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Abstract

In this thesis, we focus on inference problems for time series and functional data and

develop new methodologies by using new dependence metrics which can be viewed

as an extension of Martingale Difference Divergence (MDD2) [see Shao and Zhang

(2014)] that quantifies the conditional mean dependence of two random vectors. For

one part, the new approaches to dimension reduction of multivariate time series for

conditional mean and conditional variance are proposed by applying new metrics,

the so-called Martingale Difference Divergence Matrix (MDDM), Volatility Martin-

gale Difference Divergence (VMDDM), and vec Volatility Martingale Difference Di-

vergence (vecVMDDM). The metrics involve less user-chosen quantities and their

computation and associated inference are less computationally expensive than some

existing ones. Therefore, the new approaches are relatively simple to implement and

computationally convenient. Also, the new methods outperform the existing meth-

ods in the presence of strong nonlinear dependence. For the other part, we propose

a nonparametric conditional mean independence test for a response variable Y given

a covariate variable X, both of which can be function-valued or vector-valued. The

test is built upon Functional Martingale Difference Divergence (FMDD) which fully

measures the conditional mean independence of Y on X. One distinct feature of

our test is that it does not use any dimension reduction techniques or user-chosen
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parameters and is model free. The proposed test is shown to have higher power than

some existing tests in theory, and favorable size and power properties in numerical

simulations.
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Chapter 1

Introduction

Dimension reduction is a critical step for modeling large dimensional time series

Yt ∈ Rp since the number of parameters involved in the model grows dramatically as

the dimension of the data increases. The key consideration of dimension reduction is

how to effectively reduce the dimension of the time series that matters in modeling

the time series dynamics while losing least amount of information. In Chapter 2,

we introduce a new methodology to perform dimension reduction for a stationary

multivariate time series. Our method is motivated by the consideration of optimal

prediction and focuses on the reduction of the effective dimension in conditional mean

of time series given the past information. In particular, we seek a contemporaneous

linear transformation such that the transformed time series has two parts with one

part being conditionally mean independent of the past. To achieve this goal, we first

propose MDDM, which can quantify the conditional mean independence of V ∈ Rp

given U ∈ Rq and also encodes the number and form of linear combinations of V that

are conditional mean independent of U . Our dimension reduction procedure is based

on eigen-decomposition of the cumulative martingale difference divergence matrix,

1



which is an extension of MDDM to the time series context. Interestingly, there is

a static factor model representation for our dimension reduction framework and it

has subtle difference from the existing static factor model used in the time series

literature. Some theory is also provided about the rate of convergence of eigenvalue

and eigenvector of the sample cumulative MDDM in the fixed-dimensional setting.

Favorable finite sample performance is demonstrated via simulations and real data

illustrations in comparison with some existing methods.

In the inference of econometric and finanical time series, it is vital to have a

good estimation of volatility matrix. In Chapter 3, we propose VMDDM to quantify

the conditional variance dependence of a random vector Y ∈ Rp given X ∈ Rq,

building on recent work on martigale difference divergence matrix that measures the

conditional mean dependence. We further generalize VMDDM to the time series

context and apply it to do dimension reduction for multivariate volatility, following

the recent work by Hu and Tsay (2014) and Li, Gao, Li and Yao (2016). However,

unlike the latter two papers, our metric is easy to compute, can fully capture nonlinear

serial dependence and involves less user-chosen numbers. Furthermore, we propose

a variant of VMDDM and apply it to the estimation of conditional uncorrelated

components model [Fan, Wang and Yao (2008)]. Simulation and data illustration

show that our method performs well in comparison with the existing ones, and can

outperform others in cases of strong nonlinear dependence.

Functional data analysis (FDA) is becoming an important subarea in statistics due

to the fact that many real data are in the forms of curves and images. For a response

variable Y and a covariate variable X, which can be function-valued or vector-valued,

it is a fundamental problem to assess the conditional mean independence of Y on X,

i.e., H0 : E[Y |X] = E[Y ] a.s. If the null is true, then there is no need to do regression

modeling when the interest is on the conditional mean. In Chapter 4, we propose a

2



new nonparametric conditional mean independence test for a response variable Y and

a predictor variable X where either or both can be function-valued. Our test is built

on a new metric, FMDD, which fully characterizes the conditional mean dependence

of Y given X and extends the MDD proposed in Shao and Zhang (2014). We define

the unbiased estimator of FMDD by using a U -centering approach, and obtain its

limiting null distribution under mild assumptions. Since the limiting null distribution

is not pivotal, we adopt the wild bootstrap method to estimate the critical value and

show its consistency. It turns out that our test can detect the local alternatives which

approach the null at the rate of n−1/2 with nontrivial power, where n is the sample

size. Unlike the recent two tests developed by Kokoszka et al (2008) and Patilea et

al. (2016), our test do not require finite dimensional projection and linear model

assumption or the choice of tuning parameters. Promising finite sample performance

is demonstrated via simulations in comparison with the above two tests.
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Chapter 2

Dimension Reduction for
Stationary Multivariate Time
Series

2.1 Background

A central problem in the modeling and inference of multivariate time series is the

reduction of dimensionality of parameters. In the time domain, several dimension

reduction methods have been proposed, including the canonical correlation analysis of

Box and Tiao (1977), the factor models of Peña and Box (1987), the scalar component

analysis of Tiao and Tsay (1989), the independent component analysis of Back and

Weigend (1997), the principal component analysis of Stock and Watson (2002), and

the dynamic orthogonal component analysis of Matteson and Tsay (2011). In these

works, linear combinations are sought to make linearly transformed series have simpler

dynamic structure, which can be captured by parsimonious parametric models. In

the spectral domain, dimension reduction methods have been developed by Geweke
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(1977), Brillinger (1981), Stoffer (1999), Ombao, von Sachs and Guo (2005), Eichler,

Motta and von Sachs (2011), among others.

In this paper, we propose a new methodology to perform dimension reduction

for a strictly stationary multivariate time series. Our proposal is motivated by the

consideration of optimal prediction. Let Yt ∈ Rp, t ∈ Z be a mean zero p-variate

stationary time series, then the optimal predictor of Yn+1 given the past information

set Fn = σ(Yn, · · · , Y1, · · · ) is E(Yn+1|Fn) in the mean squared error sense. This

led us to focus on the dimension reduction of E(Yn+1|Fn), which we intend to do

in a way without imposing any parametric or linear structure. In particular, we

seek for a contemporaneous linear (invertible) transformation for Yt, say, M ∈ Rp×p,

such that MYt = Zt = [ZT
1t, Z

T
2t]
T , where Z1t ∈ Rs and Z2t ∈ Rp−s, such that

E(Z1(n+1)|Fn) 6= E(Z1(n+1)) and E(Z2(n+1)|Fn) = E(Z2(n+1)). In other words, the

transformed series can be separated into two parts with one part being conditionally

mean dependent on the past and the other part being conditionally mean independent

upon the past. Thus, the modeling task for the whole series Yt is reduced to that for

the lower dimensional series Z1t, since

E(Yn+1|Fn) = M−1

 E(Z1(n+1)|Fn)

E(Z2(n+1))

 ,

and dimension reduction can be achieved without loss of prediction accuracy.

Interestingly, our new method can be formulated equivalently in a factor model

framework. Representing multiple time series in terms of several static or dynamic

factors is quite popular and the literature is large, see Peña and Box (1987), Forni,

Hallin, Lippi and Reichlin (2000, 2005), Bai and Ng (2002), Bai (2003), Stock and

Watson (2005), Pan and Yao (2008), Lam, Yao and Bathia (2011), Lam and Yao
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(2012), among others. A distinction from the static factor models in the existing

literature is that our error process, i.e., et = Yt − E(Yt|Ft−1) is a vector martingale

difference sequence, which is stronger than the usual vector white noise assumption.

This implies that the effective number of factors under our model could be different

from (more precisely, is equal to or larger than) the number of factors in the factor

models described in Peña and Box (1987) and Pan and Yao (2008). A more detailed

discussion of the difference is provided in Section 2.4.2.

To quantify conditional mean (in)dependence for a multivariate time series, we

extend the notion of Martingale Difference Divergence (MDD) recently proposed by

Shao and Zhang (2014), which is used to measure the conditional mean dependence of

a univariate response Y with respect to a vector covariate X, in several aspects. First

we consider multivariate response variable, and generalize MDD to a matrix-valued

quantity called MDDM (Martingale Difference Divergence Matrix). Second we define

the cumulative MDDM by taking the sum of MDDM at several lags to account for

the underlying time series structure, either jointly or in a pairwise fashion. In order

to determine the number and the form of linear combinations that are conditional

mean independent of the past, we perform the eigen-decomposition of the sample

cumulative MDDM and use ratio-based estimator, as adopted in Lam, Yao and Bathia

(2011), Lam and Yao (2012). Note that the inference in the latter work is based on a

linear analogue of cumulative MDDM, which only measures linear dependence. Since

nonGaussian and nonlinear time series are prevalent in various applied areas, our

methodology has a built-in advantage over the ones that rely on linear dependence

measures for the dimension reduction of multivariate nonlinear time series.

The rest of the paper is organized as follows. Section 2.2 provides a review of

martingale difference divergence and its sample estimate. In Section 2.3, we introduce

the definition of martingale difference divergence matrix and its properties. Our
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dimension reduction methodology for conditional mean is presented in Section 2.4,

which includes an extension of principal component analysis to principal conditional

mean component analysis, and factor model representation as well as some discussion

of practical issues and related work. Simulation results are gathered in Section 4.4.1.

Section 2.6 presents two real data illustrations and Section 2.5 concludes. Technical

details are included in Appendix.

A word on notation. Let i =
√
−1 be the imaginary unit. For x ∈ Cp, we use

x∗ for “x-conjugate-transpose” (conjugate for scalars). The scalar product of vectors

x and y is denoted by < x, y >. For a complex-valued function f(·), the complex

conjugate of f is denoted by f ∗ and |f |2 = ff ∗. Denote the Euclidean norm of x =

(x1, · · · , xp) ∈ Cp as |x|p, where |x|2p = x1x
∗
1 + · · ·+xpx∗p, and if x = (x1, · · · , xp) ∈ Rp,

it is sometimes denoted as ‖x‖, where ‖x‖2 = x2
1 + · · ·x2

p. For a square matrix A,

spectral norm of A is denoted as ‖A‖2, where ‖A‖2 =
√
λmax(ATA) and Frobenius

norm of A is denoted by ‖A‖F , where ‖A‖F =
√
tr(ATA) and tr(A) =

∑p
i=1Ai,i. A

random vector X ∈ Ls if E|X|sp <∞.

2.2 Review of Martingale Difference Divergence

For U ∈ Rq and V∈ R, where q is a fixed positive integer, Shao and Zhang (2014)

proposed the so-called martingale difference divergence (MDD) and its standardized

version martingale difference correlation (MDC) to measure the conditional mean

independence of V on U , i.e.,

E(V |U) = E(V ), almost surely. (2.2.1)
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Specifically MDD(V |U) is defined as the nonnegative number that satisfies

MDD(V |U)2 =
1

cq

∫
Rq

|gV,U(s)− gV gU(s)|2

|s|1+q
q

ds, (2.2.2)

where gV,U(s) = E(V ei<s,U>), gV = E(V ), gU(s) = E(ei<s,U>) and cq = π(1+q)/2/Γ((1+

q)/2). The definition can be regarded as an extension of distance covariance [Székeley,

Rizzo and Bakirov (2007)] since a similar weighting function is used and it inherits

many desirable properties of distance covariance. For example, MDD(V |U)2 = 0 if

and only if (4.2.1) holds. Furthermore, if E(|V |2 + |U |2q) <∞, then

MDD(V |U)2 = −E[(V − E(V ))(V
′ − E(V

′
))|U − U ′ |q],

where (V
′
, U
′
) is an independent copy of (V, U).

Recently, Park, Shao and Yao (2015) made an extension of MDD to allow multi-

variate response. If V ∈ Rp, p ≥ 1, then the characteristic function based definition

(4.2.2) still applies. Under the assumption that E(|V |2p + |U |2q) < ∞, Park et al.

showed

MDD(V |U)2 = −E[(V − E(V ))T (V
′ − E(V

′
))|U − U ′ |q], (2.2.3)

which is a scalar-valued quantity. Most of the properties mentioned in Shao and

Zhang (2014) still hold for this more general definition.

Assume that we have a random sample (Uk, Vk)
n
k=1 from the joint distribution of

(U, V ). Let Vn = 1
n

∑n
k=1 Vk, akl = VkVl, ak· =

1
n

∑n
l=1 akl = VkVn, a·l = 1

n

∑n
k=1 akl =

VnVl, a·· =
1
n2

∑n
k,l=1 akl = Vn Vn and Akl = akl−ak·−a·l+a·· = (Vk−Vn)(Vl−Vn) for

k, l = 1, · · · , n. Similarly, let bkl = |Uk−Ul|q, bk· = 1
n

∑n
l=1 bkl, b·l = 1

n

∑n
k=1 bkl, b·· =

1
n2

∑n
k,l=1 bkl and Bkl = bkl − bk· − b·l + b··, for k, l = 1, · · · , n. Based on the above
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quantities, sample martingale difference divergence MDDn [Shao and Zhang (2014)]

is defined as the nonnegative number that satisfies

MDDn(V |U)2 = − 1

n2

n∑
k,l=1

AklBkl =
1

cq

∫
Rq

|gnV,U(s)− gnV gnU(s)|2

|s|1+q
q

ds,

where gnV,U(s) = 1
n

∑
j Vje

i<s,Uj>, gnV = 1
n

∑
j Vj and gnU(s) = 1

n

∑
j e

i<s,Uj>. The

second equality in the above equation is shown in Theorem 2 of Shao and Zhang

(2014) and it implies that the simpler algebraic form is equivalent to an empirical

plug-in version. The above definition applies to the case p = 1. When p > 1, the

sample MDD is defined as the nonnegative number that satisfies

MDDn(V |U)2 = − 1

n2

n∑
k,l=1

(Vk − V n)T (Vl − V n)Bkl. (2.2.4)

It turns out that the above definition can be further simplified as

MDDn(V |U)2 = − 1

n2

n∑
k,l=1

(Vk − V n)T (Vl − V n)|Uk − Ul|q,

which can be shown by a straightforward calculation, and the details are omitted.

Note that in general MDDn(V |U)2 is a biased estimator of MDD(V |U)2, however

the bias is expected to be asymptotically negligible when p is fixed. It is indeed

possible to adopt the U-centering idea [Székeley and Rizzo (2014), Park et al. (2015)]

to define an unbiased estimator, but it unfortunately complicates the asymptotic

analysis in Section 2.4.
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2.3 Martingale Difference Divergence Matrix

For U ∈ Rq and V ∈ Rp, it is possible that there exists a linear combination of V , say

α ∈ Rp, such that E(αTV |U) = E(αTV ) although V is not necessarily conditionally

mean independent of U (i.e., E(V |U) 6= E(V )). In the presence of such a relationship,

the modeling of conditional mean of V as a function of U can be simplified, as the

effective dimension of E(V |U) can be reduced via linear transformation and separating

out the part that is conditionally mean independent of U . To this end, we introduce

a new matrix object, the so-called martingale difference divergence matrix (MDDM),

which can be viewed as an extension of martingale difference divergence from a scalar

to a matrix.

Definition 2.3.1. Martingale Difference Divergence Matrix

Given V = (V1, · · · , Vp)T ∈ Rp, U ∈ Rq,

MDDM(V |U) =
1

cq

∫
Rq

G(s)G(s)∗

|s|1+q
q

ds,

where G(s) = cov(V, ei<s,U>) = (G1(s), · · · , Gp(s))
T for s ∈ Rq, Gj(s) = cov(Vj, e

i<s,U>).

Note that the (i, i)th entry of the p×pmatrix MDDM equals toMDD(Vi|U)2, whereas

the (i, j)th entry is

MDDM(V |U)ij =
1

cq

∫
Rq

Gi(s)Gj(s)
∗

|s|1+q
q

ds = MDDM(V |U)∗ji

i.e., MDDM(V |U) is a hermitian matrix and thus has real eigenvalues. Here for the

notational simplicity, we opt to use the notation MDDM instead of MDDM2 in our

definition. Below we provide a simple and equivalent expression for MDDM.
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Lemma 2.3.1. If E(|V |2p + |U |2q) <∞, then

MDDM(V |U) = −E[(V − E(V ))(V
′ − E(V

′
))T |U − U ′|q],

where (V
′
, U
′
) is an iid copy of (V, U). Therefore MDDM(V |U) is a real, symmetric

and positive semidefinite matrix.

Lemma 2.3.1 implies that MDDM(V |U) is a p × p matrix with the (i, j)th entry

equal to MDDMi,j(V |U) = −E[(Vi − E(Vi))(V
′
j − E(V

′
j ))T |U − U ′ |q], provided that

E(|V |2p + |U |2q) < ∞. Since Gj(s) = 0, ∀s ⇔ E(Vj|U) = E(Vj), we have that

MDDMi,j(V |U) = 0, provided that E(Vj|U) = E(Vj) or E(Vi|U) = E(Vi). It is also

worth noting that tr(MDDM(V |U)) = MDD(V |U)2 in (2.2.3).

By elementary matrix algebra, it is not difficult to show that Lemma 2.3.1 implies

the following theorem, which states that the rank of the MDDM is closely tied to the

number of linear combinations of V that are conditionally mean independent of U .

Theorem 2.3.1. For V ∈ Rp and U ∈ Rq, if E(|V |2p + |U |2q) < ∞, then for any real

p × s matrix D, MDDM(DTV |U) = DTMDDM(V |U)D; Subsequently, there exist

p − s linearly independent combinations of V such that they are conditionally mean

independent of U , if and only if rank(MDDM(V |U)) = s.

Remark 2.3.1. We shall provide a discussion on a possible analogue of MDDM to

measure the linear dependence between two vectors V ∈ Rp and U ∈ Rq. Define

L(V |U) = cov(V, U)cov(V, U)T ,

where cov(V, U) is a p×q matrix with the (i, j)th entry being cov(Vi, Uj). It is easy to

show that L(V |U) is a real, symmetric and positive semidefinite matrix. Then there

exists a nonzero α ∈ Rp, such that cov(αTV, U) = 0 (i.e., a linear combination of V is
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uncorrelated with U), if and only if L(V |U) is singular. Further, suppose the number

of linearly independent combinations of V that are uncorrelated with U is p− r, then

r = rank(L(V |U)). Since conditional mean independence implies uncorrelatedness, it

is not difficult to show that rank(MDDM(V |U)) ≥ rank(L(V |U)).

Given a random sample (Uk, Vk)
n
k=1 from the joint distribution of (U, V ), sample

martingale difference divergence matrix MDDMn can be defined as

MDDMn(V |U) = − 1

n2

n∑
h,l=1

(Vh − V n)(Vl − V n)T |Uh − Ul|q.

2.4 Dimension Reduction for Conditional Mean

As we mentioned in Section 2.1, our goal is to seek linear transformation of Yt

such that linear transformed series can be separated into two parts with one part

being conditionally mean independent of the past. Mathematically, we look for

linear combinations of Yt, say αTYt, that are conditionally mean independent of

Ft−1 = σ(Yt−1, Yt−2, · · · ). As we only have a finite stretch of observations from the

process Yt, t ∈ Z, we shall approximate the conditional mean independence of αTYt

on Ft−1 by that on Ft−1,t−k0 = σ(Yt−1, · · · , Yt−k0), where k0 is a pre-specified fixed

integer. This practice is quite common in time series analysis, and it is consistent

with the notion that for weakly dependent time series the main dependence is at short

lags. The approximation can be in fact supported by certain time series models. For

example, if the time series model is V AR(k0), then the conditional distribution of Yt

given Ft−1 is identical to the conditional distribution of Yt given Ft−1,t−k0 , thus there

is no loss of information in this approximation. In the sequel, we define the so-called

cumulative MDDM to quantify the conditional mean independence of Yt on its recent
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past Ft−1,t−k0 .

Definition 2.4.1. The cumulative MDDM is defined as

Γk0 = Γ
(1)
k0

:=

k0∑
j=1

MDDM(Yt|Yt−j). (2.4.1)

Since MDDM is a positive semidefinite matrix, Γk0 is also a positive semidefinite ma-

trix. Note that MDDM(Yt|Yt−j) depends on the time lag j but not on t due to strict

stationarity. The sample estimate of Γk0 is given by Γ̂k0 =
∑k0

j=1 MDDMn(Yt|Yt−j).

Remark 2.4.1. Our definition follows the common practice in time series analysis,

where the cumulative contribution from various lags are added up in a pairwise fash-

ion. Alternatively, we could adopt a joint approach, i.e., we can define

Γ
(2)
k0

= MDDM(Yt|(Y T
t−1, · · · , Y T

t−k0
)T )

and its sample estimate as Γ̂
(2)
k0

= MDDMn(Yt|(Y T
t−1, · · · , Y T

t−k0
)T ). For a given k0,

it seems difficult to know whether inference based on Γ̂
(2)
k0

is preferred for the given

series at hand. We shall compare the finite sample performance for inferences based

on Γ̂
(j)
k0

, j = 1, 2 in simulation studies.

2.4.1 Principal Conditional Mean Components (PCMC)

As outlined in Section 2.1, dimension reduction for conditional mean can be achieved

once we identify the number and the form of linear combinations of Yt that are

conditionally mean independent of the past. It turns out that such information is

encoded in Γk0 (or Γ
(2)
k0

); see Theorem 2.3.1. Inspired by the work of Hu and Tsay

(2014), who proposed the concept of principal volatility component analysis, we shall
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introduce the so-called principal conditional mean component analysis.

Since Γk0 is a real symmetric positive semidefinite matrix, its eigenvalues {λj}pj=1

are either zero or positive. We shall assume that

(C1), λ1 > · · · > λ2 > · · · > λs > 0 = λs+1 = · · · = λp.

Let γj be an orthonormal eigenvector of Γk0 corresponding to the eigenvalue λj.

Then we have

γTj Γk0γj = λj, j = 1, · · · , p.

If we let M = [γ1, · · · , γp] and Λ = diag(λ1 > · · · ≥ λp), then Γk0M = MΛ by spectral

decomposition of Γk0 . Therefore the rank of Γk0 is s, which means that there exist p−s

linearly independent combinations (γs+1, · · · γp) which make MDD(γTi Yt|Yt−j)2 = 0,

j = 1, · · · , k0, i = s + 1, · · · , p. Since all these linear combinations live in the null

space of Γk0 , they can be readily estimated based on eigen-decomposition of Γ̂k0 .

Let (λ̂j, γ̂j)
p
j=1 be the p pairs of eigenvalues and eigenvectors of Γ̂k0 , where λ̂1 ≥

λ̂2 ≥ · · · ≥ λ̂p and the eigenvectors {γ̂j}pj=1 are orthonormal. To estimate s, the

rank of Γk0 , we adopt a ratio-based estimator following the practice of Lam, Yao and

Bathia (2011), Lam and Yao (2012), i.e.,

ŝ = argmin1≤i≤R
λ̂i+1

λ̂i
(2.4.2)

where R is an integer satisfying s ≤ R < p. There are other methods developed for

the estimation of s, see e.g., Bai and Ng (2002, 2007) and Hallin and Lis̆ka (2007)

for information criteria based approach, Bathia, Yao and Ziegelmann (2010) for the

bootstrap approach, and Hu and Tsay (2014) for a sequential testing approach. As

mentioned in Lam and Yao (2012), the ratio-based method can be viewed as an
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enhanced scree test [Cattell (1966)], and it is very easy to implement. We use the

ratio-based estimator in part because of the connection of our dimension reduction

framework with the ones in Lam, Yao and Bathia (2011) and Lam and Yao (2012);

see Section 2.4.2 for details. It is also worth noting that Lam and Yao (2012) showed

that the ratio-based estimator can still work even when p is large and grows to infinity

in the asymptotics.

For j = 1, · · · , p, we can then estimate γj by γ̂j. Since γ̂j might be replaced

by −γ̂j, the results stated below concerning a comparison of eigenvectors implicitly

assume that signs have been chosen appropriately. Below we further impose suitable

moment and weak dependence assumptions on Yt.

(C2) Let (Yt)t∈N be a strictly stationary and β-mixing process. Assume that there

exist δ > 0 such that E[|Yt|6+3δ] <∞. For a δ
′ ∈ (0, δ) : β(n) = O(n

− 2+δ
′

δ
′ ).

(C2’) Let (Yt)t∈N be a strictly stationary and m-dependent process. Assume that

E|Yt|6 <∞.

Theorem 2.4.1. Let conditions (C1)-(C2) hold. Then as n → ∞, it holds that (i)

λ̂j−λj = Op(n
−1/2) and ‖γ̂j−γj‖ = Op(n

−1/2) for j = 1, · · · , s. Under the conditions

(C1)-(C2’), we have that (ii) λ̂j = Op(n
−1) for j = s+ 1, · · · , p.

Theorem 2.4.1 is analogous to Proposition 1 in Lam and Yao (2012), but is stated

for our cumulative MDDM. It suggests that the empirical eigenvalues and eigenvectors

obtained by the eigen-decomposition of sample cumulative MDDM are indeed rea-

sonable estimators of their population counterparts for large sample size. The above

theory is developed for the fixed p case, and theory for the growing p setting seems

very challenging and is left for future research. Nevertheless, we examine the finite

sample performance of the ratio-based estimator in the large p setting in simulation

studies.
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2.4.2 Factor Model Representation

In this subsection, we shall provide a factor model representation for our dimension

reduction framework. Our static factor model is closely related to the one used in

Peña and Box (1987), Pan and Yao (2008), Lam, Yao and Bathia (2011), as well as

Lam and Yao (2012). We provide a brief review of the latter first.

Factor Model with White Noise Error. (FM-WNE)

Yt = AXt + εt,

where Yt is a p × 1 observed vector of time series, Xt is a r × 1 latent factor time

series which is usually assumed to be stationary and not a white noise, A is a p × r

constant factor loading matrix, r ≤ p is the number of factors, {εt} is a p × 1 white

noise sequence with mean zero.

It is important to note that matrix A is not uniquely identified. For instance, if

we replace A and Xt by AQ and Q−1Xt for any invertible matrix Q, we still get the

same Yt. Let B be a p × (p − r) matrix for which (A,B) forms a p × p orthogonal

matrix. Following the practice in Pan and Yao (2008), Lam, Yao and Bathia (2011),

Lam and Yao (2012), we assume that

Assumption 2.4.1. ATA = Ir, A
TB = 0 and BTB = Ip−r.

Even with the above assumption, the matrix A is not unique, but the factor

loading space M(A), which is the linear space spanned by the columns of A, is

uniquely defined. Note that M(B) can be interpreted as the null space of the factor

loading spaceM(A). The main inferential task is to estimate r, the number of factors,

and the factor loading spaceM(A) or A. Once an estimator of A, say Â is obtained,
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it is natural to estimate the factor process Xt by X̂t = ÂTYt and the residuals are

ε̂t = (Ip − ÂÂT )Yt. Then the next step is to fit a parsimonious model to X̂t, which

may be achieved by rotating X̂t appropriately, or equivalently modeling HT X̂t, where

H is an r × r orthogonal matrix.

Based on the above model assumptions, we derive that

BTYt = BTAXt +BT εt = BT εt (2.4.3)

ATYt = ATAXt + AT εt = Xt + AT εt, (2.4.4)

where {BT εt} and {AT εt} are both white noise sequences. This implies that certain

linear combinations of Yt (i.e., those corresponding to BTYt) are white noise. Assum-

ing that the cross-correlations between Xt and εt are zero at all lags, we can derive

that cov(Yt+k, Yt) = Acov(Xt+k, Xt)A
T , for k = 1, 2, · · · , thus the columns of B are

the orthonormal eigenvectors of cov(Yt+k, Yt) corresponding to zero eigenvalues. This

observation led them to focus on the following matrix

Lk0 =

k0∑
j=1

cov(Yt+j, Yt)cov(Yt+j, Yt)
T =

k0∑
j=1

L(Yt|Yt−j) (2.4.5)

and their estimation of r and M(A) is based on the eigen-analysis of sample esti-

mate of the positive semidefinite matrix Lk0 . It is interesting to note that the matrix

Lk0 they defined is basically a linear counterpart of our cumulative MDDM Γk0 ; see

Remark 2.3.1. Thus the main difference between the two is that Lk0 encodes the

information about the number and form of linear combinations of Yt that are uncor-

related with Yt−1, · · · , Yt−k0 in a pairwise fashion, whereas Γk0 encodes the number

and form of linear combinations of Yt that are conditionally mean independent of

Yt−1, · · · , Yt−k0 in a pairwise fashion.
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In time series analysis, cov(Yt+j, Yt) is used to measure the linear dependence at lag

j, whereas MDDM(Yt+j|Yt) is used to measure conditional mean dependence at lag

j. If the time series is Gaussian, then the second order property fully characterizes

the joint distribution and autocovariances at all lags are sufficient to characterize

the joint dependence. However, for non-Gaussian and nonlinear time series, the

second order property may not be sufficient to characterize the serial dependence,

which has motivated the development of various nonlinear dependence measures in the

literature; see Hong (1999), Granger, Maasoumi and Racine (2004) and Zhou (2012)

among others. Most of these nonlinear dependent measures are however scalar-valued,

and do not seem directly useful for dimension reduction.

Factor Model with Martingale Difference Error. (FM-MDE)

Yt = E(Yt|Ft−1) + ηt, (2.4.6)

where ηt = Yt − E(Yt|Ft−1) is a martingale difference sequence by construction. As-

sume that E(Yt|Ft−1) = AZt, where A is the p× s (s ≤ p) factor loading matrix and

Zt is the s-dimensional latent factor process.

Similar to the factor model with white noise error, only the factor loading space

M(A) is uniquely defined. Note thatM(A) is the column space of M = (γ1, · · · , γs).

For the convenience of discussion, we assume that there is a p × (p − s) matrix B,

such that

Assumption 2.4.2. ATA = Is, ATB = 0 and BTB = Ip−s.

