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ABSTRACT

Personalized recommendation systems have to predict preferences of a user

for items that have not seen by the user. For cardinal (ratings) data, personal-

ized preference prediction has been efficiently solved over the past few years

using matrix factorization related techniques. Recent studies have shown

that ordinal (comparison) data can outperform cardinal data in learning

preferences, but there has not been much study on learning personalized

preferences from ordinal data. This thesis presents a matrix factorization

inspired, convex relaxation algorithm to collaboratively learn hidden prefer-

ences of users through the multinomial logit (MNL) model, a discrete choice

model. It also shows that the algorithm is efficient in terms of the number

of observations needed.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

We are in an information revolution now. Humans are accumulating a wealth

of information driven by the enormous reach and scale of the Internet and

information technology. Institutions are collecting large amounts of data

everyday regarding their client base.

In particular, a large amount of individual preference data on different

sets of choices such as Netflix movie ratings [1], Foursquare restaurant check-

ins, the videos watched from a group of suggested ones on YouTube, etc.,

are collected. They are collected in the hopes of better understanding the

needs and interests of individuals and population as a whole so as to provide

personalized products and services better catered to them.

These preference data are primarily used in recommendation systems and

for revenue management. In both the cases, it is important to predict hid-

den preferences of individuals for items which are not yet “seen” or compared

by the individuals. In revenue management, we need to predict the prefer-

ence trends in the population and various demographic groups from partial

preference data.

But aiming to achieve these without any further assumptions on the struc-

ture of the problem is futile. A reasonable assumption we can make would be

that, individuals with similar preferences of compared or scored items would

have similar preferences of “unseen” items too. We will call this correlation

assumption. For example, if users A and B are both die-hard fans of the

movies “Die Hard” and “The Matrix” and user B likes “The Terminator”,

then it is very likely that user A also likes “The Terminator”. This assump-

tion points to a collaborative learning algorithm for estimation preferences

from partial observations. But first we will look at the type of preference
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data collected.

1.2 Cardinal versus ordinal data

There can be two kinds of preference data.

1. Cardinal data: It consists of ratings of different items, by individuals,

according to a scoring system. For example, in Netflix [1], users are

asked to rate the movies they have watched with integer scores on a

scale of 0 to 5.

2. Ordinal data: Ordinal data contains comparison results or choices made

by different individuals. It can be the choice made by the individual,

given a set of alternatives or a full-blown ordering or ranking of the

given set. For example, in single transferable voting system the voters

are asked to order their choice of candidates in decreasing order of

preference [2].

In the case of cardinal data, many fast and efficient algorithms were pro-

posed in the past few years, which exploit matrix factorization techniques and

assume a low-rank score matrix structure to collaboratively predict scores of

unrated items for individual users [3].

On superficial analysis, one may say that using comparison data (ordinal

data) would decrease the accuracy of learning, by arguing that ratings pro-

vide more information. Ratings data can always be converted to comparison

data and not vice versa. But a recent study has shown that there can be

a lot of noise in the cardinal, data and inferences made from ordinal data

can be superior [4]. This may be so, because the scoring systems are often

arbitrarily chosen, and different individuals may interpret them differently.

That study also empirically found that the time (and in turn cost) associated

with procuring comparison data is considerably less than the time associated

with scoring. Thus the results of the above mentioned study justifies collab-

oratively learning preferences from ordinal data.
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1.3 Problem statement

The problem statement is as follows. There are a set of users and a set of

items. Each user has given partial comparison data of a subset of the items.

This comparison data can be of different forms:

(a) graph-sampled pairwise ranking, where each user compares (graph-sampled)

pairs of items and reports the result of these comparisons. We will see

more about graph sampling in Section 2.1.

(b) k-wise ranking, where each user ranks a subset of k items according to

her order of preference.

(b) n choices, where each user is given n subsets of items of size k2 each,

and she picks her foremost preferred item from each of the n subsets.

Note that pairwise comparison is a special case of this with k2 = 2.

We will assume that data satisfies the correlation assumption described in

the previous section. The goal is to find the overall ranking of all the items

for each user and also predict the outcome of any future comparisons made

by any user. Results for graph-sampled pairwise ranking were first published

online in [5], and k-wise ranking and n choices cases were published in [6].

1.4 Multinomial logit (MNL) model

The origins of theory of choices can be traced to the 18th century mathe-

matician Condorcet [7], who tried to combine partial ranking of candidates

by voters in an election into a full ranking. But foundations of the current

theoretical models for preferences or choices were developed by economists

and psychologists in the 20th century for studying consumer preferences and

population behavior. Among the various models developed, a popular one

is the random utility model (RUM) or Thurstone model [8]. In RUM, given

a set of alternative choices S, the decision maker assigns a utility score for

each choice x as

U(S, x) = V (S, x) + ε(S, x), (1.1)
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where V (S, x) is a deterministic function which depends on the ground truth

“taste” of the decision maker and ε(S, x) is the i.i.d. (among different choices)

random noise or “confusion” generated by sampling from cumulative distribu-

tion function (CDF) F (ε). The randomness is crucial in justifying seemingly

contradictory observations in real data, such as in-transitivity in ranking of

triplets (example: a < b, b < c, and c < a) or different ordering of items given

by the same person at different times (example: a < b < c and a < c < b).

RUMs are proven to be useful in various applications, like consumer market

analyses [9].

In this thesis a special case of the RUM called the multinomial logit (MNL)

model [8] is used. In the MNL model we have a set of d1 users and a set

of d2 items and a “quality” parameter matrix Θ∗ ∈ Rd1×d2 which is believed

to have a low rank of r. The rows correspond to the users and the columns

correspond to the items. Each user i is presented with set Si ⊆ [d2] of k

alternatives. Let vi,` ∈ Si denote the (random) `-th best choice of user i.

Each user gives a ranking, independent of other users’ rankings, from

P {vi,1, . . . , vi,k} ≡
k∏
`=1

e
Θ∗i,vi,`∑

j∈Si,` e
Θ∗i,j

, (1.2)

where Si,` ≡ Si\{vi,1, . . . , vi,`−1} and Si,1 ≡ Si. The rank r criterion naturally

captures the correlation assumption from Section 1.1, by capturing the sim-

ilarities among users and items by representing them on a low-dimensional

space. Thus the rank r criterion implies the preference parameter vector of

every user is a mixture of a standard set of r basis parameter vectors.

The log-likelihood function of MNL is concave; thus we can efficiently

use maximum likelihood estimator (MLE) for finding ground truth. The

MNL model is extensively applied in choice modelling applications such as

marketing and estimating airline travel demands due to its tractability and

accuracy [10]. It can be shown that the MNL is a special case of RUM

with the noise ε following the CDF F (ε) = e−e
−ε

of the standard Gumbel

distribution. This interpretation is crucial in our theoretical analysis.
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1.5 Low-rank regularization using nuclear norm

minimization

We use the following basic meta-algorithm strategy for solving our collab-

orative learning problems. Since Θ∗ is approximately low rank, a natural

strategy is to maximize the log-likelihood L(Θ) under a fixed rank constraint,

as

Θ̂ ∈ arg min
rank(Θ)=r

−L(Θ) . (1.3)

Even if we know the rank of Θ∗, this is a difficult and non-convex optimization

problem.

We know that the nuclear norm ball is the convex hull of rank-1 matrices.

Analogous to l1-norm in the case of sparse solutions, the nuclear norm is a

tight convex surrogate for low-rank solutions. Therefore, our algorithms will

solve the following nuclear norm regularized optimization problem,

Θ̂ ∈ arg min
Θ∈Ω
−L(Θ) + λ|||Θ|||nuc, (1.4)

where Ω is a convex constraint which takes care of identifiability and Lipschitz

smoothness conditions. Nuclear norm regularization has been widely used

[11] in similar settings; however, provable guarantees typically exist only

for the quadratic loss function L(Θ) [12, 13]. Our analyses extends these

results to by first proving that −L(·) satisfies the restricted strong convexity

property with high probability.

1.6 Related work

Preliminary inference algorithms on ordinal data were done with the Plackett-

Luce (PL) model, which is a special case of MNL where there is only one row

in Θ∗ and every person in the population is assumed to have the same prefer-

ence. The PL model has been studied extensively in the past couple of years,

and many efficient algorithms for estimating the population preferences have

been developed [14, 15, 16], and sample complexity was characterized for the

MLE [17]. However, the PL model can only capture a single overall ranking.

To overcome the lack of personalized preferences in the PL model, recently
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a few algorithms were proposed which try to learn a mixed PL model with

only r classes of users by clustering [18] and a tensor-based approaches [19].

MNL can be thought of as a generalization of r class models, where the

preference of each user is a mixture of r basis preferences. But existing

work on MNL model is restricted to only pairwise comparisons [20, 21]. [21]

proposes an algorithm minimizing a convex loss function with nuclear norm

minimization. It is shown that this approach achieves a statistically optimal

generalization error rate. The approach in this thesis is inspired by [20],

which a uses similar convex relaxation as does this thesis, but for pairwise

comparisons of independent and identically (i.i.d.) sampled pairs of items.

We generalize the results of [5] by analyzing more general sampling models

beyond i.i.d. sampled pairwise comparisons.

1.7 Notation

|||A|||F =
√∑

i,j A
2
ij and |||A|||∞denote the Frobenius norm, and the `∞ norm.

|||A|||nuc =
∑

i σi(A) denotes the nuclear norm, which is the sum of singular

values {σi(A)}i of matrix A. 〈〈u, v〉〉 ≡
∑

i uivi. The set of the first N positive

integers is denoted by [N ] = {1, . . . , N}.

1.8 Organization of chapters

In this thesis, we organize the results into three chapters, one each for graph

sampled pairwise comparison, k-wise ranking, and bundle choices, which is

a generalized version of the n choices model described in Section 1.3. In

each chapter we will provide an algorithm for solving the problem at hand,

an upper bound on the error in the Frobenius norm of parameter matrix

in terms of the number of samples and dimensions of the problem and an

information theoretic lower bound for the performance of the best possible

estimator for the problem.
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CHAPTER 2

COMPARISON OF GRAPH SAMPLED
PAIRS

2.1 Learning from pairwise comparisons of graph

sampled pairs

Here, we analyze a generalized sampling of items for pairwise comparison.

Consider a weighted complete graph of d2 nodes, which represent items.

The edge weight 2Pi,j between nodes i and j represents the probability with

which the pair (i, j) is chosen for comparison by any user. We capture this

probability in a real-symmetric adjacency matrix P such that Pi,i = 0 ∀i ∈
[d2], Pi,j = Pj,i, and

∑
i,j∈[d2] Pi,j = 1.

Outcomes of these comparisons follow the MNL preference model from

Section 1.4, which is parameterized by a rank-r matrix Θ∗ ∈ Rd1×d2 , and

where the probability with which user i prefers item j over item k is

1/
(
1 + exp

(
Θ∗ik − exp Θ∗ij

))
. We also assume that |||Θ|||∞ ≤ α, so we have a

handle on the dynamic range of the feasible probabilities. While in practice

we do not require the `∞ norm constraint, we need it for the analysis. For

a related problem of matrix completion, where the loss L(θ) is quadratic,

either a similar condition on the `∞ norm is required or a different condition

on incoherence is required.

In the most general setting of graph based sampling, some items may

never be compared with each other; that is, Pi,j can be zero 0 for some (i, j).

