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ABSTRACT

The effect of installation for an antenna is key to understanding its per-

formance in the intended operating environments. While existing formu-

lations support such analysis, their mapping of calculations to distributed

computing hardware does not support simulating installation environments

of arbitrary size. This work builds upon existing techniques to simulate

installed antenna behavior using scattering analyses tailored to system com-

ponents. The scattering operations reveal opportunities to introduce approx-

imate techniques which form generalized hybrid solvers. The source antenna

(with both subwavelength-scale and wavelength-scale features) is modeled

with the electric field integral equation (EFIE), and it interfaces with the

installation site using the equivalence principle algorithm (EPA) as a do-

main decomposition method (DDM). The use of EPA to enclose the EFIE-

modeled antenna generalizes the method to arbitrary antenna models. The

electrically large exterior structures are modeled with physical optics (PO)

without loss of generality to other approximate or high-frequency asymp-

totic methods through a Schur complement analysis of the continuous and

discretized equations. The proposed Schur complement EPA-PO hybrid in-

troduces clear physics with applicability to other formulations for the individ-

ual domains. The proposed hybrid also maps the PO calculations efficiently

to distributed parallel computing resources; the parallel computations are

demonstrated by executing the simulations on a hybrid parallel distributed-

and shared-memory computing cluster. The calculation of antenna interac-

tions with electrically large structures implies transition from wave-physics

to ray-physics behaviors, which raises questions of reduced rank in the dis-

cretized operators. These questions are addressed by identifying the wave-

to ray-physics transition and observing reduced rank in the space of plane

wave functions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation for Addressing Computational

Electromagnetics

Systems utilizing electrical and magnetic (EM) phenomena are engineered for

specific operating environments. The simplest operating environment is an

otherwise homogeneous (infinite) space supporting only a transmitter and a

receiver. Such an environment is not suitable as an approximation for many

cases because the surrounding medium is made inhomogeneous by the pres-

ence of a transmitter- or receiver-mounting structure, variable atmosphere, or

other details not specifically planned as part of the system design. Therefore

accurately modeling the inhomogeneous operating environment must be part

of the system design process for accurate performance prediction. It is par-

ticularly important to develop simulation techniques which map efficiently

to the distributed parallel computing hardware available in the foreseeable

future.

EM phenomena are governed by Maxwell’s equations [1, 2]. A computa-

tional electromagnetic (CEM) simulation computes a solution to these dif-

ferential equations corresponding to the materials and sources characterizing

the case of interest. Many cases of interest are accurately modeled by linear

materials, which allows for a time-harmonic analysis and therefore supports

composing distributional solutions via Green’s functions. Such solutions are

formed by solving problems of the form Ax = b where discrete linear opera-

tor A is determined by the domain (environment and devices) under study,

unknown vector x is the fields in the domain, and known vector b character-

izes the scenario excitations.

Computing a solution is an intensive process, and may easily overwhelm

available computational resources. Deploying parallel computing resources
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to solve problems of interest demands parallel algorithms which map the

computational workoad efficiently to the available hardware. Past efforts to

develop parallel algorithms for solving CEM problems have met with mixed

results owing to the complexities of the wave equation. Approximate so-

lutions are often suitably accurate for problem classes of interest with the

advantage of high parallel scalability. This thesis develops foundational tech-

niques to map approximated discretized linear EM problems to distributed

parallel high-performance computing (HPC) hardware.

1.2 Thesis Organization

In this work, time-constant materials and time-harmonic linear fields are

used to develop techniques for obtaining solutions to the governing equa-

tions using distributed parallel computing hardware. Chapter 2 explains the

theory used to organize surface integral equation (SIE) problems using the

surface equivalence theorem. Chapter 3 explains the discretization of the

SIEs in support of computing results for arbitrary cases. Chapter 4 develops

a novel approach to obtaining hybrid solutions combining SIE solutions and

approximate scattering operators. Chapter 5 explores the distributed paral-

lel solution to the hybrid solutions, especially using HPC resources. Finally,

Chapter 6 explores beam formation in radiation calculations to identify op-

portunities to reduce the computational workload of accurate high-frequency

radiation calculations.
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CHAPTER 2

SURFACE INTEGRAL EQUATIONS

2.1 Differential Equations

In the following equations,

• E (H) is the electric (magnetic) field intensity,

• D (B) is the electric (magnetic) flux density,

• J (M ) is the electric (magnetic) current density,

• ǫ is the electric permittivity, and

• µ is the magnetic permeability.

M is generally regarded as a nonphysical quantity that must be zero in

practice, but it balances the structure of the equations to simplify subsequent

analysis through duality. The Maxwell-Heaviside equations [2] (often simply

called the Maxwell equations [1]) are given in time-harmonic form, such that

f (r, t) = Re [f (r) e−iωt], as [3, Eqs. (1.1.12)-(1.1.15)]

∇×E (r) = iωB (r)−M (r) , (2.1)

∇×H (r) = −iωD (r) + J (r) . (2.2)

Simple algebra converts these into vector wave equations

∇×∇×E (r)− ω2ǫµE (r) = iωµJ (r)−∇×M (r) , (2.3)

∇×∇×H (r)− ω2ǫµH (r) = iωǫM (r) +∇× J (r) , (2.4)

under the assumptions that

1. the temporal frequency ω is not close to zero so that solutions may be

obtained [4]
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2. the constitutive parameters are independent of the fields; this defines

linear equations so that

(a) weak solutions may be obtained using generalized functions,

(b) E, H , D, B, J , and M are asserted to have a common time-

harmonic factor e−iωt,

3. the constitutive relations are those of isotropic materials such thatD =

ǫE, B = µH ,

4. the constitutive parameters ǫ ∈ C and µ ∈ C are both time-invariant

and piecewise-constant, and

5. the second partial derivatives with respect to space and time ∂2

∂r∂t
, ∂2

∂t∂r

of both E and H are continuous and equal.

If the tangential fields satisfy boundary conditions on the region interfaces

and the media are lossy, then unique solutions are defined within each region.

In this context, lossy media satisfy Im (ǫ) , Im (µ) > 0, and the lossless case

is supported in the limit approaching zero loss.

2.2 Integral Equations and Equivalent Problems

A dyadic Green’s function G (r, r′) relates the fields to the sources by sat-

isfying a PDE [3, Eqs. (8.1.16)-(8.1.17)] within a piecewise constant region

V

∇×∇×G (r, r′)− k2G (r, r′) = Īδ (r − r′) , r, r′ ∈ V, (2.5)

where I is the identity dyad and δ (r) is the Dirac delta function. The vector

calculus analysis of Eqs. (2.3), (2.4), and (2.5) which yields the electric field

integral equation (EFIE) and the magnetic field integral equation (MFIE)

[3, Sect. 8.1.2] also yields the concept of a SIE translator. Abbreviate the

evaluated internal source fields using volume integrals as
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Einc (r) = iωµ

∫

V

G (r, r′) · J (r′) dV ′ −
∫

V

G (r, r′) · ∇ ×M (r′) dV ′, (2.6)

H inc (r) = iωǫ

∫

V

G (r, r′) ·M (r′) dV ′ +
∫

V

G (r, r′) · ∇ × J (r′) dV ′. (2.7)

The fields anywhere in the volume under study are then calculated using the

internal and boundary source fields as

[

E (r)

H (r)

]

tan

=

[

Einc (r)

H inc (r)

]

tan

+ T
[

M sca

J sca

]

, r ∈ V (2.8)

with the integral operator abbreviations

LX =

∫

S

[

G (r, r′) ·X (r′)
]

dS ′, (2.9)

KX =

∫

S

[(

∇′ ×G (r, r′)
)

·X (r′)
]

dS ′, (2.10)

T =

[

K iωµL
−iωǫL −K

]

. (2.11)

The EFIE and MFIE in Eq. (2.8) express the fields at any point as the sum

of the internal source fields and propagated boundary fields. Note that EFIE

and MFIE are commonly evaluated at points on the surface of the scatterer

itself.

SIEs depend upon knowing the Green’s function for the problem under

study, but inhomogeneous medium Green’s functions are generally unavail-

able. Without loss of generality, a single antenna radiating in the presence of

another antenna on a platform is analyzed to establish an equivalent problem

using the homogeneous medium Green’s function. The scenario is illustrated

in Figure 2.1 as four connected non-overlapping domains: source antenna A,

receiving antenna B, platform C, and exterior D. Domain D is bounded by

domains A, B, and C on its interior and a closed exterior surface. In order

to solve for the fields in any of domains A, B, or C, the tangential fields
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bounding domain D must be obtained.

Domains B and C are replaced with material matching domain D. The

sources within domain A are replaced by equivalent boundary surface cur-

rents radiating

• zero fields inside domain A, and

• isolated-antenna exterior fields outside domain A

as shown in Figure 2.2. These equivalent currents are the incident field

source. The equivalent fields within domain A are zero, and its contents are

also replaced with the exterior medium. This defines an equivalent scenario

which may be solved using both Eq. (2.8) and the homogeneous medium

Green’s function [3, Eqs. (7.1.1) and (7.1.19)]

G (r, r′) =

(

I +
1

k2
∇∇

)

eik|r−r
′|

4π |r − r′| . (2.12)

The radiation boundary condition for the homogeneous equivalent problem

is applied to the exterior surface. As the exterior surface expands in the limit

of an infinite radius, the radiation condition forces the radiation integral to

vanish. Using Eq. (2.12) with Eq. (2.8) satisfies this boundary condition and

thus defines the unique solution for the equivalent problem.

The equivalent currents corresponding to the scattered fields are defined

using the desired total field equivalent problem in Figure 2.3: the original

problem’s total fields in domain D (equal to the incident fields radiating

from domain A plus the scattered fields radiated from all domains) and ex-

tinguished fields in domains A, B, and C. This equivalent problem satisfies

Eqs. (2.3) and (2.4) with the correct solution in domain D and zero fields

in the other domains. The equivalent sources yielding the exterior scattered

fields are shown in Figure 2.4. Said surface currents radiate with the free

space dyadic Green’s function to calculate the scattered field everywhere

exterior to the problem. Returning to EFIE and MFIE in Eq. (2.8), the

definition of the Green’s function completes the translator relating boundary

sources to observed fields within a closed region.
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2.3 Equivalence Principle for a Single Scatterer

Regardless of the SIE formulation for a particular scatterer with surface σ,

the translator of Eq. (2.11) may be used with the equivalence principle to

transform the scattering operator away from the skin σ to an enclosing surface

Σ. Using labeling from [5, Eq. (12)]

• Toutside−in propagates the field from the exterior interface to the interior

scatterer surface,

• Tinside−out propagates the field from the scatterer surface interior to the

exterior interface, and

• Scurrent−solver is the interior structure scattering operator,

the new equivalent scattering operator is

SΣ = Tinside−outScurrent−solverToutside−in. (2.13)

The outside-in and inside-out operators translate between Scurrent−solver and

the interface surface, often allowing coarser, more uniform sampling at the

interface [5] because the evanescent field components near the antenna struc-

tures decay over distance. This abstraction facilitates hybridizing solutions

by isolating physics-sensitive scattering operators to designated domains and

relating fields using abstract translators.

2.4 Equivalence Principle for Multiple Scatterers

The equivalence principle algorithm (EPA) [5, 6, 7] provides a mechanism

to define scattering operators per domain with a common interface. Equa-

tion (2.8) shows that the fields on any surface in domain D are determined

by the radiation of both sources embedded in D and the boundary surface

fields. One may compose a set of equations relating the fields on the surfaces

of domains A, B, and C. The first step is to note that each domain is a

boundary source for the others. The source fields M inc, J inc radiate from A

to both B and C; the scattered fields of domains B and C are the only sources

illuminating domain A. The sum of all sources in the scenario observed on
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the interface surface of domain l ∈ {A,B,C} is restated from Eq. (2.8) as

[

Esrc
l

Hsrc
l

]

tan

= TlA
[

M inc
A

J inc
A

]

+
∑

k,k 6=l

Tlk
[

M sca
k

J sca
k

]

. (2.14)

The scattered field equivalent currents bounding each scatterer shown in

Figure 2.4 are defined by the scattering operators SA, SB, and SC applied

to Eq. (2.14). The details of such scattering operators are developed later;

it suffices for the moment to stipulate their existence. As in [7, Eq. (8)], the

system of equations is generalized for any number of equivalence principle

surfaces as

[

Esca
l

Hsca
l

]

= SlTlA
[

M inc
A

J inc
A

]

+ Sl
∑

k,k 6=l

Tlk
[

M sca
k

J sca
k

]

. (2.15)

The simultaneous equations of multiple scattering are expressed compactly in

this form with a succinct abstraction of scattering operators and translation

operators. Evaluating the fields on each domain l yields a system of equations






I −







SA 0 0

0 SB 0

0 0 SC













0 TAB TAC
TBA 0 TBC
TCA TCB 0



































[

M sca
A

J sca
A

]

[

M sca
B

J sca
B

]

[

M sca
C

J sca
C

]























=







SA 0 0

0 SB 0

0 0 SC





























[

0

0

]

TBA
[

M inc
A

J inc
A

]

TCA
[

M inc
A

J inc
A

]























. (2.16)

This expresses the EPA domain decomposition method (DDM) in continuous

form. It is readily discretized and solved using the method of moments

(MoM) just as any other surface integral equation problems. Effects are now

isolated by domain so that methods suitable to electrically small regions and

electrically large regions may be handled with tailored scattering algorithms.
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The process of discretizing this SIE is developed next.

2.5 Figures

A
B

C

D

Figure 2.1: Development of SIE for exterior domain: original problem with
four domains A, B, C, and D.

Einc,Hinc

Jinc,Minc

Einc,Hinc

Einc,Hinc0

Figure 2.2: Development of SIE for exterior domain: homogeneous medium
definition of incident field with equivalent sources bounding A.
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0
Jinc+Jsca

Minc+Msca

Einc+Esca,Hinc+Hsca

Jsca,Msca

Jinc,Minc

Einc,Hinc

Einc,Hinc

Figure 2.3: Development of SIE for exterior domain: homogeneous medium
equivalent problem with same result as original in D but extinct fields in A,
B, and C.

Esca,Hsca

Jsca,Msca

0

0

0

Figure 2.4: Development of SIE for exterior domain: definition of surface
current densities in homogeneous medium to yield desired scattered fields.
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CHAPTER 3

CONSTRUCTING NUMERICAL

SOLUTIONS

3.1 Discretized SIE

Discretizing a function as a vector of basis function coefficients is combined

with discretizing operators as matrices to obtain solutions via the method

of moments (MoM) [8]; the technique is summarized here. A function a (r)

expanded in a basis set is expressed using Hilbert space vectors as

a〉 =
∑

n

bn cn〉 , (3.1)

a〉 = c⊺〉 · b, (3.2)

with coefficients [b]n = bn ∈ C and cn (r) ∈ R. One may compose a system

of equations by projecting onto testing functions dn (r) ∈ R:

〈d, a〉 = 〈d, c⊺〉 · b, (3.3)

〈d, c⊺〉 · b = e. (3.4)

This linear system is of the form F ·b = e. It may be solved for unknown co-

efficients [b]n = bn given (a) the Gramian matrix elements
[

F
]

mn
= 〈dm, cn〉

and (b) the projection of the known function a〉 onto the testing functions

[e]m = 〈dm, a〉. Thus the operator projecting a function defined in one basis

onto another basis is discretized in the Gramian matrix; this concept will be

used extensively in discretizing other operators.