Following the argument in the derivation of (2.4.3), we have that

BTYt = BTE(Yt|Ft−1) + BTηt = BTAZt + BTηt = BTηt, (2.4.7)

ATYt = ATE(Yt|Ft−1) +ATηt = ATAZt +ATηt = Zt +ATηt, (2.4.8)
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where {BTηt} and {ATηt} are martingale difference sequences. Based on (2.4.8),

it is easy to see that Zt = E[ATYt|Ft−1]. Suppose we can obtain good estimates of A

and B (or the corresponding column spaces), say Â and B̂, then we can estimate Zt

by Ẑt = ÂTYt and the residuals are η̂t = (Ip − ÂÂT )Yt. A lower dimensional model

can be fitted to {Ẑt} so dimension reduction is achieved.

As the two factor models (FM-WNE and FM-MDE) appear to have the same

form, it pays to mention their differences. On one hand, our latent factor process Zt

is measurable with respect to Ft−1, and its contemporary linear combination AZt is

the conditional mean of Yt given the past information by definition. Since E(Yt|Ft−1)

has the interpretation of being the optimal predictor of Yt given Ft−1 (in the mean

squared error sense), our dimension reduction is well motivated by the consideration

of optimal prediction. By contrast, the process Xt in FM-WNE is not necessarily

measurable with respect to Ft−1 and AXt may not be the conditional mean. On

the other hand, the estimation methods are different for these two factor models.

Under the FM-WNE, we seek to find contemporary linear combinations (i.e., B)

that make the linear transformed sequence BTYt a white noise sequence, whereas

under the FM-MDE, contemporary linear transformations (i.e., B) are sought to make

BTYt a martingale difference sequence; compare (2.4.3) and (2.4.8). Due to different

requirements on the error sequence, the matrix objects that encode the information

about the dimension of latent factor process and the factor loading space are different.

Under the FM-WNE, we take advantage of the assumptions on the second order

property of (Xt, εt), and the inference is based on the cumulative linear matrix Lk0 ,

which encodes the linear dependence, whereas under the FM-MDE, we naturally focus

on cumulative MDDM Γk0 , which characterizes conditional mean independence. To

shed some light on the difference, we consider the following state space model.
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Table 2.1: Factor model representations for the state space model

Example 2.4.1
FM-WNE A = D1 Xt = Wt εt = ε1t
FM-MDE A = D1 Zt = E(Wt|Ft−1) ηt = Yt −D1E(Wt|Ft−1)

Example 2.4.2
FM-WNE A = A1 Xt = W1t εt = [A1, A2]W2t + ε1t
FM-MDE A = [A1, A2] Zt = (E(W1t +W3t|Ft−1)T ηt = Yt − A1E(W1t|Ft−1)

, E(W4t|Ft−1)T )T −[A1, A2]E(W2t|Ft−1)

Example 2.4.1. Let Yt = D1Wt + ε1t, where Yt is p × 1 time series, D1 is a p × r

constant factor loading matrix and {ε1t} are iid mean zero error process. Let Wt =

h(ε2t, ε2(t−1), · · · ), t ∈ Z be a r-dimensional nonlinear stationary causal process, where

{ε2t}t∈Z is the r-dimensional mean zero iid innovation process that is independent

of the p-dimensional error process (ε1t)t∈Z . Assume that Wt is not a white noise

sequence. Note that several models used in simulation studies of Lam, Yao and

Bathia (2011) and Lam and Yao (2012) fall into the above framework. Table 2.1

shows the detailed representation under the two factor models. Although the latent

processes under the two models (i.e., Xt and Zt) are different, it is easy to see that

r = s and M(A) =M(A), i.e., the two factor loading spaces are identical. It would

be interesting to see which inference method (i.e., the one based on Lk0 versus the

one based on Γk0) delivers a better estimate of the factor loading space in this case

and we shall address this question in our simulations.

In general, a white noise sequence is not necessarily a martingale difference se-

quence but a martingale difference sequence has to be a white noise sequence under

finite second moment assumption. This fact implies that for a stationary time series

Yt that admits both representations (i.e., FM-WNE and FM-MDE), the two could

coincide as demonstrated in the following proposition.

Proposition 2.4.1. Suppose that Assumptions (2.4.1) and (2.4.2) hold. If (εt,Ft) is

a martingale difference sequence, then we have M(A) =M(A).
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In some cases, s can be strictly larger than r, as shown in the following example.

Example 2.4.2. Let Yt = A1W1t + [A1, A2]W2t + ε1t, where A1 is a p × r matrix and

A2 is a p× (q− r) matrix. Set p > q > r. We assume that (i), AT1A1 = Ir, A
T
1A2 = 0

and AT2A2 = Iq−r; (ii), W1t is a r-dimensional stationary causal process as defined in

Example 2.4.1 and is not a white noise sequence, W2t is a q-dimensional vector white

noise sequence but not martingale difference sequence, and ε1t are iid mean zero. (iii),

The three processes {W1t}, {W2t} and {ε1t} are mutually independent.

Let W2t = (W T
3t,W

T
4t)

T , where W3t is of dimension r and W4t is of dimension q−r.

Then the model can be reformulated as

Yt = [A1, A2]

 (W1t +W3t)

W4t

+ ε1t.

It is easy to see that under the framework of FM-WNE, [A1, A2]W2t + ε1t is a vec-

tor white noise so M(A) = M(A1), whereas under the framework of FM-MDE,

E(Yt|Ft−1) = A1E(W1t|Ft−1) + [A1, A2]E(W2t|Ft−1). Then s = q > r and M(A) =

M([A1, A2]); see Table 2.1. In the univariate case, examples for white noise but not

martingale difference can be found in Shao (2011). We shall examine the performance

of our dimension reduction method for this example in Section 6.

2.4.3 Related Work and Practical Issues

As pointed out by a referee, our work is to some extent related to Park, Sriram and

Yin (2009, 2010), who have extended the sufficient dimension reduction framework

from random sample to the time series setting. Specifically, the latter authors focused

on the univariate time series and considered the estimation of central subspace [Park

et al. (2010)] and central mean subspace [Park et al. (2009)] of the conditional
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distribution of Yt given (Yt−1, · · · , Yt−d), where d is assumed to be fixed and possibly

unknown. For the central subspace, they estimated it by minimizing Kullback-Leibler

distance and for the central mean subspace, they used a variant of MAVE (minimum

average variance estimation), which was proposed by Xia et al. (2002) and shown to

be applicable to time series data. While the work by Park et al. (2009, 2010) mainly

focuses on the dimension reduction of covariates, which are naturally defined as the

lagged observations (Yt−1, · · · , Yt−d) in the time series setting, our work focuses on

the dimension reduction of the multivariate response Yt, and thus are quite different

in terms of the goal and the setting. In particular, (1) the parameter Park et al.

targets is the column space associated with the central subspace or central mean

subspace, whereas we want to estimate the space spanned by linear combinations

that make the response conditional mean independent of the past information. In a

sense, our dimension reduction is closer in spirit to the recently developed envelop

models by Cook, Li and Chiaromonte (2000), which also remove the redundant linear

combinations of the response that are not related to covariates. But the latter was

done under a linear model and for random sample, whereas we do not have any

parametric/linear assumptions and our reduction is formulated in a time series setting;

(2) our dimension reduction is based on spectral decomposition of a sample matrix,

and no smoothing is involved; whereas nonparametric estimation and smoothing is

required in Park et al. (2009, 2010) since the targeted space is different.

In practical implementation, we need to come up with a choice of k0. In theory,

k0 can be chosen as the smallest positive integer that makes

E(Yt|Ft−1) = E(Yt|Ft−1,t−k0),

i.e., given (Yt−1, · · · , Yt−k0), Yt is conditionally mean independent of (Yt−k0−1, Yt−k0−2, · · · ).
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Thus the determination of k0 itself is a nontrivial task. If the series follows a vec-

tor autoregressive model, then partial autocorrelation function provides an indication

about the magnitude of k0. Alternatively, we can first look at the lag j sample MDD,

i.e., MDDn(Yt|Yt−j)2, accompanied by the standard error estimated from, say, the

moving block bootstrap, and choose k0 as the largest j such that jth MDD is still

significant from zero. For time series that exhibits seasonal dependence patterns, we

often want to let k0 to be an integer multiple of the period (see Section 2.6.2) to

capture the conditional mean dependence at seasonal lags. We leave a more careful

and data-driven choice of k0 and their impact to dimension reduction to future work.

An additional practical and methodological issue is that after we obtain the rank

of Γk0 , say by ŝ, and the null space of Γk0 , by M1 = [γ̂ŝ+1, · · · , γ̂p], it would be useful to

verify that the transformed series M1Yt are indeed conditionally mean independent of

Ft−1 (or Ft−1,t−k0 in a pairwise fashion). To this end, one can look at the magnitude

of Hn =
∑k0

j=1MDD2
n(M1Yt|Yt−j) and perform a significance test. Under the null

that the transformed series are conditionally mean independent of the past, Hn is

expected to be small, and its significance can presumably be assessed by using a

block bootstrap approach. We shall also leave a rigorous investigation of this topic

to future study.

2.5 Numerical Simulations

In this section, we examine the finite sample performance of our MDDM-based di-

mension reduction approach via simulations. In particular, we compare with the

method in Lam and Yao (2012), which is based on the linear dependence metric Lk0

(see (2.4.5)). In our simulations, we tried Γ
(j)
k0

, j = 1, 2 for several k0s to assess the

sensitivity of our dimension reduction method with respect to the choice of k0 and cu-
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mulative MDDM employed. Even though our theory is developed for the fixed p case,

we also investigate the finite sample performance for the large p case by Monte-Carlo

experiments.

Recall that for both methods, two steps are involved in the estimation. The first

step corresponds to the estimation of the true number of factors, i.e., r or s using

ratio-based estimator (see (2.4.2)), where we set R = p − 1, R = [p/2] or [p/3] for

small p and large p setting respectively. The second step refers to the estimation of

the factor loading space, i.e., M(A) (or M(A)) once s (or r) is estimated. This can

be achieved by performing principal component analysis on the sample cumulative

MDDM as described in Section 2.4.1. For each example, we replicate the simulation

1000 times and use the following criteria to measure the accuracy of our dimension

reduction method.

• D-distance (D1(·, ·)) [Pan and Yao (2008)]

D1(A, Â) = [{tr(ÂT (Ip −AAT )Â) + tr(B̂TAAT B̂)}/p]1/2,

where B̂ is a basis of an orthogonal complement of the column space spanned by

Â. D1(A, Â) is used to measure the distance betweenM(A) andM(Â). Note

that under Assumption 2.4.2, AAT is a projection matrix onto the linear space

M(A) and D1(A, Â) ∈ [0, 1]. D1(A, Â) = 0 if and only ifM(A) =M(Â), and

D1(A, Â) = 1 if and only if M(A) =M(B̂).

• Root Mean Squared Error (RMSE) [Lam, Yao and Bathia (2011)]

RMSE = (
n∑
t=1

‖ÂX̂t −AXt‖2

pn
)1/2,

which measures the overall closeness of the estimated signal ÂX̂t to the true
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signal AXt. Smaller value of RMSE indicates more accurate estimation of

underlying factor series.

We shall investigate the following examples.

Example 2.5.1. Example 2.5.1 is adopted from the simulation study of Pan and Yao

(2008) with slight modification so the model falls into the framework of Example 2.4.1.

We define the factor series Xt = (x1t, x2t, x3t)
T as

x1,t = 0.8x1,t−1 +e1,t, x2,t = e2,t+0.9e2,t−1 +0.3e2,t−2, x3,t = −0.5x3,t−1−e3,t+0.8e3,t−1

where ei,t, i = 1, 2, 3 are all iid standard normal variables. The observed data Yt =

(Y1,t, · · · , Yp,t)T is defined by

Yi,t =

 xi,t + εi,t for i = 1, 2, 3

εi,t for i = 4, · · · p

where εi,t, i = 1, 2, · · · , p are iid standard normal variables and independent from

{ej,t}, j = 1, 2, 3. We consider several different combinations of (p, n, k0), i.e., p =

5, 10, 20, n = 300, 600, 1000 and k0 = 1, 3. For the above data generating process,

the true number of factors r and s are 3 and the factor loading matrix, A = A =

(I3, 0p−3)T . Note that when k0 = 1, Γk0 and Γ
(2)
k0

become the same so some results are

identical in Table 2.2.
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Table 2.2: Mean, standard error (in the bracket) of D-distance and r̂, ŝ with 1000
replicates for Example 2.5.1

Lk0 Γk0 Γ
(2)
k0

D(Â,A) r̂ D(Â,A) ŝ D(Â,A) ŝ

r̂ < 3 r̂ = 3 r̂ > 3 ŝ < 3 ŝ = 3 ŝ > 3 ŝ < 3 ŝ = 3 ŝ > 3

k0 = 1

p = 5, n = 300 0.171 (0.15) 0 0.794 0.206 0.099 (0.05) 0.009 0.991 0 0.099 (0.05) 0.009 0.991 0

p = 5, n = 600 0.116 (0.13) 0 0.872 0.128 0.067 (0.02) 0 1 0 0.067 (0.02) 0 1 0

p = 5, n = 1000 0.088 (0.12) 0 0.909 0.091 0.052 (0.02) 0 1 0 0.052 (0.02) 0 1 0

p = 10, n = 300 0.415 (0.32) 0.011 0.549 0.440 0.135 (0.05) 0.042 0.958 0 0.135 (0.05) 0.042 0.958 0

p = 10, n = 600 0.287 (0.31) 0 0.713 0.287 0.090 (0.02) 0.001 0.999 0 0.090 (0.02) 0.001 0.999 0

p = 10, n = 1000 0.240 (0.30) 0 0.76 0.24 0.071 (0.01) 0 1 0 0.071 (0.01) 0 1 0

p = 20, n = 300 0.624 (0.36) 0.022 0.335 0.643 0.146 (0.04) 0.132 0.868 0 0.146 (0.04) 0.132 0.868 0

p = 20, n = 600 0.479 (0.40) 0 0.521 0.479 0.098 (0.02) 0.01 0.99 0 0.098 (0.02) 0.01 0.99 0

p = 20, n = 1000 0.362 (0.39) 0 0.652 0.348 0.076 (0.01) 0 1 0 0.076 (0.01) 0 1 0

k0 = 3

p = 5, n = 300 0.132 (0.10) 0.078 0.914 0.008 0.142 (0.12) 0.129 0.871 0 0.139 (0.12) 0.124 0.876 0

p = 5, n = 600 0.071 (0.03) 0.001 0.996 0.003 0.072 (0.04) 0.01 0.99 0 0.071 (0.04) 0.01 0.99 0

p = 5, n = 1000 0.055 (0.02) 0 0.999 0.001 0.054 (0.02) 0 1 0 0.054 (0.02) 0 1 0

p = 10, n = 300 0.188 (0.09) 0.281 0.719 0 0.184 (0.10) 0.295 0.705 0 0.181 (0.10) 0.283 0.717 0

p = 10, n = 600 0.105 (0.05) 0.041 0.959 0 0.107 (0.06) 0.071 0.929 0 0.107 (0.06) 0.071 0.929 0

p = 10, n = 1000 0.075 (0.02) 0.005 0.995 0 0.075 (0.03) 0.014 0.986 0 0.075 (0.03) 0.013 0.987 0

p = 20, n = 300 0.195 (0.06) 0.523 0.477 0 0.185 (0.06) 0.491 0.509 0 0.186 (0.07) 0.489 0.510 0.001

p = 20, n = 600 0.132 (0.06) 0.225 0.775 0 0.131 (0.06) 0.26 0.74 0 0.130 (0.06) 0.249 0.751 0

p = 20, n = 1000 0.089 (0.04) 0.059 0.941 0 0.090 (0.04) 0.085 0.915 0 0.090 (0.04) 0.088 0.912 0

It appears from Table 2.2 that when p increases or n decreases, the ability of

correctly identifying the true number of factors diminishes and the D-distance gets

larger for all methods. It might be expected that the method based on Lk0 performs

the best since Yt is generated from Gaussian linear time series and all dependence of

Yt can be effectively captured by autocovariance matrices. However, when k0 = 1, our

MDDM-based approach is superior to Lam and Yao’s Lk0-based counterpart in terms
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of the probability of correctly estimating the true number of factors and D-distance.

For k0 = 3, the performance of the Lk0-based one and MDDM-based one is similar. It

is interesting to note that when k0 increases from 1 to 3, the performance of Lk0-based

method improves substantially, showing its sensitivity with respect to the choice of

k0, whereas for Γk0 (or Γ
(2)
k0

), the performance is quite stable with respect to k0.

Example 2.5.2. In this example, the linear ARMA model for Xt in Example 2.5.1 is

replaced by a nonlinear model, where Xt = (x1,t, x2,t, x3,t)
T is defined as

x1,t = −(0.9e−0.2x2
1,t−1)x1,t−1 + e1,t, x2,t = (0.5e−0.4x2

2,t−1 + 0.4)x2,t−1 + e2,t,

x3,t = (0.1e−x
2
3,t−1 + 0.7)x3,t−1 + e3,t

Then the data Yt = AXt + εt, where A = (I3, 0p−3)T , εi,t, ei,t are iid standard normal

and independent from each other. Like Example 2.5.1, we consider n = 300, 600, 1000,

p = 5, 10, 20 and k0 = 1, 3. According to Theorem 5.1 and Example 5.1 in Shao and

Wu (2007), Xt admits a stationary solution and the model falls into the framework

in Example 2.4.1. For this example, the true number of factors r and s are still 3 and

M(A) =M(A).
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Table 2.3: Mean, standard error (in the bracket) of D−distance and r̂, ŝ with 1000
replicates for Example 2.5.2

Lk0 Γk0 Γ
(2)
k0

D(Â, A) r̂ D(Â, A) ŝ D(Â, A) ŝ

r̂ < 3 r̂ = 3 r̂ > 3 ŝ < 3 ŝ = 3 ŝ > 3 ŝ < 3 ŝ = 3 ŝ > 3

k0 = 1

p = 5, n = 300 0.277 (0.15) 0.006 0.629 0.365 0.178 (0.11) 0.058 0.941 0.001 0.178 (0.11) 0.058 0.941 0.001

p = 5, n = 600 0.198 (0.15) 0 0.749 0.251 0.109 (0.04) 0 1 0 0.109 (0.04) 0 1 0

p = 5, n = 1000 0.16 (0.15) 0 0.806 0.194 0.087 (0.03) 0 1 0 0.087 (0.03) 0 1 0

p = 10, n = 300 0.608 (0.25) 0.033 0.268 0.699 0.238 (0.10) 0.182 0.818 0 0.238 (0.10) 0.182 0.818 0

p = 10, n = 600 0.497 (0.31) 0.001 0.442 0.557 0.151 (0.05) 0.018 0.982 0 0.151 (0.05) 0.018 0.982 0

p = 10, n = 1000 0.391 (0.32) 0 0.586 0.414 0.117 (0.02) 0 1 0 0.117 (0.02) 0 1 0

p = 20, n = 300 0.828 (0.19) 0.043 0.054 0.903 0.245 (0.07) 0.417 0.583 0 0.245 (0.07) 0.417 0.583 0

p = 20, n = 600 0.736 (0.3) 0.18 0.198 0.784 0.172 (0.06) 0.133 0.867 0 0.172 (0.06) 0.133 0.867 0

p = 20, n = 1000 0.62 (0.37) 0 0.355 0.645 0.126 (0.03) 0.011 0.989 0 0.126 (0.03) 0.011 0.989 0

k0 = 3

p = 5, n = 300 0.243 (0.18) 0.159 0.798 0.043 0.262 (0.21) 0.258 0.742 0 0.258 (0.21) 0.25 0.75 0

p = 5, n = 600 0.123 (0.08) 0.014 0.974 0.012 0.131 (0.12) 0.053 0.947 0 0.131 (0.12) 0.053 0.947 0

p = 5, n = 1000 0.089 (0.03) 0 1 0 0.085 (0.03) 0 1 0 0.085 (0.03) 0 1 0

p = 10, n = 300 0.316 (0.13) 0.478 0.52 0.002 0.301 (0.14) 0.466 0.534 0 0.306 (0.14) 0.481 0.519 0

p = 10, n = 600 0.197 (0.11) 0.168 0.832 0 0.2 (0.13) 0.216 0.784 0 0.202 (0.13) 0.218 0.782 0

p = 10, n = 1000 0.124 (0.05) 0.019 0.981 0 0.124 (0.07) 0.041 0.959 0.0 0.123 (0.07) 0.039 0.961 0

p = 20, n = 300 0.285 (0.07) 0.691 0.306 0.003 0.267 (0.07) 0.633 0.367 0 0.267 (0.08) 0.628 0.368 0.004

p = 20, n = 600 0.224 (0.08) 0.441 0.559 0 0.215 (0.09) 0.433 0.567 0 0.216 (0.09) 0.441 0.559 0

p = 20, n = 1000 0.157 (0.07) 0.163 0.837 0 0.158 (0.08) 0.209 0.791 0 0.158 (0.08) 0.207 0.793 0

From Table 2.3, we can see that when k0 is 1, our method outperforms the Lk0-

based one with smaller D-distance and higher proportion of estimating the number

of factors correctly. If k0 is 3, the performance of all methods are fairly comparable in

terms of estimating the true number of factors and the factor loading matrix. Overall,

the finding is similar to that in Example 2.5.1.

Example 2.5.3. This example is from Lam, Yao and Bathia (2011) and it addresses
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the large p case, where p can exceed n. More specifically, three different factors

Xt = (x1t, x2t, x3t)
T are generated by the following model,

x1t = wt, x2t = wt−1, x3t = wt−2, wt = 0.2zt−1 + zt, zt ∼ N(0, 1)

For the factor loading matrix A, first p/2 elements of each column are iid U(-2, 2) and

are kept fixed once generated and the other elements are set to be 0. The data Yt is

defined as Yt = AXt + εt where εt is a random sample of N(0,Σ) and is independent

of Xt, where Σ = (σi,j)
p
i,j=1 is defined as

σi,j =


1
2
[(|i− j|+ 1)2H − 2|i− j|2H + (|i− j| − 1)2H ], H = 0.9, if i 6= j

1 if i = j

We consider (p, n) = (100, 100), (100, 200), (400, 200) with k0 = 1 and 5. Again

the true number of factors r and s are 3 and the model falls into the framework

in Example 2.4.1. When p = 100, R is set to be p/2 to estimate the number of

factors and R = [p/3] is used when p = 400 (see (2.4.2)). According to Table 2.4,

the performance of Lk0-based and Γk0-based methods are very much comparable for

k0 = 1 and 5. It appears that when p = 400 and n = 200, none of the methods

succeed, since the proportion of estimating the true number of factors correctly is

low. This phenomenon might be due to the use of ratio-based estimator. More

sophisticated method of estimating the number of factors in the large-p setting has

been developed in Li, Wang and Yao (2017) recently.

Example 2.5.4. In this example, we replace the data generating process of wt in
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Example 2.5.3 by a nonlinear one as follows.

wt =

 0.5 + (0.05e−0.01w2
t−1 + 0.9)wt−1 + zt, if wt−1 < 5

(0.9e−10w2
t−1)wt−1 + zt if wt−1 ≥ 5

, zt ∼ N(0, 1)

Furthermore, Yt is defined as Yt = AXt + εt, where error εt is generated from

N(0, 0.25Σ) and Σ is defined in Example 2.5.3. Other parts of the model, such

as A are exactly the same as Example 2.5.3, along with the combinations of (p, n, k0).

From Table 2.4, our Γk0-based approach outperforms Lk0-based counterpart in all

cases and under both criteria with the advantage more pronounced when k0 = 1.

When k0 = 5, Γ
(2)
k0

-based approach is slightly inferior to Γk0-based counterpart, but is

still superior to Lk0-based one, especially for the case (p, n) = (400, 200). We specu-

late that part of the reason Lk0-based approach does not perform well is that it only

captures linear auto-dependence. In the presence of strong nonlinearity in the factor

series and relatively low noise (compared to Example 2.5.3), the inability of Lk0-based

method to accommodate nonlinear dependence is amplified. It is also worth noting

that for Γk0 , Γ
(2)
k0

and Lk0 , the performance can depend on k0 to some extent.
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Table 2.4: Mean, standard error (in the bracket) of RMSE and r̂, ŝ with 1000 replicates
for Examples 2.5.3 and 2.5.4

Lk0 Γk0 Γ
(2)
k0

RMSE r̂ RMSE ŝ RMSE ŝ

r̂ < 3 r̂ = 3 r̂ > 3 ŝ < 3 ŝ = 3 ŝ > 3 ŝ < 3 ŝ = 3 ŝ > 3

EX 2.5.3 k0 = 1

p = 100, n = 100 0.654 (0.17) 0.011 0.936 0.053 0.557 (0.21) 0.047 0.925 0.028 0.557 (0.21) 0.047 0.925 0.028

p = 100, n = 200 0.641 (0.18) 0 0.986 0.014 0.52 (0.21) 0.001 0.997 0.002 0.52 (0.21) 0.001 0.997 0.002

p = 400, n = 200 0.805 (0.05) 0.995 0.005 0 0.807 (0.04) 1 0 0 0.807 (0.04) 1 0 0

k0 = 5

p = 100, n = 100 0.811 (0.21) 0.563 0.294 0.143 0.843 (0.14) 0.467 0.026 0.507 0.846 (0.15) 0.496 0.051 0.453

p = 100, n = 200 0.713 (0.24) 0.319 0.643 0.038 0.805 (0.21) 0.514 0.167 0.319 0.803 (0.22) 0.524 0.207 0.269

p = 400, n = 200 0.78 (0.12) 0.937 0.054 0.009 0.699 (0.14) 0.561 0.029 0.41 0.724 (0.14) 0.675 0.033 0.292

EX 2.5.4 k0 = 1

p = 100, n = 100 1.085 (0.34) 0.856 0.141 0.003 0.598 (0.59) 0.346 0.652 0.002 0.598 (0.59) 0.346 0.652 0.002

p = 100, n = 200 1.062 (0.28) 0.894 0.106 0 0.274 (0.4) 0.112 0.888 0 0.274 (0.4) 0.112 0.888 0

p = 400, n = 200 1.167 (0.39) 0.837 0.163 0 0.111 (0.04) 0.001 0.999 0 0.111 (0.04) 0.001 0.999 0

k0 = 5

p = 100, n = 100 1.399 (0.52) 0.841 0.156 0.003 1.252 (0.61) 0.761 0.235 0.004 1.291 (0.61) 0.772 0.223 0.005

p = 100, n = 200 1.405 (0.49) 0.861 0.139 0 1.252 (0.62) 0.762 0.237 0.001 1.331 (0.59) 0.805 0.194 0.001

p = 400, n = 200 1.12 (0.57) 0.699 0.3 0.001 0.383 (0.56) 0.172 0.827 0.001 0.416 (0.58) 0.184 0.814 0.002

Example 2.5.5. Example 2.5.5 is constructed by following Example 2.4.2 where r and

s are different. The factor loading matrix A = ([A1]10×2, [A2]10×1) is a 10× 3 matrix.

For each columns of A, the first 5 elements are iid U(-2,2) and the rest 5 elements

are set to 0. The time series Xt = ((W1t +W3t)
T ,W T

4t)
T , where W1t = (W T

1t,1,W
T
1t,2)T

and W3t = (W T
3t,1,W

T
3t,2)T . They are

W1t,1 = vt, W1t,2 = vt−1, vt = 0.5e1,t−1 + e1,t,

W3t,1 = wt, W3t,2 = wt−1, W4t = wt−2, wt = e3,t−2e3,t−1 + e3,t,
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where e1,t follows N(0, 82) and e3,t follows N(0, 1.52). Then the data is generated

by Yt = AXt + ε1t = A1(W1t + W3t) + A2W4t + ε1t, where ε1t ∼ N(0, 0.5 × I10) and

independent from {ei,t}, i = 1, 3. Note that W1t is from a stationary MA(1) model

and Wit, i = 3, 4 are consecutive observations from a stationary nonlinear MA model.

Here p = 10, n = 50, 100, 200 and k0 is either 1 or 3. Theoretically, r is equal to 2

but s is 3 therefore the true number of factors, r and s, are different for this example.

Not only the true number of factors are different but also factor loading spaces are

different i.e., M(A) = M(A1), M(A) = M([A1, A2]). This is due to the fact that

W3t and W4t are white noise sequence but not martingale difference sequence; see

Example 2.3 in Shao (2011).

Table 2.5: r̂, ŝ with 1000 replicates for Example 2.5.5

Lk0 Γk0 Γ
(2)
k0

r̂ ŝ ŝ

r̂ = 1 r̂ = 2 r̂ = 3 r̂ > 3 ŝ < 3 ŝ = 3 ŝ > 3 ŝ < 3 ŝ = 3 ŝ > 3

k0 = 1

n = 50 0.072 0.501 0.331 0.096 0.339 0.65 0.011 0.339 0.65 0.011

n = 100 0.029 0.558 0.338 0.075 0.251 0.747 0.002 0.251 0.747 0.002

n = 200 0.004 0.606 0.324 0.066 0.216 0.784 0 0.216 0.784 0

k0 = 3

n = 50 0.067 0.433 0.482 0.018 0.26 0.722 0.018 0.283 0.692 0.025

n = 100 0.043 0.446 0.5 0.011 0.186 0.812 0.002 0.193 0.789 0.018

n = 200 0.023 0.504 0.469 0.004 0.154 0.846 0 0.144 0.854 0.002

According to Table 2.5, we can clearly see that both methods are targeting dif-

ferent number of factors and the proportion of estimating the true number of factor

correctly increases as n increases. This example confirms that our MDDM-based

method is seeking different linear combinations of Yt from the Lk0-based counterpart

and the true number of factors inferred on the basis of Lk0 or Γk0 can be different.
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Our limited simulation results suggest that (1) For dimension reduction of con-

ditional mean, MDDM-based approach can outperform Lk0-based one in both the

case of linear Gaussian time series and the nonlinear case in the small-p setting. The

performance of the Lk0-based approach seems noticeably inferior when k0 is small or

when nonlinearity is strong in the series; (2) In the large-p setting, our MDDM-based

method can still be effective but it depends on the combination of p and n and the

data generating process; (3) The performance of Γ
(1)
k0

and Γ
(2)
k0

-based ones seem fairly

close, as the dependence two cumulative MDDMs capture are quite overlapping after

all; (4) The Lk0 and Γ
(1)
k0

-based approaches target their respective number of factors

and factor loading spaces and their targets could be quite different, as demonstrated

in Example 2.5.5. Overall, the finite sample performance of MDDM-based method is

quite encouraging.