Moreover items may be partitioned into groups of items where inter-group

comparisons never occur. For example, it does not make sense to compare

a television and a radio system. Given this, users might still assess these

items using similar metrics like quality or price. Therefore it makes sense

to solve the preference learning problem of different groups together rather

than separately. To capture this intrinsic relation between groups, we define

the notion of disjoint components in the graph. Let gi ∈ {0, 1}d2 such that
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gi,j = 1 if item j is in group i, else gi,j = 0. We also assume that no item

can be present in more than one group; that is,
∑G

i=1 gi = 1, where G is the

number of groups.

Since probabilities of the pairwise comparison are oblivious to shifts of

each row by a constant, for each distribution, we have an equivalence class

of Θ∗ which are consistent:

[Θ∗] = {Θ∗ +
G∑
i=1

uig
T
i | ui ∈ Rd1} . (2.1)

To overcome this identifiability issue, we assume that the mean of each group

is zero,

Θ∗gi = 0, ∀ i ∈ {1, 2, . . . , G} . (2.2)

Graph Laplacian: We define the graph Laplacian of matrix P as

L = diag(Pu)− P , (2.3)

where Pu =
∑

v Pu,v. Notice that L is singular and zero eigenvalues are in the

direction of vectors {gi}Gi=1. Let σmax(L) = ‖L‖2 and σmin(L) be the smallest

eigenvalue of L discounting the G zero-valued eigenvalues. Since the graph

has G disconnected maximal components and L is real symmetric, by the

spectral theorem, L = UΣUT , where U is a matrix of size d2 × (d2 −G) and

its d2−G columns form an orthonormal set, and Σ is a diagonal matrix such

that its diagonal elements are the singular values of L. Let Lx := UΣxUT for

all x ∈ R and L† := L−1 = UΣ−1UT . We also define the Laplacian induced

norms of matrices,

|||Θ|||L :=
∣∣∣∣∣∣ΘL1/2

∣∣∣∣∣∣
F
, and |||Θ|||L-nuc :=

∣∣∣∣∣∣ΘL1/2
∣∣∣∣∣∣

nuc
.

We use these Laplacian induced norms because they are more appropriate to

analyze and quantify the distance between the estimated matrix Θ̂ and Θ∗.

When items k(i), l(i) are chosen for comparison by user j(i) as the i-th

pair of items, we capture this choice with the matrix X(i) = ej(i)(ek(i)−el(i))T .

The outcome of the comparison is represented by yi, with yi = 1 when item

k(i) wins over item l(i) and yi = 0 if otherwise. Now the log-likelihood of
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the comparison outcomes w.r.t. a parameter matrix Θ is

L(Θ) =
1

n

n∑
i=1

yi〈〈Θ, X(i)〉〉 − log
(
1 + exp

(
〈〈Θ, X(i)〉〉

))
. (2.4)

Now we propose and analyze the following convex optimization problem,

Θ̂ ∈ argmin
Θ∈Ωα

− L(Θ) + λ|||Θ|||L-nuc, (2.5)

where

Ωα =
{

Θ ∈ Rd1×d2 ||||Θ|||∞ ≤ α,Θgi = 0, ∀ i ∈ [G]
}
, (2.6)

and λ = 2
√

32 max

{√
σ log(2d)

n
,
σ
−1/2
min log(2d)

n

}
with σ = max{(d2 −G)/d1, 1}.

2.2 Performance guarantee

Following is the main result for the comparison of graph sampled pairs.

Theorem 1. Let d = (d1 + d2)/2 and suppose

n ≤ min{26d2
1σ

2, 23
(
d1σ

−1
min

)2/3} log(2d). Then under the described graph sam-

pling and MNL preference model and solving the optimization problem in

(2.5) gives∣∣∣∣∣∣∣∣∣(Θ∗ − Θ̂
)
L1/2

∣∣∣∣∣∣∣∣∣
F

2

√
d1

≤ 36λ
√
d1

(
α +

1

ψ(2α)

)√2r
∣∣∣∣∣∣∣∣∣(Θ∗ − Θ̂

)
L1/2

∣∣∣∣∣∣∣∣∣
F

+

min{d1,d2−G}∑
j=r+1

σj(Θ
∗L1/2)


(2.7)

with probability greater than 1− 2/(2d)3, where σ = max{(d2 −G)/d1, 1}.

Proof. The proof of the theorem relies on the following two lemmas. The

first lemma shows that the negative of the log-likelihood satisfies restricted

strong convexity with high probability.
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Lemma 2.2.1 (Restricted strong convexity). Let

A(α) =

{
Θ ∈ Rd1×d2 , |||Θ|||∞ ≤ α, |||Θ|||L-nuc ≤

|||ΘL1/2|||2
F

16αd1R

}
and

R = max

{√
σ log(2d)

n
,
σ
−1/2
min log(2d)

n

}
. When n ≤ 26d2

1σ
2 log (2d) and n ≤

22(d1σ
−1
min)2/3 log (2d),

1

n

n∑
i=1

(〈〈Θ, Xi〉〉)2 ≥ 1

3d1

|||Θ|||2L, ∀ Θ ∈ A(α), (2.8)

with probability at least 1− 2(2d)−4.

Here the upper bound on n may not be necessary; it is present due to a

technical difficulty in using the peeling argument. The intuition behind the

above Lemma is that the empirical average uniformly concentrates around

its expectation. The proof is in Section A.1.1. The next lemma says that

the gradient of the log-likelihood at the actual parameter matrix Θ∗ is con-

trollably small.

Lemma 2.2.2 (Bounded gradient). Let R = max

{√
σ log(2d)

n
,
σ
−1/2
min log(2d)

n

}
.

The spectral norm of the gradient of the log-likelihood at the actual parameter

matrix, ∇L(Θ∗), can be upper-bounded with high probability as follows,

P
{∥∥∇L(Θ∗)L−1/2

∥∥
2
≥
√

32R
}
≤ 1

(d1 + d2)3
. (2.9)

Proof of the above lemma is in Section A.1.4. Let ∆ = Θ̂−Θ∗.

Case 1: ∆ /∈ A(2α) Then,

|||∆|||L ≤ 32αd1R|||∆|||L-nuc .

Case 2: ∆ ∈ A(2α) We first write the second-order Taylor series expan-

sion of L(Θ̂) at around Θ = Θ∗:

−L(Θ̂) = −L(Θ∗) + 〈〈−∇L(Θ∗),∆〉〉

+
1

2n

n∑
i=1

ψ
(
〈〈Θ∗, X(i)〉〉+ s〈〈∆, X(i)〉〉

)
〈〈∆, X(i)〉〉2 ,

(2.10)

where ψ(x) = ex/(1 + ex)2, x ∈ [−2α, 2α], and s ∈ [0, 1]. Next using Lemma
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2.2.1 and the fact that ψ(x) attains its minimum at x = 2α, we get

−L(Θ̂) + L(Θ∗) + 〈〈∇L(Θ∗),∆〉〉 ≥ 1

2n

n∑
i=1

ψ(2α)〈〈∆, X(i)〉〉2 ≥ ψ(2α)

6d1

|||∆|||2L,

(2.11)

with probability at least 1 − 1/(d1 + d2)3. Since Θ̂ is the minimizer for the

objective function (2.5), we have

−L(Θ̂) + λ
∣∣∣∣∣∣∣∣∣Θ̂∣∣∣∣∣∣∣∣∣

L-nuc
≤ −L(Θ∗) + λ|||Θ∗|||L-nuc,

which in-turn gives us

ψ(2α)

6d1

|||∆|||2L ≤ −L(Θ̂) + L(Θ∗) + 〈〈∇L(Θ∗),∆〉〉

≤ λ
(
|||Θ∗|||L-nuc −

∣∣∣∣∣∣∣∣∣Θ̂∣∣∣∣∣∣∣∣∣
L-nuc

)
+ 〈〈∇L(Θ∗),∆〉〉

≤ λ (|||∆|||L-nuc) + 〈〈∇L(Θ∗)L−1/2,∆L1/2〉〉 (2.12)

≤ λ (|||∆|||L-nuc) +
∥∥∇L(Θ∗)L−1/2

∥∥
2
|||∆|||L-nuc, (2.13)

where the last two inequalities follow from the triangle inequality for the

nuclear norm and the generalized Hölder’s inequality. Now we put λ =

2
√

32R and use Lemma 2.2.2 to get

|||∆|||2L ≤
6d1

ψ(2α)

(
λ+

λ

2

)
|||∆|||L-nuc ≤

9d1λ

ψ(2α)
|||∆|||L-nuc, (2.14)

with probability at least 1− 1/(d1 + d2)3. Combining Case 1 and 2 we get

|||∆|||2L ≤ 9

(
α +

1

ψ(2α)

)
d1λ|||∆|||L-nuc . (2.15)

Lemma 2.2.3. If λ ≥ 2|||∇L(Θ∗)|||2, then we have

|||∆|||L-nuc ≤ 4
√

2r|||∆|||L + 4

min{d1,d2−G}∑
j=ρ+1

σj(Θ
∗L1/2) , (2.16)

for all ρ ∈ [min{d1, d2 −G}].

Proof of the above the lemma is in Section A.1.5. Finally, utilizing the
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Lemma 2.2.3, we get

1

d1

|||∆|||2L ≤ 36λ

(
α +

1

ψ(2α)

)√2r|||∆|||L +

min{d1,d2−G}∑
j=r+1

σj(Θ
∗L1/2)

 .

Since
∣∣∣∣∣∣∣∣∣Θ∗ − Θ̂

∣∣∣∣∣∣∣∣∣
L
≥ σ

1/2
min

∣∣∣∣∣∣∣∣∣Θ∗ − Θ̂
∣∣∣∣∣∣∣∣∣

F
, this theorem automatically gives us

the error bound of
∣∣∣∣∣∣∣∣∣Θ∗ − Θ̂

∣∣∣∣∣∣∣∣∣
F
. The above bound shows a natural splitting

of the error into two terms, one corresponding to the estimation error for the

rank-r component and the second one corresponding to the approximation

error for how well one can approximate Θ∗ with a rank-r matrix. We also

give the following corollary for the exact low-rank case.

Corollary 2.2.4 (Exact rank-r matrix). Under the same hypothesis as

in Theorem 1, if Θ∗ is exactly rank r, we get

1√
d1

∣∣∣∣∣∣∣∣∣(Θ∗ − Θ̂
)
L1/2

∣∣∣∣∣∣∣∣∣
F
≤ 576

(
α +

1

ψ(2α)

)√
rmax

{√
σ d1 log(2d)

n
,√(

σ−1
mind1

)
log(2d)

n

 ,

(2.17)

with probability at least 1− 2/(2d)3, where σ = max{d2 −G/d1, 1}.

We conjecture that the second term in the maximization is only an artifact

of the analysis and does not reflect the actual error. We have corroborated

the conjecture using simulation results on graphs with very small spectral

gap.

2.3 Information-theoretic lower bound

Now we also provide the information theoretic lower bound for the perfor-

mance for the best estimator.

Theorem 2. Suppose Θ∗ has rank r. Under the graph based sampling model

as described in Section 2.1, there is a universal numerical constant c > 0

12



such that

inf
Θ̂

sup
Θ∗∈Ωα

E
[ 1√

d1

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

L

]
≥ c min

e−α
√
r d1

n
,

α
√
r√

tr
(
L†r
)
 ,

(2.18)

where the infimum is taken over all measurable functions over the observed

comparison results, and L†r is the pseudo-inverse of the rank r approximation

of the graph Laplacian, L = UΛUT .

