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Abstract

The separation dimension of a graph G, written π(G), is the minimum number of linear orderings of V (G)

such that every two nonincident edges are “separated” in some ordering, meaning that both endpoints of one

edge appear before both endpoints of the other. We introduce the fractional separation dimension πf (G),

which is the minimum of a/b such that some a linear orderings (repetition allowed) separate every two

nonincident edges at least b times.

In contrast to separation dimension, we show fractional separation dimension is bounded: always πf (G) ≤

3, with equality if and only if G contains K4. There is no stronger bound even for bipartite graphs, since

πf (Km,m) = πf (Km+1,m) = 3m
m+1 . We also compute πf (G) for cycles and some complete tripartite graphs.

We show that πf (G) <
√

2 when G is a tree and present a sequence of trees on which the value tends to

4/3. We conjecture that when n = 3m the K4-free n-vertex graph maximizing πf (G) is Km,m,m.

We also consider analogous problems for circular orderings, where pairs of nonincident edges are separated

unless their endpoints alternate. Let π◦(G) be the number of circular orderings needed to separate all pairs,

and let π◦f (G) be the fractional version. Among our results: (1) π◦(G) = 1 if and only G is outerplanar. (2)

π◦(G) ≤ 2 when G is bipartite. (3) π◦(Kn) ≥ log2 log3(n − 1). (4) π◦f (G) ≤ 3
2 , with equality if and only if

K4 ⊆ G. (5) π◦f (Km,m) = 3m−3
2m−1 .

A star k-coloring is a proper k-coloring where the union of any two color classes induces a star forest.

While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce

a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such a partition is called

an I,F-partition. We use discharging to prove that every graph with maximum average degree less than 5
2

has an I,F-partition, which is sharp and improves the result of Bu, Cranston, Montassier, Raspaud, and

Wang (2009). As a corollary, we gain that every planar graph with girth at least 10 has a star 4-coloring.

A proper vertex coloring of a graph G is r-dynamic if for each v ∈ V (G), at least min{r, d(v)} colors

appear in NG(v). We investigate 3-dynamic versions of coloring and list coloring. We prove that planar and

toroidal graphs are 3-dynamically 10-choosable, and this bound is sharp for toroidal graphs.

Given a proper total k-coloring c of a graph G, we define the sum value of a vertex v to be c(v) +
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∑
uv∈E(G) c(uv). The smallest integer k such that G has a proper total k-coloring whose sum values

form a proper coloring is the neighbor sum distinguishing total chromatic number χ′′Σ(G). Piĺsniak and

Woźniak (2013) conjectured that χ′′Σ(G) ≤ ∆(G) + 3 for any simple graph with maximum degree ∆(G). We

prove this bound to be asymptotically correct by showing that χ′′Σ(G) ≤ ∆(G)(1 + o(1)). The main idea of

our argument relies on Przyby lo’s proof (2014) for neighbor sum distinguishing edge-coloring.

iii



Acknowledgments

I would like to begin my acknowledgments by thanking my advisor, Douglas West. I have enjoyed doing

mathematics with him and the time I have spent socially with him and Ching. I have learned a great deal

about mathematical writing from Doug and appreciated his patient corrections. As this section is the only

part of the thesis he did not get to read, any grammatical errors in it are mine alone.

I would like to thank my committee members, Sasha Kostochka, Theo Molla, and Alex Yong. Over the

years they have given me excellent advise about mathematics and my career. Thank you also to Mike Ferrara

for being a superb mentor and collaborator. In addition, thanks to Rick Laugesen, Randy McCarthy, and

Jennifer McNeilly for their advise and support during my PhD.

From a young age, my family has been extremely supportive of my mathematical interests. I couldn’t

have made it to UIUC without their support. In particular, I want to mention my parents, their spouses,

my brother, and my grandparents.

My collaborators made this thesis possible and deserve acknowledgment here in addition to the relevant

chapters of this thesis. Many of these collaborators have become friends with whom I look forward to

continuing collaboration.

Lest I forget any, I omit the names of the many friends who lent me support along the way though they

all have my thanks. These friends and supporters include friends from high school, Harvey Mudd College,

the University of Illinois, and friends made at conferences and workshops. Within the category of friends, I

owe particular thanks to the romantic partners who supported me through my PhD.

Finally, my research had several funding sources. Research in Chapter 2 was supported in part by a gift

from Gene H. Golub to the Mathematics Department of the University of Illinois. Research in Chapter 3 was

supported in part by NSF grant DMS-1500662 “The 2015 Rocky Mountain–Great Plains Graduate Research

Workshop in Combinatorics”. Research in Chapter 4 was supported in part by NSF grant DMS 08-38434,

“EMSW21-MCTP: Research Experience for Graduate Students”.

iv



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Fractional separation dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 I,F-partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 3-Dynamic coloring of planar and toroidal graphs . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Neighbor sum distinguishing total colorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Fractional separation dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Fractional covering and matrix games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Characterizing the extremal graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Graphs with larger girth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Complete multipartite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Circular separation dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 3 I,F-partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Proof that Theorem 3.1.3 and Theorem 3.1.4 are equivalent . . . . . . . . . . . . . . . . . . . 39
3.3 Some useful claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Proof of Theorem 3.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 4 3-Dynamic coloring of planar and toroidal graphs . . . . . . . . . . . . . . . . 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Structure of a minimal counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Discharging for toroidal graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 5 Neighbor sum distinguishing total colorings . . . . . . . . . . . . . . . . . . . . 68
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Proof of Lemma 5.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 Proof of Theorem 5.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

v



Chapter 1

Introduction

In this thesis, we study fractional separation dimension and several types of graph colorings.

Both separation dimension and traditional graph coloring can be viewed as hypergraph covering problems,

as can graph domination and poset dimension. Given a hypergraph H, the covering number τ(H) is the

minimum number of edges in H whose union is the full vertex set.

A k-coloring c : V (G)→ {1, . . . , k} of a graph G is proper if c assigns distinct colors to adjacent vertices.

The chromatic number of G is the minimum k such that G has a proper k-coloring. Framing coloring as a

covering problem, the vertex set of H is V (G) and e ∈ E(H) if and only if e does not contain both vertices

of any edge of G.

List coloring is a variation on coloring introduced independently by Vizing [42] and by Erdős, Rubin,

and Taylor [19]. A list assignment L for G assigns to each vertex v a list L(v) of permissible colors. Given

a list assignment L for a graph G, if a proper coloring φ can be chosen so that φ(v) ∈ L(v) for all v ∈ V (G),

then G is L-colorable. The choosability of G is the least k such that G is L-colorable for any list assignment

L satisfying |L(v)| ≥ k for all v ∈ V (G).

Subsequent sections of this chapter give an overview of results in each chapter. In section 1.5, we present

notation used in this thesis and relevant graph theoretic definitions.

1.1 Fractional separation dimension

A pair of nonincident edges in a graph G is separated by a linear ordering of V (G) if both vertices of one edge

precede both vertices of the other. The separation dimension π(G) of a graph G is the minimum number

of vertex orderings that together separate every pair of nonincident edges of G. Graphs with at most three

vertices have no such pairs, so their separation dimension is 0. We therefore consider only graphs with at

least four vertices.

Introduced by Basavaraju, Chandran, Golumbic, Mathew, and Rajendraprasad [9] (full version in [10]),

separation dimension is motivated by a geometric interpretation. By viewing the orderings as giving coordi-
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nates for each vertex, the separation dimension is the least k such that the vertices of G can be embedded in

Rk so that any two nonincident edges of G are separated by a hyperplane perpendicular to some coordinate

axis (ties in a coordinate may be broken arbitrarily.)

Framing separation dimension as a covering problem, the vertex set of H is the set of pairs of nonincident

edges in G, and the edges of H are the sets of pairs separated by a single ordering of V (G).

Given a hypergraph covering problem, the corresponding fractional problem considers the difficulty of

covering each vertex multiple times and measures the average number of edges needed. In particular, the

t-fold covering number τt(H) is the least number of edges in a list of edges (repetition allowed) that covers

each vertex at least t times, and the fractional covering dimension is lim inft τt(H)/t. In the special case

that H is the hypergraph associated with separation dimension, we obtain the t-fold separation dimension

πt(G) and the fractional separation dimension πf (G).

Every list of s edges in a hypergraph H provides an upper bound on τf (H); if it covers each vertex

at least t times, then it is called an (s : t)-covering, and τf (H) ≤ s/t. This observation will enable us to

obtain the maximum value of the fractional separation dimension. It is bounded, even though the separation

dimension is not. In Section 2.3, we show:

Theorem 1.1.1. πf (G) ≤ 3 for any graph G, with equality if and only if K4 ⊆ G.

No smaller bound can be given even for bipartite graphs; we prove πf (Km,m) = 3m
m+1 .

In Sections 2.4 and 2.5 we consider sparser graphs. The girth of a graph is the minimum length of its

cycles (infinite if it has no cycles). In Section 2.4 we show πf (Cn) = n
n−2 . Also, the value is 30

17 for the

Petersen graph and 28
17 for the Heawood graph. Although these results suggested asking whether graphs with

fixed girth could admit better bounds on separation number, Alon [3] pointed out by using expander graphs

that large girth does not permit bounding πf (G) by any constant less than 3 (see Section 2.4). Nevertheless,

we can still ask the question for planar graphs.

Question 1.1.2. How large can πf (G) be when G is a planar graph with girth at least g?

In Section 2.5, we consider graphs without cycles.

Theorem 1.1.3. πf (G) <
√

2 when G is a tree.

The bound in Theorem 1.1.3 improves to πf (T ) ≤ 4
3 for trees obtained from a subdivision of a star by

adding any number of pendant edges at each leaf. This is sharp; the tree with 4m+ 1 vertices obtained by

subdividing every edge of K1,2m has diameter 4 and fractional separation dimension 4m−2
3m−1 , which tends to

4
3 . We believe that the optimal bound for trees is strictly between 4

3 and
√

2.

2



Question 1.1.4. What is the supremum of πf (G) when G is a tree?

In Section 2.6, we return to the realm of dense graphs with values of πf near 3. We first compute

πf (Km+1,qm). The formula yields πf (Km,r) < 3(1− 1
2m−1 ) for all r, so both parts of a bipartite graph must

grow to obtain a sequence of values approaching 3. In the special case q = 1, we obtain πf (Km+1,m) = 3m
m+1 .

In addition, πf (Km,m) = 3m
m+1 , for m ≥ 2. We conjecture that, among bipartite n-vertex graphs, πf is

maximized by Kn,n.

We also studied complete balanced tripartite graphs.

Theorem 1.1.5. πf (Km,m,m) = 6m
2m+1 for m ≥ 2.

When n = 6r, we thus have πf (K2r,2r,2r) > πf (K3r,3r). Surprisingly, the value is larger for a quite

different complete tripartite graph.

Theorem 1.1.6. πf (K1,m,m) = 24m
8m+5+3/(2dm/2e−1) for m ≥ 1.

Computer search verifies the extreme among tripartite graphs up to 14 vertices. Using Theorems 2.6.2

and 2.6.4, we compare πf (K2r+1,2r+1,2r+1) = 6(2r+1)
4r+3 and πf (K1,3r+1,3r+1) ≥ 24(3r+1)

24r+13+1/r . Each graph has

6r + 3 vertices. When r > 1, the value of πf (K1,3r+1,3r+1) is larger. On the other hand, for n = 9, there is

an anomaly, with πf (K3,3,3) > πf (K1,4,4).

Conjecture 1.1.7. For n ≥ 10, the graph K1,b(n−1)/2c,d(n−1)/2e achieves the maximum value of πf among

n-vertex graphs not containing K4.

Since πf (G) is always rational, we ask

Question 1.1.8. Which rational numbers (between 1 and 3) occur as the fractional separation dimension

of some graph?

Finally, in Section 2.7, we consider the analogues of π and πf defined by using circular orderings of the

vertices rather than linear ones; we use the notation π◦ and π◦f . We show first that π◦(G) = 1 if and only if

G is outerplanar. Surprisingly, π◦(Km,n) = 2 when m,n ≥ 2 and mn > 4, but π◦ is unbounded.

Theorem 1.1.9. π◦(Kn) > log2 log3(n− 1).

For the fractional context, we prove π◦f (G) ≤ 3
2 for all G, with equality if and only if K4 ⊆ G. Again

no better bound holds for bipartite graphs; we prove π◦f (Km,qm) = 6(qm−1)
4mq+q−3 , which tends to 3

2 as m → ∞

when q = 1. It tends to 6m
4m+1 when q →∞, so again both parts must grow to obtain a sequence on which

π◦f tends to 3
2 . The proof is different from the linear case. The questions remaining are analogous to those

for πf .
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Question 1.1.10. How large can π◦f be when G is a planar graph with girth at least g? Which are the

n-vertex graphs maximizing π◦f among bipartite graphs and among those not containing K4? Which rational

numbers between 1 and 3
2 occur?

This chapter contains joint work with Douglas West.

1.2 I,F-partitions

Acyclic coloring was first introduced by Grünbaum [22]. A proper vertex coloring is acyclic if the union

of any two color classes induces a forest. The least k such that G has an acyclic k-coloring is the acyclic

chromatic number of G, denoted χa(G). An acyclic k-coloring of G is a star k-coloring if the components of

the forest induced by the union of two color classes are stars. The least k such that G has a star k-coloring is

the star chromatic number of G, denoted χs(G). It follows immediately that χ(G) ≤ χa(G) ≤ χs(G) for any

graph G, although is not difficult to see that χ 6= χa in general by considering, for instance, any bipartite

graph containing a cycle. We refer the reader to the thorough survey of Borodin [13] for additional results

on acyclic and star colorings beyond what we present next.

In this chapter, we are interested in the problem of star-coloring planar graphs. The well-known Four

Color Theorem of Appel and Haken [7, 8] states that χ(G) ≤ 4 if G is planar, while Grünbaum [22] con-

structed a planar graph with no acyclic 4-coloring (and so, in particular, no star 4-coloring). Subsequently,

Borodin [12] showed χa(G) ≤ 5 for all planar G. Albertson, Chappell, Kierstead, Kündgen, and Rama-

murthi [2] showed that every planar graph G satisfies χs(G) ≤ 20 and also constructed a planar graph

with star chromatic number at least 10. Kündgen and Timmons [29] proved that every planar graph of

girth 6 (respectively 7 and 8) can be star-colored with 8 (respectively 7 and 6) colors. Kierstead, Kündgen

and Timmons [25] showed that every bipartite planar graph can be star 14-colored, and they constructed

a bipartite planar graph with star chromatic number 8. It is worthwhile to note that, while not our focus

here, the results in [29] and [25] hold for the natural extension of star-colorings to a list coloring framework.

Given the Four Color Theorem, it is natural to search for conditions that ensure a planar graph can be

star 4-colored. Albertson et al. [2] also showed that for every girth g, there exists a graph Gg with girth

at least g and χs(Gg) = 4, and further that there is some girth g such that every planar graph of girth at

least g is star 4-colorable. Timmons [41] showed that g = 14 is sufficient and also gave a planar graph with

girth 7 and star chromatic number 5. Bu, Cranston, Montassier, Raspaud, and Wang [15] improved upon

Timmons’ result by showing that every planar graph with girth g ≥ 13 has a star 4-coloring.

The maximum average degree Mad(G) of a graph G is the maxH⊆G d(H). Our main result shows:
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Theorem 1.2.1. If G is a graph with Mad(G) < 5
2 , then χs(G) ≤ 4.

A straightforward application of Euler’s formula shows that if G is a planar graph with girth at least g,

then Mad(G) < 2g
g−2 . Thus, as a corollary to Theorem 1.2.1 we have the following improvement on [15].

Corollary 1.2.2. If G is a planar graph with girth at least 10, then χs(G) ≤ 4.

To prove Theorem 1.2.1 we will use I,F-partitions, which were first introduced in [2]. A 2-independent

set in G is a set of vertices that have pairwise distance greater than 2. An I,F-partition of a graph G is a

partition of V (G) as (I,F), where I is a 2-independent set in G and G[F ] is a forest. Albertson et al. [2]

observed that if G has an I,F-partition (I,F), then χs(G) ≤ 4; because χs(T ) ≤ 3 for any tree T there is a

3-coloring of G[F ] which can be extended to all of G by assigning the vertices in I a new color. Note that

the converse does not hold; for example, χs(K3,3) = 4, but K3,3 has no I,F-partition. Timmons [41] and Bu

et al. [15] showed that maximum average degree less than 7
3 and 26

11 , respectively, imply the existence of an

I,F-partition, which in turn imply that the above mentioned girth bounds sufficient for a planar graph to be

star 4-colorable. Along the same lines, Theorem 1.2.1 is a consequence of the following theorem.

Theorem 1.2.3. If G is a graph with Mad(G) < 5
2 , then G has an I,F-partition.

Theorem 1.2.3 is sharp in the sense that there are graphs with maximum average degree 5
2 that do not

have an I,F-partition. Indeed, given a cycle C, for each vertex v in the cycle add a 3-cycle avbvcv and the

edge vav. To see that such a graph, which has maximum average degree 5
2 , does not have an I,F-partition,

simply note that no vertex v on the cycle C can be in the 2-independent set, as then avbvcv would necessarily

have to be in the forest F , an impossibility. However, this then implies that every vertex on C must be in

F , which is also impossible.

This chapter contains joint work with Axel Brandt, Michael Ferrara, Mohit Kumbhat, Derrick Stolee,

and Matthew Yancey.

1.3 3-Dynamic coloring of planar and toroidal graphs

For a graph G and a positive integer r, an r-dynamic coloring of G is a proper vertex coloring such that

for each v ∈ V (G), at least min{r, d(v)} distinct colors appear in NG(v). The r-dynamic chromatic number,

denoted χr(G), is the minimum k such that G admits an r-dynamic k-coloring. Montgomery [35] introduced

2-dynamic coloring and the generalization to r-dynamic coloring.

We consider the r-dynamic version of list coloring. For further work, see [1, 23, 24]. A graph G is

r-dynamically L-colorable when an r-dynamic coloring can be chosen from the list assignment L. The r-
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dynamic choosability of G, denoted chr(G), is the least k such that G is r-dynamically L-colorable for every

list assignment L satisfying |L(v)| ≥ k for all v ∈ V (G).

The square of a graph G, denoted G2, is the graph resulting from adding an edge between every pair of

vertices of distance 2 in G. For any graph G,

χ(G) = χ1(G) ≤ χ2(G) ≤ · · · ≤ χ∆(G)(G) = · · · = χ(G2),

ch(G) = ch1(G) ≤ ch2(G) ≤ · · · ≤ ch∆(G)(G) = · · · = ch(G2), (1)

and that χr(G) ≤ chr(G) for all r. Thus we can think of r-dynamic coloring as bridging the gap between

coloring a graph and coloring its square.

Wegner [45] conjectured bounds for the chromatic number of squares of planar graphs in terms of their

maximum degree. For a graph G with ∆(G) ≤ 3, proper colorings of G2 and 3-dynamic colorings of G are

equivalent. Thomassen [40] proved Wegner’s conjecture for maximum degree 3, showing that χ3(G) ≤ 7 for

any planar subcubic graph G. Cranston and Kim [17] studied the list coloring version and proved that when

G is a planar subcubic graph, ch3(G) ≤ 7 if the girth is at least 7 and ch3(G) ≤ 6 if the girth is at least 9.

Thomassen [39] proved that planar graphs are 5-choosable, and Voigt [43] proved sharpness.

Our main results are on the 3-dynamic chromatic number and choice number for toroidal graphs. A

graph is toroidal if it can be drawn on the torus without crossing edges. In particular, planar graphs are

also toroidal.

Theorem 1.3.1. If G is a toroidal graph, then χ3(G) ≤ ch3(G) ≤ 10.

Theorem 1.3.1 is sharp: the Petersen graph P is embeddable on the torus. It has maximum degree 3

and diameter 2, so χ3(P ) = χ(P 2) = χ(K10) = 10.

As an immediate corollary of Theorem 1.3.1, we have:

Corollary 1.3.2. If G is a planar graph, then χ3(G) ≤ ch3(G) ≤ 10.

We do not believe that Corollary 1.3.2 is sharp. An example of a planar graph G with χ3(G) = 7 is the

graph obtained from K4 by subdividing the three edges incident to one vertex. Note that G has maximum

degree 3 and diameter 2, so χ3(G) = χ(G2) = χ(K7).

This chapter contains joint work with Thomas Mahoney, Benjamin Reiniger, and Jennifer Wise.

6



1.4 Neighbor sum distinguishing total colorings

For an edge-coloring c, define the sum value sc(v) of a vertex v by
∑
u∈N(v) c(uv). An edge-coloring is a proper

edge-weighting if sc forms a proper coloring. The least k such that G has a proper k-edge-coloring that is a

proper edge-weighting is the neighbor sum distinguishing edge-chromatic number of a graph, denoted χ′Σ(G).

This parameter is well defined only for graphs with no isolated edges. Clearly, χ′Σ(G) ≥ χ′(G) ≥ ∆(G).

Flandrin, Marczyk, Przyby lo, Saclé, and Woźniak [20] conjectured that:

Conjecture 1.4.1 ([20]). If G is a connected graph with at least three vertices other than C5, then χ′Σ(G) ≤

∆(G) + 2.

Przyby lo [37] proved an asymptotically optimal upper bound for graphs with large maximum degree.

Specifically, he showed:

Theorem 1.4.2 ([37]). If G is a connected graph with ∆(G) sufficiently large, then χ′Σ(G) ≤ ∆(G) +

50∆(G)5/6 ln1/6 ∆(G).

A proper total k-coloring of G is a function c : V (G) ∪ E(G) → [k] such that c restricted to V (G) is

a proper coloring, c restricted to E(G) is a proper edge-coloring, and the color on each vertex is different

from the color on its incident edges. For a total coloring c, define the sum value sc(v) of a vertex v by

c(v)+
∑
uv∈E(G) c(uv). A total coloring is a proper total weighting if sc is a proper coloring. The least k such

that G has a proper total k-coloring that is a proper total weighting is the neighbor sum distinguishing total

chromatic number of G, denoted χ′′Σ(G). Clearly, χ′′Σ(G) ≥ χ′′(G) ≥ ∆(G) + 1. Piĺsniak and Woźniak [36]

conjectured that

Conjecture 1.4.3 ([36]). If G is a connected graph with maximum degree ∆(G), then χ′′Σ(G) ≤ ∆(G) + 3.

Piĺsniak and Woźniak [36] proved that Conjecture 1.4.3 holds for complete graphs, cycles, bipartite

graphs and subcubic graphs. Using the Combinatorial Nullstellensatz, Wang, Ma, and Han [44] proved that

the conjecture holds for triangle-free planar graphs with maximum degree at least 7. Dong and Wang [18]

showed that Conjecture 1.4.3 holds for graphs with Mad(G) < 3 and ∆(G) ≥ 4, and Li, Liu, and Wang [31]

proved that the conjecture holds for K4-minor-free graphs. Li, Ding, Liu, and Wang [30] also confirmed

Conjecture 1.4.3 for planar graphs with maximum degree at least 13. Finally, Xu, Wu, and Xu [46] proved

χ′′Σ(G) ≤ ∆(G) + 2 for graphs G with ∆(G) ≥ 14 that can be embedded in a surface of nonnegative Euler

characteristic.

By modifying Przyby lo’s proof that Conjecture 1.4.1 is asymptotically correct for graphs with large

maximum degree, we confirm that Conjecture 1.4.3 is also asymptotically correct.
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Theorem 1.4.4. If G is a connected graph with ∆(G) sufficiently large, then

χ′′Σ(G) ≤ ∆(G) + 50∆(G)5/6 ln1/6 ∆(G).

This chapter contains joint work with Yunfang Tang. The results were independently obtained by Jakub

Przyby lo and appear in a joint paper with him.

1.5 Definitions and notation

The set {1, . . . , n} is abbreviated [n]. For a set S and natural number k, the set
(
S
k

)
is the family of all

k-element subsets of S.

A hypergraph H consists of a set V (H) of vertices and a set E(H), of edges where each element in E(H)

is a subset of V (H). A hypergraph is a graph if each edge is a 2-element subset of V (G). For an edge in a

graph, we write uv instead of {u, v}. Unless noted otherwise, the remaining definitions in this section are

given for graphs.

Two vertices are adjacent if there is an edge containing both of them. Two edges are incident if their

intersection is nonempty. A walk is an alternating list v0, e1, v1, . . . , vk of vertices and edges with ei = vi−1vi

for 1 ≤ i ≤ k. The length of a walk is the number of edges in it. The endpoints of an edge are the vertices in

the edge. The endpoints of a walk are the first and last vertex in the walk. An n-vertex path is a walk with

n vertices, none repeated. An n-vertex cycle is a walk with length n, the same initial and terminal vertex,

and no other repeated vertices.

Two vertices are connected if there is a path having them as endpoints. If u and v are connected, then

the distance d(u, v) between them is the length of a shortest path with endpoints u and v. The components

of a graph are its maximal connected subgraphs. If G has exactly one component, then it is connected,

otherwise disconnected.

The diameter of a graph is the maximum distance between two vertices.