2.6 Data Illustrations

In this section, we illustrate the usefulness of MDDM-based dimension reduction

approach in the context of prediction using two real data sets. The prediction error

is measured by

• Forecasting Error (FE) [Lam, Yao and Bathia (2011)]

FE =
‖Ŷ (1)

n+1 − Yn+1‖
p1/2

=
‖ÂX̂(1)

n+1 − Yn+1‖
p1/2

,

where Ŷ
(1)
n+1 is the one-step ahead prediction for Yn+1 based on (Y1, · · · , Yn) and X̂

(1)
n+1

is the one-step ahead prediction for Xn+1 based on a parametric model fitted to

the estimated factor series (X̂1, · · · , X̂n). FE quantifies the prediction accuracy of a

dimension reduction method and smaller value of FE indicates more accurate one-step
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ahead prediction. Multi-step ahead prediction can be done similarly; see Section 2.6.1.

2.6.1 GDP Data

The first data set we analyze is the quarterly change in seasonally adjusted GDP, in

percentage, for five countries, i.e., United States (US), Canada (CA), United Kingdom

(GBR), South Korea (KO), and Taiwan (TW), which is available from the Organi-

zation for Economic Cooperation and Development Web site. This data set has been

analyzed by Matteson and Tsay (2011) using the so-called DOC (Dynamic Orthog-

onal Component) method. The main idea of DOC is that by a contemporary linear

transformation of the original p-dimensional time series, the resulting p-dimensional

time series does not have any significant cross-correlations, so univariate time series

models can be fitted to each component of transformed time series and dimension

reduction can be achieved this way. We use the data from the first quarter of 1981

through the last quarter of 2009. Thus, the length of the series n = 116 and the

dimension p = 5.

According to Figure 1 in Matteson and Tsay (2011), there seems no obvious

nonstationarity in all time series. To realistically measure the forecasting error, we

divide the data set into training set and testing set. Approximately 80% of the

data which contains the first 92 data points is included into the training set and

the remaining 24 data points are included into the testing set. Specifically, we use

a rolling-window approach, and get Ŷ
(h)

92+j, h = 1, 2, 3, 4 based on (Yj, · · ·Y91+j) for

j = 1, 2, · · · 24−h, h = 1, 2, 3, 4 and then report the average of forecasting errors over

24 − h, h = 1, 2, 3, 4 periods. The one, two, three, and four-step ahead forecasts are

implemented using the following procedure: (1) For j = 1, · · · , 24 − h, h = 1, 2, 3, 4,

we apply PCMC to the (Yj, · · ·Y91+j) and estimate the number of factors and the
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factor series; (2) A vector autoregressive model is fitted to the estimated factor series

with the order chosen by the AIC and followed by a refinement of the optimal VAR

model, which is achieved by hard thresholding the VAR coefficient matrix based

on t-ratio (thresholding value equals to 1.7) using “refVAR” in MTS package. The

reason for refining VAR model is the over-parameterization of the optimal VAR model

considering the limited time series length. We also tried setting the thresholding value

to be 2, which gives similar results; (3) the h-step ahead forecast is then ÂX̂(h)
92+j, h =

1, 2, 3, 4, where Â is the estimated factor loading matrix, and X̂
(h)
92+j is the h-step

ahead prediction based on the fitted VAR model to the lower-dimensional factor

series. DOC method is also carried out in a similar fashion. Once an uncorrelated p-

dimensional time series is obtained, (1) optimal AR models selected by AIC are fitted

to each univariate time series; (2) the h-step ahead predictions are computed for each

univariate time series and transformed back into the original scale to compute FE.
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Figure 2.1: Auto and cross-correlations of GDP of five countries

From the autocorrelation plot in Figure 2.1, significant autocorrelations and cross

correlations exist up to lag 3. In Table 2.6, we present the average forecasting error

and the proportion of estimated number of factors based on Lk0 and Γ
(1)
k0

for k0 =

1, 2, 3. It can be seen that Γk0-based approach could noticeably outperform DOC-

based one and Lk0-based one in terms of forecasting error and its advantage seems

quite uniform across (h, k0), where h indicates the hth ahead prediction and k0 is the

number of lags involved. The performance of Lk0 and Γk0 depends on the choice of

k0, and in this case k0 = 3 often delivers the optimal forecasting error (unreported

results show that increasing k0 beyond 3 does not help reduce the forecasting error

significantly). Noticeably, Γk0-based approach appears less sensitive to the choice

of k0 as compared to Lk0-based ones. It is worth noting that the gain in forecasting

accuracy by Γk0-based approach (as compared to the Lk0-based one) is completely due

to the use of a different matrix to extract the number of factors and factor loading

matrix, as we apply the same procedure of fitting VAR model to the estimated factor
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series.

Table 2.6: Mean of FE and r̂, ŝ for GDP data

Lk0 Γk0 DOC

FE r̂ FE ŝ FE ŝ

r̂ = 2 r̂ = 3 r̂ = 4 ŝ = 2 ŝ = 3 ŝ = 4 ŝ = 5

one-step ahead prediction

k0 = 1 1.377 0 0.25 0.75 1.129 0 1 0 1.345 1

k0 = 2 1.301 0.042 0.75 0.208 1.129 0 1 0 1.345 1

k0 = 3 1.17 0 1 0 1.147 0 1 0 1.345 1

two-step ahead prediction

k0 = 1 1.597 0 0.26 0.74 1.31 0 1 0 1.326 1

k0 = 2 1.398 0 0.78 0.22 1.281 0 1 0 1.326 1

k0 = 3 1.326 0 1 0 1.255 0 1 0 1.326 1

three-step ahead prediction

k0 = 1 1.509 0 0.27 0.73 1.366 0 1 0 1.32 1

k0 = 2 1.431 0 0.77 0.23 1.296 0 1 0 1.32 1

k0 = 3 1.318 0 1 0 1.255 0 1 0 1.32 1

four-step ahead prediction

k0 = 1 1.528 0 0.29 0.71 1.326 0 1 0 1.358 1

k0 = 2 1.304 0 0.76 0.24 1.289 0 1 0 1.358 1

k0 = 3 1.28 0 1 0 1.274 0 1 0 1.358 1

2.6.2 7-city Temperature Series

The second data set we analyze is the monthly temperature series for 7 cities: Nanjing,

Dongtai, Huoshan, Hefei, Shanghai, Anqing and Hangzhou in Eastern China. The

series run from January 1954 to December 1998, a portion of which have been analyzed

by Pan and Yao (2008). The length of the data is n = 540 and the dimension p = 7.

Figure 2.2 suggests that there exist strong seasonal dependence.
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Figure 2.2: Monthly temperatures for seven cities in Eastern China

Following the approach in Section 2.6.1, we use the first 80% of the data which

contains the first 433 data points as the training set and the remaining 107 data

points are included in the testing set. Using a rolling-window approach, we get

Ŷ
(1)

433+j based on (Yj, · · · , Y432+j) for j = 1, · · · , 107 and then report the average of

forecasting errors over 107 periods. The one-step ahead forecast is implemented using

the following procedure: (1) For j = 1, · · · , 107, we apply PCMC to the training data

(Yj, · · · , Y432+j) and estimate the number of factors and factor series; (2) A (possibly

multivariate) seasonal ARIMA (0, 0, 1) × (0, 1, 1)12 model is fitted to the estimated

factor series. The order of this particular model is determined by checking ACF plots

of estimated factor series, as shown in Figure 2.3 for one particular training data; the

model fits the estimated factor series quite well, as the residual autocorrelation is fairly

small for most training data; see Figure 2.4 for the average of the absolute value of

the acf of residual series after fitting the above seasonal model to the estimated factor

series from MDDM-based approach. Similar findings apply to the Lk0-based one. (3)
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the one-step ahead forecast is then ÂX̂(1)
433+j, where Â is the estimated factor loading

matrix, and X̂
(1)
433+j is the one-step ahead prediction based on the fitted seasonal

ARIMA model to the lower dimensional factor series. In Table 2.7, we present the

average forecasting error and the proportion of estimated number of factors based on

Lk0 and Γ
(1)
k0

. The choice of k0 = 12, 24, 36 is based on the consideration that the

time series is apparently seasonal with period 12.

Figure 2.3: ACF plot of estimated factor series selected by Γ
(1)
k0

-based method

Figure 2.4: Average of absolute value of ACF of residual series after fitting the sea-
sonal model to the estimated factor series determined by the Γ

(1)
k0

-based method
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Table 2.7: Mean of FE and r̂, ŝ for 7-city monthly temperature data

Lk0
Γk0

FE r̂ FE ŝ

r̂ = 1 r̂ = 2 r̂ > 2 ŝ = 1 ŝ = 2 ŝ > 2

k0 = 12 1.894 0 1 0 1.113 1 0 0

k0 = 24 1.898 0 1 0 1.113 1 0 0

k0 = 36 1.892 0 1 0 1.113 1 0 0

Figure 2.5: Forecast errors computed from 107 training-testing sets with k0 = 12

It can be seen from Table 2.7 that Lk0-based approach and Γk0-based one deliver

different number of factors and the performance of both methods are stable with

respect to the choice of k0 = 12, 24, 36. The Γk0-based method has substantially

smaller FEs than those of Lk0-based method, as shown in Figure 2.5. It suggests

that using one factor model, as estimated by the MDDM-based approach for all

training data, can lead to more accurate forecasting. Note that the underlying factor

series is non-stationary, which is not covered by our theory. Nevertheless, it shows

the potential applicability of our approach to non-stationary time series. For both
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real data examples, it would be interesting to fit multivariate nonlinear time series

models to the estimated factor series after applying Γk0-based dimension reduction

method. We did not pursue this step since there seems no general guidance on how

such modeling can be conducted.

2.7 Summary and Conclusion

In this paper, we propose the so-called martingale difference divergence matrix to

quantify the conditional mean (in)dependence of a random vector V ∈ Rp on U ∈ Rq.

The MDDM encodes the number and form of linear combinations of V that are

conditional mean independent of U . Building on this property, we generalize MDDM

to the time series context and introduce cumulative MDDM, which can approximately

quantify the conditional mean independence of Yt upon the past information Ft−1.

Dimension reduction for a multivariate time series is then achieved by estimating the

number and form of linear combinations that are conditionally mean independent

of the past, which is encoded in the cumulative MDDM. Compared to the use of

linear dependence metric in Lam, Yao and Bathia (2011) and Lam and Yao (2012),

our cumulative MDDM is a natural nonlinear analogue and can capture unknown

nonlinear mean dependence. We also present a static factor model representation for

our dimension reduction framework and discuss the subtle difference from the static

factor model that was studied in previous literature. Since we typically do not know a

priori whether nonlinear dependence exists in practice, it might be safe/robust to use

our MDDM-based dimension reduction approach. In terms of implementation, since

sample MDDM has a V-statistic form, it can be readily calculated. The estimation

of the number of factors and factor loading matrix can be conveniently implemented

by spectral decomposition of sample cumulative MDDM.

41



For MDDM-based dimension reduction of conditional mean, we provide some the-

oretical results to justify the validity of our method. Although our theory is obtained

only for the case p is fixed, we investigate the finite sample performance in both small

p and large p settings in our simulation studies. In the small-p setting, our limited

simulation results show that our MDDM-based approach can be as effective as the

linear counterpart in Lam and Yao (2012) for linear Gaussian time series and can

outperform the latter for nonlinear time series. The merits of the MDDM-based di-

mension reduction are further supported by two real data illustrations. Although the

simulation suggests our approach may still be useful in the large p setting, there is

currently no theoretical support. As seen from Li, Wang and Yao (2016), there can

be complications with the ratio-based estimator (see (2.4.2)) in the high-dimensional

setting, and one may have to resort to random matrix theory to derive a sensible

estimator for the number of factors. In addition, the finite sample simulation results

and data illustrations show that in some cases, the results can depend on the choice

of k0, which is the number of lags included in the cumulative MDDM. It would be

desirable to develop a data driven rule for k0 besides the visual inspection of the

(partial) autocorrelation plot. Furthermore, strict stationarity is assumed through-

out, and it would be interesting to extend the MDDM-based methodology to allow

nonstationary series; see Pan and Yao (2008), Motta, Hafner and von Sachs (2011),

and Eichler, Motta and von Sachs (2011). Also an extension to dimension reduction

for conditional variance-covariance matrix using MDDM and its variant would be

interesting. The research along these directions are well underway.
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Chapter 3

Dimension Reduction for
Multivariate Volatility

3.1 Background

Volatility is a crucial quantity in economics and finance since it represents measure-

ment of risk and often an estimate of volatility is required in order to conduct tasks

of economics and finance such as hedging. It has been empirically documented that

the volatility of multivariate time series is changing over time and it is essential to

model time-varying multivariate volatility [see Engle (1982), Bollerslev (1986)]. A

main difficulty in the multivariate volatility modeling is the curse of dimensionality.

If the dimension of time series is p, the volatility matrix is of dimension p(p + 1)/2,

and GARCH models without any structral constraints would require O(p4) number

of parameters, thus dimension reduction is often necessary in volatility modeling even

for moderate p. There is a large and growing literature on the dimension reduction

for volatility modeling. Here we mention several representative lines of research, no-
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tably GARCH models with structural constraints (e.g. Bollerslev (1990), Engle, Ng

and Rothschild (1990), Engle (2002), Weide (2002), Pelletier (2006)) and the use of

principal component analysis (PCA) and variations (e.g. Chen, Härdle and Spokoiny

(2007), Fan, Wang and Yao (2008), Matteson and Tsay (2011), Hu and Tsay (2014)

and Li, Gao, Li and Yao (2016)). In the application of PCA, some of the articles

mentioned above used the covariance matrix to quantify the conditional variance de-

pendence of multivariate time series, which may fail to capture the nonlinear volatility

dependence. There are a few exceptions. For example, the generalized kurtosis matrix

was recently developed by Hu and Tsay (2014), which can measure certain degree of

nonlinear dependence and forms the core of the so-called principal volatility compo-

nent analysis. In particular, applying eigen decomposition to the so-called cumulative

generalized kurtosis matrix, which is the summation of generalized kurtosis matrix

at different time lags, can lead to an effective estimation of the number and forms of

linear combinations that are conditionally heteroscedastic. More recently, Li, Gao, Li

and Yao (2016) further proposed a way of capturing nonlinear dependence to gener-

alize the principal volatility component analysis of Hu and Tsay (2014) by extending

an indicator function based approach used in Pan, Polonik and Yao (2010) and Fan,

Wang and Yao (2008) for a related problem. However, their nonlinear metric re-

quires the selection of user-chosen quantities and can be computationally costly to

implement.

In this paper, we introduce new matrix objects, the so-called volatility martin-

gale difference divergence matrix (VMDDM, hereafter) and vec volatility martingale

difference divergence matrix (vecVMDDM, hereafter) to measure both linear and non-

linear conditional variance dependendence. VMDDM and vecVMDDM can be viewed

as extensions of martingale difference divergence matrix in Lee and Shao (2016), which

measures the conditional mean dependence. We demonstrate the usage of VMDDM
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and vecVMDDM in dimension reduction of volatility context by applying new matrix

objects to two dimension reduction frameworks: One is the principal volatility com-

ponent analysis (PVCA, hereafter) proposed by Hu and Tsay (2014) and generalized

by Li, Gao, Li and Yao (2016). Here, the goal is to estimate the number of linear

combinations that exhibit conditional heteroscedasticity and the volatility space [Li,

Gao, Li and Yao (2016)] which is the space spanned by these linear combinations.

In the other framework, we assume that there exsit conditionally uncorrelated com-

ponents (CUC, hereafter) [Fan, Wang and Yao (2008)] after a linear transformation

and the objective is to estimate the orthogonal transformation matrix. Our proposed

metrics are characteristic function-based, and they are conceptually simple, easy to

implement and requires less number of user-chosen quantities.

The rest of the paper is organized as follows. We introduce VMDDM, its prop-

erties and application to principal volatility component analysis in Section 3.2. In

Section 3.3, we propose vecVMDDM and describe its corresponding application to

dimension reduction in the context of conditionally uncorrelated components model.

To demonstrate the finite sample performance of dimension reduction for volatility

with VMDDM and vecVMDDM, simulation results are presented in Section 4.4.1 and

data examples are collected in Section 3.5. Section 3.6 concludes.

A word on notation. Let i =
√
−1 be the imaginary unit. The scalar product

of vectors x and y is denoted by < x, y >. For a complex-valued function f(·),

the complex conjugate of f is denoted by f and |f |2 = ff . Denote the Euclidean

norm of x = (x1, · · · , xp) ∈ Cp as |x|p, where |x|2p = x1x1 + · · · + xpxp, and if

x = (x1, · · · , xp) ∈ Rp, it is sometimes denoted as ‖x‖, where ‖x‖2 = x2
1 + · · ·x2

p.

For a square matrix A = (Ai,j)i,j=1,··· ,p, spectral norm of A is denoted as ‖A‖2,

where ‖A‖2 =
√
λmax(ATA) and Frobenius norm of A is denoted by ‖A‖F , where

‖A‖F =
√
tr(ATA) and tr(A) =

∑p
i=1Ai,i. A random vector x ∈ Ls if E|x|sp <∞.
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3.2 Principal Volatility Component Analysis

Modeling and inference for volatility is of primary importance in the analysis of

econometric and financial time series. Empirical study of multivariate volatility is

difficult, in part because of high dimensionality of the volatility matrix, and also due

to the positive semi-definiteness constraints on the volatility matrix, which needs to

be satisfied by its sample estimator. Many approaches have been proposed to model

and estimate volatility matrix; see Tsay (2010, Chapter 10) for a brief discussion

of these methods. Recently, Hu and Tsay (2014) and Li, Gao, Li and Yao (2016)

proposed methods to achieve dimension reduction of volatility by assuming a factor

model, which is briefly reviewed below.

Let Yt = (Y1,t, · · · , Yp,t)T denote a p-dimensional stationary time series. We as-

sume E(Yt|Ft−1) = 0 for simplicity as our focus is on the volatility. Define the

volatility matrix of Yt as Σt = cov(Yt|Ft−1) = E(YtY
T
t |Ft−1), which is a p × p ma-

trix. To perform dimension reduction for Σt, Hu and Tsay (2014) imposed a linear

structure, i.e.,

vec(Σt) = c0 +
∞∑
i=1

Civec(Yt−iY
T
t−i), (3.2.1)

where vec(M) denotes the column-stacking vector of the matrix M , c0 is a p2-

dimensional positive constant vector and Ci are p2 × p2 constant matrices for i > 0.

Thus the process Yt has conditional heteroscedasticity if and only if Ci 6= 0 for some

i > 0, which is equivalent to the fact that YtY
T
t is correlated with Yt−iY

T
t−i for some

i > 0. This observation motivates them to define the lag-l generalized kurtosis matrix

Gl =

p∑
i=1

p∑
j=i

cov(YtY
T
t , xij,t−l)cov(YtY

T
t , xij,t−l)

T ,

46



where xij,t−l is a nonlinear function of Yi,t−lYj,t−l, i.e., xij,t−l = φ(Yi,t−lYj,t−l), with

φ(·) chosen to be Huber’s function. In particular,

φ(y) = y1(|y| ≤ c2) + {2c√y − c2}1(y > c2) + {c2 − 2c
√
|y|}1(y < −c2), (3.2.2)

where c is a pre-specified constant. The cumulative generalized kurtosis matrix is

then defined as

Ωk0 =

k0∑
l=1

Gl

to measure the ARCH(k0), k0 <∞ effects in Yt and k0 =∞ for general GARCH-type

models. From its definition, we can see that cumulative generalized kurtosis matrix

measures the cumulative linear dependence of YtY
T
t on {xij,t−l}.

Motivated by Hu and Tsay’s proposal, we seek linear combinations of Yt, say

mTYt, such that mTYt has no conditional heteroscedasticity, i.e., E((mTYt)
2|Ft−1) =

E(mTYt)
2, which is equivalent to mTΣtm = mTΣm, where Σ = E(YtY

T
t ) is the

unconditional covariance matrix of Yt. This is further equivalent to the fact that

mTE({YtY T
t − Σ}|Ft−1)m = 0, (3.2.3)

which implies that mTΩk0m = 0. However, since they use the linear metric to measure

the uncorrelatedness of YtY
T
t with xij,t−l for all i ≤ j and l = 1, 2, · · · , their procedure,

which is based on Ωk0 and its sample estimate, may not be able to fully capture

nonlinear dependence. To this end, Li, Gao, Li and Yao (2016) adopted an indicator

function-based approach and formulated the PVCA as an equivalent factor model to

acheive dimension reduction for Σt. Specifically, let

Yt = AXt + εt,
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where A ∈ Rp×s is a factor loading matrix, Xt ∈ Rs is a latent factor which generates

the conditional heteroscedasticity of Yt and εt is an error process which exhibits

conditional homoscedasticity. They defined a volatility spaceM as the space spanned

by colums of the matrix A which is assumed to satisfy ATA = Is, where s is the

number of factors. It is important to note that matrix A is not unique, but volatility

space M is unique. Under the above factor model,

Σt = AΣx,tA
T + Σε,

where Σx,t = cov(Xt|Ft−1). Let B ∈ Rp×(p−s) be a matrix such that (A,B) forms a

p× p orthogonal matrix. Then

E[(YtY
T
t − Σ)I(Yt−k ∈ W )]B = 0, ∀W ∈ Bt,

where Bt is any π-class such that the σ-algebra generated by Bt is Ft−1 and I(·) is an

indicator function. By using the above fact, they built the following matrix,

Ψk0 =

k0∑
k=1

∑
W∈B

w(W ){E[(YtY
T
t − Σ)I(Yt−k ∈ W )]}2

where w(·) is a nonnegative weight function, B is a countable sequence of subsets

and one example of (w(·), B) adopted in Fan, Wang and Yao (2008) and Li, Gao, Li

and Yao (2016) is w(·) = 1
n
, B = {u ∈ Rp : |u| ≤ |Yt|, t = 1, 2, · · · , n}. According

to the definition of Ψk0 , it is easily seen that Ψk0 is a positive semidefinite matrix.

Similar to Hu and Tsay (2014), they seek m ∈ Rp such that mTYt has no conditional

heteroscedasticity which corresponds to those in the orthogonal complement of the
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volatiliy space. Since

E[(YtY
T
t − Σ)I(Yt−k ∈ W )]m = 0,

implies mTΨk0m = 0.

Remark 3.2.1. It is worth mentioning that conditional variance dependence has been

taken into account in Pan, Polonik and Yao (2010) who proposed the so-called

innovation expansion approach. More specifically, Ψk0 in Li, Gao, Li and Yao (2016)

appeared in Pan, Polonik and Yao (2010) to measure the conditional variance de-

pendence but the two papers differ in the way they estimate the number of factors

and the volatility space. In particular, Li, Gao, Li and Yao’s approach is based on

spectral decomposition of Ψk0 and they adopt the ratio-based estimator (see (3.2.7))

to estimate the number of factors.

Note that Li, Gao, Li and Yao (2016) do not assume linear structure (see (3.2.1)) in

Hu and Tsay (2014) and their Ψk0 incorporates nonlinear conditional variance depen-

dence of Yt upon Ft−1, and can be regarded as a nonlinear analogue of Ωk0 . However,

a practical drawback associated with this approach is that it requires selections of

several user-chosen parameters when computing Ψk0 i.e., k0, w(·), B. Especially,

for w(·), B, there seems no clear guidelines to follow for selecting these user-chosen

parameters and little is known about the impact of two user-chosen parameters in

practice.

3.2.1 Volatility Martingale Difference Divergence Matrix

In a recent article, Lee and Shao (2016) constructed a matrix called MDDM which

measures conditional mean dependence between two random vectors and applied it
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to achieve dimension reduction for conditional mean of stationary multivariate time

series. Below we propose an extension of MDDM to measure the conditional variance

dependence of two random vectors and use it to do dimension reduction for volatility.

In this section, we provide the definition of volatility MDDM and present its key

properties.

For Y ∈ Rp, X ∈ Rq and E(Y |X) = E(Y ) = 0, suppose that there is a linear

combination of Y , say α ∈ Rp, such that E[(αTY )2|X] = E[(αTY )2] although Y is

not necessarily conditionally variance independent of X, i.e. E[Y Y T |X] 6= E[Y Y T ]

a.s.. Our goal is to find a matrix that encodes the number and the form of linear

combinations of Y that are conditionally variance independent of X.

For q = 1, the generalized kurtosis matrix is defined as

KM = cov(Y Y T , X)cov(Y Y T , X)T which is a real and symmetric p× p matrix. We

can rewrite it as

KM = E((Y Y T − Σ)(Y ′(Y ′)T − Σ)TXTX ′)

where (X ′, Y ′) is an iid copy of (X, Y ) and Σ = E(Y Y T ).

To measure the conditional variance independence of Y on X, i.e., var(Y |X) =

var(Y ), which is equivalent to E(Y Y T |X) = Σ under the assumption that E(Y |X) =

0, we first note an analogy between the MDDM(·|·) and L(·|·) in Definition 2.3.1 and

Remark 2.3.1. Write

L(Y |X) = cov(Y,X)cov(Y,X)T = E((Y − E(Y ))(Y ′ − E(Y ′))TXT (X ′)),

MDDM(Y |X) = −E[(Y − E(Y ))(Y ′ − E(Y ′))T |X −X ′|q],

which shows that MDDM(Y |X) replaces XTX ′ in L(Y |X) by −|X − X ′|q in its
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definition. Based on this intuition and the definition of KM , we define the volatility

martingale difference divergence matrix below.

Definition 3.2.1. Volatility Martingale Difference Divergence Matrix

Given Y = (Y1, · · · , Yp) ∈ Rp, X ∈ Rq and assume that Y ∈ L4, X ∈ L2 and

E(Y |X) = 0. Define that

VMDDM(Y |X) = −E[(Y Y T − Σ)(Y ′(Y ′)T − Σ)T |X −X ′|q]

Note that VMDDM(Y |X) is a real and symmetric p× p matrix.

Proposition 3.2.1. Assume that Y ∈ L4, X ∈ L2 and E(Y |X) = 0. Then we have

that

1. VMDDM(Y |X) is positive semidefinite.

2. The rank of VMDDM(Y |X) is equal to p−h, where h is the number of linearly

independent combinations α1, · · · , αh, such that E((αTj Y )2|X) = E((αTj Y )2) for

j = 1, · · · , h.

It can be seen from the proof of Proposition 3.2.1 that the conditional variance

independence of αTY on X is equivalent to conditional mean independence of Y Y Tα

on X. Given a random sample (Xt, Yt)
n
t=1 from the joint distribution of (X, Y ), let

Y n = n−1
∑n

t=1 Yt. Then we define the sample VMDDM as

VMDDMn(Y |X) = − 1

n2

n∑
i=1

n∑
j=1

(YiY
T
i − Σn)(YjY

T
j − Σn)T |Xi −Xj|q,

where Σn = n−1
∑n

t=1(Yt − Y n)(Yt − Y n)T is the sample estimator of Σ.
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Recall that Ψk0 defined in Li, Gao, Li and Yao (2016) is also a nonlinear analogue

of Ωk0 in Hu and Tsay (2014). The matrix that corresponds to Ψk0 is LG(Y |X) =∑
W∈B w(W ){E[(Y Y T − Σ)I(X ∈ W )]}2 which can be expressed as

LG(Y |X) = E[(Y Y T − Σ)(Y ′(Y ′)T − Σ)T
∑
W∈B

w(W )I(X ∈ W )I(X ′ ∈ W )]

The main difference between VMDDM(Y |X) and LG(Y |X) is the kernel function

of X where VMDDM(Y |X) and LG(Y |X) have −|X−X ′|q and
∑

W∈B w(W )I(X ∈

W )I(X ′ ∈ W ), resepectively. It would be interesting to see which inference method

(i.e., the one based on LG(Y |X) versus the one based on VMDDM(Y |X)) delivers

a better estimate of the number of factors and volatility space and we shall address

this question in our simulations.

3.2.2 Cumulative Volatility Martingale Difference Divergence
Matrix

As we discussed at the beginning of Section 3.2, our goal is to quantify the conditional

variance dependence of Yt on Ft−1 = σ(Yt−1, Yt−2, · · · ). In practice, since we only have

a finite stretch of observations from the process Yt, we approximate the conditional

variance dependence of Yt on Ft−1 by Yt on Ft−1,t−k0 = σ(Yt−1, · · · , Yt−k0), where k0

is a pre-specified fixed integer. This approximation is quite common in time series

literature and considered reasonable for certain time series models. For instance, if

the time series model is ARCH(k0), then dependence of volatility on past information

is captured in Ft−1,t−k0 . Below we define so-called cumulative volatility martingale

difference divergence matrix.

Definition 3.2.2. Cumulative Volatility Martingale Difference Diveregence Matrix
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Let Yt ∈ Rp be a time series process with E[Yt|Ft−1] = 0. The cumulative volatility

martingale difference diveregence matrix is defined as

Vk0 =

k0∑
l=1

VMDDM(Yt|Yt−l). (3.2.4)

Since VMDDM is a positive semidefinite p×p matrix, Vk0 is also positive semidef-

inite. Note that VMDDM(Yt|Yt−l) depends on the time lag l but not on t due to

stationarity. The sample estimate of Vk0 is given by V̂k0 =
∑k0

l=1 VMDDMn(Yt|Yt−l).

Following Hu and Tsay (2014), we can explore the PVCA based on spectral decom-

position of V̂k0 and the details are presented in Section 3.2.3.

Remark 3.2.2. Our definition of Vk0 differs from that in Hu and Tsay (2014) and Li,

Gao, Li and Yao (2016) in several aspects. For Hu and Tsay (2014), we use a fixed

k0 whereas Hu and Tsay (2014) used ∞ at the population level, and used a growing

sequence of truncation lags k0(n) in their sample estimator. While the number of lags

included is always finite for a given sample size n, the asymptotic analysis seems quite

different for fixed k0 or growing k0(n). Furthermore, we note that Ωk0 is cumulating

the dependence from various lags in an entrywise and pairwise fashion, and Vk0 collects

dependence only in a pairwise fashion since our VMDDM(Y |X) is well defined for

X ∈ Rq, q > 1, whereas the generalized kurtosis matrix is only defined for X ∈ R1.

