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Abstract

Standard parallel sorting algorithms like sample sort rely on data partitioning techniques

to distribute keys across processors. The sampling cost in sample sort for good load bal-

ance is prohibitive for massive clusters. We describe Histogram sort with sampling, an

adaptation of the popular Histogram sort algorithm. We show that Histogram sort with

sampling has sound theoretical guarantees and reduces the sample size requirements from

O(p logN/ε2) to O(kp k
√

log p/ε) with k rounds of histogramming w.h.p.∗. Histogram sort

with sampling is more efficient than Sample sort algorithms that achieve the same level of

load balance, both in theory and practice, especially for massively parallel applications,

scaling to tens of thousands of processors. We also show that an approximate but fairly

accurate histogram can be obtained using a O(
√
p logN/ε) sample on every processor.

This can be used to speed up the histogramming step and can be of independent interest

for answering general queries in large parallel processing systems. In our practical im-

plementation, we exploit shared memory within nodes to improve the performance of our

algorithm on large modern clusters.

∗with high probability. In our context, probability ≥ 1−O(p−c) for some constant c > 0
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Chapter 1

Introduction

Scalability, load balance and performance are major challenges of parallel sorting. Load

balance is crucial for many parallel applications, because an overloaded processor slows

down the entire application. For this reason, ChaNGa [18], an N-body application to

perform collisionless N-body cosmological simulations, which uses parallel sorting at the

beginning of every iteration in its simulation, has a strict requirement for good load

balance.

A parallel sorting algorithm needs to redistribute N keys across p processors such that

they are in a globally sorted order. In such an order, keys on processor k are greater than

keys on processor k−1 and keys are sorted within each processor. Different parallel sorting

algorithms have different guarantees on the load balance after sorting. We assume that

the application specifies the load balancing parameter ε to indicate that every processor

should end up with no more than N(1 + ε)/p keys, or in other words the load imbalance∗

after sorting be bounded by (1 + ε). This model closely captures many real world systems

as different applications have varying tolerance for load imbalance.

Several parallel sorting algorithms rely on data partitioning techniques to determine

p−1 splitter keys that partition the data range into p buckets, one for each processor. The

splitters are broadcast to all processors and keys are sent to their destination processors,

determined by the bucket it falls in. The ith bucket is owned by the ith processor. Two

popular algorithms in this regard are Sample sort and Histogram sort. Our algorithm is

partly inspired from both of these algorithms.

∗More precisely, we define load imbalance to be the ratio of maximum load and average load
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Sample sort [13] is a popular parallel sorting algorithm that relies on data partition-

ing. Sample sort with regular sampling [24, 28] collects Θ(p2/ε) sampled keys from all

processors at a central processor, which then decides the splitters in a way that guarantees

that every processor will have no more than N(1 + ε)/p keys at the end of the algorithm.

Sample sort with random sampling as proposed by Blelloch et al. [8] requires Θ(p logN/ε2)

samples overall across all processors to achieve the same load balance. Both of these are

impractical for large p and a reasonable value of ε, because of the high cost of sampling.

Nevertheless, because of its simplicity, sample sort is widely deployed in modestly large

parallel processing systems [25]. We discuss Sample sort with both regular and random

sampling in Section 4.1.

Histogram sort as proposed by Kale et al. [20, 29] conducts multiple rounds of his-

togramming to determine “good” splitter keys, refining candidate splitter keys every

round. The number of histogramming rounds required to determine all splitters within

the allowed threshold is loosely bounded by logN , where N is the range of the input (i.e.

maximum key minus the minimum key), although in practice it takes fewer rounds [20, 29]

for many distributions. Nevertheless, for skewed distributions the number of rounds could

be large.

We present Histogram sort with sampling (HSS), a highly scalable and practical par-

allel sorting algorithm that relies on data partitioning. HSS accomplishes fast splitter

determination by requiring a significantly smaller sample for histogramming as compared

to sample sort. After one round of sampling followed by histogramming on O(p log p/ε)

samples, it determines all the splitters with high probability. The splitters determined this

way achieve load balance levels specified by ε. We describe Histogram with Sampling with

one round of histgoramming in Section 3.1. The data movement step of Histogram sort

with sampling after determining the splitters is identical to sample sort and histogram

sort.

We show that the sample size can be further brought down by repeating the above idea

for multiple rounds, that is, by repeated rounds of sampling followed by histogramming. In
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general, with k rounds, the required sample size is O(p k
√

log p/ε) every round, accounting

for an overall sample size of O(kp k
√

log p/ε) across all rounds. The details for the general

case of k rounds are described in Section 3.3. Lemmas 3.2.1, 3.3.1 and 3.3.2 outline the

main findings of this paper.

We focus on reducing the sample size because, as we show in section 5.1, the cost of

determining splitters, including the cost of histogramming, is proportional to the sample

size. To see the impact of reduced sample size on scalability, consider p = 64 × 103,

ε = 0.05, N/p = 106 and 64 bit keys. The required sample size is 655 GB for sample sort

with regular sampling and 5 GB for Sample sort with random sampling. In contrast, it

is 250 MB and 22 MB for Histogram sort with sampling with one round and two rounds,

respectively.

In section 3.4, we propose an enhancement to speed up the histogramming step. Every

processor maintains a O(
√
p logN/ε) representative sample of its own local input and uses

this sample, instead of the entire input, to execute the histogramming step. We show that

the histogram, thus obtained, is accurate enough for the purpose of our algorithm. This

method can also be of independent interest in answering repeated rank queries in general

parallel processing systems.

In section 5.1, we compare the running time complexity of HSS and sample sort. Fi-

nally, we demonstrate the scalability of our algorithm on large supercomputing clusters.

We leverage shared memory within nodes to make node level optimizations to our al-

gorithm for better performance and scalability. The details of our implementation and

experiments are described in Section 6.
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Chapter 2

Preliminaries

2.1 Problem statement

We assume the input A to consist of N keys across p processing elements, distributed

evenly such that each processor has N/p keys. For simplicity, we assume that there are

no duplicates in the input. In Section 4.3, we describe how to deal with the case when

the input has too many duplicates. A parallel sorting algorithm needs to redistribute the

input to obtain a global sorted order. Additionally for good load balance, each processor

should end up with no more than N(1 + ε)/p keys after sorting, where ε is specified by

the application. In other words, the problem requires the load imbalance to be bounded

by a factor of (1 + ε) . Cheng et al. [9] propose an algorithm that finds exact splitters that

achieve perfect load balance with O(p logN) rounds of communication. Such an algorithm

is largely of theoretical interest as we are not aware of any practical applications that have

such a stringent requirement of load balance.

The bulk of this paper focuses on data partitioning algorithms. Sample sort by regular

sampling [28, 24], histogram sort [20, 29], sample sort by random sampling [13, 8] and par-

allel sorting by over partitioning [23] fall into this category. A data partitioning algorithm

determines p − 1 splitter keys, that split the input into p ranges, one for each processor.

