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Abstract

In this thesis, we present a model of the Traveling Salesman Problem (TSP) cast in a quadratic
assignment problem framework with linearized objective function and constraints. This is referred
to as Reformulation Linearization Technique at Level 2 (or RLT2). We apply dual ascent proce-
dure for obtaining lower bounds that employs Linear Assignment Problem (LAP) solver recently
developed by Date [1]. The solver is a parallelized Hungarian Algorithm that uses Compute Unified
Device Architecture (CUDA) enabled NVIDIA Graphics Processing Units (GPU) as the parallel
programming architecture. The aim of this thesis is to make use of a modified version of the Dual
Ascent-LAP solver to solve the TSP.

Though this procedure is computational expensive, the bounds obtained are tight and our ex-
perimental results confirm that the gap is within 2% for most problems. However, due to limitations
in computational resources, we could only test problem sizes N < 30. Further work can be directed
at theoretical and computational analysis to test the efficiency of our approach for larger problem
instances.
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Chapter 1

Introduction

1.1 Traveling Salesman Problem and its Variants

Traveling Salesman Problem (TSP) is one of the most popular problems studied under the

combinatorial optimization problem set. Owing to its NP-hard (non-deterministic polynomial-time

hard) nature, the problem is challenging to solve optimally. Despite progress, there remains a need

for efficient solution methods due to its wide applicability in various practical fields. TSP can be

defined as the problem of finding the minimum cost tour among a given pair of cities such that a

salesman visits every city exactly once with the cost metric defined in terms of distance, time, etc.

One of the most common integer programming formulations for the TSP can be written as:

Objective: min
∑
i

∑
j 6=i

Cijxij (1.1)

s.t.∑
i

xij = 1 ∀j (1.2)∑
j 6=i

xij = 1 ∀i (1.3)

ui − uj + nxij ≤ n− 1, 2 ≤ i 6= j ≤ n (1.4)

xij ∈ {0, 1} ∀i, j (1.5)

xij = 1 if salesman travels directly from location i to j; 0 otherwise

dij the distance between cities i and j

Objective = min total distance traveled in a tour

(1.2) ensures salesman arrives once at each city

(1.3) ensures salesman leaves each city once
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(1.4) enforces there is a single tour covering all cities

The applications of the TSP encompass a comprehensive list with the most common ones

being vehicle routing problem and its variations (see Laporte, 1992), tool head path planning for

drilling VSLI circuit boards, computer wiring (Lenstra and Rinnooy Kan, 1975), hole punching

(Reinelt, 1989), several manufacturing contexts, job sequencing, dartboard design (Eiselt and La-

porte, 1991), crystallography (Bland and Shallcross, 1989), crew scheduling, etc. Variants to the

TSP are used to represent particular situations and to model them accurately. Broadly, routing

problems can be divided into static and dynamic problems. When all required input data of the

problem are known before routes are calculated, it is considered a static routing problem. If, on the

other hand, some of the input data are obtained during the execution of a route, it is a dynamic

problem. In this section, we describe a few variants (see also, Fig. 1).

Asymmetric TSP (ATSP): A variant of the TSP, based on the connections between

each node, is classified into symmetric or asymmetric types. A symmetric TSP is one in which the

cost function between two nodes will be the same regardless of the direction of travel, while in an

asymmetric TSP cost functions between nodes are dependent on the direction of travel.

TSP with Multiple Visits (TSPM): TSP is generally formulated as Euclidean TSP

where distance matrix D is expected to be symmetric dij = dji for all i, j, and to satisfy triangle

inequality dik ≤ dij + djk for all distinct i, j, k. A TSP, without triangle inequality becomes a TSP

with multiple visits (TSPM) where the constraint of having to visit each node exactly once may be

relaxed [2]. In general, the TSPM can be defined as the problem of finding m minimum cost tours

for m (more than one) salesmen, starting and ending at a depot/node, such that each intermediate

node is visited exactly once.

TSP with Multiple Salesmen (mTSP): In the multiple TSP (mTSP), m identical

salesmen are used to visit each customer exactly once, each salesman starting from a single depot

and returning to the same location. The objective of the mTSP is mostly to minimize the total

distance traveled by m salesmen, with a bound on the number of salesmen. In literature, mTSPs

are mostly utilized to solve VRPs.

Max TSP: The objective of the max TSP is to find a tour with the maximum cost,

unlike other TSPs. The condition for a salesman is that every city is visited exactly once with the

same starting and return location. The problem can be solved as a conventional TSP by replacing

each edge in the tour by its additive inverse.

Generalized TSP (GTSP): An extension of the TSP is a Generalized Traveling Sales-

man Problem (GTSP) in which nodes of the graph are grouped into clusters and the expected

solution is a minimum cost tour in which either exactly one city from each cluster is visited or in
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which at least one city from each cluster is visited.

Clustered TSP: In a clustered TSP, the nodes of the graph are grouped into clusters

and the solution is a tour with minimum cost subject to the condition that cities from a cluster are

visited consecutively. This problem can be converted to a simple TSP by treating each cluster as

a node by adding a large M to each inter-cluster edge.

TSP with Time Windows (TSPTW): In the TSP with time windows (TSPTW), job

at customer i must be completed within the time interval {ai, bi} where ai is the earliest allowable

service start time for customer i. If the salesman arrives prior to time ai, the salesman will wait

without penalty. The time required for service is given by si and its value lies within 0 and bi− ai.
The problem in the TSPTW is to find a tour with minimum cost, each customer visited exactly

once within their accepted time windows.

Time dependent TSP: In time dependent TSP, the cost of traveling from a city i to

city j, defined as ctij where t = {1, 2, ..., n}, is dependent on the time of travel t. The objective is

to find a tour starting and ending at the same city with each city visited exactly once, such that

the sum of cost of traveling from city i to city j ∀i, j,
n∑

i=1
cti(i+1) is minimized.

Reward seeking TSP: In this class of the TSP variant, every customer is associated

with a value. The constraint of having to visit every customer at least once can be relaxed since

it might be beneficial to visit a customer with higher value at the cost of some other customer.

However, any given customer can only be visited at most once. Within this class, there are multiple

variants: Prize collecting TSP (PTSP), Profitable Tour Problem (PTP), Orienteering and Team

Orienteering Problem (OP & TOP), TSP with profits (TSPP).

A brief literature review has been provided for these variants in the following chapter.