The discretization of a continuous linear operator A is accomplished with

this notation by analyzing a linear operator problem

Ax = b. (3.5)
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By expanding x and b in terms of respective basis functions fx〉 and fb〉,

x = f⊺

x 〉 · x, (3.6)

b = f
⊺

b 〉 · b, (3.7)

the linear operator problem becomes

A f⊺

x 〉 · x = f
⊺

b 〉 · b. (3.8)

One may pick a set of testing functions ft〉 and test the linear operator

problem with any testing function indexed i to obtain

〈ft,i,Af⊺

x 〉 · x = 〈ft,i,f⊺

b 〉 · b. (3.9)

This testing process is repeated for each member of the set of testing func-

tions. Therefore the discrete form of A is seen to be

[

A
]

ij
= 〈ft,i,Afx,j〉 , (3.10)

[

F tb

]

ij
= 〈ft,i, fb,j〉 , (3.11)

and the linear operator equation is discretized using the MoM as

A · x = F tb · b. (3.12)

The result is that all manner of continuous linear operators are readily ex-

pressed in terms of basis function coefficients on either side so that if A, x,

and F tb are known and b is unknown, one obtains

b = F
−1

tb A · x, (3.13)

assuming that F tb is invertible. Likewise, if A, b, and F tb are known and x

is unknown, then

x = A
−1
F tb · b, (3.14)

under the assumption that A is invertible.

This method of discretizing an SIE also conveniently expresses a Poynting

vector surface integral using surface finite element functions. If real-valued

finite element functions fE〉 and fH〉 are used to express the electric and

12



magnetic fields on a closed surface S such that

E (r) = f
⊺

E〉 · e, (3.15)

H (r) = f
⊺

H〉 · h, (3.16)

then the complex Poynting vector

S (r) =
1

2
E (r)×H∗ (r) (3.17)

is expressed as

S (r) =
1

2
(f⊺

E〉 · e)× (f⊺

H〉 · h∗) . (3.18)

The complex Poynting vector is projected onto the surface normal n̂ (r),

which allows a trivial restatement using the scalar triple product

n̂ (r) · S (r) =
1

2
(f⊺

H〉 · h∗) · n̂× f
⊺

E〉 · e. (3.19)

Performing the surface integral of this expression is no different from testing

n̂×E (r) with H (r):

∮

S

d2r n̂ (r) · S (r) =
1

2
h∗ · 〈fH , n̂× fE〉 · e. (3.20)

Therefore the Poynting vector is integrated over a closed surface using only

the Gramian 〈fH , n̂× fE〉 and the expansion coefficients of the electric and

magnetic fields.

3.1.1 Identity in Non-Orthogonal Basis

If the basis functions are orthonormal, or 〈dm, cn〉 = δmn, then bm = 〈dm, a〉.
If the basis functions are finite in support but nonorthogonal, this is a sparse

system of equations and may be solved with little computational expense,

allowing expression of a〉 using the basis functions:

a〉 = c⊺〉 · F−1 · e. (3.21)
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Inserting Eq. (3.21) into Eq. (3.3) reveals a discretized identity operator [9,

Sect. 2.8]

Icd = c⊺〉 · F−1 · 〈d . (3.22)

In the process of discretizing compound continuous operators, this iden-

tity operation is inserted between continuous operators to obtain discretized

matrix-matrix operations. Without loss of generality to greater counts of con-

tinuous operators, this technique is applied to a two-operator linear problem

ABx = b. (3.23)

If the above process of discretization via MoM is applied to this equation,

one obtains

〈ft,i,ABf⊺

x 〉 · x = 〈ft,i,f⊺

b 〉 · b. (3.24)

The difficulty posed by the adjacent continuous operators is overcome by

evaluating the range of A and the domain of B on a shared interface SAB on

which an identity can be evaluated.

〈ft,i,AISAB
Bf⊺

x 〉 · x = 〈ft,i,f⊺

b 〉 · b, (3.25)

〈ft,i,Af⊺

a 〉 · F
−1

ab · 〈fb,Bf⊺

x 〉 · x = 〈ft,i,f⊺

b 〉 · b, (3.26)

Ata · F
−1

ab ·Bbx · x = F tb · b, (3.27)

〈ft,i,ABf⊺

x 〉 = Ata · F
−1

ab ·Bbx. (3.28)

Therefore the identity defined between A and B facilitates discretizing com-

pound continuous operators in a simple manner.

The practical application of this method will require either factorization

of the Gramian matrix or repeated iterative solution. The function spaces

related by the identity may require an asymmetric Gramian matrix, so the

Gramian inverse will be treated as a general matrix. In this work, finite

elements with real functions are used with complex coefficients on mesh ele-

ments. The Gramians are therefore real and sparse, which will greatly reduce

the computational burden.
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3.1.2 Discretized EFIE for PEC Objects

A PEC object defined by surface Σ satisfies the boundary condition

n̂×
(

Einc +Esca
)

= 0, (3.29)

which is to say that the tangential incident electric field is exactly cancelled

by the scattered electric field on Σ with no restriction placed on the magnetic

field. The equivalent radiating electric surface currents J sca
Σ = n̂×Hsca

Σ and

incident fields satisfying EFIE are expanded in tangential functions on the

surface of the scatterer:

LEJ f⊺〉 · jsca = − f⊺〉 · einc. (3.30)

Testing with the basis functions indexedm as 〈fm (Galerkin’s method) yields

a square matrix system

N
∑

n=1

〈

fm,LEJfn
〉

jscan = −
N
∑

n=1

〈fm, fn〉 eincn (3.31)

L
EJ · jsca = −F · einc. (3.32)

Now the system of equations may be solved numerically; this is a familiar

form of EFIE for PEC objects in terms of RWG function [10] currents and

incident fields. Noting that the f magnetic current basis corresponds to a

−n̂× f electric field basis, the scattered magnetic fields are expressed in the

manner of Eq. (3.14)

M inc
Σ

〉

= −
N
∑

n=1

n̂× fn〉 eincn , (3.33)

[

minc
]

n
= eincn , (3.34)

jsca = −
(

L
EJ
)−1

F ·minc. (3.35)

Thus one defines a numerical relationship between coefficients for scattered

electric currents in the f space and incident magnetic currents both expressed

in the f space assuming that the discretized L
EJ

operator is invertible.
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3.1.3 Translation Operator

Moving the observation surface away from the surface of the scatterer surface

yields a finite volume. As a building block step, one can assert zero sources on

one surface Σ and the only sources on a surface σ; the topological relationship

between the surfaces is not specified. Were no scatterer present in the region

containing the sources, the field on the surface Σ would be expressed as

[

EΣ

HΣ

]

tan

= TΣσ

[

Mσ

Jσ

]

. (3.36)

This expression of the tangential fields on Σ is expressed as equivalent cur-

rents radiating in the direction n̂ and expanded in basis functions

[

(

fM
Σ

)

⊺
〉

·mΣ
(

f J
Σ

)

⊺
〉

· jΣ

]

=

[

−n̂× 0

0 n̂×

]

TΣσ

[

(

fM
σ

)

⊺
〉

·mσ
(

f J
σ

)

⊺
〉

· jσ

]

. (3.37)

The equations for the translated fields may be tested on the observation

surface using a set of functions on that surface to discretize them. This

discretized form is converted into a set of linear equations suitable to com-

puterized solution by testing with a number of functions on the inner surface

to form a square system of equations

[

K
EM

Σσ

]

mn
=

〈

n̂× fM
Σ ,KEM

(

fM
σ

)⊺〉

, (3.38)
[

L
EJ

Σσ

]

mn
=

〈

n̂× fM
Σ ,LEJ

(

f J
σ

)⊺〉

, (3.39)
[

K
HJ

Σσ

]

mn
= −

〈

n̂× f J
Σ,KHJ

(

f J
σ

)⊺〉

, (3.40)
[

L
HM

Σσ

]

mn
= −

〈

n̂× f J
Σ,LHM

(

fM
σ

)⊺〉

, (3.41)
[

F
M

Σ 0

0 F
J

Σ

][

mΣ

jΣ

]

=

[

K
EM

Σσ L
EJ

Σσ

L
HM

Σσ K
HJ

Σσ

][

mσ

jσ

]

. (3.42)

If the Gramians for the observation surface functions are invertible, then

this expression of the equivalent currents on the observation surface Σ with

respect to the source currents is readily converted into a discrete translation
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operator

T Σσ =





(

F
M

Σ

)−1

0

0
(

F
J

Σ

)−1





[

K
EM

Σσ L
EJ

Σσ

L
HM

Σσ K
HJ

Σσ

]

, (3.43)

[

mΣ

jΣ

]

= T Σσ

[

mσ

jσ

]

. (3.44)

Thus the process of translating fields between surface functions is discretized

using basis and test functions on the respective source and observation sur-

faces. This is noteworthy because the results of a translation operation may

be used as the sources to another translation operation or scattering opera-

tion.

3.1.4 Equivalent Scattering Operator

Moving the surface Σ for evaluating the scattering operator away from the

surface of the scatterer σ leads to the construction of an equivalent scattering

operator [5, 6, 11] in a sequence of operations:

• translation from the outer surface to the inner scatterer TσΣ,

• localized scattering effects on the scatterer surface Sσ, and

• translation from the inner scatterer to the outer surface TΣσ.

For some subcomponents Sσ may be comparatively expensive to compute

as it requires solution for equivalent currents. The outside-in and inside-

out operators translate its effects to the interface surface, possibly allowing

coarser sampling at the interface [5] because the evanescent field components

near the antenna structures decay over distance. The net effect of these three

operations is a new scattering operator at the surface of the exterior surface

SΣ = TΣσSσTσΣ, (3.45)
[

(

fM
Σ

)

⊺
〉

·msca
Σ

(

f J
Σ

)

⊺
〉

· jscaΣ

]

= TΣσSσTσΣ
[

(

fM
Σ

)

⊺
〉

·minc
Σ

(

f J
Σ

)

⊺
〉

· j incΣ

]

. (3.46)
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These equations are discretized by testing on the outer surface Σ with testing

functions:

[

F
M

Σm
sca
Σ ,

F
J

Σj
sca
Σ

]

=

[

〈

fM
m,Σ 0

0
〈

f J
m,Σ

]

TΣσSσTσΣ
[

(

fM
Σ

)

⊺
〉

·minc
Σ

(

f J
Σ

)

⊺
〉

· j incΣ

]

. (3.47)

A discretized identity expressed in a basis set on σ , per Eq. (3.22), is applied

between the translation and scattering operators for both E and H in the

manner of Eq. (3.28) to obtain

Sσ =





(

F
M

σ

)−1

0

0
(

F
J

σ

)−1





[

〈

fM
σ ,SMM

σ

(

fM
σ

)

⊺
〉 〈

fM
σ ,SMJ

σ

(

f J
σ

)

⊺
〉

〈

f J
σ ,SJMσ

(

fM
σ

)

⊺
〉 〈

f J
σ ,SJJσ

(

f J
σ

)

⊺
〉

]

, (3.48)

[

msca
Σ

jscaΣ

]

= T ΣσSσT σΣ

[

minc
Σ

j incΣ

]

. (3.49)

In this way, the coefficients for the scattered field are expressed as a function

of the coefficients for the incident field.

3.1.5 Equivalence Principle Algorithm

The above development of discrete scattering and translation operators is

readily applied to Eq. (2.16) to form a discretized EPA system of equations







IA −SAT AB −SAT AC

−SBT BA IB −SBT BC

−SCT CA −SCT CB IC





























[

msca
A

jscaA

]

[

msca
B

jscaB

]

[

msca
C

jscaC

]























=

















0

SBT BA

[

minc
A

j incA

]

SCT CA

[

minc
A

j incA

]

















.

(3.50)

This discretization of Eq. (2.16) illustrates the relationship between the inci-

dent and scattered fields in terms of abstract operators. The required opera-

tors are the identity I, dense translators T {ABC}{ABC}, and (generally) dense
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scattering operators S{ABC}. This system is readily constructed in this form

for numerical solution, although the operators need not be filled as dense

operators, as developed subsequently.

3.2 Obtaining Numerical Solutions

Whatever the choice of basis and test functions, Eq. (3.50) is a dense system

of linear equations of the form Ax = b, where

• A is the dense EPA system matrix defined by geometry and boundary

conditions,

• x is a vector of unknown coefficients for basis functions modeling tan-

gential scattered fields enclosing problem domains, and

• b is a vector of known coefficients for basis functions modeling tangen-

tial incident fields enclosing problem domains.

Filling a dense matrix A of N equations and N unknowns demands O (N2)

complexity in computational time and storage. Direct solution methods (e.g.

LU [12, Sect. 3.2] or QR [12, Sect. 5.2] factorizations) for a densely filled

matrix require O (N3) computation times.

Iterative solver methods construct an approximate solution at each iter-

ation, with the goal of obtaining an approximate solution xn at iteration

n such that Axn − b ≈ 0. Because the computational time complexity

of the simple matrix-vector-product (MVP) is O (N2), an iterative solver

performing a single MVP at each of n iterations would bear computational

complexity O (nN2); assuming n < N this is an improvement over direct

solution. The discretized system in Eq. (3.50) is generally asymmetric, and

the generalized minimal residual (GMRES) algorithm [13] provides a method

to compute solutions within a specified tolerance. Next we will develop an

abstract translator operator with controllable error and both lower compu-

tational time and storage complexity than the O (N2) of the original dense

matrix.
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3.3 Fast Translator Matrix-Vector-Product Operations

Equation (3.50) reveals that the discretized translator defined in Eq. (3.43)

is critical to efficient simulations. The discretized L, K, and F
−1

comprise

the discretized T Σσ in Eq. (3.43). L and K are both dense operators, but

they are readily implemented as abstract operators using methods developed

for accelerating EFIE and MFIE solutions, respectively. F
−1

need not be

computed explicitly: because the Gramian is very sparse for finite elements,

this inversion is efficiently effected by solving the sparse system after applying

the other operators in the equation. Therefore T Σσ may be implemented as

a composite operator of accelerated MVP operations for L and K operators

followed by a direct sparse solution of Eq. (3.42) to normalize for the basis-

function weighting coefficients.

If surfaces Σ and σ have NΣ and Nσ field samples, respectively, then the

computational and memory expense to fill L and K operators, and there-

fore T Σσ, is O (NΣNσ). The computational complexity to perform a MVP

using one of the densely filled operators is O (NΣNσ). Various techniques are

available to solve SIE formulations based upon these operators. Owing to the

operators’ low-rank off-diagonal blocks, adaptive cross approximation (ACA)

offers an algebraic method to reduce the memory and computational com-

plexity to O
(

N
4

3 logN
)

for wave physics EM problems [14]. If the Green’s

function may be diagonalized with a similarity transformation, the fast mul-

tipole method (FMM) offers polynomial O
(

N
3

2

)

computational complexity

[15, Sect. 3.2.2], and its hierarchical counterpart the multilevel fast multi-

pole algorithm (MLFMA) has linearithmic O (N logN) storage and compu-

tational complexity [15, Sect. 3.3] with controllable error. Because of the

superior asymptotic costs and physical insight, MLFMA is to be applied to

L and K (and thus to T Σσ) to reduce the computational and memory costs

of both the abstract operator construction and the MVM from polynomial

O (NΣ logNΣ +Nσ logNσ).

