

PYDISTSIM - DISTRIBUTED SYSTEM SIMULATION LIBRARY USING SIMPY

BY

KAI HUANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Adviser:

Professor Roy H. Campbell

ii

ABSTRACT

An easy to use and flexible distributed system simulation framework would be useful for

beginners to learn about distributed systems or for researchers to prototype distributed

system algorithms. This paper proposes a framework called PyDistSim for distributed

system simulation implemented in Python. PDS focuses on providing a set of tools and

libraries to make it easy and intuitive to set up simulations for distributed systems. Our

framework is written in Python and is designed to be simple and user-friendly, while still

being flexible and can be adapted to a wide variety of use cases. The simulation is

deterministic and can be easily controlled. Moreover, the framework provides a variety

of tools that can be used to conveniently collect and organize the data during simulation.

iii

TABLE OF CONTENTS

1. INTRODUCTION.. 1

2. BACKGROUND.. 5

3. DESIGN .. 7

4. EVALUATION ... 14

5. RELATED WORK ...20

6. CONCLUSION .. 22

REFERENCES ... 23

1

1. INTRODUCTION

1.1 Motivation

Researchers often want to quickly and easily set up simulations for distributed systems.

For example, one may need to quickly set up a simulation for a prototype of a

consensus algorithm and see if it has any obvious problems. Some of the desired

characteristics of such a tool include ease of use, flexibility and determinism [1].

However, existing distributed system simulation tools usually do not meet the criteria

above. Some tools such as SimGrid [2] could be fairly involved to setup, others, such as

Simulink [3], requires a proprietary license. There are numerous existing distributed

system simulators [4], but most of them use sockets and processes or threads to

represent each node. Simulating distributed system using sockets and

processes/threads introduces race conditions that make the simulation nondeterministic.

There are existing distributed simulators that use discrete event simulation, but none of

them are implemented in Python or have other limitations [5].

To address these issues, we introduce PyDistSim, a distributed system simulation

framework that offers a light-weight and easy to use solution for implementing a

distributed system simulation. Our framework is built on discrete event simulation[6]

written in Python.

1.2 Advantage of simulation

Studying distributed systems using our framework has a few of advantages as opposed

to using a full-fledged implementation that is mainly intended for real world application.

First, the architecture of the simulation software can be made much simpler. In

simulation software, one does not have to deal with the many layers of plumbing that

are necessary in real world application. This makes the logic of the algorithm much

2

easier to understand, implement and debug and, therefore makes the implementation of

the intrinsically complex algorithms less error prone.

Second, the simulation provides a more controlled execution environment. Using

simulation makes it possible to model the system to rule out factors beyond our control,

such as network hiccups, different processing power of different machine and race

conditions between different processes. This makes the simulation execution

deterministic - the execution takes the exact same path as long as the random number

generator is seeded with the same seed. This not only facilitates tuning and debugging

but also helps eliminate irrelevant factors from the experiments.

Third, simulation requires less computation resource usage. Simulation models can use

very little resource without affecting the outcome of the executions. Therefore it is

possible to simulate large-scale distributed systems with hundreds of individual hosts

with limited resources.

When setting up the simulation, one often finds the need to write the code to model the

nodes and network, collect data for analysis, as well as code to do other miscellaneous

bookkeeping and plumbing, such as parsing network packets or writing various “adaptor

code”. The motivation of this project is to eliminate such needs as much as possible,

creating a simple but flexible environment where the user can focus more on the logics

of the algorithm rather than spending a vast amount of time on plumbing code.

1.3 Contributions

This paper proposes a discrete-event simulation based distributed system simulation

library that is simple and easy to use.

Our library is written entirely in Python, which is a modern and object-oriented language,

with an elegant syntax. This makes working with our library highly efficient and less

error prone.

3

Using Python also gives our library great portability, wherever Python environment is

available, it can be used.