1.2 Organization of the Thesis

The next chapter provides a brief literature review of the TSP and its variants. Chapter

3 discusses the QAP, Reformulation Linearization Techniques and compares the results obtained

RLT1 and RLT2 for a set of problem instances. Chapter 4 discusses the solution approach for

the TSP in a QAP framework. It discusses the parallelization of the alternating tree variant of

the Hungarian Algorithm and the Lagrangian Dual Ascent approach for calculating strong lower

bounds on RLT2 for QAP and TSP.
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Chapter 2

Literature Review

The computational times for solving a TSP is of the order proportional to O(n!), n being the

number of cities/nodes in the system. With the increase in the number of nodes, solution space

increases exponentially, since the TSP an NP-hard problem. TSP was first coined in 1930, and ever

since, a plethora of exact and heuristic solution methods have been suggested to solve the TSP and

ATSP. Initial notable contributions were made by Dantzig, Fulkerson and Johnson [3] during the

1950s. The authors used undirected graphs and expressed a problem of finding the shortest path

for a Hamiltonian cycle of 49 cities as an integer linear program with inequality restraints (cuts,

shown below) that could be added gradually to the formulation using a branch and bound scheme

to eliminate sub tours and reach the optimal solution.∑
i,j∈S

Xij ≤ |S| − 1, S ⊆ {2, ..., n}, 2 ≤ |S| ≤ n− 1 (2.1)

Morton and Land [4] suggested a linear programming formulation for the TSP with the objec-

tive of finding the shortest tour for a set of nodes such that there are no sub-tours. Since an LP

representation has sub-tour formations, the authors used dynamic programming instead of enumer-

ating all possible circuits. The procedure involved representing the set of distances between two

points as a square matrix and selecting a set of n links to form an initial single loop circuit. The

circuit is then changed by simultaneously removing and introducing three new links such that the

single loop is always maintained.

Barachet [5] in his paper used the graphical method to describe an enumeration scheme for

computing near-optimal tours. The method involved drawing a closed circuit that passed through

all N points in the problem. Next step was to form N groups of three consecutive sections to

make up a route of minimum length for the section. This process was iteratively performed till a

minimum length route was formed. The same operation was repeated for every N group of 4, 5, 6,
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up to (N − 1) consecutive sections and then for the unique group of N consecutive sections. This

method was shown to be simpler and faster than the one where all possible circuits are considered.

Balinski and Gomory [6] in their work, presented a primal method for the assignment and

transportation problems. This method, a dual to the Hungarian, provides an orthogonal dual

feasible vector (U, V ) to the primal infeasible vector X at each intermediate computational step.

The method described provides a feasible X (a complete assignment or transportation solution)

and a corresponding orthogonal (U, V ) at each step providing a constantly improving solution. In

[7], Bellman has shown the use of TSP as an example of a combinatorial problem and solved using

dynamic programming.

Little et al. [8] coined the term Branch and Bound and presented this algorithm for solving a

traveling salesman problem. In this algorithm, a set of feasible solutions is broken up into subsets

using the method of branching based on the presence of an edge in the tour. Each branch is solved

to obtain a lower bound on the solution. The process is repeated till a subset containing a single

tour with length less than or equal to some lower bound for every tour is found. Though the

time taken to solve the problem using the branch and bound method increases exponentially with

increase in the problem size, this method proved to be faster than most other known methods.

Miliotis [9] introduced the cutting plane algorithm which used Gomory cuts to solve the traveling

salesman problem.

Miller et al. [10] proposed the earliest known formulation of the ATSP. They used a variable

ui to define the order in which a city/node was visited in a tour and the number of vertices in each

route was limited. The sub-tour elimination constraints of the MTZ formulation was given as

ui − uj + (n− 1)xij ≤ n− 2, i, j = {2, ...., n} (2.2)

1 ≤ ui ≤ n− 1, i = {2, ...n} (2.3)

Sherali and Driscoll [11] first applied the Reformulation Linearization Technique (RLT) for the

Asymmetric Traveling Salesman Problem (ATSP) formulation for obtaining tighter bounds. This

formulation was based on the Miller-Tucker-Zemlin (MTZ) sub-tour elimination constraints. The

procedure involved applying a partial first level version of the RLT to a nonlinear MTZ sub-tour

elimination constraints, with a variable yij representing the arc (i, j) on the tour, yij 6= 0. Wong [12]

formulated the ATSP as a Multi-Commodity Flow model using non-negative variables to describe

the flow of commodities between vertices. The flow variable wpq
ij was assigned the value 1 if and

only if the commodity going from p to q also flowed on arc (i, j).

Diaby [13] proposed a network-flow based linear programming formulation of the TSP as a

relaxation to an Integer programming formulation. A non-linear TSP was remodeled to achieve an

Integer Linear program with a framework of graph G = (V,A) where nodes in V correspond to city
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and travel stage pairs and the arcs representing travel between two cities at stages i and i+ 1. The

approach developed a reformulation of a standard assignment polytope with variables represented

as functions of the flow associated and arcs of the graph.

In the paper [14], Quadratic Traveling Salesman Problem (QTSP) is presented with a quadratic

objective aimed at finding a minimum cost tour, where costs are associated to each triple of nodes

traveled in series. The authors present three exact algorithms to solve the QTSP: by transforming a

QTSP to a Symmetric TSP, by using the branch-and-bound and branch-and-cut algorithms. They

also present several simple heuristics, such as Cheapest-Insert Heuristic (CI), a generalization of

an ATSP heuristic where they start with an arc (v1, v2) ∈ A considered as a cycle such that the

cost of a cycle x − v1 − v2 − x is minimal and new nodes are included iteratively to the cycle in

a greedy manner keeping the new cycle cost minimal in each step. The paper also describes other

adaptations of generalization of heuristics, Nearest-Neighbor Heuristic, Two-Directional-Nearest-

Neighbor Heuristic, Assignment-Patching Heuristic and Nearest-Neighbor-Patching Heuristic, to

name a few.

In [15], a lower bounding procedure for the AQTSP has been discussed. First, the AQTSP is

transformed to an MILP formulation using two basic steps - reformulation and linearization and

then solved via Column Generation (CG) with each cycle represented by a variable. The number of

variables is exponentially large and hence constraints were added to the objective and the resulting

Lagrangian dual was solved using a dual-ascent strategy. Optimal Lagrangian multipliers were

obtained using a subgradient optimization technique. A stabilized column generation method was

used to counter the slow convergence and tailing off effects of the regular column generation method.

Lower bounds were calculated by solving the pricing problem with the master problem giving a

lower bound for the original problem when no more columns can be priced out.

Diaby, Karwan and Sun [16] presented a polynomial-sized linear program (LP) using flow

perspective for a TSP over an Assignment Problem - based graph with nodes representing (city,

time-of-travel) pairs, and arcs representing travel legs. The novel feature in their model was having

variables representing doublets and triplets of travel legs, thus building enough information into the

variables in the model and the constraints were enforced by implicitly setting appropriate variables

to zero. This led to an O(n9) variables, O(n8) constraints model.