Proof for this lower bound has been relegated to Appendix A.2. It can be

easily seen that when d1 and d2 are comparable, the lower bound matches

the first term in the upper-bound given earlier, except for a polylog factor.

2.4 Corollaries for i.i.d. sampled pairs (complete

graph)

It can be easily checked that when P is the uniform sampling matrix, the

error bound we get here matches past results [20]. As a corollary to the graph

sampling, we provide the following upper and lower bounds for the case of

complete uniform graph G.

Corollary 2.4.1 (Complete graph G upper bound). Under the same

hypothesis as in Theorem 1, if G is a complete graph, we get∣∣∣∣∣∣∣∣∣Θ∗ − Θ̂
∣∣∣∣∣∣∣∣∣

F

2

√
d1 (d2 − 1)

≤ 36λ
√
d1

(
α +

1

ψ(2α)

)√2r
∣∣∣∣∣∣∣∣∣Θ∗ − Θ̂

∣∣∣∣∣∣∣∣∣
F

+

min{d1,d2−1}∑
j=r+1

σj(Θ
∗)

 ,

with probability greater than 1− 2/(2d)3, where σ = max{(d2 − 1)/d1, 1}.

Corollary 2.4.2 (Complete graph G lower bound). Suppose Θ∗ has

rank r. Under the previously described graph-based sampling model with the

graph being a complete graph, there is a universal numerical constant c > 0

13



such that

inf
Θ̂

sup
Θ∗∈Ωα

E
[ 1√

d1 (d2 − 1)

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F

]
≥ c min

{
e−α
√
r d1

n
,

α√
(d2 − 1)

}
,

(2.19)

where the infimum is taken over all measurable functions over the observed

comparison results.

2.5 Simulation results

We present two experiments. One of the major challenges while solving the

convex optimization problem (2.5) is the non-differentiable nuclear norm reg-

ularizer. We solve this issue by following the proximal gradient method as

given in [22]. Another constraint, of zero row sum, is forced by adding a

Frobenious norm regularizer to the objective function. We will not worry

about the α constraint, as it would be automatically sorted out by the al-

gorithm. Another issue was that convergence rates for some of the graph

structures were slow; in particular, the star graph (which will be described

in the following section) had an extremely slow convergence rate, which was

10-20 times slower than the slowest of the other graphs. To overcome this,

we implemented a modified Barzilai-Borwein (BB) rule-based algorithm for

accelerating the proximal gradient descent [23], which we found to be an

extremely useful step-size free algorithm.

2.5.1 Error versus number of samples for different graphs

In Figure 2.1, we plot the error of our nuclear norm minimization-based

algorithm versus number of samples (in log-scale), n, for d1 = d2 = 300,

r = 4, α = 5.0, and G = 1. We consider two errors here: root mean

squared error (RMSE) =
|||Θ−Θ̂|||

F√
d1d2

and Laplacian induced RMSE (L-RMSE)=

|||(Θ−Θ̂)L1/2|||
F√

d1
. We plot these errors for four shapes of graph: 1) line graph,

2) star-shaped graph, 3) complete graph, and 4) barbell-shaped graph.

First, in Figure 2.1a and 2.1b, we plot RMSE and L-RMSE errors for

different graphs using i.i.d. generated Θ∗ij. We see that L-RMSE curves for

14



(a) RMSE for i.i.d. Θ∗ij (b) L-RMSE for i.i.d. Θ∗ij

(c) RMSE for barbell bias Θ∗ij (d) L-RMSE for barbell bias Θ∗ij

(e) RMSE for line bias Θ∗ij (f) L-RMSE for line bias Θ∗ij

Figure 2.1: Error versus number of samples for pairwise comparison with
different graph shapes
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different graphs are the same (and slopes in log-scale are, as expected, close

to −1/2), whereas the RMSE barbell and complete graphs do slightly better.

But we will see that these are not the worst distributions of Θ∗ij for barbell

and line graphs.

In Figure 2.1c and 2.1d, we again plot the errors for different graphs but for

different non-i.i.d. generated Θ∗ij. Here, the items are divided into two sets

(corresponding to each side of the barbell graph), such that corresponding

Θ∗ij’s are i.i.d. inside a set but have similar but shifted means across the sets.

We call this type of preference data barbell biased. As expected, L-RMSE

behave similar to the i.i.d. case, with the complete and star graphs doing

worse than the others. But the RMSE error blows up in the case of the line

and barbell-shaped graphs because of the shifts in the mean.

Finally, in Figure 2.1e and 2.1f, we plot the errors for yet another type of

non-i.i.d. generated Θ∗ij’s. Here items are ordered (in the order of the line

graph), such that Θ∗ij’s have similar distributions but their means get shifted

in an arithmetic progression as we move in the descending order. We call this

type of preference data line biased. As expected, the L-RMSE error behaves

similar to that of the i.i.d. case. But again the RMSE error blows up in the

case of the line and barbell-shaped graphs because of the shifting means.

2.5.2 Error versus number of groups

Next, we present the error versus number of components in a graph G, where

each component is a complete graph and d1 = d2 = 360, r = 4, α = 5.0,

and n = 214. Figure 2.2 plots the errors versus G, when the components are

solved together and separately using our algorithm. We see that solving the

components together keeps the errors more or less the same as the number

of groups increase, but if we are solving the groups separately, the error

increases with the number of groups.
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Figure 2.2: Error versus G, number of groups for comparison of graph
sampled pairs
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CHAPTER 3

K-WISE RANKING

3.1 Collaborative ranking from k-wise comparisons

Similar to the comparison of the graph-sampled pairs case, let Θ∗ be the

d1 × d2 dimensional approximately r-rank matrix capturing the preference

of d1users on d2 items, where the rows and columns correspond to users and

items, respectively. In this k-wise ranking set-up, when a user i is presented

with a set of k alternatives, Si ⊆ [d2], she reveals her preferences as a ranked

list over those items. To simplify the notations, we assume all users compare

the same number k of items, but all the analysis generalizes to the case

when the size might differ from user to user. According to the MNL model

from Section 1.4, if vi,` ∈ Si denotes the `-th best choice of user i, then the

probability of the ranking {vi,1, vi,2, . . . , vi,k} is

P {vi,1, . . . , vi,k} =
k∏
`=1

e
Θ∗i,vi,`∑

j∈Si,` e
Θ∗i,j

, (3.1)

where Si,` ≡ Si \ {vi,1, . . . , vi,`−1} and Si,1 ≡ Si.

Similar to the graph sampling case, ranking distribution (3.1) is indepen-

dent of shifting each row of Θ∗ by a constant. Since we can only estimate

Θ∗ up to this equivalent class, we search for the one whose rows sum to zero,

i.e.
∑

j∈[d2] Θ∗i,j = 0 for all i ∈ [d1]. Let α ≡ maxi,j1,j2 |Θ∗ij1 −Θ∗ij2| denote the

dynamic range of the underlying Θ∗, so that the probability of every ranking

is bounded away from zero, by quantity of the order of O(e−α), which we

assume to be a constant w.r.t. d1 and d2. Given this definition, we solve the

following optimization

Θ̂ ∈ arg min
Θ∈Ω
−L(Θ) + λ|||Θ|||nuc, (3.2)
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where

L(Θ) =
1

k d1

d1∑
i=1

k∑
`=1

〈〈Θ, eieTvi,`〉〉 − log

∑
j∈Si,`

exp
(
〈〈Θ, eieTj 〉〉

) , (3.3)

and

Ωα =
{
A ∈ Rd1×d2

∣∣ |||A|||∞ ≤ α and
∑
j∈[d2]

Aij = 0, ∀i ∈ [d1]
}
. (3.4)

3.2 Performance guarantee

We provide an upper bound on the resulting error of our convex relaxation,

when a multi-set of items Si, drawn uniformly at random with replacement,

is presented to user i. That is, for a given k, Si = {ji,1, . . . , ji,k} where

ji,`’s are independently drawn uniformly at random over the d2 items. If

an item is sampled more than once, then we assume that the user treats

these two instances of the item as if they were two distinct items with the

same MNL weights. Sampling with replacement is necessary for the analysis,

where we require independence in the choice of the items in Si in order to

apply the symmetrization technique (e.g. [24]) (cf. Appendix B.1.4). Similar

assumptions have been made in existing analyses on learning low-rank models

from noisy observations, e.g. [13]. Let d ≡ (d1 +d2)/2, and let σj(Θ
∗) denote

the j-th singular value of the matrix Θ∗. Define

λ0 ≡ e2α

√
d1 log d+ d2 (log d)2(log 2d)4

k d2
1 d2

.

Theorem 3. Under the described sampling model, assume

24 ≤ k ≤ min{d2
1 log d, (d2

1 +d2
2)/(2d1) log d, (1/e) d2(4 log d2 +2 log d1)}, and

λ ∈ [480λ0, c0λ0] with any constant c0 = O(1) larger than 480. Then, solving

the optimization (3.2) achieves

1

d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣2

F
≤ 288 e4αc0λ0

√2r
∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
F

+

min{d1,d2}∑
j=r+1

σj(Θ
∗)

 ,(3.5)

for any r ∈ {1, . . . ,min{d1, d2}} with probability at least 1−2d−3−d−3
2 where
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d = (d1 + d2)/2.

Proof. Let ∇L(Θ) ∈ Rd1×d2 be the gradient of the log-likelihood L(Θ) (3.3)

such that ∇ijL(Θ) = ∂L(Θ)
∂Θij

, and ∇2L(Θ) ∈ Rd1d2×d1d2 be the its Hessian such

that ∇2
ij,i′j′L(Θ) = ∂2L(Θ)

∂Θij∂Θi′j′
. By definition of L(Θ) (3.3), we have

∇L(Θ∗) = − 1

k d1

d1∑
i=1

k∑
`=1

ei(evi,` − pi,`)T , (3.6)

where pi,` denotes the conditional choice probability at `-th position. Pre-

cisely, pi,` =
∑

j∈Si,` pj|(i,`)ej where pj|(i,`) is the probability that item j is

chosen at `-th position from the top by the user i conditioned on the top `−1

choices such that pj|(i,`) ≡ P {vi,` = j|vi,1, . . . , vi,`−1, Si} = eΘ∗ij/(
∑

j′∈Si,` e
Θij′ )

and Si,` ≡ Si \ {vi,1, . . . , vi,`−1}, where Si is the set of alternatives presented

to the i-th user and vi,` is the item ranked at the `-th position by the user i.

Notice that for i 6= i′, ∂2L(Θ)
∂Θij∂Θi′j′

= 0 and the Hessian is

∂2L(Θ)

∂Θij∂Θij′
=

1

k d1

k∑
`=1

I
(
j ∈ Si,`

)∂pj|(i,`)
∂Θij′

=
1

k d1

k∑
`=1

I
(
j, j′ ∈ Si,`

) (
pj|(i,`)I(j = j′)− pj|(i,`)pj′|(i,`)

)
. (3.7)

This Hessian matrix is a block-diagonal matrix ∇2L(Θ) =

diag(H(1)(Θ), . . . , H(d1)(Θ)) with

H(i)(Θ) =
1

k d1

k∑
`=1

(
diag(pi,`)− pi,`pTi,`

)
. (3.8)

Let ∆ = Θ∗− Θ̂ where Θ̂ is the optimal solution of the convex program in

(3.2). Now we first introduce three key technical lemmas. The first lemma

shows that when Θ∗ is approximately low rank, ∆ is also approximately

low-rank.