Let the sorted sequence of splitter keys determined by a data partitioning algorithm be

S = {S1, S2..., Sp−1}. Once the algorithm finishes, pi has all keys in range [Si, Si+1), where

we define S0 = Min Key and Sp = Max Key - the minimum and maximum key value.

For numeric keys, we can define them to be −∞ and ∞, respectively.

4



For good load balance, any algorithm should find “good” splitters that will partition

the data evenly. With ideal load balance, every processor ends up with exactly N/p

keys. If R(k) denotes the rank of key k in the overall input, then in such an ideal case,

R(Si) = Ni/p, or equivalently if I(r) denotes the key with rank r in the overall input,

then, Si = I(Ni/p). Since some load imbalance is tolerated in the problem statement, for

our algorithm, we enforce the following conservative condition:

Si ∈ Ti, where,Ti =

[
I
(Ni
p
− Nε

2p

)
, I
(Ni
p

+
Nε

2p

)]

Consequently, every processor will end up with no more than N(1 + ε)/p keys, as

required by the problem. We say that splitter i is finalized if a key k has been found

that is known to be from ∈ Ti, i.e., if we have found a suitable candidate key k for Si.

Our proofs do not rely on input keys to be evenly distributed across each processor.

Our algorithm can be easily adapted for uneven divisions of input by adjusting the sample

size from every processor, based on the length of the local input. The running time,

however, will suffer because of load imbalance in the input. We note that any parallel

sorting algorithm will get affected from load imbalance in the input.

We evaluate our algorithm using the bulk synchronous parallel model (BSP) suggested

by Valiant [31]. Comparison of execution times with sample sort suggest that Histogram

sort with sampling is theoretically more efficient than parallel sample sort (see section 5.1).

Since our algorithm borrows some ideas from sample sort [13] and histogram sort [20],

we give their high level description before proceeding to our main result. We review these

and other parallel sorting algorithms in more detail in section 4.
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2.2 Sample Sort

Sample sort [13, 7, 16, 24, 28] is a widely studied and analyzed parallel sorting algorithm.

Sample sort samples s keys from each processor in some fashion, and sends them to a

central processor to form an overall sample of size M = ps keys. Let Λ = {λ0, λ1..., λps−1}

denote the combined sorted sample. p−1 keys are chosen from Λ as the final splitters. Any

algorithm for sample sort has the following skeletal structure, consisting of three phases.

1. Sampling Phase

Every processor samples s keys and sends it to a central processor. s is often referred

to as the oversampling ratio. Much research has taken place on how to select samples

for better load balance. We discuss different sampling methods in section 4.1.

2. Splitter determination

The central processor receives samples of size s (obtained in Step 1) from every processor

resulting in a combined sample Λ of size (ps). The central processor then selects p− 1

splitter keys: S = {S1, S2..., Sp−1} from Λ that partitions the key range into p ranges,

each range assigned to one processor. Usually, the splitters are chosen by picking evenly

spaced keys from Λ. Once the splitters have been finalized, they are broadcast to all

processors.

3. Data movement

Once a processor receives the splitter keys, it sends each of its key to the appropriate

destination processor. As discussed earlier, a key in range [Si, Si+1) goes to processor i.

This step is akin to one round of all-to-all communication and places all the input data

onto their assigned destination processors. Once a processor receives all data that falls

in its bucket, it merges them using a sequential algorithm, often chosen to be merge

sort.

Although sample sort requires a large number of samples to provably determine “good”

splitter keys that achieve the desired level of load balance, and may not be scalable in
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practice for a large number of processors, it is popular for its simplicity. In practice, it

achieves good load balance with fewer samples for well behaved input distributions.

2.3 Histogram Sort

Histogram sort [20, 29] addresses load imbalance by determining the splitters more accu-

rately. Instead of determining all splitters using one large sample, it maintains a set of

candidate splitter keys and performs multiple rounds of histogramming, refining the can-

didates in every round. Computing histogram of a set of candidate keys gives the global

rank of each candidate key. This information is used by the algorithm to finalize splitters

or to refine the candidate keys. Once all the splitters are within the given threshold, it

finalizes the splitter keys from the set of candidate keys. After finalizing the splitters, the

rest of the algorithm involving data movement is identical to sample sort. We give an

overview of the splitter determination step in histogram sort.

1. The central processor broadcasts a probe consisting of M sorted keys to all processors.

Usually, the initial probe is spread out evenly across the key range since no other

information is available.

2. Every processor counts the number of keys in each range defined by the probe keys,

thus, computing a local histogram of size M .

3. All local histograms are summed up using a reduction to obtain the global histogram

at the central processor.

4. The central processor finalizes and broadcasts the splitters if all splitters have been

finalized. Otherwise, it refines its probes using the histogram obtained and broadcasts

a new set of probes for next round of histogramming, in which case the algorithm loops

back to step 2.

Histogram sort is guaranteed to achieve any arbitrary specified level of load balance.

It is also scalable for many input distributions, since the size of the histogram every round

7



is typically kept small - of the order O(p). The number of histogramming rounds required

to determine all splitters within the allowed threshold is loosely bounded by logN , where

N is the range of the input (i.e. maximum key minus the minimum key). The number of

rounds can be large, especially for skewed input distributions.

Nevertheless, Histogram sort is reliable for good load balance and more scalable than

sample sort for many practical scenarios. It has been successfully deployed in real world,

highly parallel scientific applications, for instance ChaNGa [18].
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Chapter 3

Histogram Sort with Sampling

The basic skeleton of our algorithm is similar to that of Histogram Sort. In addition, we

use sampling to determine the candidate probes for histogramming. Every histogramming

round is preceded by a sampling phase where every processor samples some s keys and

the overall sample collected from all processors is used for the histogramming round. By

histogramming on the sample, Histogram sort with sampling requires significantly fewer

samples compared to sample sort, to achieve the desired load balance. We argue later in

this paper that the cost of histogramming isn’t a big overhead, both theoretically and in

practice (see section 5.1 and section 6).

For the sampling phases, our algorithm chooses a sample from a subset G of the input.

Initially, G represents the entire input. As the algorithm progresses, G gets smaller. We

use the following method for sampling throughout our discussions, unless stated otherwise.

Sampling Method 1 Every key in G is independently chosen to be a part of the sample

with probability ps/N , where we refer s as the sampling ratio.

Note that the size of the overall sample collected from all processors with the above

method is (ps|G|/N) in expectation.

3.1 One round of histogramming

We show that the sample size in sample sort can be reduced by an order of magnitude

by performing just one round of histogramming on the collected sample. With high

9



probability, the splitters obtained after the first histogramming round achieve the specified

level of load balance.

3.2 Scanning algorithm

We describe the scanning algorithm proposed by Axtmann et. al. [3] to decide the splitters,

once the histogram is obtained. Given an upper bound N(1 + ε)/p on the number of

elements per processor, the algorithm scans through the histogram and assigns bucket

between two keys to a processor. It skips to the next processor when the total load on

that processor exceeds N(1 + ε)/p. The last processor gets all the remainder elements.