Flood [17] showed the similarities between a traveling salesman problem and an assignment

problem and presented a method to solve the assignment problem. He also showed techniques

that could be used to obtain good approximate solutions for the symmetric TSP and modifications

to the traveling-salesman problem for easier subsequent computations. Kuhn [18] introduced the

Hungarian Method for solving the Assignment Problem. Flood described a heuristic approach to

solve the TSP using the conditions and notations presented by Kuhn. In this approach, each of the

assignment combinations is assigned a numerical rating and the optimal assignment combination

is the one that has the least sum of applicable ratings.
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To an extent, heuristics have proven to be successful in finding solutions for the basic TSP.

However, TSP variants impose significant challenges and heuristic methodologies haven’t been

successful.

Multiple TSP

Mole et al. [19] provide several algorithms and heuristic methods to solve for the mTSP. Roberts

et al. [20] solved the mTSP as a first stage problem in a two-stage solution approach of a VRP.

Bektas [21] provides a review of mTSP variants, its exact and heuristic approaches to solve

them. Laporte and Nobert [22] proposed an algorithm for a relaxed mTSP and considered a fixed

cost f whenever a salesman is used in the solution. In their approach, the sub-tour elimination

constraints are initially relaxed and the problem is solved. Once a solution is obtained, sub-tour

elimination constraints are introduced and violations are checked for. In the reverse algorithm

approach, the process of checking for violations happens before solving the problem. An interesting

result from this paper is that the solution time of the algorithm decreases with m, but takes longer

to solve when m in the transformed problem increases.

The large scale symmetric mTSP was solved by Gavish and Srikanth [23] using a branch and

bound algorithm with Lagrangian relaxation. In their approach, the relaxation was first solved

using a minimal spanning tree and the Lagrangian multipliers were updated using a subgradient

optimization procedure and sensitivity analysis technique.

Gromicho et al. [24] proposed an algorithm for an asymmetric mTSP quasi-assignment re-

laxation obtained by relaxing the sub-tour elimination constraint and solved using a branch and

bound framework. This algorithm was superior to the standard branch and bound in terms of the

number of nodes and larger improvements were observed for symmetric cases.

Mitrovic-Minic and Krishnamurti [25] described an algorithm to determine upper and lower

bounds on the number of salesmen required to visit all the customers within their allowable time

windows. Thus, an mTSP with capacity constraints can be equated to capacitated VRP.

Russell [26] used the Lin and Kernighan [27] heuristic to solve an mTSP transformed into TSP

on an expanded graph. Fogel [28] proposed a parallel programming approach to mTSP with the

objective of minimizing the difference between the lengths of the routes of two salesmen under

consideration.

Hsu et al. [29] presented a neural network approach to solve the mTSP where m standard TSPs

were considered. Vakhutinsky and Golden proposed a self-organizing NN approach for the mTSP

which is an extension to the elastic net approach developed for the TSP. Torki et al. [30] present an

NN approach for the VRP based on an enhanced mTSP NN model. A self-organizing NN approach

for the mTSP with a min-max objective function was described by Modares et al. [31] and Somhom
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et al. [32] and the objective was to minimize the most expensive route among all salesmen.

Zhang et al. [33] introduced the use of Genetic Algorithms (GAs) to solve the mTSP and Tang

et al. [34] modeled the mTSP as single TSPs and applied a modified Genetic Algorithm for hot

rolling scheduling. Yu et al. [35] used GAs to solve mTSP in path planning.

An integer programming formulation of the mTSP was solved using Tabu search by Ryan et al.

[36]. However, the solution is obtained through a reactive Tabu search algorithm within a discrete

event simulation framework. An extended simulated annealing approach was introduced by Song

et al. [37] for the mTSP with fixed costs associated with each salesman.

Generalized TSP

GTSP and its variants was first studied in the context of particular applications. Laporte and

Nobert [38] first studied exact algorithms of the GTSP in the 1980s. They proposed an exact

algorithm for the asymmetrical GTSP formulated as an integer linear program which involves

finding the shortest Hamiltonian circuit through n clusters of nodes. Its relaxation is then solved

by a branch and bound algorithm. They extended this in Laporte and Nobel [39] to solve problems

with subtour elimination constraints and integrality constraints. Fischetti et al. [40] proposed a

branch and cut algorithm for the symmetric GTSP with exact and heuristic methods.

Noon et al. [41] proposed an optimal approach for the asymmetric GTSP using a Lagrangian

relaxation to compute a lower bound on the optimal solution. Nodes and arcs which do not appear

in the optimal solution is removed after comparing it with heuristically determined upper bound and

lower bound. A solution is then computed using a branch-and-bound procedure used to evaluate

the multiple choice structure of node sets. Noon and Bean [42] have efficiently transformed a GTSP

into a standard ATSP over the same number of nodes. Noon has also proposed the nearest neighbor

heuristics for the GTSP.

Chentsov and Korotayeva [43] used a procedure of the dynamic programming (DP) for the

discrete-continuous GTSP. Fischetti et al. [40] also proposed similar adaptations of the farthest-

insertion, nearest-insertion, and cheapest-insertion heuristics.

Ben-Arieh et al. [44] considered a variant of the GTSP where every tour of GTSP has exactly

one vertex from each cluster and unweighted digraph. It is then solved by converting it into the

TSP. They have shown that the Noon-Bean transformation and Laporte-Semet transformation

of the GTSP to TSP can be used to solve GTSP to optimality. Bontoux et al. [45], Gutin and

Karapetyan [46] have addressed the solution of the GTSP using a Memetic Algorithm and proposed

metaheuristics. Karapetyan and Gutin [47] exploited the success of the original TSP Lin-Kernighan

heuristic and have used several of its adaptations to solve for the GTSP.
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TSP with Time Windows

Cheng et al. [48] have shown the use of ant colony optimization (ACO) technique to solve

the TSPTW. The distances between the nodes were considered as the time to account for time

windows. The ACO was modified to include two local heuristics in the ACS-TSPTW algorithm to

manage the time-window constraints of the problem. The aim of this algorithm was to minimize

the waiting time at each node and to ensure the time at which nodes in the later stages are visited

are not delayed.

Calvo [49] presented a two-phase heuristic for the TSPTW. The paper solved an assignment

problem in the first phase and then used a local search heuristic in the second phase to combine

the subtours into a single path.

Ohlmann et al. [50] used a variant of simulated annealing called compressed annealing approach

to solve the TSPTW as constraint. Instead of using the traditional simulated annealing with one

parameter, temperature and pressure were also used. The method used to solve the TSPTW was

variable penalty approach of compressed annealing where temperature controled the probability of

accepting a non-improving neighbor solution and pressure controled the probability of accepting a

route that violates time window conditions. Also, the time window constraints are relaxed and a

penalty is added in the objective function for any violation.