Lemma 3.2.1. If λ ≥ 2|||∇L(Θ∗)|||2, then we have

|||∆|||nuc ≤ 4
√

2r|||∆|||F + 4

min{d1,d2}∑
j=ρ+1

σj(Θ
∗) , (3.9)
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for all ρ ∈ [min{d1, d2}].

Proof of the above lemma is omitted since it is similar to that of Lemma

2.2.3. The next lemma proves that the actual parameter matrix Θ∗ is close to

the optimum, Θ̂, of the optimization problem (3.2), in terms of the gradient

at Θ∗.

Lemma 3.2.2. For any positive constant c ≥ 1 and k ≤ (1/e) d2(4 log d2 +

log d1), with probability at least 1− 2d−c − d−3
2 ,

|||∇L(Θ∗)|||2 ≤

√
4(1 + c) log d

k d2
1

max
{√

d1/d2,

e2α
√

4(1 + c) log(d)(8 log d2 + 2 log d1) log k
}
.

(3.10)

The final lemma proves that L(Θ) satisfies restricted strong convexity when

∆ is small enough.

Lemma 3.2.3 (Restricted Strong Convexity for collaborative rank-

ing). Fix any Θ ∈ Ωα and assume 24 ≤ k ≤ min{d2
1, (d

2
1 + d2

2)/(2d1)} log d.

Under the random sampling model of the alternatives {ji`}i∈[d1],`∈[k] and the

random outcome of the comparisons described in section 1.1, with probability

larger than 1− 2d−218,

Vec(∆)T ∇2L(Θ) Vec(∆) ≥ e−4α

24 d1d2

|||∆|||2F , (3.11)

for all ∆ in A where

A =
{

∆ ∈ Rd1×d2
∣∣ |||∆|||∞ ≤ 2α ,∑
j∈[d2]

∆ij = 0 for all i ∈ [d1] and |||∆|||2F ≥ µ|||∆|||nuc

}
,

(3.12)

with

µ ≡ 210 e2α α d2

√
d1 log d

k min{d1, d2}
. (3.13)

Building on these lemmas, the proof of Theorem 3 is divided into the
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following two cases. In both cases, we will show that

|||∆|||2F ≤ 72 e4αc0λ0 d1d2 |||∆|||nuc , (3.14)

with high probability. Applying Lemma 3.2.1 proves the desired theorem.

We are left to show that (3.14) holds.

Case 1: Suppose |||∆|||2F ≥ µ |||∆|||nuc. With ∆ = Θ∗ − Θ̂, the Taylor

expansion yields

L(Θ̂) = L(Θ∗)− 〈〈∇L(Θ∗),∆〉〉+
1

2
Vec(∆)∇2L(Θ)VecT (∆), (3.15)

where Θ = aΘ̂ + (1− a)Θ∗ for some a ∈ [0, 1]. It follows from Lemma 3.2.3

that with probability at least 1− 2d−218 ,

L(Θ̂)− L(Θ∗) ≥ −〈〈∇L(Θ∗),∆〉〉+
e−4α

48 d1 d2

|||∆|||2F

≥ −|||∇L(Θ∗)|||2|||∆|||nuc +
e−4α

48 d1 d2

|||∆|||2F .

From the definition of Θ̂ as an optimal solution of the minimization, we have

L(Θ̂)− L(Θ∗) ≤ λ
(
|||Θ∗|||nuc −

∣∣∣∣∣∣∣∣∣Θ̂∣∣∣∣∣∣∣∣∣
nuc

)
≤ λ|||∆|||nuc .

By the assumption, we choose λ ≥ 480λ0. In view of Lemma 3.2.2, this

implies that λ ≥ 2|||∇L(Θ∗)|||2 with probability at least 1− 2d−3. It follows

that with probability at least 1− 2d−3 − 2d−218 ,

e−4α

48d1d2

|||∆|||2F ≤
(
λ+ |||∇L(Θ∗)|||2

)
|||∆|||nuc ≤

3λ

2
|||∆|||nuc .

By our assumption of λ ≤ c0λ0, this proves the desired bound in (3.14).

Case 2: Suppose |||∆|||2F ≤ µ |||∆|||nuc. By the definition of µ and the fact

that c0 ≥ 480, it follows that µ ≤ 72 e4αc0λ0 d1d2, and we get the same bound

as in Eq. (3.14).

Proofs of the lemmas are provided in Appendix B.1. Optimizing over the

choices of r, we get the following corollaries.
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Corollary 3.2.4 (Exact low-rank matrices). Suppose Θ∗ has rank at

most r. Under the hypotheses of Theorem 3, solving the optimization (3.2)

with the choice of the regularization parameter λ ∈ [480λ0, c0λ0] achieves with

probability at least 1− 2d−3 − d−3
2 ,

1√
d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F
≤ 288

√
2e6αc0

√
r(d1 log d+ d2 (log d)2(log 2d)4)

k d1

.(3.16)

When Θ∗ is a rank-r matrix, then the number of degrees of freedom in

representing Θ∗ is r(d1 +d2)−r2 = O(r(d1 +d2)). The above corollary shows

that for achieving an arbitrarily small error, the number of samples, (k d1),

needs to scale as O(rd1(log d) + rd2 (log d)2(log 2d)4), which is only a poly-

logarithmic factor larger than the degrees of freedom of the matrix Θ∗. In

Section 3.4, we directly provide a lower bound on the error using information

theoretic method.

Now we relax the exact low-rank condition of the underlying matrix Θ∗ and

consider the more realistic scenario when it is only approximately low-rank.

Following [13] we formalize this notion with “`q-ball” of matrices defined as

Bq(ρq) ≡ {Θ ∈ Rd1×d2 |
∑

j∈[min{d1,d2}]

|σj(Θ∗)|q ≤ ρq} . (3.17)

When q = 0, this is a set of rank-ρ0 matrices, and when q ∈ (0, 1], this is

a set of matrices whose singular values decay. Optimizing the choice of r in

Theorem 3, we get the following result.

Corollary 3.2.5 (Approximately low-rank matrices). Suppose Θ∗ ∈
Bq(ρq) for some q ∈ (0, 1] and ρq > 0. Under the hypotheses of Theorem 3,

solving the optimization (3.2) with the choice of the regularization parameter

λ ∈ [480λ0, c0λ0] achieves with probability at least 1− 2d−3,

1√
d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F

≤
2
√
ρq√

d1d2

288
√

2c0e
6α

√
d1d2(d1 log d+ d2 (log d)2(log 2d)2)

k d1


2−q
2

.

(3.18)
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A proof of this Corollary is provided in Appendix B.2.

3.3 Experiments

3.3.1 Simulation results

The left panel of Figure 3.1 confirms the scaling of the error rate as predicted

by Corollary 3.2.4. In the inset, we can see that the lines merge to a single

line when the sample size is rescaled appropriately. We make a choice of λ =

(1/2)
√

(log d)/(kd2), since experimental results suggest that this provides

small error (right panel). This choice is almost independent of α and is

smaller than proposed in Theorem 3. We generate random rank-r matrices

of dimension d × d, where Θ∗ = UV T with U ∈ Rd×r and V ∈ Rd×r entries

generated i.i.d from uniform distribution over [0, 1]. Then the row-mean is

subtracted from each row, and then the whole matrix is scaled such that

the largest entry is α = 5. Note that this operation does not increase the

rank of the matrix Θ, since de-meaning can be written as Θ−Θ11T/d2, and

both terms in the operation are in the same column space as Θ, which is

of rank r. The root mean squared error (RMSE) is plotted where RMSE =

(1/d)|||Θ∗ − Θ̂|||F. We implement and solve the convex optimization (3.2)

using the proximal gradient descent method as analyzed in [22]. The right

panel in Figure 3.1 illustrates that the actual error is insensitive to the choice

of λ for a broad range of λ ∈ [
√

(log d)/(kd2), 28
√

(log d)/(kd2)], after which

it increases with λ.

3.3.2 Jester dataset

The Jester dataset has 73 × 103 users who rate subsets of 100 jokes on a

continuous scale of [−10, 10]. Since the scale is continuous, we can directly

generate ordinal data from the scores. Only the users who rated all the jokes

were used. For each user, k jokes were randomly selected in a biased manner,

such that some jokes are more likely to get selected than others. Then our

convex relaxation algorithm and the Borda count, a simple rank aggregator
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Figure 3.1: The (rescaled) RMSE scales as
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r(log d)/k as expected from

Corollary 3.2.4 for fixed d = 50 (left). In the inset, the same data is plotted
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broad range of λ and α for fixed d = 50 and r = 3 (right).

20 30 40 50 60 70 80
Sample size, k

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

C
o
m

p
ar

is
o
n
 E

rr
o
r

Convex Relax
Borda Count

Figure 3.2: Average prediction error versus sample size for convex
relaxation and Borda count

for learning a single ranking of the population, were used to predict outcomes

of comparison among the remaining 100−k jokes. Average error rates of the

predictions for both methods are plotted for different values of k in Figure

3.2. The convex relaxation algorithm performs better, as expected, since it

can predict personalized preference for each user.
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3.4 Information-theoretic lower bound for k-wise

ranking

We next compare this to the fundamental limit of this problem, by giving

a lower bound on the achievable error by any algorithm (efficient or not).

We construct an appropriate packing over the set of low-rank matrices with

bounded entries in Ωα defined as (3.4), and show that no algorithm can ac-

curately estimate the true matrix with high probability using the generalized

Fano’s inequality. This provides a constructive argument to lower bound the

minimax error rate.

Theorem 4. Suppose Θ∗ has rank r. Under the described sampling model,

for large enough d1 and d2 ≥ d1, there is a universal numerical constant c > 0

such that

inf
Θ̂

sup
Θ∗∈Ωα

E
[ 1√

d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F

]
≥ c min

{
αe−α

√
r d2

k d1

,
αd2√

d1d2 log d

}
,

(3.19)

where the infimum is taken over all measurable functions over the observed

ranked lists {(vi,1, . . . , vi,k)}i∈[d1].

A proof of this theorem is provided in Appendix B.3. The term of primary

interest in this bound is the first one, which shows the scaling of the (rescaled)

minimax rate as
√
r(d1 + d2)/(kd1) (when d2 ≥ d1), and matches the upper

bound in (3.5). It is the dominant term in the bound whenever the number

of samples is larger than the number of degrees of freedom by a logarithmic

factor, i.e., kd1 > r(d1 + d2) log d, ignoring the dependence on α. This is a

typical regime of interest, where the sample size is comparable to the latent

dimension of the problem. In this regime, Theorem 4 establishes that the

upper bound in Theorem 3 is minimax-optimal up to a logarithmic factor in

the dimension d.

3.5 Pairwise ranking breaking of k-wise ranking

In this section we consider a different algorithm for solving the k-wise ranking

case. The new algorithm, called rank breaking, breaks up the k-wise rank into
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(
k
2

)
pairwise comparisons and then solves an optimization problem which tries

to maximize the likelihood of these newly generated pairwise comparisons,

by considering them as independent events.

Assume the same observation model as in k-wise ranking. Assume that

ui,m, i ∈ [k], m ∈ [k], denotes the m-th element observed by the i-th user.