The key difference between Li, Gao, Li and Yao (2016) and our approach can be

explained as follows. If α is a linear combination of Yt that are conditionally variance

independent of Yt−k, k = 1, · · · , k0 then

E[(YtY
T
t − Σ)I(Yt−k ∈ W )]α = 0, ∀W ∈ Bt, ∀k = 1, · · · , k0, (3.2.5)

and this is equivalent to Ψk0α =
∑k0

k=1

∑
W∈Bt w(W ){E[(YtY

T
t −Σ)I(Yt−k ∈ W )]}2α =
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0⇔ αTΨk0α = 0. By contrast, our approach hinges on the observation that

Cov(YtY
T
t , e

i<s,Yt−k>)α = 0, ∀s ∈ Rq, ∀k = 1, · · · , k0. (3.2.6)

This is equivalent to

|Cov(YtY
T
t , e

i<s,Yt−k>)α|2 = 0, ∀k = 1, · · · , k0 ⇔ VMDDM(Yt|Yt−k)α = 0,∀k = 1, · · · , k0

⇔ Vk0α = 0

⇔ αTVk0α = 0.

Thus Li, Gao, Li and Yao (2016) used an indicator function-based approach whereas

we adopt a characteristic function-based approach. Moreover, Ψk0 contains three user-

chosen parameters such as k0, w(·), B whereas Vk0 has one user-chosen parameter

k0. Thus Vk0 is more convenient and straightforward to implement.

Neither method assumed structural assumptions as (3.2.1), which is imposed in Hu

and Tsay (2014). Generally speaking, the two approaches: ours and that in Li, Gao,

Li and Yao (2016) have roots from the two approaches to measure conditional mean

dependence: indicator function-based and characteristic function-based, which have

long existed in econometrics and statistics. See Bierens (1982, 1990), Escanciano

(2006) for some representative works on characteristic function-based approaches to

specification testing in econometrics, and Stute (1997), Koul and Stute (1999) and Zhu

(2003), among others for the use of indicator function approach to model checking

in statistics. In general, it seems that neither one dominates the other. We shall

examine the finite sample performance and see which metric is more effective in

terms of estimating the volatility space and factor number.
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3.2.3 Principal Volatility Component Analysis with Vk0

In the context of PVCA, we have two specific goals in order to achieve dimension

reduction for conditional variance matrix. One is to identify the number of linear

combinations of Yt that are conditionally variance independent of the past. The other

refers to estimating the form of linear combinations of Yt that exhibit conditional

homoscedasticity. It turns out that these two goals can be achieved by doing spectral

decomposition of Vk0 . Let (λj, γj)
p
j=1 be eigenvalues and eigenvectors of Vk0 . Then

γTj Vk0γj = λj, j = 1, · · · , p.

Assume that the rank of Vk0 is s, then due to the fact that Vk0 is positive semidefinite,

λj > λs+1 = λs+2 = · · · = λp = 0, j = 1, · · · , s. This implies that

γTj Vk0γj =

k0∑
k=1

MDD(YtY
T
t γj|Yt−k)2 = 0, j = s+ 1, · · · , p

⇔ E[(γTj Yt)
2|Yt−k] = E[(γTj Yt)

2] a.s., j = s+ 1, · · · , p, k = 1, · · · , k0.

Therefore, the eigenvectors corresponding to zero eigenvalues of Vk0 are the linear

combinations of Yt that have conditional homoscedasticity.

To estimate s which is the rank of Vk0 , we adopt the ratio-based estimator used in

Lam, Yao and Bathia (2011), Lam and Yao (2012) and Li, Gao, Li and Yao (2016).

Let (λ̂j, γ̂j)
p
j=1 be the estimates of eigenvalues and eigenvectors of V̂k0 . Let

ŝ = argmin1≤j≤p−1
λ̂j+1

λ̂j
. (3.2.7)

The reason for using ratio-based estimator is that our method has a close connection

to Li, Gao, Li and Yao (2016) and that it is fast and easy to implement. Next we
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present several assumptions and asymptotic results for our method.

Assumption 3.2.1. 1. λ1 > λ2 > · · · > λs > 0 = λs+1 = · · · = λp.

2. (Yt)t∈N is a strictly stationary and β-mixing process. There exist δ > 0 such

that E[|Yt|10+5δ] <∞ and for δ
′ ∈ (0, δ), β(k) = (k−(2+δ

′
)/δ
′
).

3. (Yt)t∈N is a strictly stationary and m-dependent process and E[|Yt|10] <∞.

Theorem 3.2.1. Let conditions 1, 2 in Assumption 3.2.1 hold. Then as n → ∞, it

holds that

1. λ̂i − λi = Op(n
−1/2) for i = 1, · · · , s.

2. γ̂i − γi = Op(n
−1/2) for i = 1, · · · , s.

Let conditions 1, 3 in Assumption 3.2.1 hold. Then as n→∞, it holds that

3. λ̂i = Op(n
−1) for i = s+ 1, · · · , p.

Remark 3.2.3. Theorem 3.2.1 is an analogue of Theorem 4.1 in Lee and Shao (2016),

where the same result is obtained for cumulative MDDM. It is worth noting that

Theorem 3.2.1 is developed for the fixed p case and it is different from Theorem 1

in Li, Gao, Li and Yao (2016). The latter aurthors have shown that the estimator

of volatilty space based on Ψk0 is consistent based on the metric d(M̂,M) in (3.4.1)

under the assumption that the number of factors is known and no theoretical results

for the estimator of the number of factors are presented in their paper. Here, we

derive the convergence rates for estimated eigenvalues and eigenvectors of Vk0 , which

easily lead to the fact that P (ŝ ≥ s)→ 1 i.e., the probability of underestimating the

true number of factors s goes to zero. However, we are unable to show the consistency

of ŝ due to some techinical difficulties.
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3.3 Conditionally Uncorrelated Components

To overcome the difficulty which comes from overparameterization in GARCH type

models, Fan, Wang and Yao (2008) proposed the so-called conditionally uncorrelated

components (CUC) model by assuming that the observed data Yt is a linear combi-

nation of CUCs. Specifically, the CUC model can be formulated as follows.

Assumption 3.3.1. Assume that

Yt = A0Zt, E[Zt|Ft−1] = 0, E[Zi,tZj,t|Ft−1] = 0, ∀i 6= j, (3.3.1)

where var(Yt) = Ip, Zt = (Z1,t, Z2,t, · · · , Zp,t)T are CUCs such that var(Zt) = Ip, A0

is an orthogonal matrix by construction i.e., var(Yt) = A0var(Zt)A
T
0 = A0A

T
0 = Ip.

By (3.3.1), the following relationship is implied,

Σt = A0Σz,tA
T
0 , Σz,t = var(Zt|Ft−1) = diag(σ2

1,t, · · · , σ2
p,t),

where σ2
i,t = var(Zi,t|Ft−1), i = 1, · · · , p. Therefore, if A0 is accurately estimated by

Â0, estimated CUCs can be obtained by Ẑt = ÂT0 Yt. Due to the fact that CUCs

are conditionally uncorrelated upon the past, univariate volatility models are fitted

to each estimated component. From the aspect of multivariate volatility modeling,

this approach reduces the number of parameters substantially and guarantees positive

semidefiniteness of estimated volatility of Yt. Here our main interest is the orthogonal

matrix A0 = (a01, · · · , a0p), a0j ∈ Rp, j = 1, · · · , p which is not identifiable in terms

of the order of (a01, · · · , a0p) and the sign. To measure the closeness of the truth A0

and its estimator Â0 = (â01, · · · , â0p), we use the D-distance which is invariant of the
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change of the order and sign, i.e.,

D(A0, Â0) = 1− 1

p

p∑
i=1

max1≤j≤p|aT0iâ0j|. (3.3.2)

Here we are only interested in the first step of CUC analysis which is the estimation of

A0 and we propose an alternative method of estimating A0 by employing our MDD-

based metric. Before introducing our method, we first provide a brief review of the

estimation method used in Fan, Wang and Yao (2008). Their approach is based on

the fact that Condition (3.3.1) is equivalent to

∑
W∈Bt

|E[Zi,tZj,tI(Yt−k ∈ W )]| = 0, (3.3.3)

for any π-class Bt ⊂ Ft−1 such that the σ-algebra generated by Bt is equal to Ft−1.

They defined an objective function Φk0(·) as

Φk0(M) =

k0∑
k=1

∑
1≤i<j≤p

∑
W∈B

w(W )|E[mT
i YtY

T
t mjI(Yt−k ∈ W )]|

=

k0∑
k=1

∑
1≤i<j≤p

∑
W∈B

w(W )|mT
j ⊗mT

i E[vec(YtY
T
t )I(Yt−k ∈ W )]|,

where w(·) is a nonnegative weight function, B is a countable sequence of subsets

and M = (m1, · · · ,mp),mi ∈ Rp, i = 1, · · · , p. Correspondingly, estimator of A0 is

Â0 = argminM Φ̂k0(M) subject to the constraint that M is orthogonal, where Φ̂k0(·)

is the sample counterpart of Φk0(·). Note that this approach suffers from the same

drawback as mentioned in Remark 3.2.2 for Ψk0-based approach, i.e., the selection of

w(·) and B. Here we propose an alternative approach which is relatively simple to

implement and can be computationally more efficient.
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3.3.1 vec Volatility Martingale Difference Divergence Matrix
and Cumulative vecVMDDM

For Yt ∈ Rp and E[Yt|Ft−1] = 0, our goal in this section is to estimate an orthogonal

matrix A0 = (a01, · · · , a0p) such that the volatilty matrix of AT0 Yt is a diagonal matrix.

In other words, aT0iYt and aT0jYt, i 6= j are conditionally uncorrelated given the past

values of Yt, i.e., E[aT0iYtY
T
t a0j|Ft−1] = 0. We can view the above relationship as

conditional mean independence of aT0iYtY
T
t a0j on Ft−1. Hence, we can define an

alternative MDD-based objective function Gk0(·). For M = (m1, · · · ,mp), we define

Gk0(M) =

k0∑
k=1

∑
1≤i<j≤p

MDD(mT
i YtY

T
t mj|Yt−k)2

=

k0∑
k=1

∑
1≤i<j≤p

MDD(mT
j ⊗mT

i vec(YtY
T
t )|Yt−k)2

=

k0∑
k=1

∑
1≤i<j≤p

mT
j ⊗mT

i MDDM(vec(YtY
T
t )|Yt−k)mj ⊗mi

=
∑

1≤i<j≤p

mT
j ⊗mT

i {
k0∑
k=1

MDDM(vec(YtY
T
t )|Yt−k)}mj ⊗mi

=
∑

1≤i<j≤p

(mj ⊗mi)
T ⊗ (mT

j ⊗mT
i ){vec(

k0∑
k=1

MDDM(vec(YtY
T
t )|Yt−k))}

This expression motivates us to define vecVMDDM and cumulative vecVMDDM dis-

played below.

Definition 3.3.1. vec Volatility Martingale Difference Divergence Matrix
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Given Y ∈ Rp, X ∈ Rq and assume that Y ∈ L4, X ∈ L2 and E[Y |X] = 0. We define

vecVMDDM(Y |X) = MDDM(vec(Y Y T )|X)

= −E[{vec(Y Y T − Σ)}{vec(Y ′(Y ′)T − Σ)}T |X −X ′|q].

Observe that vecVMDDM(Y |X) is a real, symmetric p2×p2 matrix. Based on the

sample (Xt, Yt)
n
t=1 from the joint distribution of (X, Y ), the sample vecVMDDM(Y |X)

is defined by

vecVMDDMn(Y |X) = − 1

n2

n∑
i=1

n∑
j=1

vec(YiY
T
i − Σn)vec(YjY

T
j − Σn)T |Xi −Xj|q

Proposition 3.3.1. Let Y = (Y1, · · · , Yp)T ∈ Rp, X ∈ Rq and VMDDM(Y |X) =

[VMDDM(Y |X)i,j]
p
i,j=1, vecV MDDM(Y |X) = [vecVMDDM(Y |X)i,j]

p2

i,j=1. Then

1. vecVMDDM(Y |X) is positive semidefinite.

2. tr(VMDDM(Y |X)) = tr(vecVMDDM(Y |X)) =
∑p

i=1

∑p
j=1 MDD(YiYj|X)2.

3. VMDDM(Y |X)i,j =
∑p

k=1 vecVMDDM(Y |X)(i−1)p+k,(j−1)p+k.

According to Proposition 3.3.1, we can retrieve the p×p matrix VMDDM(Y |X)

from the p2 × p2 matrix vecVMDDM(Y |X). Moreover, it is easy to show that

vecVMDDM(Y |X) is a positive semidefinite matrix due to the nonnegative definite-

ness of MDDM .

Definition 3.3.2. Cumulative vec Volatility Martingale Difference Divergence Matrix

Given Yt ∈ Rp, the cumulative vec volatility martingale difference divergence matrix

is defined by

vecVk0 =

k0∑
l=1

vecVMDDM(Yt|Yt−l)
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Since vecVMDDM is a positive semidefinite p2× p2 matrix, vecVk0 is also positive

semidefinite. Furthermore, the sample estimate of vecVk0 is

v̂ecV k0 =
∑k0

l=1 vecVMDDMn(Yt|Yt−l).

3.3.2 Estimation of CUC Model with vecVk0

In this section, we introduce an alternative approach to estimating A0 in the CUC

model by employing the new matrix object vecVk0 which effectively summarizes con-

ditional variance dependence between two random vectors. Note that

Gk0(M) =
∑

1≤i<j≤p

(mj ⊗mi)
T ⊗ (mT

j ⊗mT
i )vec(vecVk0)

and Gk0(A0) = 0 due to condition (3.3.1). Therefore, our estimator of A0 is

Â0 = argminMĜk0(M) subject to MMT = MTM = Ip,

where Ĝk0(·) is a sample counterpart of Gk0(·) which simply replaces vecVMDDM

with vecVMDDMn, i.e.,

Ĝk0(M) =
∑

1≤i<j≤p

(mj ⊗mi)
T ⊗ (mT

j ⊗mT
i )vec(v̂ecV k0)

In order to remove the constraint that MTM = MMT = Ip, we present a useful

representation of an orthogonal matrix M .

M = Π1≤i<j≤pRij(θij), − π ≤ θij ≤ π,
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where Rij(θij) is an identity matrix Ip with (i, i) and (j, j)th elements being replaced

by cos(θij) and (i, j), (j, i)th elements being replaced by sin(θij), −sin(θij), respec-

tively. With this representation of an orthogonal matrix M , the optimization problem

with a constraint is transformed into an unconstrainted minimization. This repre-

sentation is commonly used in the literature of dimension reduction for multivariate

time series; see Matteson and Tsay (2011), Fan, Wang and Yao (2008) and Weide

(2002), among others.

In our experience, Ĝk0(·) is simpler and faster to compute than the objective func-

tion Φ̂k0(·) used in Fan, Wang and Yao (2008) and estimation of A0 based on Ĝk0(·) is

computationally cheaper. The computational advantage comes from the separation

of (mj ⊗mi)
T ⊗mT

j ⊗mT
i and vec(v̂ecV k0) in Ĝk0 . In other words, vec(v̂ecV k0) only

needs to be computed once whereas the original procedure used in Fan, Wang and

Yao (2008) needs to calculate |mT
j ⊗ mT

i E[vec(YtY
T
t )I(Yt−k ∈ W )]|,W ∈ B many

times due to the fact that |mT
j ⊗mT

i E[vec(YtY
T
t )I(Yt−k ∈ W )]| cannot be separated

as in our case.

Below we present a theoretical result under suitable moments and dependence

conditions on Yt.

Assumption 3.3.2. 1. (Yt)t∈N is a strictly stationary and β-mixing process. There

exist δ > 0 such that E[|Yt|10+5δ] <∞ and for δ
′ ∈ (0, δ), β(k) = (k−(2+δ

′
)/δ
′
).

2. There exist a p× p orthogonal matrix A0 such that minimizes Gk0(·). Further-

more, the minimum value of Gk0(·) is obtained at an orthogonal matrix A if and

only if D(A0, A) = 0. (unique minimizer)

3. Gk0(A0)−Gk0(A) ≤ −aD(A0, A) for any orthogonal matrix A such that D(A0, A)

is smaller than a small but fixed constant and a > 0 is a constant.
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Theorem 3.3.1. Let k0 ≥ 1, p ≥ 1 be fixed integers. Under conditions 1, 2 in Assump-

tion 3.3.2,

1. supA|Ĝk0(A)−Gk0(A)| = Op(n
−1/2) and D(Â0, A0)→p 0 as n→∞.

If additionally condition 3 holds, then as n→∞, it holds that

2. D(Â0, A0) = Op(n
−1/2).

Theorem 3.3.1 and Assumption 3.3.2 condition 2 and 3 are analogous to Theorem

1 and Assumptions (b)-(e) in Fan, Wang and Yao (2008). Here we require stronger

moment assumption, which seems hard to relax based on our current technical argu-

ment.

3.4 Numerical Simulations

In this section, we study the finite sample performance of our VMDDM-based and

vecVMDDM-based dimension reduction approaches of a volatility matrix via simula-

tions in Sections 3.4.1 and 3.4.2, respectively. In particular, we focus on the dimension

reduction of a volatility matrix by PVCA in Section 3.4.1 and compare with the meth-

ods in Hu and Tsay (2014) and Li, Gao, Li and Yao (2016), which are based on Ωk0

and Ψk0 . In Section 3.4.2, we compare our Gk0-based approach with the Φk0-based

counterpart by Fan, Wang and Yao (2008). In our simulations, we tried several dif-

ferent values of k0 to assess the sensitivity of our dimension reduction method with

respect to the choice of k0. For each example, we replicate the simulation 1000 times.
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3.4.1 PVCA

In this subsection, our main focus is on estimating the volatility space and number of

factors. Four volatility models have been examined and finite sample performance for

our Vk0-based approach, Ωk0-based approach proposed by Hu and Tsay (2014) and

Ψk0-based approach suggested by Li, Gao, Li and Yao (2016) have been compared. In

order to compare the performance of estimating volatility space, we treat the number

of factors as known for Example 3.4.1 and Example 3.4.2 following Li, Gao, Li and

Yao (2016). For Example 3.4.3 and Example 3.4.4, we consider both cases, i.e., the

number of factors as known and unknown. We let c = 2.5 (see (3.2.2)) for Ωk0 and

w(·) = 1
n
, B = {u ∈ Rp : |u| ≤ |Yt|, t = 1, · · · , n} for Φk0 . Below we report the results

for n = 250, 500, 1000 and k0 = 1, 5. The following criteria are adopted to measure

the estimation accuracy.

• d(M̂,M) [Li, Gao, Li and Yao (2016)]

d(M̂,M) =

√
1− tr(ÂÂTAAT )

s
, (3.4.1)

where s is the number of factors. d(M̂,M) is used to measure the discrepancy

between M(A) and M(Â). AAT is a projection matrix onto the linear space

M(A) since ATA = Is and d(M̂,M) ∈ [0, 1]. d(M̂,M) = 1 if and only if the

two spaces are orthogonal with each other and d(M̂,M) = 0 if and only if two

spaces are identical. Thus, smaller value of d(M̂,M) indicates more accurate

estimation of volatility space.

• d(Â, A) [Li, Gao, Li and Yao (2016)]

d(Â, A) = 1− {
∑n

t=1(Yt − Y n)T ÂAT (Yt − Y n)}2

{
∑n

t=1(Yt − Y n)T ÂÂT (Yt − Y n)}{
∑n

t=1(Yt − Y n)TAAT (Yt − Y n)}
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d(Â, A) measures the linear dependence of ÂTYt and ATYt when A is a vector.

Here d(Â, A) ∈ [0, 1], d(Â, A) = 1 if ÂTYt and ATYt are uncorrelated and

d(Â, A) = 0 if ÂTYt and ATYt are perfectly correlated. Therefore smaller value

of d(Â, A) corresponds to better estimate of underlying factor series.

Example 3.4.1. This example is from Li, Gao, Li and Yao (2016). One ARCH(1)

time series are generated for Xt, i.e., Xt = σtet, σ
2
t = 1 + 0.9X2

t−1, where et is an

iid standard normal sequence. The factor loading matrix A = [1.0, 0.7,−0.1,−0.7]T .

Then the data is generated by Yt = AXt + εt, where εt are iid from N(0, Ip/p). For

this example, it can be derived that var(Yt|Ft−1) = Aσ2
tA

T + Ip/p so the dependence

on Yt−1Y
T
t−1 is quite linear.

Table 3.1: Mean, standard error (in the bracket) of d-distance of Example 3.4.1

Ωk0 Ψk0 Vk0

d(M̂,M)
n = 250, k0 = 1 0.0452 (0.0296) 0.0373 (0.0241) 0.0410 (0.0247)

n = 250, k0 = 5 0.0447 (0.0278) 0.0373 (0.0226) 0.0400 (0.0234)

d(Â, A)
n = 250, k0 = 1 0.0002 (0.0005) 0.0001 (0.0003) 0.0002 (0.0003)

n = 250, k0 = 5 0.0002 (0.0004) 0.0001 (0.0002) 0.0001 (0.0002)

d(M̂,M)
n = 500, k0 = 1 0.0276 (0.0158) 0.0229 (0.0134) 0.0259 (0.0145)

n = 500, k0 = 5 0.0280 (0.01595) 0.0235 (0.0134) 0.0260 (0.0144)

d(Â, A)
n = 500, k0 = 1 5.966e-05 (9.833e-05) 4.226e-05 (6.912e-05) 5.155e-05 (7.781e-05)

n = 500, k0 = 5 6.088e-05 (9.521e-05) 4.288e-05 (6.392e-05) 5.127e-05 (7.277e-05)

d(M̂,M)
n = 1000, k0 = 1 0.0184 (0.0100) 0.0143 (0.0075) 0.0170 (0.0089)

n = 1000, k0 = 5 0.0187 (0.0102) 0.0152 (0.0080) 0.0173 (0.0092)

d(Â, A)
n = 1000, k0 = 1 2.260e-05 (3.043e-05) 1.334e-05 (1.801e-05) 1.873e-05 (2.377e-05)

n = 1000, k0 = 5 2.332e-05 (3.178e-05) 1.502e-05 (2.039e-05) 1.953e-05 (2.684e-05)

As seen from Table 3.1, Ψk0-based approach slightly outperforms the other two ap-

proaches and our method slightly outperforms Ωk0-based approach, although all three
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methods are very comparable. It is interesting that Ψk0 and Vk0-based approaches are

slightly superior to Ωk0-based counterpart in terms of d(M̂,M) and d(Â, A), since

the dependence of volatility process over the past is fairly linear and therefore Ωk0-

based approach is expected to perform well. Overall, when n increases, d(M̂,M) and

d(Â, A) get smaller for all methods. Furthermore, it shows that all three methods

seem to have consistent performances with respect to the choice of k0.

Example 3.4.2. In this example, the linear ARCH(1) model for Xt in Example 3.4.1

is replaced by a nonlinear model, i.e., a stochastic volatility model.

Xt = eht/2, ht = 0.3 + 0.6(ht−1 − 0.3) + 0.3ηt,

where et, ηt are all iid standard normal sequences and independent from each other.

An examination of the sufficient conditions to ensure the stationarity for stochastic

volatility model (see Equation (3.40) in Chapter 3.12 of Tsay (2010)) shows that the

above model admits a stationary solution. The data is generated by Yt = AXt +

εt, where εt are iid from N(0, Ip/p). Like Example 3.4.1, we consider p = 4 and

var(Yt|Ft−1) = AehtAT + Ip/p which depends on (Yt−jY
T
t−j)

∞
j=1 in a very nonlinear

fashion.
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Table 3.2: Mean, standard error (in the bracket) of d-distance of Example 3.4.2

Ωk0 Ψk0 Vk0

d(M̂,M)
n = 250, k0 = 1 0.2601 (0.1235) 0.2220 (0.1005) 0.1367 (0.0639)

n = 250, k0 = 5 0.1384 (0.0612) 0.1215 (0.0529) 0.0899 (0.0499)

d(Â, A)
n = 250, k0 = 1 0.0163 (0.0475) 0.0100 (0.0102) 0.0036 (0.0036)

n = 250, k0 = 5 0.0036 (0.0035) 0.0028 (0.0025) 0.0024 (0.0291)

d(M̂,M)
n = 500, k0 = 1 0.2487 (0.1201) 0.2198 (0.1011) 0.1244 (0.0577)

n = 500, k0 = 5 0.1284 (0.0565) 0.1137 (0.0495) 0.0733 (0.0307)

d(Â, A)
n = 500, k0 = 1 0.0140 (0.0347) 0.0098 (0.0103) 0.0029 (0.0030)

n = 500, k0 = 5 0.0030 (0.0028) 0.0024 (0.0022) 0.0010 (0.0008)

d(M̂,M)
n = 1000, k0 = 1 0.2443 (0.1175) 0.2109 (0.0967) 0.1157 (0.0536)

n = 1000, k0 = 5 0.1236 (0.0528) 0.1067 (0.0464) 0.0662 (0.0280)

d(Â, A)
n = 1000, k0 = 1 0.0133 (0.0333) 0.0087 (0.0086) 0.0025 (0.0023)

n = 1000, k0 = 5 0.0028 (0.0024) 0.0021 (0.0018) 0.0008 (0.0006)

From Table 3.2, our Vk0-based approach outperforms the other two methods in

all cases with substantially smaller d(M̂,M) and d(Â, A). By comparison, the Ωk0-

based approach appears inferior to Vk0-based and Ψk0-based counterparts, which is

presumably due to its inability to capture strong nonlinear dependence of the volatility

process. Notice that both Ψk0-based approach and Vk0-based one aim to capture not

only linear but also nonlinear dependence of volatility process and this example is

the case where volatility appears to have nonlinear dependence. It is interesting that

our Vk0-based approach performs significantly better than Ψk0-based counterpart,

suggesting that Vk0 summarizes dependence of volatility more efficiently than Ψk0 for

this case. When k0 increases, the ability to estimate the true volatility space improves
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for all methods, showing sensitivity with respect to the choice of k0.

Example 3.4.3. This example is also from Li, Gao, Li and Yao (2016). The factor

Xt = (x1,t, x2,t)
T is generated by two ARCH(1) processes.

x1,t = σ1,te1,t, σ2
1,t = 1 + 0.8x2

1,t−1

x2,t = σ2,te2,t, σ2
2,t = 2 + 0.9x2

2,t−1

where ei,t, i = 1, 2 are all iid standard normal variables. For the factor loading matrix,

A =



0 0.7
√

2/2 −0.1

0 −0.7
√

2/2 0.1


The data is defined by Yt = AXt + εt, where εi,t, i = 1, 2 are iid from N(0, Ip/p) and

independent from ei,t, i = 1, 2.
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Table 3.3: Mean, standard error (in the bracket) of d-distance of Example 3.4.3 when
the number of factors is known and unknown

Ωk0 Ψk0 Vk0

d(M̂,M)
n = 250, k0 = 1 0.0433 (0.0371) 0.0382 (0.0246) 0.0537 (0.0593)

n = 250, k0 = 5 0.0505 (0.0491) 0.0344 (0.0223) 0.0475 (0.0564)

d(M̂,M)
n = 500, k0 = 1 0.0264 (0.0258) 0.0229 (0.0144) 0.0360 (0.0454)

n = 500, k0 = 5 0.0366 (0.0515) 0.0237 (0.0139) 0.0333 (0.0413)

d(M̂,M)
n = 1000, k0 = 1 0.0169 (0.0105) 0.0141 (0.0074) 0.0221 (0.0332)

n = 1000, k0 = 5 0.0232 (0.0311) 0.0151 (0.0078) 0.0220 (0.0264)

Ωk0 Ψk0 Vk0

d(M̂,M) ŝ d(M̂,M) ŝ d(M̂,M) ŝ

ŝ = 1 ŝ = 2 ŝ = 3 ŝ = 1 ŝ = 2 ŝ = 3 ŝ = 1 ŝ = 2 ŝ = 3

n = 250, k0 = 1 0.2939 (0.3282) 0.386 0.614 0 0.1834 (0.2805) 0.222 0.778 0 0.2956 (0.3281) 0.386 0.609 0.005

n = 250, k0 = 5 0.3405 (0.3355) 0.455 0.545 0 0.2551 (0.3184) 0.331 0.669 0 0.2944 (0.3286) 0.384 0.607 0.009

n = 500, k0 = 1 0.2440 (0.3209) 0.324 0.676 0 0.0954 (0.2133) 0.108 0.892 0 0.2684 (0.3287) 0.359 0.64 0.001

n = 500, k0 = 5 0.3085 (0.3382) 0.418 0.582 0 0.2041 (0.3039) 0.267 0.733 0 0.2766 (0.3287) 0.37 0.626 0.004

n = 1000, k0 = 1 0.1825 (0.2966) 0.242 0.758 0 0.0355 (0.1204) 0.031 0.969 0 0.2213 (0.3168) 0.298 0.701 0.001

n = 1000, k0 = 5 0.2644 (0.3322) 0.36 0.64 0 0.1134 (0.2428) 0.143 0.857 0 0.2579 (0.3306) 0.351 0.648 0.001

According to Table 3.3, when the number of factors is known, the performances

of Ωk0-based, Ψk0-based and Vk0-based methods are comparable for k0 = 1 and 5 with

Ψk0-based approach slightly outperforming the other two. For this example, the true

number of factors s is 2 and if we treat the number of factors as unknown, Ψk0-based

approach outperforms the other two approaches in terms of smaller d(M̂,M) and

higher proportion of correctly identifying the number of factors. However, it seems

that the sensitivity of Ψk0-based approach with respect to the choice of k0 is quite

high as compared to the other two methods.
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Example 3.4.4. In this example, the two linear ARCH(1) models for Xt = (x1,t, x2,t)
T

in Example 3.4.3 are replaced by nonlinear models, i.e., stochastic volatility models

x1,t = eh1,t/2, h1,t = 0.3 + 0.6(h1,t−1 − 0.3) + 0.3η1,t

x2,t = eh2,t/2, h2,t = 0.5 + 0.6(h2,t−1 − 0.5) + 0.5η2,t

where ηi,t, i = 1, 2 are all iid standard normal sequences and independent from each

other. Still the data is generated by Yt = AXt + εt, where εt are iid from N(0, Ip/p)

and independent from ηi,t, i = 1, 2. Like Example 3.4.3, we consider p = 4 and

var(Yt|Ft−1) = A

 eh1,t 0

0 eh2,t

AT +Ip/p which depends on (Yt−jY
T
t−j)

∞
j=1 in a very

nonlinear fashion.