We should sample enough so that the remainder elements is less than N/p(1 + ε). We

reproduce the following result from [3] and also provide a full proof for the same.

Theorem 3.2.1 If every key is independently picked in the sample with probability, ps
N =

2p
εN , where s, the sampling ratio is chosen to be 2/ε, then the number of elements assigned

to the last processor by the scanning algorithm is ≤ N(1+ε)
p w.h.p.

Proof: Let the number of elements assigned to the ith processor by the scanning

algorithm be ni. Clearly, ni ≤ N(1+ε)
p for all i < p − 1. The last processor however, may

have more elements. Ideally, with perfect load balance, the load on every processor should

be N/p. Define ri =
(
N/p + Nε/p − ni

)
. By design of the scanning algorithm, ri ≥ 0 ∀

i ∈ [0, p− 1).

We have,

np−1 = N −
p−2∑
i=0

ni

= N −
p−2∑
i=0

(N
p

+
Nε

p
− ri

)
=
N

p
− Nε(p− 1)

p
+

p−2∑
i=0

ri

10



Since all samples are picked independently using binomial trials, ri is exponentially

distributed. More specifically, P
[
ri ≥ k

]
= (1− ps/N)k. Thus, we have,

E
[
ri
]
≤
∞∑
k=1

(
1− ps

N

)k ≤ N

ps

Since all samples are picked independently, the random variables ri are also mutually

independent. With sampling ratio s = 2
ε and using expression for np−1, we have,

P
[
np−1 ≥

N

p
+
Nε

p

]
= P

[ p−2∑
i=0

ri ≥ Nε
]

≤ P
[ p−2∑
i=0

ri ≥
Nε

2
+
Nε(p− 1)

2p

]
≤ P

[( p−2∑
i=0

ri − E[

p−2∑
i=0

ri]
)
≥ Nε

2

]

≤ e
−pε2

2(1+ε)2

The last inequality is obtained using an application of Hoeffding’s inequality since all

ri’s are independent.

Next, we describe HSS with one round of histogramming, a slightly worse performing

algorithm than scanning algorithm in terms of the number of samples, to decide splitters

with one round of histogramming. HSS with one round is easily generalizable to multiple

rounds of histogramming, as we discuss in subsequent sections. We emphasize that with

just one round of histogramming, the scanning algorithm does better and should be used

over HSS. However, extending the scanning algorithm for multiple rounds is non-trivial

and unclear.

Recall that in HSS, splitter i is finalized when the algorithm finds a candidate key

that is known to be in Ti. If the sample contains at least one key from Ti, then after

histogramming on the sample, all splitters will be finalized. Intuitively, the algorithm

should sample adequate number of keys so that at least one key is picked from each Ti

11



Figure 3.1: Figure illustrating Histogram sort with sampling (HSS) with multiple rounds.
After first round, samples are picked only from the splitter intervals. Notice how the
splitter intervals shrink as the algorithm progresses.

with high probability.

Theorem 3.2.2 If every key is independently picked in the sample with probability, ps
N =

2p ln p
εN , where s, the sampling ratio is chosen to be 2 ln p

ε , then at least one key is chosen

from each Ti w.h.p.

Proof: Recall that the input set is denoted by A. The size of Ti ∩A, |Ti ∩A| = Nε/p.

The probability that no key is chosen from Ti in the overall sample is given by,

(
1− ps

N

)|Ti∩A|
=

(
1− 2p ln p

εN

)Nε
p

6 e
− 2p ln pNε

εNp =
1

p2

Finally, since there are p− 1 splitters, the probability that no key is chosen from some

Ti, is at most (p− 1)× p−2 < 1/p.

This leads us to the following lemma for HSS for one round.

Lemma 3.2.1 With one round of histogramming and O
(
p log p
ε

)
sized sample, Histogram

sort with sampling achieves (1 + ε) load balance w.h.p.
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3.3 Multiple rounds of histogramming

We show that the sample size can be further reduced by repeated rounds of sampling

followed by histogramming. Our algorithm builds upon the key observation that after

the first round of histogramming, samples for subsequent histogramming rounds can be

intelligently chosen using results from previous rounds. We first describe the steps of our

histogramming algorithm in terms of the sampling ratios sj ’s for each round. Later, in

our analysis, we describe how to appropriately set these parameters to achieve the desired

load balance after k rounds.

1. In the sampling phase before the first round of histogramming, each key in the input

is picked in the sample with probability (ps1/N), where s1 is the sampling ratio for

the first round. Samples from all processors are collected at a central processor and

broadcast as probes for the first round of histogramming.

2. Every processor counts the number of keys in each range defined by the probe keys

(the overall sample for the current round), thus, computing a local histogram. All local

histograms are summed up using a global reduction and sent to the central processor.

3. For each splitter i, the central processor maintains Lj(i): the lower bound for the

ith splitter rank after j histogramming rounds, i.e. rank of largest key seen so far,

which is ranked less than Ni/p. Likewise it maintains Uj(i), rank of smallest key

ranked greater than Ni/p. Once the histogram reduction results of the jth round are

received, the central processor updates Lj(i) and Uj(i) and broadcasts the intervals

Ij(i) = [I(Lj(i)), I(Uj(i))] for the next round. We refer to these intervals as splitter

intervals.

4. Once every processor receives the splitter intervals Ij ’s, it begins its sampling phase

for the (j+1)th round. Every key which falls in one of the splitter intervals is picked in

the sample with probability (psj+1/N), where st denotes the sampling ratio for the tth

round. Keys which don’t fall in any of the Ij ’s are not picked. If j < k, samples from

13



all processors are collected at a central processor and broadcast for the next round

of histogramming, in which case the algorithm loops back to step 2. If j = k, the

histogramming phase is complete and the algorithm continues to step 5. Step 2 and 3

can be executed efficiently if the local data is already sorted.

5. Once the histogramming phase finishes, the key ranked closest to Ni/p among the keys

seen so far is finalized for the ith splitter. In further discussions, we discuss how to

choose k and the sampling ratios sj ’s so that the splitters determined this way achieve

the desired load balance.

A crucial observation is that the splitter intervals shrink as the algorithm progresses

and hence the sampling step is executed with a subset of the input that gets smaller every

round. Let Gj denote the number of keys in the input that belong to one of the splitter

intervals after j rounds. Gj represents the size of the input that the algorithm samples

from, for the jth round. We have, Gj 6
∑

i |Ij(i)∩A|, where |Ij(i)∩A| denotes the number

of input keys that fall in Ij(i). Some splitter intervals can overlap, hence the inequality

. In fact, it is easy to reason out that there is no partial overlap between two splitter

intervals, that is, either two splitter intervals: Ij(i1) and Ij(i2) are disjoint or they are

identical.

For ease of understanding, we break down the analysis into a sequence of theorems

that shed more light on the algorithm. Theorems 3.3.1 and 3.3.2 bound Gj in terms of

the sampling ratios, Theorem 3.3.3 bounds the sample size in terms of the sampling ratios

and Theorem 3.3.4 provides a way to bound the number of rounds required to finalize all

splitters.