The difference from the k-wise case is that here we convert the k-wise ranking

data into pairwise ranking data, and then we solve the optimization problem

as mentioned in k-wise ranking with a modified pairwise likelihood function,

L(Θ) =
1

d1

(
k
2

) ∑
i∈[d1]

∑
(m1,m2)∈P0

Θi, hi(m1,m2) − log
(
exp

(
Θi, ui,m1

)
+ exp

(
Θi, ui,m2

))
,

(3.20)

where P0 = {(i, j) : 1 ≤ i < j ≤ k}, and hi (m1,m2) and li (m1,m2)

are defined as the higher and lower ranked index among ui,m1 and ui,m2 ,

respectively. Then the modified optimization problem becomes

Θ̂ ∈ arg min
Θ∈Ωα

−L(Θ) + λ|||Θ|||nuc . (3.21)

Let d ≡ (d1 + d2)/2, and let σj(Θ
∗) denote the j-th singular value of the

matrix Θ∗. Define

λ ≡

√
d log d

k d2
1 d2

. (3.22)

Theorem 5. Under the described sampling model, assume 2(c + 4) log d ≤
k ≤ max{d1, d

2
2/d1} log d, d1 ≥ 4, and λ ∈ [2

√
32(c+ 4)λ, cpλ] with any

constant c = O(1) larger than 2
√

32(c+ 4). Then, solving the optimization

(3.21) achieves

1

d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣2

F
≤ 144

√
2 e2αcλ

√
r
∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
F

+ 144e2αcλ

min{d1,d2}∑
j=r+1

σj(Θ
∗) ,

(3.23)

for any r ∈ {1, . . . ,min{d1, d2}} with probability at least 1 − 2d−c − 2d−213

where d = (d1 + d2)/2.

A proof is provided in Appendix B.4.
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Corollary 3.5.1 (Exact low-rank matrices). Suppose Θ∗ has rank at

most r. Under the assumptions of Theorem 5, solving the optimization

(3.21) with the choice of the regularization parameter λ ∈ [2
√

32(c+ 4)λ, cλ]

achieves with probability at least 1− 2d−c − 2d−213,

1√
d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F
≤ 144

√
2e2αcp

√
rd log d

k d1

. (3.24)

From the above results we see that, error wise, the rank breaking algorithm

does as well as the direct k-wise algorithm provided in Section 3.1. But due

to the breaking of k-wise ranking into O(k2) pairwise comparisons, we lose

a factor of O(k) in the per iteration time complexity of any gradient based

optimization methods.
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CHAPTER 4

BUNDLED CHOICES

In this chapter we will look at a mathematically generalized version of n

choices (cf. Section 1.3) called bundled choices.

4.1 Choice modeling for bundled purchase history

In this section, we use the MNL model to study another scenario of practical

interest: choice modeling from bundled purchase history. For this scenario,

we assume that we have bundled purchase history data from n users. Pre-

cisely, there are two categories of interest with d1 and d2 alternatives in each

category. For example, there are d1 toothpastes to choose from and d2 tooth-

brushes to choose from. For the i-th user, a subset Si ⊆ [d1] of alternatives

from the first category is presented along with a subset Ti ⊆ [d2] of alterna-

tives from the second category. We use k1 and k2 to denote the number of

alternatives presented to a single user, i.e. k1 = |Si| and k2 = |Ti|, and we

assume that the number of alternatives presented to each user is fixed, to

simplify notations. Given these sets of alternatives, each user makes a “bun-

dled” purchase and we use (ui, vi) to denote the bundled pair of alternatives

(e.g. a toothbrush and a toothpaste) purchased by the i-th user. Each user

makes a choice of the best alternative, independent of other users’s choices,

according to the MNL model as

P {(ui, vi) = (j1, j2)} =
eΘ∗j1,j2∑

j′1∈Si,j′2∈Ti
e

Θ∗
j′1,j
′
2

, (4.1)

for all j1 ∈ Si and j2 ∈ Ti. The distribution (4.1) is independent of shifting all

the values of Θ∗ by a constant. Hence, there is an equivalent class of Θ∗ that

gives the same distribution for the choices: [Θ∗] ≡ {A ∈ Rd1×d2 |A = Θ∗ +

c11T for some c ∈ R} . Since we can only estimate Θ∗ up to this equivalent
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class, we search for the ones that sum to zero, i.e.
∑

j1∈[d1],j2∈[d2] Θ∗j1,j2 = 0.

Similar to k-wise ranking, let α = maxj1,j′1∈[d1],j2,j′2∈[d2] |Θ∗j1,j2 −Θ∗j′1,j′2
| denote

the dynamic range of the underlying Θ∗, such that the probability of any

choice is bounded away from zero. Assuming Θ∗ is well approximated by a

low-rank matrix, we solve the following convex relaxation, given the observed

bundled purchase history {(ui, vi, Si, Ti)}i∈[n]:

Θ̂ ∈ arg min
Θ∈Ω′α

L(Θ) + λ|||Θ|||nuc , (4.2)

where the (negative) log-likelihood function according to (4.1) is

L(Θ) = − 1

n

n∑
i=1

(
〈〈Θ, euieTvi〉〉 − log

( ∑
j1∈Si,j2∈Ti

exp
(
〈〈Θ, ej1eTj2〉〉

)))
, and

(4.3)

Ωα ≡
{
A ∈ Rd1×d2

∣∣ |||A|||∞ ≤ α, and
∑

j1∈[d1],j2∈[d2]

Aj1,j2 = 0
}
. (4.4)

Notice that in this case we do not model individual preferences, but the

preference of the whole population. Compared to collaborative ranking, rows

and columns of Θ∗ correspond to an alternative from the first and second

category, respectively; each sample corresponds to the purchase choice of a

user which follow the MNL model with Θ∗; each person is presented subsets

Si and Ti of items from each category; and each choice represents the most

preferred bundled pair of alternatives from the set of alternatives presented

to the user.

4.2 Performance guarantee

We provide an upper bound on the error achieved by our convex relax-

ation, when the multi-set of alternatives Si from the first category and Ti

from the second category are drawn uniformly at random with replace-

ment from [d1] and [d2], respectively. Precisely, for given k1 and k2, we

let Si = {j(i)
1,1, . . . , j

(i)
1,k1
} and Ti = {j(i)

2,1, . . . , j
(i)
2,k2
}, where j

(i)
1,`’s and j

(i)
2,`’s are

independently drawn uniformly at random over the d1 and d2 alternatives,

respectively. As in the previous chapters, sampling with replacement is nec-
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essary for the analysis. Define

λ =

√
e2α max{d1, d2} log d

n d1 d2

. (4.5)

Theorem 6. Under the described sampling model, assume 16e2α min{d1, d2} log d

≤ n ≤ min{d5, k1k2 max{d2
1, d

2
2}} log d, and λ ∈ [8λ, c1λ] with any constant

c1 = O(1) larger than max{8, 128/
√

min{k1, k2}}. Then, solving the opti-

mization (4.2) achieves

1

d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣2

F
≤ 48

√
2 e2αc1λ

√
r
∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
F

+ 48e2αc1λ

min{d1,d2}∑
j=r+1

σj(Θ
∗) ,

(4.6)

for any r ∈ {1, . . . ,min{d1, d2}} with probability at least 1 − 2d−3 where

d = (d1 + d2)/2.

A proof is provided in Appendix C.1. Optimizing over r gives the following

corollaries.

Corollary 4.2.1 (Exact low-rank matrices). Suppose Θ∗ has rank at

most r. Under the assumptions of Theorem 6, solving the optimization (4.2)

with the choice of the regularization parameter λ ∈ [8λ, c1λ] achieves with

probability at least 1− 2d−3,

1√
d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F
≤ 48

√
2e3αc1

√
r(d1 + d2) log d

n
. (4.7)

This corollary shows that the number of samples n needs to scale as

O(r(d1 + d2) log d) in order to achieve an arbitrarily small error. For ap-

proximately low-rank matrices in an `1-ball as defined in (3.17), we show an

upper bound on the error, whose error exponent reduces from 1 to (2− q)/2.

Corollary 4.2.2 (Approximately low-rank matrices). Suppose Θ∗ ∈
Bq(ρq) for some q ∈ (0, 1] and ρq > 0. Under the assumptions of Theorem 6,

solving the optimization (4.2) with the choice of the regularization parameter
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λ ∈ [8λ, c1λ] achieves with probability at least 1− 2d−3,

1√
d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F
≤

2
√
ρq√

d1d2

(
48
√

2c1e
3α

√
d1d2(d1 + d2) log d

n

) 2−q
2

. (4.8)

Since the proof is almost identical to the proof of Corollary 3.2.5 in Ap-

pendix B.2, we omit it.

4.3 Information-theoretic lower bound

As in previous chapters, we provide the lower bound on the worst-case error

of the best possible estimator.

Theorem 7. Suppose Θ∗ has rank r. Under the described sampling model,

there is a universal constant c > 0 such that that the minimax rate where the

infimum is taken over all measurable functions over the observed purchase

history {(ui, vi, Si, Ti)}i∈[n] is lower bounded by

inf
Θ̂

sup
Θ∗∈Ωα

E
[ 1√

d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F

]
≥ c min

{√
e−5α r (d1 + d2)

n
,
α(d1 + d2)√
d1d2 log d

}
.

(4.9)

See Appendix C.2 for the proof. The first term is dominant when the

sample size is comparable to the latent dimension of the problem. This

shows that Theorem 6 is minimax optimal up to a logarithmic factor.

4.4 Conclusion and future work

We presented measurement-efficient convex programs to learn MNL parame-

ters from ordinal data, motivated by two scenarios: recommendation systems

and bundled purchases. We gave algorithms to learn preferences from three

different kinds of ordinal data: comparison of graph-sampled pairwise data,

k-wise ranking, and bundles choices. We take the first-principles approach

of identifying the fundamental limits and also developing efficient algorithms
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matching those fundamental trade-offs. There are several remaining chal-

lenges. First, the nuclear norm minimization, while polynomial-time, is still

slow, due to the computation of the singular value decomposition (SVD) at

every iteration. We want first-order methods that are efficient with provable

guarantees. The main challenge is providing a good initialization to start

such non-convex approaches. Second, we could extend the graph-sampling

to both k-wise ranking and bundled choices. Finally, practical use of the

model and the algorithm needs to be tested on real datasets of purchase

history and recommendations.

One way to speed up the algorithm would be to optimize directly over the

low rank decomposition of the matrix U, V where Θ = UV T , but this makes

the optimization problem non-convex with possible local minima and saddle

points. Then the challenge would be finding a good initialization point close

to the global minimum for the iterative algorithm. Another way to reduce

the runtime is by parallelizing the algorithm. There has been a recent work

which does such parallelization [21].

Although our convex relaxation based algorithm achieves near optimal er-

ror with the available information, there is always the possibility of providing

contextual information, such as the features of the item and users to improve

the accuracy of the output. We could represent the parameter matrix as a

function of the contextual information and then try to learn these functions

instead of the parameters.
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APPENDIX A

PROOFS OF GRAPH-SAMPLED PAIRS

A.1 Proof of Theorem 1: performance guarantee for

comparison of graph-sampled pairs

A.1.1 Proof of Lemma 2.2.1

P

{
1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2 ≥ 1

3d1

|||Θ|||2L, ∀ Θ ∈ A

}

=1− P

{
∃ Θ ∈ A 3 1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2
<

1

3d1

|||Θ|||2L

}
(A.1)

When Θ ∈ A,

|||Θ|||2L ≥ 16αd1R|||Θ|||L-nuc ≥ 16αd1R|||Θ|||L =⇒ |||Θ|||L ≥ 16αd1R := µ.