From Table 3.4, if the number of factors is known, we see that Vk0-based approach

outperforms Ωk0-based and Ψk0-based approach, presumably due to its capability

of capturing strong nonlinear dependence of volatility. When k0 increases, perfor-

mances of all methods enhance significantly. When the number of factors is unknown,

Vk0-based method is still superior to Ωk0-based and Ψk0-based methods in terms of

d(M̂,M) and the proportion of correctly identifying the number of factors. Recall

that this example has strong nonlinear dependence of volatility. Thus limited simu-

lation evidence seems to suggest that Vk0-based approach is more efficiently dealing

with nonlinear dependence of volatility than Ψk0-based and Ωk0-based counterparts.
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Table 3.4: Mean, standard error (in the bracket) of d-distance of Example 3.4.4 when
the number of factors is known and unknown

Ωk0 Ψk0 Vk0

d(M̂,M)
n = 250, k0 = 1 0.1589(0.0694) 0.1599 (0.0682) 0.0957 (0.0461)

n = 250, k0 = 5 0.0888 (0.0355) 0.0853 (0.0338) 0.0654 (0.0376)

d(M̂,M)
n = 500, k0 = 1 0.1467 (0.0674) 0.1527 (0.0673) 0.0859 (0.0394)

n = 500, k0 = 5 0.0785 (0.0295) 0.0794 (0.0295) 0.0526 (0.0285)

d(M̂,M)
n = 1000, k0 = 1 0.1402 (0.0623) 0.1457 (0.0638) 0.0794 (0.0317)

n = 1000, k0 = 5 0.0734 (0.0288) 0.0766 (0.0297) 0.0453 (0.0257)

Ωk0 Ψk0 Vk0

d(M̂,M) ŝ d(M̂,M) ŝ d(M̂,M) ŝ

ŝ = 1 ŝ = 2 ŝ = 3 ŝ = 1 ŝ = 2 ŝ = 3 ŝ = 1 ŝ = 2 ŝ = 3

n = 250, k0 = 1 0.2692 (0.2416) 0.219 0.709 0.072 0.2681 (0.2397) 0.213 0.716 0.071 0.130 (0.1505) 0.058 0.934 0.008

n = 250, k0 = 5 0.1313 (0.1621) 0.07 0.928 0.002 0.1120 (0.1322) 0.044 0.955 0.001 0.0715 (0.0738) 0.01 0.988 0.002

n = 500, k0 = 1 0.2791 (0.2554) 0.25 0.701 0.049 0.2783 (0.2507) 0.24 0.692 0.068 0.1171 (0.1412) 0.05 0.947 0.003

n = 500, k0 = 5 0.1114 (0.1442) 0.053 0.947 0 0.1002 (0.1178) 0.034 0.963 0.003 0.0532 (0.0351) 0.001 0.998 0.001

n = 1000, k0 = 1 0.3139 (0.2746) 0.317 0.653 0.03 0.3170 (0.2720) 0.314 0.634 0.052 0.1037 (0.1258) 0.039 0.96 0.001

n = 1000, k0 = 5 0.1198 (0.1689) 0.074 0.926 0 0.0971 (0.1167) 0.033 0.966 0.001 0.0453 (0.0256) 0 0.999 0.001

3.4.2 CUC

In this subsection, our goal is to estimate an orthogonal matrix A0 = (a01, · · · , a0p)

which transforms the multivariate time series into conditionally uncorrelated compo-

nents. We consider two different methods of estimating a constant matrix A0, our

Gk0-based approach and Φk0-based approach used by Fan, Wang and Yao (2008).

Two different volatility processes are generated with n = 500 or 1000 and k0 = 1

or 5. For each example, mean and standard error of D-distances [see (3.3.2)] are
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computed in order to measure the precision of Â0. Observe that D(Â0, A0) ∈ [0, 1]

for any orthogonal matrices A0 and Â0. Moreover, if A0 is obtained by permuting

or reflecting the columns of Â0, then D(Â0, A0) = 0. Similary, D(Â0, A0) = 1 if and

only if the two matrices A0 and Â0 are orthogonal with each other. Hence, smaller

value of D(Â0, A0) refers to a better estimate of an orthogonal matrix A0.

Example 3.4.5. This example is from simulation section of Fan, Wang and Yao (2008).

Three GARCH(1,1) processes are generated for CUCs Zt = (z1,t, z2,t, z3,t)
T .

z1,t = ε1,tσ1,t, σ2
1,t = 0.02 + 0.9σ2

1,t−1 + 0.04z2
1,t−1 + 0.04z2

3,t−1

z2,t = ε2,tσ2,t, σ2
2,t = 0.1 + 0.8σ2

2,t−1 + 0.1z2
2,t−1

z3,t = ε3,tσ3,t, σ2
3,t = 0.28 + 0.6σ2

3,t−1 + 0.12z2
3,t−1

where εi,t, i = 1, 2, 3 are iid standard normal. Furthermore, the transformation matrix

A0 is set to be

A0 =


0 0.5 0.866

0 0.866 −0.5

−1 0 0

 ,

which is orthogonal. As var(εi,t) = 1, i = 1, 2, 3 and the sum of coefficients of σ2
i,t and

z2
i,t is smaller than 1 for i = 1, 2, 3, Zt admits a stationary solution. Recall that the

data Yt is generated by Yt = A0Zt and the conditional distribution Zt|Ft−1 follows

N(0, diag(σ2
1,t, σ

2
2,t, σ

2
3,t)).

From Table 3.5, means and standard errors of both Φk0 and Gk0-based approaches

are small for all cases which indicates that the estimation of A0 is reasonably ac-

curate. Overall, if n increases, then both methods produce better estimates of A0

as D-distances decreases. For most cases, both methods are comparable in terms of

estimating the transformation matrix A0 and sometimes Φk0-based approach is better
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than Gk0-based counterpart.

Example 3.4.6. In this example, we replace Zt = (z1,t, z2,t, z3,t)
T with the following

nonlinear volatility process TGARCH(1,1). Then the data Yt = A0Zt, where A0 is

defined in Example 3.4.5. Here Zt|Ft−1 follows N(0, diag(σ2
1,t, σ

2
2,t, σ

2
3,t)), where

z1,t = ε1,tσ1,t, σ2
1,t = 0.02 + 0.4σ2

1,t−1 + 0.36z2
1,t−1S1,t−1 + 0.04z2

1,t−1

z2,t = ε2,tσ2,t, σ2
2,t = 0.1 + 0.8σ2

2,t−1 + 0.09z2
2,t−1S2,t−1 + 0.01z2

2,t−1

z3,t = ε3,tσ3,t, σ2
3,t = 0.28 + 0.6σ2

3,t−1 + 0.27z2
3,t−1S3,t−1 + 0.03z2

3,t−1

with

Si,t−1 =


1 if zi,t−1 < 0

0 if zi,t−1 ≥ 0

, i = 1, 2, 3.
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Table 3.5: Mean, standard error (in the bracket) of D-distance of Example 3.4.5 and
Example 3.4.6

Example 3.4.5 Φk0 Gk0

n = 500, k0 = 1 0.1017 (0.0769) 0.1363 (0.0774)

n = 500, k0 = 5 0.0982 (0.0750) 0.1297 (0.0792)

n = 1000, k0 = 1 0.0877 (0.0735) 0.1219 (0.0780)

n = 1000, k0 = 5 0.0778 (0.0692) 0.1075 (0.0740)

Example 3.4.6 Φk0 Gk0

n = 500, k0 = 1 0.1793 (0.2933) 0.1484 (0.3002)

n = 500, k0 = 5 0.0835 (0.1415) 0.0636 (0.1405)

n = 1000, k0 = 1 0.0645 (0.0617) 0.0180 (0.0219)

n = 1000, k0 = 5 0.0483 (0.0508) 0.0152 (0.0214)

According to Table 3.5, when n increases, D-distance gets smaller for both meth-

ods which demonstrates that the ability to estimate A0 improves. If n = 500, the

finite performance of both methods are comparable and both provide fairly good es-

timator since D-distances are small. We can see that when n = 1000, our method

noticeably outperforms the Φk0-based approach with smaller D-distance.

We shall summarize the findings based on limited simulations. (1) For a dimension

reduction of volatility by the PVCA method, Vk0-based approach can be superior to

the existing methods (i.e., Ωk0 , Ψk0-based counterparts) if the volatility exhibits strong

nonlinear dependence when the number of factors are known or estimated. (2) Even

when the volatility seems to be quite linearly dependent, Vk0-based approach performs

slightly better than Ωk0-based counterparts but is slightly inferior to Ψk0-based one.

(3) For the estimation of CUC model, if the volatility dependence is fairly linear,

Φk0-based approach produces better estimate of the transformation matrix A0 than
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our Gk0-based counterpart. But Gk0-based method can outperform Φk0-based one in

certain nonlinear dependence cases.

3.5 Data Illustrations

In this section, we further compare our approach with the existing counterparts via

two real stocks data sets. These two real data sets have been analyzed by Li, Gao,

Li and Yao (2016) and Fan, Wang and Yao (2008), respectively.

3.5.1 6 Stocks Data

The first data set is the daily log returns of six stocks from January 2nd, 2002 to July

10th, 2008: Bank of America Corporation, Dell Inc., JPMorgan Chase & Co., FedEx

Corporation, McDonald’s Corporation, American International Group. The length

of the daily log returns is n = 1642 and the dimension is p = 6. We apply Ωk0-based,

Ψk0-based and Vk0-based approaches to this data set with k0 = 5 as Li, Gao, Li and

Yao (2016) did. All three methods estimate the number of factors ŝ = 1 which means

that there is one factor series describing the volatility behavior of six different daily log

returns. Table 3.6 displays the ratio of eigenvalues of each approach which convinces

us that there is one underlying factor series from this data set. Table 3.7 reports

estimated factor loading matrices for three methods which appear quite similar.
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Table 3.6: Ratios of eigenvalues for 6 Stocks Data

Ωk0 Ψk0 Vk0

λ2/λ1 0.0538 0.0271 0.0469

λ3/λ2 0.8584 0.8185 0.9649

λ4/λ3 0.3057 0.7097 0.6156

λ5/λ4 0.6653 0.6559 0.8170

λ6/λ5 0.5005 0.3200 0.4926

Table 3.7: Estimates of factor loading matrix for 6 Stocks Data

Ωk0 Ψk0 Vk0

Bank of America Corporation 0.3184 0.3922 0.3681

Dell Inc. 0.3408 0.3138 0.3173

JPMorgan Chase & Co. 0.6834 0.6492 0.6752

FedEx Corporation 0.2033 0.2224 0.2155

McDonald’s Corporation 0.1898 0.1263 0.1289

American International Group 0.4880 0.5107 0.4949

3.5.2 4 Stocks Data

Fan, Wang and Yao (2008) have examined this data set which is the daily log returns

of four stocks from January 2nd, 1991 to December 31st, 2000: Standard and Poors

500 index, Cisco System, Intel Corporation and Sprint. Therefore, the length of time

series is n = 2527 and the dimension of the data is p = 4. In order to remove the

conditional mean of dailiy log returns, VAR(2) is fitted to the log return series and

the normalized residual series (in terms of having an identity variance matrix) are
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considered as Yt. We applied Φk0-based and Gk0-based approach with k0 = 1, 5 to

estimate the transformation matrix A0. The order of VAR model was chosen by Fan,

Wang and Yao (2008) using AIC and M(i) in Tiao and Box (1981) which is a test

statistic testing whether the data is a stationary VAR(i) model.

Estimates of A0 with Φk0-based and Gk0-based approachs are shown in Table 3.8 and

in order to measure the dissimilarity of two estimates, D(ÂΦ
0 , Â

G
0 ) is computed which

is 0.0110 when k0 = 1 and 0.0047 when k0 = 5, where ÂΦ
0 is an estimate of A0 with

Φk0-based approach and ÂG0 is an estimate of A0 with Gk0-based counterparts. It

seems that ÂΦ
0 and ÂG0 are similar as seen from the small D-distance.

Table 3.8: Estimates of A0 = (a01, a02, a03, a04) for 4 Stocks Data

Φk0 , k0 = 1 Φk0 , k0 = 5

a01 a02 a03 a04 a01 a02 a03 a04

-0.33457 -0.24585 0.26645 0.86984 -0.33259 -0.26747 0.28013 0.85987

0.93745 0.0040591 0.063769 0.34219 0.93907 -0.011209 0.075579 0.33512

-0.088254 0.9692 0.080919 0.2152 -0.081316 0.9635 0.081392 0.24173

-0.038095 0.013752 -0.95833 0.28279 -0.030218 0.0027784 -0.95352 0.29981

Gk0 , k0 = 1 Gk0 , k0 = 5

a01 a02 a03 a04 a01 a02 a03 a04

-0.4286 0.77203 0.24497 0.40032 0.35647 0.83266 0.24057 0.3489

0.88559 0.45384 0.097962 0.012946 0.065864 0.35139 0.039431 -0.93308

-0.1751 0.34634 0.099429 -0.91624 -0.92908 0.32207 0.17065 0.062921

-0.037157 0.27936 -0.95943 0.0085813 -0.07353 0.2819 -0.9547 0.060626
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3.6 Discussions and Conclusions

In this paper, we proposed two new matrix objects, the so-called volatility martingale

difference divergence matrix and vec volatility martingale difference divergence ma-

trix which measure the conditional variance dependence of random vectors Y ∈ Rp

on X ∈ Rq under the assumption that E[Y |X] = 0. The VMDDM and vecVMDDM

can be viewed as extensions of MDDM proposed by Lee and Shao (2016) which mea-

sures the conditional mean dependence. We apply the VMDDM and its cumulative

version to PVCA following the work by Hu and Tsay (2014) and Li, Gao, Li and

Yao (2015), and the vecVMDDM to the estimation of CUC model proposed by Fan,

Wang and Yao (2008). Simulation results suggest that our MDD-based approach

performs comparably well and it can outperform the existing counterparts when the

volatility dependence is strongly nonlinear. Further our new MDD-based matrix ob-

jects are simple to calculate, and have advantages in terms of computational time and

convenience of implementation. Theoretical results are also obtained under suitable

moment and weak dependence conditions and they provide good justification for the

large sample behavior of our estimators.

We shall conclude by mentioning several future directions. It would be interesting

to investigate the choice of k0 in PVCA as we see it can have an impact on the finite

sample performance. A data-driven choice of k0 that works well in the case of strong

linear/nonlinear dependence is needed. It would be important to understand the be-

havior of the proposed approaches when the dimension p is high from both theoretical

and numerical angles. High dimensional stock return time series are nowadays very

common, so an extension to allow high dimension would be practically relevant but

seems challenging. Another related issue is that we assume stationarity throughout

the paper. Given the nonstationarity of many real time series, it would be useful
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to come up with a dimension reduction approach that accommodate nonstationarity.

We leave these topics for future work.
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Chapter 4

Testing the Conditional Mean
Independence for Functional Data

4.1 Background

Functional data analysis (FDA) has emerged as an important area of statistics which

provides convenient and informative tools for the analysis of data objects of high or

infinite dimension. It is generally applicable to problems which are difficult to cast

into a framework of scalar or vector observations. In many situations, even if standard

scalar or vector based approaches are applicable, the functional data based approach

can often provide a more natural and parsimonious description of the data, and lead

to more accurate inference and prediction. The area of FDA has been growing rapidly

in the recent decade since Ramsay and Silverman’s (2005) excellent monograph, which

provides a systematic account of the existing methodologies and tools to deal with

data of functional nature. See Ferraty and Vieu (2010), Horváth and Kokoszka (2012),

and Kokoszka and Reimherr (2017) for recent book-length treatments of FDA.
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In the literature, functional linear model with scalar or functional response Y and

functional or vector covariates X have been extensively studied; see e.g. Cuevas,

Febrero, and Fraiman (2002), Cardot et al. (2003), Chiou, Müller, and Wang (2004),

Müller and Stadtmüller (2005), Yao, Müller, and Wang (2005a, 2005b), Cai and Hall

(2006), Chiou and Müller (2007), among others. There has also been extensions of

nonparametric regression models and inference to functional data; see e.g. Ferraty et

al. (2011), Lian (2011), and Ferraty, Van Keilegom, and Vieu (2012). Most of the

above-mentioned papers focus on modeling the conditional mean of the response vari-

able Y given the covariates X using either linear model or nonparametric models. An

important problem in conditional mean modeling is to assess whether X contributes

to the conditional mean of Y , i.e., whether we have enough evidence to reject the

following null hypothesis

H0 : E[Y |X] = E[Y ], almost surely

based on a random sample (Xi, Yi)
n
i=1. If H0 is supported by the data, then there is

no need to pursue a regression model for the mean of Y given X. In this paper, we

shall address this testing problem when both Y and X can be either function-valued

or vector-valued. It is worth noting that our test can be extended to do diagnostic

checking for functional linear models but we shall leave that to future work.

To the best of our knowledge, the above testing problem has been first investigated

by Kokoszka et al. (2008) for functional response and functional covariates. Specif-

ically, they assumed a functional linear model, i.e., Y (t) =
∫ 1

0
ϕ(t, s)X(s)ds + ε(t),

t ∈ [0, 1], where ε(·) is an error process that is independent of the covariates and

ϕ(·, ·) is a square integrable function on [0, 1] × [0, 1]. They proposed a χ2-based

test for the nullity of the ϕ, i.e., H0 : ϕ(s, t) = 0, ∀s, t, which implies conditional
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mean independence of Y given X under the linear model assumption. Their proce-

dure relies on the use of functional principal component analysis (FPCA) for both

X and Y , and their test statistic measures the correlation of the finite-dimensional

scores of X and Y . More recently, Patilea et al. (2016) introduced a nonparametric

test for the predictor effect on a functional response allowing covariates to be either

function-valued or vector-valued. Their test is nonparametric in the sense that no

linear model assumption is imposed, but it requires the choice of 5 user-chosen quan-

tities when X is function-valued and its implementation seems quite complex. Similar

to Kokoszka et al. (2008), their test also projects the functional data to a finite di-

mensional space and constructs test statistics via the finite dimensional projections.

Thus these two existing tests may have low power when the dependence of Y on X

is along the directions that are orthogonal to the ones used. In the related diagnostic

checking problem for functional linear models, Chiou and Müller (2007) proposed a

randomization test and recommended to use residual plots based on functional prin-

cipal component scores of residual processes for diagnostic purposes; Gabrys et al.

(2010) proposed goodness-of-fit test statistics that aim to detect serial correlation in

the error.

In this article, we shall introduce a new nonparametric test to test H0 versus

H1 : P (E(Y |X) = E(Y )) < 1,

where both the response Y and the covariate X can be either function-valued or

vector-valued. The main contribution of our work lies in the following aspects: (1)

we first generalize the martingale difference divergence (MDD, hereafter) [Shao and

Zhang (2014); Park, Shao and Yao (2015)], which characterizes the conditional mean

independence of Y given X when both X and Y are vector-valued, to the functional
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setting. Note that MDD can be viewed as an analogue of distance covariance [Székely,

Rizzo, and Bakirov 2007], which measures the (in)dependence of two random vectors.

The so-called functional martingale difference divergence (FMDD) is shown to fully

characterize the conditional mean independence based on certain results developed by

Lyons (2013), who extended the distance covariance from Euclidean space to metric

space. (2) We then define the U -centering [Székely and Rizzo (2014)] based sample

estimate of FMDD, which is shown to be unbiased, and its limiting null distribution

is shown to be nonpivotal; (3) We propose a wild bootstrap approach to approximate

the limiting null distribution, and asymptotic behavior of bootstrap test statistic

is carefully studied under both the null and alternatives. In particular, bootstrap

consistency under the null and limiting power under the local alternative that is in

the n−a, a > 0 neighborhood of the null hypothesis is derived. An appealing feature of

our test is that there is no tuning parameter or user-chosen number involved, and the

test does not impose any linear or parametric model assumption so it is model-free.

Through numerical simulations, we show that our test has accurate size and fairly

high power relative to the tests developed by Kokoszka et al. (2008) and Patilea et

al. (2016).

The rest of this paper is organized as follows. Section 4.2 introduces functional

martingale difference divergence (FMDD) as an analog of MDD and its sample ver-

sion to construct the test statistic. In Section 4.3, we describe the testing procedure

including the use of wild bootstrap to obtain the critical values and establish asymp-

totic validity of the test. Simulation results are presented in Section 4.4 to examine

the finite sample performance of the new test in comparison with the tests devel-

oped by Kokoszka et al. (2008) and Patilea et al. (2016). Section 4.5 concludes and

technical details are included in Appendix.

We introduce some notation. Let i =
√
−1 be the imaginary unit and L2(I) be
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the separable Hilbert space consisting of all the square intergrable curves defined on

I = [0, 1] with the inner product,

< f, g >=

∫
I
f(u)g(u)du, f, g ∈ L2(I).

Also the vector product of vectors x and y is denoted by < x, y >= xTy. For

a complex-valued function f(·), the complex conjugate of f is denoted by f and

|f |2 =< f, f >. Denote the Euclidean norm of x = (x1, · · · , xp) ∈ Cp as |x|, where

|x|2 =< x, x >= x1x1 + · · · + xpxp, and if x ∈ Rp(L2(I)), it is denoted as |x|, where

|x|2 =< x, x >.

4.2 Functional Martingale Difference Divergence

To introduce the new metric FMDD for functional data, we shall provide a brief

review of the MDD. For U ∈ Rq and V∈ Rp, where q and p are fixed positive integers,

Shao and Zhang (2014), Park, Shao and Yao (2015) proposed the so-called martingale

difference divergence (MDD) to measure the conditional mean (in)dependence of V

on U , i.e.,

E(V |U) = E(V ), almost surely. (4.2.1)

Specifically MDD(V |U) is defined as the nonnegative number that satisfies

MDD(V |U)2 =
1

cq

∫
Rq

|gV,U(s)− gV gU(s)|2

|s|1+q
ds, (4.2.2)

where gV,U(s) = E(V ei<s,U>), gV = E(V ), gU(s) = E(ei<s,U>), and cq = π(1+q)/2/Γ((1+

q)/2). A key property of MDD is that MDD(V |U)2 = 0 if and only if (4.2.1) holds,
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thus MDD completely characterizes the conditional mean independence of V on U .

Furthermore, if E(|V |2 + |U |2) <∞, then

MDD(V |U)2 = −E[(V − E(V ))T (V
′ − E(V

′
))|U − U ′|], (4.2.3)

where (V
′
, U
′
) is an independent copy of (V, U).

Considering the definition of MDD in (4.2.3), we naturally define an analogue

of MDD that is well defined for functional response Y or functional covariate X by

replacing the vector product with the inner product associated with the separable

Hilbert space, e.g., L2(I). Note that Y and X are in metric spaces (Ly, | · |y) and

(Lx, | · |x), respectively, i.e., Y ∈ Ly, X ∈ Lx. Throughout the paper, (Ly,Lx) can

be (L2(I),L2(I)) or (Rp, Rq) or (L2(I), Rq) or (Rp,L2(I)). For the convenience of

presentation, we do not distinguish between | · |y and | · |x but use | · | for both cases.

Definition 4.2.1. Functional Martingale Difference Divergence

For Y ∈ Ly and X ∈ Lx, we define

FMDD(Y |X) = −E[< Y − µY , Y
′ − µY > |X −X

′|],

where µY is the mean function of Y and (X
′
, Y

′
) is an iid copy of (X, Y ).

To show that FMDD fully characterizes the conditional mean independence, we

provide the following proposition, which is shown by using several results in Lyons

(2013).

Proposition 4.2.1. For Y ∈ Ly, X ∈ Lx with E[|X|+ |Y |] <∞ and E[|X −µX ||Y −

µY |] <∞, we have

1. FMDD(Y |X) ≥ 0.
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2. FMDD(Y |X) = 0 if and only if H0 is true.

Inspired by unbiased estimation of MDD in Park, Shao, and Yao (2015), we con-

struct an unbiased estimator of FMDD by adopting the U -centering approach [Székely

and Rizzo (2014), Park, Shao, and Yao (2015), and Zhang, Yao, and Shao (2017)].

Definition 4.2.2. Given the iid observations (Xi, Yi)
n
i=1 from the joint distribution of

(X, Y ) where X and Y can be either function-valued or vector-valued, an unbaised

estimator of FMDD(Y |X) is defined as

FMDDn(Y |X) =
1

n(n− 3)

∑
i 6=j

ÃijB̃ij.

Here, Ãij, B̃ij are the U-centered (i, j)th element of the matrices defined as

Ãij =


aij − ai· − a·j + a·· i 6= j

0 i = j

, B̃ij =


bij − bi· − b·j + b·· i 6= j

0 i = j,

where aij = |Xi −Xj|,

ai· =
1

n− 2

n∑
l=1

ail, a·j =
1

n− 2

n∑
k=1

akj, a·· =
1

(n− 1)(n− 2)

n∑
k,l=1

akl.

In addition, bij = 1
2
|Yi − Yj|2 and bi·, b·j, b·· are defined similarly as ai·, a·j, a··.

Using the same argument shown in Appendix A.1 of Székely and Rizzo (2014) and

(3.4) in Park, Shao, and Yao (2015), it is not difficult to show that FMDDn(Y |X)

is an unbiased estimator of FMDD(Y |X) and it has the expression below.

FMDDn(Y |X) =
1(
n
4

) ∑
i<j<q<r

h(Zi, Zj, Zq, Zr),
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where

h(Zi, Zj, Zq, Zr) =
1

4!

(i,j,q,r)∑
(s,t,u,v)

(astbuv + astbst − astbsu − astbtv), (4.2.4)

with Zi = (Xi, Yi),
∑(i,j,q,r)

(s,t,u,v) is the summation over all permutations of the 4-tuple of

indices (i, j, q, r). For example, if (i, j, q, r) = (1, 2, 3, 4), then there exist 24 permu-

tations including (1, 2, 3, 4), · · · , (4, 3, 2, 1). Then (s, t, u, v) can be any permutation

of (1, 2, 3, 4) and
∑(1,2,3,4)

(s,t,u,v) is the sum of all possible permutations of (1, 2, 3, 4).

In the following, we state the consistency and weak convergence of FMDDn(Y |X)

as an estimator of FMDD(Y |X), which are analogous to Theorems 3 and 4 in Shao

and Zhang (2014).

Proposition 4.2.2. Under E[|X|+ |Y |] <∞, E[|X − µX ||Y − µY |] <∞, we have

FMDDn(Y |X)→a.s. FMDD(Y |X).

Theorem 4.2.1. Assume that E[|X|2+|Y |2] <∞, E[|X−µX |2|Y −µY |2] <∞. Under

the null H0, we have

nFMDDn(Y |X)→D

∞∑
k=1

λk(G
2
k − 1),

where (Gk) is a sequence of zero mean, unit variance Gaussian random variables

which are mutually independent and (λk) is a sequence of eigenvalues corresponding

to eigenfunctions (ψk(·)) such that

J(z, z
′
) =

∞∑
k=1

λkψk(z)ψk(z
′
)
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where z = (x, y), J(z, z
′
) = U(x, x′)V (y, y′), U(x, x′) = |x−x′|+E[|X−X ′|]−E[|x−

X
′ |] − E[|X − x′|], V (y, y′) = − < y − µY , y′ − µY >, and (ψk) is an orthonormal

sequence i.e.,

E[ψj(Z)ψk(Z)] =


1, if j = k

0, if j 6= k

Recall that our goal is to test H0 : E[Y |X] = E[Y ] a.s. which is equivalent to

FMDD(Y |X) = 0. According to Theorem 4.2.1, it is appropriate for us to define

our test statistic as

Tn = nFMDDn(Y |X).

To understand the behavior of Tn when the null does not hold, we shall study the

limiting distribution of Tn under (1) local alternative H1,n : Y = µY + g(X)
na

+ ε, a > 0,

where g : Lx → Ly satisfies E[g(X)] = 0, FMDD(g(X)|X) > 0 and ε ∈ Ly is

nondegenerate and satisfies E[ε|X] = 0 a.s., P (< g(X), ε >6= 0) > 0. (2) fixed

alternative H1 : FMDD(Y |X) > 0.

Theorem 4.2.2. Assume that E[|X|2 + |g(X)|2 + |ε|2] < ∞, E[|X − µX |2(|g(X)|2 +

|ε|2)] <∞. Under the local alternative H1,n, and

(i) if 0 < a < 1/2,

Tn →p ∞.

(ii) if a = 1/2,

Tn →D c+G+
∞∑
k=1

λk(G
2
k − 1).

Here c = FMDD(g(X)|X) > 0 and G is a normal random variable with zero

mean and variance equal to 4var(K1(Z)) which is possibly correlated with (Gk),
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where Z = (X, ε) and K1(z1) = E[U(x1, X)V (ε1, g(X))].

(iii) if a > 1/2,

Tn →D

∞∑
k=1

λk(G
2
k − 1).

Theorem 4.2.3. Assume that E[|X|2+|Y |2] <∞, E[|X−µX |2|Y −µY |2] <∞. Under

the alternative H1, we have

√
n(FMDDn(Y |X)− FMDD(Y |X))→D N(0, 4σ2

1),

where σ2
1 = var(K(Z)), Z = (X, Y ), and K(z) = E[U(x,X)V (y, Y )].

Note that the limiting null distribution of our test statistic is nonpivotal in Theo-

rem 4.2.1. Hence we use the wild bootstrap method to approximate the limiting null

distribution of the test statistic and details are given in the next section.