The users can easily write their distributed system implementation in Python based on

our library. Our library is designed with Don’t Repeat Yourself principle in mind. It

provides a lot of existing code that performs tasks commonly needed for distributed

system simulation such as modeling network topology [9] so that the users do not need

to do them over and over again. This makes our library particularly favorable for

modeling distributed systems and prototyping distributed algorithms.

One of the most favorable features of our library is that the simulation can be easily

controlled by the users. The simulation using our library is deterministic. The users can

choose to run a fixed number of ticks (the smallest abstract time unit in our library) with

the same random seed, and the result will always be the same. The user can also step

the simulation and see every single event that occurs in the system. Therefore,

compared to systems that are non-deterministic due to race conditions, simulations

using our library are much easier to debug and therefore less prone to error in more

complex simulations.

Our library also provides a stats module that can be used to integrate data collection

into the simulation. By default, it provides a few basic plots and metrics to help the user

gain a general idea of what is happening in the simulation. But the user can easily

extend this and add more custom metrics to be collected and plotted.

To demonstrate the effectiveness of our library, we have included in this paper, a case

study of successfully implementing and running the distributed system simulation of

several variants of gossip protocols. The whole simulation only took less than a hundred

lines to implement. The case study also showed that our library is very flexible, and can

adapt to various different scenarios easily, to suit different needs.

4

The rest of the paper is structured as following: Chapter 2 provides some background

information about SimPy, Python generators, discrete-event simulation and how our

library models the simulation. Chapter 3 goes over the how our library can be used and

the related design details. Chapter 4 presents a case study that uses our library to

implement a few simulations of variants of gossip protocol, to demonstrate the

usefulness of our library. Chapter 5 gives a conclusion.

5

2. BACKGROUND

2.1 Discrete-event simulation

PyDistSim is implemented using discrete-event simulation. In discrete event simulation,

the simulation happens independent of real time, rather, the simulation can be carried

out “as fast as possible”, always skipping to the next event that should occur. This

allows the simulation to be run faster than real time. Also, the simulation is deterministic,

as long as the random seed remains the same.

2.2 Simpy

Our implementation is based on SimPy [7], a process-based discrete-event simulation

framework based on standard Python [8]. In SimPy, processes are represented by

generator functions and can be easily used to model active components - and in our

framework – the hosts.

SimPy provides various types of shared resources, which are suitable for modeling

objects with limited capacity (like servers, or network connections).

2.3 Generators

The processes in SimPy are represented by generators. Python generators are iterators,

which can be used in a for-loop. In PEP 255, generators are referred to as generator-

iterators, which implies their nature as iterators. Generators are usually used in a for

loop, but they can also be advanced by calling the next method on the object.

In Python, generator functions or just generators returns generator iterator objects.

These generators are usually functions that contain the yield keyword. In Python, the

6

yield keyword achieves the same effect as the __iter__ and next functions but is much

more succinct and intuitive to write.

When the function is executed, the yield statement will cause the state of the function to

be saved, all local state and variables are backed up, and the value of expression_list is

returned to .next()‘s caller [10]. And when the .next() is called, the function can continue

from where it left off last time, using the saved states. The yield statement effectively

pauses the function which can be continued at a later time.

On the other hand, when a return statement is encountered in a function, the execution

of the function is completed, the stack variables are popped and the execution returns

to the caller.

Our library models every host as a collection of SimPy processes or generator functions.

These processes yield timeout events every iteration. The timeout can be considered

the timeout in our algorithms. And the execution of the rest of the process can be

considered instantaneous in the simulation since they always complete in the same tick.

Yielding timeout is important because it allows SimPy core to context switch to other

nodes and allows the simulation to continue for other processes. In theory, the

simulation is linear, because events are dequeued from an event queue, and processed

in sequence. This has several advantages. First, the simulation is simplified, since, in

reality, only one process will be running at the same time when the simulations are

running, the code between two yield statements in a process is atomic in the simulated

world, and therefore, no race condition is possible among the processes. Second, it

allows the user to manually step through each event, running them one at a time, which

provides a powerful tool for identifies bugs.