(A.2)

Lemma A.1.1. Let

B(D) :=
{

Θ ∈ Rd1×d2||||Θ|||∞ ≤ α, |||Θ|||L ≤ D, |||Θ|||L-nuc ≤
D2

16αd1R

}
and

ZD := sup
Θ∈B(D)

(
− 1
n

∑n
i=1

(
〈〈Θ, X(i)〉〉

)2
+ 2

d1
|||Θ|||2L

)
, then

P
{
ZD ≥

3

2d1

D2

}
≤ exp

(
− nD4

32α4d2
1

)
. (A.3)

The above lemma is proved in Section A.1.2. Let β =
√

10
9

, then the sets

S` =

{
Θ ∈ Rd1×d2||||Θ|||∞ ≤ α, β`−1µ ≤ |||Θ|||L ≤ β`µ, |||Θ|||L-nuc ≤

(β`µ)2

16αd1R

}
, ,
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for ` = 1, 2, 3, . . . cover the set A; that is, A ⊂ ∪∞`=1S` and S` ⊆ B(β`µ).

This gives

P

{
∃ Θ ∈ A 3 1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2
<

1

3d1

|||Θ|||2L

}

≤
∞∑
`=1

P

{
∃ Θ ∈ S` 3

1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2
<

1

3d1

|||Θ|||2L

}

≤
∞∑
`=1

P

{
∃ Θ ∈ B(β`µ) 3 1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2
<

1

3d1

|||Θ|||2L

}
(A.4)

If there exists a Θ ∈ B(β`µ) such that 1
n

∑n
i=1

(
〈〈Θ, X(i)〉〉

)2
< 1

3d1
|||Θ|||2L,

then

Zβ`µ ≥ −
1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2
+

2

d1

|||Θ|||2L >
5

3d1

|||Θ|||2L ≥
5

3d1

β2`−2µ2 =
3

2d1

(β`µ)2,

which gives us

P

{
∃ Θ ∈ A 3 1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2
<

1

3d1

|||Θ|||2L

}
≤

∞∑
`=1

P
{
Zβ`µ >

3

2d1

(β`µ)2

}
(a)

≤
∞∑
`=1

exp

(
−n(β`µ)4

32α4d2
1

)
(b)

≤
∞∑
`=1

exp

(
−4`(β − 1)nµ4

32α4d2
1

)
(c)

≤ 2 exp

(
−4(β − 1)nµ4

32α4d2
1

)
,

where (a) is from Lemma A.1.1, (b) is true since β4` ≥ 4`(β − 1) when

β ≥ 1, and (c) is obtained by summing the geometric series in the previous

inequality. Finally we get the desired result, when we have 22 log(2d) ≤ 4(β−
1)nµ4/32α4d2

1, which follows from n ≤ 26d2
1σ

2 log (2d) and n ≤ 22(d1σ
−1
min)2/3 log (2d),

because

22 log(2d) ≤ 4(β − 1)nµ4

32α4d2
1

=
4(β − 1)n(16αd1R)4

32α4d2
1

= 213(β − 1)d2
1 max

{
σ2 log2(2d)

n
,
σ−2

min log4(2d)

n3

}
. (A.5)
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A.1.2 Proof of Lemma A.1.1

Notice that the 2
d1
|||Θ|||2L is the mean of 1

n

∑n
i=1〈〈Θ, X(i)〉〉2,

E

[
1

n

n∑
i=1

〈〈Θ, X(i)〉〉2
]

=
1

d1

∑
j∈[d1]

∑
k,l∈[d2]

(Θj,k −Θj,l)
2Pk,l

=
2

d1

∑
j

∑
k

Θ2
j,k

∑
l

Pk,l − 2
∑
k,l

Θj,kΘj,lPk,l

(a)
=

2

d1

∑
j

〈〈ΘjΘ
T
j , diag(Pk)〉〉 − 2〈〈ΘjΘ

T
j , P 〉〉

=
2

d1

∑
j

〈〈ΘjΘ
T
j , L〉〉 =

2

d1

∣∣∣∣∣∣ΘL1/2
∣∣∣∣∣∣2

F
,

where in (a), Pk =
∑

l∈[d2] Pk,l and Θj is the j-th row of Θ. Therefore we

use the following standard technique to get a handle on the supremum of

deviation from the mean.

First, we use the bounded differences property of differences to prove that

ZD concentrates around its mean. We write ZD(X(1), . . . , X(n)) to represent

ZD as a function of n independent random variables. Now, let X(i) and X̃(i)

be two realizations of the i-th (1 ≤ i ≤ n) random parameter of ZD. Then∣∣∣ZD(X(1), . . . , X(i), . . . , X(n))− ZD(X(1), . . . , X̃(i), . . . , X(n))
∣∣∣

=

∣∣∣∣∣ sup
Θ∈B(D)

(
− 1

n

n∑
i=1

〈〈Θ, X(i)〉〉2 +
2

d1

|||Θ|||2L

)

− sup
Θ′∈B(D)

− 1

n

 n∑
i=1
i 6=i′

〈〈Θ′, X(i)〉〉2 + 〈〈Θ′, X̃(i′)〉〉2

+
2

d1

|||Θ′|||2L


∣∣∣∣∣∣∣ . (A.6)

Now WLOG assume that ZD(X(1), . . . , X(i), . . . , X(n)) ≥ ZD(X(1), . . . , X̃(i), . . . , X(n))

and the first supremum is achieved at Θ̄, which gives us
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= sup
Θ∈B(D)

(
− 1

n

n∑
i=1

〈〈Θ, X(i)〉〉2 +
2

d1

|||Θ|||2L

)

− sup
Θ′∈B(D)

− 1

n

 n∑
i=1
i 6=i′

〈〈Θ′, X(i)〉〉2 + 〈〈Θ′, X̃(i′)〉〉2

+
2

d1

|||Θ′|||2L


≤

(
− 1

n

n∑
i=1

〈〈Θ̄, X(i)〉〉2 +
2

d1

∣∣∣∣∣∣Θ̄∣∣∣∣∣∣2
L

)

−

− 1

n

 n∑
i=1
i 6=i′

〈〈Θ̄, X(i)〉〉2 + 〈〈Θ̄, X̃(i′)〉〉2

+
2

d1

∣∣∣∣∣∣Θ̄∣∣∣∣∣∣2
L


≤ sup

Θ∈B(D)

1

n

∣∣∣〈〈Θ, X(i)〉〉2 − 〈〈Θ, X̃(i)〉〉2
∣∣∣

≤ 4α2

n
, (A.7)

where the last inequality is true because, for any Θ ∈ B(D) ⊆ Ωα has

|||Θ|||∞ ≤ α. Now we upper bound E [ZD] as follows.

E [ZD]
(a)

≤ 2E

[
sup

Θ∈B(D)

1

n

n∑
i=1

εi〈〈Θ, X(i)〉〉2
]

(b)

≤ 4αE

[
sup

Θ∈B(D)

1

n

n∑
i=1

εi〈〈ΘL1/2, X(i)L−1/2〉〉

]

≤ 4αE

[
sup

Θ∈B(D)

|||Θ|||L-nuc

∥∥∥∥∥ 1

n

n∑
i=1

εiX
(i)L−1/2

∥∥∥∥∥
2

]

≤ 4α sup
Θ∈B(D)

|||Θ|||L-nucE

[∥∥∥∥∥ 1

n

n∑
i=1

εiX
(i)L−‘1/2

∥∥∥∥∥
2

]
,

where (a) is standard symmetrization argument using i.i.d. Rademacher

variables {εi}ni=1, and since |〈〈Θ, X(i)〉〉| ≤ 2α, we use the Ledoux-Talagrand

contraction to obtain(b).

Lemma A.1.2. For {X(i)}ni=1 as defined in the graph sampling and for a
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binary random variable εi such that E
[
εi|X(i)

]
= 0 and |εi| ≤ 1, we have

P

{∥∥∥∥∥ 1

n

n∑
i=1

εiX
(i)L−1/2

∥∥∥∥∥
2

≥
√

32 max

{√
σ log(d1 + d2)

n
,
σ
−1/2
min log(d1 + d2)

n

}}
≤ 1

(d1 + d2)3
and (A.8)

E

[∥∥∥∥∥ 1

n

n∑
i=1

εiX
(i)L−1/2

∥∥∥∥∥
2

]
≤ 4 max

{√
σ log(d1 + d2)

n
,
σ
−1/2
min log(d1 + d2)

n

}
.

(A.9)

Proof of the lemma is in Section A.1.3. Now using Lemma A.1.2 we have

E [ZD] ≤ 16Rα supΘ∈B(D) |||Θ|||L-nuc ≤
D2

d1
. Now using the bounded differ-

ences property and the upper bound on the mean, we get the McDiarmid’s

concentration,

P
{
ZD −D2/d1 ≥ t

}
≤ P {ZD − E [ZD] ≥ t}

≤ exp

(
− nt

2

8α4

)
, (A.10)

and putting t = D2/2d1 gives the theorem.
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A.1.3 Proof of Lemma A.1.2

Let Wi := 1
n
εiX

(i)L−1/2 = 1
n
εiej(i)

(
ek(i) − el(i)

)T
L−1/2 and pseudo-inverse of

L be L† = L−1, then, ‖Wi‖2 ≤ σ
−1/2
min

√
2/n,

E
[
WiW

T
i

]
� E

[
1

n2

n∑
i=1

ej(i)
(
ek(i) − el(i)

)T
L−1/2L−1/2

(
ek(i) − el(i)

)
eTj(i)

]

= E
[

1

n2
ej(i)e

T
j(i)

]
E
[(
ek(i) − el(i)

)T
L†
(
ek(i) − el(i)

)]
=

1

n2d1

Id1×d1 × 2
(
E
[
eTk(i)L

†ek(i)

]
− E

[
eTk(i)L

†el(i)
])

=
2

n2d1

∑
u∈[d1]

PuL
†
u,u −

∑
u,v∈[d1]

Pu,vL
†
u,v

 Id1×d1

=
2

n2d1

〈〈L,L†〉〉Id1×d1

≤ 2d2

n2d1

Id1×d1 , (A.11)

E
[
W T
i Wi

]
� L−1/2E

[
1

n2

(
ek(i) − el(i)

) (
ek(i) − el(i)

)T]
L−1/2

=
1

n2
L−1/2

(
d2∑

u,v=1

(eu − ev) (eu − ev)T Pu,v

)
L−1/2

=
1

n2
L−1/2 (2L)L−1/2

=
2

n2
UUT , and (A.12)

max

{∥∥∥∥∥E
[

n∑
i=1

WiW
T
i

]∥∥∥∥∥
2

,

∥∥∥∥∥E
[

n∑
i=1

W T
i Wi

]∥∥∥∥∥
2

}

≤
n∑
i=1

max
{∥∥E [WiW

T
i

]∥∥
2
,
∥∥E [W T

i Wi

]∥∥
2

}
≤ 2

n
σ , (A.13)

where σ = max
{
d2−G
d1

, 1
}

.
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Now by matrix Bernstein concentration theorem [25], we have

P

{∥∥∥∥∥ 1

n

n∑
i=1

εiX
(i)

∥∥∥∥∥
2

≥ t

}
≤ exp

(
−nt2/2

2σ +
√

2σ
−1/2
min t/3

)
and (A.14)

E

[∥∥∥∥∥ 1

n

n∑
i=1

εiX
(i)

∥∥∥∥∥
2

]
≤
√

4σ log(d1 + d2)

n
+

√
2σ−1

min

3n
log(d1 + d2) . (A.15)

Choosing t = max

{√
24σ log(d1+d2)

n
,

16
√

2σ−1
min log(d1+d2)

n

}
produces the de-

sired result.