4.3 Bootstrap-based Test

Since the limiting null distribution of our test statistic Tn is nonpivotal, we propose

a wild bootstrap procedure to approximate the null distribution and show its asymp-

totic validity. Note that FMDDn(Y |X) = 1
n(n−3)

∑
i 6=j ÃijB̃ij is a U-statistic [see

(4.2.4) in Section 4.2] and its mean is zero under the null hypothesis. Therefore, we

follow the approach of Dehling and Mikorsch (1994) who proposed weighted bootstrap

for U-statistics with external random variables (ηj)
n
j=1. Below is the wild bootstrap

procedure.

89



1. Generate the bootstrap statistic.

FMDD∗n(Y |X)b =
1

n(n− 3)

∑
i 6=j

ηiÃijB̃ijηj (4.3.1)

where ηi, i = 1, · · · , n are iid with zero mean and unit variance, e.g., standard

normal random variables.

2. Repeat 1 for B times and collect (T ∗n,b)
B
b=1, where T ∗n,b = nFMDD∗n(Y |X)b.

3. Obtain the (1−α)th quantile of (T ∗n,b)
B
b=1, Q∗(1−α),n and set it as the critcal value

for the test with significance level α.

4. Reject the null hypothesis if Tn is greater than the critical value Q∗(1−α),n and

accept H0 otherwise.

Remark 4.3.1. Patilea et al. (2016) also proposed a wild bootstrap procedure to

improve the finite sample performance. It is worth pointing out the difference between

the two wild bootstrap procedures. In particular, Patilea et al. (2016) perturbed

the response Y directly, i.e., Y ∗i := ηiYi, ∀i. In other words, they computed their

bootstrap test statistic based on a new bootstrap sample (Xi, Y
∗
i )ni=1 and they need

to compute their bootstrapped test statistic starting from the very first step which

includes dimension reduction procedure through FPCA and finding the least favorable

direction toward the null hypothesis, so their test can be computationally costly to

implement. By contrast, for our wild bootstrap procedure, (Ãij, B̃ij) only needs to be

computed once and our test is simpler and faster to implement than that in Patilea

et al. (2016).

In order to examine the asymptotic behavior of bootstrap test statistic, we first

introduce notations of the bootstrap order [see Remark 1 in Chang and Park (2003)]

and bootstrap consistency [see Definition 2 in Li, Hsiao, and Zinn (2003)].
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Definition 4.3.1. Let T ∗n be a bootstrap statistic that depends on the random sample

{Zi}ni=1. We define T ∗n = o∗p(1) a.s. if

P ∗(|T ∗n | > ε)→ 0 a.s.,

for any ε > 0, where P ∗ is conditional probability given {Zi}ni=1. Moreover, we define

T ∗n = O∗p(1) a.s. if, for every ε > 0, there exists a constant M > 0 such that for large

n,

P ∗(|T ∗n | > M) < ε.

Notice that O∗p(1) and o∗p(1) are for bootstrap sample asymptotics which have

similar definition with Op(1) and op(1). It is straightforward to extend those to O∗p(cn)

and o∗p(cn) based on the similarity to Op(1) and op(1), where cn is a nonconstant

deterministic sequence.

Definition 4.3.2. Let T ∗n be a bootstrap statistic that depends on the random sam-

ple {Zi}ni=1. We say that (T ∗n |Z1, Z2, · · · ) converges to (T |Z1, Z2, · · · ) in distribu-

tion almost surely if for any sequence T ∗n , such that (T ∗n |Z1, Z2, · · · ) converges to

(T |Z1, Z2, · · · ) almost every sequence (Z1, Z2, · · · ) and the following notation is used

to denote convergence in distribution almost surely.

T ∗n →D∗ T a.s.

We introduce the following theorem that is useful for deriving the asymptotic

distribution of bootstrap test statistic T ∗n .

Theorem 4.3.1. Suppose H is a symmetric kernel satisfying E[H(Z,Z
′
)4] < ∞ and

Un = 1
n(n−1)

∑
i 6=jH(Zi, Zj). Further assume that {Wi} is an iid sequence of random
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variables with E[W1] = 0, E[W 2
1 ] = 1, E[W 4

1 ] < ∞. Then the bootstrap statistic

nU∗n = 1
n−1

∑
i 6=jH(Zi, Zj)WiWj, has the following asymptotic distribution.

nU∗n →D∗
∞∑
k=1

νk(N
2
k − 1) a.s.,

where (Nk) is a sequence of zero mean, unit variance Gaussian random variables

which are mutually independent.

Note that the result of Theorem 4.3.1 can be viewed as an extension of Theorem

3.1 in Dehling and Mikorsch (1994) to functional data although our theoretical argu-

ment is considerably different from that in Dehling and Mikorsch (1994). Based on

Theorem 4.3.1, we are ready to examine the asymptotic distribution of our bootstrap

statistic T ∗n under the null, local and fixed alternatives.

Theorem 4.3.2. Assume that E[|X|4+|Y |8] <∞, E[|X−µX |4|Y−µY |4] <∞, E[η4] <

∞. Under the null H0, we have

T ∗n →D∗
∞∑
k=1

λk(G
2
k − 1) a.s.,

where (λk, Gk) are defined in Theorem 4.2.1.

Theorem 4.3.3. Assume that E[|X|4 + |g(X)|8 + |ε|8] < ∞, E[|X − µX |4|ε|4] <

∞, E[η4] <∞. Under the local alternative H1,n, and

(i) if 0 < a < 1/2,

P (Tn ≥ Q∗(1−α),n|H1,n)→ 1,

where Q∗(1−α),n is the (1− α)th quantile of the bootstrap test statistic.

(ii) if a = 1/2,

P (Tn ≥ Q∗(1−α),n|H1,n)→ P (G1 ≥ Q(1−α),G0 − c),
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where G1 = G +
∑∞

k=1 λk(G
2
k − 1) follows the asymptotic distribution of Tn − c

under H1,n when a = 1/2, Q(1−α),G0 is the (1−α)th quantile of the limiting null

distribution.

(iii) if a > 1/2,

P (Tn ≥ Q∗(1−α),n|H1,n)→ α.

Under the fixed alternative H1 with the same assumptions in Theorem 4.3.2, we have

P (Tn ≥ Q∗(1−α),n|H1)→ 1.

Remark 4.3.2. Patilea et al. (2016) considered the following local alternatives H1,n :

E[Y ] = µY +rnδ(X), where rn satisfies certain constraints which implies rnn
1/2 →∞

and showed the consistency in Theorem 3.8 of their paper. By comparison, we show

that our test has nontrivial power under the local alternative that approaches the null

hypothesis at the rate of 1/
√
n < rn in Theorem 4.3.3, where Patilea et al.’s (2016)

smoothing-based test is unable to detect. Therefore, we can conclude that our test is

more powerful than the one in Patilea et al. (2016) in terms of capability of detecting

the local alternative that approaches the null at a faster rate.

4.4 Numerical Simulations

In this section, we study the finite sample performance of our FMDD-based con-

ditional mean independence test. For convenience, we denote our test, Patilea et

al.’s (2016) test, and Kokoszka et al.’s (2008) test in the tables as FMDD, PSS, and

KMSZ, respectively. In particular, Example 4.4.1 considers functional response Y

and univariate covariate X and compares with the test in Patilea et al. (2016). For
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other examples with functional response Y and functional covariates X, we compare

our FMDD-based test with both PSS and KMSZ which use FPCA when constructing

their test statistics. In our simulations, we tried several different values of nominal

level α, 10%, 5%, 1% to assess the sensitivity of our test with respect to the choice of

nominal levels. For each example, bootstrap sample size is equal to 499 and {ηi}ni=1

are from the following distribution [see Mammen (1993)] which is same as the one

used in Section 4 in Patilea et al. (2016).

ηi =


−(
√

5−1)
2

w.p.
√

5+1
2
√

5

(
√

5+1)
2

w.p. 1−
√

5+1
2
√

5

In order to compute the size and power of tests, 5000 replicates are generated for

every example.

4.4.1 Simulations

Example 4.4.1.

Example 4.4.1 is adopted from Patilea et al. (2016) where the data (Xi, Yi)
n
i=1 is

generated by

Yi(t) = µ(t) + εi(t), 1 ≤ i ≤ n,

µ(t) = 0.01e−4(t−0.3)2

, t ∈ [0, 1],

where εi(t) are independent Brownian Bridges and is independent of Xi, and Xi

follows log-normal distribution with mean 3 and standard deviation 0.5. Therefore,

under this data generating process, Xi is independent of Yi. In order to evaluate the
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power of a test, we consider the following data generating process,

Yi(t) = µ(t)Xi + εi(t), 1 ≤ i ≤ n,

where εi and Xi are generated in the same fashion as described above. In this example,

we consider n = 100, 200. Recall that the test proposed by Patilea et al. (2016)

involves several user-chosen parameters. Specifically, when function Y and variable

X are considered, Patilea et al. (2016) requires one user-chosen parameter, bandwidth

h and we let h = chn
−2/9, ch = 0.75, 1.00, 1.25 following the recommendation in

their Section 4.1 in Patilea et al. (2016).

From Table 4.1, the empirical sizes of both tests are reasonably close to the nominal

levels. Comparing empirical sizes of PSS tests with different values of the bandwidth

parameter h, there is no uniformly best h. In other words, different combinations

of (n, α) have different values of h which produce the most accurate size. For the

empirical powers, our test outperforms PSS test noticeably, which is consistent with

our theory. Overall, when n increases, the empirical power increases for both tests.
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Table 4.1: Size and Power of the two tests for Example 4.4.1

α = 10% α = 5% α = 1%

Size n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

FMDD 0.104 0.0992 0.0562 0.0528 0.0156 0.0114

ch = 0.75 PSS 0.11 0.1104 0.0586 0.0592 0.0118 0.0144

ch = 1.00 PSS 0.1112 0.1112 0.0554 0.0578 0.0114 0.0146

ch = 1.25 PSS 0.1064 0.1122 0.0524 0.0576 0.013 0.0182

Power n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

FMDD 0.8308 0.9878 0.7344 0.9668 0.4782 0.8762

ch = 0.75 PSS 0.4 0.793 0.2834 0.6984 0.1302 0.4612

ch = 1.00 PSS 0.3802 0.7868 0.2634 0.6818 0.1088 0.4358

ch = 1.25 PSS 0.3492 0.7732 0.2268 0.6614 0.088 0.406

Example 4.4.2.

This example is also from Patilea et al. (2016) where both Y and X are functional

data. The data is generated by the following functional linear model,

Yi(t) =

∫ 1

0

ξ(s, t)Xi(s)ds+ εi(t), t ∈ [0, 1],

where Xi(t), εi(t) are independent Brownian Bridges and ξ(s, t) = c ·exp(t2/2+s2/2),

c = 0, 0.75 and we let n = 40, 100. Note that PSS and KMSZ tests require several

user-chosen parameters. For PSS test, the bandwidth parameter h = n−2/9, the

penalty value αn = 2, the initial guess for the direction γ
(q)
0 = (1, 1, · · · , 1)/

√
q ∈ Rq,

q is chosen as the minimum integer that explains 95% of the variance of X, and we

use the sequential algorithm described in Section 3.5 in their paper with a grid size
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equal to 50 and these settings are the same as those used in their simulation study.

For KMSZ tests, p and q are chosen by the minimum values which explain at least

95% of variances of Y and X, respectively.

According to Table 4.2, our FMDD-based test is superior to the other two tests

with respect to the empirical size and power. In particular, size performances of all

three tests are comparable with FMDD-based test and our test slightly outperforms

the other two tests. For all αs, KMSZ test shows slight conservative size compared

to the other two tests. Under the alternatives, all three tests produce fairly high

empirical powers for all cases where our test always has the highest power, especially

for n = 40. Notice that Y follows the functional linear model for this example and

therefore KMSZ test is expected to perform well since KMSZ test is tailored for the

functional linear model. It is interesting that FMDD-based test performs better than

KMSZ test indicating that projecting the functional data to a finite dimensional space

could lead to some loss of power, especially when the sample size is small.

Table 4.2: Size and Power of the three tests for Example 4.4.2

α = 10% α = 5% α = 1%

Size n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

FMDD 0.1068 0.1056 0.0602 0.0556 0.015 0.011

PSS 0.133 0.1156 0.0698 0.0632 0.0146 0.0164

KMSZ 0.0898 0.0902 0.0378 0.0394 0.004 0.0054

Power n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

FMDD 1 1 0.9998 1 0.9956 1

PSS 0.898 1 0.8274 1 0.6246 0.9996

KMSZ 0.9892 1 0.9572 1 0.6986 1
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Example 4.4.3.

In this example, we generate the functional response Y by quadratic form of the

covariate X which is also considered in Patilea et al. (2016).

Yi(t) = c · (Xi(t)
2 − 1) + εi(t), t ∈ [0, 1],

where Xi(t) and εi(t) are independent Brownian Motion and Brownian Bridge and

c = 0, 0.5. Furthermore, other settings including user-chosen parameters for the

existing two tests are the same as Example 4.4.2.

Table 4.3 reports the empirical sizes and powers for three tests. By comparison,

our FMDD-based test appears to outperform the other two tests for most of the cases

in terms of more accurate empirical size and higher empirical power. Moreover, KMSZ

test appears inferior to PSS and FMDD-based counterparts with respect to the size

and power, presumably due to its inability of capturing nonlinear dependence between

Y and X. Under the null hypothesis, it seems that FMDD-based test produces

more accuarate sizes than the other two tests, especially when n = 40. Except for

n = 100, α = 1%, FMDD-based test is the most powerful one among the three.

When n = 40, our test has noticeably higher power than the other two tests. Note

that FMDD-based and PSS tests aim to detect not only linear but also nonlinear

depedence between Y and X and this example has strong nonlinear dependence.

Limited simulation evidence seems to suggest that our FMDD-based test is more

powerful than PSS test against the alternative hypothesis where there exist strong

nonlinear depedence between functional data. This could be due to the fact that

PSS test uses FPCA when constructing their test statistic while our test statistic

is constructed by preseving the functional form of the data. Hence, it seems that

some loss of power might occur due to the use of a dimension reduction device when
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computing a test statistic.

Table 4.3: Size and Power of the three tests for Example 4.4.3

α = 10% α = 5% α = 1%

Size n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

FMDD 0.1078 0.104 0.0562 0.0552 0.0118 0.0116

PSS 0.113 0.1076 0.0614 0.054 0.0146 0.014

KMSZ 0.0918 0.0934 0.038 0.0422 0.0048 0.0062

Power n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

FMDD 0.6954 0.9988 0.3904 0.9904 0.07 0.691

PSS 0.288 0.9868 0.1618 0.9728 0.0394 0.9148

KMSZ 0.333 0.3862 0.2066 0.2674 0.0534 0.1052

4.5 Discussion and Conclusions

In this paper, we propose a novel metric, namely the functional martingale difference

divergence, to measure the conditional mean dependence of Y given X, where Y and

X can be elements in a separable Hilbert space, e.g., L2(I). The FMDD is a natural

extension of the MDD proposed by Shao and Zhang (2014), and is shown to fully

characterize the conditional mean independence. We further propose to use the U -

centering based sample estimate of FMDD as our test statistic (up to a normalizing

constant) and study its limiting behavior under both the null and alternative hypoth-

esis. Since the limiting null distribution of our test statistic is not pivotal, we use a

wild bootstrap method to approximate the limiting null distribution and show its con-

sistency under the null. The limiting distributions of the bootstrap test statistic are
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further derived under the local and fixed alternatives, which show that our test have

nontrivial power to detect the local alternatives that lie within 1/
√
n-neighborhood

of the null. Compared to the two existing tests developed by Kokoszka et al. (2008)

and Patilea et al. (2016), our test does not require linear model assumption and a

choice of user-chosen numbers, and is thus model free and tuning parameter free. Ad-

ditionally, our test does not involve dimension reduction using functional PCA, and

treats function-valued and vector-valued responses and covariates in a unifed fashion.

Through numerical simulations, we show that our test exhibits fairly accurate size in

small sample and the power is noticeably higher than the two above-mentioned tests

in most cases, consistent with our theoretical result on approximate power. From the

computational and practical viewpoint, our test is much more convenient to imple-

ment and is less costly in computation, compared to the other nonparametric test by

Patilea et al. (2016).

To conclude, we mention two related future research topics. On one hand, diag-

nostic checking for functional linear model is worth investigating given the prevalence

of functional linear model in practical applications. Given Y and X that are both

function-valued, we want to test

H0 : E(Y |X) = ΦX,

where Φ is a square integrable operator. A natural extension seems to consist of

the following three steps: (1), estimate Φ by Φ̂n, which typically involves regular-

ization [see Ramsay and Silverman (2005)]; (2) obtain the residuals ε̂j = Yj − Φ̂nXj

for j = 1, · · · , n; (3) Apply the FMDD-based test to (Xj, ε̂j)
n
j=1, as under the null,

we have E(ε|X) = 0, where ε = Y − E(Y |X) is the population counterpart of ε̂.

One complication is that the estimation effect from replacing ε by ε̂ may show up in
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the limiting null distribution, and it is unclear whether the wild bootstrap is capable

of capturing that effect. A careful theoretical investigation is needed. On the other

hand, it would be interesting to extend the idea to test for the conditional quantile in-

dependence owing to a natural connection between conditional quantile independence

and conditional mean independence when the response Y is a scalar-valued variable;

see Shao and Zhang (2014). Also see Kato (2012) for estimation in functional linear

quantile regression when the response Y is a scalar random variable. When Y is

function-valued, Chowdhury and Chaudhuri (2016) recently advanced nonparametric

quantile regression to functional data based on spatial depth and quantiles. It would

be intriguing to see how FMDD can play a role in the model checking and testing for

nonparametric quantile regression models.
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Appendix A

Supplementary Materials Including
Proofs

Proof of Lemma 2.3.1: For j, k = 1, · · · , p,

Gj(s)Gk(s)
∗ = E[(Vj − E(Vj))e

i<s,U>]E[(V
′

k − E(V
′

k ))e−i<s,U
′
>]

= E[(Vj − E(Vj))(V
′

k − E(V
′

k ))ei<s,U−U
′
>]

= −E[(Vj − E(Vj))(V
′

k − E(V
′

k ))(1− cos(s < U − U ′ >))] + A

with A representing the term that vanishes when the integral is evaluated. Integrating

the above term and using Lemma 1 in Székeley et al. (2007), we can derive that

MDDMjk(V |U) = −E[(Vj − E(Vj))(V
′

k − E(V
′

k ))|U − U ′|q]

Therefore, MDDM(V |U) = −E[(V − E(V ))(V
′ − E(V

′
))T |U − U ′|q]. ♦

Proof of Theorem 2.3.1: The first assertion is a direct consequence of Lemma 2.3.1.

Regarding the second one, let m = (m1, · · · ,mp)
T ∈ Rp, m 6= 0, and Z = mTV be a

linear combination of V that satisfies E(Z|U) = E(Z), then MDDM(Z|U) = 0 and
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mTMDDM(V |U)m = MDDM(Z|U) = 0, implying that MDDM(V |U) is singular.

On the other hand, assume that MDDM(V |U) is singular and m is in its null space,

i.e., MDDM(V |U)m = 0. Since MDDM(V |U) is positive semidefinite, we have

mTMDDM(V |U)m = MDDM(mTV |U) = 0 , which implies that E(mTV |U) =

E(mTV ), i.e., a linear combination of V is conditionally mean independent of U .

The conclusion follows. ♦

Proof of Theorem 2.4.1: We shall treat the case k0 = 1 only as the more general case

can be handled in a similar fashion but at the expense of lengthy details. The main

idea of the proof is to use Lemma A.1 in Kneip and Utikal (2001), which quantifies the

changes of eigenvalues and eigenvectors when passing from a matrix C to a perturbed

matrix C + E. In our setting, we let C = Γ1 = MDDM(Yt|Yt−1), and E = Γ̂1 − Γ1.

Then for j = 1, · · · , s, we get by applying part (a) of that lemma that

λ̂j − λj = tr(γjγ
T
j {Γ̂1 − Γ1}) +R1, (A.0.1)

where |R1| ≤ 6‖Γ̂1−Γ1‖22
minλ∈EG(Γ1),λ 6=λj |λ−λj |

. Here EG(C) = (λ1(C), · · · , λp(C)) denotes the

set of eigenvalues of the p×p matrix C. To obtain the order of λ̂j−λj, we shall show

that

‖Γ̂1 − Γ1‖2
2 = Op(n

−1) (A.0.2)

Note that

‖Γ̂1 − Γ1‖2
2 ≤ ‖Γ̂1 − Γ1‖2

F

≤
p∑
i=1

p∑
j=1

|MDDMn(Yt|Yt−1)ij −MDDM(Yt|Yt−1)ij|2

112



Let Yt = (Y1,t, Y2,t, · · · , Yp,t)T . Write

MDDMn(Yt|Yt−1) = − 1

(n− 1)2

n∑
t1=2

n∑
t2=2

(Yt1 − Y n−1)(Yt2 − Y n−1)T |Yt1−1 − Yt2−1|p

MDDMn(Yt|Yt−1)i,j =
(n− 2)

(n− 1)
{(U1,n)i,j + (U2,n)i,j + (U3,n)i,j + (U4,n)i,j},

where Y n−1 = (n − 1)−1
∑n

t=2 Yt, and MDDMn(Yt|Yt−1)i,j is the (i, j)th entry of

MDDMn(Yt|Yt−1). Furthermore,

(U1,n)ij = − 1

(n− 1)(n− 2)

n∑
t1=2

∑
t2 6=t1

(Yi,t1 − E(Yi,t1))(Yj,t2 − E(Yj,t2))|Yt1−1 − Yt2−1|p

(U2,n)ij = − 1

(n− 1)(n− 2)

n∑
t1=2

∑
t2 6=t1

(Yi,t1−E(Yi,t1))(E(Yj,t2)−(Y n−1)j)|Yt1−1−Yt2−1|p

(U3,n)ij = − 1

(n− 1)(n− 2)

n∑
t1=2

∑
t2 6=t1

(E(Yi,t1)− (Y n−1)i)(Yj,t2−E(Yj,t2))|Yt1−1−Yt2−1|p

(U4,n)ij = − 1

(n− 1)(n− 2)

n∑
t1=2

∑
t2 6=t1

(E(Yi,t1)−(Y n−1)i)(E(Yj,t2)−(Y n−1)j)|Yt1−1−Yt2−1|p

and (U1,n)i,j is a U -statistic of order 2 for the stationary time series {Zt = (Y T
t , Y

T
t−1)T}.

The kernel function for (U1,n)ij is

g(Z2, Z
′
2) = −{Yi,2 − E(Yi,2)}{Y ′j,2 − E(Y ′j,2)}|Y1 − Y ′1 |p,

where Z2 = (Y T
2 , Y

T
1 )T and Z ′2 = (Y

′T
2 , Y

′T
1 )T . Under our condition (C2), we have that

E(|g(Z2, Z
′
2)|2+δ) < ∞ and E(|g(Z2, Z2+k)|2+δ) < ∞, k = 1, · · · , n by using Cauchy-

Swartz inequality. It then follows from Theorem 1 in Yoshihara (1976) that |(U1,n)ij−

MDDM(Yt|Yt−1)ij|2 = Op(n
−1) for i, j = 1, · · · , p. Since |E(Yi,t1) − (Y n−1)i| =

Op(n
−1/2) for i = 1, · · · , p, (U2,n)i,j, (U3,n)i,j, (U4,n)i,j are Op(n

1/2). Thus, these facts
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yield (A.0.2). Then the conclusion that λ̂j − λj = Op(n
−1/2), j = 1, 2, · · · , s follows

since |tr(γjγTj {Γ̂1 − Γ1})| ≤ ‖γj‖2‖Γ̂1 − Γ1‖2 = Op(n
−1/2) and |R1| = Op(n

−1) under

condition (C1).

Regarding the eigenvector, we apply part (b) of that lemma and get that for

j = 1, · · · , s,

γ̂j − γj = −Sj(Γ1)(Γ̂1 − Γ1)γj +R3,

where Sj(Γ1) =
∑

h6=j
1

λh−λj
γhγ

T
h and ‖R3‖2 ≤ 6‖Γ̂1−Γ1‖22

minλ∈EG(Γ1),λ6=λj |λ−λj |
2 . Then

√
n‖R3‖2 =

Op(n
−1/2) and ‖ − Sj(Γ1)(Γ̂1 − Γ1)γj‖2

2 =
∑

h6=j
{γTh (Γ̂1−Γ1)γj}2

(λh−λj)2 = Op(n
−1) which yields

that ‖γ̂j − γj‖2 = Op(n
−1/2).

To show (ii), we note that part (a) of Lemma A1 of Kneip and Utikal (2001)

implies that
p∑

j=s+1

(λ̂j − λj) = tr(γs+1γ
T
s+1{Γ̂1 − Γ1}) +R2,

where |R2| ≤ min(p− s, s) 6‖Γ̂1−Γ1‖22
minλ∈EG(Γ1),λ6=λs+1

|λ−λs+1| = Op(n
−1). Furthermore, we write

tr(γs+1γ
T
s+1{Γ̂1 − Γ1}) = γTs+1Γ̂1γs+1 − γTs+1Γ1γs+1 = n−2

(n−1)
(V1,n + V2,n + V3,n + V4,n),
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where

V1,n =
−1

(n− 1)(n− 2)

n∑
t1=2

∑
t2 6=t1

{γTs+1Yt1 − E(γTs+1Yt1)}{γTs+1Yt2 − E(γTs+1Yt2)}

×|Yt1−1 − Yt2−1|p

V2,n =
−1

(n− 1)(n− 2)

n∑
t1=2

∑
t2 6=t1

{γTs+1Yt1 − E(γTs+1Yt1)}{E(γTs+1Yt2)− γTs+1Y n−1}

×|Yt1−1 − Yt2−1|p

V3,n =
−1

(n− 1)(n− 2)

n∑
t1=2

∑
t2 6=t1

{E(γTs+1Yt1)− γTs+1Y n−1}{γTs+1Yt2 − E(γTs+1Yt2)}

×|Yt1−1 − Yt2−1|p

V4,n =
−1

(n− 1)(n− 2)

n∑
t1=2

∑
t2 6=t1

{E(γTs+1Yt1)− γTs+1Y n−1}{E(γTs+1Yt2)− γTs+1Y n−1}

×|Yt1−1 − Yt2−1|p

Since λs+1 = 0, MDD(γTs+1Y2|Y1) = 0, i.e., E(γTs+1Y2|Y1) = E(γTs+1Y2) almost surely.

This implies that V1,n is a degenerate U-statistic of order 1. Thus

E(V 2
1,n) = O(n−4)

n∑
t1=2

n∑
t3=2

t1−1∑
t2=2

t3−1∑
t4=2

E{{γTs+1Yt1 − E(γTs+1Yt1)}

×{γTs+1Yt2 − E(γTs+1Yt2)}{γTs+1Yt3 − E(γTs+1Yt3)}

×{γTs+1Yt4 − E(γTs+1Yt4)}|Yt1−1 − Yt2−1|p|Yt3−1 − Yt4−1|p}

= O(n−4)
n∑

t1=2

t1−1∑
t2=2

t1−1∑
t4=2

E{{γTs+1Yt1 − E(γTs+1Yt1)}2{γTs+1Yt2 − E(γTs+1Yt2)}

{γTs+1Yt4 − E(γTs+1Yt4)}|Yt1−1 − Yt2−1|p|Yt1−1 − Yt4−1|p}

= O(n−4)
n∑

t1=2

t1−1∑
t2=2

t2∑
t4=2

E{{γTs+1Yt1 − E(γTs+1Yt1)}2{γTs+1Yt2 − E(γTs+1Yt2)}

{γTs+1Yt4 − E(γTs+1Yt4)}|Yt1−1 − Yt2−1|p|Yt1−1 − Yt4−1|p}

To simplify the notation, we denote
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H(t1, t1−1, t2, t2−1, t4, t4−1) = E(ξ(t1, t1−1, t2, t2−1)ξ(t1, t1−1, t4, t4−1)), where

ξ(t1, t1 − 1, t2, t2 − 1) = {γTs+1Yt1 − E(γTs+1Yt1)}{γTs+1Yt2 − E(γTs+1Yt2)}

×|Yt1−1 − Yt2−1|p

ξ(t1, t1 − 1, t4, t4 − 1) = {γTs+1Yt1 − E(γTs+1Yt1)}{γTs+1Yt4 − E(γTs+1Yt4)}

×|Yt1−1 − Yt4−1|p

Then E(V 2
1,n) = O(n−4)

∑n
t1=2

∑t1−1
t2=2

∑t2
t4=2H(t1, t1 − 1, t2, t2 − 1, t4, t4 − 1). Write

H(t1, t1 − 1, t2, t2 − 1, t4, t4 − 1)

= E(ξ(t1, t1 − 1, t2, t2 − 1)ξ(t1, t1 − 1, t4, t4 − 1))

= E[E{ξ(t1, t1 − 1, t2, t2 − 1)ξ(t1, t1 − 1, t4, t4 − 1)|Ft4 , Yt1 , Yt1−1}]

= E[ξ(t1, t1 − 1, t4, t4 − 1)E{ξ(t1, t1 − 1, t2, t2 − 1)|Ft4 , Yt1 , Yt1−1}]

Under the m-dependence assumption for {Yt}, we shall show that H(t1, t1−1, t2, t2−

1, t4, t4 − 1) = 0 whenever |(t2 − 1)− t4| > m and |(t1 − 1)− t2| > m. To see this, we

note that

E{ξ(t1, t1 − 1, t2, t2 − 1)|Ft4 , Yt1 , Yt1−1}

= E{{γTs+1Yt1 − E(γTs+1Yt1)}{γTs+1Yt2 − E(γTs+1Yt2)}|Yt1−1 − Yt2−1|p|Ft4 , Yt1 , Yt1−1}

= {γTs+1Yt1 − E(γTs+1Yt1)}E{{γTs+1Yt2 − E(γTs+1Yt2)}|Yt1−1 − Yt2−1|p|Ft4 , Yt1 , Yt1−1}

= {γTs+1Yt1 − E(γTs+1Yt1)} ×

E[E{{γTs+1Yt2 − E(γTs+1Yt2)}|Yt1−1 − Yt2−1|p|Yt2−1,Ft4 , Yt1 , Yt1−1}|Ft4 , Yt1 , Yt1−1]

= {γTs+1Yt1 − E(γTs+1Yt1)} ×

E[|Yt1−1 − Yt2−1|pE{{γTs+1Yt2 − E(γTs+1Yt2)}|Yt2−1,Ft4 , Yt1 , Yt1−1}|Ft4 , Yt1 , Yt1−1]
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Since λs+1 = 0, which implies that E(γTs+1Yt2|Yt2−1) = E(γTs+1Yt2) almost surely.