Li [51] proposed a bi-directional resource-bounded label correcting algorithm for the TSPTW

with the objective of minimizing travel times. Label extensions and dominance start simultaneously

in both forward direction, from starting depot, and backward direction, from the terminating depot.

If all the feasibility conditions are satisfied, the labels from both directions are joined to complete

the route. Since the label extension process here scans a space smaller than in unidirectional

dynamic programming, the number of non-dominated labels is highly reduced.

Tsitsiklis [52] represented the TSPTW as a directed graph in which each arc has a given length

and a set of jobs. Each job i is associated with a processing time hi whose processing starts within

a pre-specified time window [si , ei] and jobs are executed within their respective time windows.

The objectives is to minimize make span and the sum of waiting times of all jobs. They also discuss

special cases with algorithms.

Fagerholt et al. [53] proposed a forward dynamic programming algorithm for TSPTW with

allocation and precedence constraints. This is solved as a shortest path problem with nodes repre-

senting the states of a set of nodes in the path and the arcs representing the node transitions.

Ascheuer et al. [54] present a binary formulation of the asymmetric TSPTW and propose

integer formulations of the ATSPTW and solve using a cutting plane algorithm. Mak and Ernst

[55] proposed new cutting planes for solving the integer programming formulation of the TSPTW.
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TSP is one of the most experimented problems with various exact and heuristic procedures

known and yet the problem provides multitude of opportunities to simplify inherent integrality

requirement and to obtain tighter formulations. Literature proves the success of RLT for QAP

and the MTZ formulation of the TSP. In this paper, we remodel the flow matrix of the QAP to

obtain a TSP, solved using parallelized Hungarian Algorithm. We study the performance of RLT

on TSP and apply the Lagrangian Dual Ascent procedure for achieving stronger lower bounds on

the reformulated linearized TSP. The objective of this study is to obtain faster solution times due to

parallelization and to compare the performance of RLT-2 for a full QAP vs TSP (reduced QAP).
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Chapter 3

Reformulation Linearization

Technique for the TSP in a QAP

framework

3.1 Quadratic Assignment Problem (QAP)

The linear assignment problem involves finding a matching or an assignment of objects such

that the assignments lead to maximum score. In location theory, the assignment problem is the

problem of assigning a unit to a location. The assumption is that attributes at different locations

are independent of each other. Quadratic Assignment Problem (QAP) is a generalization of the

linear assignment problem with a non-linear objective function, making it one of the most difficult

NP-hard combinatorial optimization problem [56].

In a QAP, along with the cost associated with a matching, a distance is calculated for each pair

of locations and a weight or flow is specified. The problem is to assign facilities to different locations

such that the sum of distances multiplied by the corresponding flows is minimized. It was introduced

by Koopmans and Beckmann [57] and ever since, many exact and heuristic solution methods

for these problems have been developed and its applications have been found in minimizing the

number of connections between components in a backboard wiring, economic problems, scheduling

problems, designing for typewriter keyboards and control panels, archeology, analysis of reaction

chemistry, etc.

The nature of the cost function in a QAP is quadratic and hence the name. It is the problem

of assigning a set of facilities (i, j = 1, 2...n) uniquely to a set of locations (p, q = 1, 2...n), with

costs represented as a function of the product of distance and flow between the facilities, plus costs
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associated with a facility being placed at a certain location, given by Cijpq = fij ∗ dpq where fij is

the flow between facilities i and j, and dpq, the distance between locations p and q. bip is the cost

of assigning facility p to location i.

Given below is the Integer programming formulation (IP) of QAP.

min

n∑
i=1

n∑
j=1

n∑
p=1

n∑
q=1

Cijpqxipxjq +

n∑
i=1

n∑
p=1

bipxip (3.1)

s.t.
n∑

i=1

xip = 1, ∀p (3.2)

n∑
p=1

xip = 1, ∀i (3.3)

xip ∈ {0, 1} ∀i, p (3.4)

Lawler [58] proposed a more general QAP version where Cijpq refers to a cost without specifically

referring to products of flows and distances. He also proposed QAP as a mixed integer linear

programming formulation (MILP), where quadratic terms were replaced by linear terms. i.e.,

fij ∗ dpq = Cijpq and xip ∗ xjq = yijpq. QAP linearizations based on MILP models present a large

number of variables and constraints, but with some constraint relaxations, improved lower bounds

for the optimal solution can be achieved. Frieze and Yadegar [59] proved the equality between the

following formulation and the IP QAP formulation.

min
n∑

i,j=1

n∑
p,q=1

fijdpq.yijpq (3.5)

s.t.∑
i

xip = 1 ∀p (3.6)∑
p

xip = 1 ∀i (3.7)∑
i

yijpq = xjq ∀j, p, q (3.8)∑
j

yijpq = xip ∀i, p, q (3.9)

∑
p

yijpq = xjp ∀i, j, q (3.10)∑
q

yijpq = xip ∀i, j, p (3.11)
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yiipp = xip ∀i, p (3.12)

xip ∈ {0, 1} ∀i, p (3.13)

0 ≤ yijpq ≤ 1 ∀i, j, p, q (3.14)

In the graph formulation, QAP can be considered as the problem of finding an optimal allo-

cation of vertices of one graph to another, both undirected weighted complete graphs with edges

representing flows and distances and the cost can be thought of as the sum of products of corre-

sponding edge weights.

3.2 Reformulation Linearization Technique

A number of linear formulations have been proposed for the QAP as the LP/MILP formulation

provides a relaxation on the integrality constraints, thus decreasing the complexity of a QAP.

The Reformulation-Linearization-Technique (RLT) is one in which a difficult mixed 0-1 linear and

polynomial optimization problems are recast into higher-dimensional spaces in order to obtain tight

bounds. RLT establishes an n-level hierarchy of relaxations; for a given d ∈ (1, .., n), the RLTd

creates numerous polynomial factors of degree d involving the product of either some d binary

variables xj or their complements (1 − xj). As the name suggests, it consists of the two steps:

reformulation and linearization.

3.2.1 Level 1 and Level 2 Reformulation Linearization Technique for the QAP

3.2.1.1 RLT1 for the QAP

In the reformulation step, additional redundant nonlinear constraints are generated by multi-

plying each of the 2n equations and n2 non negativity restrictions by the binary variables x, i.e.,

a product of xip and xjq results in xipxjq and enforces the idempotent property that x2ip = xip for

binary x. xipxjq will be 0 if i = j and p 6= q or if i 6= j and p = q.