Theorem 3.3.1 Let sj be the sampling ratio for the jth round, Ij(i) be the splitter interval

for ith splitter after j rounds and Gj denote the number of input keys that lie in one of the

Ij’s, then, E(Gj) 6 2N
sj

.

Proof:
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Since Lj(i) and Uj(i) are only improved every round, we have,

Lj−1(i) 6 Lj(i) 6
Ni

p
6 Uj(i) 6 Uj−1(i)

We have, ∀x : 0 6 x 6
(
Uj−1(i)−

Ni

p

)
,

P
[
Uj(i)−

Ni

p
> x

]
=
(
1− psj

N

)x

∴ E
[
Uj(i)−

Ni

p

]
=

Uj−1(i)−Nip∑
x=1

P
[
Uj(i)−

Ni

p
> x

]

=

Uj−1(i)−Nip∑
x=1

(
1− psj

N

)x
6

∞∑
x=1

(
1− psj

N

)x
=

N

psj

On similar lines, we have E
[
Ni
p − Lj(i)

]
6 N

psj

E[Gj ] 6 E
[ p−1∑
i=1

|Ij(i) ∩A|
]

=
∑
i

E
[
Uj(i)− Lj(i)

]
=
∑
i

E
[Ni
p
− Lj(i)

]
+ E

[
Uj(i)−

Ni

p

]
6
∑
i

2N

psj
=

2N

sj

This completes the proof of Theorem 3.3.1.

Theorem 3.3.1 suggests that Gj will be small in expectation. The next theorem shows
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that it is also small with high probability.

Theorem 3.3.2 If sj <
p

3 lnN , then, Gj 6 6N
sj

w.h.p.

Proof: In Appendix A.1.

The next theorem bounds the sample size for each round in terms of the sampling

ratios.

Theorem 3.3.3 Let Zj be the sample size for the jth round and sj > sj−1, then Zj 6

(7psj/sj−1) w.h.p.

Proof: We have, E[Zj ] = Gj−1psj/N . We also have, Gj−1 6 6N/sj−1 w.h.p., using

Theorem 3.3.2.

Given that Gj−1 6 6N/sj−1, using Chernoff bounds, we have,

P [Zj > (7psj/sj−1)] 6 P [Zj > E[Zj ] + psj/sj−1]

6 e
−

(psj/sj−1)
2

3E[Zj ]

= e
−

(psj/sj−1)
2N

3Gj−1psj

6 e
−

(psj/sj−1)
2Nsj−1

36Npsj

6 e−
p
36

This completes the proof of Theorem 3.3.3.

The next theorem provides a stopping criterion for the algorithm.

Theorem 3.3.4 If sk = 2 ln p
ε be the sampling ratio for the kth round, then at least one

key is chosen from each Ti after k rounds w.h.p..

Proof:
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If after any round j, Lj(i) ∈ Ti or Uj(i) ∈ Ti, then clearly splitter i is finalized in that

round. For l such that splitter l is not finalized after the (k − 1)th round, the probability

that no sample is picked from Tl even after the kth round is given by,

(
1− 2p ln p

εN

)|Tl∩A|
6 e
− 2p ln pNε

εNp 6
1

p2

Note that the above probability is 0 for splitters that have already been finalized, so

the inequality holds for all l.

Finally, since there are at most p − 1 splitters, the probability that no key is chosen

from Ti for some splitter i, after k rounds, is at most (p− 1)× p−2 < 1/p. This completes

the proof of Theorem 3.3.4.

With Theorems 3.3.1, 3.3.2, 3.3.3 and 3.3.4 in hand, we are now prepared to discuss how

to appropriately choose the sampling ratios so that our algorithm achieves the desired

load balance.

For Histogram sort with sampling with k rounds, if we set the sampling ratio for the

jth round as sj = (2 ln p/ε)j/k, then after k rounds all splitters are finalized w.h.p., using

Theorem 3.3.4. The sample size for the jth histogramming round is at most 7psj/sj−1 =

7p(2 ln p/ε)1/k w.h.p., using Theorem 3.3.3. This gives us our main lemma.

Lemma 3.3.1 With k rounds of histogramming and a sample size of O
(
p k

√
log p
ε

)
per

round , Histogram sort with sampling achieves (1 + ε) load balance w.h.p. for large enough

p∗.

Observe from Lemma 3.3.1 that there is a trade off between the sample size per round

(=O(p k
√

log p/ε)) of histogramming and the number of histogramming rounds. To mini-

∗Specifically, when sk = 2 ln p
ε
≤ p

3 lnN
for Theorem 3.3.2
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mize the number of samples across all rounds, we take derivative of (kp k
√

log p/ε) w.r.t. k

and set it to 0,

d(kp k
√

log p/ε)

dk
= p k

√
log p/ε

(
1−

log log p
ε

k

)
= 0

⇒ k = log
log p

ε

The overall sample size O(kp k
√

log p/ε) attains global minimum for k = log(log p/ε)

rounds of histogramming. With k = c log(log p/ε) rounds of histogramming, the sample

size for each round is O
(
p(log p/ε)1/(c log(log p/ε))

)
= O(p), where c is a constant. Across all

rounds, the overall sample size from all processors across all rounds is O(p log(log p/ε)).

This leads us to the following lemma.

Lemma 3.3.2 With k = O(log(log p/ε)) rounds of histogramming and O(p) sized sample

per round (i.e. constant number of samples from each processor), Histogram sort with

sampling achieves (1 + ε) load balance w.h.p. for large enough p.

It’s worthwhile to note at this point that our analysis is slightly conservative. Specifi-

cally, the algorithm need not keep track of splitter intervals for splitters that get finalized

early. In practice, we found the number of rounds required for good load balance to be

smaller than our bounds. Nevertheless, we believe that the asymptotic bounds proven in

our analysis for our algorithm are tight.

3.4 Approximate histogramming using random sampling

Often parallel data processing systems have humongous amounts of data and computing

histograms repeatedly might be expensive. In this section, we show that an approximate

but fairly accurate histogram can be computed using a sample representative of the input

data at every processor. The representative sample size at every processor isO(
√
p log p/ε).
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Assume that for approximate histogramming, every processor maintains a represen-

tative sample of s keys. We use a sampling technique similar to random sampling as

suggested by Blelloch. et al. [8]. Every processor divides its sorted input into s blocks

of size N/ps. From every block, a random key is selected as a part of its representative

sample. To answer rank queries of the following type: given a key k find rank of k in

the overall input, a reduction is performed on local ranks obtained using the representa-

tive sample at every processor, rather than the entire input. If r denotes the number of

representative sample keys 6 k across all processors, the algorithm returns Nr/ps.

Theorem 3.4.1 For s =
√

2p ln p/ε, the rank returned by the above algorithm is within a

distance of Nε/p from true rank of k w.h.p.