A.1.4 Proof of Lemma 2.2.2

The gradient can be written as

∇L(Θ∗) =
1

n

n∑
i=1

(
yi −

exp(〈〈Θ∗, X(i)〉〉)
1 + exp(〈〈Θ∗, X(i)〉〉)

)
X(i). (A.16)

Then Lemma A.1.2 directly gives the result because

E
[
yi −

exp(〈〈Θ∗, X(i)〉〉)
1 + exp(〈〈Θ∗, X(i)〉〉)

∣∣∣∣X(i)

]
= 0 and

∣∣∣∣yi exp(〈〈Θ∗, X(i)〉〉)
1 + exp(〈〈Θ∗, X(i)〉〉)

∣∣∣∣ ≤ 1.

A.1.5 Proof of Lemma 2.2.3

Denote the singular value decomposition of Θ∗L1/2 by Θ∗L1/2 = UΣV T ,

where U ∈ Rd1×d1 and V ∈ Rd2×d2 are orthogonal matrices. For a given r ∈
[min{d1, d2−G}], let Ur = [u1, . . . , ur] and Vr = [v1, . . . , vr], where ui ∈ Rd1×1

and vi ∈ Rd2×1 are the left and right singular vectors corresponding to the

i-th largest singular value, respectively. Define T to be the subspace spanned

by all matrices in Rd1×d2 of the form UrA
T or BV T

r for any A ∈ Rd2×r or B ∈
Rd1×r, respectively. The orthogonal projection of any matrix M ∈ Rd1×d2

onto the space T is given by PT (M) = UrU
T
r M + MVrV

T
r − UrUT

r MVrV
T
r .

The projection of M onto the complement space T⊥ is PT⊥(M) = (I −
UrU

T
r )M(I − VrV

T
r ). The subspace T and the respective projections onto

T and T⊥ play crucial a role in the analysis of nuclear norm minimization,
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since they define the sub-gradient of the nuclear norm at Θ∗. We refer to

[12] for more detailed treatment of this topic.

Let ∆′ = PT (∆L1/2) and ∆′′ = PT⊥(∆L1/2). Notice that PT (Θ∗L1/2) =

UrΣrV
T
r , where Σr ∈ Rr×r is the diagonal matrix formed by the top r singular

values. Since PT (Θ∗L1/2) and ∆′′ have row and column spaces that are

orthogonal, it follows from Lemma 2.3 in [11] that

∣∣∣∣∣∣PT (Θ∗L1/2)−∆′′
∣∣∣∣∣∣

nuc
=
∣∣∣∣∣∣PT (Θ∗L1/2)

∣∣∣∣∣∣
nuc

+ |||∆′′|||nuc .

Hence, in view of the triangle inequality,∣∣∣∣∣∣∣∣∣Θ̂L1/2
∣∣∣∣∣∣∣∣∣

nuc
=
∣∣∣∣∣∣PT (Θ∗L1/2) + PT⊥(Θ∗L1/2)−∆′ −∆′′

∣∣∣∣∣∣
nuc

≥
∣∣∣∣∣∣PT (Θ∗L1/2)−∆′′

∣∣∣∣∣∣
nuc
−
∣∣∣∣∣∣PT⊥(Θ∗L1/2)−∆′

∣∣∣∣∣∣
nuc

=
∣∣∣∣∣∣PT (Θ∗L1/2)

∣∣∣∣∣∣
nuc

+ |||∆′′|||nuc −
∣∣∣∣∣∣PT⊥(Θ∗L1/2)−∆′

∣∣∣∣∣∣
nuc

≥
∣∣∣∣∣∣PT (Θ∗L1/2)

∣∣∣∣∣∣
nuc

+ |||∆′′|||nuc −
∣∣∣∣∣∣PT⊥(Θ∗L1/2)

∣∣∣∣∣∣
nuc
− |||∆′|||nuc

=
∣∣∣∣∣∣Θ∗L1/2

∣∣∣∣∣∣
nuc

+ |||∆′′|||nuc − 2
∣∣∣∣∣∣PT⊥(Θ∗L1/2)

∣∣∣∣∣∣
nuc
− |||∆′|||nuc.

(A.17)

Because Θ̂ is an optimal solution, we have

λ
(∣∣∣∣∣∣∣∣∣Θ̂L1/2

∣∣∣∣∣∣∣∣∣
nuc
−
∣∣∣∣∣∣Θ∗L1/2

∣∣∣∣∣∣
nuc

)
≤ −L(Θ∗) + L(Θ̂)

(a)

≤ 〈〈∆L1/2,∇L(Θ∗)L−1/2〉〉
(b)

≤ |||∆|||L-nuc

∣∣∣∣∣∣∇L(Θ∗)L−1/2
∣∣∣∣∣∣

2
≤ λ

2
|||∆|||L-nuc,

(A.18)

where (a) holds due to the convexity of −L; (b) follows from the Cauchy-

Schwarz inequality; the last inequality holds due to the assumption that

λ ≥ 2|||∇L(Θ∗)|||2. Combining (A.17) and (A.18) yields

2
(
|||∆′′|||nuc − 2

∣∣∣∣∣∣PT⊥(Θ∗L1/2)
∣∣∣∣∣∣

nuc
− |||∆′|||nuc

)
≤ |||∆|||L-nuc ≤ |||∆

′|||nuc + |||∆′′|||nuc.

Thus |||∆′′|||nuc ≤ 3|||∆′|||L-nuc + 4
∣∣∣∣∣∣PT⊥(Θ∗L1/2)

∣∣∣∣∣∣
nuc

. By triangle inequality,

|||∆|||nuc ≤ 4|||∆′|||nuc + 4
∣∣∣∣∣∣PT⊥(Θ∗L1/2)

∣∣∣∣∣∣
nuc

.
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Notice that ∆′ = UrU
T
r ∆L1/2 + (I − UrU

T
r )∆L1/2VrV

T
r . Both UrU

T
r ∆L1/2

and (I − UrUT
r )∆L1/2VrV

T
r have rank at most r. Thus ∆′ has rank at most

2r. Hence, |||∆′|||nuc ≤
√

2r|||∆′|||F ≤
√

2r
∣∣∣∣∣∣∆L1/2

∣∣∣∣∣∣
F
≤
√

2r|||∆|||L. Then the

theorem follows because
∣∣∣∣∣∣PT⊥(Θ∗L1/2)

∣∣∣∣∣∣
nuc

=
∑min{d1,d2}

j=r+1 σj(Θ
∗L1/2).

A.2 Proof of Theorem 2: information-theoretic graph

sampling lower bound

The proof uses the Fano’s inequality based packing set argument to get an

lower bound on the error of any (measurable) estimator. We will construct a

packing set in Ωα with a minimum distance of δ between any pair of elements

in the packing.

Let {Θ(1),Θ(2), . . . ,Θ(M)} be a set of M matrices within the set Ωα, sat-

isfying
∣∣∣∣∣∣Θ(`1) −Θ(`1)

∣∣∣∣∣∣
L
≥ δ for all `1, `2 ∈ [M ]. Now, Θ(N) is uniformly

drawn from this set and then comparison results of n randomly chosen pairs

of items, each drawn according to the probability matrix P and each com-

pared by uniformly chosen user according to MNL model parameterized by

Θ(N), are generated. Let N̂ be the best estimator of N from the observations.

Then we can show that

sup
Θ∗∈Ωα

P
{∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣2
L
≥ δ2

2

}
≥ P

{
N̂ 6= N

}
. (A.19)

Now we have converted the problem of finding the minimum estimation

error into finding the minimum probability error of an M -ary hypothesis

testing problem. If we can prove that the above RHS is lower bounded by

1/2, we are done.

The generalized Fano’s inequality along with data processing inequality

gives us

P
{
N̂ 6= N

}
≥ 1− E[ I(N̂ ;N) ] + log 2

logM
(A.20)

≥ 1−
(
M
2

)−1∑
`1,`2∈[M ] DKL(Θ(`1)‖Θ(`2)) + log 2

logM
, (A.21)

where DKL(Θ(`1)‖Θ(`2)) denotes the expected Kullback-Leibler divergence be-

tween the probability distributions of the comparison results of the observed
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nd1 pairs, for N = `1 and N = `2. The expectation is taken over different

choices for the selected pairs for comparison.

DKL(Θ(`1)‖Θ(`2))

= n
∑
i∈[d1]

1

d1

∑
{j,j′}⊂[d2]

2Pu,v

[
eΘ

(`1)
ij

eΘ
(`1)
ij + e

Θ
(`1)

ij′
log


eΘ

(`1)
ij

/(
eΘ

(`1)
ij + e

Θ
(`1)

ij′

)

eΘ
(`2)
ij

/(
eΘ

(`2)
ij + e

Θ
(`2)

ij′

)


(A.22)

+
e

Θ
(`1)

ij′

eΘ
(`1)
ij + e

Θ
(`1)

ij′
log


e

Θ
(`1)

ij′

/(
eΘ

(`1)
ij + e

Θ
(`1)

ij′

)

e
Θ

(`2)

ij′

/(
eΘ

(`2)
ij + e

Θ
(`2)

ij′

)

]
, (A.23)

where n is the number of pairs of items selected and compared by one random

user each, Pj,j′ is half the probability with which item pair {j, j′} is selected,

and the observation probabilities come from the standard MNL model. Let

xijj′ ≡ e
Θ

(`1)

ij′ /(eΘ
(`1)
ij + e

Θ
(`1)

ij′ ) and yijj′ ≡ e
Θ

(`2)

ij′ /(eΘ
(`2)
ij + e

Θ
(`2)

ij′ ).

DKL(Θ(`1)‖Θ(`2))

(a)
= n

∑
i∈[d1]

1

d1

∑
{j,j′}⊂[d2]

2Pu,v

[
xijj′ log

xijj′

yijj′
+ (1− xijj′) log

1− xijj′
1− yijj′

]
(A.24)

(b)

≤ n
∑
i∈[d1]

1

d1

∑
{j,j′}⊂[d2]

2Pu,v

[
xijj′

xijj′ − yijj′
yijj′

+ (1− xijj′)
yijj′ − xijj′

1− yijj′

]
(A.25)

= 2n
∑
i∈[d1]

1

d1

∑
{j,j′}⊂[d2]

(xijj′ − yijj′)Pu,v(xijj′ − yijj′)
yijj′(1− yijj′)

(A.26)

(b)

≤ 8ne2α
∑
i∈[d1]

1

d1

∑
{j,j′}⊂[d2]

(xijj′ − yijj′)Pu,v(xijj′ − yijj′), (A.27)

where (a) is due to the fact that log(x/y) ≤ (x−y)/y ≤ (x−y)/y for x/y ≥ 0

and (b) is true be-cause |Θ(`2)
ij | ≤ α implies, yijj′ = eΘ

(`2)
ij /(eΘ

(`2)
ij + e

Θ
(`2)

ij′ ) ≥
e−2α/2, which in turn implies, yijj′(1−yijj′) ≥ e−2α(2−e−2α)/4 ≥ e−2α/4. Let
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f(z) = 1/(1+e−z), a 1-Lipschitz function, it can be seen that (xijj′−yijj′)2 ≤
(f(Θ

(`1)
ij −Θ

(`1)
ij′ )−f(Θ

(`2)
ij −Θ

(`2)
ij′ ))2 ≤ ((Θ

(`1)
ij −Θ

(`1)
ij′ )− (Θ

(`2)
ij −Θ

(`2)
ij′ ))2. This

gives us

DKL(Θ(`1)‖Θ(`2)) ≤ 8ne2α

d1

∑
i∈[d1]

∑
{j,j′}⊂[d2]

Pu,v((Θ
(`1)
ij −Θ

(`2)
ij )− (Θ

(`1)
ij′ −Θ

(`2)
ij′ ))2,

(A.28)

(a)

≤ 8ne2α

d1

∑
i∈[d1]

(Θ(`1) −Θ(`2))iL(Θ(`1) −Θ(`2))i (A.29)

=
8ne2α

d1

∑
i∈[d1]

(Θ(`1) −Θ(`2))iL(Θ(`1) −Θ(`2))i (A.30)

=
8ne2α

d1

∣∣∣∣∣∣(Θ(`1) −Θ(`2))L1/2
∣∣∣∣∣∣2

F
(A.31)

=
8ne2α

d1

∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣2

L
, (A.32)

where (a) is due to the fact that L = diag(Pu) − P is the Laplacian of the

probability matrix P, and Θi denotes the i-th row of matrix Θ. Combining

the above with A.21, we get

P
{
N̂ 6= N

}
≥ 1−

(
M
2

)−1∑
`1,`2∈[M ](8ne

2α/d1)
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
L

+ log 2

logM
.