In the linearization step, each distinct nonlinear term in the constraint and the objective is

substituted by a continuous variable, i.e., every occurrence of xijxpq will be replaced by the con-

tinuous variable yijpq, also yijpq = yjiqp. Based on the product factors used to compute redundant

restrictions, different hierarchy of relaxations emerge (RLTd). The relaxation at each level d of the

RLT hierarchy, is seen to be at least as tight as its previous level. Below is the representation.
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QAP-RLT1 :

min
∑
i

∑
p

Bipxip +
∑
i

∑
j

j 6=i

∑
p

∑
q

q 6=p

Cijpqyijpq (3.15)

s.t∑
i

yijpq = xip ∀j, p, q; p 6= q (3.16)∑
p

yijpq = xip ∀i, j, q; p 6= q (3.17)

yijpq = yjiqp ∀i, j, p, q; i 6= j; p 6= q (3.18)∑
i

xip = 1 ∀i (3.19)∑
p

xip = 1 ∀p (3.20)

yijpq ≥ 0 ∀i, j, p, q; i 6= j; p 6= q (3.21)

xip ∈ {0, 1} ∀i, p (3.22)

RLT2 is constructed in similarly, but, every xip restriction is multiplied by each product xjqxkl

having j 6= k and q 6= r.

3.2.1.2 RLT2 for the QAP

In the reformulation step, each of the 2n equations and each of the n2 non-negativity restrictions

is multiplied by each of the n2 binary variables xkr and by each of the n2(n− 1)2 pairwise xjqxkr

variables having j 6= k and q 6= r. When xkr is multiplied with xipxjq, the resulting product is

xipxjqxkr, in that order. x2kr = xkr throughout the constraints are substituted and variables of the

form xkrxkrxjq and xjqxkrxjq are reduced to xkrxjq. Similar to RLT1, xipxjqxkr = 0 if i = j and

p 6= q, if i = k and p 6= r, if i 6= j and p = q, or if i 6= k and p = r.

In the linearization step, every occurrence of each product xipxjq with i 6= j and p 6= q, is

replaced with the continuous variable yijpq, and xipxjqxkr with i 6= j 6= k and p 6= q 6= r, with the

continuous variable zijkpqr. Also, the restrictions yijpq = yjiqp ∀(i, j, p, q) enforced with i < j and

p 6= q. Symmetric restrictions ∀(i, j, k, p, q, r), with i < j < k, p 6= q 6= r are enforced as well .

The level-2 RLT form is below, with coefficients Dijkpqr in the objective are actually 0.

QAP - RLT2:

min
∑
i

∑
p

Bipxip +
∑
i

∑
j

j 6=i

∑
p

∑
q

q 6=p

Cijpqyijpq +
∑
i

∑
j

j 6=i

∑
j

k 6=j 6=i

∑
p

∑
q

q 6=p

∑
r

r 6=q 6=p

Dijkpqrzijkpqr (3.23)
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s.t.

∑
i

zijkpqq = yjkqr ∀j, k, p, q, r; p 6= q 6= r (3.24)∑
p

zijkpqr = yjkqr ∀i, j, k, q, r; p 6= q 6= r (3.25)

zijkpqr = zikjprq = zjikqpr = zjkiqrp = zkijrpq = zkjirqp ∀i, j, k, p, q, r; p 6= q 6= r (3.26)

(3.20− 3.26) (3.27)

zijkpqr ≥ 0 ∀i, j, k, p, q, r; p 6= q 6= r (3.28)

The idea used in RLT is to curtail the complexities involved in the quadratic objective co-

efficients by displacing their values to linear terms. Both RLT1 and RLT2 are equivalent to a

QAP when the binary restrictions on variable x is enforced. Sherali and Adams [60] have formally

proved the equivalence of the original QAP and the QAP-RLT1. The linear form RLT1 implies

yijpq = xipxjq and RLT2 implies that zijkpqr = xipxjqxkr. Therefore, an optimal solution to the

linear forms yields an optimal solution to the QAP. Adams and Johnson [61] have theoretically

shown that the bounds obtained by QAP-RLT1 provides at least a lower bound on the QAP and

with the symmetric restriction, v(QAP) = v(QAP-RLT1). RLT2 without the z variables in the

objective and constraints simplifies to RLT1, attributable to the manner in which it is constructed.

Therefore, the bounds obtained from continuous relaxation of RLT2 are at least as tight as those

from RLT1. Though the coefficients Dijkpqr are 0 in RLT2 objective, the zijkpqr variables in the

constraints restrict the values that yijpq and xip can take, thus tightening the relaxation of RLT2.

3.3 QAP representation of the TSP

It is well known that a TSP is a special case of the QAP and can be reformulated as a QAP

(F,D) with D as the distance matrix of the TSP instance and F , an adjacency matrix of a Hamil-

tonian cycle on n vertices [62], i.e., the flow matrix is replaced with an adjacency matrix connecting

all facilities along a single line and off - diagonal flows taking the value of 1. Thus, the flow matrix

will look as shown below:

F =



0 1 0 . . . 1

1 0 1 . . .
...

0 1
. . .

. . .
...

... . . .
. . . 0 1

1 0 . . . 1 0


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QAP representation of the TSP

min
n−1∑
i=1

n∑
p=1

n∑
q=1

Cii+1pqxipxi+1q +
n∑

p=1

n∑
q=1

Cn1pqxnpx1q +
n∑

i=1

n∑
p=1

Bipxip (3.29)

s.t.
n∑

i=1

xip = 1 ∀i (3.30)

n∑
p=1

xip = 1 ∀p (3.31)

xip ∈ {0, 1} ∀i, p (3.32)

3.3.1 RLT for TSP

TSP in the QAP framework is represented as a product of distance and flow matrix where flow

matrix is represented as an adjacency matrix. Therefore, flow is assigned value 1 if there is travel

between cities p and q ∀p, q = (1, .., n), at positions i and i + 1 or i + 1 and i and 0 otherwise.

This implies cities p and q are placed adjacent and consequentially the cost co-efficient for the term

xipxjq will be positive if j = i+1 and 0 otherwise. The remaining terms can be eliminated from our

model and thus reduces the size of our problem significantly. Applying RLT1 to the TSP results

in the below formulation:

TSP - RLT1:

min
∑
i

∑
p

Bipxip +
∑
i

∑
j

j=i+1
or

j=i−1

∑
p

∑
q

q 6=p

Cijpqyijpq (3.33)

s.t.
∑
i

yijpq = xip
∀j,p,q;p6=q
j=i+1

or
j=i−1∑

p

yijpq = xip
∀i,j,q;p 6=q
j=i+1

or
j=i−1

(3.34)

yijpq = yjiqp
∀i,j,p,q;p 6=q

j=i+1
or

j=i−1
(3.35)∑

i

xip = 1 ∀i (3.36)∑
p

xip = 1 ∀p (3.37)

yijpq ≥ 0 ∀i, j, p, q (3.38)

xip ∈ {0, 1} ∀i, p (3.39)

16



Further, the symmetric constraints eliminate the need to consider both the adjacent terms

j = i+ 1 and j = i− 1. Hence the number of terms reduces by half.