A clique is a set of pairwise adjacent vertices. The clique number ω(G) of a graph G is the number of

vertices in a largest clique in G. A independent set is a set of vertices that are pairwise nonadjacent. The

independence number α(G) of G is the maximum size of an independent set in G. A k-independent set is

a set of vertices in a graph with pairwise distance greater than k. Note that 1-independent sets are just

independent sets.

The k-neighborhood Nk(v) of a vertex v is the set of vertices at distance k from v. When k = 1, we omit

the subscript and refer to N(v) as the neighborhood of v. For a set S ⊆ V (G), the neighborhood N(S) of S is
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∪v∈SN(v). The degree d(v) of a vertex v is the size of N(v). A k-vertex is a vertex of degree k, a k+-vertex

is a vertex of degree at least k, and a k−-vertex is a vertex of degree at most k.

The maximum degree ∆(G) of a graph G is maxv∈V (G d(v). The minimum degree δ(G) is minv∈V (G) d(v).

The average degree d(G) of a graph G is 1
|V (G)|

∑
v∈V (G) d(v), which equals 2|E(G)|

|V (G)| . The maximum average

degree Mad(G) of a graph G is max
H⊆G

2|E(H)|
|V (H)| .

An isomorphism from a graph G to a graph H is a map f : V (G)→ V (H) such that f(u)f(v) ∈ E(H)

if and only if uv ∈ E(G). Two graphs are isomorphic if there is an isomorphism from one to the other. The

class of graphs isomorphic to a given graph G is the isomorphism class of G. An automorphism of G is an

isomorphism from G to G.

The isomorphism classes of n-vertex paths and cycles are denoted Pn and Cn. A forest is a graph

containing no cycle. A tree is a forest with a single component. The isomorphism class containing the graph

G with V (G) = [n] and E(G) =
(

[n]
2

)
is Kn, and we refer to such graphs as complete graphs.

A graph G is bipartite if V (G) can be partitioned as (X,Y ) such that X and Y are independent sets; the

sets X and Y are the parts. A complete bipartite graph is a bipartite graph such that every vertex in one

part is adjacent to every vertex in the other. The automorphism class of complete bipartite graphs with one

part of size m and one part of size n is denoted Km,n. A graph G is tripartite if V (G) can be partitioned

as (X,Y, Z) such that X, Y , and Z are independent sets; the sets X, Y , and Z are the parts. A complete

tripartite graph is a tripartite such that every vertex in each part is adjacent to every vertex in the other

two parts. The automorphism class of complete tripartite graphs with parts of sizes i, j and k is denoted

Ki,j,k.

The Kneser graph, denoted K(n, k), is the graph with V (K(n, k)) =
(
n
k

)
and uv ∈ E(K(n, k)) if and

only if u ∩ v = ∅. The Petersen graph is K(5, 2) .

The Fano plane is the hypergraph with vertex set [7] and edge set {124, 457, 561, 346, 235, 672, 713}.

Given a hypergraph H, the incidence graph of H is a graph with vertex set V (H)∪E(H) and with edge set

{ve : v ∈ V (H), e ∈ E(H), v ∈ e}. The Heawood graph is the incidence graph of the Fano plane.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). When H is a

subgraph of G, we write H ⊆ G. We also use “H is a subgraph of G” in the context of isomorphism classes,

to mean that G has a subgraph isomorphic to H. A subgraph H is an induced subgraph of G if u, v ∈ V (H)

and uv ∈ E(G) together imply uv ∈ E(H). For a subset S of V (G), we use G[S] to denote the induced

subgraph of G with vertex set S and say that it is the subgraph induced by S.

The complement of a graph G is the graph G with V (G) = V (G) and E(G) =
(
V (G)

2

)
−E(G). The square

of a graph G, denoted G2, is the graph obtained by adding an edge joining every two vertices at distance 2
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that are not adjacent in G.

Given uv ∈ E(G), we subdivide uv by adding a new vertex w to V (G) and replacing uv in E(G) by uw

and vw. Any graph that can by obtained from G by a succession of edge subdivisions is a subdivision of G.

For S ⊂ V (G), we write G − S for the subgraph obtained from G by deleting all vertices of S and all

edges incident to vertices in S. In the case that S = {v} for some v ∈ V (G), we write G− v. For S ⊆ E(G),

we write G−S for the subgraph obtained from G by deleting all edges of S. For S ⊆
(
V (G)

2

)
, we write G∪S

for the graph obtained from G by adding all edges of S −E(G). In the case that S = {e} for e ∈
(
V (G)

2

)
, we

write G− e or G ∪ e.

If G is connected and there exists S ⊆ V (G) such that G− S is disconnected, then S is a cut-set. When

S ⊆ V (G) and V1, . . . , Vk are the vertex sets of the components of G − S, then the S-lobes of G are the

subgraphs induced by S ∪ V1, . . . , S ∪ Vk. (Note that S-lobe is well defined even when S is not a cut set.)

A coloring of a graph is an assignment of labels, called colors, to the vertices. When the labels are from

a k-element set, a coloring is a k-coloring. A coloring is proper if adjacent vertices receive distinct colors.

A graph is k-colorable if it can be properly k-colored. The chromatic number χ(G) of G is the least k such

that G is k-colorable.

A list assignment for G is an assignment of a list L(v) to each vertex v. For a list assignment L, a graph

is L-colorable if G has a proper coloring in which each vertex v receives an element of L(v). A graph G is

k-choosable if G is L-colorable for every list assignment L such that |L(v)| ≥ k for all v ∈ V (G). The choice

number ch(G) for G is the least k such that G is k-choosable.

A list assignment L for E(G) assigns to each vertex e a list L(e) of permissible colors. Given a list

assignment L for the edges of G, if a proper edge-coloring c can be chosen so that c(e) ∈ L(v) for all

e ∈ E(G), then we say that G is L-edge-colorable. The list edge-chromatic number χ′`(G) of G is the least k

such that G is L-edge-colorable for any list assignment L satisfying |L(e)| ≥ k for all e ∈ E(G).

A drawing of a graph on a surface is a mapping of the vertices into distinct points and the edges into

continuous curves on the surface that preserves the incidence relations. Since the incidence relation is

preserved, we may view these points and curves as the vertices and edges. By moving edges slightly, we may

restrict drawings by requiring that no three edges share a single internal point, that no edge has a vertex

as an internal point, that no two edges are tangent, and that no two incident edges cross. In a drawing, a

crossing of two edges is a common internal point. An embedding of a graph is a drawing with no crossings.

A graph is planar if it has an embedding in the plane. A particular embedding in the plane is a plane graph.

In a plane graph, the faces are the regions of the complement of the drawing.

Given an ordering v1, . . . , vn of V (G), the adjacency matrix A(G) is the 0, 1-matrix defined by Ai,j = 1
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if and only if vivj ∈ E(G). The eigenvalues of a graph G are the eigenvalues of its adjacency matrix A(G).
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Chapter 2

Fractional separation dimension

2.1 Introduction

This chapter contains joint work with Douglas B. West.

A pair of nonincident edges in a graph G is separated by a linear ordering of V (G) if both vertices of

one edge precede both vertices of the other. The separation dimension π(G) of a graph G is the minimum

number of vertex orderings that together separate every pair of nonincident edges of G. Graphs with at

most three vertices have no such pairs, so their separation dimension is 0. We therefore consider only graphs

with at least four vertices.

Introduced by Basavaraju, Chandran, Golumbic, Mathew, and Rajendraprasad [9] (full version in [10]),

separation dimension is motivated by a geometric interpretation. By viewing the orderings as giving coordi-

nates for each vertex, the separation dimension is the least k such that the vertices of G can be embedded in

Rk so that any two nonincident edges of G are separated by a hyperplane perpendicular to some coordinate

axis (ties in a coordinate may be broken arbitrarily.)

The upper bounds on π(G) proved by Basavaraju et al. [9, 10] include π(G) ≤ 3 when G is planar (sharp

for K4) and π(G) ≤ 4 log3/2 n when G has n vertices. Since all pairs needing separation continue to need sepa-

ration when other edges are added, π(G) ≤ π(H) when G ⊆ H; we call this fact monotonicity. By monotonic-

ity, the complete graph Kn achieves the maximum among n-vertex graphs. In general, π(G) ≥ log2b 1
2ω(G)c,

where ω(G) = max{t : Kt ⊆ G}. This follows from the lower bound π(Km,n) ≥ log2 min{m,n} [9, 10] and

monotonicity. Hence the growth rate of π(Kn) is logarithmic. (For the induced separation dimension, intro-

duced in Golumbic, Mathew, and Rajendraprasad [21], the only pairs needing separation are those whose

vertex sets induce exactly two edges, and monotonicity does not hold.)

Basavaraju, Chandran, Mathew, and Rajendraprasad [11] proved π(G) ∈ O(k log log n) for the n-vertex

graphs G in which every subgraph has a vertex of degree at most k. Letting K ′n denote the graph produced

from Kn by subdividing every edge, they also showed π(K ′n) ∈ Θ(log log n). Thus separation dimension is

unbounded already on the family of graphs with average degree less than 4. We ask, what is the largest value
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of b such that π(G) is bounded (by a constant) when Mad(G) < b? Since planar graphs have separation

dimension at most 3 and trees are planar, the value is at least 2.

In terms of the maximum vertex degree ∆(G), Alon, Basavaraju, Chandran, Mathew, and Rajen-

draprasad [6] proved π(G) ≤ 29 log∗2 ∆(G)∆(G). They also proved that almost all d-regular graphs G satisfy

π(G) ≥ dd/2e.

Separation dimension is equivalently the restriction of another parameter to the special case of line graphs.

The boxicity of a graph G, written box(G), is the least k such that G can be represented by assigning each

vertex an axis-parallel box in Rk (that is, a cartesian product of k intervals) so that vertices are adjacent in

G if and only if their assigned boxes intersect. The initial paper [9] observed that π(G) = box(L(G)), where

L(G) denotes the line graph of G (including when G is a hypergraph).

We study a fractional version of separation dimension, using techniques that apply for hypergraph cov-

ering problems in general. Given a hypergraph H, the covering number τ(H) is the minimum number of

edges in H whose union is the full vertex set. For separation dimension π(G), the vertex set of H is the set

of pairs of nonincident edges in G, and the edges of H are the sets of pairs separated by a single ordering of

V (G). Many minimization problems, including chromatic number, domination, poset dimension, and so on,

can be expressed in this way.

Given a hypergraph covering problem, the corresponding fractional problem considers the difficulty of

covering each vertex multiple times and measures the average number of edges needed. In particular,

the t-fold covering number τt(H) is the least number of edges in a list of edges (repetition allowed) that

covers each vertex at least t times, and the fractional covering dimension is lim inft τt(H)/t. Note that

τf (H) ≤ τ1(H) = τ(H). In the special case that H is the hypergraph associated with separation dimension,

we obtain the t-fold separation dimension πt(G) and the fractional separation dimension πf (G).

Every list of s edges in a hypergraph H provides an upper bound on τf (H); if it covers each vertex

at least t times, then it is called an (s : t)-covering, and τf (H) ≤ s/t. This observation will enable us to

obtain the maximum value of the fractional separation dimension. It is bounded, even though the separation

dimension is not (recall π(Kn) ≥ logbn/2c). In Section 2.3, we show:

Theorem 2.1.1. πf (G) ≤ 3 for any graph G, with equality if and only if K4 ⊆ G.

Proof. We may assume |V (G)| ≥ 4, since otherwise there are no separations to be established and πf (G) ≤

π(G) = 0. Now consider the set of all linear orderings of V (G). For any two nonincident edges ab and cd,

consider fixed positions of the other n − 4 vertices in a linear ordering. There are 24 such orderings, and

eight of them separate ab and cd. Grouping the orderings into such sets shows that ab and cd are separated

n!/3 times. Hence πf (G) ≤ 3.
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Now suppose K4 ⊆ G. In a copy of K4 there are three pairs of nonincident edges, and every linear

ordering separates exactly one of them. Hence to separate each at least t times, 3t orderings must be used.

We obtain πt(G) ≥ 3t for all t, so π(G) ≥ 3.

Theorem 2.1.1 gives a sharp bound, even for bipartite graphs; we prove πf (Km,m) = 3m
m+1 .

When G is disconnected, the value on G of πt for any t (and hence also the value of πf ) is just its

maximum over the components of G. We therefore focus on connected graphs. Also monotonicity holds for

πf just as for π.

Fractional versions of hypergraph covering problems are discussed in the book of Scheinerman and Ull-

man [38]. For every hypergraph covering problem, the fractional covering number is the solution to the

linear programming relaxation of the integer linear program specifying τ(H). One can use this to express

τf (G) in terms of a matrix game; we review this transformation in Section 2.2 to make our presentation

self-contained. The resulting game yields a strategy for proving results about τf (H) and in particular about

πf (G). To prove results about πf via this matrix game expression, we probability distributions on the vertex

orders and on the pairs of nonincident edges.

In Section 2.3, we characterize the extremal graphs for fractional separation dimension, proving that

πf (G) = 3 only when K4 ⊆ G. No smaller bound can be given even for bipartite graphs; we prove

πf (Km,m) = 3m
m+1 . For Km,m, the pairs of nonincident edges fall into a single orbit, thus our proof consists

of giving a family of orders that separates a maximum number of pairs.

In Sections 2.4 and 2.5 we consider sparser graphs. The girth of a graph is the minimum length of its

cycles (infinite if it has no cycles). In Section 2.4 we show πf (Cn) = n
n−2 . Also, the value is 30

17 for the

Petersen graph and 28
17 for the Heawood graph. Although these results suggested asking whether graphs with

fixed girth could admit better bounds on separation number, Alon [3] pointed out by using expander graphs

that large girth does not permit bounding πf (G) by any constant less than 3 (see Section 2.4). Nevertheless,

we can still ask the question for planar graphs.

Question 2.1.2. How large can πf (G) be when G is a planar graph with girth at least g?

In Section 2.5, we consider graphs without cycles.

Theorem 2.5.1. πf (G) <
√

2 when G is a tree.

The proof involves building a probability distribution on the orders of and calculating the probability of

separation for the nonincident edges. The bound in Theorem 2.5.1 improves to πf (T ) ≤ 4
3 for trees obtained

from a subdivision of a star by adding any number of pendant edges at each leaf. This is sharp; the tree

with 4m+ 1 vertices obtained by subdividing every edge of K1,2m has diameter 4 and fractional separation
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dimension 4m−2
3m−1 , which tends to 4

3 . We believe that the optimal bound for trees is strictly between 4
3 and

√
2.

Question 2.1.3. What is the supremum of πf (G) when G is a tree?

In Section 2.6, we return to the realm of dense graphs with values of πf near 3. We first compute

πf (Km+1,qm). The formula yields πf (Km,r) < 3(1− 1
2m−1 ) for all r, so both parts of a bipartite graph must

grow to obtain a sequence of values approaching 3. In the special case q = 1, we obtain πf (Km+1,m) = 3m
m+1 .

In addition, πf (Km,m) = 3m
m+1 , for m ≥ 2. We conjecture that, among bipartite n-vertex graphs, πf is

maximized by Kn,n. We also studied complete balanced tripartite graphs.

Theorem 2.6.2. πf (Km,m,m) = 6m
2m+1 for m ≥ 2.

When n = 6r, we thus have πf (K2r,2r,2r) > πf (K3r,3r). Surprisingly, the value is larger for a quite

different complete tripartite graph.

Theorem 2.6.4. πf (K1,m,m) = 24m
8m+5+3/(2dm/2e−1) for m ≥ 1.

Computer search verifies the extreme among tripartite graphs up to 14 vertices. For n = 9, there is an

anomaly, with πf (K3,3,3) > πf (K1,4,4).

Conjecture 2.1.4. For n ≥ 10, the graph K1,b(n−1)/2c,d(n−1)/2e achieves the maximum value of πf among

n-vertex graphs not containing K4.

Since πf (G) is always rational, we ask

Question 2.1.5. Which rational numbers (between 1 and 3) occur as the fractional separation dimension

of some graph?

Finally, in Section 2.7, we consider the analogues of π and πf defined by using circular orderings of the

vertices rather than linear ones; we use the notation π◦ and π◦f . We show first that π◦(G) = 1 if and only if

G is outerplanar. Surprisingly, π◦(Km,n) = 2 when m,n ≥ 2 and mn > 4, but π◦ is unbounded.

Theorem 2.7.3. π◦(Kn) > log2 log3(n− 1).

For the fractional context, we prove π◦f (G) ≤ 3
2 for all G, with equality if and only if K4 ⊆ G. Again

no better bound holds for bipartite graphs; we prove π◦f (Km,qm) = 6(qm−1)
4mq+q−3 , which tends to 3

2 as m → ∞

when q = 1. It tends to 6m
4m+1 when q →∞, so again both parts must grow to obtain a sequence on which

π◦f tends to 3
2 . The proof is different from the linear case. The questions remaining are analogous to those

for πf .
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Question 2.1.6. How large can π◦f be when G is a planar graph with girth at least g? Which are the n-vertex

graphs maximizing π◦f among bipartite graphs and among those not containing K4? Which rational numbers

between 1 and 3
2 occur?

2.2 Fractional covering and matrix games

Given a hypergaph H with vertex set V (H) and edge set E(H), let Ev = {e ∈ E(H) : v ∈ e} for v ∈ V (H).

The covering number τ(H) is the solution to the integer linear program “minimize
∑
e∈E(H) xe such that

xe ∈ {0, 1} for e ∈ E(H) and
∑
e∈Ev

xe ≥ 1 for v ∈ V (H).” The linear programming relaxation replaces the

constraint xe ∈ {0, 1} with 0 ≤ xe ≤ 1.

It is well known (see Theorem 1.2.1 of [38]) that the resulting solution τ∗ equals τf (H). Multiplying the

values in that solution by their least common multiple t yields a list of edges covering each vertex at least t

times, and hence τf (H) ≤ τ∗t/t = τ∗. Similarly, normalizing an (s : t)-covering yields τ∗ ≤ s/t. Note that

since the solution to a linear program with integer constraints is always rational, always τf (H) is rational

(when H is finite).

A subsequent transformation to a matrix game yields a technique for proving bounds on τf (H). The

constraint matrix M for the linear program has rows indexed by E(H) and columns indexed by V (H), with

Me,v = 1 when v ∈ e and otherwise Me,v = 0. In the resulting matrix game, the edge player chooses a row

e and the vertex player chooses a column v, and the outcome is Me,v. In playing the game repeatedly, each

player uses a strategy that is a probability distribution over the options, and then the expected outcome is

the probability that the chosen vertex is covered by the chosen edge. The edge or “covering” player wants

to maximize this probability; the vertex player wants to minimize it.

Using the probability distribution x over the rows guarantees outcome at least the smallest entry in

xTM , no matter what the vertex player does. Hence the edge player seeks a probability distribution x to

maximize t such that
∑
e∈Ev

xe ≥ t for all v ∈ V (H). Dividing by t turns this into the linear programming

formulation for τf (H), with the resulting optimum being 1/t. This yields the following relationship.

Proposition 2.2.1. (Theorem 1.4.1 of [38]) If M is the covering matrix for a hypergraph H, then τf (H) =

1/t, where t is the value of the matrix game given by M .

Just as any strategy x for the edge player establishes minxTM as a lower bound on the value, so any

strategy y for the vertex player establishes maxMy as an upper bound. The value is established by providing

strategies x and y so that these bounds are equal. As noted in [38], such strategies always exist.

For fractional separation dimension, we thus obtain the separation game. The rows correspond to vertex
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orderings and the columns to pairs of nonincident edges. The players are the ordering player and the pair

player, respectively. To prove πf (G) ≤ 1/t, it suffices to find a distribution for the ordering player such that

each nonincident pair is separated with probability at least t. To prove πf (G) ≥ 1/t, it suffices to find a

distribution for the pair player such that for each ordering the probability that the chosen pair is separated

is at most t.

The proof of Theorem 2.1.1 can be phrased in this language. By making all vertex orderings equally

likely, the ordering player achieves separation probability exactly 1
3 for each pair, yielding πf (G) ≤ 3. By

playing the three nonincident pairs in a single copy of K4 with equal probability and ignoring all other pairs,

the pair player achieves separation probability exactly 1/3 against any ordering, yielding πf (G) ≥ 3.

Another standard result about these games will be useful to us. Let P denote the set of pairs of

nonincident edges in a graph G. Symmetry in G greatly simplifies the task of finding an optimal strategy

for the pair player.

Proposition 2.2.2. (follows from Exercise 1.7.3 of [38]) If, for any two pairs of nonincident edges in a

graph G, some automorphism of G maps one to the other, then there is an optimal strategy for the pair player

in which all pairs in P are made equally likely. In general, there is an optimal strategy that is constant on

orbits of the pairs under the automorphism group of G.

Proof. Consider an optimal strategy y, yielding maxMy = t. Automorphisms of G induce permutations of

the coordinates of y. The entries in My′ for any resulting strategy y′ are the same as in My. Summing

these vectors over all permutations and dividing by the number of permutations yields a strategy y∗ that is

constant over orbits and satisfies maxMy∗ ≤ t.

When there is an optimal strategy in which the pair player plays all pairs in P equally, the value of the

separation game is just the largest fraction of P separated by any ordering. For τf (H) in general, Proposition

1.3.4 in [38] states this by saying that for a vertex-transitive hypergraph H, always τf (H) = |V (H)|/r, where

r is the maximum size of an edge. For separation dimension, this yields the following:

Corollary 2.2.3. Let G be a graph. If for any two pairs of nonincident edges in G, there is an automorphism

of G mapping one pair of edges to the other, then τf (G) = q/r, where q is the number of nonincident pairs

of edges in G and r is the maximum number of pairs separated by any vertex ordering.

2.3 Characterizing the extremal graphs

When K4 6⊆ G, we can separate πf (G) from 3 by a function of n.
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Theorem 2.3.1. If G is an n-vertex graph and K4 6⊆ G, then πf (G) ≤ 3
(
1− 12

n4 +O( 1
n5 )
)
.

Proof. Let p = 1
3 + 4(n−4)!

n! ; note that 1/p has the form 3
(
1− 12

n4 +O( 1
n5 )
)
. It suffices to give a probability

distribution on the orderings of V (G) such that each nonincident pair of edges is separated with probability

at least p. We do this by modifying the list of all orderings.

Choose any four vertices a, b, c, d ∈ V (G). For each ordering ρ of the remaining n−4 vertices, 24 orderings

begin with {a, b, c, d} and end with σ′. By symmetry, we may assume ac /∈ E(G). Thus the possible pairs

of nonincident edges induced by {a, b, c, d} are {ab, cd} and {ad, bc}. We increase the separation probability

for these pairs, even though these four edges need not all exist.

The pairs {ab, cd} and {ad, bc} are each separated eight times in the list of 24 orderings. We replace

these 24 with another list of 24 (that is, the same total weight) that separate {ab, cd} and {ad, bc} each

at least twelve times, while any other pair of disjoint vertex pairs not involving {a, c} is separated at least

eight times. Since {a, b, c, d} is arbitrary and we do this for each 4-set, the pairs {ab, cd} and {ad, bc} remain

separated at least eight times in all other groups of 24 orderings. Thus the separation probability increases

from 1
3 to at least p for all pairs of nonincident edges.

Use four orderings each that start with abcd or bcad and eight each that start with cdba or adbc, always

followed by σ′. By inspection, each of {ab, cd} and {ad, bc} is separated twelve times in the list. The number

of orderings that separate any pair of nonincident edges having at most two vertices in {a, b, c, d} does not

change.

It remains only to check pairs with three vertices in this set, consisting of one edge induced by this set

and another edge with one endpoint in the set. The induced edge is one of {ab, cd, bc, ad, bd} (never ac),

and the other edge uses one of the remaining two vertices in {a, b, c, d}. In each case, the endpoints of the

induced edge appear before the third vertex in at least eight of the orderings in the new list of 24; this

completes the proof.

For n-vertex graphs not containing K4, Theorem 2.3.1 separates πf (G) from 3 by a small amount. We

believe that a much larger separation also holds (Conjecture 2.1.4). Nevertheless, we show next that even

when G is bipartite there is no upper bound less than 3.

Theorem 2.3.2. πf (Km,m) = 3m
m+1 for m ≥ 2.

Proof. The pairs in P all lie in the same orbit under automorphisms of Km,m, so Corollary 2.2.3 applies.

There are 2
(
m
2

)2
pairs in P (played equally by the pair player). It suffices to show that the maximum number

of pairs separated by any ordering is m+1
3m 2

(
m
2

)2
.
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Let the parts of Km,m be X and Y . Let σ be an ordering v1, . . . , v2m such that each pair {v2i−1, v2i}

consists of one vertex of X and one vertex of Y . The ordering player will in fact make all such orderings

equally likely. It suffices to show that σ separates m+1
3m 2

(
m
2

)2
pairs and that no ordering separates more.

By symmetry, we may index X as x1, . . . , xm and Y as y1, . . . , ym in order in σ, so that {v2i−1, v2i} =

{xi, yi} for 1 ≤ i ≤ m, though xi and yi may appear in either order. Consider an element of P separated by

σ. The vertices involved in the separation may use two, three, or four indices among 1 through m.

Pairs hitting i, j, k, l with i < j < k < l must be separating xiyj or yixj from xkyl or ykxl. Hence there

are 4
(
m
4

)
such pairs.