Due to the independence between Yt2 and (Ft4 , Yt1 , Yt1−1) under the m-dependence

assumption, we can derive that

E{{γTs+1Yt2−E(γTs+1Yt2)}|Yt2−1,Ft4 , Yt1 , Yt1−1} = E{{γTs+1Yt2−E(γTs+1Yt2)}|Yt2−1} = 0,

which implies that E{ξ(t1, t1−1, t2, t2−1)|Ft4 , Yt1 , Yt1−1} = 0 and H(t1, t1−1, t2, t2−

1, t4, t4 − 1) = 0.

Under the finite 6th moment assumption for Yt, it follows from Cauchy-Swartz

inequality that |H(t1, t1−1, t2, t2−1, t4, t4−1)| ≤ C for any (t1, t2, t4). Thus we have

E(V 2
1,n) = O(n−4)

n∑
t1=2

∑
|(t1−1)−t2|≤m

t2∑
t4=2

H(t1, t1 − 1, t2, t2 − 1, t4, t4 − 1)

+ O(n−4)
n∑

t1=2

∑
|(t1−1)−t2|>m

∑
|(t2−1)−t4|≤m

H(t1, t1 − 1, t2, t2 − 1, t4, t4 − 1)

= O(n−2),

which yields V1,n = Op(n
−1). By a similar but simpler argument, we can show that

Vj,n = Op(n
−1) for j = 2, 3, 4. Hence

∑p
j=s+1(λ̂j − λj) = Op(n

−1) which implies that

λ̂j − λj = Op(n
−1) for j = s+ 1, · · · , p. The proof is now complete.

♦

Proof of Proposition 2.4.1: If (εt,Ft) is a martingale difference sequence, it implies

that E(εt|Ft−1) = 0, which leads to

E(Yt|Ft−1) = E(AXt + εt|Ft−1) = AE(Xt|Ft−1)

The conclusion follows by letting Zt = E(Xt|Ft−1) and A = A. ♦
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Proof of Proposition 3.2.1: To show the first assertion, we define Vα = Y Y Tα for any

α ∈ Rp, which is a p× 1 random vector. Let V ′α = Y ′(Y ′)Tα. Then by definition

MDD(Vα|X)2 = −E[(Vα − E(Vα))T (V ′α − E(V ′α))|X −X ′|q]

= −αTE[(Y Y T − Σ)(Y ′(Y ′)T − Σ)|X −X ′|q]α

= αTVMDDM(Y |X)α ≥ 0.

So VMDDM(Y |X) is positive semidefinite.

To show the second assertion, we note that for any α 6= 0,

VMMDM(Y |X)α = 0 ⇐⇒ αTVMDDM(Y |X)α = 0

⇐⇒ MDD(Vα|X)2 = 0

⇐⇒ E(Vα|X) = E(Vα) a.s.

⇐⇒ E((Y Y T − Σ)|X)α = 0 a.s.

⇐⇒ αTE((Y Y T − Σ)|X)α = 0 a.s.

⇐⇒ E((αTY )2|X) = E((αTY )2) a.s.

Thus if VMDDM(Y |X) is singular and α is in its null space, then the condi-

tional variance of αTY given X is a constant. On the other hand, if for α 6= 0,

E((αTY )2|X) = E((αTY )2), then VMDDM(Y |X)α = 0 according to the equiv-

alence relations stated above. Thus VMDDM(Y |X) is singular. The conclusion

follows. ♦

Proof of Theorem 3.2.1: For simplicity, we prove the above theorem assuming k0 = 1

and the proof for general k0 can be extended in a similar fashion. The main arguments

follow from that used in the proof of Theorem 4.1 in Lee and Shao (2016).
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According to Lemma A.1 in Kneip and Utikal (2001),

λ̂i − λi = tr(γiγ
T
i (V̂1 − V1)) +R1, |R1| ≤

6‖V̂1 − V1‖2
2

minλ∈EG(V1),λ 6=λi |λ− λi|
, i = 1, · · · , s

We claim that ‖V̂1 − V1‖2
2 = Op(n

−1).

Note that

‖V̂1 − V1‖2
2 ≤ ‖V̂1 − V1‖2

F

≤
p∑
i=1

p∑
j=1

|(V̂1)ij − (V1)ij|2

≤
p∑

i1=1

p∑
j1=1

p∑
i2=1

p∑
j2=1

|(V̂1)i1j1i2j2 − (V1)i1j1i2j2|2

where (V̂1)i1j1i2j2 = − 1
(n−1)2

∑n
t1=2

∑n
t2=2(Yi1,t1Yj1,t1−Σn,i1,j1)(Yi2,t2Yj2,t2−Σn,i2,j2)|Yt1−1−

Yt2−1|p and Σn = 1
n

∑n
t=1(Yt − Y n)(Yt − Y n)T where Y n = 1

n

∑n
t=1 Yt.

Note that

(V̂1)i1j1i2j2 =
(n− 2)

(n− 1)
{(U1,n)i1j1i2j2 + (U2,n)i1j1i2j2 + (U3,n)i1j1i2j2 + (U4,n)i1j1i2j2}
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where

(U1,n)i1j1i2j2 = − 1

(n− 1)(n− 2)

∑
t1

∑
t1 6=t2

(Yi1,t1Yj1,t1 − Σi1,j1)(Yi2,t2Yj2,t2 − Σi2,j2)

×|Yt1−1 − Yt2−1|p

(U2,n)i1j1i2j2 = − 1

(n− 1)(n− 2)

∑
t1

∑
t1 6=t2

(Yi1,t1Yj1,t1 − Σi1,j1)(Σi2,j2 − Σn,i2,j2)

×|Yt1−1 − Yt2−1|p

(U3,n)i1j1i2j2 = − 1

(n− 1)(n− 2)

∑
t1

∑
t1 6=t2

(Σi1,j1 − Σn,i1,j1)(Yi2,t2Yj2,t2 − Σi2,j2)

×|Yt1−1 − Yt2−1|p

(U4,n)i1j1i2j2 = − 1

(n− 1)(n− 2)

∑
t1

∑
t1 6=t2

(Σi1,j1 − Σn,i1,j1)(Σi2,j2 − Σn,i2,j2)

×|Yt1−1 − Yt2−1|p

and (U1,n)i1,j1,j2,j2 is a U-statistic of order 2 with the following kernel.

g(Z2, Z
′

2) = −(Yi1,2Yj1,2 − Σi1,j1)(Y
′

i2,2
Y
′

j2,2
− Σi2,j2)|Y1 − Y

′

1 |p

where Zt = (Y T
t , Y

T
t−1)T . By applying Theorem in Yoshihara (1976), |(U1,n)i1,j1,i2,j2 −

(V1)i1,j1,i2,j2|22 = Op(n
−1) for i1, j1, i2, j2 = 1, · · · , p. Since |Σi1,j1−Σn,i1,j1| = Op(n

−1/2)

and |Σi2,j2−Σn,i2,j2 | = Op(n
−1/2), (Ui,n)i1,j1,i2,j2 = Op(n

−1/2) for i = 2, 3, 4. Therefore,

|tr(γiγTi (V̂1 − V1)| ≤ ‖γj‖2‖V̂1 − V1‖2 = Op(n
−1/2) and |R1| = Op(n

−1). Finally,

λ̂i − λi = Op(n
−1/2), i = 1, · · · , s.

Based on part (b) of Lemma A.1 in Kneip and Utikal (2001),

γ̂i − γi = −Si(V1)(V̂1 − V1)γi +R3, i = 1, · · · , s

where Si(V1) =
∑

h6=i
1

λh−λi
γhγ

T
h , ‖R3‖ ≤ 6‖V̂1−V1‖22

minλ∈EG(V1),λ6=λi |λ−λi|
2 = Op(n

−1).
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‖ − Si(V1)(V̂1 − V1)γi‖2
2 =

∑
h6=i

(γTh (V̂1 − V1)γi)
2

(λh − λi)2

≤
∑
h6=i

1

(λh − λi)2
‖γh‖2‖V̂1 − V1‖2

2‖γi‖2 = Op(n
−1)

Therefore, γ̂i − γi = Op(n
−1/2), i = 1, · · · , s.

In order to show the third assertion in Theorem 3.2.1, we start from part (a) of

the lemma.

p∑
i=s+1

(λ̂i − λi) =

p∑
i=s+1

λ̂i = tr(γs+1γ
T
s+1(V̂1 − V1)) +R2

Where |R2| ≤ min(p− s, s) 6‖V̂1−V1‖22
minλ∈EG(V1),λ6=λi |λ−λs+1| = Op(n

−1).

tr(γs+1γ
T
s+1(V̂1 − V1)) = γTs+1V̂1γs+1 − γTs+1V1γs+1

=
(n− 2)

(n− 1)
(V1,n + V2,n + V3,n + V4,n)
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where

V1,n =
−1

(n− 1)(n− 2)

n∑
t1=2

∑
t2 6=t1

γTs+1(Yt1Y
T
t1
− Σ)(Yt2Y

T
t2
− Σ)Tγs+1|Yt1−1 − Yt2−1|p

V2,n =
−1

(n− 1)(n− 2)

n∑
t1=2

∑
t2 6=t1

γTs+1(Yt1Y
T
t1
− Σ)(Σ− Σn)Tγs+1|Yt1−1 − Yt2−1|p

V3,n =
−1

(n− 1)(n− 2)

n∑
t1=2

∑
t2 6=t1

γTs+1(Σ− Σn)(Yt2Y
T
t2
− Σ)Tγs+1|Yt1−1 − Yt2−1|p

V4,n =
−1

(n− 1)(n− 2)

n∑
t1=2

∑
t2 6=t1

γTs+1(Σ− Σn)(Σ− Σn)Tγs+1|Yt1−1 − Yt2−1|p

Note that λs+1 = 0 which implies V1γs+1 = 0⇔MDD(γTs+1Y2|Y1)2 = 0

⇔ E[(γTs+1Y2)2|Y1] = E[(γTs+1Y2)2] a.s.

E(V2
1,n) = O(n−4)

n∑
t1=2

n∑
t3=2

t1−1∑
t2=2

t3−1∑
t4=2

E[γTs+1(Yt1Y
T
t1
− Σ)(Yt2Y

T
t2
− Σ)Tγs+1

× γTs+1(Yt3Y
T
t3
− Σ)(Yt4Y

T
t4
− Σ)Tγs+1|Yt1−1 − Yt2−1|p|Yt3−1 − Yt4−1|p]

= O(n−4)
∑

t(1),t(2),t(3),t(4)

t1>t2,t3>t4

E[γTs+1(Yt1Y
T
t1
− Σ)(Yt2Y

T
t2
− Σ)Tγs+1

× γTs+1(Yt3Y
T
t3
− Σ)(Yt4Y

T
t4
− Σ)Tγs+1|Yt1−1 − Yt2−1|p|Yt3−1 − Yt4−1|p]

= O(n−4){
∑

t(1),t(2),t(3),t(4)

t1>t2,t3>t4
(t(1)−t(2))>m

E[γTs+1(Yt1Y
T
t1
− Σ)(Yt2Y

T
t2
− Σ)Tγs+1

× γTs+1(Yt3Y
T
t3
− Σ)(Yt4Y

T
t4
− Σ)Tγs+1|Yt1−1 − Yt2−1|p|Yt3−1 − Yt4−1|p]

+
∑

t(1),t(2),t(3),t(4)

t1>t2,t3>t4
(t(1)−t(2))≤m

E[γTs+1(Yt1Y
T
t1
− Σ)(Yt2Y

T
t2
− Σ)Tγs+1

× γTs+1(Yt3Y
T
t3
− Σ)(Yt4Y

T
t4
− Σ)Tγs+1|Yt1−1 − Yt2−1|p|Yt3−1 − Yt4−1|p]}

where t(i) is the i-th largest integer among (t1, t2, t3, t4), i.e. If (t1, t2, t3, t4) = (5, 3, 4, 2),
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then t(1) = t1 = 5, t(2) = t3 = 4, t(3) = t2 = 3, t(4) = t4 = 2.

Let H(t1, t1−1, t2, t2−1, t3, t3−1, t4, t4−1) = E[ξ(t1, t1−1, t2, t2−1)ξ(t3, t3−1, t4, t4−

1)], where ξ(t1, t1 − 1, t2, t2 − 1) = γTs+1(Yt1Y
T
t1
− Σ)(Yt2Y

T
t2
− Σ)Tγs+1|Yt1−1 − Yt2−1|p.

Then

E(V2
1,n) = O(n−4){

∑
t(1),t(2),t(3),t(4)

t1>t2,t3>t4
(t(1)−t(2))>m

H(t1, t1 − 1, t2, t2 − 1, t3, t3 − 1, t4, t4 − 1)

+
∑

t(1),t(2),t(3),t(4)

t1>t2,t3>t4
(t(1)−t(2))≤m

H(t1, t1 − 1, t2, t2 − 1, t3, t3 − 1, t4, t4 − 1)}.

If t(1) − t(2) > m and t(1) = t1, t(2) = t3,

H(t1, t1 − 1, t2, t2 − 1, t3, t3 − 1, t4, t4 − 1) = E[ξ(t1, t1 − 1, t2, t2 − 1)

×ξ(t3, t3 − 1, t4, t4 − 1)]

= E[E[ξ(t1, t1 − 1, t2, t2 − 1)ξ(t3, t3 − 1, t4, t4 − 1)|Ft3 ]]

= E[E[ξ(t1, t1 − 1, t2, t2 − 1)|Ft3 ]ξ(t3, t3 − 1, t4, t4 − 1)]

= E[E[γTs+1(Yt1Y
T
t1
− Σ)|Yt1−1 − Yt2−1|p|Ft3 ](Yt2Y

T
t2
− Σ)Tγs+1ξ(t3, t3 − 1, t4, t4 − 1)]

= E[E[E[γTs+1(Yt1Y
T
t1
− Σ)|Ft3 , Yt1−1]|Yt1−1 − Yt2−1|p|Ft3 ](Yt2Y

T
t2
− Σ)T

×γs+1ξ(t3, t3 − 1, t4, t4 − 1)]

= 0.

Similarly, the other cases such as (t(1) − t(2) > m and t(1) = t1, t(2) = t2), (t(1) −

t(2) > m and t(1) = t3, t(2) = t1), (t(1) − t(2) > m and t(1) = t3, t(2) = t4) have

H(t1, t1, t2, t2 − 1, t3, t3 − 1, t4, t4 − 1) = 0.
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Therefore, E(V2
1,n) = O(n−4)

∑
t(1),t(2),t(3),t(4)

t1>t2,t3>t4
(t(1)−t(2))≤m

H(t1, t1− 1, t2, t2− 1, t3, t3− 1, t4, t4− 1).

When t(1)− t(2) ≤ m, t(2)− t(3)−1 > m, t(3)− t(4)−1 > m and t(1) = t1, t(2) = t3,

H(t1, t1 − 1, t2, t2 − 1, t3, t3 − 1, t4, t4 − 1)

= E[ξ(t1, t1 − 1, t2, t2 − 1)ξ(t3, t3 − 1, t4, t4 − 1)]

= E[E[ξ(t1, t1 − 1, t2, t2 − 1)ξ(t3, t3 − 1, t4, t4 − 1)|Yt1 , Yt1−1, Yt3 , Yt3−1, Yt4 , Yt4−1]]

= E[E[ξ(t1, t1 − 1, t2, t2 − 1)|Yt1 , Yt1−1, Yt3 , Yt3−1, Yt4 , Yt4−1]ξ(t3, t3 − 1, t4, t4 − 1)]

= E[γTs+1(Yt1Y
T
t1
− Σ)E[(Yt2Y

T
t2
− Σ)Tγs+1|Yt1−1 − Yt2−1|p

× |Yt1 , Yt1−1, Yt3 , Yt3−1, Yt4 , Yt4−1]ξ(t3, t3 − 1, t4, t4 − 1)]

= E[γTs+1(Yt1Y
T
t1
− Σ)E[E[(Yt2Y

T
t2
− Σ)Tγs+1|Yt1 , Yt1−1, Yt3 , Yt3−1, Yt4 , Yt4−1, Yt2−1]

× |Yt1−1 − Yt2−1|p|Yt1 , Yt1−1, Yt3 , Yt3−1, Yt4 , Yt4−1]ξ(t3, t3 − 1, t4, t4 − 1)]

= 0.

Furthermore, it can be shown that the other cases, (t(2)−t(3)−1 > m, t(3)−t(4)−1 > m

and t(1) = t1, t(2) = t2), (t(2) − t(3) − 1 > m, t(3) − t(4) − 1 > m and t(1) =

t3, t(2) = t1), (t(2) − t(3) − 1 > m, t(3) − t(4) − 1 > m and t(1) = t3, t(2) = t4) have

H(t1, t1 − 1, t2, t2 − 1, t3, t3 − 1, t4, t4 − 1) = 0 through a similar fashion.

Under the condition that E[|Yt|10] <∞, |H(t1, t1−1, t2, t2−1, t3, t3−1, t4, t4−1)| ≤
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C for any t1, t2, t3, t4. Therefore,

E(V2
1,n) = O(n−4){

∑
t(1),t(2),t(3),t(4)

t1>t2,t3>t4
(t(1)−t(2))≤m
t(2)−t(3)−1≤m

H(t1, t1 − 1, t2, t2 − 1, t3, t3 − 1, t4, t4 − 1)

+
∑

t(1),t(2),t(3),t(4)

t1>t2,t3>t4
(t(1)−t(2))≤m
t(2)−t(3)−1>m
t(3)−t(4)−1≤m

H(t1, t1 − 1, t2, t2 − 1, t3, t3 − 1, t4, t4 − 1)} = O(n−2).

Thus, V1,n = Op(n
−1). Similarly, Vi,n = Op(n

−1) for i = 2, 3, 4. Therefore,
∑p

i=s+1(λ̂i−

λi) = Op(n
−1) and this implies λ̂i − λi = Op(n

−1) for i = s+ 1, · · · , p. ♦

Proof of Proposition 3.3.1: To show the second assertion,

VMDDM(Y |X)ij =

p∑
k=1

−E[(YiYk − Σik)(Y
′

j Y
′

k − Σjk)|X −X
′|q]

=

p∑
k=1

vecVMDDM(Y |X)(i−1)p+k,(k−1)p+j

=

p∑
k=1

vecVMDDM(Y |X)(i−1)p+k,(j−1)p+k.

With the above result, we can further show the first assertion in Proposition 3.3.1 as
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follows,

tr(VMDDM(Y |X)) =

p∑
i=1

VMDDM(Y |X)ii

=

p∑
i=1

p∑
k=1

−E[(YiYk − Σik)(Y
′

i Y
′

k − Σjk)|X −X
′|q]

=

p∑
i=1

p∑
k=1

MDD(YiYk|X)2

=

p∑
i=1

p∑
k=1

vecVMDDM(Y |X)(i−1)p+k,(i−1)p+k

= tr(vecVMDDM(Y |X)2).

♦
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Before we start the proof of Theorem 3.3.1, we first claim that Gk0(·), Ĝk0(·) are

Lipschitz continuous on H with D-distance, where H is a set of all p× p orthogoanl

matrices.

Lemma A.2.1. For any U, V ∈ H, it holds that

|Gk0(U)−Gk0(V )| ≤ c tr(vecVk0)D(U, V )1/2 (A.0.3)

|Ĝk0(U)− Ĝk0(V )| ≤ c tr(v̂ecV k0)D(U, V )1/2 (A.0.4)

where c > 0 is a general constant.

Proof of Lemma A.2.1: Let U = (u1, · · · , up)T , V = (v1, · · · , vp)T , (λi, γi)
p2

i=1 be eigen-

values and eigenvectors of vecVk0 ∈ Rp2×p2
and

Uij =

k0∑
k=1

MDD(uTi YtY
T
t uj|Yt−k)2, Vij =

k0∑
k=1

MDD(vTi YtY
T
t vj|Yt−k)2.

We assume that uTi vi ∈ [0, 1], ∀i = 1, · · · , p and D(U, V ) = 1− 1
p

∑p
i=1 u

T
i vi (meaning

that max1≤j≤pu
T
i vj = uTi vi,∀i = 1, · · · , p) by arranging the orders and directions of

{uj}pj=1 and {vj}pj=1.
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|Uij − Vij| = |uTj ⊗ uTi vecVk0uj ⊗ ui − vTj ⊗ vTi vecVk0vj ⊗ vi|

= |uTj ⊗ uTi
p2∑
l=1

λlγlγ
T
l uj ⊗ ui − vTj ⊗ vTi

p2∑
l=1

λlγlγ
T
l vj ⊗ vi|

= |
p2∑
l=1

λl{uTj ⊗ uTi γlγTl uj ⊗ ui − vTj ⊗ vTi γlγTl vj ⊗ vi}|

≤
p2∑
l=1

λl{|uTj ⊗ uTi γlγTl uj ⊗ ui − vTj ⊗ vTi γlγTl vj ⊗ vi|}

≤
p2∑
l=1

λl{|(uTj ⊗ uTi − vTj ⊗ vTi )γlγ
T
l uj ⊗ ui|

+|vTj ⊗ vTi γlγTl (uj ⊗ ui − vj ⊗ vi)|}

≤
p2∑
l=1

λl{|(uTj ⊗ uTi − vTj ⊗ vTi )γl| ‖γl‖‖uj ⊗ ui‖

+‖vj ⊗ vi‖‖γl‖ |γTl (uj ⊗ ui − vj ⊗ vi)|}

≤
p2∑
l=1

λl{‖uj ⊗ ui − vj ⊗ vi‖‖γl‖+ ‖γl‖‖uj ⊗ ui − vj ⊗ vi‖}

= 2‖uj ⊗ ui − vj ⊗ vi‖
p2∑
l=1

λl
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Let uj = (uj1, · · · , ujp)T , vj = (vj1, · · · , vjp)T .

‖uj ⊗ ui − vj ⊗ vi‖2 =

p∑
s=1

p∑
t=1

{ujsuit − vjsvit}2

=

p∑
s=1

p∑
t=1

{ujs(uit − vit) + (ujs − vjs)vit}2

=

p∑
s=1

u2
js

p∑
t=1

(uit − vit)2 +

p∑
j=1

(ujs − vjs)2

p∑
t=1

v2
it

+2

p∑
s=1

ujs(ujs − vjs)
p∑
t=1

(uit − vit)vit

=

p∑
t=1

(uit − vit)2 +

p∑
s=1

(ujs − vjs)2

+ 2

p∑
s=1

(u2
js − ujsvjs)

p∑
t=1

(uitvit − v2
it)

= (2− 2uTi vi) + (2− 2uTj vj)− 2(1− uTj vj)(1− uTi vi)

≤ (2− 2uTi vi) + (2− 2uTj vj)

Therefore,

‖uj ⊗ ui − vj ⊗ vi‖ ≤
√

2
√

(1− uTi vi) + (1− uTj vj)

≤
√

2(
√

1− uTi vi +
√

1− uTj vj)
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Finially, we have

|Gk0(U)−Gk0(V )| = |
p∑
i=1

∑
i<j

(Uij − Vij)|

≤
p∑
i=1

∑
i<j

|Uij − Vij|

≤
p∑
i=1

∑
i<j

2(

p2∑
l=1

λl)‖uj ⊗ ui − vj ⊗ vi‖

≤ 2
√

2(

p2∑
l=1

λl)

p∑
i=1

∑
i<j

(
√

1− uTi vi +
√

1− uTj vj)

≤ 2
√

2(

p2∑
l=1

λl){
p∑
i=1

p∑
j=1

√
1− uTi vi +

p∑
i=1

p∑
j=1

√
1− uTj vj}

= 4p
√

2(

p2∑
l=1

λl)

p∑
i=1

√
1− uTi vi

≤ 4p
√

2(

p2∑
l=1

λl)
√
p

√√√√ p∑
i=1

(1− uTi vi)

= 4p2
√

2(

p2∑
l=1

λl)D(U, V )1/2

Note that (
∑p2

l=1 λl) is tr(vecVk0) and this completes the proof of (A.0.3). (A.0.4) can

be shown in a similar fashion as (A.0.3).

♦

Proof of Theorem 3.3.1: From Lee and Shao (2016) and the proof of Theorem 3.2.1

(for Vk0), we have ‖v̂ecV k0−vecVk0‖2 = Op(n
−1/2) by applying Theorem in Yoshihara

(1976). With this fact, we will show |Ĝk0(A)−Gk0(A)| = Op(n
−1/2), for any A ∈ H.
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|Ĝk0(A)−Gk0(A)| = |
p∑
i=1

∑
i<j

aTj ⊗ aTi (v̂ecV k0 − vecVk0)aj ⊗ ai|

≤
p∑
i=1

∑
i<j

‖aj ⊗ ai‖‖v̂ecV k0 − vecVk0‖2‖aj ⊗ ai‖

=

p∑
i=1

∑
i<j

‖v̂ecV k0 − vecVk0‖2

=
p(p− 1)

2
‖v̂ecV k0 − vecVk0‖2 = Op(n

−1/2)

Therefore, supA∈H|Ĝk0(A)−Gk0(A)| = Op(n
−1/2).

With this result and Lemma A.2.1, D(Â0, A0) →p 0 as n → ∞ by the argmax

mapping theorem (Theorem 3.2.2 and Corollary 3.2.3) in van der Vaart and Wellner

(1996) .

Additionally, if we assume the condition 3 of Assumption 3.3.2, then

Ĝk0(A0)− Ĝk0(A) = Gk0(A0)−Gk0(A) +Op(n
−1/2) ≤ −aD(A0, A) +Op(n

−1/2)

When A = Â0, Ĝk0(A0)− Ĝk0(Â0) has to be a non-negative number by the definition

of Â0. Thus, D(A0, Â0, ) = Op(n
−1/2) otherwise Ĝk0(A0)−Ĝk0(Â0) becomes negative.

Proof of Proposition 4.2.1: If E[Y |X] = µY a.s., it is clear that FMDD(Y |X) = 0.

We only need to show the other direction i.e., FMDD(Y |X) = 0 implies E[Y |X] =

µY a.s. Without loss of generality, we can assume that µY = 0 (otherwise we work

with Y − µY ). By Theorem 3.16 and Proposition 3.1 in Lyon (2013), there exists

an embedding φ : L2(I) (or Rq) → H such that |x − x
′ | = |φ(x) − φ(x

′
)|2 and

βφ(v) =
∫
φ(x)dv(x) is injective on the set of measures v on L2(I) (or Rq) such that

|v| has a finite first moment, i.e.,
∫
|x − o|d|v|(x) < ∞, for some o ∈ Lx. Using this
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result and the definition of FMDD, we have

FMDD(Y |X) = 2

∫
< y, y

′
>< φ(x)− βφ(µ), φ(x

′
)− βφ(µ) > dθ(x, y)θ(x

′
, y
′
)

= |E[Y ⊗ φ(X)]|2 ≥ 0,

where µ denotes the distribution of X and θ is the joint distribution of (X, Y ). Hence,

FMDD(Y |X) = 0 implies that

E[Y ⊗ φ(X)] =

∫
yφ(x)dθ(x, y) = 0 a.s.

For any Borel set B ⊆ L2(I) (or Rq) and k ∈ L2(I) (or Rp), define the sign measure,

vk(B) =

∫
< y, k > 1B(x)dθ(x, y) = E[< Y, k > 1B(X)],

where |vk| has a finite first moment under the assumptions that E[|X| + |Y |] < ∞

and E[|X − µX ||Y − µY |] <∞. Then we have

βφ(vk) =

∫
< y, k > φ(x)dθ(x, y) =<

∫
yφ(x)dθ(x, y), k >= 0.

The injectivity of βφ gives vk(B) = E[< Y, k > 1B(X)] = 0. Thus, by the definition

of conditional mean independence, we have

E[< Y, k > |X] = 0, (A.0.5)

for any k ∈ L2(I) (or Rp). Therefore, (A.0.5) implies that E[Y |X] = µY , which

completes the proof of Proposition 4.2.1.

♦
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Proof of Proposition 4.2.2: Following the arguments in Section 1.1 of the supplement

of Zhang et al. (2017), we can show that FMDDn(Y |X) is an unbiased estimator of

FMDD(Y |X), and it is a fourth-order U-statistic which has the form of

FMDDn(Y |X) =
1(
n
4

) ∑
i<j<q<r

h(Zi, Zj, Zq, Zr),

h(Zi, Zj, Zq, Zr) =
1

4!

(i,j,q,r)∑
(s,t,u,v)

(astbuv + astbst − astbsu − astbtv),

where
∑(i,j,q,r)

(s,t,u,v) denotes the summation over all permutations of the 4-tuple of indices

(i, j, q, r) and Zi = (Xi, Yi). Under the assumption that E[|X| + |Y |] < ∞ and

E[|X − µX ||Y − µY |] <∞, we have

E[|h(Zi, Zj, Zq, Zr)|] ≤
1

4!

(i,j,q,r)∑
(s,t,u,v)

E|astbuv + astbst − astbsu − astbtv|

≤E[|X −X ′|]E[|Y − µY |]2 + E[|X −X ′||Y − µY ||Y ′ − µY |]

+ 2E[|X −X ′||Y − µY |]E[|Y − µY |] <∞.