3.3.1 Fast Multipole Method

For brevity, only the key points of the FMM and MLFMA salient to comput-

ing a matrix-vector product in Eq. (3.43) with algorithmic complexity less

than O (NΣNσ) (brute force quadrature) are stated here. The details are
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available in the literature [15]. This analysis assumes partitioning of all test

and basis functions into uniform cubic subdivision of voxels. The essential

operation is to compute the effect on a single voxel’s contained operator-range

test functions due to a distant voxel’s contained operator-domain basis func-

tions. Aggregating effects between groups by factorizing the scalar Green’s

function in k-space both elucidates the salient physics and reduces the work

done from the brute force implementation.

The scalar Green’s function for homogeneous media may be expressed for

non-overlapping source and observation points as an integral over the Ewald

sphere and a truncated convergent summation. Express the vector between

any two points ri and rj as a vector between their respective representative

points (e.g. voxel centroids) rm and rm′ plus two (shorter) vectors from the

reference points to the nearby original points [15, Eq. (3.16)]

rji = rjm + rmm′ − rim′ . (3.51)

This allows one to split the analysis into factors characterizing propagation

along the main ray from voxel m′ to m and factors defining local source and

observation patterns about their respective reference points; this obtains [15,

Eqs. (3.17)-(3.18)]

exp (ik |rji|)
|rji|

=

∫

d2k̂ exp (ik · (rjm − rim′))α (k, rmm′) , (3.52)

α (k, rmm′) =
ik

4π

L
∑

l=0

il (2l + 1)h
(1)
l (k |rmm′ |)Pl

(

k̂ · r̂mm′

)

. (3.53)

The scalar Green’s function is thus an integral over all plane waves from the

source to the observation. This representation of the scalar Green’s function

is inserted into the dyadic Green’s function to obtain [15, Eq. (3.19)]

G (rj, ri) ≈
1

4π

∫

d2k̂
(

I − k̂k̂
)

exp (ik · (rjm − rim′))α (k, rmm′) . (3.54)

This expression reflects a plane wave relationship between a source point

and observation point. We appear to be worse off than when we started

because we have replaced a direct evaluation of the dyadic Green’s function

with an integral over the energy shell. The relationships between collec-

tions of source and observation points are connected in the integral kernel,
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and only the plane wave components relating the source and observation

points to their respective representative points rm and rm′ change with each

source/observation point. If the k-space integral is evaluated numerically,

then it may be performed at a specified quadrature points; the kernel val-

ues are evaluated between each voxel-representative point pair at all k-space

positions.

A single term of L is obtained by discretizing Eq. (3.54) using a basis

function bi (r
′) and a test function tj (r).

[

L
]

ji
=

[〈

t,Gb
〉]

ji
, (3.55)

=

∫∫

Σj

d2r tj (r) ·
∫∫

Σi

d2r′ G (r, r′) · bi (r′) , (3.56)

≈ 1

4π

∫

d2k̂α
(

kk̂, rmm′

)

∫∫

Σj

d2r
[

tj (r)− k̂
(

k̂ · tj (r)
)]

exp
(

ikk̂ · rjm
)

·
∫∫

Σi

d2r′
[

bi (r
′)− k̂

(

k̂ · bi (r′)
)]

exp
(

−ikk̂ · r′
im′

)

, (3.57)

where the orders of integration are interchangeable because the fields are non-

singular. This is simply the plane wave representation of the basis field as if

radiating from its reference point r′
m′ projected onto the test function observ-

ing from its reference point rm. Therefore every basis function is evaluated as

outbound plane waves; the test functions are evaluated as inbound far-fields

in plane waves (or “outbound” with a direction opposite the source plane

wave direction). Note that α
(

kk̂, rmm′

)

relates the outbound and inbound

plane waves as a diagonal k-space operator. The discretized K operator is

expressed in the same manner, and differs from L only by a polarization
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rotation applied to test function plane waves.

[

K
]

ji
=

[〈

t,∇′ ×Gb
〉]

ji
, (3.58)

=

∫∫

Σj

d2r tj (r) ·
∫∫

Σi

d2r′ ∇′ ×G (r, r′) · bi (r′) , (3.59)

≈ 1

4π

∫

d2k̂α
(

kk̂, rmm′

)

∫∫

Σj

d2r
(

−k̂
)

×
[

tj (r)− k̂
(

k̂ · tj (r)
)]

exp
(

ikk̂ · rjm
)

·
∫∫

Σi

d2r′
[

bi (r
′)− k̂

(

k̂ · bi (r′)
)]

exp
(

−ikk̂ · r′
im′

)

. (3.60)

Therefore the block translator of Eq. (3.43) is expressed for distant basis and

test functions as a diagonal k-space outbound-to-inbound (O2I) operator

with domain of basis function far-fields and range of test function far-fields.

This allows the expression of distant translations as diagonalized blocks in

k-space and is fundamental to fast MVP operations.

These FMM operators are then a cascade of sparse operators:

• Basis functions are converted to sets of plane waves emanating from

the containing domain voxel,

• Each domain-to-range voxel translation is a diagonal operator in the

space of plane waves, and

• Incoming plane waves at each range voxel are converted to the test

functions in the voxel.

The plane wave transformation at the range and domain voxels are specific

to the plane waves defined emanating to/from the voxel reference point.

This technique achieves polynomial computational complexity O
(

N
3

2

)

for

the MVP [15, Sect. 3.2], which then brings the complexity of an n-iteration

solution to O
(

nN
3

2

)

.

3.3.2 Multilevel Fast Multipole Algorithm

The analysis is readily extended to hierarchical form by noting that the plane

wave transformations for a voxel can be nested in the same way that basis

functions were grouped. MLFMA is defined by a cascade of sparse operations,
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and achieves linearithmic O (N logN) computational complexity and storage

size [15, Sect. 3.3]. Therefore, this brings the computational complexity of

an n-iteration solution to O (nN logN).

The development from FMM to MLFMA [15, Sect. 3.3] is summarized as

follows. Because the fields are spatially band-limited, the radiation patterns

computed within smaller voxels can be locally interpolated to the denser

sampling of a larger voxel’s pattern. Likewise, the radiation patterns com-

puted for larger voxels can be locally anterpolated to the coarser sampling

of a smaller voxel’s pattern. The operation radiating outbound-to-outbound

(O2O) from the smallest basis voxels up to higher-level basis voxels is a series

of phase shifts and local interpolations, which can be composed with sparse

matrices. The same diagonal O2I operator concept from single-level FMM is

used here, but at the largest possible voxel level not violating the addition

theorem. The operation radiating inbound-to-inbound (I2I) from the higher-

level test voxels down to the smallest test voxels is a series of phase shifts and

local anterpolations like O2O, and may be composed with sparse matrices.

In the case of translating between different meshes σ and Σ with function

counts Nσ and NΣ, respectively, the computational and storage complexity

of the MVP is O (NΣ logNΣ +Nσ logNσ). This acceleration is fundamental

to solving large problems.

3.3.3 Iterative Solver Computational Complexity

The existence of fast solvers warrants reconsideration of the discrete opera-

tors in Eq. (3.50) to determine the computational complexity of solving the

system. The identity is discretized as a Gramian matrix; for finite elements

in which O (1) such functions have a nontrivial Gramian entry with any

other function, the cost of discretizing and performing a MVM with O (N)

computational and memory usage. The expense of solving for the on-surface

coefficients may be achieved by iterative sparse solver with complexity O (N)

(e.g. GMRES [13]) or by a direct sparse solver with complexity O (N2 logN)

(e.g. parallel sparse LU factorization [16]). (The direct sparse solver’s com-

plexity in many cases is lower than the given worst case complexity [16],

but such a risk must be acknowledged.) The translators are comprised by

L and K operators, and thus have O (N logN) storage and computational
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complexity. The scattering operators are generally composed using iterative

solvers and fast MVM routines so that they yield O (N logN) storage and

computations. The operations required to define the right-hand side (RHS)

of Eq. (3.50) are the same as those used in the block matrix. Therefore the

discrete solution of Eq. (3.50) may be achieved with O (N logN) storage and

computational complexity.

3.4 Computing Solutions Using the Schur Complement

The solution of a linear system of equations is sometimes intractable for

various reasons. If the solution on only part of the problem is required, then

one may reformulate the original system of equations to solve for only the

required domain. If the system is partitioned as

[

A B
C D

][

q

r

]

=

[

s

t

]

, (3.61)

then the Schur complement allows the restatement of the system without the

unknowns r as
(

A− BD−1C
)

q = s− BD−1t. (3.62)

This incomplete solution is available if D−1 is viable for calculation. The

new matrix system is smaller than the original; its dimensions match those

of the A matrix.
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CHAPTER 4

EPA HYBRIDIZED WITH PO

4.1 Introduction

Solving the discretized equations of Chapter 3 for arbitrary cases is limited

by the total number of basis and test functions N used in all the domains.

As the required computational storage and time scales with asymptotic com-

plexity O (N logN) when using MLFMA, the scale of N is the parameter

that determines whether a problem may be solved with the available com-

putational hardware. As the problem size kd increases with respect to the

wavelength,

N = O
(

(kd)2
)

, (4.1)

and the computational storage and time scale with respect to the linear

dimension

O (N logN) = O
(

(kd)2 log (kd)
)

. (4.2)

This points to a challenge solving general problems where the objects have

arbitrarily large size scales. Hybridizing EPA with high-frequency asymptotic

methods provides a means to characterize otherwise intractable problems for

SIE analysis.

In this chapter, a brief overview of the physical optics (PO) high-frequency

asymptotic model is developed to form an approximate scattering operator

for use within an EPA framework. Then a novel EPA-PO hybrid solution is

derived, and computed results are presented, verifying the accuracy of the

technique. The proposed hybrid solution establishes an equation structure

that generalizes from PO to other approximate methods.
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4.2 Previous Work

Hybridizing solutions between MoM and approximate/asymptotic methods is

a topic with a long history. A noteworthy early hybrid expands PO currents

in finite element functions as if it were part of the MoM region with a sparse

self-interaction matrix [17]. A similar approach was applied to hybridizing

EPA with PO for electrically connected objects [18]. These approaches are

most comparable to evaluating the method developed here before performing

the Schur complement stage. In application with an iterative solver, this

is also comparable to the MoM-PO hybrid described in [19] and EI-MoM-

PO hybrid described in [20]. However, these methods described techniques

specifically computing the interactions between a PEC MoM region and a

PEC PO region. The method described here is amenable to solution with

“black-box” iterative solver such as GMRES or use with a compressed matrix

representation framework [14].

The developed method also may be compared to the MLFMA-UTD hy-

brid described in [21]. This approach modifies the diagonal α translation

operator with UTD-calculated fields. Because the reflected rays from the

approximately modeled domain will not generally align with pre-computed

source/observation pattern samples, the effects of the reflected rays impose

additional interpolation/anterpolation calculation, beyond FMM/MLFMA

conventions. The method proposed here has the advantage of supporting

implementation as either a whole operator or as an augmentation to an ex-

isting homogeneous medium implementation.

4.3 Physical Optics as a Scattering Operator

To obtain a suitable approximate scattering operator, one may look to high-

frequency asymptotic scattering techniques in general and to the PO approx-

imation in particular. High-frequency asymptotic methods are developed in

the literature [22, 23, 24, 25]. Among the common methods, PO stands out

for its simplicity. PO approximates scattered fields using physical equivalence

principle sources corresponding locally to a tangent plane approximation to

a large smooth scatterer. Other methods may be used to compute local

surface fields, and then the equivalent PO surface currents radiate to obser-
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vation points [26]. The argument developed for PO as a hybrid retains the

generality of the greater EPA solver framework so that further research may

apply other asymptotic methods beyond PO.

In the local tangent plane approximation to a smooth surface, one may

analyze a finite surface as a bounded portion of an infinite plane. A surface

with a PEC boundary condition requires that the total tangential electric

field be zero. If the surface is a part of an infinite flat plate, then phase

matching the plane wave solutions on the surface requires that, given the

vector orientations in Figure 4.1a the complex coefficients characterizing the

fields must be

• n̂×Esca × n̂ = −n̂×Einc × n̂ and n̂×Hsca × n̂ = n̂×H inc × n̂ on the

illuminated side of the scatterer, and

• n̂×Esca × n̂ = −n̂×Einc × n̂ and n̂×Hsca × n̂ = −n̂×H inc × n̂ on

the dark side of the scatterer.

The physical equivalent model of the scenario replaces the PEC scatterer

with the exterior medium to form a single homogeneous space with radiating

current sheets enclosing the scatterer. As illustrated in Figure 4.1b, the

equivalent currents on the illuminated side are J = 2n̂ ×H inc, M = 0 and

on the dark side they are J = 0, M = 0. In this manner, the local tangent

scattered fields are defined in terms of the incident fields. Point-wise on the

surface of a planar PEC scatterer one sees that

[

Esca

Hsca

]

=

[

0 0

0 −2n̂× Ii

][

M inc

J inc

]

, (4.3)

J sca = 2J inc. (4.4)

Therefore a trivial continuous approximate scattering operator is available

for an electrically large planar surface. Applying the operator discretiza-

tion of Eq. (3.13) yields a trivial numerical operator if the incident and

scattered fields are expressed in the same basis. The PEC surface case is

stated here without loss of generality to other material types. The illumi-

nated/shadowed distinction is applied as a scalar weight on fields radiating

to the PO scattering surface. In this way, one defines a new domain type to

be incorporated in an EPA-based solver framework. Moreover, the availabil-

ity of a sparse scattering operator and trivially modified translators suggests
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that high-frequency asymptotic scattering may facilitate solving otherwise

intractable problems using Eq. (3.50).

4.4 Eliminating Unknowns on an EPA Domain

An efficiently evaluated scattering operator for one domain of Eq. (3.50) has

significant impact on how one may obtain a solution. A domain approximated

by a PO model may be discretized directly with the approximate scattering

operator, as reported in [18]. Within the context of this analysis, such a

method will be described as a “Direct PO” hybrid. Further analysis suggests

a more general approach to hybridizing approximate scattering algorithms

with EPA; this is developed next.

The Schur complement technique described in Section 3.4 can be applied

to eliminate one of the domains. This is a straightforward manipulation,

especially because of the identity on the system diagonal. If the domain to

be eliminated is indexed C, then eliminating those fields from Eq. (3.50)

yields

([

IA −SAT AB

−SBT BA IB

]

−
[

SAT ACSCT CA SAT ACSCT CB

SBT BCSCT CA SBT BCSCT CB

])













[

msca
A

jscaA

]

[

msca
B

jscaB

]













=







0

T BA

[

minc
A

j incA

]






+













T ACSCT CA

[

minc
A

j incA

]

T BCSCT CA

[

minc
A

j incA

]













. (4.5)

The tangential scattered fields on the surface of all objects are readily solved

in this form with the caveat that they are all taken to be radiating in the

presence of the platform instead of the homogeneous background medium. In

this expression of the EPA multi-scatterer system, the physics of scattering

within an inhomogeneous medium are made plain.