The RLT2 formulation for the TSP is given below. Similar to the QAP, in RLT2, every xip

term is multiplied by each product xjqxkl having j 6= k and q 6= r and then linearized; i.e.,

xipxjqxkr = zijkpqr with y and x constraints as in RLT1. Here, either cities i - j or j - k or variables

i - k are adjacent. i.e., (j = i+ 1 or i− 1 ) or ( j = k+ 1 or k− 1 ) or ( k = i+ 1 or i− 1), causing

removal of a few variables. The coefficients Dijkpqr will remain 0. The symmetric constraints will

reduce the size of the problem by half, similar to RLT1.

TSP - RLT2 :

min
∑
i

∑
p

Bipxip +
∑
i

∑
j

∑
p

∑
q

q 6=p

Cijpqyijpq +
∑
i

∑
j=i+1

∑
k

∑
p

∑
q

q 6=p

∑
r

r 6=q 6=p

Dijkpqrzijkpqr+

∑
i

∑
j

∑
k=j+1

∑
p

∑
q

q 6=p

∑
r

r 6=q 6=p

Dijkpqrzijkpqr (3.40)

s.t.
∑
i

zijkpqq = yjkqr ∀j, k, p, q, r; p 6= q 6= r (3.41)∑
p

zijkpqr = yjkqr ∀i, j, k, q, r; p 6= q 6= r (3.42)

zijkpqr = zikjprq = zjikqpr = zjkiqrp = zkijrpq = zkjirqp ∀i, j, k, p, q, r; p 6= q 6= r (3.43)∑
i

yijpq = xip ∀j, p, q; p 6= q 6= r (3.44)∑
p

yijpq = xip ∀i, j, q; p 6= q 6= r (3.45)

yijpq = yjiqp ∀i, j, p, q (3.46)∑
i

xip = 1 ∀i (3.47)∑
p

xip = 1 ∀p (3.48)

zijkpqr ≥ 0 ∀i, j, k, p, q, r; p 6= q 6= r (3.49)

yijpq ≥ 0 ∀i, j, p, q; i 6= j; p 6= q (3.50)

xip ∈ {0, 1} ∀i, p (3.51)

Since in the TSP, only adjacent pairs can exist, all the elements in the flow matrix expect those

in the off-diagonals are 0 and hence a few of the variables are 0. Table 3.1 presents a comparison

of the number terms in a QAP and in the TSP formulation after elimination of non-adjacent terms

with percentage reduction.
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Table 3.1: Percentage reduction in the number of variables from QAP to TSP

Linear Assignment Problems (LAP) serve as sub-problems to the TSP and hence the TSP-

RLT2 can be solved as a set of LAPs using the parallelized Hungarian Dual ascent algorithm with

a branch-and-bound scheme. In the RLT2 phase, we consider a triplet comprising of 3 cities with

altleast two of them adjacent. The picture below depicts different ways of forming a triplet in the

Z - LAP matrices containing at least one adjacent pair. Consider an n city problem. In Fig. 3.1a,

consider the triplet 1 − 2 − 4 − p − q − r where 1, 2 and 4 represent the sequence of travel and

p, q, r the cities. Since there exists at least one consecutive pair p − q traveled at 1 - 2, this is a

valid Z(z124pqr) variable. Fig. 3.1b is not a valid triplet because it does not have an adjacent pair.

Therefore, the variable is removed from the Z - LAP and thus the LAP becomes asymmetric with

the number of rows in the matrix being either 3, 4 or (n − 2) depending on the position of the

adjacent pair in the triplet with the column size (n− 2).

Figure 3.1: Travel location and its position for TSP

To test our formulation, we ran a few tests on Java - Gurobi environment for instances N =

5 and N = 8. Table 3.2 presents the problem size, optimal objective values obtained from the IP

and LP formulations and the solution time for both RLT1 and RLT2. Though the solution time

varies, the values obtained from the Integer programming formulation and the relaxed formulation

are equal, thus proving the tightness of our TSP-RLT2 formulation.
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Table 3.2: Comparison of Integer vs Linear Programming formulation

Date [1] developed a GPU-based Lagrangian Dual Ascent to obtain lower bounds on the QAP-

RLT2 and solved the LAPs using a parallel branch-and-bound scheme. The sizes of LAPs due to

our TSP formulation is reduced due to the elimination of Z terms with no adjacent pair of cities and

hence results in asymmetry. Therefore, we used a modified version of the accelerated Hungarian

Algorithm to solve n2(n − 1)2 m x n matrices. Next chapter explains in detail the approach to

solving our TSP-RLT2.

19



Chapter 4

Solution Approach

Though RLT2 proves to provide stronger bounds to the LP relaxations, most primal methods

fail for large QAP owing to the large number of variables and constraints. Gilmore and Lawler

bounds were well-known to provide strong bounds to the LP. Burkard and Stratmann (1978),

Edwards (1980), Li et al. (1992) and others provide reduction strategies to obtain lower bounds.

Carraresi and Malucelli [63] provided three families of lowers bounds. One: An iterative procedure

is used to obtain a suboptimal dual solution by solving the LP without symmetric constraints

and interchanging the reduced costs with the symmetric variables. The dual multiplier associated

with the symmetric constraint is increased by a quantity equal to the reduced cost, and hence, the

process yields a non-decreasing sequence of lower bounds and is repeated till a stopping criterion

is reached. In the other two families of lower bounding procedures, a lower bound is computed

using the iterative steps mentioned above and dual ascent strategy or the graph-theoretic strategy

is applied to strengthen bounds. Adams and Johnson developed a Lagrangian dual ascent scheme

and Hahn and Grant furthered this with an augmented dual ascent method with simulated annealing

(1998). Adams et al. [56] used the Lagrangian dual ascent to obtain bounds for RLT2 QAP. Hahn

et al. (2012) recently proposed a dual ascent based algorithm to find stronger lower bounds on

RLT2 and RLT3.

Drawing upon these contributions, in this chapter we propose a solution approach for the TSP.

Simply stated, it is a dual ascent procedure for the lower bound of the TSP-RLT2.

4.1 Dual Ascent

Every LP formulation exists in another unique linear programming form called the Dual and

can be considered as the inverse of the original formulation, Primal. In other words, if the primal

formulation is minf(x), then in the dual space, the objective becomes maxF (y) such that F (y) ≥
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f(X) for all feasible x and y. This implies that if one of them, primal or dual, is feasible, the other

cannot be unbounded and if one of them is unbounded, the other will be infeasible. A dual solution

can be used to check for optimality; if there is exists an x and y such that f(x) = F (y), then x is

the optimal of the primal and y, the dual optimal. Weak duality is when a feasible solution to the

dual corresponds to an upper bound on a primal solution. In strong duality, we can guarantee that

the optimal solutions to the primal and dual are always equal. Many algorithms use this concept

of strong and weak duality and one of them is the Lagrangian Duality.