Proof: Denote the set of sorted sampled representative keys by V = {λ1, λ2..., λps}.

Consider a processor i. Let the representative sample at processor i be Vi = {λi1, λi2..., λis}.

Let the number of blocks (of size N/ps) in processor i that are completely less than k be

bi. Clearly, atleast bi samples and at most (bi + 1) samples in Vi are less than k. Let the

fraction of keys in the (bi + 1) − th block that are 6 k be li, li < 1. The total number

of keys in processor i that are less than k is (bi + li)N/ps. Also, the probability that

(bi + 1)− th sample: λibi+1 6 k is li. Let Xi be the bernoulli random variable denoting if

λibi+1 6 k. Thus, P (Xi = 1) = li.

True rank of k:Rk is given by Rk =
∑

i(bi + li)N/ps. Rank of k as returned by the

algorithm is R =
∑

i(bi +Xi)N/ps. Clearly, E[R] = Rk.

Since, all random samples are chosen independently, all Xi’s are independent. For

s =
√

2p ln p/ε, we have

19



P
(
|R−Rk| >

Nε

p

)
= P

(∣∣ p∑
i=1

(bi +Xi)
N

ps
−

p∑
i=1

(bi + li)
N

ps

∣∣ > Nε

p

)
= P

(∣∣∑
i

(Xi − li)
∣∣ > sε

)
6 2e

− 2(sε)2

p = 2e−4 ln p = 2p−4

The last inequality is obtained using Hoeffding’s inequality which holds for non-

identical, independent indicator random variables.

If the above algorithm reports the rank of a key k to be in (Ni/p−Nε/p, Ni/p+Nε/p),

then using Theorem 3.4.1 its true rank lies in (Ni/p − 2Nε/p, Ni/p + 2Nε/p) w.h.p..

The above enhancement can now be used as an oracle to compute the histogram, since

histogram is a bunch of rank queries, as long as the size of the histogram is smaller than

p4. It is useful if histograms need to be computed repeatedly.
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Chapter 4

Related Work

4.1 Sample Sort: Sampling methods

In this section, we discuss two popular sampling methods for the sampling step (step 1)

in sample sort, namely random sampling and regular sampling.

4.1.1 Random sampling

We consider sample sort with random sampling as proposed by Blelloch et al. [8]. If the

oversampling ratio is s, each processor divides its local sorted input into s blocks of size

(N/ps) and samples a random key in each block. The splitters are chosen by picking

evenly spaced keys from the overall sample of size ps, collected from all processors. We

reproduce Theorem B.4 from [8], below:

Theorem 4.1.1 Let s be the oversampling ratio, then, for any α > 1+1/s, the probability

that random sampling causes any processor to contain more than αN
p keys, after sorting

is at most Ne−(1−1/α)
2 αs

2 .

For s = (c lnN/ε2), α = (1 + ε), the probability that no processor contains more than

α = (1 + ε) keys after sorting is at most Ne
− c lnN

2(1+ε) = e
− lnN

(
c

2(1+ε)
−1
)

= N
−
(

c
2(1+ε)

−1
)
.

With c = 4(1 + ε), this comes out to be 1/N . We conclude thus that the number of

samples required with random sampling to achieve desired levels of load balance, specified

by ε, is O(p logN/ε2) keys.

Despite good theoretical guarantees about the quality of splitters with random sam-

pling, its scalability is hindered in practice because of the large sample size it requires for
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Figure 4.1: Sample size in practice: sample sort vs HSS for 5% load imbalance

“good” splitting.

4.1.2 Regular sampling

Regular sampling was proposed by Shi et al. [24, 28] as a deterministic sampling technique

for sample sort. Every processor sorts its local input data and picks s evenly spaced keys

from its local data. The central processor collects these samples and merges them to ob-

tain a combined sorted sample {λ0, λ1..., λps−1} of size ps. (p−1) splitters are selected by

picking evenly spaced keys from this sample. More precisely, λsi− p
2

is chosen for Si, the

ith splitter.

Previous works [28] have shown that if the oversampling ratio s is p, then each processor

will end up with no more than
⌈
2N/p

⌉
keys. We show that if s = p, R(Si) ∈ [Ni/p −

N/2p, Ni/p+N/2p] (recall that R(k) denotes the rank of key k in the overall input). This

is consistent with previous results since the number of keys on each processor is upper

bounded by 2N/p, if R(Si) ∈ [Ni/p−N/2p, Ni/p+N/2p].
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For simplicity, we assume that the total number of elements on a processor, N/p, is a

multiple of the oversampling ratio s. Denote the local input data on a processor i after

local sorting by {Ii1, Ii2..., IiN
p

}. Processor i selects keys {IiN
ps

, Ii2N
ps

..., IiN
p

} as its local sample.

Theorem 4.1.2 If the oversampling ratio for sample sort with regular sampling is s and

Si = λsi− p
2
, then ∀i : 1 6 i < p, |R(Si)− Ni

p | <
N
2s .

Proof: Assume that the local sorted input on every processor is partitioned into blocks

of size (N/ps), the largest element of each block being a sampled key. Since, the number

of samples less than or equal to Si is (si− p/2), there are at least (si− p/2) blocks across

all processors which are less than or equal to Si. We say that a block is less than a key

k if all keys in that block are less than k. Thus, there are at least (si − p/2) × N/ps =

(Ni/p−N/2s) keys across all processors, which are less than Si.

Using a similar argument, the number of blocks greater than Si across all processors

is at least
(
s(p − i) + p/2 − p

)
since there are

(
s(p − i) + p/2

)
samples greater than

Si. Hence, the number of keys across all processors which are greater than Si is at least(
s(p− i) + p/2− p

)
×N/ps = N − (Ni/p+N/2s).

Using the above two bounds, we conclude that,

R(Si) ∈
[Ni
p
− N

2s
,
Ni

p
+
N

2s

]

If the oversampling ratio s is set to p/ε, then the splitters determined using regular

sampling are within the required threshold specified by ε. Indeed, substituting s = p/ε in

Theorem 4.1.2, we obtain |R(Si)−Ni/p| < Nε/2p.

Lemma 4.1.1 If s = p
ε be the oversampling ratio, then sample sort with regular sampling

achieves (1 + ε) load balance.

Because of the large number of samples required, the sampling phase is costly for reg-

ular sampling. For instance, if p = 4K and ε = 0.05, about 300 million keys need to be
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analyzed. For these reasons, regular sampling does not scale well to a large number of

processors. One way to make regular sampling scalable is to sort the sample in parallel,

which introduces significant complexity in the algorithm. Goodrich [15] proposed a com-

munication optimal algorithm that combines ideas from sample sort and merge sort and

sorts samples in parallel in a pipelined fashion.

Figure 4.1 illustrates the comparison between sample size required for sample sort with

random sampling and regular sampling versus the sample size required for HSS. Clearly

for large processors, both regular sampling and random sampling suffer from large sample

sizes.