Most importantly, SC is surrounded by translation operators from the

29



other domains, which corresponds to radiation-scattering-radiation interac-

tion chains that may be characterized by myriad asymptotic scattering calcu-

lations. In this view, using PO as the local scattering formulation becomes

an implementation detail suitable for replacement by other formulations.

The early MoM-PO hybrid method [17] was extended to include additional

UTD scattering enhancements to the PO scattering regions [27]. Such an

enhancement is immediately applicable to the Schur complement method

proposed here. But the radiation-scattering-radiation calculations in the

Schur-complement PO method are amenable to using any other scattering

formulation, not strictly equivalent-current-based methods. The eliminated

domain may be so electrically large that meshing it and tracking unknowns

may be prohibitive; in such cases field-modeling methods such as UTD are

viable candidates for integration into the hybridization framework. Subject

to the restrictions of the addition theorem, MLFMA decomposition may be

utilized to perform such analyses in the space of plane waves.

4.4.1 Computational Considerations

Going forward, the problem is split into NEPA functions in the EPA-modeled

domains and NPO functions in the single PO domain. Operations on the NPO

functions spanning the PO surface are expected to dominate the calculations

as NPO ≫ NEPA. The computational steps required are discussed next in or-

der to understand the anticipated computational complexity. The equivalent

current basis functions used to model all structures are RWG [10] functions

using a seven-point Gaussian quadrature rule per triangle and double preci-

sion floating point values.

In a “Direct PO” hybrid EPA-PO system (without the Schur complement

applied), the cost per MLFMAMVM isO ((NEPA +NPO) log (NEPA +NPO)).

It is noteworthy that because the scattering operator is a simple scalar, one

need not apply the inverse Gramian after translation to the PO surface if

block rows are scaled by the Gramian. This saves an expensive sparse solver

step with a cost between O (NPO) (GMRES) and O (N2
PO logNPO) (sparse

LU). In exchange for avoiding this sparse solver step, the Direct PO method

explicitly solves for current unknown coefficients across the PO surface. If

GMRES is used to solve the system, then O (NPO) time and storage is re-
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quired in the iterative solver step. Moreover, the iterative solver will treat

approximate PO unknown weights as equally important to the final solution

as the fields on the more accurate antennas, leading to challenges satisfying

the target solution residual.

The Schur complement EPA-PO hybrid uses the approximate PO fields

only to obtain the scattered fields at other surfaces. This offers the oppor-

tunity for reduced result dataset sizes from the Schur complement method

because the PO surface unknowns are not retained. In the “Schur PO” hy-

brid EPA-PO system, the same MLFMA implementation is used as in the

Direct PO system, which leads to the same net complexity. Unlike the Direct

PO algorithm, the Schur PO algorithm requires normalization with the in-

verse Gramian after translation to the NPO functions because translation to

the PO surfaces is immediately followed by translation back out to the other

domains. Consequently, the expense of normalizing by the Gramian across

NPO functions is added to the Schur PO algorithm in comparison to Direct

PO. Therefore, an efficient sparse solver is critical to practical application of

this expression of the method. This normalization is required only because

the scattering operator is discretized as other MoM-modeled domains. In

future work, other asymptotic methods may avoid this expense. The Schur

complement EPA-PO hybrid restates the equations in a manner suggesting

that another high-frequency asymptotic (approximate) method may be used

in place of PO without loss of generality to the formulation.

The solution of Eq. (4.5) differs from that of Eq. (3.50) by having a dra-

matically smaller space of unknown and RHS values. Evaluating a solution’s

residual in the latter equation treats the fields across the PO-modeled domain

as first-class quantities to be considered in evaluating a solution. As a matter

of practicality, the fields on the asymptotically modeled domain are not im-

portant for evaluating the accuracy of a solution because the local boundary

conditions are only approximately satisfied. Rather, the effect of radiation

in the presence of the approximately modeled domain need only accurately

satisfy boundary conditions on the surfaces modeled with “exact” methods

such as EFIE or EPA. The reduced set of basis and test functions analyzed

simplifies the work to be done by the iterative solver from O (NEPA +NPO)

to O (NEPA), which helps offset the expense of normalizing coefficients on the

PO surface in this implementation.

The new hybrid also requires that the iterative solver’s residual test for
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convergence be constructed with the restated problem in mind. The RHS of

Eq. (4.5) contains radiative effects of both the incident field and the incident

field’s scattering from the PO surface, so initial residual error is expected to

be much lower than it would be for Eq. (3.50). Likewise, the effect of each

iteration includes both direct radiation from non-Schur-complement domains

and their scattering from the PO-modeled domains. The reduced initial resid-

ual error and the more productive iterations lead to an expected reduction

in number of iterations.

4.5 Examples

The viability of the proposed method is evaluated through application to

various cases. EFIE is used as the reference solution in each case to vali-

date the computed solution. EPA hybridized with PO without the Schur-

complement (labeled “Direct PO”) is also computed to verify the correct

function of the Schur-complement PO hybrid (labeled “Schur PO”). In every

case, the Schur PO hybrid is verified to function correctly. The comparison

to the EFIE validation data indicates reliable behavior, but the PO physics

results in expected deviations from EFIE. The cases are chosen so that the

PO-modeled surfaces are physically separated so that radiative physics is the

only coupling mechanism. Moreover, the PO-modeled surfaces are large and

locally smooth so that the local tangent plane approximation is a suitable

approximation to the field interactions.

4.5.1 Dipole-Plate Case

A single square plate illuminated by a single half-wavelength dipole serves as

the core validation case. The case is derived from [28, Fig. 8] and is illustrated

in Figure 4.2. The antenna is driven at its center with a 1 V (peak-to-peak)

source in the center 3 mm of the cylinder at 8 GHz. The plate is a square

in the x = 0 plane with side length 177.8 mm in the y- and z-directions,

or about 4.745 λ. The dipole is a wire aligned with the z-axis offset from

the plate center in the x-direction by 130 mm (about 3.469 λ). The dipole

wire structure itself is not described in the reference, but it is taken to be a

right circular cylinder with radius 0.75 mm. The dipole and plate are both
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modeled with a PEC boundary condition.

The antenna’s installed far-field patterns are computed using multiple al-

gorithms. The validation case “EFIE:EFIE” applies EFIE to both the dipole

and the square plate. The verification case “EPA:Direct PO” applies EPA

(enclosing the dipole modeled with EFIE) to the source antenna and applies

PO to the plate without using the Schur complement approach to the PO

hybrid. The test case “EPA:Schur PO” applies the same EPA model to the

antenna and applies the Schur complement modified PO hybrid to the plate.

The far-field relative electric field intensity for the validation, verification,

and test cases are plotted in the horizontal (z = 0) plane in Figure 4.3 and in

the vertical (y = 0) plane in Figure 4.4. The computed results for all three

algorithms show strong agreement with both published UTD and measured

data [28, Figs. 8(a)-(b)]. The “EFIE:EFIE” algorithm validated here is used

as the reference data for the remaining scenarios, for which external data is

not available. The agreement between the EFIE and EPA-PO hybrid calcu-

lations indicates that the PO calculations are an accurate approximation to

the fields on the plate. The overlaid plots of the Direct PO and Schur PO

results indicate that the two methods are computing similar solutions.

4.5.2 Dipole-Dihedral Case

The Dipole-Plate validation case is extended by adding a much larger rect-

angular plate to the scenario and observing the effects on the antenna pat-

tern. The perpendicular plates form a dihedral, leading to a shorthand name

“Dipole-Dihedral”. The added plate is a rectangle parallel to the z = 0 plane

and spanning 40 λ in the x-direction and 30 λ in the y-direction. Relative

to the center of the small plate, the large plate is offset in the x- and y-

directions by 10 λ and 7.5 λ, respectively. The z-direction offset is 5 λ below

the bottom edge of the small plate. The large plate is also modeled using a

PEC boundary condition. This scenario is visualized in Figure 4.5.

The antenna’s installed far-field patterns are computed using multiple algo-

rithms. The validation case “EFIE:EFIE” applies EFIE to both the dipole

and dihedral plates. The verification case “EPA:Direct PO” applies EPA

(enclosing the dipole modeled with EFIE) to the source antenna and applies

PO to the dihedral plates without using the Schur complement approach
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to the PO hybrid. The test case “EPA:Schur PO” applies the same EPA

model to the antenna, applies Direct PO to the small plate, and applies the

Schur-complement modified PO hybrid to the large plate. The far-field rela-

tive electric field intensity for the validation, verification, and test cases are

plotted in the horizontal (z = 0) plane in Figure 4.6, and in the vertical

(y = 0 and x = 0) planes in Figures 4.7 and 4.8. The presence of two PO-

modeled plates necessitates MLFMA-accelerated interactions between the

antenna and the plates. The computed results for both PO algorithms agree

with reference EFIE data. The overlaid plots of Direct PO and Schur PO

results indicate that the two methods are computing similar solutions.

4.5.3 Dipole-Curved-Plate Case

The Dipole-Plate validation case is altered by replacing the vertical plate

with a much larger horizontal curved plate and observing the effects on the

antenna pattern. The perpendicular plates form a dihedral, leading to a

shorthand name “Dipole-Curved-Plate”.

The curved plate is a quarter section of a right circular cylinder perpendic-

ular to the x = 0 plane and spanning 40 λ in the x-direction. The cylinder

radius in the Y Z plane is 30 λ, and the quarter section is oriented so that the

mid-point has a surface normal vector pointing in the z > 0 direction. The

quarter cylinder is offset from the dipole as illustrated in Figure 4.9. This ge-

ometry exercises the PO blockage check as part of the curved plate is blocked

from the antenna. The lack of surface wave support and PO shadow bound-

ary current truncation error is expected to cause increased error relative to

the flat plate cases considered.

The antenna’s installed far-field patterns are computed using multiple al-

gorithms. The validation case “EFIE:EFIE” applies EFIE to both the dipole

and curved plate. The verification case “EPA:Direct PO” applies EPA (en-

closing the dipole modeled with EFIE) to the source antenna and applies

PO to the curved plate without using the Schur complement approach to the

PO hybrid. The test case “EPA:Schur PO” applies the same EPA model to

the antenna and applies the Schur-complement modified PO hybrid to the

curved plate. The far-field relative electric field intensities for the validation,

verification, and test cases are plotted in the horizontal (z = 0) plane in
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Figure 4.10, and in the vertical (y = 0 and z = 0) planes in Figures 4.11

and 4.12. The computed results for both PO algorithms generally agree with

reference EFIE data, with less-reliable agreement in the far-field region shad-

owed by the curved plate. The overlaid plots of Direct PO and Schur PO

results indicates that the two methods are computing similar solutions.

4.6 Conclusions

The Schur PO algorithm is demonstrated to correctly compute the hybridiza-

tion of EPA and PO in radiative coupling cases. The algorithm computes

solutions over other domains radiating in the presence of the Schur comple-

ment PO domain. This shrinks the solution size for the primary solver at

the expense of an additional (sparse) Gramian solution over the PO domain.

This added expense is mitigated by the physically intuitive equation struc-

ture obtained, which will support alternative scattering operators with the

same operator domain and range interfaces as the Schur complement without

the cost of the sparse Gramian solution. Moreover, the obtained equations

reveal the opportunity for parallel execution discussed next.
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Figure 4.1: Plane wave reflection and physically equivalent surface current
model for two parallel PEC planes separated by a finite distance.

Figure 4.2: Half-wavelength dipole parallel to square plate following [28,
Fig. 8].
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Figure 4.3: Horizontal plane (z = 0) cut of far-field intensity for a
half-wavelength dipole parallel to a square plate.
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Figure 4.4: Vertical plane (y = 0) cut of far-field intensity for a
half-wavelength dipole parallel to a square plate.
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Figure 4.5: Half-wavelength dipole parallel to square plate and
perpendicular to a large rectangular plate.
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Figure 4.6: Horizontal plane (z = 0) cut of far-field intensity for a
half-wavelength dipole parallel to a square plate and perpendicular to a
large rectangular plate.
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Figure 4.7: Vertical plane (y = 0) cut of far-field intensity for a
half-wavelength dipole parallel to a square plate and perpendicular to a
large rectangular plate.
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Figure 4.8: Vertical plane (x = 0) cut of far-field intensity for a
half-wavelength dipole parallel to a square plate and perpendicular to a
large rectangular plate.
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Figure 4.9: Half-wavelength dipole above a large curved plate; the
quadrilateral outline is the projection of the curved plate outline into the
z = 0 plane.
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Figure 4.10: Horizontal plane (z = 0) cut of far-field intensity for a
half-wavelength dipole above a large curved plate.
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Figure 4.11: Vertical plane (y = 0) cut of far-field intensity for a
half-wavelength dipole above a large curved plate.
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Figure 4.12: Vertical plane (x = 0) cut of far-field intensity for a
half-wavelength dipole above a large curved plate.
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CHAPTER 5

PARALLEL CALCULATIONS OF EPA-PO

HYBRID SOLUTIONS

5.1 Introduction

The core idea of the Schur complement EPA-PO hybridization developed in

Chapter 4 is the exchange of solving for the PO current sample coefficients

for a somewhat more complicated linear system. This method, like all other

computational methods, can be evaluated in light of mapping computational

needs to available computational resources for ever-larger problems. This

characteristic is broadly referred to as a method’s “parallel scaling” as applied

to its memory-utilization or time-consumption with respect to the problem

size and computational resources deployed. The parallel scaling is driven by

both the underlying algorithms and the deployed computational resources.

Integral equation based approaches, including the EPA-PO hybrid devel-

oped in Chapter 4, are particularly challenging because N basis functions

interact with N test functions to yield a square dense system. The accelera-

tion of MVM operations reduces the computational and memory costs of each

solver iteration to O (N logN) for discretized SIEs, but as objects increase

in electrical size scaling kd, the number of unknowns scales per Eq. (4.1)

as N ∝ (kd)2. The computational storage and time complexity scales per

Eq. (4.2) as N logN ∝ (kd)2 log (kd). The expense of such algorithms can

quickly overwhelm a single computer’s fixed resources. Therefore algorithms

must be chosen judiciously to adaptively scale the computational resources

used with the problem under study. In the context of parallel computing

this is called “weak scaling,” and the degree to which a problem of fixed size

reduces time requirements with increased resources is the “strong scaling”

[29, 30]. The community has already developed suitable parallel distribution

of the homogeneous medium MLFMA workload [31, 32]. The purpose of the

approach implemented here is to apply distributed-memory parallel compu-
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tations to the (inhomogeneous medium) Schur complement EPA-PO hybrid

system. Because the PO scattering calculation is highly parallel-scalable,

this offers an opportunity to transfer the computational burden away from

an MLFMA-specific parallelization strategy to leverage readily parallelizable

calculations.