Pairs hitting only i, j, k with i < j < k involve two vertices with the same index. If that index is i or k,

then there are two ways to complete the edge pair. However, if xj and yj are both used, then there is only

one way to choose from {xi, yi} and from {xk, yk} to complete a separated pair, determined by the order of

xj and yj . Hence there are 5
(
m
3

)
such pairs.

A separated pair hitting only i and j must be {xiyi, xjyj}. Hence in total σ separates 4
(
m
4

)
+ 5
(
m
3

)
+
(
m
2

)
pairs in P. In fact, this sum equals m+1

3m 2
(
m
2

)2
.

Now let σ be an ordering not of the specified form. By symmetry we may again index X as x1, . . . , xm

and Y as y1, . . . , ym in order in σ. However, now some vertex precedes another vertex with a lesser index.

That is, by symmetry we may assume that yj appears immediately before xi for some i and j with j > i.

Form σ′ from σ by interchanging the positions of yj and xi. Any pair separated by exactly one of σ

and σ′ has xi and yj as endpoints of the two distinct edges. There are (i − 1)(m − j) such pairs in σ and

(j − 1)(m− i) such pairs in σ′. Since m ≥ 2 and j > i, comparing these quantities shows that σ′ separates

strictly more pairs than σ.

To prove that always πf (Kdn/2e,bn/2c) = 3m
m+1 , where m = bn/2c, we need also to compute πf (Km+1,m).

We postpone this to Section 2.6. Note that the simple final expression arises when we cancel common factors

in the numerator and denominator. We would hope that such a simple formula has a simple direct proof,

but we have not found one.

2.4 Graphs with larger girth

Among sparser graphs, it is natural to think first about cycles.

Proposition 2.4.1. πf (Cn) = n
n−2 , for n ≥ 4.

Proof. The ordering player uses the n rotations of an n-vertex path along the cycle, equally likely. Noninci-

dent edges e and e′ are separated unless e or e′ consists of the first and last vertex. Hence any pair in P is
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Figure 2.1: The Petersen graph.

Figure 2.2: The Heawood graph.

separated with probability n−2
n .

Let the vertices be v1, . . . , vn in order along the cycle. The pair player makes the pairs {vi−1vi, vi+1vi+2}

(modulo n) equally likely. It suffices to show that any ordering separates at most n − 2 of these pairs.

Otherwise, by symmetry some ordering σ separates the n− 1 such pairs satisfying 2 ≤ i ≤ n. By symmetry

we may assume that {v1, v2} precedes {v3, v4} in σ. If vi precedes vi+2, then separating vivi+1 from vi+2vi+3

requires vi+1 to precede vi+3. Iterating this argument yields vn−2 before vn and vn−1 before v1 in σ. Since

v1 precedes both v3 and v4, choosing the right one by parity leads to v1 preceding v1, a contradiction.

Proposition 2.4.1 suggests that πf decreases as girth increases. We compute the values for the smallest

3-regular graphs of girth 5 and girth 6. These are the Petersen graph and the Heawood graph. The Petersen

graph is the Kneser graph K(5, 2), shown in Figure 2.1. The Fano plane is the hypergraph with vertex set

[7] and edge set {124, 457, 561, 346, 235, 672, 713}. The Heawood graph is the incidence graph of the Fano

plane, and is shown in Figure 2.2. The pairs of nonincident edges in both the Petersen graph and Heawood

graph have two orbits under automorphisms. In the figures, the two pairs of dashed edges represent the two

orbits.

Proposition 2.4.2. The fractional separation dimension of the Petersen graph is 30
17 .

Proof. The 75 pairs of nonincident edges in the Petersen graph G fall into two orbits: the 15 pairs that occur

as opposite edges on a 6-cycle (Type 1) and the 60 pairs that do not (Type 2). Thus some optimal strategy

for the pair player will make Type 1 pairs equally likely and make Type 2 pairs equally likely. There exist
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orderings that separate nine Type 1 pairs and 34 Type 2 pairs. With the graph expressed as the disjointness

graph of the 2-element subsets of {1, 2, 3, 4, 5}, such an ordering σ is

12, 34, 51, 23, 45, 13, 42, 35, 41, 25

Since 9
15 >

34
60 , making the 120 orderings generated from σ by permuting {1, 2, 3, 4, 5} equally likely yields

πf (G) ≤ 60
34 = 30

17 .

Since 9
15 >

34
60 , the pair player establishes a matching lower bound by playing only Type 2 pairs, equally

likely, if no ordering separates more than 34 Type 2 pairs. Computer search shows that this is true.

Proposition 2.4.3. The fractional separation dimension of the Heawood graph is 28
17 .

Proof. The 168 pairs of nonincident edges in the Heawood graph H fall into two orbits: 84 pairs that are

opposite on a a 6-cycle (Type 1) and 84 pairs that have a common incident edge (Type 2). Some optimal

strategy for the pair player will make Type 1 pairs equally likely and make Type 2 pairs equally likely.

There exist orderings that separate 51 Type 2 pairs and 54 Type 1 pairs. With the graph expressed as the

incidence graph of the Fano plane, such an ordering is

1, 124, 4, 457, 5, 561, 6, 346, 3, 235, 2, 672, 7, 713

The automorphism group of H is isomorphic to the projective linear gropu, PGL2(7), which has size 336.

Making each ordering generated by the automorphisms equally likely yields πf (H) ≤ 84
54 = 28

17 .

The pair player establishes a matching lower bound by playing only Type 2 pairs, equally likely, if no

ordering separates more than 51 Type 2 pairs. Computer search (reduced by symmetries) shows that this is

true.

These small graphs suggest that perhaps πf (G) < 2 when G has girth at least 5. However, Alon [3]

observed using the Expander Mixing Lemma that expander graphs with large girth (such as Ramanujan

graphs) still have πf arbitrarily close to 3. We sketch the argument.

Lubotzky, Phillips, and Sarnak [32] introduced Ramanujan graphs as d-regular graphs in which every

eigenvalue with magnitude less than d has magnitude at most 2
√
d− 1. For d− 1 being prime, they further

introduced an infinite family of such graphs whose girth is at least 2
3 logd−1 n, where n is the number of

vertices.

Let G be a d-regular n-vertex graph whose eigenvalues other than d have magnitude at most λ. The

Expander Mixing Lemma of Alon and Chung [4] states that whenever A and B are two vertex sets in G,
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the number of edges of G joining A and B differs from |A| |B|(d/n) by at most λ
√
|A| |B| (edges with both

endpoints in A ∩B are counted twice).

Alon [3] applied this lemma to an arbitrary vertex ordering σ of G, breaking σ into k blocks of consecutive

vertices, each with length at most dn/ke. Intuitively, by the Expander Mixing Lemma the vast majority

of the edges can be viewed as forming a blowup of a complete graph with k vertices. With k chosen to be

about d1/3, Alon showed that asymptotically only d2n2

24 pairs of nonincident edges can be separated by σ .

However, there are asymptotically d2n2

8 pairs of nonincident edges. Thus every ordering can separate only

about a third of the pairs. Lubotzky, Phillips, and Sarnak [32] showed this graph G can be chosen to have

arbitrarily large girth.

Alon extended the question in our Conjecture 2.1.4 by asking how small ε can be made so that there is

an n-vertex graph G with girth at least g such that πf (G) ≥ 3− ε. His detailed computations [3] with the

error terms yield ε < n−c/g for some positive constant c.

Graphs with good expansion properties are not planar. The original paper [9] proved π(G) ≤ 2 for every

outerplanar graph G, and hence also πf (G) ≤ 2. Equality holds for outerplanar graphs with 4-cycles. We

suggest seeking sharp upper bounds for the family of outerplanar graphs with girth at least g, and similarly

for planar graphs with girth at least g (Question 2.1.2 states this for planar graphs).

2.5 Trees

Although limg→∞
g
g−2 = 1, it is not true that πf (G) = 1 whenever G is a tree. The graphs G with πf (G) = 1

are just the graphs with π(G) = 1, as holds for every hypergraph covering parameter. These graphs were

characterized in BCGMR [9]. Each component is obtained from a path P by adding independent vertices

that have one neighbor or two consecutive neighbors on P , but for any two consecutive vertices on P at

most one common neighbor can be added.

This implies that the trees with fractional separation dimension 1 are the caterpillars. We seek the

sharpest general upper bound for trees.

Theorem 2.5.1. πf (G) <
√

2 when G is a tree.

Proof. We construct a strategy for the ordering player to show that the separation game has value at least

1√
2
. Since πf (G) is rational, the inequality is strict.

Root T at a vertex v. For a vertex u other than v, let u′ be the parent of u. We describe the strategy

for the ordering player by an iterative probabilistic algorithm that generates an ordering. Starting with v,

we iteratively add the children of previously placed vertices according to the following rules, where β is a
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probability to be specified later.

(R1) The children of v are placed before or after v with probability 1
2 , independently.

(R2) The children of a non-root vertex u are put between u and its parent u′ with probability 1 − β; they

are placed on the side of u away from u′ with probability β.

(R3) The children placed on each side of a vertex are placed immediately next to it by a random permutation.

The resulting ordering has the following property:

(∗) Any vertex between a vertex u and a child of u is a descendant of u.

We must prove that the separation probability is at least 1√
2

for each pair of nonincident edges. Given

nonincident edges ab and cd, let w denote the common ancestor of these vertices that is farthest from the

root. We may assume a = b′ and c = d′. Without loss of generality, there are three types of pairs, as shown

in Figure 2.3.

b

a

w

c

d

c = w

da

b

c = w

d

a

b

Figure 2.3: The three possible types of pairs.

In Type 1, neither edge contains an ancestor of a vertex in the other edge. Hence (∗) implies that no

vertex of one edge can lie between the vertices of the other edge. Thus Type 1 pairs are separated with

probability 1.

In Type 2, both vertices in one edge are descendants of the vertices in the other edge, say a and b are

descendents of d. By (∗), the pair fails to be separated if and only if a is between c and d. This occurs if

and only if the child of d on the path from d to a is placed between d and its parent, c. That event has

probability 1− β, so the separation probability is β.

In Type 3, the vertices in ab are descendents of c but not d. Again separation fails if and only if a is

between c and d. This requires that d and the child of c on the path to a are placed on the same side of

c, after which the probability of having a between c and d is 1
2 . The probability of having two specified

children of c on the same side of c is (1 − β)2 + β2 if c 6= v; it is 1
2 if c = v. If c = v, then the separation

probability is 3
4 , greater than 1√

2
. If c 6= v, then the separation probability is 1− 1

2 (1− β)2 − 1
2β

2.
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We optimize by solving β = 1− 1
2 (1−β)2− 1

2β
2 and setting β = 1√

2
. Now each pair of nonincident edges

is separated with probability at least 1√
2
.

If a root v can be chosen in a tree G so that the all pairs of Type 3 involve v, then in the proof of

Theorem 2.5.1 setting β = 3
4 yields πf (G) ≤ 4

3 . This proves the following corollary.

Corollary 2.5.2. πf (G) ≤ 4
3 for any tree G produced from a subdivision of a star by adding any number of

pendent vertices to each leaf.

The bound in Corollary 2.5.2 cannot be improved.

Proposition 2.5.3. πf (K ′1,n) = 4m−2
3m−1 , where m = dn/2e and K ′1,n is the graph obtained from K1,n by

subdividing every edge once.

Proof. Form K ′1,n from the star with center v and leaves y1, . . . , yn by introducing xi to subdivide vyi, for

1 ≤ i ≤ n. Let X = x1, . . . , xn.

If in some ordering a vertex of degree 1 does not appear next to its neighbor, then moving it next to its

neighbor does not make any separated pair unseparated. Hence the ordering player can optimally play only

orderings in which every vertex of degree 1 appears next to its neighbor; it does not matter on which side

of its neighbor the vertex is placed.

Nonincident edges of the form xiyi and xjyj are always separated by any ordering that puts yi next to

xi for all i; the pair player will not play these. The remaining n(n − 1) pairs of nonincident edges have

the form {vxi, xjyj} and lie in a single orbit. By Corollary 2.2.3, some optimal strategy for the pair player

makes them equally likely.

An optimal strategy for the ordering player will thus make equally likely all orderings obtained by

permuting the positions of the pairs xryr within an ordering that maximizes the number of separated pairs

of the nontrivial form {vxi, xjyj}. Such a pair is separated when xi and xj lie on opposite sides of v and

when xi is between v and xj .

To count such pairs, it matters only how many vertices of X appear to the left of v, since yi appears

next to xi for all i. If k vertices of X appear to the left of v, then the count of separated nontrivial

pairs is 2k(n − k) +
(
k
2

)
+
(
n−k

2

)
. This formula simplifies to

(
n
2

)
+ k(n − k), which is maximized only when

k ∈ {dn2 e, b
n
2 c}.

Thus the ordering player puts v in the middle, bn2 c vertices of X on one side, and dn2 e vertices of X

on the other side. Whether n is 2m or 2m − 1, the ratio of
(
n
2

)
+ bn

2

4 c to n(n − 1) simplifies to 3m−1
4m−2 , as

desired.
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It remains to find trees with fractional separation dimension between 4
3 and

√
2. In the proof of Theo-

rem 2.5.1, it is the balance of separating the Type 2 and Type 3 pairs (see Figure 2.3) that leads to our bound

of
√

2. Let T (i, j, k) be the tree with root v, d(v) = i, d(w) = j + 1 for each w ∈ N(v), and d(w) = k + 1

for each w ∈ N2(v). We suggest studying the fractional separation dimension of the class of trees T (i, j, k)

with i ≥ 2, j ≥ 2 and k = 1.

2.6 Complete multipartite graphs

To prove that always πf (Kdn/2e,bn/2c) = 3m
m+1 , where m = bn/2c, we need also to compute πf (Km+1,m).

This is the special case q = 1 of our next theorem. We postponed it because the counting argument for the

generalization is more technical than our earlier arguments.

Theorem 2.6.1. πf (Km+1,qm) = 3
(

1− (q+1)m−2
(2m+1)mq−m−2

)
for m, q ∈ N with mq > 1.

Proof. Note that 3
(

1− (q+1)m−2
(2m+1)mq−m−2

)
= 6m(mq−1)

(2m+1)mq−m−2 . Let p = (2m+1)mq−m−2
6m(mq−1) . The pairs in P all lie

in the same orbit, so Corollary 2.2.3 applies, and the pair player can make all 2
(
m+1

2

)(
mq
2

)
pairs in P equally

likely. It suffices to show that the maximum number of pairs separated by any ordering is 2p
(
m+1

2

)(
mq
2

)
.

The proof is similar to that of Theorem 2.3.2.

Let the parts of Km+1,qm be X and Y , with |X| = m + 1 and |Y | = qm. Let σ be an ordering

v0, . . . , v(q+1)m such that vi ∈ X if and only if i ≡ 0 mod (q + 1). The ordering player will in fact make all

such orderings equally likely. We show that σ separates 2p
(
m+1

2

)(
mq
2

)
pairs and that no ordering separates

more.

Let X = {x0, . . . , xm}, indexed in order of appearance in σ, and similarly let Y = {y1, . . . , yqm}. Let

B0 = {x0}, and for 1 ≤ i ≤ m let Bi consist of {yq(i−1)+1, . . . , yqi, xi}. To count pairs in P separated by σ,

we consider which blocks contain the vertices used.

If the indices are i, j, k, l with 1 ≤ i < j < k < l ≤ m, then one edge consists of xi or xj and a Y -vertex

from the other block among {Bi, Bj}, and similarly for {Bk, Bl}. Hence there are 4q2
(
m
4

)
such pairs. If

i = 0, then we must use x0, and there are 2q2
(
m
3

)
such pairs.

If the indices are i, j, k with 1 ≤ i < j < k ≤ m, then we use two vertices from one block. If we use two

in Bi, then the other edge uses xj or xk and a Y -vertex from the remaining block, yielding 2q2 separated

pairs. Similarly, 2q2 separated pairs use two vertices in Bk. Two vertices used from Bj may both be from

Y or may include xj . In the first case xi and xk are used, while in the second case xj and xi are used; thus

the vertices from Y can be chosen in
(
q
2

)
+ q2 ways. Hence for such index choices a total of (

(
q
2

)
+ 5q2)

(
m
3

)
pairs are separated.
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If the indices are 0, j, k with 1 ≤ j < k ≤ m, then x0 is used. If xj is used, then there are q2 ways to

complete the pair of separated edges coming from selecting one vertex from Y in each of Bj and Bk. If xk

is used, then there are
(
q
2

)
+ q2 ways to complete a pair in P since both vertices from Y may be chosen one

from Bj and one from Bk, or both from Bj . Hence this case contributes (
(
q
2

)
+ 2q2)

(
m
2

)
pairs.

If the indices are i and j with 1 ≤ i < j ≤ m, then either we use two vertices from each of Bi and Bj

(with one edge within each block) or we use three vertices from Bj and only the vertex xi from Bi. This

yields (q2 +
(
q
2

)
)
(
m
2

)
separated pairs. If i = 0, then we must use x0 and three vertices from Bj , for a total of(

q
2

)
m pairs.

Thus σ separates [4q2]
(
m
4

)
+ [7q2 +

(
q
2

)
]
(
m
3

)
+ [3q2 + 2

(
q
2

)
]
(
m
2

)
+
(
q
2

)
m pairs. Direct computation shows

that this equals 2p
(
m+1

2

)(
mq
2

)
. In particular, since p = (2m+1)mq−m−2

6m(mq−1) , the formula 2p
(
m+1

2

)(
mq
2

)
simplifies

to 1
12 [(2m+ 1)mq −m− 2](m+ 1)mq.

It remains to show that no ordering separates more pairs than the orderings of this type. Let σ be an

ordering not of this type. Index X and Y as before. If σ does not start with x0, then let y be the vertex

immediately preceeding x0. Form σ′ from σ by exchanging the positions of y and x0. Since no pair of the

form x′y, x0y
′ is separated by σ, every pair separated by σ is also separated by σ′.

Hence we may assume by symmetry that σ starts with x0 and ends with xm. If σ does not have the

desired form, then by symmetry there is a least index j such that more than qj vertices of Y precede xj ,

while fewer than q(m−j) follow xj . Form σ′ by exchanging the positions of xj and the vertex y immediately

preceding it in σ. Let r be the number of vertices of Y preceding xj . The number of pairs separated by σ

but not σ′ is j(mq − r), while the number separated by σ′ but not σ is (r − 1)(m − j). The difference is

m(r − jq) − (m − j). Since r > qj and j < m, the difference is positive, and σ′ separates more pairs than

σ.

Since 1
p = 6(mq−1)

(2m+1)q−m−2/m ≤
6m

2m+1 = 3(1 − 1
2m+1 ), with equality only when m = 1, always πf (Km,r)

is bounded away from 3 by a function of m. In particular, having πf tend to 3 on a sequence of bipartite

graphs requires the sizes of both parts to grow.

We expect that Kdn/2e,bn/2c maximizes πf among n-vertex bipartite graphs. By monotonicity, the max-

imum occurs at Kk,n−k for some k. We have πf (Km,m) = πf (Km+1,m) = 3m
m+1 . For unbalanced instances

with 2m + 1 vertices (assuming integrality of ratios for simplicity), Theorem 2.6.1 yields πf (K 2m
q+1 +1, 2qmq+1

).

The value is highest for the balanced case.

It would be desirable to have a direct argument showing that moving a vertex from the larger part to

the smaller part in Kk,n−k increases πf when k ≤ n/2− 1. This would prove that balanced bipartite graphs

maximize πf . However, the statement surprisingly is not true in general for complete tripartite graphs.
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Computation has shown πf (Km+2,m,m) > πf (Km+1,m+1,m) when 2 ≤ m ≤ 4. Even more surprising, by

computing the values of πf for Km,m,m and K1,m,m, we obtain πf (K1,(n−1)/2,(n−1)/2) > πf (Kn/3,n/3,n/3)

when n is an odd multiple of 3. This follows from the remaining results in this section and motivates our

Conjecture 2.1.4.

Theorem 2.6.2. πf (Km,m,m) = 6m
2m+1 for m ≥ 2.

Proof. There are two types of pairs in P: those with endpoints in two parts, called double-pairs or D-pairs,

and those with endpoints in all three parts, called triple-pairs or T-pairs. Within these two types of pairs

in P, any pair can be mapped to any other pair via an automorphism, so by Corollary 2.2.3 some optimal

strategy for the pair player makes D-pairs equally likely and makes T-pairs equally likely.

Let the parts of Km,m,m be X, Y , and Z. Let σ be an ordering v1, . . . , v3m such that each triple

{v3i−2, v3i−1, v3i} consists of one vertex from each part, for 1 ≤ i ≤ m. The ordering player will make

all such orderings equally likely. The restrictions of such orderings to two parts are the orderings used in

Theorem 2.3.2, which separate the fraction m+1
3m of the D-pairs.

We show that each such ordering separates the fraction 2m+1
6m of the T-pairs. This fraction is smaller

than m+1
3m . Hence this strategy shows that the separation game has value at least 2m+1

6m . By making the

T-pairs equally likely, the pair player establishes equality if also no other ordering separates more T-pairs.

For use in the next theorem, we distinguish each T-pair as a W -pair, for W ∈ {X,Y, Z}, when W is the

part contributing two vertices to the pair. Furthermore, with w ∈ {x, y, z}, we index W as w1, . . . , wm in

order of appearance in σ. Let the block Bi be {v3i−2, v3i−1, v3i}, so Bi = {xi, yi, zi} for 1 ≤ i ≤ m, though

{xi, yi, zi} may appear in any order in σ. The vertices of a T-pair separated by σ may use two, three, or

four indices in {1, . . . ,m}. In each case, let W be the part contributing a vertex to each edge of the pair.

T-pairs hitting Bi, Bj , Bk, Bl with i < j < k < l consist of one edge in Bi ∪Bj and the other in Bk ∪Bl.

We can choose the blocks for the two vertices of W in four ways (Bi or Bj , and Bj or Bk), and then we just

choose which of the other two parts finishes the first edge. Hence there are 8
(
m
4

)
such W -pairs for each W ,

together 24
(
m
4

)
such T-pairs.

Pairs hitting only Bi, Bj , Bk with i < j < k consist of one edge in Bi∪Bj and the other in Bj ∪Bk, with

care needed in making a separated pair when Bj contributes two vertices. If the repeated part W contributes

wi and wk, then there are five ways to complete the pair, one with two vertices from Bj and two each having

an edge within Bi or Bk. If wi and wj are used, then there are two W -pairs having an edge within Bi. The

number of W -pairs using a second vertex from Bj is t− 1 when wj is the tth vertex of Bj in σ. Finally, the

number of W -pairs using two vertices from Bk is zero. By symmetry, assuming wj is in the tth position of

Bj in σ, when wj and wk are used, there are 2 W -pairs using two vertices from Bk, 3− t W -pairs using two
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vertices from Bj and zero using two vertices from Bi. Since 5 + [2 + (t− 1)] + [2 + (3− t)] = 11 for t ∈ [3],

in each case 11 W -pairs are separated, for a total of 33
(
m
3

)
T-pairs.

A separated T-pair hitting only Bi and Bj uses wi and wj . Picking one additional vertex from each

block yields a separated W -pair in two ways. There is also one separated W -pair with three vertices in Bi if

wi is not the last vertex of Bi, and one with three vertices in Bj if wj is not the first vertex of Bj . Summing

over W yields 10
(
m
2

)
T-pairs of this type; six with two vertices in each of Bi and Bj , two with three vertices

in Bi and two with three vertices in Bj .

In total σ separates 24
(
m
4

)
+ 33

(
m
3

)
+ 10

(
m
2

)
T-pairs. This sum equals 2m+1

m

(
m
2

)
. Altogether there are

6m2
(
m
2

)
T-pairs, so the fraction of them separated is 2m+1

6m , as desired.

For an ordering σ not of the specified form, index the vertices of each part in increasing order in σ.

Avoiding the specified form means that some vertex precedes another vertex with a lesser index. By sym-

metry, we may assume that yj appears immediately before xi in σ for some i and j with j > i. Let k be the

number of vertices of Z appearing before yj .

Form σ′ from σ by interchanging the positions of yj and xi. Any T-pair separated by exactly one of σ

and σ′ has xi and yj as endpoints of the two distinct edges. Considering whether a vertex of Z is used to

complete the first, second, or both edges, there are k(m− j) + (i− 1)(m− k) + k(m− k) such T-pairs in σ

and k(m− i) + (j − 1)(m− k) + k(m− k) such T-pairs in σ′. The difference is m(j − i). Since m ≥ 2 and

j > i, the comparison shows that σ′ separates strictly more T-pairs than σ.

We also compute the fractional separation dimension of Km+1,m,m. As with Km+1,m, the extra vertex

imposes no extra cost.

Theorem 2.6.3. πf (Km+1,m,m) = 6m
2m+1 for m ≥ 2.

Proof. Let the parts of Km+1,m,m be X, Y , and Z with |X| = m + 1. By monotonicity, πf (Km+1,m,m) ≥

πf (Km,m,m) = 6m
2m+1 . To prove equality, it suffices to give a strategy for the ordering player that separates

any pair in P with probability at least 2m+1
6m . Given an ordering σ as v1, . . . , v3m+1, letBi = {v3i−2, v3i−1, v3i}

for 1 ≤ i ≤ m as in Theorem 2.6.2. Use W ∈ {X,Y, Z} and W = {w1, . . . , wt} as before, indexed as ordered

in σ. The ordering player makes equally likely all orderings such that (v3i−2, v3i−1, v3i) = (xi, yi, zi) in order

or (v3i−2, v3i−1, v3i) = (xi, zi, yi) in order and with v3m+1 = xm+1. By Corollary 2.2.3, it suffices to show

that σ separates at least the fraction 2m+1
6m of the pairs in each orbit.