Proposition 4.2.2 follows from the law of large numbers for U-statistics [see e.g. Ho-

effding (1961) and Lee (1990)]. ♦

Proof of Theorem 4.2.1: For c = 1, 2, 3, 4, define

hc(z1, · · · , zc) = E[h(z1, · · · , zc, Zc+1, · · · , Z4)],

where zi = (xi, yi) for 1 ≤ i ≤ 4. Denote by Z ′ = (X ′, Y ′) and Z ′′ = (X ′′, Y ′′) two

independent copies of Z = (X, Y ). When FMDD(Y |X) = 0, following the calcula-

tions in Section 1.2 of the supplement of Zhang et al. (2017), we have h1(z) = 0 and
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h2(z, z′) = U(x, x′)V (y, y′)/6 for z = (x, y) and z′ = (x′, y′). Under the assumption

E[|X|2 + |Y |2] <∞ and E[|X −µX |2|Y −µY |2] <∞, we have E[h(Zi, Zj, Zq, Zr)
2] <

∞. Applying Theorem 5.5.2 in Serfling (1980), we obtain nFMDDn(Y |X) →D∑∞
k=1 λk(G

2
k − 1). ♦

Proof of Theorem 4.2.2: Under the local alternative H1,n : Y = µY + g(X)
na

+ ε, we have

|Yi − Yj|2 =
1

n2a
|g(Xi)− g(Xj)|2 + |εi − εj|2 +

2

na
< g(Xi)− g(Xj), εi − εj >

=
1

n2a
|g(Xi)− g(Xj)|2 + |εi − εj|2

+
1

na
{
|g(Xi) + εi − (g(Xj) + εj)|2 − |g(Xi)− g(Xj)|2 − |εi − εj|2

}
Using the above result, FMDDn(g(X)

na
+ε|X) can be decomposed into three terms.

FMDDn(
g(X)

na
+ ε|X) =

1

n2an(n− 3)

∑
i 6=j

ÃijB̃
g
ij +

1

n(n− 3)

∑
i 6=j

ÃijB̃
ε
ij

+
1

nan(n− 3)

∑
i 6=j

Ãij(B̃
g+ε
ij − B̃

g
ij − B̃ε

ij), (A.0.6)

where B̃ε
ij = eij − ei· − e·j + e··, with eij = 1

2
|εi − εj|2, and eij, ei·, e·j, e·· are defined

similarly as bij, bi·, b·j, b··. Moreover B̃g+ε
ij , B̃g

ij are defined similarly by replacing

(εi, εj) in B̃ε
ij with (g(Xi) + εi, g(Xj) + εj) and (g(Xi), g(Xj)).

Since 1
n(n−3)

∑
i 6=j ÃijB̃

ε
ij is a degenerate U-statistic whereas 1

n(n−3)

∑
i 6=j ÃijB̃

g
ij,

1
n(n−3)

∑
i 6=j Ãij(B̃

g+ε
ij − B̃

g
ij− B̃ε

ij) are nondegenerate U-statistics (to be shown below),

(A.0.6) implies that

nFMDDn(
g(X)

na
+ ε|X) = n1−2aFMDD(g(X)|X) +Op(n

1/2−2a)

+Op(1) +Op(n
1/2−a). (A.0.7)
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We shall consider three scenarios: (i) 0 < a < 1/2, (ii) a = 1/2, (iii) a > 1/2.

(i) 0 < a < 1/2:

Based on (A.0.7), we can easily show that nFMDDn(g(X)
na

+ε|X)→p ∞ which implies

that our test has consistency under this scenario.

(iii) a > 1/2:

Similarly, using (A.0.7) and Theorem 4.2.1, we have

nFMDDn(
g(X)

na
+ ε|X) =

1

(n− 3)

∑
i 6=j

ÃijB̃
ε
ij

+op(1)→D

∞∑
k=1

λk(G
2
k − 1), (A.0.8)

which is same as the limiting null distribution.

(ii) a = 1/2:

When a = 1/2, FMDDn(g(X)√
n

+ ε|X) can be written as a sum of linear combination

of two U-statistics, U ε
n, U

g,ε
n and a sequence of random variables cn where ncn →a.s.

FMDD(g(X)|X) = c, i.e.,

FMDDn(
g(X)√
n

+ ε|X) =
1

n2(n− 3)

∑
i 6=j

ÃijB̃
g
ij

+
1

n(n− 3)

∑
i 6=j

Ãij{B̃ε
ij +

1√
n

(B̃g+ε
ij − B̃

g
ij − B̃ε

ij)}

= cn + U ε
n +

1√
n
U g,ε
n . (A.0.9)

Specifically, U ε
n, U

g,ε
n are mean zero U-statistics of degree 4, i.e.,

U ε
n =

1

n(n− 3)

∑
i 6=j

ÃijB̃
ε
ij =

1(
n
4

) ∑
i<j<q<r

H1(Zi,Zj,Zq,Zr),

U g,ε
n =

1

n(n− 3)

∑
i 6=j

Ãij(B̃
g+ε
ij − B̃

g
ij − B̃ε

ij) =
1(
n
4

) ∑
i<j<q<r

h1(Zi,Zj,Zq,Zr),
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where Zi = (Xi, εi),

H1(Zi,Zj,Zq,Zr) =
1

4!

(i,j,q,r)∑
(s,t,u,v)

ast(euv + est − esu − etv),

h1(Zi,Zj,Zq,Zr) =
1

4!

(i,j,q,r)∑
(s,t,u,v)

ast(muv +mst −msu −mtv)

and mij =< g(Xi)− g(Xj), εi − εj >.

Define

h̃1,i(z1, · · · , zi) = E[h1(z1, z2, · · · , zi,Zi+1, · · · ,Z4)],

H̃1,i(z1, · · · , zi) = E[H1(z1, z2, · · · , zi,Zi+1, · · · ,Z4)] , i = 1, 2, 3, 4.

By the results in the supplement of Zhang et al. (2017) and calculations, we show

that h̃1,1(z1) = 1
2
E[U(x1, X)V (ε1, g(X))], H̃1,1(z1) = 0,

h̃1,2(z1, z2) =
1

6
{U(x1, x2)(V (ε1, g(x2)) + V (g(x1), ε2))

+ E[U(x1, X)V (ε1, g(X))] + E[U(x2, X)V (ε2, g(X))]

+ E[(U(x1, X)− U(x2, X))(V (ε1, g(X))− V (ε2, g(X)))]}

H̃1,2(z1, z2) =
1

6
U(x1, x2)V (ε1, ε2)
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h̃1,3(z1, z2, z3) =
1

12
{(2U(x1, x2)− U(x2, x3)− U(x1, x3))

× (V (ε1, g(x2)) + V (g(x1), ε2)))

+ (2U(x1, x3)− U(x1, x2)− U(x2, x3))(V (ε1, g(x3)) + V (g(x1), ε3)))

+ (2U(x2, x3)− U(x1, x2)− U(x1, x3))(V (ε2, g(x3)) + V (g(x2), ε3)))

+ E[(2U(x1, X)− U(x2, X)− U(x3, X))V (ε1, g(X))]

+ E[(2U(x2, X)− U(x1, X)− U(x3, X))V (ε2, g(X))]

+ E[(2U(x3, X)− U(x1, X)− U(x2, X))V (ε3, g(X))]}

H̃1,3(z1, z2, z3) =
1

12
{(2U(x1, x2)− U(x2, x3)− U(x1, x3))V (ε1, ε2)

+ (2U(x1, x3)− U(x1, x2)− U(x2, x3))V (ε1, ε3)

+ (2U(x2, x3)− U(x1, x2)− U(x1, x3))V (ε2, ε3)}

Note that h̃1,4(z1, z2, z3, z4) = h1(z1, z2, z3, z4) and H̃1,4(z1, z2, z3, z4) = H1(z1, z2, z3, z4).

Under the assumptions that E[|X|2 + |g(X)|2 + |ε|2] < ∞, E[|X − µX |2(|g(X)|2 +

|ε|2)] <∞, it is guaranteed that var(h1(Z,Z ′ ,Z ′′ ,Z ′′′)) <∞ and

var(H1(Z,Z ′ ,Z ′′ ,Z ′′′)) < ∞. Moreover, by the results in Section 5.2.1 (page 182)

and Lemma 5.1.5A in Serfling (1980), we have 0 < var(h̃1,1(Z)) <∞ and obtain

√
nU g,ε

n =
4√
n

n∑
i=1

h̃1,1(Zi) +R1,n, (A.0.10)

where R1,n is asymptotically negligible.

Similarly we have 0 < var(H̃1,2(Z,Z ′)) <∞ and obtain

nU ε
n =

6

(n− 1)

∑
i 6=j

H̃1,2(Zi,Zj) +R2,n, (A.0.11)
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where R2,n is asymptotically negligible.

Based on (A.0.10) and (A.0.11), we deduce that

√
nU g,ε

n + nU ε
n =

4√
n

n∑
i=1

h̃1,1(Zi) +
6

(n− 1)

∑
i 6=j

H̃1,2(Zi,Zj) +Rn

=
√
nUn1 + nUn2 +Rn, (A.0.12)

where Rn is asymptotically negligible and

Un1 =
4

n

n∑
i=1

h̃1,1(Zi), Un2 =
6

n(n− 1)

∑
i 6=j

H̃1,2(Zi,Zj).

Next we shall find the limiting distribution of
√
nU g,ε

n + nU ε
n. Applying Dunford and

Schwartz (1963) to 6H̃1,2(Z,Z ′), we obtain

6H̃1,2(Z,Z ′) =
∞∑
k=1

λkψk(Z)ψk(Z
′
),

where (λk, ψk(·)) is a sequence of eigenvalues and eigenfunctions of 6H̃1,2 and the

eigenfunctions are orthogonal, i.e., E[ψi(Z)ψj(Z)] = δij.

Note that

E[62H̃1,2(Z,Z ′)H̃1,2(Z,Z ′′)] = E[U(X,X
′
)U(X,X

′′
)V (ε, ε

′
)V (ε, ε

′′
)] = 0

= E[
∑
k

∑
l

λkλlψk(Z)ψk(Z
′
)ψl(Z)ψl(Z

′′
)]

=
∑
k

λ2
kE[ψk(Z

′
)]E[ψk(Z

′′
)]

=
∑
k

λ2
kE[ψk(Z

′
)]2
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which implies that

E[ψk(Z)] = 0, ∀k. (A.0.13)

For convenience, we let Un2 be 6
n2

∑
i 6=j H̃1,2(Zi,Zj) which will not affect the lim-

iting distribution of
√
nU g,ε

n +nU ε
n. Then the leading term of

√
nU g,ε

n +nU ε
n, which is

√
nUn1 + nUn2 can be rewritten as

√
nUn1 + nUn2 =

4√
n

n∑
i=1

h̃1,1(Zi) +
∞∑
k=1

λk

{
(

1√
n

n∑
i=1

ψk(Zi))2 − 1

n

n∑
i=1

ψk(Zi)2

}
.

Then we apply multivariate CLT to 1√
n

∑n
i=1 ψk(Zi) and 1√

n

∑
i h̃1,1(Zi). Due to

(A.0.13) and E[h̃1,1(Z)] = 0, for a fixed positive integer K, we have



1√
n

∑n
i=1 ψ1(Zi)

...

1√
n

∑n
i=1 ψK(Zi)

1√
n

∑n
i=1 h̃1,1(Zi)


→D Z∗ ∼ N(0,Σ), (A.0.14)

where

Σ =



1 · · · 0 E[ψ1(Z)h̃1,1(Z)]

...
. . .

...
...

0 · · · 1 E[ψK(Z)h̃1,1(Z)]

E[ψ1(Z)h̃1,1(Z)] · · · E[ψK(Z)h̃1,1(Z)] var(h̃1,1(Z))


(A.0.15)

We shall use the truncation method to show

√
nUn1 + nUn2 →D G+

∞∑
k=1

λk(G
2
k − 1),
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where (Gk) are independent standard normal random variables and G is normal ran-

dom variable with zero mean and variance equal to 16var(h̃1,1(Z)) which is possibly

correlated with (Gk); see (A.0.15).

Define nU (K)
n2 = 1

n

∑
i 6=j
∑K

k=1 λkψk(Zi)ψk(Zj) and notice that

E[(nUn2 − nU (K)
n2 )2] =

1

n2

∑
i 6=j

∞∑
k=K+1

λ2
k → 0, (A.0.16)

as K → +∞ due to the fact that E[62H̃1,2(Z,Z ′)2] =
∑∞

k=1 λ
2
k < ∞. Then by

(A.0.16) and Markov inequality, we can show that for any δ > 0,

lim
K→+∞

lim sup
n→∞

P (|
√
nUn1 + nUn2 − (

√
nUn1 + nU (K)

n2 )| ≥ δ) = 0. (A.0.17)

Moreover, due to (A.0.14), it is obvious that for any fixed K,

√
nUn1 + nU (K)

n2 =
4√
n

n∑
i=1

h̃1(Zi) +
K∑
k=1

λk

{
(

1√
n

n∑
i=1

ψk(Zi))2 − 1

n

n∑
i=1

ψk(Zi)2

}

→D G+
K∑
k=1

λk(G
2
k − 1). (A.0.18)

Since (A.0.17) and (A.0.18) are satisfied, we have the following result by using

Theorem 2 in Dehling et al. (2009).

√
nUn1 + nUn2 →D G+

∞∑
k=1

λk(G
2
k − 1). (A.0.19)

Therefore, due to (A.0.9), (A.0.12), and (A.0.19), we finally conclude that

n

{
FMDDn(

g(X)√
n

+ ε|X)− 1

n
FMDD(g(X)|X)

}
→D G+

∞∑
k=1

λk(G
2
k − 1).
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♦

Proof of Theorem 4.2.3: By Hoeffding decomposition, we have

FMDDn(Y |X)− FMDD(Y |X) =
2

n

n∑
i=1

{K(Zi)− FMDD(Y |X)}+Rn,

where Rn is asymptotically negligible. Hence, using Theorem 5.5.1 in Serfling (1980),

we obtain
√
n(FMDDn(Y |X)− FMDD(Y |X))→D N(0, 4σ2

1),

where σ2
1 = var(K(Z)). ♦

Lemma A.4.1. Let {Xi}i≥1 be a sequence of identically distributed random ele-

ments defined on the same probability space (Ω,B, P ) with E[|X1|] < ∞. Let Yn =

n−1 max1≤i≤n |Xi|. Then Yn → 0 almost surely.

Proof of Lemma A.4.1: For any ε > 0, we have

+∞∑
n=1

P (|Xn| > εn) =
+∞∑
n=1

P (|X1| > εn) <∞,

as E[|X1|] <∞ [see Lemma 7.5.1 of Resnick (2005)]. By the Borel-Cantelli Lemma,

we have P (lim infn[|Xn| ≤ εn]) = 1. Let A = ∩∞m=1 lim infn[|Xn| ≤ n/m]. Then

P (A) = 1. For any w ∈ A, there exists n0 = n0(w;m) such that for n ≥ n0(w;m),

|Xn| ≤ n/m. Thus we have

Yn(w) ≤n−1 max
1≤i≤n0−1

|Xi(w)|+ n−1 max
n0≤i≤n

|Xi(w)|

≤n−1 max
1≤i≤n0−1

|Xi(w)|+ 1/m→ 1/m.
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Since m can be arbitrarily large, limn→+∞ Yn(w) = 0, which implies that Yn → 0

almost surely. ♦

Lemma A.4.2. If E[H(Z,Z ′)4] < ∞ and νk 6= 0, then E[φk(Z)4] < ∞, where νk is

an eigenvalue which corresponds to the kth eigenfunction of H, φk(·).

Proof of Lemma A.4.2: Note that νkφk(Z) = E[H(Z,Z ′)φk(Z
′)|Z]. By the Cauchy-

Schwarz inequality and the fact that E[φk(Z
′)2|Z] = E[φk(Z

′)2] = 1, we have

ν4
kE[φk(Z)4] =E[E[H(Z,Z ′)φk(Z

′)|Z]4]

≤E[E[H(Z,Z ′)2|Z]2E[φk(Z
′)2|Z]2]

≤E[H(Z,Z ′)4] <∞.

Thus E[φk(Z)4] <∞ as νk 6= 0. ♦

Proof of Theorem 4.3.1: Let L2(µ) be the space consisting of all square integrable

functions with respect to the measure induced by Z (say µ). Let H(·, ·) be a sym-

metric bivariate function with E[H(Z,Z ′)2] < ∞, where Z ′ is an independent copy

of Z. Define the linear operator (Hf)(s) =
∫
H(s, t)f(t)µ(dt) for f ∈ L2(µ). Ac-

cording to Dunford and Schwartz (1963, p108, Exercise 56), H(z, z′) admits the series

decomposition,

H(z, z′) =
∞∑
k=1

νkφk(z)φk(z
′),

where {νk} and {φk} are the eigenvalues and eigenfunctions of H (with respect to µ)

respectively, i.e., Hφk = νkφk and E[φi(Z)φj(Z)] = δij.

Define H(K)(Z,Z ′) =
∑K

k=1 νkφk(Z)φk(Z
′
). As E[H(Z,Z ′)2] =

∑∞
k=1 ν

2
k <∞, we
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have

lim
K→∞

E[{H(Z,Z
′
)−H(K)(Z,Z

′
)}2] = lim

K→∞

∞∑
k=K+1

ν2
k = 0, (A.0.20)

which indicates that H(K)(Z,Z ′) approximates H(Z,Z ′) as K → +∞. We define

nU∗n = 1
n−1

∑
i 6=jH(Zi, Zj)W

∗
i W

∗
j and nU

(K)∗
n = 1

n−1

∑
i 6=jH(K)(Zi, Zj)W

∗
i W

∗
j . We

first prove that for any ε > 0,

lim
K→+∞

lim sup
n→∞

P ∗(|nU∗n − nU (K)∗
n | > ε) = 0 (A.0.21)

almost surely. Consider the U-statistic

1

n(n− 1)

∑
i 6=j

{H(Zi, Zj)−H(K)(Zi, Zj)}2 =
1

n(n− 1)

∑
i 6=j

{
∞∑

k=K+1

νkφk(Zi)φk(Zj)

}2

with the kernelH∗(Z,Z ′) = (H(Z,Z ′)−H(K)(Z,Z ′))2. As E[H∗(Z,Z ′)] = E[(H(Z,Z ′)−

H(K)(Z,Z ′))2] =
∑∞

k=K+1 ν
2
k <∞, by the strong law of large numbers for U-statistic

[see Hoeffding (1961) and Lee (1990)], we obtain

E∗[(nU∗n − nU (K)∗
n )2] = E∗

 1

(n− 1)2

(∑
i 6=j

∞∑
k=K+1

νkφk(Zi)φk(Zj)W
∗
i W

∗
j

)2


=
1

(n− 1)2

∑
i 6=j

(
∞∑

k=K+1

νkφk(Zi)φk(Zj)

)2

→a.s. E

( ∞∑
k=K+1

νkφk(Z)φk(Z
′
)

)2
 ,

as n→ +∞. Thus (A.0.21) follows from the Markov inequality and (A.0.20).
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Next we show that for any fixed K,

nU (K)∗
n →D∗

K∑
k=1

νk(N
2
k − 1) a.s., (A.0.22)

where (Nk) ∼i.i.d N(0, 1). First, we can rewrite nU
(K)∗
n as

nU (K)∗
n =

1

n

∑
i

∑
j

(
K∑
k=1

νkφk(Zi)φk(Zj)W
∗
i W

∗
j

)
− 1

n

∑
i

K∑
k=1

νk(φk(Zi)W
∗
i )2

(A.0.23)

and for convenience, we let the denominator of nU
(K)∗
n be n instead of n − 1. By

Lemma A.4.2, E[φk(Zi)
4] < ∞ which implies that E[

∑+∞
i=1 φk(Zi)

4/i2] < ∞, where

φk(·) corresponds to νk 6= 0. Define the set

Ak :=

{
w ∈ Ω :

+∞∑
i=1

φk(Zi(w))4

i2
<∞ and

1

n

n∑
i=1

φk(Zi(w))b → E[φk(Zi)
b] for b = 2, 4

}
.

Then P (∩(K)
k=1Ak) = 1, where ∩(K)

k=1 is the intersection of indices where eigenvalues

(νk)
K
k=1 are nonzero. Conditional on {Zi(w)} with w ∈ ∩(K)

k=1Ak, by Corollary 7.4.1 of

Resnick (2005), we have

1

n

n∑
i=1

(W ∗2
i − 1)φk(Zi)

2 →a.s. 0,

where φk(·) corresponds to νk 6= 0. As
∑n

i=1 φk(Zi)
2/n→ 1, we have 1

n

∑n
i=1W

∗2
i φk(Zi)

2 →a.s.

1, which implies

1

n

n∑
i=1

K∑
k=1

νk(φk(Zi)W
∗
i )2 →a.s.

K∑
k=1

νk.
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On the other hand, note that the first term in (A.0.23) can be rewritten as

K∑
k=1

νk

(
1√
n

n∑
i=1

W ∗
i φk(Zi)

)2

and

cov∗

(
1√
n

n∑
i=1

W ∗
i φs(Zi),

1√
n

n∑
j=1

W ∗
j φt(Zj)

)
=

1

n

n∑
i=1

φs(Zi)φt(Zi)

→a.s. E[φs(Z)φt(Z)] = δst. (A.0.24)

Similarly, define the set

Bk :=

{
w ∈ Ω :

1

n
max1≤i≤nφk(Zi(w))2 → 0

}
.

By Lemma A.4.1 and E[φk(Z)2] < ∞ for k = 1, 2, · · · , K, we have P (∩Kk=1Bk) =

1 which implies that P (∩(K)
k=1(Ak ∩ Bk)) = 1. Conditional on {Zi(w)} with w ∈

∩(K)
k=1(Ak ∩ Bk), we have

max1≤i≤n var∗(W ∗
i φk(Zi))∑n

j=1 var∗(W ∗
j φk(Zj))

=
1
n

max1≤i≤n φk(Zi)
2

1
n

∑n
j=1 φk(Zj)

2
→ 0. (A.0.25)

By Theorem D.19 in Greene (2007) and the Cramer-Wold device,

(
1√
n

n∑
i=1

W ∗
i φ(1)(Zi), . . . ,

1√
n

n∑
i=1

W ∗
i φ(K)(Zi)

)
→D N(0, I(K)),

for almost every realization of {Zi}, where ((1), · · · , (K)) are indices that corre-

spond to nonzero eigenvalues (νk)
K
k=1, I(K) is the (K)× (K) identity matrix. Hence,

nU
(K)∗
n →D∗

∑K
k=1 νk(N

2
k − 1) a.s.

Finally, since (A.0.21) and (A.0.22) are both satisfied, we can apply Theorem 2
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in Dehling et al. (2009) to conclude that

nU∗n →D∗
∞∑
k=1

νk(N
2
k − 1) a.s.

♦

Proof of Theorem 4.3.2: Recall that J(Zi, Zj) = U(Xi, Xj)V (Yi, Yj) for Zi = (Xi, Yi);

see Theorem 4.2.1. We first show that

var∗

(
1

(n− 3)

∑
i 6=j

(ÃijB̃ij − J(Zi, Zj))ηiηj

)

=
1

(n− 3)2

∑
i 6=j

(ÃijB̃ij − J(Zi, Zj))
2 →a.s. 0.

For the ease of notation, write Uij = U(Xi, Xj) and Vij = V (Yi, Yj). Notice that

∑
i 6=j

(ÃijB̃ij − UijVij)2 =
∑
i 6=j

(ÃijB̃ij − UijB̃ij + UijB̃ij − UijVij)2

≤2
∑
i 6=j

(Ãij − Uij)2B̃2
ij + 2

∑
i 6=j

U2
ij(B̃ij − Vij)2

≤4
∑
i 6=j

(Ãij − Uij)2(B̃ij − Vij)2 + 2
∑
i 6=j

U2
ij(B̃ij − Vij)2

+ 4
∑
i 6=j

(Ãij − Uij)2V 2
ij

≤4

(∑
i 6=j

(Ãij − Uij)4

)1/2(∑
i 6=j

(B̃ij − Vij)4

)1/2

+ 2

(∑
i 6=j

U4
ij

)1/2(∑
i 6=j

(B̃ij − Vij)4

)1/2

+ 4

(∑
i 6=j

V 4
ij

)1/2(∑
i 6=j

(Ãij − Uij)4

)1/2

.
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Under the assumption E[|Y |8 + |X|4] <∞, we have

1

n2

∑
i 6=j

U4
ij →a.s. EU4

12,
1

n2

∑
i 6=j

V 4
ij →a.s. EV 4

12.

Thus we only need to show that

1

n2

∑
i 6=j

(Ãij − Uij)4 →a.s. 0, (A.0.26)

1

n2

∑
i 6=j

(B̃ij − Vij)4 →a.s. 0. (A.0.27)

We only prove (A.0.27) as the proof for the other one is similar. Some algebra shows

that

1

n2

∑
i 6=j

(B̃ij − Vij)4

≤C
n2

∑
i 6=j


(

1

n

n∑
l=1

(bil − E[bil|Yi])

)4

+

(
1

n2

n∑
k,l=1

(bkl − E[bkl])

)4
+ oa.s.(1),

for some constant C. Under the assumption E[|Y |8] <∞, by the strong law of large

numbers for V-statistics, we have

1

n

n∑
i=1

(
1

n

n∑
l=1

(bil − E[bil|Yi])

)4

=
1

n5

n∑
i=1

n∑
l1,l2,l3,l4=1

4∏
k=1

(bilk − E[bilk |Yi])→a.s. 0

due to the fact that E[
∏4

k=1(bilk − E[bilk |Yi])] = 0, when (l1, l2, l3, l4) are distinct
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indices. Similarly,

1

n2

∑
i 6=j

(
1

n2

n∑
k,l=1

(bkl − E[bkl])

)4

≤

(
1

n2

n∑
k,l=1

(bkl − E[bkl])

)4

→a.s. 0.

Therefore, we have

1

n− 3

∑
i 6=j

ÃijB̃ijηiηj =
1

n− 3

∑
i 6=j

J(Zi, Zj)ηiηj + o∗p(1) a.s., (A.0.28)

and the conclusion follows from Theorem 4.3.1. ♦

Remark A.0.1. Since (A.0.28) is shown only with the assumption E[|Y |8+|X|4] <∞,

(A.0.28) is valid under the local alternative with the assumption E[|ε|8 + |g(X)|8 +

|X|4] <∞ and under the fixed alternative with the assumption E[|Y |8 + |X|4] <∞.

Proof of Theorem 4.3.3: Under the local alternative and the assumption E[|ε|8 +

|g(X)|8 + |X|4] <∞, (A.0.28) remains valid and we further show that

1

n− 3

∑
i 6=j

ÃijB̃ijηiηj =
1

n− 3

∑
i 6=j

U(Xi, Xj)V (εi, εj)ηiηj + o∗p(1) a.s.

Then we are left to show

1

n− 3

∑
i 6=j

J(Zi, Zj)ηiηj =
1

n− 3

∑
i 6=j

U(Xi, Xj)V (εi, εj)ηiηj + o∗p(1) a.s.
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Similar to the proof of Theorem 4.3.2, let’s consider

var∗

(
1

n− 3

∑
i 6=j

{J(Zi, Zj)− U(Xi, Xj)V (εi, εj)}ηiηj

)

=
1

(n− 3)2

∑
i 6=j

U(Xi, Xj)
2

× { 1

n2a
V (g(Xi), g(Xj)) +

1

na
(V (g(Xi) + εi, g(Xj) + εj)

−V (g(Xi), g(Xj))− V (εi, εj))}2

≤ O(n−2(1+2a))

(∑
i 6=j

U(Xi, Xj)
4

)1/2(∑
i 6=j

V (g(Xi), g(Xj))
4

)1/2

+ O(n−2(1+a))

(∑
i 6=j

U(Xi, Xj)
4

)1/2(∑
i 6=j

V (g(Xi) + εi, g(Xj) + εj)
4

)1/2

+ O(n−2(1+a))

(∑
i 6=j

U(Xi, Xj)
4

)1/2(∑
i 6=j

V (g(Xi), g(Xj))
4

)1/2

+ O(n−2(1+a))

(∑
i 6=j

U(Xi, Xj)
4

)1/2(∑
i 6=j

V (εi, εj)
4

)1/2

−→a.s. 0 (A.0.29)

Here (A.0.29) is due to the fact that

1

n2

∑
i 6=j

U(Xi, Xj)
4 →a.s. E[U(X,X

′
)4],

1

n2

∑
i 6=j

V (g(Xi) + εi, g(Xj) + εj)
4

→a.s. E[V (g(X) + ε, g(X
′
) + ε

′
)4]

1

n2

∑
i 6=j

V (g(Xi), g(Xj))
4 →a.s. E[V (g(X), g(X

′
))4],

1

n2

∑
i 6=j

V (εi, εj)
4 →a.s. E[V (ε, ε

′
)4],

since E[|g(X)|4 + |ε|4 + |X|4] <∞.
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Thus, under the local alternative, we have

1

n− 3

∑
i 6=j

ÃijB̃ijηiηj =
1

n− 3

∑
i 6=j

U(Xi, Xj)V (εi, εj)ηiηj + o∗p(1) a.s.

and applying Theorem 4.3.1 to 1
n−3

∑
i 6=j U(Xi, Xj)V (εi, εj)ηiηj, we have

T ∗n →D∗ G0 a.s.

Similarly, by (A.0.28) and applying Theorem 4.3.1 to

1
n−3

∑
i 6=j U(Xi, Xj)V (Yi, Yj)ηiηj, under the fixed alternative and the same assump-

tions in Theorem 4.3.2, we have

T ∗n →D∗ G̃0 :=
∞∑
k=1

λ̃k(G̃
2
k − 1) a.s.,

where (λ̃k) is a sequence of eigenvalues corresponding to orthonormal eigenfunctions

of J under the fixed alternative and (G̃k) is a sequence of zero mean, unit variance

Gaussian random variables which are mutually independent.

Note that under the fixed alternative, FMDD(Y |X) is a positive integer which im-

plies that nFMDDn(Y |X)→a.s. +∞.

Furthermore, under the local and fixed alternatives, we can show that

Q∗(1−α),n →p Q(1−α),G0 and Q∗(1−α),n →p Q(1−α),G̃0
, (A.0.30)

respectively, where Q(1−α),G̃0
is the (1 − α)th quantile of G̃0. Here (A.0.30) is shown

by using (ii) of Lemma 11.2.1 in Lehmann and Romano (2005) and the fact that

G0, G̃0 are continuous random variables which can be shown under
∑

k=1 λ
2
k 6= 0,
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∑
k=1 λ̃

2
k 6= 0 and these are implied by the assumptions in H1,n, H1. Finally, the

conclusions follow from Theorems 4.2.2 and 4.2.3.

♦
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