Linearity and local scattering enable a simple use of parallel calculations

for the EPA-PO hybrid. The system of equations is linear per the premises

underlying Eqs. (2.3) and (2.4); these premises follow through to the continu-

ous and discretized SIE operators in Eqs. (3.50) and (4.5), respectively. The

SIE operators’ contributions to each observed function weight are the linear

sum of contributions due to each source function, which facilitates term-wise

analysis of the MVP. The PO tangent plane approximation for curved sur-

faces is a point-wise local approximation of the object’s scattering operator

per Section 4.3. The equivalent currents characterizing the scattered fields

are therefore validly partitioned into separate geometric regions which ra-

diate independently. This combination of linear operators and point-wise

analysis provides flexibility in composing parallel evaluation strategies.

To support arbitrarily large platform problems (scalable to the available

HPC resources distributed across P compute nodes), we seek to split the

platform calculations across distributed computational resources. The anal-

ysis begins by exploring theoretical parallel execution of the constituent op-

erations. Then the implemented solver is documented in its execution on

an HPC cluster using various node counts. Lastly, opportunities for future

improvement are described.

5.2 Sequential and Parallel Calculations

The iterative solution of a linear system necessitates some sequencing to

the calculations, e.g. the solution update for iteration n follows iterations 1

through n− 1 where n is in the set of natural numbers (positive integers) N.

Operations within each iteration may be partitioned into tasks with unique

input variables and output results so that they may be partitioned into mul-

tiple tasks which may be evaluated with zero required intercommunication

between units performing tasks; compute resources must be synchronized

(thus requiring communication) between rounds of these tasks, i.e. at the
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end of one step of the sequence. The consequence of such a task partitioning

is that

• multiple independent tasks may be evaluated asynchronously on mul-

tiple cores to reduce the time a user waits for a simulation to complete,

and

• more computing resources may be added to support analysis of prob-

lems of increasing size.

“Embarrassingly parallel” calculations are those which are uniquely split (in-

cluding intermediate results) across computing resources and therefore exe-

cute on assigned resources with high parallel efficiency. Such embarrassingly

parallel problems are targets for parallel execution partitioning because they

minimize the overhead required for communication between processors.

The required operations for the EPA-PO hybrid will be discussed next in

the context of supporting parallel evaluations. Parallel execution results will

be presented for example problems to verify the suitability of the proposed

parallelization strategy as applied to high-performance computing (HPC)

hardware. For the purposes of this work, HPC hardware is defined to be

a group of P ∈ N distributed nodes with an internode network which is

relatively expensive (in time) to use in comparison to the intranode connec-

tion among p ∈ N local cores per node. Increasing P by one adds both

distributed memory and p cores. Large values of P support problems with

large distributed parallel components, provided the chosen algorithm is im-

plemented in a manner to exploit hybrid distributed/shared-memory parallel

execution.

Calculations may be grouped by how they are mapped to nodes and cores

within HPC systems with the aforementioned P nodes each with p cores.

It is assumed here that a calculation’s evaluation on one node takes time T

and memory M ; the time for completion on all nodes and the total memory

required across all nodes are distinguished in this taxonomy.

• Sequential calculations are evaluated in the same way on each node.

This requires O (T ) time and O (MP ) total memory usage across all

nodes.

• Distributed-memory parallel calculations are evaluated differently on
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each node. Distributed parallel efficiency eP implies that the required

time is O (T/PeP ). The memory used is O (M).

• Shared-memory parallel calculations are evaluated in the same way

on each node but leverage multiple cores per node. Assuming local

parallel efficiency ep, the required time for the shared-memory parallel

execution is O (T/pep), and the memory used is O (MP ).

• Hybrid parallel calculations are evaluated differently on each node and

leverage multiple cores per node. Shared-memory parallel efficiency ep

and distributed-memory parallel efficiency eP are both utilized in hy-

brid parallelism. The required time is O (T/pepPeP ), and the memory

used is O (M).

The calculations to be evaluated next are categorized according to their des-

ignated parallel execution mode using these definitions.

In this work, a data-parallel paradigm is all parallel tasks. This implies

that with the exception of file writing, all P distributed processing nodes ex-

ecute the operations coordinating via the message passing interface (MPI).

Each distributed process computes an independent contribution to the final

result utilizing up to p local task execution units, or cores. The local tasks

are orchestrated using the OpenMP model. Both of these are implemented

in conjunction with the open-source Trilinos [33] software family’s Tpetra

[34] and Kokkos [35] libraries. Tpetra supports developing abstract opera-

tors with distinct MPI-distributed domain and range spaces, and provides

supporting data structures to support distributed linear algebra. Kokkos

maps computations to abstracted shared-memory parallel computing hard-

ware, including multiple multicore processors using OpenMP among other

possible methods. These packages provide the foundation of developing a

hybrid parallel linear problem solver.

5.2.1 Hybrid Parallel Calculations

A node’s assigned computations are comprised of cascaded compound oper-

ators. Abstract operations such as block operators and composite “A X Plus

Y” (or “AXPY”) operators comprise the system structure, and each of these

is built upon concrete instances of “CrsMatrix” objects. These CrsMatrix
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instances provide the core MVM operations within the MLFMA implemen-

tation, and they are implemented using hybrid-memory parallel execution

provided by the underlying Tpetra/Kokkos combination. The population of

the CrsMatrix instances is also performed by applying the Kokkos library to

a data-parallel evaluation of the sparse matrix rows filled because each row’s

operations differ principally in the function indices used. The subdivided

operations are of sufficient scale that the portions allocated to each node ef-

ficiently execute in shared-memory parallel operation. Ubiquitous multicore

processors and increasingly common many-core accelerators dictate that a

hybrid distributed- and shared-memory parallel evaluation mode is funda-

mental to an effective parallel implementation. The distributed-parallel op-

erations discussed above are implemented to function in a hybrid parallel

manner.

5.2.2 Shared-Memory Parallel Calculations

The number of matrix rows to be filled in each CrsMatrix is generally much

greater than the number of local processors p. Consequently, data-parallel

analysis is an effective strategy for evaluating the elements of the comprising

matrices: Gramian matrices, the FMM-voxel near-field terms, the FMM-

voxel plane wave patterns, the local interpolators, the O2O propagators, the

O2I plane wave translators, the local anterpolators, and the I2I propaga-

tors are all populated in this way to leverage shared-memory parallelism at

initialization. Once these matrices are populated, they automatically gain

shared memory parallel execution during MVM operations as provided by

the Tpetra CrsMatrix data structure.

5.2.3 Distributed-Memory Parallel Calculations

The largest scale operations in the solution of the linear systems are orches-

trated to leverage independent calculations. These operations are

• the governing GMRES iterative solver,

• field coefficient normalization with Gramians,

• the per-MVM data flow management, and
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• MLFMA-accelerated source-to-field MVMs.

They are explored here in light of their time and memory requirements in a

distributed-memory parallel execution.

Executing the GMRES [13] algorithm on the composed linear system is

the coarsest level operation executed. It is implemented within the Trilinos

Belos library [36], and relies on an abstract MVM operator interface. The

composed linear system is implemented to satisfy this interface. Beyond the

expense of the MVM it invokes, GMRES itself hasO (N) storage requirement

split across all distributed nodes.

Projecting fields onto testing functions is a key element of forming dis-

cretized solutions via the MoM. This projection is readily split across many

distributed-memory parallel nodes. To obtain the basis function coefficients

corresponding to the tested values, the effect of a Gramian MVM must be

inverted. This may be performed by either iteratively solving every time

such coefficients are needed during the simulation, or by direct solution. In

this work, the Gramian is inverted by applying a sparse LU through the

SuperLU DIST library [16] via the Trilinos Amesos2 system of sparse direct

solvers [36].

Within each MVM required by the iterative solver, communication op-

erations are undertaken. To facilitate the iterative solution process, the

operator domain and range are each a non-replicated distribution of basis

and test functions, respectively. Because the MLFMA accelerates a dense

matrix-vector multiply, this necessitates some degree of communication. The

MLFMA operator domain and range functions are distributed by partitioning

MLFMA voxels across the P distributed nodes, but each node’s implemen-

tation of the operator requires a complete copy of the domain coefficients.

Therefore the O (N) coefficients are gathered from all nodes to all nodes,

sometimes called an “allgather” operation, in O (logP ) communication steps

among the nodes for a total time of O (N logP ).

The MLFMA-accelerated integral operators defining radiation between do-

mains incur a large expense in the overall simulation. Both constructing an

MLFMA abstract operator, discussed in Section 5.3, and the evaluation of

the MVM using the same operator are amenable to distributed parallel eval-

uation. The calculations to be undertaken may be partitioned using the

operator domain and range function voxels, the k-space quantities, or a com-
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bination of the two; strategies are summarized in [31]. Motivated by the

Schur complement EPA-PO hybrid, in this work the MLFMA operator is

partitioned across nodes by distributing the coordinate space voxels. The

domain vector is copied to all nodes so that each node has all the inputs

required to completely calculate a unique subset of the range vectors. Be-

cause the domain vector is replicated across all nodes, the usual O (N logN)

cost is incurred on each node. The range vector is partitioned across the

cluster with time and memory usage O ((N/P ) (logN − logP )). Clearly, the

replicated work on the domain side dominates the MLFMA MVM expenses,

so the total memory used across the entire cluster is O (PN logN).

Finally, some distributed memory calculations are reproduced on each node

in an inconsistent manner and are implemented as needed on each distributed

node as if they are shared-memory parallel calculations. Such calculations

represent additional computational burden for the completed system while

mitigating the need for additional communication between nodes, thereby

trading the time expense of computing these values to avoid the communi-

cation expense of transmitting them between nodes. An example of this is

found in the MLFMA translator operator construction. The definition of

µ, α, and ν matrices consists largely of relative calculations which benefit

greatly from cached calculations easily available in shared-memory paral-

lel calculations but dependent upon expensive internode communications in

distributed-memory parallel implementations. This particular problem has

been addressed in the literature [32], but for the purposes of this work, the

simpler spatial-partitioning-only is accepted on each node because it maps

well to the proposed partitioning of the Schur complement EPA-PO hybrid.

5.3 MLFMA Operations

The core calculation of evaluating the MVM of Eqs. (3.50) and (4.5) is the ra-

diation calculations accelerated by MLFMA. Consequently, MLFMA’s struc-

ture will inform the choices to be made regarding parallel calculations. The

MLFMA abstract MVM operator is defined by composing sequences of sparse

matrix operations. Relative to the number of unknowns in a problem N , the

composition of the sparse matrices is an O (N logN) computational time

and storage cost to be incurred before invoking the iterative solver. Within
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each iteration the MVM is another O (N logN) computational time expense.

These two expenses are naturally connected, so the initial composition will

use the same distributed parallelism strategy as the per-iteration MVM eval-

uation. Before examining parallelization strategies, the core structure of an

MLFMA operator will be illustrated. This structure motivates the choices to

be made in parallelizing the Schur complement EPA-PO system of equations.

5.3.1 MLFMA Data Structure Illustration

These operations are illustrated without loss of generality by considering an

arbitrary integral operator for a case with geometry partitioned at MLFMA

level three. Such a two-dimensional case’s second and third level filled voxels

are shaded in Figures 5.1a and 5.1b, respectively. In these illustrations each

tile is labeled A : BC with A ∈ {2, 3} being the tree subdivision count

and B,C ∈ {1, . . . , 8} being the row and column indices of the subdivided

tiles, respectively. The steps of defining an MLFMA operator for the voxel-

partitioned functions are broadly

• computing block-wise plane wave pattern matrices for basis and test

functions,

• computing block-to-block propagators between levels,

• applying interpolation and anterpolation matrices with propagator ma-

trices,

• computing near-term radiation between coordinate space functions,

and

• constructing block abstract operators.

Using an abstract operatorA with source function polarization f
(

k̂l

)

, obser-

vation function polarization g
(

k̂l

)

, interpolator γi

(

k̂l, k̂l′
)

, and anterpolator
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γa

(

k̂l, k̂l′
)

, one defines the key block-wise operators as

a, b ∈ {3 : 23, 3 : 24, 3 : 56, 3 : 57} , (5.1)
[

β3

]

lb
=

∫∫

Sb

d2r f
(

k̂l

)

exp
(

−ikk̂l · rbm′

)

, (5.2)

[

µa,b

]

ll′
= γi

(

k̂l, k̂l′
)

exp
(

ikk̂l · (ra − rb)
)

, (5.3)

[αa,b]ll′ = δll′α
(

kk̂l, ra − rb

)

, (5.4)

[νa,b]ll′ = γa

(

k̂l, k̂l′
)

exp
(

ikk̂l · (ra − rb)
)

, (5.5)
[

β
⊺

3

]

al
=

∫∫

Sa

d2r g
(

k̂l

)

exp
(

ikk̂l · ram′

)

. (5.6)

Owing to the Kronecker delta function, the αa,b operator is diagonal in the

space of plane waves. Because local interpolation/anterpolation is used, the

µa,b and νa,b operators are sparse. The β operators are dense in their own

blocks of coordinate space function and plane waves. These block operators

are readily assembled into a greater system of block operators with many

zero blocks

µ2,3 =







µ2:11,3:23 0 0 0

0 µ2:12,3:24 0 0

0 0 µ2:23,3:56 µ2:23,3:57






(5.7)

α3 =













0 0 α3:23,3:56 α3:23,3:57

0 0 α3:24,3:56 α3:24,3:57

α3:56,3:23 α3:56,3:24 0 0

α3:57,3:23 α3:57,3:24 0 0













(5.8)

ν32 =













ν3:23,2:11 0 0

0 ν3:24,2:12 0

0 0 ν3:56,2:23

0 0 ν3:57,2:23













(5.9)

α2 =







0 0 α2:11,2:23

0 0 0

α2:23,2:11 0 0






(5.10)
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A
far

3 = β
⊺

3 · (α3 + ν32 ·α2 · µ23) · β3 (5.11)

A
near

3 =













A3:23,3:23 A3:23,3:24 0 0

A3:24,3:23 A3:24,3:24 0 0

0 0 A3:56,3:56 A3:56,3:57

0 0 A3:57,3:56 A3:57,3:57













(5.12)

A3 = A
near

3 +A
far

3 (5.13)

This case is a simple example illustrating the nature of the problem under

study; it is discussed without loss of generality to larger objects calling for

larger numbers of MLFMA octree levels. The completed operator is demon-

strated to be a cascaded multiply-add operation of abstract block operators

with many zero blocks. Parallel evaluation of an MVM will depend upon

the distribution of the responsibility computing coordinate-space data (split

by voxel) and k-space data for the required plane waves (radiating between

voxels).

5.3.2 MLFMA Parallel Evaluation

The abstract MLFMA operator is constructed independently on parallel com-

puting hardware. The parallel evaluation is performed by using the con-

structed operators in-place on the resources utilized to construct them. If the

responsibility for particular voxels’ effects is distributed across parallel com-

puting resources, then the fill and MVM operations are readily distributed in

the same way. Every row output requires all row inputs, so the distributed

responsibility requires serialization of the set of input coefficients.