For the pairs in P with endpoints in only two parts, the number of pairs separated by σ depends only

on the restriction of σ to those parts. The restriction is precisely an ordering used in Theorem 2.3.2 or

Theorem 2.6.1. There we showed that the fraction of such pairs separated is m+1
3m , which is larger than
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2m+1
6m .

In remains to consider the T-pairs. As in Theorem 2.6.2, classify these as W -pairs for W ∈ {X,Y, Z}.

The Y -pairs and Z-pairs are in one orbit, the X-pairs in another.

Deleting x3m+1 (the last vertex) leaves an ordering considered in Theorem 2.6.2. There we counted

W -pairs within that ordering. There were the same number of separated T-pairs of each type, except for

those hitting only two blocks. Since each block Bk appears in the order (xk, yk, zk), each pair of blocks yields

three separated X-pairs, four Y -pairs, and three Z-pairs among the 10 T -pairs counted earlier.

We conclude that the ordering separates 8
(
m
4

)
+11

(
m
3

)
+3
(
m
2

)
X-pairs and a total of 16

(
m
4

)
+22

(
m
3

)
+7
(
m
2

)
Y -pairs and Z-pairs not involving x3m+1.

Separated T-pairs involving x3m+1 hit at most three earlier blocks. Using one vertex each from Bi, Bj ,

and Bk with i < j < k, we obtain 4
(
m
3

)
X-pairs and a total of 4

(
m
3

)
Y -pairs and Z-pairs. Using x3m+1 and

vertices from Bi and Bj , there are 5
(
m
2

)
X-pairs, 2

(
m
2

)
Y -pairs and

(
m
2

)
Z-pairs. Using x3m+1 and all three

vertices of Bi, we obtain one X-pair, since xi comes first, and no Y -pairs or Z-pairs.

Summing these possibilities, we find that σ separates 8
(
m
4

)
+15

(
m
3

)
+8
(
m
2

)
+m of the m3(m+1) X-pairs

and 16
(
m
4

)
+ 26

(
m
3

)
+ 10

(
m
2

)
of the 2m2(m2 − 1) Y -pairs and Z-pairs. Remarkably, each ratio is exactly

2m+1
6m .

In Theorem 2.6.2 we used more general orderings to simplify the optimality argument. Since the use of

monotonicity eliminated the need to prove optimality, in Theorem 2.6.3 we used more restricted orderings

to simplify counting T-pairs.

The most surprising aspect of fractional separation dimension of dense n-vertex graphs is that it is not

generally maximized by the balanced complete tripartite graph.

Theorem 2.6.4. πf (K1,m,m) = 24m
8m+5+3/(2dm/2e−1) for m ≥ 1.

Proof. Let the parts be X, Y , and Z with X = {x}. Again we have D-pairs and T-pairs, but the vertices

of the D-pairs all lie in Y ∪ Z, and the T-pairs all use x and are Y -pairs or Z-pairs, designated by the part

contributing a vertex to each edge. The D-pairs lie in one orbit, as do the T-pairs, so by Corollary 2.2.3

some optimal strategy for the pair player makes D-pairs equally likely and makes T-pairs equally likely.

Let σ be a vertex ordering of the form v1, . . . , v2k, x, v2k+1, . . . , v2m such that each pair of the form

{v2i−1, v2i} consists of one vertex from each of Y and Z, for 1 ≤ i ≤ m. We count the pairs separated by σ.

After optimizing over k, the ordering player will make all orderings with that k equally likely.

For all k, the restrictions of such orderings to Y ∪ Z are the orderings used in Theorem 2.3.2, which

separate the fraction m+1
3m of the D-pairs, and no ordering separates more such pairs.
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Index Y as y1, . . . , ym and Z as z1, . . . , zm in order in σ, so that {v2i−1, v2i} = {yi, zi} for 1 ≤ i ≤ m.

Each T-pair separated by σ involves x. For the edge xw, an edge separated from xw by the ordering is

obtained by picking one vertex each from Y and Z that are both on the opposite side of x from w or both

on the opposite side of w from x. When w ∈ {yj , zj} with 1 ≤ j ≤ k, taking the two cases of yj and zj

together yields (j − 1)(j − 1 + j) + 2(m− k)2 pairs. Summing over j yields 2k(m− k)2 +
∑k
j=1

(
2j−1

2

)
pairs.

Similarly, summing over j with k + 1 ≤ j ≤ m yields 2(m− k)k2 +
∑m−k
i=1

(
2i−1

2

)
pairs.

Let f(k) be the sum of these two quantities, the total number of T-pairs separated. Note that

f(k) = 2mk(m− k) +

k∑
i=1

(
2i− 1

2

)
+

m−k∑
i=1

(
2i− 1

2

)
.

Letting g(k) = f(k)− f(k − 1), we have

g(k) = 2m(m− 2k + 1) +

(
2k − 1

2

)
−
(

2(m− k + 1)− 1

2

)
,

which simplifies to m − 2k + 1. Thus g(k) is a decreasing function of k. Also, g(m2 ) > 0 and g(m+1
2 ) = 0.

Hence the number of T-pairs is maximized by choosing k as the integer closest to m/2.

By induction on k, it is easily verified that
∑k
i=1

(
2i−1

2

)
= 1

6 (4k+ 1)k(k− 1). Hence when m is even and

k = m/2, our orderings separate m
12 (8m2−3m−2) pairs. When m is odd, they separate m−1

12 (8m2 +5m+3).

With altogether 2m2(m− 1) T-pairs, the ratio is 8m2−3m−2
24m(m−1) when m is even and 8m2+5m+3

24m2 when m is odd.

Dividing numerator and denominator by m − 1 or m yields the unified formula 8m+5+3/(2dm/2e−1)
24m for the

fraction separated.

Note that the fraction of T-pairs separated is smaller than the fraction of D-pairs separated. It suffices

to show that no ordering that does not pair vertices of Y and Z and place x between two pairs separates

the maximum number of T -pairs. The pair player then achieves equality in the game by making the T-pairs

equally likely.

Since we have considered all k, avoiding the specified form means that some vertex in Y ∪ Z precedes

another vertex with a lesser index or that x occurs between yi and zi for some i. In the first case, we may

assume that yj appears before zi with j > i and no vertex of Y ∪ Z between yj and zi. In the second case,

we may assume by symmetry that i < m and yi is before zi. In either case, form σ′ from σ by moving zi

one position earlier; this exchanges zi with yj or with x, see Figure 2.4.

If x appears before yj in σ, then m − j T-pairs are separated in σ but not σ′, and m − i T-pairs are

separated in σ′ but not σ. If x appears after zi, then i− 1 T-pairs are separated by σ but not σ′, and j − 1

T-pairs are separated by σ′ but not σ. Since j > i, in each case σ′ separates more T-pairs.
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. . . , yj , zi, . . . → . . . , zi, yj , . . .

. . . , yi, x, zi, . . . → . . . , yi, zi, x, . . .

Figure 2.4: Two suboptimal orders and local exchanges considered in the proof of Theorem 2.6.4

In the remaining case, x appears between yj and zi with j ≥ i and i < m. Now (i + j − 1)(m − j)

T-pairs are separated by σ but not σ′, and (2m − i − j)j T-pairs separated by σ′ but not σ. We have

(2m− i− j)j > (i+ j − 1)(m− j) when j < m(j − i+ 1), which is true when i < j ≤ m and i < m.

Using Theorems 2.6.2 and 2.6.4, we compare πf (K2r+1,2r+1,2r+1) = 6(2r+1)
4r+3 and πf (K1,3r+1,3r+1) ≥

24(3r+1)
24r+13+1/r . Each graph has 6r + 3 vertices. When r > 1, the value of πf (K1,3r+1,3r+1) is larger. Similarly,

using Theorems 2.6.3 and 2.6.4, we compare πf (K2r+1,2r,2r) = 12r
4r+1 and πf (K1,3r,3r) ≥ 24(3r)

24r+5+3/(3r−1) .

Each graph has 6r + 1 vertices. When r > 1, the value of πf (K1,3r,3r) is larger.

2.7 Circular separation dimension

Instead of considering linear orderings of V (G), we may consider circular orderings of V (G). A pair of

nonincident edges {xy, zw} is separated by a circular ordering σ if the endpoints of the two edges do not

alternate. The circular separation dimension is the minimum number of circular orderings needed to separate

all pairs of nonincident edges in this way. The circular t-separation dimension π◦t (G) is the minimum size

of a multiset of circular orderings needed to separate all the pairs at least t times. The fractional circular

separation dimension π◦f (G) is lim inft→∞ π◦f (G)/t.

Like π(G), also π◦(G) is a hypergraph covering problem. The vertex set P of the hypergraph H is

the same, but the edges corresponding to vertex orderings of G are larger. Thus π◦(G) ≤ π(G) and

π◦f (G) ≤ πf (G).

Before discussing the fractional problem, one should first determine the graphs G such that π◦(G) (and

hence also π◦f (G)) equals 1. Surprisingly, this characterization is quite easy. Unfortunately, it does not

generalize to geometrically characterize graphs with π◦(G) = t like the boxicity result in [9, 10].

Proposition 2.7.1. π◦(G) = 1 if and only if G is outerplanar.

Proof. When π◦(G) = 1, the ordering provides an outerplanar embedding of G by drawing all edges as

chords. Chords cross if and only if their endpoints alternate in the ordering.

For sufficiency, it suffices to consider a maximal outerplanar graph, since the parameter is monotone.

The outer boundary in an embedding is a spanning cycle; use that as the vertex order. All pairs in P are
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separated, since alternating endpoints yield crossing chords.

The lower bound π(Km,n) ≥ log2(min{m,n}) relies on the fact that when two vertices of one part precede

two vertices of the other, both nonincident pairs induced by these four vertices fail to be separated. In an

circular ordering, always at least one of the two pairs is separated. This leads to the surprising result that

π◦(G) ∈ {1, 2} when G is bipartite.

Proposition 2.7.2. π◦(Km,n) = 2 when m,n ≥ 2 with mn > 4.

Proof. The exceptions are the cases where Km,n is outerplanar and Proposition 2.7.1 applies. Let σ be an

circular ordering in which each partite set occurs as a consecutive segment of vertices. Obtain σ′ from σ by

reversing one of the partite sets. A nonincident pair of edges alternates endpoints in σ if and only if it does

not alternate endpoints in σ′. Hence it is separated in exactly one of the two orderings.

Nevertheless, π◦ is unbounded. It suffices to consider Kn, where a classical result provides the lower

bound. A list of d-tuples is monotone if in each coordinate the list is strictly increasing or weakly decreasing.

The multidimensional generalization of the Erdős–Szekeres Theorem by de Bruijn states that any list of

more than l2
d

vectors in Rd contains a monotone sublist of more than l vectors. The result is sharp, but

does not necessarily yield sharpness in our proof of the lower bound on π◦(Kn). Our best upper bound is

logarithmic, from π◦(Kn) ≤ π(Kn) ≤ 4 log3/2 n [10].

Theorem 2.7.3. π◦(G) > log2 log3(ω(G)− 1).

Proof. By monotonicity, it suffices to prove this for G = Kn. Note first that a set of circular orderings

separates all pairs of nonincident edges in Kn if and only if every 4-set appears cyclically ordered in more

than one way (not counting reversal). This follows because each cyclic ordering of K4 alternates endpoints

of exactly one pair of nonincident edges, and for the three cyclic orderings (unchanged under reversal) the

pairs that alternate are distinct.

Consider d circular orderings of {v1, . . . , vn}. Write them linearly by starting with v1. Associate with

each vi a vector wi in Rd whose jth coordinate is the position of vi in the jth linear ordering. If n > 32d

, then

by the multidimensional generalization of the Erdős–Szekeres Theorem w1, . . . , wn has a monotone sublist

of four elements. The four corresponding vertices x1, x2, x3, x4 appear in increasing order or in decreasing

order in each linear order. Hence they appear in the same cyclic order or its reverse in each of the original

circular orderings. In particular, x1x3 and x2x4 are not separated by these circular orderings. Since we

considered any d circular orderings, π◦(Kn) > d when n = 32d

+ 1.
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We turn now to the fractional context. Since π◦(G) is a hypergraph covering problem, again π◦f is

computed from a matrix game, with each row being the incidence vector for the set of pairs in P separated

by a circular ordering of V (G).

Our earlier results have analogues in the circular context. A circular ordering of four vertices separates

two of the three pairs instead of one, which improves some bounds by a factor of 2. The characterization of

the extremal graphs then mirrors the proof of Theorem 2.3.1.

Theorem 2.7.4. π◦f (G) ≤ 3
2 , with equality if and only if K4 ⊆ G. Furthermore, if G has n vertices and

K4 ⊆ G, then π◦f (G) ≤ 3
2

(
1− 6

n4 +O( 1
n5 )
)
.

Proof. A circular ordering separates two of the three pairs in each set of four vertices, so making all circular

orderings of n vertices equally likely yields π◦f (G) ≤ 3
2 . Equality holds when K4 ⊆ G, since the pair player

can give probability 1
3 to each pair of nonincident edges in a copy of K4.

Now suppose K4 6⊆ G. Let p = 2
3 + 4(n−4)!

n! . We provide a distribution on the circular orderings of V (G)

such that each nonincident pair of edges is separated with probability at least p. We create a list of n! linear

orderings of V (G), which we view as n! circular orderings.

Consider S = {a, b, c, d} ⊆ V (G). For each ordering σ′ of the remaining n−4 vertices, 24 orderings begin

with S and end with σ′. By symmetry, we may assume ac /∈ E(G). Thus the possible pairs of nonincident

edges induced by S are {ab, cd} and {ad, bc}. We increase the separation probability for these vertex pairs.

Circular separation includes nesting when written linearly; only alternation of endpoints fails. The pairs

{ab, cd} and {ad, bc} are each separated 16 times in the 24 orderings of S followed by σ′. The new 24

orderings will separate {ab, cd} and {ad, bc} each at least 20 times and any other pair, not involving the

nonadjacent pair consising of a and c, at least 16 times.

The 24 new orderings are two copies each where the first four vertices are (in order) abdc, badc, dcba,

cbad, adbc, adcb, acbd, or dbac, and four copies each using cdab or bcda, always followed by σ′. By inspection,

each of {ab, cd} and {ad, bc} is separated 20 times in the list.

The number of orderings that separate any pair of nonincident edges having at most two vertices in S

is the same as before. Hence we need only check pairs with three vertices in S, consisting of one edge in

{ab, cd, bc, ad, bd} (never ac) and another edge with one endpoint among the remaining two vertices in S.

In each case, the endpoints of the induced edge appear before or after the third vertex in at least 16 of the

orderings in the new list of 24.

Since {a, b, c, d} is arbitrary and we do this for each 4-set, the pairs {ab, cd} and {ad, bc} are separated

with probability at least 5
6 by the 24 orderings that start with {a, b, c, d} and then are made circular, and

with probability at least 2
3 among the remaining orderings. Thus the separation probability increases from
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2
3 to at least p for each pair.

Again there is no sharper bound for bipartite graphs or graphs with girth 4: π◦f (Km,m) → 3
2 . The

orderings used to give the optimal upper bound for π◦f (Km,qm) are in some sense the farthest possible from

those giving the optimal upper bound for π◦(Km,qm) in Proposition 2.7.2.

Theorem 2.7.5. π◦f (Km,qm) = 6(qm−1)
4mq+q−3 . In particular, π◦f (Km,m) = 3m−3

2m−1 .

Proof. Again Corollary 2.2.3 (for the circular separation game) applies. The 2
(
m
2

)(
qm
2

)
pairs of nonincident

edges lie in one orbit, so it suffices to make circular orderings that separate 4mq+q−3
6(qm−1) 2

(
m
2

)(
qm
2

)
pairs equally

likely and show that no ordering separates more.

Let X and Y be the parts of the bipartition, with |X| = m. Let σ be a circular ordering in which the

vertices of X are equally spaced, with q vertices of Y between any two successive vertices of X.

There are two types of pairs separated by σ. In one, the parts for the four vertices alternate as XYXY ;

in the other, they occur as XY Y X, cyclically. Choose the first member of X in m ways. Let k be the

number of steps within X taken to get from there to the other member of X used. In the first case, there

are kq(m − k)q ways to choose the vertices from Y and two ways to group the chosen vertices to form a

separated nonincident pair, but either of the vertices of X could have been called the first vertex. In the

second case, there are
(
kq
2

)
ways to choose from Y , one way to group, and only one choice for the first vertex

of X.

Thus, to count the separated pairs we sum over k and use
∑m
k=−n

(
n+k
r

)(
m−k
s

)
=
(
n+m+1
r+s+1

)
and

∑n
k=1 k

2 =

1
6n(n+ 1)(2n+ 1) to compute

m

m−1∑
k=1

kq(m− k)q +m

m−1∑
k=1

(
kq

2

)
= m

m∑
k=0

q2

(
0 + k

1

)(
m− k

1

)
+
mq

2

m−1∑
k=1

(k2q − k)

= mq2

(
m+ 1

3

)
+
mq2

2

(m− 1)m(2m− 1)

6
− mq

2

(
m

2

)
.

Factoring out 2
(
m
2

)
qm
2 leaves 1

6 (4mq + q − 3), as desired.

It remains to show that no other circular ordering separates as many pairs of nonincident edges. We do

this by finding, for every circular ordering σ other than those discussed above, an ordering σ̂ that separates

more pairs.

With X = {x1, . . . , xm} in cyclic order, the ordering σ is described by a list q1, . . . , qm of nonnegative

integers summing to qm, where qi is the number of vertices of Y between xi−1 and xi (indexed modulo m).

Index so that q1 = maxi qi; we may assume q1 ≥ q + 1.
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Let σ′ be the ordering obtained by interchanging xm with the vertex y immediately following it (note

that y ∈ Y , since q1 > q). The pairs in P separated by σ or σ′ but not both are those consisting of an

edge yxk for some k with 1 ≤ k ≤ m− 1 and an edge xmy
′. For those separated by σ but not σ′ there are∑m

j=k+1 qj choices for y′. For those separated by σ′ but not σ there are (
∑k
i=1 qi)− 1 choices for y′.

After isolating the terms involving q1, the net gain in switching from σ to σ′ is thus

m−1∑
k=1

q1 − 1 +

k∑
i=2

qi −
m∑

j=k+1

qj

 .

Consider instead the ordering σ′′ obtained from σ by interchanging x1 with the vertex y immediately

preceding it (again y ∈ Y , since q1 > q). The net change in the number of separated pairs follows the same

computation, except that q2, . . . , qm are indexed in the reverse order. More precisely, the change in moving

from σ to σ′′ is
m∑
k=2

q1 − 1 +

m∑
j=k+1

qj −
k∑
i=2

qi

 .

In summing the two net changes, the summations in the terms for 2 ≤ k ≤ m − 1 cancel. The sum is

thus

2(q1 − 1)(m− 1)−
m∑
j=2

qj −
m∑
i=2

qi.

Since
∑m
j=2 qj = qm− q1, the net sum simplifies to 2q1m− 2qm− 2(m− 1). Since q1 ≥ q + 1, the value is

at least 2. Since the sum of the two net changes is positive, at least one of them is positive, and σ does not

separate the most pairs.

Note that K2,r is planar with girth 4, for r ≥ 2. Theorem 2.7.5 yields π◦f (K2,2q) = 4q−4
3q−1 →

4
3 . It remains

open how large π◦f can be for planar graphs with girth 4, and for graphs (planar or not) with larger girth.

For girth 5, computer search shows that the fractional circular separation dimension of the Petersen graph

is 8
7 .
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Chapter 3

I,F-partitions

3.1 Introduction

This chapter contains joint work with Axel Brandt, Michael Ferrara, Mohit Kumbhat, Derrick Stolee, and

Matthew Yancey.

A k-coloring c : V (G)→ {1, . . . , k} of a graph G is proper if c assigns distinct colors to adjacent vertices.

The chromatic number of G is the minimum k such that G has a proper k-coloring.

Acyclic coloring was first introduced by Grünbaum [22]. A proper vertex coloring is acyclic if the union

of any two color classes induces a forest. The least k such that G has an acyclic k-coloring is the acyclic

chromatic number of G, denoted χa(G). An acyclic k-coloring of G is a star k-coloring if the components of

the forest induced by the union of two color classes are stars; the least k such that G has a star k-coloring is

the star chromatic number of G, denoted χs(G). It follows immediately that χ(G) ≤ χa(G) ≤ χs(G) for any

graph G, although is not difficult to see that χ 6= χa in general by considering, for instance, any bipartite

graph containing a cycle. We refer the reader to the thorough survey of Borodin [13] for additional results

on acyclic and star colorings beyond what we present here.

In this chapter, we are interested in the problem of star-coloring planar graphs. The well-known Four

Color Theorem of Appel and Haken [7, 8] states that χ(G) ≤ 4 if G is planar, while Grünbaum [22] con-

structed a planar graph with no acyclic 4-coloring (and so, in particular, no star 4-coloring). Subsequently,

Borodin [12] showed χa(G) ≤ 5 for all planar G. Albertson, Chappell, Kierstead, Kündgen, and Rama-

murthi [2] showed that every planar graph G satisfies χs(G) ≤ 20 and also constructed a planar graph with

star chromatic number at least 10. Kündgen and Timmons [29] proved that every planar graph of girth 6

(respectively 7 and 8) can be star-colored with 8 (respectively 7 and 6) colors. Kierstead, Kündgen, and

Timmons [25] showed that every bipartitie planar graph can be star 14-colored, and they constructed a

bipartite planar graph with star chromatic number 8. It is worthwhile to note that, while not our focus here,

the results in [29] and [25] hold for the natural extension of star-colorings to a list coloring framework.

Given the Four Color Theorem, it is natural to search for conditions ensuring that a planar graph can
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Figure 3.1: Graph demonstrating that Theorem 3.1.3 is sharp.

be star 4-colored. Albertson et al. [2] also showed that for every girth g, there exists a graph Gg with girth

at least g and χs(Gg) = 4, and further that there is some girth g such that every planar graph of girth at

least g is star 4-colorable. Timmons [41] showed that g = 14 is sufficient and also gave a planar graph with

girth 7 and star chromatic number 5. Bu, Cranston, Montassier, Raspaud, and Wang [15] improved upon

Timmons’ result by showing that every planar graph with girth g ≥ 13 has a star 4-coloring.

The maximum average degree of a graph G, denoted Mad(G), is max
H⊆G

2|E(H)|
|V (H)| . The main result of this

paper is the following.

Theorem 3.1.1. If G is a graph with Mad(G) < 5
2 , then χs(G) ≤ 4.

A straightforward application of Euler’s formula shows that if G is a planar graph with girth at least g,

then Mad(G) < 2g
g−2 . Thus, as a corollary to Theorem 3.1.1 we have the following improvement on [15].

Corollary 3.1.2. If G is a planar graph with girth at least 10, then χs(G) ≤ 4.

To prove Theorem 3.1.1 we will use I,F-partitions, which were first introduced in [2]. A 2-independent

set in G is a set of vertices that have pairwise distance greater than 2. An I,F-partition of a graph G is a

partition of V (G) as (I,F) where I is a 2-independent set in G and G[F ] is a forest. Albertson et al. [2]

observed that if G has an I,F-partition (I,F), then χs(G) ≤ 4; because χs(T ) ≤ 3 for any tree T there is a

3-coloring of G[F ] which can be extended to all of G by assigning the vertices in I a new color. Note that

the converse does not hold; for example, χs(K3,3) = 4, but K3,3 has no I,F-partition. Timmons [41] and Bu

et al. [15] showed that maximum average degree less than 7
3 and 26

11 , respectively, imply the existence of an

I,F-partition, which in turn imply the above mentioned girth bounds sufficient for a planar graph to be star

4-colorable. We strengthen their results (weakening the hypothesis on Mad(G)) by proving the following

theorem, which implies Theorem 3.1.1.

Theorem 3.1.3. If G is a graph with Mad(G) < 5
2 , then G has an I,F-partition.

Theorem 3.1.3 is sharp in the sense that there are graphs with maximum average degree 5
2 that do not

have an I,F-partition. Indeed, given a cycle C, for each vertex v in the cycle add a 3-cycle avbvcv and the
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edge vav. Figure 3.1 shows the construction when the intial cycle is C4. To see that such a graph, which has

maximum average degree 5
2 , does not have an I,F-partition, simply note that no vertex v on the cycle C can

be in the 2-independent set, as then avbvcv would necessarily have to be in the forest F , an impossibility.

However, this then implies that every vertex on C must be in F , which is also impossible.

To prove this result, we use the method of potentials as utilized by Kostochka and Yancey [27, 28],

Borodin, Kostochka, and Yancey [14], and Chen, Kim, Kostochka, West, and Zhu [16]. We also generalize

the problem of finding an I,F-partition by allowing some vertices to be initially assigned to I and F and

modifying the condition on maximum average degree to account for the preassigned vertices.

