E(‖
d∑
r=1

gr,ser‖),

where X = lm2 and Y = ld2 . We deduce that if A = 1√
m

∑
girser ⊗ es then by using Kahane’s inequality (see

proposition 3.3.1 and proposition 3.4.1 in [KW92]) we have that

(E‖A‖2op)1/2 ≤
√

2
(√d+

√
m√

m

)
=: C(d,m). (3.3.1)

Therefore |||xi|||2 = (E‖xi‖2op)1/2 ≤ C(d,m). For q ≥ 2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(

n∑
1

x2
i )

1/2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
q

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
1

x2
i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1/2

q/2

≤ (

n∑
1

∣∣∣∣∣∣x2
i

∣∣∣∣∣∣
q/2

)1/2

≤ (

n∑
1

|||xi|||2q)
1/2 ≤

√
n|||xi|||q =

√
n[(E‖A‖2q)1/2q]2
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≤
√
n(
√
q)2[(E‖A‖2)1/2]2 = 2q

√
n
(√d+

√
m√

m

)2

. (3.3.2)

The last inequality comes from Kahane’s inequality and inequality (3.3.1). Thus, taking εq,m,n,d =
(√d+

√
m√

m

)2 2q√
n

,

we have

1

n

∣∣∣∣∣∣∣∣∣(∑x2
i )

1/2
∣∣∣∣∣∣∣∣∣
q
≤ εq,m,n,d.

The following lemma is used to prove the first condition in Theorem 3.1.3.

Lemma 3.3.2. For d× d Wishart random variables xi, the following is satisfied

1

n

∣∣∣∣∣∣∣∣∣∑(xi − Exi)
∣∣∣∣∣∣∣∣∣
q
≤ γ

′

q,

where γ
′

q =


C ′ ln d

√
ln d
n q ≤ ln d ≤ n

C ′d
1
q qmax{

√
q
n ,

q
n} q ≥ ln d .

Proof. By Rosenthal’s inequality, we have

∣∣∣∣∣∣∣∣∣∑(xi − Exi)
∣∣∣∣∣∣∣∣∣
q

≤
(
E‖
∑
i

(xi − Exi)‖qq
) 1
q

≤c
√
q
(
E|(
∑
i

Ex2
i )

1/2|qq
)1/q

+ q
(∑

|xi − Exi|qq
)1/q

≤c
√
q
(
E|(
∑
i

Ex2
i )

1/2|qq
)1/q

+ qn
1
q ·max

i
(E|xi|qq)

1
q

≤ √qd
1
q

(
E|(
∑

x2
i )

1
2 |q∞

)1/q

+ qn
1
q d

1
q q
[√d+

√
m√

m

]2
≤ √qnd

1
q q
[
1 +

√
d

m

]2
+ qn

1
q d

1
q q
[
1 +

√
d

m

]2
≤ d

1
q

[
1 +

√
d

m

]2
(
√
qnq + q2n

1
q ).

The second-to-last inequality uses Kahane’s inequality [KW92] and inequality (3.3.2). Dividing the inequality

by n, we obtain
|||
∑

(xi − Exi)|||q
n

≤ d
1
q

[
1 +

√
d

m

]2
q
(√ q

n
+

√
q

n

√
qn

1
q

)
. (3.3.3)

Let 2 ≤ q0 ≤ q. We have two cases to estimate the upper bound:

1. q0 ≤ ln d ≤ n
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2. ln d ≤ q0 ≤ q.

We follow the optimization for q from the proof of Theorem 3.2.4. Define f(q) =
√
qn

1
q , and consider

g(q) = ln f(q) = 1
2 ln q + 1

q lnn, then g′(q) = 1
2q −

lnn
q2 = 0 at q = 2 lnn. Then

√
q

n
f(q) ≤


C
√

q
n 2 ≤ q<n

C q
n q ≥ n.

Moreover, by (3.3.3), when d ≤ m, we obtain

d
1
q

[
1 +

√
d

m

]2
q
(√ q

n
+

√
q

n

√
qn

1
q−

1
2

)
≤ 2Cd

1
q

[
1 +

√
d

m

]2
qmax

{√ q

n
,
q

n

}
≤ 8Cd

1
q qmax

{√ q

n
,
q

n

}
.

Denote F (d, n) = 8Cd
1
q qmax{

√
q
n ,

q
n}. We choose q = ln d and we get that

F (d, n) = C ′ ln d

√
ln d

n

if we have q0 ≤ ln d ≤ n. Otherwise we choose q ≥ q0, and we get

F (d, n) = C ′d
1
q qmax

{√ q

n
,
q

n

}
.

Moreover,

γ̂q =


C ′ ln d

√
ln d
n q ≤ ln d ≤ n

C ′d
1
q qmax{

√
q
n ,

q
n} q ≥ ln d .

We apply the estimate for q ≥ p and appeal to Theorem 3.1.3 and Corollary 3.1.4.

Now, we can prove the AGM inequality for random matrices, which holds up to (1 + ε).

Theorem 3.3.3. Let {xi} be a family of self-adjoint family of d×d Wishart random matrices. For 2 ≤ p ≤

ln d ≤ n, we have

(i)

∣∣∣∣∣∣∣∣∣∣∣∣∑
i

(xi − E(xi))

∣∣∣∣∣∣∣∣∣∣∣∣
p

≤ γpn;

(ii) 1
n

n∑
i=1

E(xi) = 1;

(iii)

∣∣∣∣∣∣∣∣∣∣∣∣(∑
i

x2
i )

1
2

∣∣∣∣∣∣∣∣∣∣∣∣
p

≤ γpn, where γp = C ′ ln d
√

ln d
n , p0 ≤ ln d ≤ n;
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(iv) Moreover, for ε ≥ 0 if γp ≤ ε
3k , pk := p

k then the following hold.

• |||Pk(x1, ..., xn)− EPk(x1, ..., xn)|||pk ≤ ε.

• The random AGM inequality holds,

|||Pk(x1, ..., xn)|||pk ≤ (1 + 2ε).

Proof. Condition (ii) comes from definition of the Wishart random matrices. For condition (i) we directly

use Lemma 3.3.2 for the case when pk ≤ ln d ≤ n. For condition (iii), we use Lemma 3.3.1. This implies

that all the conditions of Theorem 3.1.4 are satisfied, since pk ≤ ln d ≤ n. Thus, we get the random AGM

inequality.

3.4 Application of Pisier’s construction for freely independent

random variables

Let (M, τ) be a von Neumann algebra where τ is a faithful normal and normalized trace. An example of a

finite von Neumann algebra is given by the group von Neumann algebra L(G) associated to the left regular

representation λ(G) of a discrete group G. It is defined as the strong operator closure of the linear span of

λ(G). Recall that Lp(M, τ) where 1 ≤ p < ∞ is defined as the completion of M with respect to the norm

‖x‖p = (τ(|x|p))1/p (see [PX03] for more details). Note that L(G) = L∞(L(G)) and L(G) ⊂ Lp(L(G)). We

want to prove a version of the AGM inequality with respect to the norm ‖.‖p. For this version of the AGM

inequality, we need the following key lemma.

Lemma 3.4.1. Let M be a von Neumann algebra. Let ν be a partition. Then there exists a group G and

bi(j) ∈ L(G) such that for xi(j) ∈ Lp(M), the elements Xi(j) = bi(j)⊗ xi(j) ∈ Lp(L(G)⊗M) satisfy

[ν] = EM
∑

i1,i2,i3,...,id

Xi1(1)Xi2(2)...Xid(d).

Moreover,

‖
∑
i

Xi(j)‖p ≤


C max

{
‖(
∑
xi(j)

∗xi(j))
1/2‖p, ‖(

∑
xi(j)xi(j)

∗)1/2‖p
}

j ∈ An.s ∈ σn.s

‖
∑

xi(j) ‖p {j} ∈ σs,
(3.4.1)

where C is a universal constant. Note that bi(j) = 1 if {i} ∈ σs.
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Remark 3.4.2. The norm inequality (3.4.1) was proved by Pisier and Xu for even integers p ≥ 2 in [PX03].

The general case follows from [JPX07].

Now we can state the AGM inequality for Lp(M) where p ≥ d.

Theorem 3.4.3. Let M be a von Neumann algebra and xi ∈ Lp(M, τ)sa satisfy the following condition for

some δ ≥ 0, ∥∥∥(

n∑
1

x2
i )

1/2
∥∥∥
p
≤ δ
∥∥∥ n∑

1

xi

∥∥∥
p
.

Then we have

‖Pd(x1, ..., xn)‖ p
d
≤
(

1 + (δC)(d!− 1)
)nd(n− d)!

n!