P : min cx; s.t. Ax ≥ b; x ∈ X (4.1)

A simple minimization (P1) has a simple constraint x ∈ X and a complicating constraint Ax ≥ b.

A dual multiplier or Lagrangian multiplier associated with the relaxed complicating constraint can

be added to the objective, thus obtaining the following Lagrangian relaxation.

LRP (u) : min cx + u(b - Ax), s.t. x ∈ X (4.2)

This relaxation provides a lower bound on the primal and hence the objective is to solve the LPR(u)

to find a multiplier u that maximizes the objective function of the Lagrangian dual. Two solution

procedures, the Subgradient Search method and Lagrangian Dual Ascent, are the most commonly

used for obtaining dual multipliers. Here, we discuss the Lagrangian Dual Ascent scheme since it

is used in our work.

4.1.1 Lagrangian Dual Ascent

In the Lagrangian Dual Ascent, the direction of ascent (d) with the best step-size for improve-

ment in the objective function LRP (u) can be estimated at each iteration. For some dual solution

(û), find a direction such that d(b−Ax) > 0, ∀x ∈ X(û) which provides the best step-size for max-

imum improvement in the objective function. If not, the solution û and the corresponding x can

be deemed optimal. However, finding the optimal step-size λ that is non-decreasing while main-

taining the feasibility of all solutions is NP-hard. In the Lagrangian dual of RLT2, the direction

and step-size for improving the dual objective can be determined without solving the optimization

problem but by performing sensitivity analysis while maintaining the complementary slackness for

the non-basic x, y and z variables in the corresponding LAPs. In the next section, we will discuss

the sequential Hungarian Algorithm and the Lagrangian dual ascent procedure.

4.1.2 Finding the ascent direction and step-size using Langrangian Dual Ascent

The LDRLT2 can be used to find the direction of ascent and the optimal step-size without

solving the optimization problem using Lagrangian Dual Ascent. If π(.) denotes the reduced cost
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of a variable, for some variable zijkpqr in an optimal LAP solution,

zijkpqr = 1⇒ π(zijkpqr) = 0; and zijkpqr = 0⇒ π(zijkpqr) ≥ 0 (4.3)

Due to the symmetric constraints, if the TSP solution is optimal, the values of all Z symmetric

variables will be the same. If a variable zijkpqr and one of its complementary variables zjikqpr have

contradicting values of 0 and 1, the values (1, - 1) provides a natural direction of ascent and a new

dual solution can be obtained by decreasing the Dijkpqr by at most π(zijkpqr) (increasing ˆvijkpqr) and

increasing the complementary variable co-efficient Djikqpr using a valid step-size. While choosing

a step -size, the feasibility of the current dual variables α, β, γ, δ, ζ, ψ should be maintained. If

the reduced cost π(zijkpqr) < 0, it means there is infeasibility and Dijkpqr should be decreased

by at most π(zijkpqr). Since the complementary variable zjikpqr is basic, this adjustment will

increase (LDRLT2) by some nonnegative value resulting in a strong direction of ascent. If both

the complementary variables are 0, i.e., if they are both non-basic, any increase to Dijkpqr will not

change (LDRLT2) and is a weak direction of ascent. By finding a strong direction of ascent, we can

ensure a non-negative increase in v(LDRLT2). i.e., instead of finding a strong direction for every

pair in the symmetric constraint, we can find a strong direction for one of the pairs by selecting a

non-basic variable, decreasing its cost by some amount and increasing the cost coefficients of the

other five complementary variables by a fraction of it. By doing so, there will be a non-negative

increase in the dual and if no strong direction is found, the objective value remains the same.

This has shown to outperform all other bounding schemes. Though solving O(n4) LAPs and

updating the O(n6) multipliers can be computationally heavy, the advantage of the RLT2-DA is

that each of the LAPs can be solved independently, Therefore, parallelizing this algorithm will

ensure faster results. CUDA enabled NVIDIA GPUs is chosen as the primary architecture for the

dual update phase of RLT2-DA. The GPU-accelerated algorithm for LAP together with the RLT2-

DA solver are used to speed up the process of solving LAP and to obtain strong lower bounds on

the QAP. We use this same procedure described in Date [1] for solving the TSP.

4.2 Hungarian Algorithm

The Hungarian Algorithm was proposed by Kuhn (1955) and is used in problems where an n x

n matrix has every element representing a cost associated with assigning some j-th job/facility to

i-th worker/location and the objective of the problem is to find an optimal assignment of the jobs.

In each iteration of the Hungarian algorithm, the number of assignments increases or a new edge

with slack cij − ui − vj = 0 is obtained. At each step, an adjacency list with the zero slack edges

is stored and modified. Since the matrix contains n2 variables, the process is repeated at most n2

times and hence the complexity is O(n4)
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4.2.1 Sequential Hungarian Algorithm

Consider the dual LP relaxation of the TSP - RLT2 (LRLT2) formulation with relaxed Z

symmetric constraints added to the objective using v = v̂ijkpqr and α, β, γ, δ, ζ, ψ representing the

dual variables corresponding to the constraints.

DLRLT2(v̂) :

max
∑
i

αi +
∑
i

βp (4.4)

s.t.

αi + βp −
∑
j 6=i

γijp −
∑
q 6=p

δipq ≤ bip, ∀i, p (4.5)

γijp + δijp −
∑
k 6=i,j

ζijkpq −
∑

r 6=q,p

ψijpqr ≤ Cijpq, ∀(i 6= j, p 6= q) (4.6)

ζijkpq + ψijpqr ≤ Dijkpqr − v̂ijkpqr, ∀(i 6= j 6= k, p 6= q 6= r) (4.7)

αi, βp, γijp, δipq, ζijkpq, ψijpqr ∼ unrestricted ∀(i 6= j 6= k, p 6= q 6= r) (4.8)

The problem DLRLT2(v̂) can be solved in three stages using the decomposition principle

proposed by Adams et al. by leveraging the values obtained in the individual stages. To maximize

the dual objective w.r.t. (4.7), we need large values of α and β, for which
∑
j 6=i

γijp −
∑
q 6=p

δipq

needs to be maximized subject to (4.8). Subsequently, this requires large values of γ and δ, which

requires maximization of
∑

k 6=i,j

ζijkpq−
∑

r 6=q,p

ψijpqr w.r.t. (4.9), which constitutes the first stage of

the problem. We solve each of these in its dual form: first solve n2(n−1)2 Z - LAPs, then we solve

n2 Y - LAPs and finally the X - LAP which will gives us the required lower bound. Thus, we solve

O(n4) LAPs and O(n2) cost coefficients in each LAP. At each of the three stages, an alternating

tree version of the Hungarian Algorithm is used to solve the LAPs. The algorithm tries to find

maximum matching subject to condition (Dijkpqr − v̂ijkpqr − ζijkpq − ψijpqr) ∗ Zijkpqr = 0.