7

3. DESIGN

This section covers the API of the framework as well as some of the design details.

PyDistSim consists of three main modules, the Node Module, Network Module, and the

Stats Module. The Node Module provides a basic representation of a node in a

distributed system, allowing users to implement the node they want by extending it. The

Network module represents the network topology, and is responsible for simulating the

connections among nodes, it collects messages the nodes sent and delivers them to the

desired destinations. It also simulates packet drops and latency, based on the

networking model chosen by the user. The Stats module collects and generates a data

report for the simulation. It generates a few plots by default but is easily extendable by

the user.

Figure 1. shows a sequence diagram of an example simulation in action. As you can

see in the diagram, simpy core calls the run() function of host1, which requests the

network to send an RPC to host2. The network sets up an event with some delay for

delivering that RPC, and returns. Moments later, when the timer on the event runs out,

simpy.core invokes the callback on that event, which delivers the RPC to host2.

Meanwhile, the stats module collects data for later use.

3.1 Node

The Node class represents a host. A single instance of Node represents a host in the

distributed system simulation. A Node instance can have a number of periodic routines,

in the form of a SimPy process.

8

Figure 1. Sequence diagram of an example simulation

As shown in the following code snippet, the user defines a class named MyNode that

extends Node, and in the __init__ function of MyNode, it first calls the constructor of the

parent class, does some initialization, then starts a process with the function

myPeriodicRoutine. Inside the function myPeriodicRoutine, you can see a while loop, in

which some actions are performed and then it yields a simpy.environment.timeout with

a set interval INTERVAL. The yield statement is crucial for the operation of the

9

simulation, yielding a timeout event object passes the control to the SimPy's simulation

thread. Without it, the simulation will simply hang forever.

class MyNode(Node):

 def __init__(self):

 Node.__init__(self)

 # ...

 self.periodicRoutine = Node.env.process(self.myPeriodicRoutine())

 def myPeriodicRoutine(self):

 while self.running:

 # do periodic maintainance

 yield Node.env.timeout(INTERVAL)

Another important aspect of a Node is the ability to handle Remote Procedure Calls

(RPC), which in this case are used as the only means of passing information between

two Nodes(). The Node class has an instance method called rpc, it takes an RPC name

and looks up the corresponding method in its RPC lookup table, and invokes that

method if found. The user can add RPCs to the Node by calling the function

registerRPC. For example, the following line of code will register the method self.foo as

an RPC with the name “foo”.

self.registerRPC(‘foo’, self.foo)

The Node class also contains a static method fail() that allows the user to schedule

failure of a group of nodes at a particular delay with or without randomness.

3.2 Network

The Network class represents the topology of the network. It also keeps track of the

addresses of all the hosts. In PyDistSim, the addresses are simplified to be represented

by integers, which should not affect the outcome of the simulation.

10

The Node class keeps a reference to an instance of Network as a class variable. The

constructor of Node adds the new Node instance to the host list in Network class every

time it is called.

The user can add links to the network by calling the addLink method of Network class.

All communication between nodes is represented as RPCs(Remote Procedure Calls).

This simplification does not affect the completeness or correctness of the simulations.

RPCs are trivially equivalent to any message passing mechanism since any message

can be passed using an RPC.

The user can implement and add RPCs by calling the registerRPC function in the Node

class. A Node can call an RPC by calling the rpcCall method of the Network class, it

will generate an event with a delay that represents the latency of the link, with a callback

that delivers the RPC to the intended recipient. The SimPy core calls the callback

function at the desired delay and delivers the RPC.

def deliverMsg(evt):

 if dst in self.hosts and self.hosts[dst]:

 self.hosts[dst].rpc(evt.value[0], evt.value[1])

 #...

 event = simpy.events.Timeout(self.env, delay=latency, value=(rpcname,

args))

 event.callbacks.append(deliverMsg)

The Link class represents a network connection between two nodes. The Link class

determines the latency and chance of packet loss. The users should choose to use one

of its subclasses to model the connection or implement their own. The SimpleLink class

will give a fixed latency and packet loss rate, while the CongestionLink calculates

latency and packet loss rate as a function of the level of congestion, which is updated

when packets are sent through the link. The users can also choose to extend the Link

class and implement their own logic.