∥∥∥ 1

n

n∑
1

xi

∥∥∥d
p
.

We will only give the sketch of the proof of this theorem since it is similar to the proof of Theorem 2.2.2

for pd = p
d ≥ 1.

Proof. By using Lemma 3.4.1, Hölder’s inequality and the contractivity of conditional expectations we have

‖〈σ〉‖pd ≤
∥∥∥∑xi

∥∥∥d
p

+
∑
υ	0̇

|µ(0̇, ν)|C |vn.s|
∥∥∥(
∑

x2
i )

1/2
∥∥∥|vn.s|
p

∥∥∥∑xi

∥∥∥|vs|
p

≤
∥∥∥∑xi

∥∥∥d
p

+
∑
υ	0̇

|µ(0̇, ν)|(δC)|vn.s|
∥∥∥∑xi

∥∥∥d
p
.

Thus for δC ≤ 1

‖Pd(x1, ..., xn)‖pd ≤ (1 + (δC)(d!− 1))
nd(n− d)!

n!

∥∥∥ 1

n

∑
xi

∥∥∥d
p
.

Remark 3.4.4. If δ ≤ 1, we get the AGM inequality with a constant C(d, n) = Cddd.

As a matter of completeness, we want to include the limit case of the Wishart random matrices as an

application for the AGM inequality. Let’s first give the definition of freely independent von Neumann algebra

(for more details see [VDN92]).

Definition 3.4.5. The sequence of algebras {Ai} is called copies over a von Neumann algebra M if the

following conditions hold

1. M ⊂ Aj for every j ∈ N

2. There exists a trace preserving and ∗-homomorphism such that π1,j : A1 → Aj where π1,j |M = IM .

Definition 3.4.6. Let {Ai} be a family of unital von Neumann subalgebras of A.

• Then {Ai} is called a freely independent algebra (with respect to a unital linear functional φ ) if

φ(x1...xn) = 0 whenever φ(xj) = 0 for all xj ∈ Aij and i1 6= i2, i2 6= i3, ..., ik−1 6= ik.
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• We say that operators xi ∈ Ai are freely independent if their algebra {Ai} are freely independent.

We also need to recall Voiculescu’s inequality in the following proposition, which is considered as an

operator-valued free analogue of Rosenthal’s inequality for homogeneous free polynomials of degree 1 and

p =∞.

Proposition 3.4.7. Let ak ∈ Ak where A1, ..., An are freely independent algebras over M . Then

‖
n∑
k=1

ak‖ ≤ sup
k=1,...,n

‖ak‖+ ‖
n∑
k=1

EM (a∗kak)‖ 1
2 + ‖

n∑
k=1

EM (aka
∗
k)‖ 1

2 .

In the following theorem we prove the deviation inequality up to ε and apply this to the AGM inequality.

Theorem 3.4.8. Fix n, d ∈ N such that n ≥ d. If {xi} are freely independent over M such that

1. EM (xi) = 1

2. x∗i = xi

3. 2 + (4
√
n) sup ‖xi‖ ≤ εn

3d ,

then

1. ‖Pd(x1, ..., xn)− EMPd(x1, ..., xn)‖∞ ≤ ε

2. ‖Pd(x1, ..., xn)‖∞ ≤ 1 + ε.

Proof. Let ai = xi− 1. By assumption we have EM (ai) = 0. Define C = sup ‖xi‖. By a simple modification

of Voiculescu’s inequality [Jun05] , we get that

∥∥∥(

n∑
1

a2
i )

1/2
∥∥∥ =

∥∥∥ n∑
1

ei1 ⊗ ai
∥∥∥ ≤ sup ‖ai‖+ 2

∥∥∥(

n∑
1

EM (a2
i ))

1/2
∥∥∥

≤ 2(1 + C) + 2
√
nC

≤ 2 + (4
√
nC) ≤ εn

3d
.

Indeed, ‖ai‖ = ‖xi − 1‖ ≤ 1 + ‖xi‖ ≤ 1 + C and

EM (a2
i ) = EM (xi − EM (xi))

2 = EM (x2
i )− EM (xi)

2

≤ EM (x2
i ) = EM (x

1/2
i |xi|x

1/2
i )

≤ ‖xi‖EM (xi) = ‖xi‖ ≤ C.
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Again, using Voiculescu’s inequality we have,

∥∥∥∑ ai

∥∥∥ ≤ sup ‖ai‖+ 2
∥∥∥(∑EM (a2

i )
)1/2∥∥∥ ≤ 2(1 + C) + 2

√
nC ≤ εn

3d
.

Following the proof of Proposition 3.1.1, we get

‖[ν]‖ ≤
∥∥∥(
∑

a2
i )

1/2
∥∥∥d−|vs|∥∥∥∑ ai

∥∥∥|vs| ≤ (εn
3d

)d
.

Applying the techniques of Proposition 3.1.1 to the case p =∞, we have

‖Pk(a1, ..., an)− EPk(a1, ..., an)‖ ≤ 2
(n− k)!

n!
k!
(εn

3d

)k
.

Then we have

‖Pd(x1, ..., xn)− EPd(x1, ..., xn)‖ = ‖
d∑
k=1

(
d

k

)
(Pk(a1, ..., an)− EPk(a1, ..., an))‖

≤ 2

d∑
k=1

d!(n− k)!

(d− k)!n!
nk︸ ︷︷ ︸

f(n) is a decreasing function

(
ε

3d
)k

≤ 2

d∑
k=1

(d)k(
ε

3d
)k ≤ ε.

We apply Theorem 2.3.5 for yi = Exi instead of xi, where
∑
yi
n = 1. Note that by free independence, we have

EPd(x1, ..., xn) = Pd(Ex1, ..., Exn) using the fact that {xn} in Pd(x1, ..., xn) has no repetition. Therefore,

we get

‖Pd(x1, ..., xn)‖ ≤ ‖P1(Ex1, ..., Exn)‖+ ε ≤ 1 + ε.

Remark 3.4.9. The norm version of the AGM inequality also holds for the family of freely independent {xi}.

Indeed, we have that

‖Pd(x1, ..., xn)‖ ≤ (1 + ε̃)‖ 1

n

n∑
1

xi‖d.

In this case we use again the Voiculescu inequality and deduce that ‖ 1
n

n∑
1
xi− 1

n

n∑
1
Exi‖ ≤ ε

3d . This implies
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‖ 1
n

n∑
1
xi‖ ≥ 1− ε

3d . Hence,

‖Pd(x1, ..., xn)‖ ≤ (1 + ε)

(1− ε
3d )d
‖ 1

n

n∑
1

xi‖d.

Since we have (1− t)n ≥ (1− nt) for t ∈ [0, 1] and n ≥ 1, this implies that for t = ε
3d , we have

(1− ε

3d
)d ≥ (1− ε

3d
d) = (1− ε

3
).

Thus, we have

‖Pd(x1, ..., xn)‖ ≤ (1 + ε)

(1− ε
3 )
‖ 1

n

n∑
1

xi‖d.

Note that (1+ε)
(1− ε3 ) = 1 + 4ε

3−ε = 1 + ε̃ where ε̃ = 4ε
3−ε and ε ≤ 3

5 . This implies the AGM inequality up to

the constant 1 + ε̃. �

Another interesting application for freely independent copies {xi} is given as follows:

Corollary 3.4.10. Let {xi} be a sequence of freely independent copies over an algebra M such that

1. EM (x1) = 1M

2. x∗i = xi

3. ‖x1‖ ≤ C.

Then the AGM inequality holds up to (1 + ε).

Proof. Using the free independence for the {xi}’s, where d ≤ p ≤ ∞ we get

1. EM (xi) = 1M ;

2. ‖xi‖p = ‖x1‖p ≤ C;

3. ‖(
∑
x2
i )

1/2‖p ≤ c̃‖xi‖pn1/p +
√
n‖(EMx2

i )
1/2‖p.

Indeed, for the property (3) we just apply a version of Voiculescu’s inequality for free variables [JPX07],

‖
n∑
1

xi ⊗ ei1‖p ≤ c
( n∑

1

‖xi‖p
)1/p

+
∥∥∥( n∑

1

EM (x∗i xi)
)1/2∥∥∥

p

≤ C̃n1/p +
√
n‖(EMx2

1)1/2‖p.
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Note that

‖
n∑
1

xi‖p ≥ ‖
n∑
1

EM (xi)‖p − ‖
n∑
1

(
xi − EM (xi)

)
‖p

≥ n‖EM (x1)‖p −
(
C̃n1/p +

√
n‖EM (x2

i )
1/2‖p

)
︸ ︷︷ ︸

A

.