Going forward, when X1, . . . , Xt form a partition of a set X, then we will write X = (X1, . . . , Xt). If G

is a graph with V (G) = (I, F, U), we say that G is a partially assigned graph. This terminology arises from

the fact that we will require vertices in I and F to belong to the sets I and F respectively of an I,F-partition

of G. If H is a subgraph of a partially assigned graph G, then let I(H) = I ∩ V (H), F (H) = F ∩ V (H),

and U(H) = U ∩ V (H). Let the potential of H in G, denoted ρG(H), be

ρG(H) = |I(H)|+ 4|F (H)|+ 5|U(H)| − 4|E(H)|.

When the context is clear, we omit the subscript.

Theorem 3.1.4. Let G be a partially assigned graph with vertex set partitioned as (I, F, U). If ρG(H) > 0

for all nonempty subgraphs H ⊆ G, then G has an I,F-partition (I,F) such that I ⊆ I and F ⊆ F .

The coefficients of |U(H)| and |E(H)| in ρ(H) are chosen to make ρ(H) > 0 equivalent to d(H) < 5
2

when V (H) = U(H). The coefficients for |I(H)| and |F (H)| are chosen to so that Theorem 3.1.3 and the

Theorem 3.1.4 equivalent and are further explained in Section 3.2. For now, we comment that if G is a

partially assigned graph where two vertices in I are adjacent or have a common neighbor, then G has a

subgraph with nonpositive potential. Similarly, a cycle of vertices in F form a subgraph of nonpositive

potential. Neither structure therefore appears as a subgraph of any graph satisfying the hypotheses of

Theorem 3.1.4. Also, adding edges between vertices in a subgraph of G only decreases the potential. Thus

we need only consider induced subgraphs when minimizing the potential across all subgraphs of G. Reflecting

that, for S ⊆ V (G), we define the potential of S, ρ(S) as ρ(G[S]).

In Section 3.2, we demonstrate that Theorem 3.1.3 and Theorem 3.1.4 are equivalent. Hence Theo-

rems 3.1.3 and 3.1.1 and Corollary 3.1.2 all follow from the proof of Theorem 3.1.4, which appears in Section

3.4. Section 3.3 contains the lemmas we will use to prove Theorem 3.1.4. Even though Theorem 3.1.3

is equivalent to Theorem 3.1.4, the inductive proof of Theorem 3.1.4 is simplified by the use of partially

38



assigned graphs. The use of partially assigned graphs allows us to have a nicer ordering of graphs in the

inductive proof. They also allow us to improve over the results of Bu et al. [15] by allowing us to specify

that some vertices end up in a particular part of the I,F-partition.

We conclude this section with some further notation.

A k-vertex is a vertex of degree k and a k+-vertex is a vertex of degree at least k. For a vertex v, N(v)

is the neighborhood of v. We use I, F, and U as sets of the vertex partition of a partially assigned graph.

An I,F-partition (I,F) extends an assignment (I, F, U) if I ⊆ I and F ⊆ F . For a partially assigned

graph H, we say H has an I,F-partition only if H has an I,F-partition that extends (I, F, U). For an I,F-

partition of H, let HF be the subgraph of H induced by vertices assigned to F and let HI be the subgraph

of H induced by vertices assigned to I.

3.2 Proof that Theorem 3.1.3 and Theorem 3.1.4 are equivalent

In this section, we demonstrate that Theorems 3.1.3 and 3.1.4 are equivalent, and in the process we demon-

strate some of the rationale that led to the coefficients in the potential function ρ.

Proposition 3.2.1. Theorem 3.1.4 implies Theorem 3.1.3.

Proof. Let G be an ordinary graph (as opposed to a partially assigned graph) with Mad(G) < 5
2 . We

can view G as a partially assigned graph by setting U(G) = V (G). Since d(H) < 5
2 is equivalent to

5|V (H)| − 4|E(H)| > 0, we have that ρ(H) > 0 for every H ⊆ G. By Theorem 3.1.4, G has an I,F-

partition.

Say a partially assigned graph G is feasible if ρ(H) > 0 for every H ⊆ G.

The proof of Proposition 3.2.2 uses the F -gadget and I-gadget shown in Figure 3.2, where the vertices

are in U . Note that the potential of an F -gadget is 4 and that the potential of an I-gadget is 1. In ρ(H),

these agree with the coefficients on |F (H)| and |I(H)|.

Proposition 3.2.2. Theorem 3.1.3 implies Theorem 3.1.4.

Proof. Assume G is a feasible partially assigned graph with the vertex partition (I, F, U).

Let an F -gadget consist of a vertex u joined to a 3-cycle abc via edge ua (see Figure 3.2a). Let an

I-gadget consist of vertex u joined to vertices d and e, with additional 3-cycles abc and fgh, and path adef

(see Figure 3.2b). In an F -gadget or I-gadget, all vertices are placed in U . We say that a vertex v is replaced

by a gadget if we remove v from G and add the gadget to G by making u adjacent to the vertices in NG(v).
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a

b c

(a) An F -gadget forces u to be assigned F in
an I,F-partition.

u

de
af

bcg h

(b) An I-gadget forces u to be assigned I in an
I,F-partition.

Figure 3.2: The F - and I-gadgets.

First we argue that the replacement of a vertex in v in F (G) by an F -gadget preserves feasibility. Let

GF be the result of such a replacement. Let H ′ ⊆ GF such that ρGF
(H ′) is minimal. If H ′ ⊆ G, then

ρGF
(H ′) = ρG(H ′) > 0. Thus, we may assume that H ′ 6⊆ G.

Thus H ′ contains some vertices of the F -gadget. The only subgraph of minimum potential within the

triangle abc is the cycle itself, which has potential 3. Thus if any of {a, b, c} are in V (H ′), then the entire

cycle in in H ′. If this is the entirety of H ′, then ρGF
(H ′) > 0. If u ∈ V (H ′), then the addition of the edge

ua and the cycle abc does not change the potential of H ′, so we may assume that H ′ contains the entire

F -gadget. Thus we may assume that H ′ has positive potential, or contains the entire F -gadget. In the later

case, let H ′′ ⊆ G, be the graph with with G[H ′′ − v] = G[H ′ − {u, a, b, c}] and NH′′(v) = NH′(u) − {a}.

Now,

ρGF
(H ′) = ρG(H ′′)− ρG({v}) + ρGF

({u, a, b, c}) = ρG(H ′′) > 0

and GF is feasible.

Next we argue that the replacement of a vertex vinI(G) by an I-gadget preserves feasibility. Let GI

be the result of such a replacement. Let H ′ ⊆ GI such that ρGI
(H ′) is minimal. If H ′ ⊆ G, then

ρGI
(H ′) = ρG(H ′) > 0. Thus, we may assume that H ′ 6⊆ G.

Thus H ′ contains some vertices of the I-gadget. The minimality of ρGI
(H ′) and structure of the I-gadget

forces one of two possibilities. In one case, H ′ is contained in the I-gadget and ρGI
(H ′) > 0. In the other,

H ′ contains the entire I-gadget, but is not contained in the I-gadget. In the later case, let H ′′ ⊆ G, be the

graph with with G[H ′′ − v] = G[H ′ − {u, a, . . . , h}] and NH′′(v) = NH′(u)− {d, e}. Now,

ρGI
(H ′) = ρG(H ′′)− ρG({v}) + ρGI

({u, a, . . . , h}) = ρG(H ′′) > 0

and GF is feasible.

Since replacing vertices in F by F -gadgets and vertices in I by I-gadgets preserves feasibility, the graph

G′ resulting in making all possible such replacements is feasible. Since G′ is a partially assigned graph with

with U(G′) = V (G′), we have ρG′(H) = 5|V (H)| − 4|E(H)| for all H ⊆ G′. Thus Mad(G′) < 5
2 and, by the
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assumption of Theorem 3.1.3, G′ has an I,F-partition (I ′,F ′).

Given an F -gadget {u, a, b, c} in G′, one of the vertices a, b, c must be in I, which in turn forces u to

be in F . Similarly, for any I-gadget {u, a, . . . , h} in G′ one of a, b or c and one of f, g or h must be in I,

implying that d and e must be in F . Consequently, u ∈ I, as desired. By letting I = (I ′ ∩ V (G)) ∪ I and

F = (F ′ ∩ V (G)) ∪ F we thus obtain an I,F-partition of G extending (I, F, U).

3.3 Some useful claims

In this section, we use our minimality assumptions to restrict the structure of a minimal counterexample

to Theorem 3.1.4. The proof of Theorem 3.1.4 will then be completed in Section 3.4 using the discharging

method.

An `-thread is a path P in a partially assigned graph H of ` vertices in U that have degree 2 in H such

that the neighbors of the endpoints of P in H − V (P ), which we say border the thread P , are 3+-vertices

or are in I ∪ F . Define an open thread to be a thread with two bordering vertices and a closed thread to

be a thread with one bordering vertex. In counting the incidences of threads with a vertex, open threads

contribute once to the count and closed threads contribute twice. Note that it is traditional to define an

`-thread in a graph G as a trail of length `+ 1 in G whose ` internal vertices have degree 2 in the full graph

G. In both definitions, the number of 2-vertices in an `-thread is `, but here we require these 2-vertices be in

U . In addition, our requirement on bordering vertices means that an `-thread does not contain any shorter

thread.

Recall that, for H ′ ⊆ H in a partially assigned graph H, we maintain the preassignment on H ′ so that,

for example, I(H ′) = I(H) ∩ V (H ′). Also, for a partially assigned graph H, we only consider I,F-partitions

(I,F) that satisfy I(H) ⊆ I and F (H) ⊆ F .

If |V (H ′)|+ |E(H ′)| < |V (H)|+ |E(H)|, then we say that H ′ is smaller than H.

Definition. A minimal counterexample is a feasible partially assigned graph G that has no I,F-partition

extending (I(G), F (G), U(G)) such that every smaller feasible partially assigned graphG′ has an I,F-partition

extending (I(G′), F (G′), U(G′)). For the remainder of this section, assume that a minimal counterexample

exists, and let G be that minimal counterexample.

We include the proof of the following claim about G for completeness.

Claim 3.3.1 (Timmons [41], Bu et. al.[15]). None of the following appear in G:

(C1) A 1-vertex in U .
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v

(a) The subgraph described in (C1).

va b

(b) The subgraph described in (C2).

v

(c) A subgraph described in (C3).

Figure 3.3: Subgraphs described in Claim 3.3.1 where all solid vertices are in U .

(C2) A 3+-thread.

(C3) A 4-vertex in U incident to four 2-threads.

Proof. Suppose (C1) appears in G as shown in Figure 3.3a where v ∈ U . Then G− v is smaller than G. By

the minimality of G, G−v therefore has an I,F-partition (I,F) that extends (I(G−v), F (G−v), U(G−v)).

Extend (I,F) to G by assigning v to F . Doing so does not decrease the distance in G between vertices of GI

and does not create a cycle in GF since d(v) = 1. Thus, this extension is an I,F-partition of G, contradicting

the choice of G.

Next, suppose (C2) appears in G as shown in Figure 3.3b. It is possible that a or b are internal to a

larger thread containing v, or that a = b. Obtain G′ from G by deleting v and its neighbors, and note that

G′ is smaller than G, which implies G′ has an I,F-partition (I,F) extending (I(G′), F (G′), U(G′)).

If at least one of a or b is in GI , then assigning the deleted vertices to F does not create an F-cycle.

Otherwise, v is at distance at least 3 from a I. Thus assigning v to I and the neighbors of v to F preserves

the distance requirement for vertices in I and does not introduce any F-cycles. In either case, (I,F) extends

to an I,F-partition of G, again a contradiction.

Finally, assume that (C3) appears in G with 4-vertex v. See Figure 3.3c. Note that we neither assume

that the threads incident to v are open, nor that the boundary vertices of these threads are distinct. The

graph G′ obtained by deleting v and its incident threads has G′ smaller than G, and once again has an

I,F-partition (I,F) that extends (I(G′), F (G′), U(G′)). Notice that v is at distance at least 3 from any

vertex in I, so assigning v to I and the other deleted vertices to F extends (I,F) to an I,F-partition of

G.

Before proceeding to our key claims, we have the following claims about cut sets in G and the structure

of small sets of small potential. For S ⊆ V (G), an S-lobe of G is an induced subgraph of G whose vertex

set consists of S and the vertices of some component of G− S.
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Claim 3.3.2. If R ⊆ I, then G−R is connected.

Proof. Otherwise, every R-lobe Gi is a proper subgraph of G and, by the minimality of G, there exists

an I,F-partition (Ii,Fi) of Gi with I(Gi) ⊆ Ii and F (Gi) ⊆ Fi. Consider I = ∪Ii and F = ∪Fi. Since

R ⊆ I, I has no two vertices within distance two and F contains no cycles. Hence the partition (I,F) is an

I,F-partition of G extending (I, F, U), a contradiction.

I

(a) ρ(K1) = 1

I I

(b) ρ(2K1) = 2

I U

(c) ρ(K2) = 2

I F

(d) ρ(K2) = 1

I F I

(e) ρ(K2 +K1) = 2

Figure 3.4: The five induced proper subgraphs H of G with ρ(H) < 3 and |V (H)|+ |E(H)| ≤ 4.

Claim 3.3.3. If H is an induced proper subgraph of G with ρ(H) < 3 and |V (H)|+ |E(H)| ≤ 4, then H is

one of the five partially assigned graphs shown in Figure 3.4.

Proof. Let H be an induced proper subgraph of G with ρ(H) < 3 and |V (H)|+ |E(H)| ≤ 4. If |E(H)| = 2

then |V (H)| + |E(H)| ≥ 5, so |E(H)| ∈ {0, 1}. If |E(H)| = 0, then as ρ(H) < 3, every vertex must

be assigned to I and there are either one or two such vertices as in Figures 3.4a and 3.4b. Otherwise, if

|E(H)| = 1, then the combined potential of the (at least two) vertices can be at most 6 and must be at least

5 since ρ(H) > 0. Hence exactly one vertex of H is in either U or F . Now, if one vertex is in U , then these

conditions force H to have exactly one other vertex in I as depicted in Figure 3.4c. If instead one vertex

is in F , then H has either one or two additional vertices in I. As vertices in I are necessarily nonadjacent,

this leaves Figures 3.4d and 3.4e as the remaining feasible configurations.

Claim 3.3.4, which we prove next, states that G has no large proper subsets of small potential. On the

other hand, Claim 3.3.3 enumerates all the small sets of small potential. Together these are used in the

proof of Claim 3.3.6 which allow us to reassign vertices from U to F .

Claim 3.3.4. Let S be a proper subset of G and let H = G[S]. If |S|+ |E(H)| ≥ 5, then ρ(S) ≥ 3.

Proof. Suppose otherwise, so there is a proper subset S with |S|+ |E(H)| ≥ 5 and ρG(S) < 3. Select such

S to minimize ρG(S), and recall that ρG(S) > 0. Further, let

T = {v ∈ S : N(v) ∩ S 6= ∅}.

By Claim 3.3.2, if T ⊆ I then S = T . As vertices in I are pairwise nonadjacent, we then would have

|S|+ |E(H)| = |S| ≥ 5 and thus ρG(H) ≥ 5, a contradiction. Therefore, at least one vertex in T is in F ∪U .
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T

FI

G− S

NI NF
G

(a) Vertex sets and some adjacencies of G.

[X]

UI

G− S

NI NF

w x y

G′

(b) Vertex sets and some adjacencies of G′.

Figure 3.5: The construction of G′ from G as described in Claim 3.3.4.

If ρG(S) = 2 and T ∩F = ∅, then modify the partially assigned graph H to a partially assigned graph H0

by changing a vertex of T ∩ U from U to F . Note that for all S′ ⊆ S, we have ρH0
(S′) ≥ ρH(S′)− 5 + 4 =

ρH(S′) − 1. By the minimality of ρG(S), either ρH(S′) = ρG(S′) ≥ 2 or S′ induces one of the subgraphs

given in Claim 3.3.3, of which only (c) has a vertex in U . Thus ρH0
(S′) ≥ 1 for all S′ ⊆ S. In particular,

moving a vertex to F does not complete a cycle in F since the potential of such cycles is 0. Otherwise, let

H0 = H, and our assumptions guarantee ρH0(S′) ≥ 1 for all S′ ⊆ S. This alteration, if necessary, will aid

in the construction of an auxiliary graph, which we describe below.

By the minimality of G, the fact that potentials are minimized by induced subgraphs, and S ( V (G),

there is an I,F-partition (IH0 ,FH0) of H0 such that I(H0) ⊆ IH0 and F (H0) ⊆ FH0 . Let NI be the set of

vertices in S adjacent to a vertex t ∈ T with t ∈ IH0
and NF be the set of vertices in S adjacent to a vertex

t ∈ T with t ∈ FH0
. We claim that NI ∪ NF 6= ∅. Indeed, NI and NF are defined relative to the given

I,F-partition of H0, so we must have that NI ∪NF = N(S)− S, which is nonempty as G is connected and

S is a nonempty proper subset of V (G).

Construct an auxiliary graph G′ (see Figure 3.5 for a visual representation) by adding vertices to G− S

as follows. If NI 6= ∅, add a new vertex w that is adjacent to every vertex in NI . If NF 6= ∅, then add

adjacent vertices x and y and connect y to each vertex in NF . Add w and/or x to I, and y to U and let X

denote those of w, x and y that are added to G′.

Observe the following statements about G′:

(Ob 0) |NG(v) ∩ T | ≤ 1 for all v ∈ S, as otherwise ρG(S ∪ {v}) ≤ ρG(S) + ρG(v) − 4 · 2 ≤ 3 + 5 − 8 = 0,

contradicting the hypothesis on G; hence |NG(v) ∩ S| = |NG′(v) ∩X|.

(Ob 1) X is nonempty, as NI ∪NF 6= ∅.

(Ob 2) If ρG(S) = 2, then T ∩ F (H0) 6= ∅ by construction, and hence {x, y} ⊆ X.

44



Since |X|+ |E(G′[X])| ≤ 4 and |S|+ |E(H)| ≥ 5, G′is smaller than G. By the assignment of vertices in

X under the construction of G′, if G′ has an I,F-partition (IG′ ,FG′), then specifically y ∈ FG′ if {x, y} ⊆ X.

Observe that (IG′−X ∪IH0
,FG′−X ∪FH0

) is an I,F-partition of G because an F-cycle cannot be formed and

the construction of X implies I is necessarily a 2-independent set. Thus, by minimality of G, there is instead

some W ⊆ V (G′) with ρG′(W ) ≤ 0. Select W ⊆ V (G′) to minimize ρG′(W ). Notice that if W ∩ X = ∅,

then W ⊂ G and ρG(W ) = ρG′(W ) ≤ 0, a contradiction. We may therefore assume W ∩X 6= ∅. Observe

that ρG′(W ∩X) ≥ 1.

The minimality of ρG′(W ) and the assignment of vertices in X imply that if W ∩NI 6= ∅, then w ∈W ,

and that if W ∩NF 6= ∅, then {x, y} ⊆W . Since every edge between W \X and X in G′ corresponds to an

edge between W \ S and S in G by (Ob 0), we have

0 < ρG((W −X) ∪ S) = ρG′(W )− ρG′(W ∩X) + ρH0
(S).

Since ρG′(W ) ≤ 0, it follows that

ρG′(W ∩X) < ρH0
(S).

We have two cases to consider. First, suppose that S * W . Define S′ = (W − X) ∪ S and recall

ρG(S′) ≤ ρG′(W ) − ρG′(W ∩X) + ρH0
(S), which implies ρG(S′) < ρH0

(S) ≤ ρG(S) since ρG′(W ) ≤ 0 and

ρG′(W ∩X) > 0. Since S *W , we have S′ ( V (G), which contradicts the minimality of ρ(S).

Now suppose S ⊆ W . By the minimality of ρG′(W ), W ∩ X = X and hence W = V (G′). Since

ρG′(X) ∈ {1, 2}, ρG(S) ∈ {1, 2}, (3.3) requires ρG(S) = 2, and ρG′(X) = 1. However, by (Ob 2) we have

that ρG(S) = 2 implies ρG′(X) ≥ 2, a contradiction.

We can immediately use Claim 3.3.4 to prove a claim about vertices in F .

Claim 3.3.5. Every vertex of F is a 3+-vertex.

Proof. Let v be a 1-vertex in F . Then G− v is smaller than G and is feasible. Consequently, G− v has an

I,F-partition (I,F) which can be extended to an I,F-partition of G by assigning v to F .

If, instead, v is a 2-vertex in F , let u be a neighbor of v. If there is an edge joining the neighbors of v,

then the subgraph induced by v and its neighbors has three vertices, three edges and potential at most 2.

This contradicts Claim 3.3.4, so the neighbors of v are not adjacent.

Let G′ be the partially assigned graph formed from G by contracting the edge uv into a vertex labeled

uv, and assign uv to the same set in (I, F, U) that u was assigned to. If S ⊆ V (G′) is a nonempty subset

with ρG′(S) ≤ 0, then necessarily uv ∈ S. Let S′ = (S \ {uv}) ∪ {u, v}, and observe that ρG(S′) = ρG′(S
′),
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Figure 3.6: A 3-vertex v incident to a 2-thread.

a contradiction. Thus G′ is feasible, and since G′ is smaller than G, the minimality of G implies G′ has an

I,F-partition (I,F). Reversing the contraction does not decrease the distance in G between vertices in GI ,

and GF remains a forest after adding v to F since there are no cycles in G that are not in G′.

Before proceeding to Claim 3.3.6, note that by Claim 3.3.3 a copy of K2 with a vertex in I and the

other in U , as seen in Figure 3.4c, is the only possible induced proper subgraph H of G with a vertex in

U that satisfies ρ(H) < 3. Claim 3.3.6 will allow us to move up to two vertices in U to F and still get an

I,F-partition for any proper subgraph of G.

Claim 3.3.6. Let S be a nonempty proper subset of V (G) and let G′ be obtained from G[S] by reassigning

up to two vertices u and v from U to F , then G′ has an I,F-partitionthat extends (I(G′), F (G′), U(G′)).

Proof. Since S is a proper subset of V (G), we G′ is smaller than G. Thus G′ has an I,F-partition unless

reassigning u and v resulted in G′ no longer being feasible. If W ⊂ V (G′) has ρG′(W ) ≤ 0, then W ∩{u, v} 6=

∅, since otherwise ρG′(W ) = ρG(W ) > 0.

As a vertex in F has lower potential by 1 than a vertex in U , ρG′(W ) ≥ ρG(W )− 2. Thus, ρG(W ) ≤ 2

and by Claim 3.3.4, |W | + |E(G′[W ])| ≤ 4. However, Claim 3.3.3 gives the set of such partially assigned

graphs, and we find that W cannot contain both u and v. Thus ρG′(W ) = ρG(W ) − 1. However, as W

contains a vertex of U and is one of the graphs from Claim 3.3.3, ρG(W ) = 2. Hence ρG′(W ) ≥ 1.

The following two claims restrict the local structure around 3-vertices in F ∪ U .

Claim 3.3.7. If v is a 3-vertex in F ∪ U with no neighbors in I, then v is not incident to a 2-thread in G.

Proof. Let v be a 3-vertex in F ∪ U that is incident to a 2-thread but has no neighbors in I. We consider

two cases, depending on whether a 2-thread incident to v is open or closed.

First, suppose that an open 2-thread with vertices y and z is incident to v as in Figure 3.6a; let a and b

be the neighbors of v not in this 2-thread. Let S = V (G) \ {y, z}, and let G′ be the partially assigned graph

obtained from G[S] by placing a and b in F (G′). By Claim 3.3.6, G′ has an I,F-partition (I,F). If v or c is
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Figure 3.7: A 3-vertex v incident to three 1-threads.

in I, adding y and z to F extends (I,F) to G without creating any cycles in GF . Otherwise v, c ∈ F and

adding y to I and z to F extends (I,F) to G.

Second, suppose that a closed 2-thread with vertices y and z is incident to v as in Figure 3.6b; let a be

the neighbor of v not in this 2-thread. Let S = V (G) \ {v, y, z}, and let G′ be the partially assigned graph

obtained from G[S] by placing a ∈ F (G′). By Claim 3.3.6, G′ has an I,F-partition (I,F). Adding v and z

to F and y to I extends (I,F) from G′ to G even in the case that v ∈ F .

Claim 3.3.8. A 3-vertex in U incident to three 1-threads with bordering vertices in F ∪ U does not appear

in G.

Proof. Let v be a 3-vertex in U as shown in Figure 3.7 where x, y, z ∈ U are the internal vertices of the

1-threads and a, b, c ∈ F ∪ U are the other endpoints of the 1-threads.

Suppose first that at most two of a, b, and c are assigned to U ; say c ∈ F . Let S = V (G) \ {v, x, y, z},

and let G′ be the partially assigned graph obtained from G[S] and placing a and b in F (G′). Claim 3.3.6

implies that there exists an I,F-partition (I,F) of G′ that extends to an I,F-partition of G by adding v to

I and x, y, and z to F .

Thus we may assume that a, b, and c are all assigned to U in G. Let G′ = G−{v, x, y, z} and reassign a, b

and c to F in G′. Since G′ is smaller than G, G′ has an I,F-partition unless there is some W ⊆ V (G′) with

ρG′(W ) ≤ 0 and |W ∩{a, b, c}| = 3. From the reassignment of a, b, and c, ρG(W ) ≤ ρG′(W ) + 3 · (5−4) ≤ 3,

which then implies that ρG(W ∪ {v, x, y, z}) = ρG(W ) + 4 · 5 + 6 · (−4) ≤ −1, contradicting the choice of

G.