5.4 Schur Complement EPA-PO Hybrid

The T SPO T operator of Eq. (4.5) is an independent bistatic PO simula-

tion relating domain-to-range voxel plane wave translators. The number of

local PO scattering calculations is both the dominant physical effect and a

candidate for low-communication parallel evaluation if the EPA-modeled an-

tenna region geometric feature scale dEPA is designated such that the Schur
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complement PO-modeled size scale dPO satisfies

dEPA ≪ dPO. (5.14)

Consequently the number of samples on the EPA-modeled region NEPA =

O
(

(kdEPA)
2) is overwhelmed by the sample count on the Schur complement

PO-modeled NPO = O
(

(kdPO)
2). Therefore by inspecting Eq. (4.5), one

readily sees that the largest part of any MVM is computing fields radiated

to and from the NPO functions. This drives the strategy for distributing the

workload across distributed parallel resources.

To support arbitrarily large platform problems (scalable to the available

HPC resources distributed across P compute nodes), the chosen approach is

to split the platform calculations across distributed computational resources

for efficient MLFMA and PO calculations. The Schur complement hybrid

partitions the PO basis functions uniquely across each of the compute nodes

for O (NPO/P ) PO functions per node. To minimize repeated MLFMA cal-

culations, the MLFMA tree is split across the distributed-memory nodes at

the coarsest level possible; for load-balancing purposes, the tree split was

performed at the level at which each node holds at least two unique voxels

assigned to each node. The mean number of basis functions per node is then

Nmean = NEPA +
NPO

P
. (5.15)

The principal costs of parallel execution of the Schur complement hybrid are

driven by the MLFMA radiation to/from the PO surface and normalizing the

PO coefficients using the factorized Gramian matrix. These are considered

next.

The per-node computational and memory complexity of MLFMA radiation

for the PO surface on each node is reduced to O (Nmean logNmean). In the

asymptotic limit of increasing P , this reaches its minimum when NPO/P

approaches NEPA. This implies a shared-memory parallel O (NEPA logNEPA)

computational and memory expense on each of the P nodes.

Because the PO scattering in Eq. (4.4) is a scaled identity, the scattering

operator itself is local. However, the discretized form interfaces with the

MLFMA translators, which require normalization of tested functions by in-

verting a Gramian for functions on the PO surface. The distributed Gramian
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for the entire Schur complement PO surface is LU factorized using the Su-

perLU DIST library [16] within the Trilinos Amesos2 library [36]. Assuming

the number of nonzeros in the matrix is proportional to the number of rows

or columns N , SuperLU DIST provides O (N2 logN) serial computational

time complexity; the scaling of time complexity for a variety of problems has

been reported to be approximately O
(

N4/3
)

in practice [16, Fig. 2]. The

library also demonstrated high computational efficiency for large numbers of

distributed processors when applied to a discretized Laplacian (efficiency fell

to approximately 50 percent when split across 128 distributed processors [16,

Table IX]), suggesting that factorizing the Gramian matrix will also exhibit

suitable weak parallel scaling of computational time. The total distributed

memory required for the sparse solver is demonstrated for several cases to

scale with the parallel processor count P as O
(√

P
)

for P = 2n, n ∈ {1, 2, 3}
[16, Table VIII], so the expected memory expense for the sparse solver por-

tion of the solver is O
(

NPO

√
P
)

.

5.5 Results

The parallel scaling performance of the chosen implementation is evaluated

by executing example cases using a cluster of nodes running Scientific Linux

6.1 as the operating system. Each node provided a pair of Intel X5650 pro-

cessors (six cores per processor) operating between 2.66 and 3.06 GHz and

with varying amounts of memory (12 GB minimum) per node. The com-

pute nodes were connected using “quad data rate” (QDR) InfiniBand and

the distributed-memory parallel calculations are orchestrated using the MPI

standard implemented by OpenMPI 2.0.1. Distributed-memory and shared-

memory parallel calculations are both implemented using Tpetra and Kokkos

libraries, respectively, provided by Trilinos 12.10.1. The shared-memory par-

allel calculations are performed using the OpenMP module within Kokkos

library. The research code and performance-critical libraries were compiled

using the GNU Compiler Collection (GCC) 6.2.0.

The cases analyzed are the Dipole-Dihedral and Dipole-Curved-Plate cases

analyzed in Section 4.5. Each was run three times using 1 ≤ P ≤ 12

distributed-memory nodes and p = 12 shared-memory parallel (OpenMP)

threads per node. The times reported are the “wall clock” time in seconds.
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The node-parallel efficiency is computed from the times and node counts as

the ratio of the single node run time to the observed run time scaled by

the node count. The memory usage is that reported by the TORQUE job

queuing system upon job completion. All jobs were run on nodes of sufficient

memory to avoid forcing the node to swap virtual memory between memory

and disk.

5.5.1 Dipole-Dihedral

The Dipole-Dihedral case uses 2,136 functions on the EPA surface and 4,332

functions on the smaller PEC plate modeled with PO. The Schur comple-

ment PO model of the large plate uses 229,272 functions. The run time and

node-parallel efficiency of the solver process are illustrated in Figures 5.2

and 5.3, respectively. The efficiency is observed to be approximately 20 to

30 percent over the full range of nodes. The iterative solver’s time spent

calling the MVM operation is illustrated in Figure 5.4, and the node-parallel

efficiency is illustrated in Figure 5.5. The MVM portion of the simulation

is less efficient than the simulation in total, which is expected because the

MVM includes most of the required communication among the nodes and

duplicated MLFMA calculations. The increase in memory usage with re-

spect to number of distributed processors in Figure 5.6 illustrates that the

memory consumption is approximately linear with respect to node count P ;

the per-node memory burden is approximately 1.5 GB. The node-parallel

efficiency is relatively low, but the memory scaling supports distributing the

problem across multiple nodes with less memory than that required for the

single node execution so that a distributed-memory parallel HPC system can

solve large problems by utilizing more nodes.

5.5.2 Dipole-Curved-Plate

The Dipole-Curved-Plate case uses 2,136 functions on the EPA surface. The

Schur complement PO model of the curved plate uses 361,915 functions for

the PEC PO surface. The run time and node-parallel efficiency of the solver

process are illustrated in Figures 5.7 and 5.8, respectively. The efficiency is

observed to be approximately 40 to 70 percent over the full range of nodes.
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The iterative solver’s time spent calling the MVM operation is illustrated

in Figure 5.9, and the node-parallel efficiency is illustrated in Figure 5.10.

The MVM portion of the simulation is less efficient than the simulation in

whole, which is expected because the MVM includes most of the required

communication among the nodes. The increase in memory usage with respect

to number of distributed processors in Figure 5.11 illustrates that the memory

consumption is approximately linear with respect to node count P ; the per-

node memory burden is approximately 1.2 GB. The memory scaling supports

distributing the problem across multiple nodes with less memory than that

required for the single node execution so that a distributed-memory parallel

HPC system can solve large problems by utilizing more nodes.

5.5.3 Analysis

The intent of the parallel execution strategy is to distribute the PO cal-

culations for the single largest part of the model. Consequently, the ra-

tio of high-parallel-efficiency Schur complement unknowns relative to lower-

parallel-efficiency unknowns drives the parallel scaling. Therefore, the paral-

lel efficiency is expected to be lower for the Dipole-Dihedral than the Dipole-

Curved-Plate because the Schur complement region is a lower fraction of

unknowns in the former case than in the latter. The increased memory cost

per node in the Dipole-Dihedral case is due to the additional plate included

in the scene, which is included in the replicated calculations on every node.

5.6 Conclusions

The EPA-PO hybrid is observed to be effectively distributed across nodes

of an HPC cluster system. The workload is distributed by partitioning the

Schur complement EPA-PO hybrid geometry across nodes; the MLFMA oc-

tree voxels are the fundamental mechanism of partitioning the calculations

for both the MLFMA radiation and LU factorizing the Gramian on the sur-

face. In the presented cases, it was observed that the parallel efficiency and

memory scaling were such that distributed-parallel HPC nodes were added

to accumulate sufficient memory to execute the scenarios with acceptable

performance.
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The parallel efficiency of the implemented method is observed in a con-

sistent range as the node count P varies, and the total memory required

increases at a problem-dependent rate per node added to a simulation. Con-

sequently, it is concluded that the calculation dominating the simulation time

appears to be the MLFMA implementation instead of the sparse LU factor-

ization. This suggests that further improving the MLFMA implementation

for better load balancing is a viable path forward to speeding the parallel

execution of the EPA-PO hybrid. Alternatively, the high-frequency asymp-

totic model applied to the EPA-PO hybrid may be exploited to reduce the

number of plane waves utilized.

5.7 Figures
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(a) Two-level MLFMA.
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(b) Three-level MLFMA.

Figure 5.1: Two-dimensional illustration of MLFMA filled voxels tracking
with unique voxel identifiers.
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Figure 5.2: Wall clock time spent solving EPA-PO hybrid for a
half-wavelength dipole parallel to a square plate and perpendicular to a
large rectangular plate.
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Figure 5.3: Node-parallel efficiency solving EPA-PO hybrid for a
half-wavelength dipole parallel to a square plate and perpendicular to a
large rectangular plate.
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Figure 5.4: Wall clock time spent performing MVM while solving EPA-PO
hybrid for a half-wavelength dipole parallel to a square plate and
perpendicular to a large rectangular plate.
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Figure 5.5: Node-parallel efficiency of MVM while solving EPA-PO hybrid
for a half-wavelength dipole parallel to a square plate and perpendicular to
a large rectangular plate.
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Figure 5.6: Memory usage reported after solving EPA-PO hybrid for a
half-wavelength dipole parallel to a square plate and perpendicular to a
large rectangular plate.
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Figure 5.7: Wall clock time spent solving EPA-PO hybrid for a
half-wavelength dipole above a large curved plate.
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Figure 5.8: Node-parallel efficiency solving EPA-PO hybrid for a
half-wavelength dipole above a large curved plate.
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Figure 5.9: Wall clock time spent performing MVM while solving EPA-PO
hybrid for a half-wavelength dipole above a large curved plate.
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Figure 5.10: Node-parallel efficiency of MVM while solving EPA-PO
hybrid for a half-wavelength dipole above a large curved plate.
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Figure 5.11: Memory usage reported after solving EPA-PO hybrid for a
half-wavelength dipole above a large curved plate.
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CHAPTER 6

BEAM FORMATION USING PLANE

WAVES

6.1 Introduction

The core of the integral equations studied to this point is the discretiza-

tion by MoM of linear operators convolving a Green’s function with solution

sources. In all such cases, the scalar Green’s function is the core of the

calculation. In the previously developed Schur-complement-based EPA-PO

hybrid, MLFMA was applied to all radiation calculations to obtain fast MVM

operations, but this same radiation to/from PO surfaces remains the domi-

nant calculation. Because MLFMA requires a k-space surface integral over

the Ewald sphere, and the integral kernel function order scales with the elec-

trical size of the objects analyzed, electrically large objects are expected to

involve a large number of plane waves. Historically effective high-frequency

asymptotic models lead one to expect the radiation between electrically large

components to be dominated by ray-physics behavior. Such propagation cor-

responds to select narrow sectors of integration on the Ewald sphere in an

FMM analysis, and thus a reduced computational workload for the dominant

calculation of radiation. A more efficient EPA-PO hybrid may leverage the

naturally expected beam formation physics to reduce the workload of the

k-space integral.

In this chapter, a method of analyzing the FMM translator is developed

which reveals the relationship between objects’ electrical sizes, their sepa-

ration distances, and asymptotic scaling of operator numerical rank for in-

creasing sizes. The FMM (and by extension MLFMA) provides a robust ac-

celerated radiation MVM by diagonalizing the Green’s function in the space

of plane waves. Recent observation of low matrix rank in discretized radi-

ation operators [37] raises questions regarding physical mechanisms driving

the rank deficiency; the FMM-diagonalized translator provides a mechanism

62



for such an investigation. Because the time-harmonic electromagnetic vec-

tor case is a straightforward scaling of polarization effects onto the scalar

case, the scalar Green’s function is analyzed without loss of generality. The

results obtained indicate mechanisms for source and observation pattern-

independent reduced operator rank relative to conventional FMM operators

for electrically large translation operators for electrically large objects.

6.2 Numerical Analysis of the Green’s Function’s Rank

Using wavenumber k, surfaces of characteristic scale d require O
(

(kd)2
)

sam-

ples in coordinate space when discretized by basis and testing functions, as-

suming a uniform sampling rate in a linear direction. Thus a discretized

translation operator T between any two such objects satisfies

rank
(

T
)

≤ O
(

(kd)2
)

. (6.1)

As an example of such analysis, one may consider the case where both

geometries are spheres of identical diameter d and center-to-center separation

2d. This case is diagrammed in Figure 6.1 showing the voxels around each

sphere and the buffer voxel between them. Because of the surface equivalence

principle discussed previously, this case is explored without loss of generality

to other shapes within closed surfaces. As in the analysis of the same scalar

case in [37, Sect. IV.D], the translator is discretized using Dirac delta basis

and test functions. Consequently, the translator to observation surface A’s

function index i from source surface B’s function index j is [37, Eq.(72)]

[

T AB

]

ij
=

eik|ri−rj |

|ri − rj|
. (6.2)

This problem supports a simple implementation for numerical study using

both low-rank approximation and FMM-based methods.

6.2.1 SVD Analysis of Translator

The SVD for a complex matrix relating translation between functions in

voxels indexed a and b, T ab ∈ C
m×n, requires that there exist unitary matrices
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U and V such that [12, Sect. 2.5.6]

U
⊺

T V = diag (σ1, ..., σp) ∈ R
m×n. (6.3)

Alternatively, one may restate this as

U diag (σ1, ..., σp) V
⊺

= T ∈ C
m×n. (6.4)

The computation of the SVD of Eq. (6.2) is a numerical exercise performed

with a “black box” procedure, but the low rank approximants are readily

used to reconstitute a facsimile of the original dense matrix. There is little

physical insight gained from this procedure, except to note that there are

orthonormal domain function modes which will be observed as range function

modes with positive definite eigenvalues.

The operator rank scaling with size is evaluated by considering a variety of

object scales and their computed numerical rank. Paired spheres of diameter

1, 2, 4, 8, 16, and 32 λ are sampled at a linear sample distance of approx-

imately λ/2 with respective per-sphere sample counts of 18, 67, 283, 900,

3,617, and 14,565. The operator rank is determined by using the singular

value decomposition (SVD) to determine the number of eigenvalues greater

than a specified tolerance [12, Sect. 2.5.5]. The ranks with respect to partic-

ular tolerances are shown in Figure 6.2, and agree with [37, Fig. 11(b)]. The

linear increase in operator rank with respect to geometry feature scale means

that as the matrix dimension increases quadratically with feature size, the

matrix has a quadratically increasing number of effectively zero eigenvalues.