Now, if A ≤ n
2 ‖EM (x1)‖, then we have

‖(
n∑
1

x2
i )

1/2‖p ≤ 2
C̃n1/p +

√
n‖EM (x2

1)1/2‖p
n‖EM (x1)‖p

‖
n∑
1

xi‖p

= n−1/2

(
2C̃n1/p−1/2 + 2‖EM (x2

1)1/2‖p
‖EM (x1)‖p

)
︸ ︷︷ ︸

Cn

‖
n∑
1

xi‖p.

Then we get

‖(
n∑
1

x2
i )

1/2‖p ≤ δn‖
n∑
1

xi‖p,

where δn = Cn√
n

. Then for
√
n � d! we have δn → 0. This implies that when n is large enough, we get the

following AGM inequality:

‖Pd(x1, ..., xn)‖ p
d
≤ (1 + ε)‖

n∑
1

xi‖dp.

In conclusion, we see that the AGM inequality almost holds for the two extreme situations, namely,

for commutating or free independent random variables. Indeed, there should be some balance between

the degree of the polynomial and the size of the matrices. This can be seen from the restriction of the

parameters required to prove the AGM inequality for Wishart random matrices, log-concave measures and

freely independent (see Theorem 3.3.3, Theorem 3.2.4, Theorem 3.4.8). Therefore, without this balance,

it seems the AGM inequality is hard to prove especially in the absent of the central limit theorem (CLT)

because we have to control the norm of polynomials in non-commuting variables of high degree.
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Chapter 4

Ternary ring of operators

4.1 Definitions and properties

In this section we recall some basic facts about C∗-ternary ring of operators. We start with the algebraic

concept of C∗-ternary ring of operators (see [Hes62],[Zet83] for more details).

A complex ternary ring is a linear space X over complex number C such that equipped with a map

〈., ., .〉 : X ×X] ×X −→ X

(x, y∗, z) 7→ 〈x, y∗, z〉 ∈ X,

which is linear on the first and third variables and conjugate linear on the second and it’s satisfying the

following associativity condition:

〈〈x, y∗, z〉, e∗, f〉 = 〈x, 〈e, z∗, y〉∗, f〉 = 〈x, y∗, 〈z, e∗, f〉〉

for all x, y, z, e, f ∈ X.

A Banach ternary ring X is a complex ternary ring and also a Banach space such that the map 〈., ., .〉 :

X ×X] ×X → X is a contraction with respect to the Banach space norm, i.e.

‖〈x, y∗, z〉‖ ≤ ‖x‖‖y∗‖‖z‖

for all x, y, z ∈ X.

This leads to the following important definitions.

Definition 4.1.1. A C∗-ternary ring is a Banach ternary ring such that for all x ∈ X

‖〈x, x∗, x〉‖ = ‖x‖3.

42



The concrete definition of a ternary ring of operators (TRO) is given as follows:

Definition 4.1.2. A ternary ring of operators (TRO) between Hilbert spaces H and K is a norm closed

operator subspace V of B(H,K), which is closed under the triple product

V × V ] × V → V

(x, y∗, z)→ 〈x, y∗, z〉 = xy∗z ∈ V ⊆ B(H,K).

It is important to know that every TRO has a natural operator space structure, i.e. if we define a TRO

V ⊂ B(H,K), then Mn(V ) ⊂Mn(B(H,K)) = B(Hn,Kn) is also a TRO. This imply that V has a natural

canonical operator space structure (V, ‖.‖n).

It is easy to see that every C∗-algebra is a TRO. In fact, if p, q are projections in a C∗-algebra A, then

pAq is a TRO. This is an equivalent definition of a TRO V which is defined as the off-diagonal corner of its

linking C∗-algebra A(V ) such that

A(V ) =

C(V ) V

V ] D(V )


where C(V ) and D(V ) are both C∗-algebras generated by V V ] and V ]V respectively (see [KR02] for more

details).

Remark 4.1.3. It is clear from the definition that

TRO ⊆ C∗-ternary ring ⊆ Banah ternary ring.

But the inverse inclusions are not necessarily true. We provide the following known examples.

Example 4.1.4. Let `1(Z) = {f : Z → C : ‖f‖1 =
∑
|f(n)| < +∞} where the multiplication is given by

the convolution,

f ∗ g :=
∑
m∈Z

f(m)g(n−m).

It is well-known that `1(Z) is an involutive Banach algebra and hence a natural ternary ring by

〈., ., .〉 : `1(Z)× `1(Z)] × `1(Z) −→ `1(Z)

(f, g∗, h) 7→ f ∗ g∗ ∗ h),
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for all f, g, h ∈ `1(Z). It is clear that

‖f ∗ g∗ ∗ h‖1 ≤ ‖f‖1‖g∗ ∗ h‖1 ≤ ‖f‖1‖g∗‖1‖h‖1 = ‖f‖1‖g‖1‖h‖1.

It is a Banach ternary ring but not a C∗-ternary ring. Indeed, consider the element x = δ0 + iδ1 + δ2 ∈ `1(Z)

where δn is the characteristic function on n and δn ∗ δm = δn+m. Then, x∗ = δ0 − iδ−1 + δ−2 and

‖x∗‖1 = ‖x‖1 = 3 and ‖x∗ ∗ x‖1 = 5.

This implies that ‖x ∗ x∗ ∗ x‖1 ≤ ‖x‖1‖x∗ ∗ x‖1 = 3 · 5 = 15 < ‖x‖31 = 27. �

Next, for the second example, we recall the following definitions.

Definition 4.1.5. Let V and W are two TRO’s. A linear map θ : V → W between two TRO’s V and W

is called a TRO-homomorphism if it preserves the triple product as follows:

θ(xy∗z) = θ(x)θ(y)∗θ(z)

for all x, y, z ∈ V. Moreover, θ is a TRO-isomorphism if it is bijection. A linear map θ : V → W is called

an anti-TRO-homomorphism if for all x, y, z ∈ V

θ(xy∗z) = −θ(x)θ(y)∗θ(z).

The following decomposition theorem for C∗-ternary ring is due to Zettl [Zet83].

Theorem 4.1.6. Let (X, (., ., .), ‖.‖) be a C∗-ternary ring. Then X is the direct sum of two C∗-ternary

subrings X+ and X− where X+ is a TRO-isomorphic to a TRO V and X− is anti-TRO-isomorphic to a

TRO W . Moreover, V and W are unique up to TRO-isomorphism.

In particular, the above theorem shows that every C∗-ternary ring consists of a TRO part and an anti-

TRO part. In general, a C∗-ternary ring is not isomorphic to a TRO. Zettl provides an example for the

decomposition of a C∗-ternary ring of operators.

Example 4.1.7. Suppose Ω is a compact Hausdorff space and let Ω1 6= Ω be a nonempty set which is open

and closed. Define χ : Ω→ {0, 1} such that

44



χ(t) =


1 if t ∈ Ω1

0 if t ∈ Ω2 = Ω/Ω1

.

Define the triple product map for C(Ω) as the following

〈., ., .〉 : C(Ω)× C(Ω)] × C(Ω) −→ C(Ω),

〈f, ḡ, h〉 7→ fḡh(2χ− 1)(t) =


f(t)g(t)h(t) if t ∈ Ω1

− f(t)g(t)h(t) if t ∈ Ω2.

Then (C(Ω), 〈., ., .〉, ‖.‖sup) is a C∗-ternary ring which has the following decomposition: C(Ω) = C(Ω)+ +

C(Ω)− where C(Ω)+ = C(Ω1) and C(Ω)− = C(Ω/Ω1). �

From the definition we can see that every TRO is a C∗-ternary ring with anti-TRO part X− = 0, but

not every C∗-ternary ring is a TRO. However, we can make it a TRO by appropriate modification that is

given by Zettl which corrects the anti-TRO part to the TRO-part.

Theorem 4.1.8. For every C∗-ternary ring (X, 〈., ., .〉, ‖.‖), there exists a unique map operator T : X → X

satisfying

1. T 2 = IdX ;

2. T (〈x, y∗, z〉) = 〈Tx, y∗, z〉 = 〈x, Ty∗, z〉 = 〈x, y∗, T z〉 for all x, y, z ∈ X;

3. (X,T ◦ 〈., ., .〉, ‖.‖) is a C∗-ternary ring which is isomorphic to a TRO.

Example 4.1.9. Back to the Example 4.1.7 of C(Ω), it is clear that

X+ = Ω1 = {t ∈ Ω : 〈f, ḡ, h〉(t) ≥ 0}, X− = Ω2 = {t ∈ Ω : 〈f, ḡ, h〉(t) = −fḡh(t) ≤ 0}.