4.2 Other sorting algorithms

In this paper, we focused on data partitioning parallel sorting algorithms, which we refer to

as splitter-based algorithms. Merge-based algorithms are another class of parallel sorting

algorithms that employ merging data using sorting networks. An early such result was due

to Batcher [4] which uses time (or equivalently depth in a sorting network) O(log2N) with

N processors. Ajtai et. al [2] gave the first sorting circuit of depth O(logN), commonly

referred to as the AKS network. The AKS network has large hidden constants because

of the use of expander graphs in the circuit [10, 26]. Later, Cole [11] proposed a sorting

algorithm that runs in O(logN) time using N processors and has smaller constants than

the AKS network. Another communication optimalO(logN) algorithm for the BSP model

was proposed by Goodrich [15]. However, merge-based parallel sorting algorithms do not

scale very well when N >> p because of their large data movement. We briefly describe

some of these algorithms below.

Bitonic Sort

Batcher’s Bitonic sort [4] is a parallel sorting algorithm that is based on merging bitonic

sequences. A bitonic sequence is a sequence that first increases and then decreases. Its
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theoretical properties have been extensively studied on various parallel network topologies

such as the hypercube [6, 7, 17]. It is not however used in large applications where N >> p

because of its large data movement. It moves every piece of data Θ(log p) times. As Bitonic

sort has been extensively studied, we’ll not go into its analysis or experimentation. We

refer the interested reader to [4] and [7] for a comparative study.

Radix Sort

Radix sort [7, 12] uses binary representation to group keys into buckets and then recursively

sorts each bucket. A k-bit radix looks at k bits of the binary representation every iteration

starting from the most significant bits. In the first iteration keys are grouped in 2k buckets

according to their k most significant bits. Each bucket is then recursively grouped using

the next k bits. The parallelism in Radix sort comes from the fact that the recursive

sorting of buckets can be assigned to multiple processors. One significant issue with

parallel radix sort, that makes it impractical for large applications, is that it has large

data movement. In every step, there is an all-to-all data exchange. Moreover, since it uses

bit representations instead of comparisons, it is not suitable for sorting non-integer type

keys like floating points or strings, for instance.

Parallel sorting by over partitioning

Parallel sorting by over partitioning was proposed by Li et al. [23] for shared memory

multiprocessors. Every processor picks a sample of size pks from its local input randomly

and sends it to a central processor. The overall collected sample is sorted by the central

processor and pk−1 splitters are chosen from the sample by selecting sth, 2sth, ..., (pk−1)sth

keys. These splitters partition the input into pk buckets, more than required and hence

k is referred to as the over partitioning ratio. The splitters are made available to all

processors and the local input is partitioned into sublists based on the splitters. These

sublists form a task queue ordered from the largest sublists size to the smallest. Each

processor picks one task at a time and processes it by copying the data to the appropriate

25



position in the memory. The memory positions are determined using the splitters. Li et

al. [23] demonstrated that good load balance is achieved when the over partitioning ratio

is set to log p. However, it is not immediately clear how to extend the idea of task queues

for a distributed cluster.

4.3 Dealing with duplicates

Previous works [28] have shown that with sample sort, load balance deteriorates linearly

with the number of duplicates, no matter how the samples are chosen. Helman et al. [16]

propose a variant of sample sort that automatically handles duplicates. Their key idea is

to transpose the input data by redistributing it across processors. We note however that

this requires two steps of the expensive all-to-all communication instead of one.

We propose a simple mechanism to deal with a large number of duplicates in the input

without blowing up the input size. Any algorithm which uses sampling techniques depends

only on the relative ordering of the keys. For a large number of duplicates we enforce a

strict ordering by implicitly tagging each element with the PE it resides on and the local

index of the element in the local data structure. Thus, every input key k can be thought

of as a triplet (k, PE, ind) key, where PE denotes the processor that k resides on and

ind denotes the index in the local data structure where k is stored. Implicit tagging does

not blow up the size of input data, but increases the size of the histogram by a constant

factor since probe keys for the histogram have to be explicitly tagged. A similar scheme

was used to deal with duplicates in [3].
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Chapter 5

Running Times

5.1 Running times

To analyse the running times, we’ll assume a simple BSP model [31]. Such a model is

characterized by two parameters TI , unit computational time and Tc, time for communi-

cating one unit of data. We analyse the computational and communication cost seperately

for sample sort and histogram sort with sampling.

Both algorithms have the same cost for initial local sorting, broadcasting splitters

and all-to-all data exchange for the final data movement. The computational cost of

local sorting is O(N log N
p /p). No communication is involved in local sorting. The cost of

broadcasting splitters once they are finalized is O(p log p) assuming a binary spanning tree

of processors and O(p + log p) using pipelined broadcasts [27]. The final data movement

requires all data to be sent to their destination processors, hence the communication cost

involved is O(N/p). Once a processor receives all messages from the data movement step,

it needs to merge all data pieces, which takes O(N log p/p) computation time.

5.1.1 Cost of sampling

If the overall sample collected at the central processor from all processors is S, then the

communication cost involved is O(S). This step is akin to a gather collective operation.

The overall sample is sorted by the central processor. Since there are p pieces of samples,
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Algorithm
Overall

sample size

Overall
sample size

for p =
105, ε = 5%

Computation complexity
Communication

complexity

Sample
sort with
regular

sampling

O(p
2

ε ) 1600 GB O
(
N
p log N

p + p2

ε log p+ N
p log p

)
O
(
p2

ε + p+ N
p

)
Sample

sort with
random

sampling

O(p logN
ε2

) 8.1 GB O
(
N
p log N

p + p logN log p
ε2

+ N
p log p

)
O
(
p logN
ε2

+ p+ N
p

)
HSS with
one round

O(p log pε ) 184 MB O
(
N
p log N

p + p log p
ε logN+ N

p log p
)

O
(
p log p
ε + p+ N

p

)
HSS with

two
rounds

O(p
√

log p
ε ) 24 MB

O
(
N
p log N

p + p
√

log p
ε logN +

N
p log p

) O
(
p
√

log p
ε + p+ N

p

)
HSS with
k rounds O(kp k

√
log p
ε ) -

O
(
N
p log N

p + kp k

√
log p
ε logN +

N
p log p

) O
(
kp k

√
log p
ε + p+ N

p

)
HSS with
O(log log p

ε )
rounds

O(p log log p
ε ) 10 MB

O
(
N
p log N

p + p log log p
ε logN +

N
p log p

) O
(
p log log p

ε + p+ N
p

)

Table 5.1: Running time complexity of Histogram sort with sampling (HSS) and Sample
sort. The computation cost of histogramming is (logN) times the overall sample size. Both
algorithms have the same cost of local sorting and data movement. Pipelined reductions
and broadcasts is assumed for large messages.
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one from each processor, the computational cost involved in sorting the overall sample is

O(S log p), assuming merge sort.