11

The Network class also contains a function called visualize that automatically generate

a plot showing the network graph.

To set up a simulation, the user would first extend the Node class and implement the

RPCs. Then the user can call the constructor of Node to construct a number of nodes.

After that, the user can add links needed to the Network. Finally, the user can run the

simulation by calling Node.run(until_ticks).

3.3 Stats

The Stats class represents the data collected during a simulation. By default, the

Network class will have an instance of Stats class as one of its member variables. Every

time an RPC is sent or delivered, the Network class will call Stats.logRPC to append it

to the log, along with a time stamp, source and destination address, name of the RPC

and a boolean indicating whether it is sent or received.

self.stats.logRPC(self.env.now, src, dst, rpcname, True)

The Stats class has a few functions that can help users process or analyze the RPC log

collected.

The Stats.Filter function can be used to filter out RPCs based on the criteria passed in.

It returns a list of RPC log entries matching the criteria specified by the arguments

passed in.

12

Figure 2. Plot generated by genSimplePlot

showing the number of RPCs sent and received for each node.

Figure 3. Plot generated by genSimplePlot

showing the number of RPCs per tick.

13

The Stats.genSimplePlot function can be used to generate three simple plots showing

the RPC sent per node, RPC received per node and RPC against time. These plots can

give the user a general idea of what is going on. Figure 2. and Figure 3. are examples

of plots generated by genSimplePlot.

If the user wishes to generate other types of plots, they can conveniently use matplotlib

to do so. matplotlib is a python library that provides an extensive collection of tools for

plotting and visualizing data.

14

4. EVALUATION

In order to see how well our framework works, we present a case study of implementing

a Gossip Protocol [11][12] simulation using our library. Gossip protocol is chosen mainly

because it is one of the simplest distributed system communication protocol, and we

can easily demonstrate the framework. There are multiple flavors of gossip protocol

We implemented a GossipNode class that is a sub-class of Node:

class GossipNode(Node):

 def __init__(self, chance):

 Node.__init__(self)

 self.registerRPC('gossip', self.gossipFunc)

 self.chance = chance

 self.value = self.address

 self.procGossip = Node.env.process(self.gossipProc())

 def gossipFunc(self, args):

 self.value = args

 def gossipProc(self):

 while self.running:

 if self.value == 0:

 for n in Node.net.getNeighbors(self.address):

 if random.uniform(0, 1) < self.chance:

 Node.net.rpcCall(self.address, n, 'gossip',

self.value)

 yield Node.env.timeout(20)

We then conducted three experiments to demonstrate the effectiveness of our

framework.

15

4.1 10 x 10 grid topology

A 10 by 10 grid topology was set up and with a node on one corner as the initiator, and

with 0.05 chance of an “infected” sending a gossip to each of its neighbors. The

simulation was run in steps of 20-time units until all nodes are “infected”, at each step,

the number of “infected” nodes are collected. The simulation is repeated 50 times with

different random seed, and the results are shown in Figure 4.

Figure 4. Grid topology of 100 nodes, with 0.05 chance of an “infected” node sending a gossip to each neighbor

4.2 Fully connected topology
A fully connected topology with 100 nodes was also tested in comparison, with a 0.01

chance of “infecting” neighboring nodes. And the results are shown in Figure 5.

16

Figure 5. Fully connected topology of 100 nodes, with 0.05 chance of an “infected” node sending a gossip to each

neighbor

4.3 Unbiased versus biased gossip

When a node uses an unbiased gossip it will more likely to choose gossip targets that

are nearby, to increase efficiency.

To demonstrate the flexibility of our framework, we also experimented with biased

versus unbiased gossip protocol, by setting up a network topology with two clusters of

50 nodes. Within each cluster, low latency links (20-tick) are added to make them fully

connected. Then 50 high latency (200-tick) links are added to connect the two clusters.