This effect was documented for other three-dimensional object simulations

using the ACA+ algorithm for low-rank factorization and SVD for rank anal-

ysis [37, Sect. IV.E].
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6.2.2 FMM Diagonalized Translator

The FMM diagonalization of Eq. (6.2) is expressed as

T ab = β
⊺

aαab βb, (6.5)
[

β
⊺

a

]

jl
= exp

(

ikk̂l · rja
)

, (6.6)

[

βb
]

li
= exp

(

ikk̂l · rbi
)

, (6.7)

[αab]ll′ = δll′qlα
(

kk̂l, rab

)

, (6.8)

where δll′ is the Kronecker delta function, and ql is the Ewald sphere quadra-

ture weight corresponding to plane wave direction k̂l. As both the number

of source and observation points is quadratic with respect to feature scale,

and the number of plane waves used in the Ewald sphere surface integral is

linear with respect to the number of source and observation points, one sees

that a simple analysis yields

rank
(

T ab

)

= min
(

rank
(

βa
)

, rank (αab) , rank
(

βb
))

, (6.9)

rank
(

T
)

≤ O
(

(kd)2
)

. (6.10)

This perspective on the translation operator does not immediately reveal

the source of the reduced rank, but it provides a mechanism to isolate the

physical effects in question.

A short comparison of Eqs. (6.4) and (6.5) shows that FMM points to the

contributors to reduced operator rank. Firstly, the observation and source

patterns in Eqs. (6.6) and (6.7) are not unitary and therefore have nonuniform

eigenvalue spectra. These are far-field antenna patterns which are highly

dependent upon the observation and source function positions relative to

their corresponding reference ray end points. Due to coherent field effects

these will have peaks and nulls in the k-space weighted pattern dot-products,

which will give rise to source- and observation-specific ranks. The diagonal

“O2I” translator αab weights the pattern dot-products with terms given in

Eq. (6.8). This diagonal operator is trivially subjected to SVD analysis

to reveal its rank. As the translator’s effect is independent of the source

and observation patterns, it is key to understanding the core physics under

consideration.
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6.3 FMM as Fourier-Legendre Series

The three-dimensional scalar Green’s function is expressed in terms of a

vector between two reference points and then two (shorter) vectors from the

reference points to their respective nearby original points as [15, Eq. (3.12)]

rji = rj − ri, (6.11)

= rmm′ + r∆, (6.12)

r∆ = rjm − rim′ , (6.13)

|r∆| < |rmm′ |, (6.14)

exp (ik |rji|)
|rji|

= ik

∞
∑

l=0

(−1)l (2l + 1) (6.15)

jl (k|r∆|)h(1)l (k|rmm′ |)Pl (r̂∆ · r̂mm′) .

This summation can be thought of as a truncated projection of one infinite-

length vector onto another using the function order l as the vector index.

The summation is clearly convergent, and the conditions of its truncation

are explained in [15, Sect. 3.4.1]. The vectors comprising the dot product

can be chosen in any number of ways. The physical intuition of the k-

space integral form in [15, Eqs. (3.17) and (3.18)] is utilized next to identify

physically interesting vector quantities.

For brevity, the k-space integral’s azimuthal integral may be expressed in

terms of the Bessel function J0 (·). One may restate the zenithal integral in

terms of Legendre polynomials by using the Dirac delta function

f (b) =

∫ c

a

dx f (x) δ (x− b) : a < b < c (6.16)

f (cosψ) =

∫ d+π

d

dψ sinψ (cosψ) δ (cosψ − cosψ) : d, ψ ∈ R (6.17)

Insertion of the completeness relation for Legendre polynomials,

δ (cos θk − cos θ′k) =
∞
∑

l=0

2l + 1

2
Pl (cos θk)Pl (cos θ

′
k) , (6.18)

splits the integral over the zenithal angle into two separate zenithal angle

integrals. The integrals over zenithal integrals then reveal the series repre-
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sentation of the Green’s function in terms of Legendre polynomial orders

exp (ik |rji|)
|rji|

= a · b, (6.19)

[a]l =
2l + 1

2

∫ 1

−1

dχPl (χ)α (χ) , (6.20)

=
ik

4π
il (2l + 1)h

(1)
l (k |rmm′ |) , (6.21)

[b]l =

∫ 1

−1

dχ′Pl (χ
′) exp (ikr̂mm′ · r∆χ′) (6.22)

2πJ0 (k |(I − r̂mm′ r̂mm′) · r∆| sin θ′k) ,

=

∫

d2k̂Pl

(

k̂ · r̂mm′

)

exp
(

ikk̂ · r∆
)

, (6.23)

= 4πiljl (k |r∆|)Pl (r̂∆ · r̂mm′) . (6.24)

Thus the scalar Green’s function is expressed as the dot product of two vec-

tors of infinite length. The first vector, a, is the divergent term-wise scaling

and phase shift of radiation between a source and observer voxel with respect

to the Legendre polynomial order l ≥ 0. The second vector, b, is the conver-

gent term-wise projection of local source and observer far-field patterns onto

the Legendre polynomial. The convergence of b overwhelms the divergence

of a, bounding the Legendre polynomial order and Hankel function order to

L ∈ N. The Green’s function is therefore expressed as a Fourier-Legendre

series with the form of the addition theorem in Eq. (6.16). This illustrates

a transform pair relationship between function orders and spatial represen-

tation of source and observation fields. In one view, the projection of source

and observer patterns represented as plane waves is projected onto Legendre

polynomials, and the translation between reference points is in closed-form.

The effect of propagation from one point to another with respect to the source

and observer patterns in the space of spherical modes is also revealed. By

simple inspection, Eq. (6.19) is clearly a restatement of Eq. (6.16), but the

physical role of each vector’s terms is made clearer. Owing to the clearly

convergent behavior of the vector dot product, windowing may be included

in the analysis.

An FMM (or a MLFMA) implementation requires a number of modes L

calculated by the excess bandwidth formula [15, Eq. (3.47)]; for objects of

electrical size kd > 1, L = O (kd). Moreover, the plane wave sampling across
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the Ewald sphere requires O (L2) samples for accurate integration (and inter-

polation/anterpolation). Consequently the FMM-diagonalized propagation

operator satisfies

T ab = β
⊺

aαab βb, (6.25)

rank
(

T ab

)

= min
(

rank
(

βa
)

, rank (αab) , rank
(

βb
))

, (6.26)

rank
(

T
)

≤ O
(

(kd)2
)

. (6.27)

6.4 Emergence of Ray Physics within FMM

As a translator’s source and observation groups increase in characteristic size,

the quadratic sample count on the Ewald sphere becomes overwhelmingly

large if all plane wave samples are used. Far-field analysis suggests that plane

waves paraxial to rays from the source to the observation surface’s points

should be dominant when the groups are electrically large. Direct analysis of

the diagonal αab operator does not make the ray physics sufficiently clear; the

alternate expressions for propagation explained here clarify the ray behavior.

The key observation is that the αab operator expresses radiation as a

Legendre-Fourier series. The summation index l is the Fourier mode index

into the countably infinite number of spatial modes. The plane waves’ conic

coordinate cos θ = k̂ · r̂mn′ serves as a continuous coordinate in the space of

ray cones defining the beam. The mode index and the conic coordinate are

transform pair domains. When the summation is truncated at index L, it

has the effect of a discrete Fourier transform evaluated with a rectangular

window function [38], including the side lobes due to Gibbs’ phenomenon in

conic coordinate space.

6.4.1 Ray Propagation Fast Multipole Algorithm

The ray propagation fast multipole algorithm (RPFMA) applies the com-

mon discrete Fourier analysis practice of windowing to the series at hand.

The effect of truncating the convergent sum with a vector dot product be-

tween Eqs. (6.21) and (6.24) is to apply a square window to the transformed

quantities. Owing to the terms of Eq. (6.24) converging to zero at a higher

rate than the terms of Eq. (6.21) diverge, there is latitude to introduce a
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simple windowing into the terms of the summation without impacting ac-

curacy. Consequently the diverging terms in Eq. (6.21) may be augmented

with a window to suppress the higher order modes’ influence over the spatial

behavior of the translator. Per the findings of [38, 39, 40], the conventional

rectangular window may be replaced with a flat window with cosine-tapered

end of the form [38, Eq. (24)]

wn =



















1, n ≤ L−K,

1
2

(

1 + cos
(

n−L+K
K

π
))

, L−K < n < L,

0, n ≥ L,

(6.28)

where the circumstance of L even and K = L/2 is named here a “Flat-

Hanning” window.

6.4.2 Fast Far-Field Approximation

As the source and observation blocks become farther separated, one intu-

itively expects the far-field approximation to become more applicable. The

fast far-field approximation (FaFFA) introduces the far-field approximation

into the α operator summation [41, 42, 40]. This is manifested in two ex-

pressions of FaFFA. In the proper FaFFA method the far-field approximation

is utilized directly in place of the addition theorem. In so doing, the α op-

erator reduces to a spatial filter passing a single plane wave from source to

observer [42, 40]. Alternatively, one may insert the far-field approximation to

the spherical Hankel function h
(1)
l (k0rmm′) into the addition theorem defini-

tion of α. Applying the windowing method of RPFMA to the approximated

translator suppresses side lobes and provides a practical limit to the behav-

ior of RPFMA approximation. This is defined here as “SemiFaFFA”. The

applicability of the far-field approximation is explored next in a short study.

The accuracy of SemiFaFFA is made clear by comparison to RPFMA in

a chosen set of example translator cases. Figures 6.3 to 6.17 plot the am-

plitude of the translator with respect to the ray-zenithal angle for a object

sizes 2p, p ∈ [4, 5, 6, 7, 8] separated by distances 22p+q, q ∈ [−1, 0, 1]. With

constant object size and increasing separation, SemiFaFFA has a fixed beam

width, but RPFMA’s beam contracts. RPFMA is seen to approach Semi-

69



FaFFA when the separation is the square of the object scale. This finding is

consistent with the criteria of applicability for the Fraunhofer approximation

to the scalar diffraction integral [43, Sect. 8.3] [44, Sect. 4.3] and the closely

related antenna far-field radiation [45, Sect. 6.8.2]. The consistent transition

from RPFMA into SemiFaFFA illustrates a transition from Fresnel radiation

into Fraunhofer radiation. It is important to note that the unwindowed FMM

addition theorem is applicable in the near-field, so that one sees FMM-based

methods being applicable at a very broad set of size scales.

The relationship between SemiFaFFA and FaFFA also points out a key re-

lationship between wave and ray physics without resorting to classic Fresnel

zone analysis. As object size increases, the SemiFaFFA translator shrinks

in angle more rapidly than the sample density in angle increases; the conse-

quence is an O (1) plane wave sample count asymptotic scaling with respect

to object size. FaFFA’s use of the far-field approximation in the untrun-

cated addition theorem is a translator defined by a Dirac delta function in

k-space; this has meaning only when used in an integral over the Ewald

sphere. SemiFaFFA expresses a windowed summation which may be eval-

uated numerically at arbitrary directions in k-space. This may be rightly

understood as paraxial rays about the primary ray direction. Because of the

similarity between SemiFaFFA and FaFFA, one may conclude that where

SemiFaFFA is accurate the number of plane waves required has converged to

O (1) in keeping with the equivalent Dirac delta function representation.

6.5 Fast Multipole Methods and Rank Deficiency

The question of rank deficiency is addressed in light of the FMM family of

methods. In particular, we seek a physical argument for the number of plane

waves to be included in the calculation. As discussed above, the shape of

the translator as a function of conic angle off the reference ray axis provides

insight into the problem.

6.5.1 Monolithic Translator Beams

The translator beams for object diameters 8 λ to 2,048 λ, with respective ref-

erence ray lengths of double the object diameters, are plotted in Figures 6.18
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to 6.26. Along with translators computed using FMM, RPFMA, and Semi-

FaFFA, two vertical lines mark the angles defining the cones enclosing the

farthest-faces of the FMM voxels (the narrowest cone in which rays are ex-

pected) and the nearest-faces of the FMM voxels (the widest cone in which

rays are expected). These cones are comparable to the stationary-point cone

of [46, Fig. 1]. These translators provide insight into the rank of the off-

diagonal blocks in SIE-based simulations. It is clear that the beam contracts

with increasing object size and separations, with the largest objects showing

little contraction. The narrowest cone angle is near what appears to be a limit

to the contraction of the RPFMA beam, which is predictable from a high-

frequency asymptotic ray-based picture of radiation between components of

the objects under study.

Within an FMM approach, the solid angle spanned by such beams is sam-

pled in a O2I operator at quadrature points in k-space. If the beam is

truncated at amplitudes below a threshold, then a particular beam-axis-

angle ψmax is the limit of the zenithal angle of integration in the beam. The

zenithal angle sample rate is the usual (L+ 2) /π so that the sample count

is

Nψ =
ψmax (L+ 2)

π
(6.29)

The azimuthal angle χ is sampled at the same rate as ψ at the widest part

of the Ewald sphere sampled. The radius of the Ewald sphere at the widest

part of the beam is at the maximum values of sinψ. Therefore the number

of azimuthal samples is

Nχ =







2L, ψmax >
π
2
,

2L sinψmax, ψmax ≤ π
2
.

(6.30)

The number of samples for the beam is the product of the azimuthal and

zenithal sample counts.

In a far-field analysis the separation D and the size d satisfy the usual

far-field criteria

D > 2d2, (6.31)

then the conic angle spanned is

ψmax ≈ sinψmax ≈
d

D
. (6.32)
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In this narrow-beam case, one obtains a sample count

NχNψ ≈ 2

π
ψ2
maxL (L+ 2) . (6.33)

The case of a fixed ψmax but increasing object size d such that L = O (d)

yields NχNψ = O (d2). If the object size is proportional to the separation

using a subdivision count s, then

d = 2−sD, s ∈ N, (6.34)

and the number of required quadrature points is

NχNψ = O
(

2−4sD2
)

. (6.35)

Far-field analysis puts a lower limit on the number of far-field samples

NχNψ ≥ O (1) (6.36)

The shrinking angle analysis reveals the approach of RPFMA to FaFFA using

the estimated sample count. As the angle becomes ever smaller and the far-

field approximation holds, one observes a transition from the Fresnel zone

into the Fraunhofer zone of radiation analysis.

6.5.2 Multiple Beams

The analysis of beams between a single source-observation pair may be sub-

divided into multiple pairs; such an approach leads to a spectrum of O2I

operator structures. If the characteristic size d surface is uniformly split

s ∈ N times, then one obtains a 22s source and observation voxels of char-

acteristic size d2−s. This gives rise to a dense block operator (all blocks

populated) with each block populated by diagonal O2I operators between

the newly obtained voxels. Each observation voxel in the operator range

accumulates contributions from all source voxels in the operator domain. If

one defines an expression for the subdivision count

s = u+ log2 d
t, 0 ≤ t ≤ 1, (6.37)
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where u and t are chosen to satisfy s ∈ N, then the subdivision s gives

rise to O (22ud2t) voxels. The number of plane waves required for a single

observation voxel per source voxel is NχNψ = O (2−4ud2−4t). Plane waves

are needed per domain voxel per range voxel. If chosen subdivision level s

supports a far-field approximation, that is t > 1
2
, then the beams are paraxial

groups of O (1) plane wave samples about rays from each source voxel to the

observation voxel as discussed in Section 6.4.2. The total number of plane

waves required in this circumstance is O (d2).