5.1.2 Cost of histogramming

Computing a local histogram is equivalent to answering multiple rank queries. Since,

the local input is sorted, a local histogram can be computed in O(S log N
p ) time using

S binary searches, where S denotes the size of the histogram. A global histogram is

computed by reducing all local histograms. Using a binomial algorithm [27, 30] for re-

duction, the computational time involved is O(S log p). Thus, the total computation cost

of histogramming is O(S log N
p + S log p) = O(S logN) using a binomial algorithm for

reduction. Alternatively, one can divide the histogram into fragments and pipeline the

reductions [27]. Pipelined reductions is suitable for large messages and large p, which is

what we need. The computational cost of a pipelined reduction for a message of size S

is O(S + log p). In conclusion, the computational cost of histogramming with pipelined

reductions is O(S log N
p + S) = O(S log N

p ).

The histogram probes and the splitter intervals are broadcast to every processor for

histogramming. The communication cost of broadcasting a length S message is O(S log p)

using a binomial algorithm [27]. However, one can do better by using a pipelined broadcast.

The communication cost of a pipelined broadcast message of size S is O(S + log p). The

reduction of all local histograms to obtain a global histogram also costs O(S + log p) in

terms of communication using pipelined reductions. Thus, the overall communication cost

of histogramming is O(S + log p). Note that both the computation and communication

cost of histogramming is proportional to the overall sample size.

The total cost of computation and communication of sample sort and histogram sort

are tabulated in Table 5.1. For large p, the sampling cost dominates the running time

of sample sort. Computing histograms on a significantly smaller sample improves the

running time of the algorithm. We conclude thus, that running time of histogram sort with

sampling is asymptotically superior than sample sort with random and regular sampling

29



that achieve the same level of load balance.
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Chapter 6

Implementation and Experiments

6.1 Implementation details

In this section, we discuss some of the details of our implementation. We implemented HSS

in C++11 using the Charm++ [1, 19] framework. The programing model in Charm++

employs virtual processors allowing the flexibility and elegance of object based decompo-

sition for parallel programming. It provides a debugging tool and a useful visualization

software [5] for analyzing performance, timelines, cpu usage, memory footprint etc. and

getting useful insights into the algorithm. Charm++ allows an application to create any

number of virtual processors, called chares. In addition, node level chares can be created

and concurrently scheduled on any processor core on a single node. Node level chares or

nodegroups in Charm++ terminology provide a very powerful abstraction for convenient

shared memory programming.

6.1.1 Using shared memory

In this section, we describe shared memory optimizations to our algorithm. The all-

to-all data exchange step of the sorting algorithm results in p(p − 1) messages in the

network, which is extremely large for large values of p. We leverage shared memory within

a physical node to reduce the number of messages. In most supercomputing clusters,

multiple processor cores lie on a single physical node and memory can be shared between

the cores. Hence, its superfluous to send multiple fine grained data messages between

a pair of nodes. Instead, all messages going to the same node can be combined into a
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larger message. For instance, if the number of cores on one node of a machine is 50, then

combining node level messages results in ∼ 2500× fewer messages in the network.

This opens door for other optimizations too. With node level destinations, the data

partitioning needs to be only across physical nodes and not across individual processor

cores. Data partitioning across nodes reduces the size of the histogram considerably,

since p now reflects the number of physical nodes instead of the number of individual

processor cores. For instance BlueGene/L system [14] has 16 cores in a single physical

node. Consider sorting on 8K nodes or equivalently 8K × 16 = 128K cores. For data

partitioning across processor cores, the required size of the sample is approximately 250

MB for HSS with one round, whereas for data partitioning across nodes, the required

sample size is only 12 MB. Clearly, node level partitioning makes the histogramming step

much more scalable, in addition to reducing the number of messages in the network in the

data movement step. Once a node receives all the data after the all to all data exchange,

it can locally sort the data within node without injecting traffic on the network. Since the

number of splitters required for splitting data within node is significantly smaller, we use

sample sort with regular sampling for this purpose.

6.1.2 Other implementation details

We let p denote the number of processor cores and n denote the number of physical nodes.

If there were 16 cores on a single node, then p would be equal to 16n.

HSS can be thought to comprise of three distinct phases; local sorting of input data,

splitter determination using histogramming and final data exchange and assembly. We

use STL’s std::sort for local sorting for the first phase. The local sorting phase is

embarrassingly parallel and requires no communication.

• Histogramming Phase

The histogramming phase determines n − 1 splitters for node level splitting. For the

sampling phase before every histogramming round, each processor picks a small sample
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from its input which lie in the union of splitter intervals. If δ denotes the fraction of

input covered by the splitter intervals, then every processor picks 5/δ samples from its

entire input and discards samples that don’t lie in any of the splitter intervals. This

way the expected size of the overall sample collected from every processor is 5p. The

overall sample is assembled at the central processor and broadcast for histogramming.

Every processor computes a local histogram using binary searches, since the input data

is already sorted. The local histograms are summed up using a reduction and sent

to the central processor. The reduction and broadcast infrastructure is provided by

Charm++. The load balance threshold is set to 2% for node level partitioning and 5%

for within node partitioning.

• Data movement

Once every processor receives the splitters, input data from all processors within a node

are combined and partitioned into n messages, one for each node. We use Charm++’s

nodegroup chares to implement the combining of messages within a node.

• Final within node sorting

Once a node receives all data that falls in its bucket, it needs to merge and redistribute

data among its processor cores. Our implementation uses regular sampling to determine

splitters for processors within a node. This step executes completely within a multicore

node and does not inject any traffic on the network.

6.2 Experimental results

In this section, we present our experiments on large supercomputing clusters - Mira at

Argonne Leadership Computing Facility (ALCF). We present results for weak scaling

experiments.

Mira is an IBM Blue Gene/Q supercomputer with 16 cores per node. Each node

is equipped with a PowerPC A2 1600 MHz processor containing 16 cores, each with 4
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Figure 6.1: HSS on Mira (ALCF) with node level partitioning. Each processor core had
1 million 8 byte long integer keys with a 4 byte payload.
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Figure 6.2: Experiments showing performance of sorting routine of Changa. Datasets used
were Lambb and Dwarf
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hardware threads, running at 1.6 GHz, and 16 gigabytes of DDR3 memory. The nodes

are connected by IBM’s 5D torus interconnect. We ran weak scaling experiments on Mira

with 1 million 8 bytes integer keys per core with 4 byte payload with each key. A summary

of our experiments are reported in Figure 6.1. We used 16 threads per node, one for each

core.

The number of histogramming rounds taken by the algorithm is tabulated in Table 6.1.

If the sample size is (pf) every round, the number of histogramming rounds required to

determine (p− 1) splitters is
⌈

ln(2 ln p/ε)/ ln(f/2)
⌉
. We obtain this expression using ex-

pected value of sample sizes and length of splitter intervals and Lemma 3.3.1. As discussed

earlier, the constants involved in our analysis are conservative. In practice, we observe

that HSS required fewer histogramming rounds. The number of rounds with constant

oversampling per round; O(log(log p/ε)) increases very slowly with p and hence, HSS is

extremely scalable and practical. We observe that even for large number of processors,

the histogramming phase takes very little fraction of the running time. We believe this is

both because of efficient histogramming and node level partitioning.