The GossipNode is modified so that it only picks at most one target to gossip at each

iteration. Two experiment setup was made, the biased setup make the nodes 10 times

more likely to perform intra-cluster gossip than inter-cluster gossip, while the unbiased

setup makes the nodes equally likely to pick any other node. The simulation for each

17

setup was repeated 100 times and the result is presented in Figure 6. We can see in the

plot, biased gossip converges much faster than unbiased gossip, as expected.

 Un-biased Biased
Figure 6. Unbiased versus biased Gossip

4.4 Gossip protocol for computing aggregates

We can modify our previous experiment slightly to simulate a gossip protocol that

computes aggregate for a group of nodes. In this case, we would like to find the

minimum value among all the nodes.

The gossip node is modified such that when it receives a gossip from another node, it

will compare the value in the gossip message with its local value.

N
um

be
r o

f t
ic

ks
 it

 to
ok

 to
 c

on
ve

rg
e

18

Figure 7. Gossip aggregation convergence distribution

Figure 8. Gossip aggregation convergence per tick

19

If local value is smaller, it sends the local value to the sender, otherwise, assign the

value in gossip message to local value. The system should converge, and all the nodes

should have the minimum value in the end.

We set up 100 connected nodes, using 20-tick links. The simulation was run until it

converged, and repeated for 50 times. We plotted the percentage of the number of ticks

it took to converge, shown in Figure 7. We also plotted the number of nodes that have

already reached the minimum value against number of ticks since the beginning of the

simulation, shown in Figure 8.

Through our case study, we have successfully shown that our library is very easy to use

and can be used to implement simulations for a variety of distributed.

20

5. RELATED WORK

There exist numerous simulation frameworks. This chapter will be discussing a few of

the most popular simulation frameworks, which are listed in the table below.

Framework Language Other features/characteristics

NetSim C Specializes in simulating a variety of real world

internet protocols [15]. It allows real data to be

collected and used in the simulation. Provides a

drag-and-drop UI but does not offer much flexibility

for implementing custom protocols.

SIMUL8 Visual Basic Simulation of work items that represent physical

objects that are moved through the system [16],

targeted for simulation of an assembly line.

Simulink MATLAB General purpose discrete-event simulator with a

drag-and-drop GUI. It is implemented as a plugin

for MATLAB and relies on MATLAB to work.

DESMO-J Java A discrete event simulation library implemented in

Java, it supports hybrid event/process model.

PyDistSim Python A distributed system algorithm simulation library

built on top of SimPy - a discrete event simulation

library in Python. It is lightweight and easy to use

for quickly modeling distributed systems.

Table 1: Comparison of simulation frameworks

The frameworks listed in the table above all serve some specific purpose, but they may

not be as suitable or tailored to the purpose of modeling the simulation for algorithms

used in distributed systems.

NetSim and SIMUL8 for example, are targeted to network simulations and industrial

assembly line simulations respectively. These frameworks impose very rigid simulation

21

models and may require a significant amount of rework in order to use them for

simulating algorithms for distributed system. Simulink, a discrete-event simulation

framework for MATLAB, is a powerful framework that has a wide variety of applications.

However, it presents a huge and complex API, and requires a cumbersome installation

of MATLAB. DESMO-J is a discrete event simulation library in Java, it is somewhat

suitable for simulating distributed systems, however, many users may favor Python over

Java for because of Python’s elegant and succinct syntax, which greatly improve the

efficiency in programming. For example, in Python code blocks are denoted using white

space, whereas in Java brackets are used, Python is dynamically typed and allows

variable declaration without a type, whereas Java does not. PyDistSim is targeted

specifically to simulating algorithms in distributed systems, and is flexible and easy to

use. It also provides a number of tools for helping with data collection and plotting.