Our final claim restricts the structure around 4-vertices in U .

Claim 3.3.9. G has no 4-vertex in U incident to three 2-threads and a 1-thread whose bordering vertex is

in F ∪ U .
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Figure 3.8: A 4-vertex v incident to three 2-threads and one 1-thread.

Proof. Let v be a 4-vertex in U incident with three 2-threads and one 1-thread, and let a ∈ F ∪ U be the

other vertex bordering the 1-thread. Let T be the set of internal vertices in the threads incident to v. At

most one of the 2-threads may be closed, as depicted in Figure 3.8.

Let S = V (G) \ (T ∪ {v}), and let G′ be the partially assigned graph obtained from G[S] by assigning a

to F (G′). Claim 3.3.6 implies that there exists an I,F-partition (I,F) of G′, necessarily with a ∈ F . Adding

v to I and the vertices of T to F extends (I,F) to G so that vertices in I have pairwise distance at least

two in G and GF is a forest. Notice that since any cycle in GF that would be created must use v, GF is a

forest.

3.4 Proof of Theorem 3.1.4

We use discharging to prove the following lemma. As we previously demonstrated that the minimal coun-

terexample to Theorem 3.1.4 satisfies Claims 3.3.1, 3.3.5 and 3.3.7–3.3.9, this proves that no counterexample

exists.

Lemma 3.4.1. If G is a graph satisfying Claims 3.3.1, 3.3.5 and 3.3.7–3.3.9, then ρG(G) ≤ 0.

Proof. Suppose that G satisfies Claims 3.3.1, 3.3.5 and 3.3.7–3.3.9. Assign an initial charge µ to vertices of

G as follows:

µ(v) = 2d(v)−


1, v ∈ I

4, v ∈ F

5, v ∈ U.

Observe that
∑

v∈V (G)

µ(v) = 4|E(G)| − |I(G)| − 4|F (G)| − 5|U(G)| = −ρ(G).

We distribute charge using three rules, (R1), (R2), and (R3), in order. Let µ∗(v) denote the final charge

on a vertex v.

(R1) If v ∈ V (G) satisfies µ(v) ≥ d(v), then v sends charge 1 to each neighbor u ∈ N(v).

48



(R2) If v is the internal vertex of a 1-thread and v did not receive charge under (R1), then v pulls charge 1
2

from each of its neighbors.

(R3) If v is an internal vertex of a 2-thread and v did not receive charge under (R1), then v pulls charge 1

from its neighbor on the border of the thread.

We will demonstrate µ∗(v) ≥ 0 for all v ∈ V (G), which implies

−ρ(G) =
∑

v∈V (G)

µ(v) =
∑

v∈V (G)

µ∗(v) ≥ 0.

By Claims 3.3.1 and 3.3.5, the only vertices v with µ0(v) < 0 are vertices in U of degree 2, which have

µ0(v) = −1. If v is the internal vertex of a thread and receives charge under (R1), then µ1(v) = 0 and v

receives no charge under (R2) and (R3). If µ1(v) < 0, and v receives any charge under (R2), then µ2(v) = 0

and v receives no charge under (R3). Thus, we have that a vertex receives charge under at most one rule

and that each vertex v gives to each neighbor u under at most one rule.

If v is a vertex in I, a vertex in F with d(v) ≥ 4, or a vertex in U with d(v) ≥ 5, then µ(v) ≥ d(v).

Consequently, µ1(v) = µ2(v) = µ3(v) ≥ 0 since v sends charge d(v) during (R1) and does not send charge

using (R2) or (R3).

Next, consider a vertex v ∈ F with d(v) ≤ 3. By Claim 3.3.5, d(v) ≥ 3. If v is incident to a 2-thread,

then by Claim 3.3.7, v has a neighbor in I. This neighbor sends charge 1 to v by (R1) and v sends charge

at most 1 to each other neighbor by (R2) or (R3), so µ∗(v) ≥ µ(v) + 1 − 2 ≥ 0. Otherwise, from (R2), v

sends charge at most 3
2 to incident 1-threads and µ∗(v) ≥ µ(v)− 3 · 1

2 = 1
2 > 0, as desired.

Recall that by Claim 3.3.1, no vertex in U has degree less than 2. Since G contains no 3+-thread by

Claim 3.3.1, if v is a 2-vertex in U , then µ0(v) = −1 and µ3(v) ≥ 0 by either (R1), (R2), or (R3).

Suppose next that v ∈ U with d(v) = 3. If v is incident to a 2-thread, then by Claim 3.3.7, v has a

neighbor in I. This neighbor sends charge 1 to v by (R1), and v sends charge at most 1 to each other

neighbor by (R2) or (R3), so µ∗(v) ≥ µ(v) + 1− 2 ≥ 0, as desired. If v is not incident to any 2-threads and

is incident to fewer than three 1-threads, then µ∗(v) ≥ µ(v)− 2 · 1
2 ≥ 0, as desired. Otherwise, v is incident

to exactly three 1-threads, and at least one of the 1-threads is bordered by a vertex a in I by Claim 3.3.8.

Since a sends charge 1 to the internal vertex of the 1-thread by (R1), v sends charge at most 1
2 to the other

neighbors by (R2), and hence µ∗(v) ≥ µ(v)− 2 · 1
2 ≥ 0, as desired.

Finally, consider v ∈ U with d(v) = 4. By Claim 3.3.1, v is not incident to four 2-threads. By Claim 3.3.9,

if v is incident to three 2-threads and a 1-thread, then the other vertex a bordering the 1-thread is in I.

Since a sends charge 1 to the 1-thread by (R1), v sends charge at most 1 to at most three neighbors by
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(R2) and (R3), and hence µ∗(v) ≥ µ(v) − 3 · 1 ≥ 0, as desired. If v is incident to three 2-threads and no

other thread, then µ∗(v) ≥ µ(v)− 3 · 1 ≥ 0. Finally, if v is incident to at most two 2-threads and up to two

1-threads, then µ∗(v) ≥ µ(v)− 2 · 1− 2 · 1
2 ≥ 0.

Therefore, every vertex in G has non-negative final charge, which completes the proof.
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Chapter 4

3-Dynamic coloring of planar and
toroidal graphs

4.1 Introduction

This chapter contains joint work with Thomas Mahoney, Benjamin Reiniger, and Jennifer Wise.

For a graph G and positive integer r, an r-dynamic coloring of G is a proper vertex coloring such that

for each v ∈ V (G), at least min{r, d(v)} distinct colors appear in NG(v). The r-dynamic chromatic number,

denoted χr(G), is the minimum k such that G admits an r-dynamic k-coloring. Montgomery [35] introduced

2-dynamic coloring and the generalization to r-dynamic coloring.

List coloring was introduced independently by Vizing [42] and by Erdős, Rubin, and Taylor [19]. A list

assignment L for G assigns to each vertex v a list L(v) of permissible colors. Given a list assignment L for

a graph G, if a proper coloring f can be chosen so that f(v) ∈ L(v) for all v ∈ V (G), then G is L-colorable.

The choosability of G is the least k such that G is L-colorable for any list assignment L satisfying |L(v)| ≥ k

for all v ∈ V (G). We consider the r-dynamic version of this parameter. For further work on dynamic

coloring, see [1, 23, 24]. A graph G is r-dynamically L-colorable when an r-dynamic coloring can be chosen

from the list assignment L. The r-dynamic choosability of G, denoted chr(G), is the least k such that G is

r-dynamically L-colorable for every list assignment L satisfying |L(v)| ≥ k for all v ∈ V (G).

The square of a graph G, denoted G2, is the graph resulting from adding an edge joining any two vertices

separated by distance 2. For any graph G,

χ(G) = χ1(G) ≤ χ2(G) ≤ · · · ≤ χ∆(G)(G) = · · · = χ(G2),

ch(G) = ch1(G) ≤ ch2(G) ≤ · · · ≤ ch∆(G)(G) = · · · = ch(G2),

and that χr(G) ≤ chr(G) for all r. Thus we can think of r-dynamic coloring as bridging the gap between

coloring a graph and coloring its square.

Wegner [45] conjectured bounds for the chromatic number of squares of planar graphs in terms of their

maximum degree. For a graph G with ∆(G) ≤ 3, proper colorings of G2 and 3-dynamic colorings of G are
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equivalent. Thomassen [40] proved Wegner’s conjecture for maximum degree 3, showing that χ3(G) ≤ 7 for

any planar subcubic graph G. Cranston and Kim [17] studied the list coloring version and proved that when

G is a planar subcubic graph, ch3(G) ≤ 7 if the girth is at least 7 and ch3(G) ≤ 6 if the girth is at least 9.

Thomassen [39] proved that planar graphs are 5-choosable, and Voigt [43] proved that this is sharp. Kim,

Lee, and Park [26] proved that planar graphs are actually 2-dynamically 5-choosable. Their proof involves

showing that every planar graph has a planar supergraph with an edge in the neighborhood of every vertex.

They then invoke Thomassen’s result that planar graphs are 5-choosable to obtain their result.

Our main results are on the 3-dynamic chromatic number and choice number for planar and toroidal

graphs. A graph is toroidal if it can be drawn on the torus without crossing edges; in particular, planar

graphs are also toroidal.

Theorem 4.1.1. If G is a toroidal graph, then χ3(G) ≤ ch3(G) ≤ 10.

Theorem 4.1.1 is sharp: the Petersen graph P has maximum degree 3 and diameter 2, so χ3(P ) =

χ(P 2) = χ(K10) = 10.

Corollary 4.1.2. If G is a planar graph, then χ3(G) ≤ ch3(G) ≤ 10.

We do not believe that Corollary 4.1.2 is sharp. An example of a planar graph G with χ3(G) = 7 is the

graph obtained from K4 by subdividing the three edges incident to one vertex. Note that G has maximum

degree 3 and diameter 2, so χ3(G) = χ(G2) = χ(K7).

Our proofs use the Discharging Method.

In Section 4.2, we show that several configurations cannot occur in a minimal counterexample to Theo-

rem 4.1.1. In Section 4.3, we complete the proof of Theorem 4.1.1 by using the Discharging Method to show

that the configurations listed in Section 4.2 form a set that is unavoidable in a toroidal graph.

4.2 Structure of a minimal counterexample

In this section, we use our minimality assumptions to restrict the structure of a minimal counterexample to

Theorem 4.1.1. The proof of Theorem 4.1.1 is completed in Section 4.3.

Definition. A minimal counterexample is a graph G that is not 3-dynamic 10-choosable such that every

graph G′ with |V (G′)| < |V (G)| is 3-dynamic 10-choosable.

For the remainder of this section, fix a minimal counterexample G. In addition, fix a list assignment L

for G such that |L(v)| ≥ 10 for all v ∈ V (G), yet G is not 3-dynamic L-choosable. Finally, fix an embedding

for G.
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Note that the claims in this section do not require G to be a toroidal graph. However, we do consider

a fixed embedding of G so that we can discuss the faces of G and have an orientation (generally clockwise)

for the neighbors of a vertex.

In each claim, we obtain a graph G′ with V (G′) ( V (G). By minimality, G′ is 3-dynamically 10-

choosable. Thus G′ has a 3-dynamic L-coloring, where we use the list L on G restricted to the vertices of

G′. In our proofs, all colorings of G′ and G discussed are with respect to L. We retain the coloring on V (G′)

when extending the coloring to G.

Note that if two vertices are on the same face of an embedding, then we can add an edge joining them

while maintaining the embedding. Whenever we add edges to G′, the endpoints of the edge are on the

same face after we preform the vertex deletions given in producing G′ from G. If our construction of G′

“adds” edges, then we do not add edges that are already present in G. For example, in Claim 4.2.2, if

y1z2, y2z2 ∈ E(G), then G′ = G− {v1, v2}.

In the figures for the claims, the thick gray edges represent the edges possibly added by E′(G), and the

dashed lines enclose the vertices deleted from G.

Say that a vertex is properly colored in a coloring of it receives a color distinct from the colors on its

neighbors. Say that a vertex w ∈ V (G) is full in a coloring if w has at least min {3, dG(w)} different colors

appear on NG(w).

Claim 4.2.1. Every vertex in G has degree at least 3.

Proof. Let v ∈ V (G) be a 1-vertex with neighbor u (Figure 4.1(i)). Let G′ = G− v and obtain a 3-dynamic

L-coloring of G′.

We can extend the coloring by avoiding the color on u, and, if u is not full, up to two colors appearing

on neighbors of u. With ten colors available for v, we can extend the coloring.

Let v ∈ V (G) be a 2-vertex with neighbors y and z (Figure 4.1(ii)). Let G′ = (G− v) ∪ {yz}. Because

any two neighbors of a 2-vertex lie on the same face in an embedding, we may add the edge yz to G′. Obtain

a 3-dynamic L-coloring of G′. Since yz is in E(G′), the colors on y and z will be distinct in the coloring

chosen from L on G′. To extend the coloring, we must give v a color distinct from the colors of y and z, and

avoiding up to two colors each in the neighborhoods of y and z. Since there are at most six colors to avoid

on v, we may extend the coloring.

Claim 4.2.2. No 3-vertex in G is adjacent to a 3-vertex.

Proof. Let v1 and v2 be adjacent 3-vertices. Let yi and zi be the other neighbors of vi (Figure 4.2). Let

G′ = (G− {v1, v2}) ∪ {y1z1, y2z2} and obtain a 3-dynamic L-coloring of G′.
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Figure 4.1: Configurations for Claim 4.2.1.

v1 v2

y1 y2z1 z2

Figure 4.2: Configuration for Claim 4.2.2.

To extend the coloring, we may first color v1 by avoiding the colors on y1, z1, y2, z2 and up to two colors

each in the neighborhoods of y1 and z1 to make them full. Then we may color v2 by avoiding the colors on

y1, z1, y2, z2, and up to two colors each in the neighborhoods of y2 and z2. Here y1 must avoid at most eight

colors and y2 must avoid at most nine colors. By avoiding the colors of y1z1, y2, and z2 when coloring both

v1 and v2, we ensure that both v1 and v2 are full.

We say that a 3-face is expensive when it has an incident 3-vertex; a 4-face is expensive when it has two

incident 3-vertices. Claim 4.2.2 implies that the 3-vertices on an expensive 4-face must be nonadjacent.

Claim 4.2.3. Let v be a d-vertex in G that is contained in e3 expensive 3-faces and e4 expensive 4-faces.

Let k be the number of 3-neighbors of v. If k ≥ 2, then and d+ k − e3 − e4 ≥ 10.

Proof. Since k ≥ 2, Claims 4.2.1 and 4.2.2 imply d ≥ 4. Let x1, . . . , xk be the 3-neighbors of v in clockwise

order, and let v, yi, zi be the neighbors of xi for i ∈ [k] (Figure 4.3). Let S = {v, x1, . . . , xk} and E′ =

{yizi : i ∈ [k]}, and let G′ = (G− S) ∪ E′ and obtain a 3-dynamic L-coloring of G′.

To extend the coloring, we first color v by avoiding the colors on NG(v)−{x1, ..., xk} and {yi, zi : i ∈ [k]}.

The first guarantees v is properly colored and the second guarantees that each xi will be full. When xi is

on an expensive 3-face, then one of yi or zi is in NG(v)− {x1, ..., xk}. When xi and xj are on an expensive

4-face, we have {yi, zi} ∩ {yj , zj} 6= ∅. Thus

|(NG(v)− {x1, ..., xk}) ∪ {yi, zi : i ∈ [k]} | ≤ d− k + 2k − e3 − e4.

Since d− 2k − e3 − e4 < 10, there is a color available for v.
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Figure 4.3: Configuration for Claim 4.2.3.

If k = 2, and d(v) ≥ 3, let x′ be a vertex in N(v)−{x1, x2}. If x′ is defined, then to make v full we avoid

the color of x′ when coloring x1 and x2. This is in addition to the colors that are listed as avoided below.

If k ≥ 3, then x1, x2 and x3 will make v full.

We color x1 by avoiding the colors on v, y1, z1 and up to two colors each in the neighborhoods of y1 and

z1 to make y1 and z1 full. We then color x2 by a the colors on v, x1, y2, z2 and up to two colors each in the

neighborhoods of y2 and z2 to make y2 and z2 full. If k ≥ 3, we then color x3 by avoiding the colors on

v, x1, x2, y3, z3 and up to two colors each in the neighborhoods of y3 and z3 to make y3 and z3 full. Finally,

if k ≥ 4, then we color xi for i ≥ 4 by avoiding the colors on v, yi, zi, and up to two colors each in the

neighborhoods of yi and zi to make yi and zi full. In this process, we avoid up to nine colors at each vertex.

In each case, avoiding the colors v, yi, and zi guarantees that xi is properly colored, and avoiding colors in

the neighborhoods of yi and zi, guarantees that these vertices are full. Finally, avoiding the colors on x1

and x2 as appropriate guarantees that v is full.

Claim 4.2.4. No 4-vertex in G is adjacent to a 3-vertex.

Proof. By Claim 4.2.3, it suffices to consider a 4-vertex v1 with exactly one 3-neighbor v2. Let y1 and z1

be neighbors of v1, and let y2 and z2 be the neighbors of v2 other than v1 (Figure 4.4). Because y1 and z1

are on the same face, we may add the edge y1z1 to G′. Let G′ = (G− {v1, v2}) ∪ {y1z1, y2z2} and obtain a

3-dynamic L-coloring of G′.

To extend the coloring, first color v1 by avoiding the colors on y1, z1, y2, z2, the color on the other neighbor

of v1, and the colors on up to two neighbors of y1 and z1 to make them full. Note that since v1 had exactly

one 3−-neighbor, the other neighbor of v1 has degree at least 4 and is thus either one of y2 or z2, or is full.

With at most nine colors to avoid, we can color v1.

Finally, we color v2 by avoiding the colors on v1, y1, z1, y2, z2, and the colors on up to two neighbors of
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v1 v2

y1 y2z1 z2

Figure 4.4: Configuration for Claim 4.2.4.

z y2y1

v2v1

Figure 4.5: Configuration for Claim 4.2.5.

y2 and z2.

Claim 4.2.5. Every 3-cycle in G has at least two 5+-vertices.

Proof. If a 3-cycle has an incident 3-vertex, then Claim 4.2.4 implies the result. Thus we may assume that

the 3-cycle has two incident 4-vertices v1 and v2, Let z be the common neighbor of v1 and v2 on the 3-cycle.

Let yi be a neighbor of vi such that yi, vi, z are consecutive vertices on a face and yi 6= v3−i, (Figure 4.5).

Let G′ = (G− {v1, v2}) ∪ {y1z, y2z} and obtain a 3-dynamic L-coloring of G′.

For i ∈ {1, 2}, when coloring vi we avoid the colors on N(vi), z, y3−i, up to one color in the neighborhood

of z to make it full, and up to two colors in the neighborhood of yi to make it full. Each vertex avoids up

to nine colors. We have that yi is full because of vi and z is full because of v1 and v2. In addition, vi is full

since yi, v3−i and z have distinct colors.

Claim 4.2.6. Let uv be the common edge of two adjacent 3-faces uvy and uvz. Then d(v) ≥ 5, and if

equality holds, then one of the vertices in N(v)− {u, y, z} is a 3-vertex.

Proof. Assume that d(v) ≤ 5 and N(v)− {u, y, z} contains only 4+-vertices. (Figure 4.6). Note that if v is

a 4−-vertex, then Claim 4.2.4 implies that any other neighbor of v is a 4+-vertex; in this case, we will show

that such vertices are not incident to two adjacent 3-faces. Let G′ = (G− v)∪{yz} and obtain a 3-dynamic

L-coloring of G′. Note that the vertices in N(v)− {u, y, z} have at least three colors in their neighborhood.

To extend the coloring, we color v by avoiding the colors on vertices in N(v) and also up to two colors in

the neighborhoods of y and z to make them full. Since v needs to avoid at most nine colors, we can extend

the coloring.
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Figure 4.6: Configuration for Claim 4.2.6.

xv

z

y

Figure 4.7: Configuration for Claim 4.2.7.

The conclusion of Claim 4.2.6 also applies to both vertices on two adjacent 3-faces.

Claim 4.2.7. Let v be a 7−-vertex with a 4−-neighbor x. If v has no 3-neighbors (aside from possibly x),

then v is on at most one 3-face. Furthermore, if v is on a 3-face, then x is also on that 3-face.

Proof. We show that there cannot be a 3-face containing v but not x. After showing this, it follows that

any 3-face containing v must use the edge xv. Claim 4.2.6 implies there is at most one such face. Let y and

z be other neighbors of x that are on a shared face with x (Figure 4.7). Let G′ = (G − {v, x}) ∪ {yz} and

obtain a 3-dynamic L-coloring of G′.

To extend the coloring, we first color x by avoiding the colors appearing on NG(x) and up to two colors

each in the neighborhoods of v, y, or z to make sure they are full. We then color v by avoiding the colors

on NG(v) ∪ {y, z}. Since each of x and v avoids at most nine colors when we color it, we can extend the

coloring.

Claim 4.2.8. If G has vertices u, v, x, y, z forming 3-faces vzx, vxy, and vyu, then d(v) ≥ 7.

Proof. Suppose d(v) ≤ 6. See Figure 4.8. Claim 4.2.6 implies dG(x) ≥ 5 and dG(y) ≥ 5. v has at most

four 3-neighbors. Claim 4.2.3 implies that vyu is not an expensive 3-face; in particular dG(u) > 3. Let

G′ = (G− v) ∪ {yz} and obtain a 3-dynamic L-coloring of G′. Note y and z are incident to a common face

in the embedding of G− v so the edge may be added.

Since d(x) and d(u) are greater than 3, both u and x are full. In addition, we know that y, z, and x

received distinct colors, so v will be full in any coloring. When extending the coloring, we avoid the colors

on NG(v) when coloring v. If we blindly avoid two colors each in the neighborhoods of y or z to make them
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v
u z

y x

Figure 4.8: Configuration for Claim 4.2.8.

u1

z

v y

u2

Figure 4.9: Configuration for Claim 4.2.9.

full, then we may have specified 6 + 2 + 2 colors to avoid. Instead, since y and z share a common neighbor

x, we avoid the color on x and up to one other color in the neighborhoods of y and z to make them full.

Claim 4.2.9. No expensive 4-face in G shares an edge with a 3-face.

Proof. Claim 4.2.2 implies that the 3-vertices of the expensive 4-face are not adjacent, and Claim 4.2.4

implies that the other vertices on the 4-face are 5+-vertices. Let vu1z be the 3-face sharing an edge with

the 4-face vyu2u1 where dG(v) = dG(u2) = 3 (Figure 4.9). Let G′ = (G− v)∪ {yz} and obtain a 3-dynamic

L-coloring of G′. Observe that, in order to make u2 full, u1 and y receive distinct colors. Thus v will be full

in any coloring since u1, y, and z receive distinct colors.

We extend the coloring by coloring v to avoid the colors on vertices of NG(v) and up to two colors each

in the neighborhoods of y and z to make them full. Since v must avoid at most seven colors, we may extend

the coloring.

Claim 4.2.10. Every 4-face in G has a 5+-vertex.

v1

v4 v3

v2
y1

y4

y3

y2z1

z4

z3

z2

Figure 4.10: Configuration for Claim 4.2.10.
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Proof. Claim 4.2.4 implies that it suffices to consider a face v1v2v3v4 in which all vertices have degree 4.

For i ∈ [4], let yi and zi be neighbors of vi not on the 4-face, taken in clockwise order (Figure 4.10). Let

S = {v1, . . . , v4}, and let G′ = G− S and obtain a 3-dynamic L-coloring of G′.

Claim 4.2.4 implies that dG(w) ≥ 4 for each w ∈ NG(S) and Claim 4.2.5 implies that zi 6= yi+1 where

indices are taken mod 4. Thus if dG′(yi) = 2 or dG′(zi) = 2 for some i ∈ [4], then that vertex is adjacent to

vi+2 with indices taken mod 4.

We color v1 by avoiding the colors of y1 and z1, of the neighbors of y1 if dG′(y1) = 2, of the neighbors z1

if dG′(z1) = 2, the color on y2 and z2 if they are the same, and the color on y4 and z4 if they are the same.

We then color v2 by avoiding the colors of v1, y2, and z2, of the neighbors of y2 if dG′(y2) = 2, of the

neighbors of z2 if dG′(z2) = 2, the color on y1 and z1 if they are the same, and the color on y3 and z3 if they

are the same.

We color v3 by avoiding the colors on v1, v2, y2, z2, y3, z3, y4, and z4. Finally, we color v4 by avoiding the

colors on v1, v2, v3, y1, z1, y3, z3, y4, and z4. For i ∈ [4], we avoid at most nine colors when coloring vi.

To verify that this produces a 3-dynamic coloring of G, we note that distinct colors are given to v1, v2, v3,

and v4, and that each vi avoids the colors on yi and zi. Thus the coloring is proper.