The geometry of subdivided observation and source voxels reveals physical

mechanisms for reduced rank in the radiation calculation. The rank of the

translator is limited by the dimension of the dense block-diagonal operator;

the upper limit of this rank is the number of plane waves per operator range

voxel multiplied by the number of range voxels. Both large (t = 1) and small

(t ≈ 0) subdivision counts give rise to voxel-plane wave count products which

are quadratic with regard to the original object size. Between these extremes

one finds overlapping beams from the observation voxel to neighboring source

voxels. Because each observation voxel’s results are the sum of all k-space

contributions, replicated k-space contributions from aligned and adjacent

source voxels do not contribute to the rank. The other key effect driving the

dimension of per-voxel-pair radiation calculations is the conic-angle width of

the translator beam which contracts as the distance between voxels increases

but the voxel sizes are held constant. The required sample count density is

constant but the subtended angle contracts as the distance to the nearest

source voxels increases for each observation voxel. This narrowing conic

beam in k-space pushes the required rank downward in combination with

the shared spatial bandwidth. These effects push the net rank downward,

but do not change the asymptotic scaling of the rank as O (d2).

6.5.3 Subdivided RPFMA Rank Calculations

The viability of reduced rank due to far-field effects has been explored by

counting the number of plane waves used in the k-space quadrature. Given a

range voxel and a domain voxel of coordinate space functions with respective

k-space representations, Algorithm 1 is a pseudocode computing the plane

waves contained in a beam about the ray connecting the range voxel to the
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domain voxel. Each voxel has an internal reference point (usually the voxel

center) used for this calculation, and it has an external reference point (usu-

ally a greater geometry centroid). An example conic beam between a domain

and range voxel using a fixed angle is illustrated in Figure 6.27a. Using the

same range voxel, another domain voxel will require a cone positioned at a

different ray direction with partial overlap with the original beam cone; the

overlapping beams are illustrated in Figure 6.27b along with a red-highlighted

greater beam covering both smaller beams. The greater containing beam is

computed with a relative zenithal direction from the range voxel’s internal

reference point to the domain voxels’ common external reference point. The

minimal cone enclosing all the plane waves observed at the range voxel is the

k-space region which must support accurate quadrature.

Algorithm 1 Beam-forming O2I operator plane wave directions.

Require: t≪ 1, d > 0, |D| >
√
3d

Ensure: p 6= ∅
Compute FMM zenithal samples Z (D, d)
Compute RPFMA O2I α (Z)
Find beam zenithal samples z ∈ Z : |α (z)| ≤ t
Compute zenithal sample directions k̂ (z)

if min
(

k̂ (z) ·D > 0
)

then

Compute RPFMA zenithal sample density dz
Compute uniformly-distributed azimuthal samples a with density dz

else

Compute FMM zenithal sample density dZ
Compute uniformly-distributed azimuthal samples a with density dZ

end if

Compute plane wave directions p = k̂ (a, z)
return p

The same zenithal and azimuthal sampling strategy used in Algorithm 1 is

applied to each range voxels’ greater beam cone; the number of plane waves

used is the sum of the range voxels’ conic beam plane waves. If this analysis

is applied with subdivision count s = 0, then the analysis is completed. If

s > 0, then the O2I translator goes from being diagonal to being a dense

block matrix. Each block is a diagonal O2I translator between small objects

separated by a large distance. The rank of the block matrix is limited by

the cumulative number of domain or range plane waves used by all ranges or

domains. The vast majority of the plane waves between subvoxels lie within
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the narrower cone angles marked in Figures 6.18 to 6.26, and virtually all

the plane waves are within the marked wider cone angles. Therefore, if one

were to consolidate all voxels and patterns into one, one expects the case of

s > 0 to become that of s = 0 by physical intuition.

This picture of the translator rank has been tested for spheres with diam-

eters 16, 32, 64, 128 and 256 λ and a translator tolerance of 1e−4. Each has

been evaluated with zero subdivisions, and the plane wave count from both

FMM and RPFMA serves as reference values for the operator rank. Each ob-

ject was then subdivided to obtain block-wise RPFMA analyses with one and

two subdivisions. The source- and observation-functions are uniformly split

on each of the three Cartesian axes so that at most a factor of 8 subblocks

are filled with increasing subdivision level, implying exponential growth in

the number of voxels. However, the number of voxel interactions inspected

is quadratic with respect to the exponentially growing number of voxels, so

the number of subdivisions utilized is small as a matter of computational

necessity. The results are reported in Table 6.1.

The results show the effects of object scale on propagator rank. The FMM

rank is clearly quadratic in nature with respect to characteristic size d. For

sufficiently large objects, the beam rank is demonstrated to be reduced by

subdividing the domain and range voxels and applying RPFMA. For smaller

objects (d ≤ 64 λ) the rank is increased by applying subdivided RPFMA. At

d = 128 λ a single subdivision has a small rank-reducing effect for the beam.

At d = 256 λ a single subdivision provides a noteworthy rank reduction, and

a second subdivision reduces the rank even further. This trend illustrates re-

duced rank by examining the emerging ray physics, but the rank’s asymptotic

scaling O (d2) is not observed to change. The emerging ray physics is due to

applying the analyses to smaller source and observation zone objects. This

transitions the analyses from near-field radiation to far-field radiation, which

is analogous to a transition from Fresnel zone to Fraunhofer zone radiation.

6.6 Conclusions

The FMM O2I operator supports multiple expressions based upon partition-

ing the source and observation functions of interest into voxels. The usual

diagonal operator was replaced with a densely filled block operator relating
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multiple voxels; each block is a diagonal operator relating outbound plane

waves at source voxels to inbound plane waves at each block row’s observation

voxel. Analyzing the interaction between subdivided components revealed

ray physics when applied to electrically large voxels. The FMM radiation

calculation’s rank is reduced using physically clear overlapping beams and

narrowing beams for various observation voxel choices. This was tested in a

numerical experiment applied to meshed spheres of various size. The rank

was reduced, but it was not pushed below quadratic with respect to object

diameter. The observed accurate transition from FMM analysis over the

entire Ewald sphere to beams paraxial to rays between voxels suggests that

high-frequency asymptotic methods may be incorporated into FMM-based

analyses using the k-space sampling approaches developed here.

6.7 Table and Figures

Table 6.1: Table of computed ranks using RPFMA relative tolerance 1e-4.

Size Separation Samples FMM Rank Splits Beam Rank

16 32 3,617 89,042 0 72,584
16 32 3,617 89,042 1 145,080
16 32 3,617 89,042 2 315,798
32 64 14,565 310,472 0 165,480
32 64 14,565 310,472 1 357,132
32 64 14,565 310,472 2 680,464
64 128 57,807 1,134,018 0 680,600
64 128 57,807 1,134,018 1 776,244
64 128 57,807 1,134,018 2 1,101,322
128 256 232,120 4,280,738 0 1,970,496
128 256 232,120 4,280,738 1 1,943,932
128 256 232,120 4,280,738 2 2,190,577
256 512 912,418 16,508,258 0 6,393,300
256 512 912,418 16,508,258 1 5,694,767
256 512 912,418 16,508,258 2 5,320,139
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Figure 6.1: Sketch of two spheres case with sphere diameter d used to mark
the characteristic dimensions of the problem; FMM enclosure voxels are
marked with dotted lines.

Figure 6.2: Rank computed for translation operator between two spheres
separated by twice the characteristic size for various tolerances.

77



0 25 50 75 100 125 150 175
 [deg]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

|
(

)|/
m

ax
(|

(
)|)

Diameter 16 , Separation 128 
FMM
RPFMA
SemiFaFFA

Figure 6.3: Translator amplitude for two spheres of diameter 16 λ and
separation 128 λ.
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Figure 6.4: Translator amplitude for two spheres of diameter 16 λ and
separation 256 λ.
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Figure 6.5: Translator amplitude for two spheres of diameter 16 λ and
separation 512 λ.
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Figure 6.6: Translator amplitude for two spheres of diameter 32 λ and
separation 512 λ.
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Figure 6.7: Translator amplitude for two spheres of diameter 32 λ and
separation 1,024 λ.
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Figure 6.8: Translator amplitude for two spheres of diameter 32 λ and
separation 2,048 λ.
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Figure 6.9: Translator amplitude for two spheres of diameter 64 λ and
separation 2,048 λ.
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Figure 6.10: Translator amplitude for two spheres of diameter 64 λ and
separation 4,096 λ.
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Figure 6.11: Translator amplitude for two spheres of diameter 64 λ and
separation 8,192 λ.
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Figure 6.12: Translator amplitude for two spheres of diameter 128 λ and
separation 8,192 λ.
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Figure 6.13: Translator amplitude for two spheres of diameter 128 λ and
separation 16,384 λ.
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Figure 6.14: Translator amplitude for two spheres of diameter 128 λ and
separation 32,768 λ.
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Figure 6.15: Translator amplitude for two spheres of diameter 256 λ and
separation 32,768 λ.
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Figure 6.16: Translator amplitude for two spheres of diameter 256 λ and
separation 65,536 λ.
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Figure 6.17: Translator amplitude for two spheres of diameter 256 λ and
separation 131,072 λ.
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Figure 6.18: Translator amplitude for two spheres of diameter 8 λ and
separation 16 λ.
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Figure 6.19: Translator amplitude for two spheres of diameter 16 λ and
separation 32 λ.
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Figure 6.20: Translator amplitude for two spheres of diameter 32 λ and
separation 64 λ.
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Figure 6.21: Translator amplitude for two spheres of diameter 64 λ and
separation 128 λ.
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Figure 6.22: Translator amplitude for two spheres of diameter 128 λ and
separation 256 λ.
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Figure 6.23: Translator amplitude for two spheres of diameter 256 λ and
separation 512 λ.
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Figure 6.24: Translator amplitude for two spheres of diameter 512 λ and
separation 1,024 λ.
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Figure 6.25: Translator amplitude for two spheres of diameter 1,024 λ and
separation 2,048 λ.
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Figure 6.26: Translator amplitude for two spheres of diameter 2,048 λ and
separation 4,096 λ.
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(a) Single conic section. (b) Two overlapping conic
sections.

Figure 6.27: Conic sections of the Ewald sphere used to perform k-space
analysis.
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CHAPTER 7

CONCLUSION

7.1 Summary

The purpose of this work has been to identify solutions to a class of prob-

lems which overwhelm existing CEM approaches. EPA provides a framework

well suited to a physically intuitive analysis of complicated multiple-object

scattering cases using a generalized SIE method expressed in terms of iden-

tity operators, MLFMA-accelerated radiation, and object-tailored scattering

analyses. A single large object overwhelms the other domains in the system

of equations by requiring a large discretized scattering operator along with

MLFMA radiation between it and all other domains. The Schur comple-

ment of this domain’s identity block in the EPA system results in a much

smaller system of equations with the large scattering operator isolated be-

tween MLFMA radiation calculations. The scattering operator is not feasible

to compute in general, but broad classes of problems support the use of ap-

proximate scattering operators such that this method becomes more viable.

The PO approximation was applied as a high-frequency asymptotic model

of this object’s scattering operator, which yielded two SIE hybrids of EPA and

PO. The original system of equations (with PO scattering operator) served

as a reference to validate the performance of a novel Schur complement EPA-

PO hybrid. The PO approximation was fully coupled into the greater SIE

system without modification beyond the PO-specific radiation and scattering

operators in both cases. The new Schur complement hybrid was found to be

in agreement with the direct application of PO as a discretized EPA domain

scattering operator. The Schur complement EPA-PO hybrid was analyzed

without loss of generality to scattering operators derived from other high-

frequency asymptotic models.

The PO calculations were further utilized as a mechanism for orchestrat-
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ing massively parallel simulations. The locality of the PO approximation was

leveraged to distribute the MLFMA and PO workload across an HPC cluster

using a hybrid combination of distributed-memory parallel execution on sep-

arate cluster nodes and shared-memory parallel execution for portion of the

work done on each cluster node. The observed consequence of partitioning

the PO surface regions across cluster nodes was reduced execution times and

a slow increase in required memory across the cluster so that multiple lower-

memory nodes were added to the resource pool to complete a simulation

more quickly than fewer nodes with higher per-node memory.

Discretized operators defining radiation between sets of basis and test func-

tions comprise the SIE methods utilized in CEM. Reducing the workload in

an FMM-based method requires reducing the number of plane wave samples

required to radiate between the basis and test functions. To this end, the

radiation between electrically large source and observation functions was an-

alyzed in the space of plane waves. The radiation over large distances was

observed to form beams independent of the source and observation block far-

field patterns. Moreover, at sufficiently large size scale, the number of plane

waves was observed to be reduced by subdividing the source and observation

regions to form multiple overlapping narrower beams. This marks a tran-

sition from wide beams to ray physics, and it demonstrates size scales at

which the far-field approximation and ray models may be accurately applied

to accelerate radiation calculations. This observation will help accelerate hy-

bridized SIE and high-frequency asymptotic methods such as the previously

discussed Schur complement EPA-PO hybrid.

7.2 Future Work

The Schur complement EPA-PO hybrid was defined without loss of general-

ity to other scattering operators. The approximated scattering operator is

utilized only through MLFMA-accelerated radiation operators. These oper-

ators are diagonalized in the space of plane waves radiating from the source

domain and received at the observation domain. The compound radiation-

scattering-radiation sequence may be discretized in the space of plane waves

as a dense operator in general. This dense operator is potentially expensive

to evaluate, but it offers opportunities for hybridization of EPA and other
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approximation scattering operator formulations. The EPA-PO hybrid im-

plemented in this work can be seen to define such a dense operator using a

composite product of discretized abstract operators. If FMM is utilized to

perform a similarity transformation in the space of plane waves radiating to

and from the approximate scattering operator domain and range, then the

problem is expressed in the FMM plane wave space instead of coordinate

space functions. The MLFMA-accelerated operators utilized in this work

implicitly perform this transformation. In such a statement of the problem

other methods of high-frequency asymptotic analysis defined for plane wave

source and far-field observation become viable. The study on the formation

of beams for electrically large source and observation regions will help in-

form which input and observation angles are expected to be the dominant

contributions for each range- and domain-voxel pairing.

Exploring other hybrids of EPA with high-frequency asymptotic methods

will also provide further opportunities to identify embarrassingly parallel cal-

culations. Each iteration of the system solver requires solution of a bistatic

scattering problem relating sources and fields from all domains, which may

be evaluated explicitly by filling the dense Schur complement operator, or by

evaluating the bistatic scattering problem at each iteration using an abstract

operator. Either method provides opportunities to explore parallel calcula-

tions. If the method does not require normalization by a Gramian inverse on

the scatterer surface, then the need for a distributed parallel sparse solver is

also removed.

The study of subdivided RPFMA illustrated the formation of beams as ob-

jects and separations increase in linear size scale. This physical mechanism

was identified in large objects, and does not explain the observed linear rank

increase observed for smaller objects as obtained by SVD analysis. Because

the mechanism for rank reduction is not found by analyzing the α opera-

tor, the source and observation patterns are the remaining candidates for

examination. Past efforts to predict the pattern characteristics of aperiodic

antenna arrays may be applied to the source and observation voxel plane

wave patterns and combined with the beam formation observed in this work

to develop reduced rank models.
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