22

6. CONCLUSION

We have demonstrated that PyDistSim is a lightweight, easy to use and extendable

distributed system simulation library. Using our case studies of gossip protocol

simulation. We managed to set up the simulation with around one hundred lines of code

and showed the potential to be expanded easily to cover more possibilities. We also

demonstrated that our simulation can be easily controlled and debugged because it is

deterministic.

Our library provides a simple and deterministic simulation environment that is easy to

work with while still allowing the user a lot of freedom to extend and build upon.

PyDistSim could potentially make learning and studying distributed system much easier

especially for beginners.

23

REFERENCES

[1] Yabandeh, Maysam, Nedeljko Vasic, Dejan Kostic, and Viktor Kuncak. "Simplifying
Distributed System Development." In HotOS. 2009.

[2] Casanova, Henri (May 2001). "A Toolkit for the Simulation of Application Scheduling".
First IEEE International Symposium on Cluster Computing and the Grid (CCGrid'01).
Brisbane, Australia.

[3] Mathworks. "MatLab & Simulink: Simulink Reference R2015b"
(http://www.mathworks.com/help/releases/R2015b/pdf_doc/simulink/slref.pdf)

[4] Casanova, Henri, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric
Suter. "Versatile, scalable, and accurate simulation of distributed applications and
platforms." Journal of Parallel and Distributed Computing 74, no. 10 (2014): 2899-2917.

[5] Franceschini, Romain, Paul-Antoine Bisgambiglia, Luc Touraille, Paul Bisgambiglia,
and David Hill. "A survey of modeling and simulation software frameworks using
Discrete Event System Specification." In OASIcs-OpenAccess Series in Informatics, vol.
43. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[6] Thomas J. Schriber, Daniel T. Brunner, INSIDE DISCRETE-EVENT SIMULATION
SOFTWARE: HOW IT WORKS AND WHY IT MATTERS, Proceedings of the 1997
Winter Simulation Conference.

[7] Muller, K., T. Vignaux, and C. Chui. "SimPy: discrete-event simulation in Python."
SimPy Development Team (2014).

[8] Sanner, Michel F. "Python: a programming language for software integration and
development." J Mol Graph Model 17, no. 1 (1999): 57-61.

[9] Sterbenz, James PG, Egemen K. Çetinkaya, Mahmood A. Hameed, Abdul Jabbar,
Shi Qian, and Justin P. Rohrer. "Evaluation of network resilience, survivability, and
disruption tolerance: analysis, topology generation, simulation, and experimentation."
Telecommunication systems 52, no. 2 (2013): 705-736.

[10] Python Software Foundation, 6.8 The yield statement
(https://docs.python.org/2.4/ref/yield.html) Retrieved May 2017

[11] Efficient and Adaptive Epidemic-Style Protocols for Reliable and Scalable Multicast.
Indranil Gupta, Ayalvadi J. Ganesh, Anne-Marie Kermarrec. IEEE Transactions on
Parallel and Distributed Systems, vol. 17, no. 7, pp. 593–605, July, 2006.

[12] Epidemic Broadcast Trees. João Leitão, José Pereira, Luís Rodrigues. Proc. 26th
IEEE International Symposium on Reliable Distributed Systems.

http://www.mathworks.com/help/releases/R2015b/pdf_doc/simulink/slref.pdf
http://www.mathworks.com/help/releases/R2015b/pdf_doc/simulink/slref.pdf
https://docs.python.org/2.4/ref/yield.html

24

[13] Matloff, Norm. "Introduction to discrete-event simulation and the simpy language." Davis,
CA. Dept of Computer Science. University of California at Davis. Retrieved on August 2 (2008):
2009.

[14] Banks, Jerry, JOHN S. CARSON II, and L. Barry. Discrete-event system simulationfourth
edition. Pearson, 2005.

[15] Tetcos, NetSim Homepage, (http://www.tetcos.com/) Retrieved May 2017

[16] SIMUL8 Homepage, SIMUL8 Corporation (https://www.simul8.com/) Retrieved May
2017

http://www.tetcos.com/