6.3 Parallel sorting in ChaNGa

In this section, we present our experimental results for ChaNGa [18], a real world astro-

nomical application that often runs on several thousands of processors in typical use cases.

ChaNGa poses unique challenges for sorting. First, it employs virtual processors and hence

the number of buckets (equal to the number of virtual processors) are far more than the

actual number of processors. In such a case, efficient splitting is even more crucial, as the

number of buckets is substantially higher. In our examples the number of buckets were

typically the number of cores. Second, the virtual processors can be arbitrarily placed on

any physical processor. Hence, the processor ordering is not contiguous. More specifically,

processor i and processor i+ 1 might be placed arbitrarily far away from each other. Be-

cause of this reason, the optimisation to execute splitting across nodes, exploiting shared
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p(×103)
sample

size/round
(×p)

Number
of

rounds

Bound on
number of

rounds

4 5 4 8

8 5 4 8

16 5 4 8

32 5 4 8

Table 6.1: Number of histogramming rounds observed. The load balance threshold ε was
set to 0.02. The above runs were executed without the shared memory optimization.

memory across nodes is not relevant to ChaNGa.

Figure 6.2 illustrates performance of ChaNGa with HSS and just Histogram sort (old)

for two datasets namely Dwarf and Lambb. We refer the interested readers to [18] for

more details about the datasets. As can be observed from Figure 6.2, the parallel sorting

execution increases for the same dataset as we increase the number of processors. This

may appear odd at first. The majority of sorting time is spent in data splitting, and since

the number of buckets increase multiplicatively with the number of processors, we see an

increase in the execution time. At this point, it is natural to ask, why would anyone use

more number of processors if the parallel sorting algorithm performs better with fewer

processors. The answer lies in the fact that parallel sorting only constitutes a fraction of

the computation of the application. The remaining computation can be parallelised with

more processors.

With the histogramming cost so reduced, the all-to-all data exchange step is the most

expensive step of the algorithm. Note that this step represents inherent cost in any

sorting algorithm, since all keys need to be moved to their correct destination. All-to-

all communication does not scale very well on torus networks, because communication

load per link increases with number of processors, causing increased contention. It is

possible that the data exchange step can be optimized by using specialized collective

implementations [21, 30, 22] for all-to-all communication. We leave this for future work.
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Chapter 7

Conclusion

In this paper, we presented Histogram sort with sampling, that combines sampling and

histogramming to accomplish fast splitter determination. Specifically, we showed that with

k rounds of histogramming, the algorithm requires a sample of size only O(p k
√

log p/ε)

per round as compared to sample sort with random sampling which requires O(p log p/ε2)

samples. We argued that the cost of histogramming is dominated by the sampling cost in

the running time and hence Histogram sort with sampling is theoretically more efficient

than sample sort with random and regular sampling. We also note that most of the

running time is spent in local sorting and data exchange, both of which are inherent to

any sorting algorithm. The reduced sample size makes Histogram sort with sampling

extremely practical for massively parallel applications, scaling to tens of thousands of

processors.
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Appendix A

A.1 Proof of Theorem 3.3.2

Theorem A.1.1

Gj ≤
∑
i

min
(N
p
,Uj(i)−

Ni

p

)
+min

(N
p
,
Ni

p
− Lj(i)

)

Proof: By definition, Gj is the size of the union of the intervals (Ij(i) ∩A),

Gj =
∣∣∣⋃
i

(Ij(i) ∩A)
∣∣∣, where Ij(i) = [I(Lj(i)), I(Uj(i))]

Theorem A.1.1 effectively strips the splitter interval [I(Lj(i)), I(Uj(i))] to [I(max(Ni/p−

N/p,Lj(i))), I(min(Ni/p+N/p,Uj(i)))] .

To prove that stripping doesn’t change the union of all splitter intervals, consider a

Uj(i) which is greater than (Ni/p+N/p). Then by definition, we have Uj(i) = Uj(i+ 1).

Thus, the portion of Ij(i) that extends beyond (Ni/p + N/p) is included in Ij(i + 1).

Hence, restricting Uj(i) to Ni/p+N/p does not change the union of Ij ’s, i.e. Gj . One can

use an inductive argument to see that restricting all Uj ’s doesn’t change Gj , by considering

splitter intervals from left to right. A similar argument can be used for Lj ’s.

Let Nj(x) =
∑

i[Uj(i)−Ni/p > x], where square brackets signify an indicator variable.

Nj(x) denotes the number of splitters i for which Uj(i)−Ni/p > x. We have,

∑
i

min
(N
p
,Uj(i)−

Ni

p

)
=
∑
i

N/p∑
x=0

[Uj(i)−
Ni

p
> x]

=

N/p∑
x=0

Nj(x)
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Let x0 be the smallest x such that E[Nj(x)] 6 p
sj

.

Theorem A.1.2 For 0 6 x < min(x0,
N
p ), Nj(x) < 2E[Nj(x)] w.h.p.

Proof: This can be easily seen using multiplicative chernoff’s bound.

P
[
Nj(x) > 2E[Nj(x)]

]
6
( e1

(2)2

)E[Nj(x)]

6 (0.53)
p
sj

6 e
− p

3sj

6 e− lnN =
1

N

Theorem A.1.3 For x0 6 x 6 N/p, Nj(x) < E[Nj(x)] + p
sj

w.h.p.

Proof: This can be easily seen using additive chernoff’s bound.

P
[
Nj(x) > E[Nj(x)] +

p

sj

]
6 e
− p

3sj

6 e− lnN =
1

N

In proving the above theorems, we have used the fact that [Uj(i1) − Ni/p > x] and

[Uj(i2) − Ni/p > x] are independent indicator random variables for 0 < x 6 N/p and

i1 6= i2. Combining Theorem A.1.2 and Theorem A.1.3, w.h.p. we have,
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∑
i

min
(N
p
,Uj(i)−

Ni

p

)
=

N/p∑
x=0

Nj(x)

=

x0∑
x=0

Nj(x) +

N/p∑
x=x0

Nj(x)

6
x0∑
x=0

2E[Nj(x)] +

N/p∑
x=x0

(
E[Nj(x)] +

p

sj

)
, w.h.p.

6 2
∑
i

E
[
Uj(i)−

Ni

p

]
+
N

p

p

sj

6
2N

sj
+
N

sj
=

3N

sj

Note that the limits of x in Nj(x) go from 0 to N/p. Hence, the above is false with

probability at most N/p× 1/N = 1/p. Hence it holds with high probability.

On similar lines we have,
∑

imin(N/p,Ni/p− Lj(i)) 6 3N
sj
, w.h.p..

And using Theorem A.1.1,

Gj 6
∑
i

min
(N
p
,Uj(i)−

Ni

p

)
+min

(N
p
,
Ni

p
− Lj(i)

)
6

6N

sj

This completes the proof of Theorem 3.3.2.
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