From Theorem 4.1.8, the map T = 2χ − 1 corrects the anti-TRO part of a C∗-ternary ring such that

T ◦ 〈f, ḡ, h〉 = fḡh. �

4.2 Cb-version of Zettl’s decomposition theorem

We have seen from the last section Zettl’s decomposition theorem for C∗-ternary ring where X is a Banach

space. A natural question is to ask what happened if we are given X as operator space. Todorov [Tod02]
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has proved the cb-version of Zettl’s decomposition theorem. In this section, we recall some of Todorov’s

results. Let’s start first by the following definitions.

Definition 4.2.1. A completely contractive ternary ring (c.c ternary ring) is a ternary ring with an operator

space structure, such that the map 〈., ., .〉 : X ×X] ×X → X is completely contractive with respect to the

norm.

Definition 4.2.2. A ternary operator system X is a completely contractive ternary ring such that for all

x = [xij ] ∈Mn(X)

‖x� x] � x‖ = ‖x‖3.

Here � denotes the formal matrix product.

Remark 4.2.3. Every TRO is a ternary operator system, i.e.

TRO ⊆ Ternary operator system

but the inverse inclusion is not true in general. In fact, a ternary operator system is a matricial structure of

a C∗-ternary ring.

Example 4.2.4. From Example 4.1.7, we find that (C(Ω), 〈., ., .〉, ‖.‖n) is a ternary operator system. Indeed,

for Mn(C(Ω,C)) ∼= C(Ω,Mn) as a C∗-algebras. The map

〈., ., .〉 : C(Ω)× C(Ω)] × C(Ω)→ C(Ω)

is completely contractive by the minimal operator space structure of C(Ω) [ER00]. To check the last condition

of a ternary operator system we use the functional calculus. Let x = [fij ] and since xx∗ ≥ 0, we have

‖x� x∗ � x‖2 = ‖[fij ]� [fkj ]
∗ � [fkl]‖2

= ‖[
n∑

j=1,k=1

fijf
∗
jkfkl]i,l‖2

= ‖[
n∑

j=1,k=1

fijf
∗
jkfklf

∗
lkfkjf

∗
ji]‖

= ‖x∗xx∗xx∗x‖ = ‖x‖6.

So this is an example of a C∗-ternary ring which is also a ternary operator system. �

The following cb-version of Zettl’s decomposition theorem is due to Todorov [Tod02].
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Corollary 4.2.5. Let X be a ternary operator system. Then there exists ternary operator sub-systems X+

and X− such that X = X+ ⊕ X− and X+ is completely isometrically isomorphic to a TRO, while X− is

completely isometrically anti-isomorphic to a TRO.

This result tells us that the triple operation is not preserved by the representation T : X → B(H,K),

i.e.

T (〈x, y∗, z〉) 6= T (x)T (y)∗T (z).

Corollary 4.2.6. Let X be a ternary operator system. Then X is completely linear isometric to a TRO.

4.3 Equivalence between TRO’s

Recall the equivalent definition of a TRO V as the off-diagonal corner of its linking C*-algebra

A(V ) =

C(V ) V

V ] D(V )


where C(V ) and D(V ) are both C*-algebra generated by V V ] and V ]V respectively [KR02]. It is known

that if two TRO’s V and W are TRO-isomorphic, then their linking C∗-algebras are ∗-isomorphic, i.e.

V ∼= W ⇒ A(V ) ∼= A(W ).

Questions to ask:

1. If the converse of this statement is also true,

2. If the diagonal components between two linking C∗-algebra of two TRO’s V and W are ∗-isomorphic

then is this imply that V and W are TRO-isomorphic.

Surprisingly, these questions are not true in general. Our main goals in this section are to prove the above

statements are not true, i.e. If we have two TRO’s V and W such that

C(V ) ∼= C(W ), D(V ) ∼= D(W ) are ∗-isomorphic as a C∗-algebras but V �W as TRO-isomorphic. (4.3.1)

Also we prove

A(V ) ∼= A(W )butV �W. (4.3.2)
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Note that this relation in (4.3.2) also tells us that TRO is not unique in the definition of Morita equivalent

between two C∗-algebras. We begin by recalling the definitions of the UHF algebras, CAR algebras and

other related results [Dav96,Bla06].

Definition 4.3.1. A C∗-algebra A is called uniformly hyperfinite (or UHF) if A = ∪∞n=1Mkn

‖.‖
is an

increasing union of unital subalgebras which are isomorphic to matrix algebras Mkn .

Example 4.3.2. Let A be algebra obtained as the union of subalgebras An = M2n where the embedding

φn,n+1 : An → An+1 is defined by

φn,n+1(a) = diag(a, a) =

 a 0

0 a

 .
This is an embedding of multiplicity 2 and A is called the CAR algebra.

Definition 4.3.3. The supernatural number associated to the sequence An is defined as a formal product

of the form

δ(A) :=
∏

p prime

pεp ,

where for each prime integer p there is a unique εp ∈ N
⋃
{∞} which is the supremum of the exponents of

power of p which divide kn ( kn is the dimension of the matrices Mkn) as n tends to infinity.

For instance, the CAR algebra A has the supernatural number δ(A) = 2∞, i.e. ε2 =∞ and for all other

p 6= 2 we have εp = 0 ( see [Dav96] for details about the supernatural number). We have the following

diagram for A and M2(A) as follows,

C

��

� � // M2
� � //

��

M2 ⊗M2 . . . . . .

��

� � // ∪k∈ZM2k
‖.‖

��

M2
� �

φ
//

id

;;

M2 ⊗M2

id
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� � // M2 ⊗M2 ⊗M2 . . . . . .
� � // ∪k∈ZM2k

‖.‖

It is easy to check that this diagram commutes and hence δ(A) = δ(M2(A)) = 2∞. This implies that A and

M2(A) are isomorphic ( Note that UHF is uniquely determined by its supernatural number, see Theorem

III.5.2 in [Dav96]). Using this fact, we are able to prove the following result.

Proposition 4.3.4. Let A be the CAR algebra. Then M1,2(A) is not TRO isomorphic to A.

Proof. Let V := M1,2(A) and W := A. Suppose that V and W are TRO-isomorphic, i.e. there exists a

map φ : M1,2(A) → A which is TRO-isomorphism from M1,2(A) onto A. Since the row vector v = [0 , 1] is
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a partial isometry in M1,2(A) such that vv∗x = x for any x ∈ M1,2(A), its image w = φ(v) must be partial

isometry in A such that ww∗y = y for all y ∈ A where y = φ(x) for some x ∈ M1,2(A). If y = 1 then we

have ww∗ = 1 and because the CAR algebra A is finite then w∗w = 1. Furthermore, there exists a non-zero

element x1 = [1 , 0] in M1,2(A) such that

φ(x1)w∗w = φ(x1v
∗v) = 0 6= φ(x1),

which leads to a contradiction.

The above proposition leads us to the following theorem.

Theorem 4.3.5. There exist two TRO’s V and W such that

1. If C(V ) ∼= C(W ) and D(V ) ∼= D(W ) but V �W

2. If A(V ) ∼= A(W )but V �W

Proof. Consider the TRO’s W := M1,2(A) and V := A, where A is the CAR algebra. Then from Proposition

4.3.4 we know that W := M1,2(A) � V := A as TRO-isomorphism. However, C(V ) = V V ∗
‖.‖

= A and

D(V ) = V ∗V
‖.‖

= A. Therefore, C(W ) = WW ∗
‖.‖

= A and D(W ) = W ∗W
‖.‖

= M2(A). Since A and

M2(A) are ∗-isomorphic, then C(V ) ∼= C(W ) and D(V ) ∼= D(W ) are both ∗-isomorphic. But we have that

V �W as TRO isomorphism.

For (2) we obtain two different UHF algebras B1 and B2 with the following diagrams:

C �
� // M2

� � // M2 ⊗M3
� � // M2 ⊗M3 ⊗M2 . . . . . .

� � // ∪n,m∈ZM2n×3m
‖.‖

:= B1

and

C �
� // M3

� � // M3 ⊗M2
� � // M3 ⊗M2 ⊗M3 . . . . . .

� � // ∪n,m∈ZM2n×3m
‖.‖

:= B2

It turns out that B1 and B2 are isomorphic since they have the same supernatural number, i.e. δ(B1) =

δ(B2) = 2∞×3∞ as n and m tend to infinity. Also, for the same reason M3(B1) and M2(B2) are isomorphic.