If any w ∈ NG(S) satisfies dG′(w) = 2, then its neighbors provide two colors to NG(w), and either v1

or v2 will provide a third color. For any w ∈ NG(S) with dG′(w) ≥ 3, the coloring of G′ results in at least

three colors appearing in NG(w)−S. Since the colors on v1, v2, v3, and v4 are all distinct, it suffices to show

that for i ∈ [4], either yi or zi has a color distinct from both vi−1 and vi+1 with indices taken mod 4. This

is true based on the vertices whose colors are avoided when coloring v3 and v4 and the fourth set of avoided

colors for v1 and v2.

4.3 Discharging for toroidal graphs

In this section, we give the discharging argument for Theorem 4.1.1.

Theorem 4.3.1 completes the proof of Theorem 4.1.1. We note that if G is a planar graph, then (R9)

and Claim 4.2.10 are not needed.

Theorem 4.3.1. A graph toroidal graph cannot satisfy all claims from Section 4.2.

Proof. Suppose the claim is false, and let G be a graph embedded in the torus satisfying the claims from

Section 4.2.

For x ∈ V (G)∪F (G), let µ(x) be the initial charge on x, and let µ∗(x) be the final charge on x. We use

face charging : for a vertex v we set µ(v) = 2d(v) − 6, and for a face f we set µ(f) = `(f) − 6. By Euler’s
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formula, |V (G)| − |E(G)|+ |F (G)| is 0 for an embedding on the plane and 2 for an embedding on the torus.

Thus the total initial charge is

∑
v∈V (G)

(2d(v)− 6) +
∑

f∈F (G)

(`(f)− 6) = 4|E(G)| − 6|V (G)|+ 2|E(G)| − 6|F (G)| ≤ 0.

Under the assumption that G satisfies the claims of Section 4.2, we will argue that after following the rules

below the final charge on each vertex and face of G is nonnegative. For a planar graph, this is sufficient to

obtain a contradiction. For a graph embedded on the torus, we make a final analysis of the faces and vertices

with positive final charge to obtain a contradiction. This contradiction shows that there is no toroidal graph

satisfying the claims of Section 4.2 and thus that every toroidal graph is 3-dynamically 10-choosable.

By Claim 4.2.1, G has no 2−-vertices, so all vertices start with nonnegative charge. Thus our discharging

rules consist of vertices giving charge to the faces. Recall that a 3-face is expensive if it has a 3-vertex and a

4-face is expensive if it has two 3-vertices. Say that a 3-face is intermediate when it has an incident 4-vertex.

By Claim 4.2.5 a 3-face has at most one 4−-vertex. By Claim 4.2.2 a 4-face has at most two 3-vertices.

Also, if a 4-face has two 3-vertices, then Claim 4.2.4 implies that these vertices are nonadjacent, and since

Claim 4.2.3 applied to a 5−-vertex v implies that v is not on any expensive face, we have that the other

vertices of an expensive 4-face are 6+-vertices. If a 4-face has exactly one 3-vertex, then Claim 4.2.4 implies

that its neighbors are 5+-vertices. Finally, Claim 4.2.2 implies that a 5-face has at most two 3-vertices and

two 3-vertices on a 5-face are nonadjacent. Figure 4.11 illustrates all possible 5−faces and the discharging

rules used on those faces.

We move charge according to the following rules which are illustrated in Figure 4.11 for all faces receiving

charge.

(R1) A 3-face with a 3-vertex takes 3
2 from each of its 5+-vertices.

(R2) A 3-face with a 4-vertex takes 1
2 its 4-vertex and 5

4 charge from each of its 5+-vertices.

(R3) A 3-face with no 4−-vertices takes 1 from each of its vertices.

(R4) A 4-face with exactly two 3-vertices takes 1 from each of its 6+-vertices.

(R5) A 4-face with exactly one 3-vertex takes 1
2 from its vertex opposite the 3-vertex and 3

4 from each of its

other two vertices.

(R6) A 4-face with no 3-vertices takes 1
2 from each of its vertices.
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Figure 4.11: Discharging rules for 5−-faces.

(R7) A 5-face with two 3-vertices takes 1
2 from their common neighbor on the face and 1

4 from its two other

vertices.

(R8) A 5-face with at most one 3-vertex takes 1
4 from each of its 4+-vertices.

(R9) A 6+-face takes 1
4 from each incident 4+-vertex.

First we argue that every face ends with nonnegative charge. Let f be a face.

Suppose `(f) = 3, so µ(f) = −3. Since f has at most one 4−-vertex, exactly one of (R1)–(R3) applies

to f . Under that rule, f receives 3, so µ∗(f) = 0.

Suppose `(f) = 4, so µ(f) = −2. The cases that f has two, one, or zero 3-vertices are covered by

(R4)–(R6). Under the relevant rule, f receives 2, so µ∗(f) = 0.

Suppose `(f) = 5, so µ(f) = −1. The cases that f has two 3-vertices or at most one 3-vertex are covered

by (R7) and (R8). Under either, f receives at least 1, so µ∗(f) ≥ 0.

Suppose `(f) ≥ 6, so µ(f) ≥ 0. Since faces never lose charge, and by Claim 4.2.2 f gains charge from at

least one vertex, so µ∗(f) > 0.

It remains to show that every vertex ends with nonnegative charge. We further show that 5+-vertices

end with positive charge. Let w be a vertex. By Claim 4.2.1, d(w) ≥ 3.

Case 1: d(w) = 3.

We have µ(w) = 0, and w neither gives nor receives charge. Thus µ∗(w) = 0.
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Figure 4.12: Cases 3b and 4b: d(w) ∈ {5, 6}; w has exactly one 3-neighbor.

Case 2: d(w) = 4.

We have µ(w) = 2 and that w gives charge only under (R2), (R5), (R6), (R8) and (R9). Since w gives at

most 1
2 to each of four incident faces, µ∗(w) ≥ 2− 4 · 1

2 = 0.

Case 3: d(w) = 5.

We have µ(w) = 4, and Claim 4.2.3 implies that if w has at least two 3-neighbors, then all neighbors of w

are 3-vertices. Thus w can have zero, one, or five 3-neighbors. We break into cases based on the number of

3-neighbors of w.

Case 3a: w has no 3-neighbors.

By (R2) and (R3), w gives at most 5
4 to intermediate 3-faces and at most 1 to other 3-faces; by (R5), (R6),

(R8), and (R9) w gives at most 1
2 to each incident 4+-face. By Claim 4.2.6, w is on at most two 3-faces. If

w is not on any intermediate 3-face, then µ∗(w) ≥ 4− 2 · 1− 3 · 1
2 > 0. If w is on a intermediate 3-face, then

by Claim 4.2.7 it is on no other 3-face and so µ∗(w) ≥ 4− 1 · 5
4 − 4 · 1

2 > 0.

Case 3b: w has exactly one 3-neighbor x.

Claim 4.2.7 implies that w is incident to at most one 3-face as in Figure 4.12. If w is not on a 3-face, then

by (R5)–(R9), it gives at most 3
4 to each incident face. Thus µ∗(w) ≥ 4− 5 · 3

4 > 0.

If w is on a 3-face f with x, then (R1) implies that w gives 3
2 to f . By (R5)–(R9), w gives at most 3

4 to the

other face shared with x and at most 1
2 to each other incident face. Thus µ∗(w) ≥ 4−1 · 32−1 · 34−3 · 12 > 0. If

w is on a 3-face f that does not contain x, then (R5)–(R9) implies that w gives at most 3
4 to each face shared

with x, at most 5
4 to f , and at most 1

2 to the remaining incident faces. Thus µ∗(w) ≥ 4−2 · 34−1 · 54−2 · 12 > 0.

Case 3c: w has five 3-neighbors.

Claim 4.2.2 implies w is not on a 3-face and Claim 4.2.3 implies w is not on a 4-face, because such a face

would be expensive. So by (R7)–(R9) w gives at most 1
2 to each face, and thus µ∗(w) ≥ 4− 5 · 1

2 > 0.

Case 4: d(w) = 6.

We have µ(w) = 6. Claim 4.2.3 implies that w does not have exactly two or three 3-neighbors. We break

into cases based on the number of 3-neighbors of w.
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Figure 4.13: Case 5a: d(w) = 7; w has no 3-neighbors; subcase where w is on four intermediate 3-faces.

Case 4a: w has no 3-neighbors.

Claim 4.2.8 implies that w is on at most four 3-faces. By (R3), w gives 1 to each incident 3-face and by

(R5), (R6), (R8), and (R9) w gives at most 1
2 to each other incident face. Thus µ∗(w) ≥ 6− 4 · 1− 2 · 1

2 > 0.

Case 4b: w has exactly one 3-neighbor x.

Claim 4.2.7 implies that w is incident to at most one 3-face, as in Figure 4.12. If w is on a 3-face f , then f is

incident to x, and by (R1) w gives 3
2 to f . By (R5) and (R7)–(R9), w gives at most 3

4 to the other incident

face containing x and at most 1
2 to each other incident face. So µ∗(w) ≥ 6− 1 · 3

2 − 1 · 3
4 − 4 · 1

2 > 0. If w has

no incident 3-faces, then by (R5)–(R9) w gives at most 3
4 to the faces with x and at most 1

2 to each other

incident face. Thus µ∗(w) ≥ 6− 2 · 3
4 − 4 · 1

2 > 0.

Case 4c: w has k 3-neighbors with k ≥ 4.

Claim 4.2.3 implies that w is on at most k − 5 expensive faces.

If k ∈ {4, 5}, then w is on at most one 3-face (k = 4), or one expensive face (k = 5). If w is on these faces,

w gives them at most 3
2 and w gives at most 3

4 to any other incident face. Thus µ∗(v) ≥ 6− 1 · 3
2 − 5 · 3

4 > 0.

If k = 6, then by Claim 4.2.2 any expensive faces incident to v are 4-faces. So w gives at most 1 to each,

and at most 3
4 to any other incident face. Thus µ∗(v) ≥ 6− 2 · 1− 4 · 3

4 > 0.

Case 5: d(w) = 7.

We have µ(w) = 8, and Claim 4.2.3 implies that w does not have exactly two 3-neighbors. We break into

cases based on the number of 3-neighbors of w.

Case 5a: w has no 3-neighbors.

By (R2), w gives at most 5
4 to a intermediate 3-face, and w is incident to at most 4 such faces. By

(R3),and (R5)–(R9), w gives at most 1 to each other incident face. Also, if w is on four intermediate

3-faces (Figure 4.13), then Claim 4.2.5 implies that at least one of the other faces containing w is not a

3-face and hence by (R5)–(R9) takes at most 1
2 from w. Thus either µ∗(w) ≥ 8 − 3 · 5

4 − 4 · 1 > 0 or

µ∗(w) ≥ 8− 4 · 5
4 − 2 · 1− 1 · 1

2 > 0 based on whether or not w is on four intermediate 3-faces.

Case 5b: w has exactly one 3-neighbor x.
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Figure 4.14: Case 5b: d(w) = 7; w has exactly one 3-neighbor x.
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Figure 4.15: Case 5b continued: d(w) = 7; w has exactly one 3-neighbor.

Claim 4.2.7 implies that at most one 3-face is incident to w and x and that this is the only possible 3-

face containing w. If such a face exists (Figure 4.14(i)), then w gives 3
2 to it by (R1). By (R5)–(R9), w

gives at most 3
4 to any other face incident to x and w. Claim 4.2.6 implies that w is incident to at most

four intermediate 3-faces. By (R2), w gives 5
4 to each intermediate 3-face. Finally, by (R3) and (R6)–

(R9), w gives at most 1 to each other incident face. If w is on at most three intermediate 3-faces, then

µ∗(w) ≥ 8 − 1 · 3
2 − 1 · 3

4 − 2 · 5
4 − 2 · 1 = 0. Otherwise, w is on four intermediate 3-faces (Figure 4.14(ii)),

and then neither of the faces containing x are 3-faces. Thus µ∗(w) ≥ 8− 2 · 3
4 − 4 · 5

4 − 1 · 1 > 0.

To show that µ∗(w) > 0, we must only consider the case that x and w share an expensive 3-face and a

4-face, and that w is on exactly three intermediate 3-faces; possible instances of this configuration are shown

in Figure 4.15. However, Claim 4.2.5 implies that if w is contained in three intermediate 3-faces, then w is

contained in a 4+-face, which takes at most 1
2 from w. Thus µ∗(w) ≥ 1

2 .

Case 5c: w has k 3-neighbors with k ≥ 3.

Claim 4.2.3 implies that w is on at most k − 3 expensive faces.

If k = 3, then w is on at most two intermediate 3-faces (Figure 4.16). By (R2), w gives 5
4 to any

intermediate 3-face and by (R3), and by (R5)–(R9) w gives at most 1 to each other incident face. Thus

µ∗(w) ≥ 8− 2 · 5
4 − 5 · 1 > 0.

If k = 4, then w is on at most one expensive face and at most two intermediate 3-faces. So µ∗(w) ≥

8− 1 · 3
2 − 2 · 5

4 − 4 · 1 = 0. To show µ∗(w) > 0, we need only consider the case that w is on one expensive
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Figure 4.16: Case 5c: d(w) = 7; w has exactly three 3-neighbors.

3-face, no expensive 4-faces, and two intermediate 3-faces. However, if w is contained in two intermediate

3-faces, then the four 3-neighbors of w are consecutive in the cyclic order around w. Thus w does not have

an expensive 3-face, and µ∗(w) > 0.

If k = 5, then w is on at most two expensive faces. By considering the cyclic ordering of the 3-

neighbors and the number of expensive faces, we have that w is on at most three 3-faces. If w is on

three 3-faces, then at least one is neither expensive nor intermediate. If w is on two expensive 3-faces, then

µ∗(w) ≥ 8−2 · 32−1−4 · 34 > 0. If w is on at most one expensive 3-face, then µ∗(w) ≥ 8−1 · 32−1 · 54−5 ·1 > 0.

If k = 6, then w is on at most three expensive faces and at most one 3-face. Thus µ∗(w) ≥ 8− 3 · 3
2 − 1 ·

1− 3 · 3
4 > 0.

Finally, if k = 7, then Claim 4.2.2 implies that w is on no 3-faces, so µ∗(w) ≥ 8− 7 · 1 = 1, by (R4) and

(R7).

Case 6: d(w) = 8.

We have µ(w) = 10.

Consider the faces in cyclic order around w. A run of 3-faces around w is a set of 3-faces f1, . . . , fk such

that for i ∈ [k − 1], faces fi and fi+1 share an edge of the form wu for some vertex u. We consider the

maximal runs of 3-faces. If there are at least three consecutive 3-faces around w, then Claim 4.2.6 implies

that the 3-faces that have two adjacent 3-faces around w have only 5+-vertices. By (R3), w gives at most 1

to these 3-faces, and by (R1)–(R3) w gives at most 3
2 to other 3-faces. Lastly, by (R4)–(R9) w gives at most

1 to each incident 4+-face. With this in mind, we break into cases by the configurations of 3-faces around

w.

Case 6a: w is on at most four 3-faces.

By (R1)–(R3), w gives at most 3
2 to each of them, and by (R4)–(R9) w gives at most 1 to each other incident

face. Thus µ∗(w) ≥ 10 − 4 · 3
2 − 4 · 1 = 0. To show µ∗(w) > 0, we need only consider the case that w is

on exactly four 3-faces, all of which are expensive; possible instances of this configuration are shown in

Figure 4.17. Claims 4.2.6 and 4.2.9 imply that at least one of the 4+-faces containing w and a 3-neighbor of
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Figure 4.17: Case 6a: d(w) = 8; subcase where w is on exactly four 3-faces, all of which are expensive.
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Figure 4.18: Case 6b: d(w) = 8; subcase where w is on at least five 3-faces.

w takes at most 3
4 from w. Thus µ∗(w) ≥ 10− 4 · 3

2 − 1 · 3
4 − 3 · 1 > 0.

Case 6b: w has at most two maximal runs of 3-faces.

Thus µ∗(w) ≥ 10− 4 · 3
2 − 4 · 1 = 0. Note that if w is on at least six 3-faces, then we are in this case.

To show µ∗(w) > 0, we need only consider the case that w is on at least five 3-faces, there are two

maximal runs of 3-faces, and the first and last 3-faces on the runs are expensive; possible instances of this

configuration are shown in Figure 4.18. Claim 4.2.9 implies that the runs end with 4+-faces that take at

most 3
4 from w under (R5). Thus µ∗(w) ≥ 10− 4 · 3

2 − 1 · 3
4 − 3 · 1 > 0.

Case 6c: w is on exactly five 3-faces that form exactly three maximal runs.

By Claim 4.2.9, none of the 4+-faces are expensive, so w gives at most 3
4 to each. Thus µ∗(w) ≥ 10− 5 · 3

2 −

3 · 3
4 > 0.

Case 7: w is a 9+-vertex.

By Claim 4.2.6, the number of 3-faces containing w and a 4−-vertex is at most b2d(w)/3c. By (R1), and

(R2), w gives at most 3
2 to each such 3-face, and (R3)–(R9) imply that w gives at most 1 to each other

incident face. If d(w) = 9, then Claim 4.2.9 implies that w cannot be on six expensive 3-faces and three

expensive 4-faces, so µ∗(w) > 12− 6 · 3
2 − 3 · 1 = 0. If d(w) ≥ 10, then

µ∗(w) ≥ (2d(w)− 6)− d(w) · 1− 2d(w)

3
· 1

2
=

2d(w)

3
− 6 > 0.
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Finally, we know that ∑
x∈V (G)∪F (G)

µ∗(x) =
∑

x∈V (G)∪F (G)

µ(x) ≤ 0,

and we have shown that every vertex and face ends with nonnegative charge. Furthermore, we have shown

that only vertices of degree 3 or 4 can end with zero charge, so we conclude that every vertex of G has degree

3 or 4. Claim 4.2.4 now implies that G is 4-regular. Since every 6+-face ends with positive charge, and

Claims 4.2.5 and 4.2.10 imply that G has no 3-faces or 4-faces, we conclude that every face of G is a 5-face.

However, in this case (R8) implies that every face of G ends with positive charge, a contradiction.

While we do not use this in the proof, there is no 4-regular graph that embeds on the torus with only

5-faces. From Euler’s Formula, we have |V (G)| − |E(G)| + |F (G)| = 0. However, double counting yields

2|E(G)| = 4|V (G)| and 2|E(G)| = 5|F (G)|. These three equations together have the single solution with

|V (G)| = |E(G)| = |F (G)| = 0.
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Chapter 5

Neighbor sum distinguishing total
colorings

5.1 Introduction

This chapter contains joint work with Yunfang Tang. The results were independently obtained by Jakub

Przyby lo and appear in a joint paper with him.

For an edge-coloring c, define the sum value sc(v) of a vertex v by
∑
u∈N(v) c(uv). An edge-coloring

is a proper edge-weighting if sc forms a proper coloring. The least k such that G has a proper k-edge-

coloring that is a proper edge-weighting is the neighbor sum distinguishing edge-chromatic number of a

graph, denoted χ′Σ(G). This parameter is well defined only for graphs with no isolated edges. Clearly,

χ′Σ(G) ≥ χ′(G) ≥ ∆(G). Flandrin, Marczyk, Przyby lo, Saclé, and Woźniak [20] conjectured that:

Conjecture 5.1.1 ([20]). If G is a connected graph with at least three vertices other than C5, then χ′Σ(G) ≤

∆(G) + 2.

Przyby lo [37] proved an asymptotically optimal upper bound for graphs with large maximum degree.

Specifically, he showed:

Theorem 5.1.2 ([37]). If G is a connected graph with ∆(G) sufficiently large, then χ′Σ(G) ≤ ∆(G) +

50∆(G)5/6 ln1/6 ∆(G).

A proper total k-coloring of G is a function c : V (G) ∪ E(G) → [k] such that c restricted to V (G) is

a proper coloring, c restricted to E(G) is a proper edge-coloring, and the color on each vertex is different

from the color on its incident edges. For a total coloring c, define the sum value sc(v) of a vertex v by

c(v)+
∑
uv∈E(G) c(uv). A total coloring is a proper total weighting if sc is a proper coloring. The least k such

that G has a proper total k-coloring that is a proper total weighting is the neighbor sum distinguishing total

chromatic number of G, denoted χ′′Σ(G). Clearly, χ′′Σ(G) ≥ χ′′(G) ≥ ∆(G) + 1. Piĺsniak and Woźniak [36]

conjectured that

Conjecture 5.1.3 ([36]). If G is a connected graph with maximum degree ∆(G), then χ′′Σ(G) ≤ ∆(G) + 3.
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Piĺsniak and Woźniak [36] proved that Conjecture 5.1.3 holds for complete graphs, cycles, bipartite

graphs and subcubic graphs. Using the Combinatorial Nullstellensatz, Wang, Ma, and Han [44] proved that

the conjecture holds for triangle-free planar graphs with maximum degree at least 7. Dong and Wang [18]

showed that Conjecture 5.1.3 holds for graphs with Mad(G) < 3 and ∆(G) ≥ 4, and Li, Liu, and Wang [31]

proved that the conjecture holds for K4-minor-free graphs. Li, Ding, Liu, and Wang [30] also confirmed

Conjecture 5.1.3 for planar graphs with maximum degree at least 13. Finally, Xu, Wu, and Xu [46] proved

χ′′Σ(G) ≤ ∆(G) + 2 for graphs G with ∆(G) ≥ 14 that can be embedded in a surface of nonnegative Euler

characteristic.

By modifying Przyby lo’s proof that Conjecture 5.1.1 is asymptotically correct for graphs with large

maximum degree, we confirm that Conjecture 5.1.3 is also asymptotically correct.

Theorem 5.1.4. If G is a connected graph with ∆(G) sufficiently large, then

χ′′Σ(G) ≤ ∆(G) + 50∆(G)5/6 ln1/6 ∆(G).

Przyby lo’s proof uses Vizing’s Theorem at one step of the production of the desired coloring. To produce

a total coloring, we start with a vertex coloring and then produce a compatible edge coloring. In doing

so, we use a result on list-edge coloring in place of Vizing’s Theorem to guarantee the compatibility of the

colorings. To use the list-edge coloring result, we increase a lower order term in the primary lemma. This

increase does not alter the proof of the lemma.

5.2 Ideas

We color the vertices of the graph and produce an edge-coloring such that the combined total coloring is a

proper total weighting. For a coloring g and an edge-coloring h, let (g, h) be the total coloring produced by

combining g and h.

The main work is in producing the desired edge-coloring. Our Lemma 5.2.3 serves a similar purpose

to Lemma 6 of Przyby lo [37]. Lemma 5.2.3 guarantees (not necessarily proper) colorings c1 and c2 of the

vertices and edges respectively. Statement (Q1) guarantees that the vertex coloring has the property that

each color appears roughly the expected number of times in the neighborhood of each high degree vertex.

Statement (Q2) guarantees that the edge coloring has the property that each coloring appears roughly the

expected number of times on the edges incident to high degree vertices. These colorings are used to produce

an initial (also improper) edge-coloring c′ by c′(uv) = c1(u)+c1(v)+c2(uv). Statement (Q3) of Lemma 5.2.3

guarantees that the colors used by c′ do not appear too often among edges incident to a fixed vertex. Finally,
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statement (Q4) of Lemma 5.2.3 will be used to guarantee that the final sum values for the vertices form a

proper coloring. The proof uses the Lovász Local Lemma and the Chernoff Bound in the forms below.

Theorem 5.2.1 (Lovász Local Lemma [5]). Let A1, . . . , An be events in a probability space. Suppose that

each event Ai is mutually independent of a set of all but at most d others of these events, and that Pr (Ai) ≤ p

for all 1 ≤ i ≤ n. If ep(d+ 1) ≤ 1, then Pr
(⋂n

i=1Ai
)
> 0.

Theorem 5.2.2 (Chernoff Bound [33]). If 0 ≤ t ≤ np, then

Pr (|BIN(n, p)− np| > t) < 2e−t
2/3np,

where BIN(n, p) is a binomial random variable with n independent trials having success probability p.

Lemma 5.2.3 defines a function S on the vertices. While the lemma is phrased more generally, we will

apply the lemma using the function in (5.12). This function represents the dominant term in the sum value

of v in our final coloring.

Lemma 5.2.3. Let H be a graph of maximum degree at most D and let CV =
⌈
D1/6 ln−1/6D

⌉
and CE =⌈

D1/3 ln−1/3D
⌉

. For a coloring c1 : V (H)→ [CV ], let

S(v) =
(⌈
D2/3 ln1/3D

⌉
+
⌈
D1/2

⌉)
d(v)c1(v) +R(d(v), D)

for all v ∈ V (H), where R is a non-negative integer function of two variables such that S(v) ≤ D2 for all

v ∈ V (H).

If D is sufficiently large, then there exist colorings c1 : V (H) → [CV ] and c2 : E(H) → [CE ], such that

for every vertex v ∈ V (H):

(Q1) if d(v) ≥ D5/6 ln1/6D, then the number of vertices adjacent to v having any given color is within

3D5/12 ln7/12D of d(v)/CV ;

(Q2) if d(v) ≥ D5/6 ln1/6D, then the number of edges incident with v having any given color is within

3D1/3 ln2/3D of d(v)/CE;

(Q3) for 3 ≤ c ≤ 2CV +CE, the number of edges uv incident with v such that c1(u) + c1(v) + c2(uv) = c is

at most 2D1/3 ln1/3D if d(v) < D2/3, or at most D2/3 ln1/3D + 3D1/3 ln2/3D otherwise;

(Q4) if d(v) ≥ 3D5/6 ln1/6D, then for every integer α ≥ 1, the number of neighbors u of v such that
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d
2 ≤ d(u) ≤ 2d and S(u) ∈ Id(v),α,D is at most at most d

(
D1/6 ln−1/6D

)−1

+ 3D5/12 ln7/12D, where

Id,α,D =

(
(α− 1)

d

2
D2/3 ln1/3D,α

d

2
D2/3 ln1/3D

]
.