If the slack (Dijkpqr − v̂ijkpqr − ζijkpq − ψijpqr) = 0, Zijkpqr can be set to 1, which means

the tour p− q− r in the order i− j − k is fixed. If not, dual variables are adjusted to introduce

one new city into the tour with 0 slack using the dual ascent procedure. First, using reduction,

a minimum non - zero slack is identified and the dual multipliers are updated. Then, the LAPs

are resolved to obtain an improved solution for LP relaxation of RLT2. Using the complementary

slackness condition, the primal-dual feasibility check is performed. The process of solving the LAP

and dual ascent is alternated till an optimal solution is found. In our solution framework, we use a

modified version of the GPU-accelerated Hungarian algorithm for the Linear Assignment Problem

proposed by Ketan Date and Rakesh Nagi [64].

Please refer to Date [1] for detailed explanation on the Accelerated Hungarian Algorithm, Dual
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Ascent and Parallelizations.

4.3 Accelerating RLT2-DA Algorithm for the TSP Using a GPU

Cluster

This section looks at the solution approach for the TSP in its entirety. The LAP matrices /

cost coefficients are split across multiple GPUs and a grid architecture with multiple processing

units, each with a CPU - GPU pair is used in solving several LAPs. Each of the k GPUs perform

a set of functions simultaneously:

Initialization → Dual Ascent → Z-TLAP Solve → Y-TLAP Solve → X-LAP

Solve → Feasibility Check

1. Initialization

The first in the process is to initialize the program with k MPI processes, with each MPI process

assigned to one CPU and each GPU has equal number of LAPs i.e., the cost matrices for the Y and

Z LAPs are split evenly across all the

[
n2(n− 1)2

K

]
Z-LAP matrices and

[
n2

K

]
Y-LAP matrices

and the root GPU owns the X-LAP matrix.

2. Dual Ascent

This step is parallelized by simply assigning each thread of the GPU to a multiplier associated

with one z-variable of the LAP on the GPU and a host of multipliers are updated at once. At each

iteration of the RLT2-DA step, the cost co-efficients b′, C′, D′ are updated using MPI to transfer

the array of dual variables and the modified cost matrices between CPUs and GPUs.

3. LAP Solution

The X - LAP is of size n×n and each of the n2 Y LAPs are of size (n−1)×(n−1). All the

Y - LAPs and the X - LAP are solved using the alternating-tree variant of accelerated Hungarian

algorithm and a modified version of the tiled LAP solver is used to solve the asymmetric Z - LAPs.

To leverage the efficiency of the GPU-accelerated algorithm, the LAPs are tiled and solved instead

of solving them individually. For example, if there are MY Y-LAP matrices on a particular GPU,

then instead of solving them one at a time, all of them are solved as a single TLAP since it is
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known to solve faster than a single LAP though the complexity is O(M1.5n3), worse as compared

to O(Mn3).

4.4 Computational Experiments

In this section, we present our computational results. We compare the two TSP representations,

a full QAP representation and its reduced form without non-adjacent variables, for its solution

times.

Table 4.1: Comparison of Solution times of QAP and reformulated TSP

Table 4.1 reports the results for RANDOM instances. The algorithm is terminated if the gap

in a particular iteration is < 1% or if it reaches the number of iterations specified, whichever is

earlier. Our point of concentration is the execution times. The problem size (N) is presented in the

first column. For problem sizes <18, we tested on a single GPU and for larger problem instances,

we used 2 GPUs due to increase in memory requirements. We can see that, for a given number or

iterations, the lower bounds are almost the same for both the formulations and the gap remains less

than 1% implying that the formulation is tight. We see that the solution times for our TSP-RLT2

reduces by half as compared to the QAP representation of the TSP.

Table 4.2 gives insights about the solution times and bounds for standard TSP instances. The

lower bounds obtained were nearly optimum to values obtained from [65]. This is an affirmation

of the fact that our model provides tight lower bounds and low % gaps. For problem instance N

= 29, the QAP model could not be solved using 2 cards owing to its large size and can be handled

by increasing either the number of GPUs or CPUs.

We performed 500 iterations on symmetric and asymmetric instances of sizes 11 ≤ N ≤ 30
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Table 4.2: Solution times for instances from TSPLIB TSP

and Table 4.3 presents the results. The restriction in the RLT2 approach is the need for symmetry in

either the flow matrix or distance matrix. Since we have a symmetric flow matrix, our formulation

is indifferent to Symmetric and Asymmetric TSPs and the results presented in this table shows

performance to be independent of the kind of TSP and is mostly instance specific. Numerical

analysis may be performed to reinstate the performance efficiency of our solver for Symmetric and

Asymmetric problems.

Table 4.3: Comparison of Solution times for a Symmetric v/s Asymmetric TSP

The Hungarian Algorithm with RLT2 - Dual Ascent is computational demanding for the Trav-

eling Salesman Problem. Yet, the bounds obtained due to the dual ascent approach are extremely

tight for most problems from the TSPLIB with problem size N < 30. When ported to a GPU

clustered environment with 2 nodes and 4 devices, larger problems can be solved.
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Chapter 5

Conclusions

In review, we reformulated a Quadratic Assignment Problem as a Traveling Salesman Prob-

lem and applied a Level-2 Reformulation Linearization Technique to overcome the complexities of

quadratic objective function. We solved this reformulated TSP on an LAP solver with alternat-

ing tree variant of the Hungarian Algorithm and used a Graphics Processing Units (GPU) based

version of the Lagrangian dual ascent procedure (RLT2-DA) for obtaining lower bounds. The pro-

cedure involved two steps: After initializations, using the parallelized GPU-accelerated Hungarian

algorithm, we solve a bunch of LAPs independent of each other and in the second step we update

dual multipliers using Dual Ascent.

A comparison between the solution times of TSP as a full QAP matrix using Hungarian algo-

rithm and that of the TSP as a reduced QAP was made. The reduction in solution times for our

reformulated TSP model was reduced by half for a given number of iterations. The lower bounds

obtained were tight and the %gap was fairly small. Due to computational restrictions, we could

only test small instances with problem size N < 30, but larger problem sizes can be solved by

using a multi-CPU cluster.
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