Now consider the TRO’s V and W such that V := B1 and W := M1,2(B1). Then by simple modification of

the result of Proposition 4.3.4 we know that V is not isomorphic to W but we know that A(V ) = M2(B1)

is isomorphic to A(W ) = A(M1,2(B1)) = M3(B1).
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4.4 Equivalence between W ∗-TRO

A concrete W ∗-TRO is defined as a weak*-closed subspace V ⊆ B(H,K) such that xy∗z ∈ V for all

x, y, z ∈ V. It is a corner of the von Neumann algebras R(V ), defined as follows:

R(V ) =

 M(C) V

V ∗ N(D)

 ,
where M(C) and N(D) are von Neumann algebras. Our main result in this section is to prove the W ∗-version

of Theorem 4.3.5. We first recall a number of definitions for von Neumann algebras (see[Rua04, Bla06] for

more details.)

Let M ∈ B(H) is a von Neumann algebra and p and q are projections in M , we say p is dominated by q,

denoted as (p . q) if there is an operator u ∈ M with uu∗ = p and u∗uq = u∗u. We say that p and q are

equivalent, denoted as (p ∼ q), if there is u ∈ M with uu∗ = p, u∗u = q. It is true that p ∼ q if p . q and

q . q. A projection q is finite if p . q, p ∼ q implies p = q and it is infinite if there is a p such that p ∼ q

and p � q. A projection p 6= 0 is called minimal if it dominates no other projection in M other than 0.

Definition 4.4.1. A factor is a von Neumann algebra R with trivial center, i.e. R ∩R′ = C.

Definition 4.4.2. A von Neumann algebra is finite if every isometry v ∈ M is a unitary. i.e v∗v = 1 ⇒

vv∗ = 1 for all v ∈M , i.e. (1 is finite).

Definition 4.4.3. A factor M is of type II1 if M has no minimal projections and every projection is finite.

Definition 4.4.4. A separable von Neumann algebra R is said to be approximately finite dimensional

(AFD) (or hyperfinite) if there exists an increasing sequence of finite dimensional C∗-subalgebra Nn such

that R = (∪∞n=1Nn)′′ = ∪∞n=1Nn
s.o.t

It is known that all AFD factors of type II1 are ∗-isomorphic. The following proposition proved by Ruan

[Rua04], will help us to construct an example we need for (4.3.1).

Proposition 4.4.5. Let R be a finite von Neumann algebra. Then M1,2(R) is not TRO-isomorphic to R.

Theorem 4.4.6. There exist two W ∗-TRO’s V and W such that

If N(V ) ∼= N(W ) , M(V ) ∼= M(W ) and R(V ) ∼= R(W ) but V �W

Proof. Consider the TRO’s W := M1,2(R) and V := R, where R is the AFD factor of type II1. Then

from Proposition 4.4.5 we know that W := M1,2(R) � V := R as TRO’s. However we have that M(V ) =

V V ∗
w∗

= R and N(V ) = V ∗V
w∗

= R. Therefore, M(W ) = WW ∗
w∗

= R and N(W ) = W ∗W
w∗

= M2(R).
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Since all von Neumann algebra which are AFD factor of type II1 are ∗-isomorphic, then N(V ) ∼= N(W ) and

M(V ) ∼= M(W ) but V �W as W ∗-TRO’s. Moreover, their linking von Neumann algebras are ∗-isomorphic

since they are hyperfinite II1 factor. This conclude our example.

Note that the above result is stronger than the following theorem which can be proved by using the same

example.

Theorem 4.4.7. There exist two W ∗-TRO’s V and W such that

1. If N(V ) ∼= N(W ) and M(V ) ∼= M(W ) but V �W

2. If R(V ) ∼= R(W ) but V �W .
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Chapter 5

Crossed Product of TRO’s

5.1 Crossed product of C∗-algebras

In this section, we present some known results for crossed product of C∗-algebras which will be used through-

out this chapter (see [BO08] for more details).

Let G be a discrete group and A be a C∗-algebra. An action of G on a C∗-algebra A is a group

homomorphism α : G → Aut(A); s 7→ αs of G into the group of Aut(A) of ∗-automorphisms of A. The

∗-algebra Cc(G,A) is defined as the linear space of the finitely supported function on G with values in A.

Let the action is defined as the inner action, i.e. αg(a) = gag−1 for all a ∈ A and g ∈ G. Then the α-twisted

convolution and the ∗-operation of Cc(G,A) are given as follows:

for S =
∑
s∈G

ass and T =
∑
t∈G

btt ∈ Cc(G,A),

S ∗α T =
∑
s,t∈G

asαs(bt)st, S
∗ =

∑
s∈G

αs−1(a∗s)s
−1.

In order to understand the crossed product of C∗-algebras better, it is useful to start with the reduced

crossed product. If G acts on a Hilbert space `2(G) and we start with a faithful representation A ⊂ B(H)

which takes value in a Hilbert space H, then we can define a new faithful representation from A into

B(H ⊗ `2(G)) where H ⊗ `2(G) is the new Hilbert space such that

π(a)(v ⊗ δg) = (αg−1(a)(v))⊗ δg

where {δg}g∈G is the orthonormal basis for the `2(G). Namely,

π(a) = ⊕g∈Gα−1
g (a) ∈ B(H ⊗ `2(G)) = B(⊕g∈GH).

Let λ : G → U(`2(G)) be the left regular representation of G on `2(G) such that λsδt = δst. Then the
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regular covariant representation for the reduced crossed product is a pair (π, IH ⊗ λ) where π is the above

∗-representation of A into B(H ⊗ `2(G)) and IH ⊗ λ is a unitary representation of G into B(H ⊗ `2(G))

satisfying

π(αs(a)) = (IH ⊗ λs)π(a)(IH ⊗ λs)∗.

Now, we are ready to recall the definition of the reduced crossed product of a C∗-algebras.

Definition 5.1.1. The reduced crossed product, denoted Aoα,r G, is defined to be the norm closure of the

image of the regular representation Cc(G,A)→ B(H ⊗ `2(G)).

We recall the general definition for the covariant representation for the full crossed product of a C∗-

algebras.

Definition 5.1.2. A covariant representation of Cc(G,A) is a pair (π, U) which consists of a unitary rep-

resentation U of G into H ⊗ `2(G) and a ∗-representation π of A into H ⊗ `2(G) such that

π(αg(a)) = Ugπ(a)U∗g (5.1.1)

for every g ∈ G and a ∈ A.

The definition of the full crossed product of a C∗-algebra is given as follows.

Definition 5.1.3. The full crossed product, denoted Aoα,f G, is the completion of Cc(G,A) with respect

to the norm

‖x‖f = sup ‖σ(x)‖,

where the supremum is taken over all the ∗-homomorphisms Cc(G,A)→ B(H). From the above construction,

we know that the family of ∗-representation of Cc(G,A) into B(H) is not empty.

The following universal property of the full crossed product of C∗-algebras highlights that every covariant

representation (π, U) of Cc(G,A) yields a ∗-representation of the Aoα G..

Proposition 5.1.4. For every covariant representation (U, π,H) of Cc(G,A), there is a ∗-homomorphism

σ : Aoα G→ B(H) such that

σ(
∑
s∈G

ass) =
∑
s∈G

π(as)Us (5.1.2)

for all
∑
s∈G

ass ∈ Cc(G,A).
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Remark 5.1.5. We have to distinguish between the covariant condition in (5.1.1), which multiplied by the

same unitary from both sides, and the universal property (5.1.2), which multiplied by a unitary from one

side.

Example 5.1.6. If A = C, then the full crossed product C∗(G) := C of G is called the full group

C∗-algebra of G ( C has only the trivial ∗-automorphism and trivial representation) and the reduced

crossed product C∗r (G) := Cor G is called the reduced group C∗-algebra which is defined as the norm

closure of λ(Cc(G)) ⊂ B(`2(G)) where λ is the left regular representation.

5.2 Crossed product of C∗-algebras and its local properties

The local properties for C∗-algebras preserve with the crossed product when G is amenable or the action of

G is amenable. Throughout this section, we will present some important known results for crossed product

of C∗-algebras and its local properties that we will use them in the next section when we are proving the

same results for TRO’s. The definitions of the local properties and the following theorems can be found in

[BO08].

Theorem 5.2.1. For an amenable group G and an action α : G→ Aut(A), the following statements hold.

1. Aoα G = Aoα,r G

2. A is nuclear if and only if Aoα G is nuclear.

3. A is exact if and only if Aoα G is exact.

When the group G is not amenable then the result remains valid for the amenable action which is defined

as follows (see [BO08] for more details).

Definition 5.2.2. Let A be a unital C∗-algebra. An action α : G → Aut(A) is amenable if there exist

finitely supported functions Ti : G→ A with the following properties:

1. Ti(g) ≥ 0 and Ti(g) ∈ Z(A) (the center of A) for all i ∈ N and g ∈ G.

2. 〈Ti, Ti〉 =
∑
g∈G Ti(g)2 = 1A.