We will prove Lemma 5.2.3 in section Section 5.3. Here we give a sketch of the argument. The only

difference between Lemma 6 of [37] and Lemma 5.2.3 is that Przyby lo writes:

S(v) =
(⌈
D2/3 ln1/3D

⌉
+ 4

⌈
D1/3 ln2/3D

⌉)
dc1(v) +R(d,D)

while we have

S(v) =
(⌈
D2/3 ln1/3D

⌉
+
⌈
D1/2

⌉)
dc1(v) +R(d,D).

Our increase to the lower order term in S(v) accommodates an increase in the number of possible colors

used on the edges and is made to permit a total coloring.

Start with colorings c1 and c2 where the color assigned to each vertex and edge is chosen independently

and uniformly at random from [CV ] and [CE ] respectively. For each vertex v, define four events corresponding

to v violating each of (Q1), (Q2), (Q3), and (Q4). For each bad event A among these, because of the way

that CV and CE are defined in terms of D, the Chernoff bound shows that the probability of A is less than

D−5/2. Since all events for a vertex v are mutually independent of those corresponding to vertices having

distance at least 3 from v, each event is mutually independent of all but at most 3 + 4D2 events. Finally,

since

eD−5/2(4 + 4D2) < 1,

the Lovász Local Lemma gives that there is some selection of c1 and c2 such that none of the events occur.

To form a total coloring, we start with a coloring of the vertices and extend it to a total coloring. To

guarantee that the total coloring is proper, we use a result of Molloy and Reed [34]. A list assignment L

for E(G) assigns to each vertex e a list L(e) of permissible colors. Given a list assignment L for the edges

of G, if a proper edge-coloring c can be chosen so that c(e) ∈ L(v) for all e ∈ E(G), then we say that G is

L-edge-colorable. The list edge-chromatic number χ′`(G) of G is the least k such that G is L-edge-colorable

for any list assignment L satisfying |L(e)| ≥ k for all e ∈ E(G).

Theorem 5.2.4 (Molloy and Reed [34]). There is a constant k such that for every graph G,

χ′`(G) ≤ ∆(G) + k∆(G)1/2(log ∆(G))4.
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The list coloring conjecture states that χ′`(G) = χ′(G) for every graph G. Since χ′(G) ≤ ∆(G) + 1,

Theorem 5.2.4 gives an asymptotic version of this conjecture.

5.3 Proof of Lemma 5.2.3

Let d0 = D5/6 ln1/6D; this is the threshold for the degree of vertices to which (Q1) and (Q2) apply; (Q1)

and (Q2) impose no condition on vertices of smaller degree.

For every vertex v ∈ V (H), we choose a color c1(v) ∈ [Cv] independently and uniformly at random.

For each edge e ∈ E(H), we choose a color c2(e) ∈ [CE ] independently and uniformly at random. In the

following, whenever needed we assume that D is sufficiently large.

For each vertex v ∈ V (H) of degree d with d ≥ d0, let A1
v denote the event that for at least one value

a1 ∈ [CV ], the number of neighbors u of v with c1(u) = a1 is outside the range in (Q1). Similarly, for each

vertex v ∈ V (H) of degree d with d ≥ d0, let A2
v denote the event for at least one value a2 ∈ [CE ], the

number of neighbors u of v with c2(uv) = a2 is outside the range in (Q2). For a1 ∈ [CV ] and a2 in [CE ], let

Xv,a1 and Yv,a2 be the random variables of the number of neighbors u of v with c1(u) = a1 and c2(uv) = a2

respectively. We have Xv,a1 ∼ BIN(d, 1/CV ) and Yv,a2 ∼ BIN(d, 1/CE). By the Chernoff Bound, for d ≥ d0,

Pr
(
|Xv,a1 − d/CV | > 3D5/12 ln7/12

)
< 2 exp(−3D5/6 ln7/6DCV /d)

≤ 2 exp(−3D lnD/d) ≤ 2 exp(−3 lnD) = 2D−3

and

Pr
(
|Yv,a2 − d/CE | > 3D1/3 ln2/3D

)
< 2 exp(−3D2/3 ln4/3DCE/d)

≤ 2 exp(−3D lnD/d) ≤ 2 exp(−3 lnD) = 2D−3.

Thus,

Pr
(
A1
v

)
≤ CV · 2D−3 < D−17/6 (5.1)
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and

Pr
(
A2
v

)
≤ CE · 2D−3 < D−8/3. (5.2)

For a vertex v ∈ V (H) of degree d, let A3
v be the event that there is a value a3 such that the number

of edges uv for which c1(u) + c1(v) + c2(uv) = a3 is more than D2/3 ln1/3D + 3D1/3 ln2/3 if d ≥ D2/3 or

more than 2D1/3 ln1/3D if d < D2/3. For each value a3 ∈ {3, . . . , 2CV + CE}, let Zv,a3 be the random

variable counting the edges uv with c1(u) + c1(v) + c2(uv) = a3. For any fixed coloring c1 and u ∈ N(v), the

probability c1(u)+c1(v)+c2(uv) = a3 (that is c2 = a3−c1(u)−c1(v)), is at most 1/CE . Since the selections

of c2(uv) are independent and we get equivalent selections for any fixed c1, for any integer d′ ≥ D2/3 with

d′ ≥ d, the Chernoff Bound yields

Pr

(
Zv,a3 >

d′

CE
+ 3

√
d′

CE
ln1/2D

)
≤ Pr

(
BIN(d′, C−1

E ) >
d′

CE
+ 3

√
d′

CE
ln1/2D

)

≤ Pr

(∣∣∣∣BIN(d′, C−1
E )− d′

CE

∣∣∣∣ > 3

√
d′

CE
ln1/2D

)

< 2 exp−9 lnD/3 = 2D−3.

Thus if D2/3 ≤ d ≤ D, then

Pr
(
Zv,a3 > 2D2/3 ln1/3D + 3D1/3 ln2/3D

)
≤ Pr

(
Zv,a3 >

D

CE
+ 3

√
D

CE
ln1/2D

)
< 2D−3,

while for d < D2/3

Pr
(
Zv,a3 > 2D1/3 ln1/3D

)
≤ Pr

Zv,a3 > bD2/3c
CE

+ 3

√
bD2/3c
CE

ln1/2D

 < 2D−3.

Thus, regardless of the degree of v,

Pr
(
A3
v

)
< (2CV + CE)2D−3 ≤ D−8/3 (5.3)

for D sufficiently large.

For a vertex v of degree d with d ≥ 3d0, let A4
v be the event corresponding to the violation of (Q4). That
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is, for some integer α ∈
[
d 2D4/3

d ln1/3D
e
]
, the number of neighbors u of v with d

2 ≤ d(u) ≤ 2d and S(u) ∈ Id,α,D

is greater than

d

D1/6 ln−1/6D
+ 3D5/12 ln7/12D.

Note that for α ≥ d 2D4/3

d ln1/3D
e+ 1, we have Id,α,D ⊂ (D2,∞). Because we assumed that S(u) ≤ D2, allowing

α ∈
[
d 2D4/3

d ln1/3D
e
]

is sufficient.

For a given vertex v of degree d with d ≥ d0 and value α ∈
[
d 2D4/3

d ln1/3D
e
]
, let Wv,α be the random variable

counting the vertices u such that u ∈ N(v), d
2 ≤ d(u) ≤ 2d, and S(u) ∈ Id,α,D.

Recall that, for each vertex u, S(u) is a random variable based on c1(u). For every u ∈ N(v) with

d
2 ≤ d(u) ≤ 2d, by the definitions of Id,α,D and S(u) we have

Pr (S(u) ∈ Id,α,D) = Pr
((⌈

D2/3 ln1/3D
⌉

+
⌈
D1/2

⌉)
d(u)c1(v) ∈ Id,α′,D

)

for some real number α′. Here the change from α to α′ “shrinks” the interval to allow us to drop the additive

R(d(u), D) term in S(u).Since
d
2D

2/3 ln1/3D(⌈
D2/3 ln1/3D

⌉
+
⌈
D1/2

⌉)
d(u)

≤ 1,

the probability that S(u) ∈ Id,α,D can be bounded as follows for a real number α′′:

Pr (S(u) ∈ Id,α,D) ≤ Pr (c1(u) ∈ (α′′ − 1, α′′]) = Pr (c1(u) = bα′′c) ≤ 1

CV
≤ D−1/6 ln1/6D.

Since the value of S(u) depends only on the choice of c1(u), in our random process, the random variables

S(u) for u ∈ V (H) are independent. Therefore, by the Chernoff Bound,

Pr

(
Wv,α >

d

D1/6 ln−1/6D
+ 3D5/12 ln7/12D

)
≤ Pr

(
BIN(d,D−1/6 ln1/6D) >

d

D1/6 ln−1/6D
+ 3D5/12 ln7/12D

)
≤ Pr

(∣∣∣∣BIN(d,D−1/6 ln1/6D)− d

D1/6 ln−1/6D

∣∣∣∣ > 3D5/12 ln7/12D

)
< 2 exp(−3D5/6 ln7/6D

D1/6 ln−1/6D

d
) = 2 exp(−3D lnD/d) ≤ 2 exp(−3 lnD) = 2D−3.
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Hence for d ≥ 3d0,

Pr
(
A4
v

)
≤

⌈
2D4/3

d ln1/3 D

⌉∑
α=1

Pr

(
Wv,α >

d

D1/6 ln−1/6D
+ 3D5/12 ln7/12D

)
<

⌈
2D4/3

d ln1/3D

⌉
· 2D−3 ≤

⌈
2D4/3

3d0 ln1/3D

⌉
· 2D−3 ≤ D−5/2. (5.4)

Note that since each of the events A1
v, A

2
v, A

3
v and A4

v depends only on the random colors of v, its

neighbors, and its incident edges, each event corresponding to v is mutually independent of all other events

corresponding to vertices v′ at distance at least 3 from v. Hence the events are mutually independent of all

others except at most 3 + 4D2 other events. Moreover, by (5.1), (5.2), (5.3), and (5.4), the probability of

each event is at most D−5/2. Since

eD−5/2(4 + 4D2) < 1,

by the Lovász Local Lemma we obtain

Pr

 ⋂
v∈V (H),i∈[4]

Aiv

 > 0.

We can thus select colorings c1 and c2 satisfying (Q1) – (Q4).

5.4 Proof of Theorem 5.1.4

We first give an outline of the proof.

Suppose that g : V (G) → [∆(G) + 1] is a proper coloring of a graph G. We work to produce a proper

edge-coloring h such that (g, h) is a proper total weighting. Let M be a maximal matching in G. Producing

h takes three steps: the first two steps focus on producing an edge-coloring of G −M , and the final step

assigns colors to M .

More specifically, in Step 1, we use Theorem 5.2.4 to define an edge-coloring h1 for E(G)−M such that

(g, h1) is a proper total coloring of G−M . To do this, we using the (improper) colorings from Lemma 5.2.3,

a “stretch factor” to distribute the colors, and Theorem 5.2.4 to provide a proper coloring. In Step 2,

we modify h1 to obtain an edge-coloring h2 on E(G) −M so that (g, h2) is a proper total coloring and

s(g,h2)(u) 6= s(g,h2)(v) whenever uv ∈ M . In Step 3, we extend h2 to M to yield a coloring h of E(G) such

that (g, h) is a proper total coloring that is also a proper total weighting of G. Extending the coloring to

M changes the values on the vertices incident to an edge in M . Since every edge uv is either in M (and
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therefore u and v have distinct sum values by Step 2) or has that one of the endpoints is incident to an edge

in M , extending the coloring to M will be sufficient to make (g, h) a proper total weighting.

Proof. Let G be a graph with maximum degree D. Let M be a maximal matching in G, and define G′ by

V (G′) = V (G) and E(G′) = E(G)−M . Let g : V (G)→ [D+ 1] be a proper coloring of G (and thus of G′).

In the following, we use d′(v) for the degree of v in G′.

Let CV =
⌈
D1/6 ln−1/6D

⌉
and CE =

⌈
D1/3 ln−1/3D

⌉
. These are the numbers of colors used in the

coloring c1 and the edge-coloring c2 guaranteed by Lemma 5.2.3. Let d0 = D5/6 ln1/6D so that d0 is the the

degree threshold in Lemma 5.2.3 (Q4). Let CM = d47d0e; we will color M from [CM ]. The dominant term

in the “stretch factor” used to produce a proper edge-coloring is
⌈
D2/3 ln1/3D

⌉
, which we abbreviate as C.

Step 1: The coloring h1 for E(G) −M is defined in several phases that guarantee (g, h1) is a proper

total coloring of G −M . Our argument follows that of Sections 5.1 and 5.2 in [37], with modifications to

produce a total coloring rather than an edge-coloring.

Let c1 : V (G′) → [CV ] and c2 : E(G′) → [CE ] be the colorings of V (G′) and E(G′) guaranteed by

Lemma 5.2.3, where the function R(d,D) used to define S in the application of the lemma agrees with the

function S defined in (5.12).

Give uv ∈ E(G′) a tentative color c′(uv) defined by

c′(uv) = [c1(u) + c1(v) + c2(uv)]
(
C +

⌈
D1/2

⌉)
+ CM .

This coloring is not a proper edge-coloring. However, by Lemma 5.2.3 (Q3), the colors are distributed so

that we will be able to modify them to produce a proper edge-coloring h1. The additive factor of CM means

that the colors 1 through CM are not used; these colors will not be used until Step 3, when they are used

on M .

For each β ∈ {3, . . . , 2CV + CE}, the C +
⌈
D1/2

⌉
colors starting with

(
C +

⌈
D1/2

⌉)
+ CM shall be

called the palette corresponding to β. In c′, only the smallest member of each color class may appear.

The color of each edge in E(G′) will remain in the same palette in h1 and h2. We will define h1(e) =

c′(e) + a1(e), where a1(e) specifies which element from the palette associated with e is given to e. To

this end, let P = {0, . . . , C +
⌈
D1/2

⌉
− 1}. We divide P into lower and upper portions P− and P+ with

P− = {0, . . . , C +
⌈
D1/2/2

⌉
} and P+ = {C +

⌈
D1/2/2

⌉
+ 1, . . . , C +

⌈
D1/2

⌉
− 1}. Note that in h1 only the

lower portion of the elements from each palette is used. The remaining colors in the color class are used in

Step 2.

In our specification of the final coloring h, we will have h(e)−c′(e) ≤ C+
⌈
D1/2

⌉
. Thus, if D is sufficiently
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large, then

h(e) ≤ (2CV + CE)(C +
⌈
D1/2

⌉
) + CM < D + 50D5/6 ln1/6D = D + o(D). (5.5)

To choose a1(e), we give a list assignment and use Theorem 5.2.4. Let Gβ be the spanning subgraph of

G′ with E(Gβ) = {e ∈ E(G′) : c′(e) = β}. By Lemma 5.2.3 (Q3), ∆(Gβ) ≤ D2/3 ln1/3D + 3D1/3 ln2/3D.

For an edge uv, let T (uv) be the colors on u and v in the palette associated with uv, that is, T (uv) =

{g(u)− c′(uv), g(v)− c′(uv)}. To guarantee that edges receive colors distinct from the colors of their end-

points, let L(uv) = P− − T (uv). For D sufficiently large, we have

|L(uv)| ≥ C +
⌈
D1/2/2

⌉
− 2 ≥ ∆(Gβ) + k∆(Gβ)1/2 log6(∆(Gβ).

Let a1,β be the L-edge-coloring for Gβ guaranteed by Theorem 5.2.4, and let a1 agree with a1,β for every β.

The definition of a1 guarantees that under h1 no color is used on two incident edges. Thus h1 is a proper

edge-coloring. Furthermore, we have h1(uv) /∈ {g(u), g(v)}, so (g, h1) is a proper total coloring of G′.

Step 2: This step has two phases, with no substantial difference between our argument and that of Sec-

tion 5.3 in [37]. In this step, we produce a coloring h2 on E(G)−M so that (g, h2) is a proper total coloring

and s(g,h2)(u) 6= s(g,h2)(v) whenever uv ∈M . Since Step 3 will extend h2 to E(G) but not otherwise modify

h2, this step is necessary to guarantee that endpoints of edges in M receive distinct sum values in our final

coloring.

First we choose a subgraph of G′ containing edges incident with all edges of relatively large degree.

Independently for every vertex of degree larger than D2/3, we choose one of its incident edges randomly and

uniformly. Let H be the graph with V (H) = V (G′) and the edges chosen. Note that dH(v) ≥ 1 for such

vertices. Let Fv be the event dH(v)− 1 > 2D1/3. Given a vertex v ∈ V (G′) of degree d, the probability that

an edge uv ∈ E(G′) was chosen by a neighbor u of v is at most D−2/3. Taking into account the one more

edge that may have been chosen by v, the Chernoff Bound yields

Pr (Fv) ≤ Pr
(

BIN(d,D−2/3) > 2D1/3
)

≤ Pr
(

BIN(D,D−2/3) > 2D1/3
)

≤ Pr
(∣∣∣BIN(D,D−2/3)−D1/3

∣∣∣ > D1/3
)

< 2 exp(−D1/3/3) ≤ D−3
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Note that Fv is mutually independent of all events Fu for u having distance at least three from v, that

is, of all but at most D2 other events. By the Lovász Local Lemma, we can thus choose these edges so that,

for every v ∈ V (G),

dH(v)− 1 ≤ 2D1/3 ≤ 1

2
D1/2 − 4.

Fix a graph H such that each vertex has a specified incident edge and dH(v) − 1 ≤ 1
2D

1/2 − 4. We

examine the edges of H one by one (in any order). When we reach the last edge of H incident with any

edge (or two edges) of M , we modify the color on it. Let uv be this edge. We pick a′2(uv) ∈ P+ − T (uv) so

that replacing a1(uv) with a′2(uv) for such an edge uv maintains a proper total coloring. The bound on the

maximum degree of H makes this possible. Let a′2(e) = a1(e) for all other edges, and let h′2(e) = c′(e)+a′2(e).

The coloring (g, h′2) assigns distinct sum values to endpoints of edges in M as long as one of the vertices has

large degree.

Let M ′ be the set of edges uu′ ∈ M such that s(g,h′2)(u) = s(g,h′2)(u
′). For each edge uu′ ∈ M ′, we

pick an edge uw ∈ E(G′) incident with uu′ in G. By the choice of h′2, we have d′(u) < D2/3, so by

Lemma 5.2.3 (Q3) there are at most 2D1/3 ln1/3D members of the palette associated to c′(uw) incident with

u and at most C + 3D1/3 ln2/3D members of the color class c′(uu′) incident with w. We may thus easily

pick a2(uw) ∈ P − T (uw) so that the values of u and u′ are different and that if ww′ ∈M , then the values

of w and w′ are also different.

For all other edges, set a2(e) = a′2(e) and let h2(e) = c′(e) + a2(e).

Step 3: This step follows the argument in Section 5.4 of [37]. In this step, we extend h2 to M to yield a

coloring h of E(G) such that (g, h) is a proper total coloring that is also a proper total weighting of G.

Before we define h, we need to know (roughly) the current sum value of the vertices. For v be a vertex

of degree d with d ≥ d0:

s(v) = g(v) +
∑

u∈N(v)

h2(uv)

= g(v) +
∑

u∈N(v)

(
[c1(u) + c1(v) + c2(uv)](C + dD1/2e) + CM + a2(uv)

)

= g(v) + dCM +
∑

u∈N(v)

(a2(uv)) +

dc1(v) +
∑

u∈N(v)

c1(u) +
∑

u∈N(v)

c2(uv)

 (C + dD1/2e). (5.6)

We bound the sums in (5.6). By our selection of a2(uv), we have

0 ≤
∑

u∈N(v)

a2(u) ≤ D(C + dD1/2e). (5.7)
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By Lemma 5.2.3 (Q1), we can write

∑
u∈N(v)

c1(u) =

CE∑
i=1

(
d

CE
+ f1,i(v)

)
i

=

(
d

CE
+ f1(v)

)(
CE + 1

2

)
, (5.8)

where f1,i(v) and f1(v) result from the error terms in Lemma 5.2.3 (Q1). From this,

|f1(v)| ≤ 3D5/12 ln7/12D. (5.9)

Finally, by Lemma 5.2.3 (Q1), we can write

∑
u∈N(v)

c2(uv) =

CV∑
i=1

(
d

CE
+ f2,i(v)

)
i

=

(
d

CV
+ f2(v)

)(
CV + 1

2

)
, (5.10)

where f2, i(v) and f2(v) result from the error terms in Lemma 5.2.3 (Q2). From this,

|f2(v)| ≤ 3D1/3 ln2/3D. (5.11)

By (5.6), (5.8), and (5.10), we may break s(v) into a dominant term S(v) and an error term F (v).

Specifically, we write s(v) = S(v) + F (v) where

S(v) = g(v) + dCM +
(
C +

⌈
D1/2

⌉)
×
[
dc1(v) +

d

CV

(
CV + 1

2

)
+

d

CE

(
CE + 1

2

)]
(5.12)

and

F (v) =
∑

u∈N(v)

a2(uv) +
(
C +

⌈
D1/2

⌉)
×
[
f1(v)

(
CV + 1

2

)
+ f2(v)

(
CE + 1

2

)]
.

We defined R so that this S(v) is the one needed to apply Lemma 5.2.3. Note that S(v) ≤ D2 when D

is sufficiently large.

By (5.7), (5.9), and (5.11), we have

|F (v)| ≤
(
C + dD1/2e

)(
D + 3

(
CE + 1

2

)
D5/12 ln7/12D + 3

(
CV + 1

2

)
D1/3 ln2/3D

)
=

(
5

2
+ o(1)

)
D5/3 ln1/3D. (5.13)
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Thus (5.12) implies that

3

4

d′(v)D

2
< s(g,h2)(v) <

5

2

d′(v)D

2
(5.14)

when D is sufficiently large.

Consequentially, every vertex v of degree d with d ≥ 3d0 will have a sum value distinct from its neighbors

u of degree at least d0 satisfying d′(u) ≤ d
2 or d′(u) ≥ 2d, even if we later increase the sum values of some

of the vertices by (an irrelevant additive factor of) at most CM . Moreover, by (5.5), the sum value of every

neighbor u of v with d′(u) < d0 shall never exceed d′(u) ·(D+50D5/6 ln1/6D)+CM < 3
8dD. Thus, by (5.14),

the only neighbors u of v whose sum values might eventually land in conflict with the sum value of v are

those with d
2 ≤ d′(u) ≤ 2d. However, only some part of these might, at this point, have their sum values

close enough to the sum values of v to threaten a conflict with v. We obtain an upper bound for the number

of such neighbors of v.

Consider a vertex v with degree d such that d ≥ 3d0 with a neighbor u with d
2 ≤ d′(u) ≤ 2d (Hence

d > d0). By (5.13),

(F (v) + CM ) + (F (u) + CM ) ≤ (5 + o(1))D5/3 ln1/3D = (10 + o(1))
D

d

(
d

2
D2/3 ln1/3D

)

where d
2D

2/3 ln1/3D is the length of one of the intervals Id,α,D in Lemma 5.2.3 (Q4). Thus s(v) may only

potentially land in conflict with its neighbors u having d
2 ≤ d′(u) ≤ 2d such that S(u) falls into one of at

most 2[(10 + o(1))Dd + 1] + 1 ≤ (23 + o(1))Dd intervals Id,α,D for consecutive integers α. Letting Uv be the

number of such neighbors, by Lemma 5.2.3 (Q4) we have

|Uv| ≤
(

(23 + o(1))
D

d

)(
d

D1/6 ln1/6D
+ 3D512 ln7 12

)
= (23 + o(1))D5/6 ln1/6D

= (23 + o(1))d0

To define a set Uv for each vertex, for those vertices v with d′(v) < 3d0, let Uv = NG′(v). Trivially,

|Uv| ≤ 3d0 for these vertices.

Finally, we choose colors from [CM ] for edges of M so that all neighbors in G have distinct sum values.

To do so, we analyze one by one every edge of M . For xy ∈M , we choose the color so that each of x and y

have distinct sum value from its at most (23 + o(1))d0 neighbors in each Ux and Uy. Then, for uv ∈ E(G),

if uv /∈M , the sum values of u and v are distinct, since at least one of u and v is incident to an edge in M .

If uv /∈M , then the sum values of u and v are distinct by our choice of coloring in Step 2.
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We may thus extend h2 to h using colors in [CM ] so that (g, h) is a proper total coloring that is a proper

total weighting.
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[19] Paul Erdős, Arthur L. Rubin, and Herbert Taylor, Choosability in graphs, Proceedings of the West
Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata,
Calif., 1979), Congress. Numer., XXVI, Utilitas Math., Winnipeg, Man., 1980, pp. 125–157. MR 593902
(82f:05038)

[20] Evelyne Flandrin, Antoni Marczyk, Jakub Przyby lo, Jean-François Saclé, and Mariusz Woźniak, Neigh-
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