3. ‖s ∗α Ti − Ti‖ −→ 0, for all s ∈ G where s ∗α Ti(p) = αs(Ti(s
−1p)) for all p ∈ G.

Theorem 5.2.3. For any amenable action of α on A, the following statements hold.

1. Aoα G = Aoα,r G.

2. A is nuclear if only if Aoα G is nuclear.

3. A is exact if and only if Aoα G exact.
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5.3 Reduced and full crossed product of TRO’s

We have seen in the previous section the definitions of the full crossed product and the reduced crossed

product of C∗-algebras. In this section, our goal is to define the crossed products of TRO’s.

Definition 5.3.1. Let G be a discrete group and V be a TRO. An action of G on V is defined to be

a group homomorphism α : G → Aut(V ); s 7→ αs of G into Aut(V ) where Aut(V ) is the group of the

TRO-isomorphism on V . In this case we say that V is equipped with a G action α on V.

Suppose G is a discreet group and V is a TRO equipped with a G-action α on V . Let Cc(G,V ) be the

linear space of finitely supported functions on G with values in V . An element S ∈ Cc(G,V ) is written as a

finite sum

S =
∑
s∈G

ass

where as ∈ V and s ∈ G and its conjugate is written as

S∗ = (
∑
s∈G

ass)
∗ =

∑
s∈G

(s−1a∗ss)s
−1 =

∑
s∈G

αs−1(as)
∗s−1

where αs(a) = sas−1 for all a ∈ V and s ∈ G. For S, T,R ∈ Cc(G,V ), where S =
∑
s∈G ass, T

∗ =∑
t∈G αt−1(bt)

∗t−1 and R =
∑
r∈G crr, we define the triple convolution product as follows:

S ∗ T ∗ ∗R =
∑

ass ∗
∑

αt−1(bt)
∗t−1 ∗

∑
crr

=
∑

as(sαt−1(bt)
∗s−1)st−1crr

=
∑

asαs(αt−1(bt)
∗)st−1crr

=
∑

asαst−1(bt)
∗αst−1(cr)︸ ︷︷ ︸

∈ V

st−1r︸ ︷︷ ︸
∈ G

,

where the first part belongs to V and the second part belong to G. This implies that S ∗T ∗ ∗R ∈ Cc(G,V ),

which means that Cc(G,V ) is the algebraic ternary ring, i.e. it is closed under the ternary product.

There are two different ways to take the completion of this ternary ring Cc(G,V ). The completion with

respect to the reduced crossed product norm or the full crossed product norm. Motivated by the crossed

product of C∗-algebras, we first construct the reduced crossed product of TRO’s. We define the regular

representation of TRO’s as follows:

let’s start with a faithful representation V ⊂ B(H,K). Then we define a new representation π of V into
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B(H ⊗ `2(G),K ⊗ `2(G)) by

π(a)(v ⊗ δg) = αg−1(a)v ⊗ δg,

Under the identification H ⊗ `2(G) ∼= ⊕g∈GH, this is the direct sum representation

π(a) = ⊕g∈Gα−1
g (a) ∈ B(⊕g∈GH,⊕k∈KK).

Let λ be the left regular representation of G on `2(G) and let λ̃Hs = IH ⊗ λs be the amplification of the left

regular representation of G on H ⊗ `2(G) and λ̃Ks = IK ⊗ λs on K ⊗ `2(G). Then the representation which

consists of (π, λ̃Hs , λ̃
K
s ) is called a regular covariant representation such that

σ(
∑
s∈G

ass) =
∑
s∈G

π(as)(IH ⊗ λs)

as it is satisfied the following condition for every a ∈ V and s ∈ G,

π(αs(a)) = λ̃Ks π(a)λ̃Hs = (IK ⊗ λs)π(a)(IH ⊗ λs)∗. (5.3.1)

Remark 5.3.2. In the covariant condition of C∗-algebras (5.1.1), we see that it is multiplied by the same

unitary from both sides since H = K. But for TRO’s (5.3.1), we multiply each side by a different unitary

since H 6= K.

Using the covariant condition, we check that

span{π(a)(IH ⊗ λs) : a ∈ V, s ∈ G} ⊂ B(H ⊗ `2(G),K ⊗ `2(G))

is closed under the triple product. Indeed, for x = π(a)(IH ⊗λs) , y = π(b)(IH ⊗λt) and z = π(c)(IH ⊗λu),

xy∗z = π(a)(IH ⊗ λs)(π(b)(IH ⊗ λt))∗π(c)(IH ⊗ λu)

= π(a)(IH ⊗ λs)(IH ⊗ λt))∗π(b)∗π(c)(IH ⊗ λu)

= π(a)(IH ⊗ λst−1)π(b)∗π(c)(IH ⊗ λu)

= (IK ⊗ λst−1)π(αts−1(a))π(b)∗π(c)(IH ⊗ λu)

= π(αst−1(αts−1(a)b∗c))(IH ⊗ λts−1u).

Thus, xy∗z ∈ span{π(a)(IH ⊗ λt) : a ∈ V, t ∈ G}. Then by taking the completion of this linear span we

obtain the reduced cross products of TRO’s.
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Definition 5.3.3. The reduced crossed product of a TRO, denoted as V oα,r G, is defined to be the norm

closure of the image of a regular representation Cc(G,V )→ B(H ⊗ `2(G),K ⊗ `2(G)), i.e.

V oα,r G = span{π(a)(IH ⊗ λt) : a ∈ V, t ∈ G}
‖.‖
.

Before proving the main result in this section, we recall the following result by Hamana [Ham99], which

shows us how we relate the C∗-homomorphisms of C(V ) and D(V ) with the TRO-homomorphism of a TRO

V on B(H,K).

Theorem 5.3.4. Let V and W be two TRO’s and π : V →W be a TRO-homomorphism. Then

πA(V ) =

πC π

π∗ πD

 : A(V )→ A(W )

is a well-defined C∗-homomorphism, where πC : C(V ) → C(W ) and πD : D(V ) → D(W ) are C∗-

homomorphism which are defined as follows:

πC(
∑
i

xiy
∗
i ) =

∑
i

π(xi)π(yi)
∗ (5.3.2)

πD(
∑
i

y∗i zi) =
∑
i

π(yi)
∗π(xi).

Remark 5.3.5. For S =
∑
s∈G ass, T =

∑
t∈G att and R =

∑
r∈G crr ∈ Cc(G,V ), we have

• T ∗ =
∑
t∈G αt−1(bt)

∗t−1 ∈ Cc(G,V ])

• S ∗ T ∗ =
∑
s,t∈G

asαst−1(bt)
∗︸ ︷︷ ︸

∈C(V )

st−1 ∈ Cc(G,C(V ))

• T ∗ ∗R =
∑
t,r∈G

αt−1(bt)
∗αt−1(cr)︸ ︷︷ ︸

∈D(V )

t−1r ∈ Cc(G,D(V ))

Recall from the introduction that V ] is the conjugate space of V that is contained in B(K,H) and C(V )

and D(V ) are both C∗-algebras generated by V V ] and V ]V respectively.

1. For an element S ∗ T ∗ ∈ Cc(G,C(V )) we claim that

πC × (IK ⊗ λ) (S ∗ T ∗) = π × (IH ⊗ λ)(S) π × (IH ⊗ λ)(T )∗.
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Indeed,

πC × (IK ⊗ λ) (S ∗ T ∗) = πC × (IK ⊗ λ)
( ∑
s,t∈G

asαst−1(bt)
∗st−1

)
=
∑
s,t∈G

πC(asαst−1(bt)
∗)(IK ⊗ λst−1)

=
∑
s,t∈G

π(as)π(αst−1(bt))
∗(IK ⊗ λst−1) (5.3.3)

=
∑
s,t∈G

π(as)(IH ⊗ λst−1)[(IK ⊗ λts−1)π(αst−1(bt))(IH ⊗ λst−1)]∗ (5.3.4)

=
∑
s,t∈G

π(as)(IH ⊗ λst−1)π(bt)
∗

=
∑
s,t∈G

π(as)(IH ⊗ λs)[π(bt)(IH ⊗ λt)]∗

= π × (IH ⊗ λ)(S) π × (IH ⊗ λ)(T )∗.

The equality (5.3.3) follows from the equality 5.3.2 in Hamana’s result. The covariant condition 5.3.1

is applied in the equality 5.3.4 to conclude the result. The argument for an element belong to D(V )

follows similarly i.e. πD × (IH ⊗ λ) (T ∗ ∗D) = π × (IH ⊗ λ)(T )∗ π × (IH ⊗ λ)(D).

2. For π × (IH ⊗ λ) (S ∗ T ∗ ∗R) where S, T,R are defined as before we have

π × (IH ⊗ λ) (S ∗ T ∗ ∗R) =
∑

s,t,r∈G
π(αst−1(αts−1(as)b

∗
t cr))(IH ⊗ λts−1r)

=
∑

s,t,r∈G
π(as)π(αst−1(bt))

∗π(αst−1(cr))(IH ⊗ λts−1r)

=
∑

s,t,r∈G
π(as)(IH ⊗ λt)(π(bt)(IH ⊗ λt))∗π(cr)⊗ (IH ⊗ λr)

= π × (IH ⊗ λ)(S) π × (IH ⊗ λ)(T )∗ π × (IH ⊗ λ)(R) ∈ B(H,K).

Let αV be an action of G into the group of Aut(V ) and αA(V ) be its natural extension. A natural question

to ask if we can identify V oαV G as the off-diagonal corner of the C∗-algebra A(V )oαA(V ) G. Equivalently,

if we can obtain the ∗-isomorphism between the following linking C∗-algebras, i.e.

A(V oαV G) = A(V )oαA(V ) G.

In the following proposition, we prove this identity for the reduced crossed product of A(V ).
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Proposition 5.3.6. Let G be a discrete group and let V be a TRO such that an action αV : G → Aut(V )

can naturally be extended to αA(V ) : G→ Aut(A(V )). Then we have the following C*-isomorphism,

A(V oαV ,r G) = A(V )oαA(V ),r G. (5.3.5)

More precisely,

A(VoαV ,rG) =

C(V oαV ,r G) V oαV ,r G

(V oαV ,r G)] D(V oαV ,r G)

 =

C(V )oαC(V ),r G V oαV G

V ] oαV ,r G D(V )oαD(V ),r G

 = A(V )oαA(V ),rG.

Proof. It is sufficient to check the C∗-isomorphism C(V )oαC(V ),rG=C(V oαV ,rG). The proof for the other

components will be similar. Note that

C(V )oαC(V ),r G = {πC(ab∗)(IK ⊗ λs) : a, b ∈ V, s ∈ G}
‖.‖

and

C(V oαV ,r G) = (V oαV ,r G)(V oαV ,r G)]
‖.‖
.

Let xy∗ ∈ C(V oαV ,r G) where π : V → B(H,K) is a TRO-homomorphism such that π|C = πC and

π|D = πD are ∗-homomorphisms for C*-algebras C(V ) and D(V ). Using the covariant condition, we have

xy∗ = π(a)(IH ⊗ λs)[π(b)(IH ⊗ λt)]∗

= π(a) [IK ⊗ λts−1π(αst−1(b))]∗

= π(a)π(αst−1(b))∗(IK ⊗ λst−1)

= πC(aαst−1(b)∗)(IK ⊗ λst−1) ∈ C(V )oαC(V ),r G.

Note that in the last equation we use the identity (5.3.2) in Hamana’s result. Now for the other direction

let πC(ab∗)(IK ⊗ λs) ∈ C(V )oαC(V ),r G, then

πC(ab∗)(IK ⊗ λs) = π(a)π(b)∗(IK ⊗ λs) = π(a)(IH ⊗ λs)[π(αs−1(b))(IH ⊗ λs2)]∗ ∈ C(V oαV ,r G).

The proof of the other three corners will be similar to this one.

Now we consider for the full crossed product of TRO’s. We replace the unitaries λ̃s
H
, λ̃s

K
in the regular

covariant representation by general unitaries us and vs on Hilbert spaces H and K respectively. The general
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covariant representation (π, us, vs) is defined to be the representation consists of TRO-homomorphism π and

the unitaries us and vs on Hilbert spaces H and K such that

π(αs(a)) = vsπ(a)u∗s.

Definition 5.3.7. The full crossed product of a TRO is defined to be the completion of the space Cc(G,V )

with respect to the norm

‖S‖f = sup{‖π × us(S)‖ : π × us is a non-degenerate covariant representation of Cc(G,V )}

where S ∈ Cc(G,V ), denoted by V oα,f G.

Note that the covariant representation of a TRO has also the universal property.

5.4 Local properties

Since a TRO is defined as the off-diagonal component of its linking C∗-algebra A(V ), then there is a strong

connection between some local properties of TRO’s and their linking C∗-algebras [KR02]. In this section we

prove that the local properties for TRO’s preserve with the crossed product when the group G is amenable.

The following theorem was proved by Kaur and Ruan in [KR02].

Theorem 5.4.1. Let V be a TRO. Then the following are true

1. V is 1-exact (or equivalently, λ-exact) if and only if A(V ) is 1-exact (or equivalently, λ-exact).

2. V is nuclear if and only if A(V ) is nuclear.

3. V is local reflexive (or equivalently, λ-local reflexive) if and only if A(V ) is local reflexive (or equiva-

lently, λ-local reflexive).

Now, we use the identity (5.3.5) and Theorem 5.4.1 to prove the following theorem.

Theorem 5.4.2. For any amenable group and any action α : G→ Aut(V ), the following statements are all

true.

1. V oα,f G = V oα,r G;

2. V is nuclear if and only if V oα G is nuclear;

3. V is exact if and only if V oα G is exact.
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Proof. We know that A(V )oα,f G = A(V )oα,r G by Theorem 5.2.1. For (1), by using Proposition 5.3.6 we

have A(V oα,fG) = A(V oα,rG). Since the two maps V oα,fG ↪→ A(V oα,fG) and V oα,rG ↪→ A(V oα,rG)

are completely isometric as upper-right corner, we have V oα,f G = V oα,r G. For (2), if V is nuclear, then

by Theorem 5.4.1 A(V ) is nuclear. By Theorem 5.2.1, the linking C∗-algebra A(V oα G) = A(V ) oα G is

also nuclear. So by Theorem 5.4.1, V oα G is nuclear. Similarly if we assume that V oα G is nuclear, then

its linking C∗-algebra is also nuclear. Again, using the equality that A(V oα G) = A(V ) oα G, A(V ) and

hence V is nuclear. We leave (3) to the reader since the proof is identical to (2).

5.5 Conditional crossed product

In this section, we consider a special type of the crossed product of linking C∗-algebras of TRO’s where we

have a one to one correspondence between the covariant representation of TRO’s and its linking C∗-algebras.

Let αs ∈ Aut(A(V )) is defined as an inner action, αs(a) = UsaU
∗
s for all s ∈ G and Us is a unitary in

B(H ⊕K), such that it satisfies one of the conditions in the following proposition.

Proposition 5.5.1. Suppose αs is an action on A(V ). Then the following are equivalent:

1. αs

(1 0

0 0

) =

1 0

0 0

, and αs

(0 0

0 1

) =

0 0

0 1

 for all s ∈ G

2. αs|V ∈ Aut(V ) for all s ∈ G.

Proof. By assuming (1) is true and using TRO-homomorphism we have

αs

(0 x

0 0

) = αs

(1 0

0 0


0 x

0 0


0 0

0 1

)

=

1 0

0 0

αs(
0 x

0 0

)
0 0

0 1

 ∈ V.
This implies that αs|V ∈ Aut(V ). For (2), the first equality implies (1).

Definition 5.5.2. Let A(V ) be the linking C∗-algebra of a TRO V and let α be an action of G into

Aut(A(V )). If α satisfies one of the condition of Proposition 5.5.1, then we call this crossed product as a

conditional crossed product of A(V ), denoted as A(V )oα,c G.

Note that Proposition 5.5.1 defines a corner preserving action αs which helps us to obtain the unitary

representations us and vs in the covariant representations for both C(V ) and D(V ).
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Corollary 5.5.3. Let (π̃, U, L) be a covariant representation for the linking C∗-algebra A(V ) such that U is

a unitary on the Hilbert space L = H ⊕K. Let’s define an action αs on A(V ) satisfies one of the conditions

of Proposition 5.5.1. Then there exist orthogonal projections p and q, such that pL = H and qL = K, which

split U on B(L) = B(H ⊕K) into two unitaries us and vs for both C(V ) and D(V ) such that

us = pUsp is a unitary on H

vs = qUsq is a unitary on K.

Proof. From given, we have the covariant representation (π̃, U) for A(V )oαG where π̃ : A(V )→ B(H⊕K)

and

π̃(αs(a)) = Usπ̃(a)U∗s

We claim that there exists a unitary us such that u∗sus = 1 for the covariant representation of C(V ),

where us = pUsp, and similarly for D(V ).

The orthogonal projections p and q are defined as follows:

p = π̃
(1 0

0 0

), q = π̃
(0 0

0 1

),

where p+ q = π̃
(1 0

0 1

) = IL and pq = 0. Now, consider a ∈ C(V ) and let us = pUsp. Then we have

u∗susπ̃

(a 0

0 0

)p = pU∗s p · pUsp · π̃

(a 0

0 0

)p
= pU∗s p

(
Usπ̃

(a 0

0 0

)U∗s
)
Usp

= pU∗s p · π̃(αs

(a 0

0 0

))Usp

= pU∗s p · π̃

(1 0

0 0

αs(
a 0

0 0

))Usp
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= p U∗s π̃

(
αs

(a 0

0 0

))Us
︸ ︷︷ ︸

use the covariant condition again

p

= p π̃

(
α−1
s αs

(a 0

0 0

))p = π̃

(a 0

0 0

)p.
This imply that u∗sus = IK . Now, using a similar argument we prove that usu

∗
s = IK . The argument for

D(V ) follows similarly.

Remark 5.5.4. For the converse, we know that if we have two covariant representations for C(V ) and D(V )

with unitaries us and vs on B(H) and B(K) where H and K are two different Hilbert spaces then we can

define a unitary for A(V ), Us =

us 0

0 vs

 on B(H ⊕K), and an action αs(a) = UsaU
∗
s which satisfies the

condition of Proposition 5.5.1 that αs|V (x) = usxv
∗
s ∈ V for all x ∈ V . This is also called the conditional

crossed product of A(V ), denoted as A(V )oα,c G. Of course, not all actions for A(V ) satisfy the condition

of Proposition 5.5.1.

Example 5.5.5. Let G = Z2, V = C. Then A(V ) = M2(C). Define the following two unitaries in A(V ):

U0 = IM2(C) and U1 =

−1√
2

1√
2

1√
2

1√
2

 .

Define αs as the associated inner action αs(a) = UsaU
∗
s . It is clear that U1

0 v

0 0

U∗1 /∈ V.

Motivated by Proposition 5.3.6, we present the same result for the conditional crossed product of A(V ).

Theorem 5.5.6. Let G be a discrete group and let V be a TRO such that the conditional crossed product

exist for A(V ). Then we have the C∗-isomorphisms,

A(V oα G)c = A(V )oc G (5.5.1)

C(V oα G)c = C(V )oα,c G and D(V oα G)c = D(V )oα,c G.

The proof is similar to Proposition 5.3.6 for the reduced crossed product of A(V ).
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Theorem 5.5.7. Let V be a TRO and G be a discrete group. Then

V oα,r G = V oα G if and only if A(V )oα,r G = A(V )oα,c G.

Proof. If A(V )oα,rG = A(V )oα,cG then by using the identity (5.5.1), (5.3.5) and the orthogonal projection

p =

1 0

0 0

 and q =

0 0

0 1

 , we have that

V oα,r G = pA(V oα,r G)q = pA(V oα,c G)q = V oα G.

For the other direction, if we have V oα,rG = V oαG, then the linking C∗-algebras are the same and again by

using the identity (5.5.1), (5.3.5), we get that A(V )oα,rG = A(V oα,rG) = A(V oαG) = A(V )oα,cG.

This class of crossed product sits in the middle between the full and reduced crossed product of A(V ).

Theorem 5.5.8. The following maps h and g

A(V )of G
h−→ A(V )oα,c G

g−→ A(V )oα,r G

are quotient maps. In particular V oα,c G
g−→ V oα,r G is a quotient map.

Proof. It’s straightforward to check that these maps are completely quotient maps by extending the identity

map between its dense algebra Cc(G,A(V )). Then by taking different completion for the algebra Cc(G,A(V ))

(the full, the conditional and the reduced one), we get contractive maps which are onto ∗-homomorphism

maps which are quotient maps. Similarly, we prove it for TRO’s. We just need to recall (3) from Proposition

A.0.11 in the appendix A that was proved in [EOR01], that every surjective TRO-homomorphism is a

contraction map and a completely quotient map. This completes the proof.

Remark 5.5.9. In this Chapter, we proved this identity A(V oαV G) = A(V ) oαA(V ) G for the reduced

and conditional crossed products of A(V ). This answered our question about Morita equivalent between

two C∗-algebras. We conclude that if we have two C∗-algebras C(V ) and D(V ), denoted as the diagonal

components of the linking C∗-algebra A(V ), which are Morita equivalent then their reduced and conditional

crossed product are also Morita equivalent, i.e. C(V )
M.E∼= D(V )⇒ C(V )oG

M.E∼= D(V )oG.
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Appendix A

TRO-homomorphism

Throughout this appendix, we state and recall some known results for TRO-homomorphism. We state their

proofs for the convenience of the reader (see [EOR01] for more details).

Definition A.0.10. A norm-closed subspace J in a TRO V is called a TRO ideal in V if JV ]V ⊂ J and if

V V ]J ⊂ J.

Theorem A.0.11. Let V and W be two TRO’s, and let J be a TRO ideal for V .

1. Every TRO-homomorphism φ : V →W is completely contractive.

2. Every injective TRO-homomorphism is completely isometric.

3. V/J is a TRO with the induced ternary product and operator space structure.

4. If the map between two TRO’s V and W is a surjective TRO-homomorphism, then it must be a

completely quotient map.

Proof.

For (1) and (2), the argument is based on some spectral arguments that are proved by Harries (see [Har81]for

more details). For a ∈ V and a TRO-homomorphism φ : V → W , we have σ(φ(a)φ(a)∗) ⊂ σ(aa∗) ∪ 0 by

(Lemma 3.5 [Har81]). This implies ‖φ(a)‖2 ≤ ‖a‖2 and a simple modification for this argument where

φ : V → W is injective implies that ‖φ(a)‖2 = ‖a‖2. Similarly, for each n ∈ N, πn : Mn(V ) → Mn(W ) is

also TRO-homomorphism and the result follows as above.

For (3) and (4), they are proved by Ruan, Ozawa and Effroce in [EOR01]. Let us start by recalling the proof

of (3). Let J be a TRO ideal in V . Then the quotient operator space V/J = {xj = x+ J : x ∈ V } has the

triple product which is defined as follows:

xjy
∗
j zj = (xy∗z)j .
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Let

A(V ) =

C1 + C(V ) V

V ] C1 +D(V )


be the linking C∗-algebra of V and

I(V ) =

JV ] + V J] J

J] J]V + V ]J.


is a closed ideal in A(V ), and we have the completely isometric TRO-isomorphisms

V ∼= eA(V )(1− e) and J ∼= eI(V )(1− e)

where e ∈ A(V ) is the projection such that e =

1 0

0 0

 and 1 − e =

0 0

0 1

 . Then there is a natural

complete contraction

π : V/J → A(V )/I(V )

xj 7→ xI

where π preserves the ternary product π(xjy
∗
j zj) = π(xj)π(yj)

∗π(zj) for all xj , yj , zj ∈ V/J which maps the

off-diagonal corner eIA/I(1− eI) of the C∗-algebra, where eI = e+ I(V ). Claim: π is complete isometry.

Indeed, given xj ∈ V/J , we have

‖π(xj)‖ = inf{‖x+ y‖ : y ∈ I} ≥ inf{‖e(x+ y)(1− e) : y ∈ I‖}

= inf{‖x+ y‖ : y ∈ J} = ‖xj‖.

This shows that π is an isometry. The similar argument is used to prove it for πn for each n ∈ N. This

implies that V/J is completely isometrically TRO-isomorphic to the off diagonal corner eIA(V )/I(V )(1−eI)

of the C∗-algebra A(V )/I(V ).

For (4), if φ : V → W is a TRO-homomorphism, then J = Ker(φ) is a TRO-ideal in V by (3). The map φ

induces an injective completely isometric TRO-homomorphism from V/J into W . So we have the following
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diagram:

V

ρ
##

φ // W = φ(V )

V/ker(φ)

ψ

88

It follows that φ(V ) is a sub-TRO of W. Since φ is a TRO-homomorphism which is surjective then this

implies that the map φ : V →W is a completely quotient map. Recall that the map is completely quotient

if for each n ∈ N, φn maps the closed unit ball of Mn(V ) onto the closed unit ball of Mn(W ). This result is

an elementary result for the C∗-algebras. From (3), we have V/J ∼= eI(A(V )/I(V ))(1− eI). Given w ∈ V/J

with ‖w‖ ≤ 1 we may choose a ∈ A such that φ(a) = w. Then there exists v = ea(1 − e) ∈ V satisfies

‖v‖ ≤ 1 and φ(v) = w. We use the same argument to proof the map φn is a quotient map for every n.
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