(A.33)

The remainder of the proof relies on the following probabilistic packing.

Lemma A.2.1. For each r ∈ {1, . . . , d1} and for any positive δ > 0, there

exists a family of d1 × d2 dimensional matrices {Θ(1), . . . ,Θ(M(δ))} with car-

dinality M(δ) = bexp(rd1/256)c such that each matrix is rank r and the

following bounds hold:

∣∣∣∣∣∣Θ(`)
∣∣∣∣∣∣

L
≤ δ , for all ` ∈ [M ] (A.34)∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣
L
≥ δ , for all `1, `2 ∈ [M ] (A.35)

Θ(`) ∈ Ωα̃ , for all ` ∈ [M ] , (A.36)

with α̃ = δ

√
tr
(

Λ†r
)
/
√
rd1.

Now if we assume δ ≤ α
√
rd1/tr

(√
Λ†r
)

, we get
∣∣∣∣∣∣Θ(`)

∣∣∣∣∣∣
∞ for ` ∈ [M ].
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The above lemma also implies that
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
F
≤ 4δ2, which implies

P
{
N̂ 6= N

}
≥ 1− 32ne2αδ2/d1 + log 2

rd1/256
≥ 1

2
, (A.37)

where the last inequality holds when δ ≤ (e−α/128)
√
rd2

1/n. Along with

(A.19), this proves that

inf
Θ̂

sup
Θ∗∈Ωα

E
[∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
L

]
≥ δ

2
, (A.38)

for all δ ≤ min{α
√
rd1/tr

(√
Λ†r
)
, (e−α/128)

√
rd2

1/n}. Now maximizing the

RHS proves the theorem.

A.2.1 Proof of Lemma

Inspired by the previous work that has been done, we furnish a probabilistic

argument for the existence of the desired family. For the choice of M =

berd1/256c, and for each ` ∈ [M ], generate a rank-r matrix Θ(`) ∈ Rd1×d2 as

follows:

Θ(`) =
δ√
rd1

V (`)

√
Λ†rU

T
r , (A.39)

where the columns of Ur ∈ Rd2×r are the top r singular vectors of L =

UΛUT , Λr is a diagonal matrix in Rr×r and its diagonal elements are the

top r singular values of L corresponding to columns of Ur, † represents the

Moore-Penrose pseudo-inverse, and V (`) is a random matrix with each entry

V
(`)
ij ∈ {−1,+1} chosen independently and uniformly at random. First by

definition,
∣∣∣∣∣∣Θ(`)

∣∣∣∣∣∣
L

= (δ/
√
rd1)

∣∣∣∣∣∣V (`)
∣∣∣∣∣∣

F
≤ δ, since

∣∣∣∣∣∣V (`)
∣∣∣∣∣∣

F
=
√
rd1.

Define f as f(V (`1), V (`2)) ≡
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
L

= (δ2/(rd1))
∣∣∣∣∣∣V (`1) − V (`2)

∣∣∣∣∣∣2
F
,

which is a function of 2rd1 i.i.d. random Rademacher variables. Now we can

apply McDiarmid’s concentration inequality since f is Lipschitz as folows.

For all (V (`1), V (`2)) and (Ṽ (`1), Ṽ (`2)) that differ in only one variable, say
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Ṽ (`1) = V (`1) + 2eij, for some standard basis matrix eij, we have

∣∣f(V (`1),V (`2))− f(Ṽ (`1), Ṽ (`2))
∣∣

=

∣∣∣∣ δ2

r d2

∣∣∣∣∣∣V (`1) − V (`2)
∣∣∣∣∣∣2

F
− δ2

r d2

∣∣∣∣∣∣V (`1) − V (`2) + 2eij
∣∣∣∣∣∣2

F

∣∣∣∣
=

∣∣∣∣ δ2

r d2

|||2eij|||2F +
δ2

r d2

〈〈(V (`1) − V (`2)), 2eij〉〉
∣∣∣∣

≤ 4 δ2

r d1

+
δ2

r d1

∣∣∣∣∣∣V (`1) − V (`2)
∣∣∣∣∣∣
∞ |||2eij|||1

≤ 8 δ2

r d1

, (A.40)

where the penultimate step is true since (V (`1)−V (`2)) is entry-wise bounded

by 2. The expectation E[f(V (`1), V (`2))] is

δ2

r d1

E
[∣∣∣∣∣∣(V (`1) − V (`2))

∣∣∣∣∣∣2
F

]
=

2δ2

r d1

E
[∣∣∣∣∣∣V (`1)

∣∣∣∣∣∣2
F

]
= 2 δ2 . (A.41)

Now applying McDiarmid’s inequality on the function f , we get that

P
{
f(V (`1), V (`2)) ≤ 2δ2 − t

}
≤ exp

{
− t2 r d1

64 δ4

}
. (A.42)

Setting t = δ2 and applying the union bound gives us,

P
{

min
`1,`2∈[M ]

∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣2

F
≥ δ2

}
≥ 1− exp

{
− r d1

64
+ 2 logM

}
> 0 .

(A.43)

In the last step, we used M = bexp{rd1/ 256}c. At last we prove that Θ(`)’s

are in Ω
δ
√

tr(Λ†r)/rd1
as defined in (2.6). Since we know that g belongs to the

kernel of L for all g ∈ G, Θ(`)g = 0 by construction. From (A.39), consider

(V
√

Λ†rUT
r )ij = 〈〈vi,

√
Λ†r(ur)j〉〉, where (ur)j ∈ Rr is the vector of i-th entries

of the top r singular vectors of L, and vi ∈ Rr is drawn uniformly at random

from {−1,+1}r.

∣∣∣〈〈vi,√Λ†r(ur)j〉〉
∣∣∣ ≤ |||vi|||∞∣∣∣∣∣∣∣∣∣∣∣∣√Λ†r(ur)j

∣∣∣∣∣∣∣∣∣∣∣∣
1

≤
√

tr
(

Λ†r
)
. (A.44)
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The above proves that
∣∣∣∣∣∣Θ(`)

∣∣∣∣∣∣
∞ is upper bounded as desired.
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APPENDIX B

PROOFS OF K-WISE RANKING

B.1 Proof of Theorem 3: performance guarantee for

k-wise ranking

B.1.1 Proof of Lemma 3.2.2

Define Xi = −ei
∑k

`=1(evi,` − pi,`)T such that ∇L(Θ∗) = 1
k d1

∑d1
i=1 Xi, which

is a sum of d1 independent random matrices. Although |||Xi|||2 can be as

large as O(k), this occurs with very low probability. We make this precise

in the following lemma and focus on the case where |||Xi|||2 = O(
√
k) for all

i ∈ [d1].

Lemma B.1.1. For a fixed i ∈ [d1] and j ∈ [d2], if k ≤ (1/e) d2 (4 log d2 +

log d1), then the number of times the item j is observed by the user i is at

most 8(log d2) + 2(log d1) with probability larger than 1− 1/(d4
2d1).

Proof is given in the end of this section. Applying union bound over the

d1 items and d2 users, we have the multiplicity in sampling for any item

for all users is bounded by 8(log d2) + 2(log d1) with probability at least

1 − d−3
2 . We denote this event by A and let I (A) be the indicator function

that all the multiplicities in sampling are bounded. We first upper bound
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|||(
∑

iXi) I (A)|||2 using the matrix Bernstein inequality [26].

|||XiI (A)|||2 =
∥∥∥I (A)

k∑
`=1

(
evi,` − pi,`

)∥∥∥
(a)

≤
∥∥∥I (A)

k∑
`=1

evi,l

∥∥∥+
∥∥∥I (A)

k∑
`=1

pi,`

∥∥∥
(b)

≤ (8(log d2) + 2(log d1))
√

min{k, d2}
(

1 +

(
k∑
`=1

e2α

`

))
(c)

≤
√
k(8(log d2) + 2(log d1))

(
1 + 2e2α log k

)
≤ 3
√
k(8(log d2) + 2(log d1))e2α log k , (B.1)

where (a) is by triangle inequality; (b) is because under the given eventA each

term in
∑

` evi,` and
∑

l pi,` are upper bounded by log d2 and
(∑k

`=1
e2α

`

)
log d2,

respectively, and because there can be at most min{
√
d2, k} non-zero entries

in the two vectors
∑

` evi,` and
∑

` pi,`; and (c) is due to the fact that k-th

harmonic number
∑k

`=1
1
`

is upper bounded by log k. We also have∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑

i

E
[
XiX

T
i I (A)

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑

i

E
[
XiX

T
i

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

eie
T
i E

[
k∑

`,`′=1

(
evi,` − pi,`

)T (
evi,`′ − pi,`′

)]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

eie
T
i E

[
k∑
`=1

(
evi,` − pi,`

)T (
evi,` − pi,`

)]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

eie
T
i E

[
k∑
`=1

eTvi,`evi,` − p
T
i,`pi,`

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

eie
T
i E

[
k∑
`=1

eTvi,`evi,`

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

= k|||Id1×d1 |||2 = k (B.2)
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and∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

E
[
XT
i XiI (A)

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

E
[
XT
i Xi

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

E

[
k∑

`,`′=1

(evi,` − pi,`)(evi,`′ − pi,`′)
T

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

E

[
k∑
`=1

(evi,` − pi,`)(evi,` − pi,`)T
]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

(B.3)

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

E

[
k∑
`=1

evi,`e
T
vi,`
− pi,`pTi,`

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

E

[
k∑
`=1

evi,`e
T
vi,`

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

k

d2

Id2×d2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

=
kd1

d2

. (B.4)

By matrix Bernstein inequality [26],

P
(
|||∇L(Θ∗)I (A)|||2 > t

)
≤ (d1 + d2) exp

( −k2 d2
1 t

2/2

(d1k/min{d2, d1}) + (3e2αk3/2d1(log d8
2d

2
1) log k t/3)

)
,

(B.5)

which gives the tail probability of 2d−c for the choice of

t = max

{√
4(1 + c) log d

k d1 min{d2, d1}
,

4(1 + c)e2α log(d) (8(log d2) + 2(log d1)) log k

k1/2 d1

}
(B.6)

=

√
4(1 + c) log d

k1/2 d1

max

{√
d1

d2

, e2α
√

4(1 + c) log(d) (log d8
2d

2
1) log k

}
.

(B.7)

Now with a high probability of 1− 2
dc
− 1

d32
the desired bound is true.
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B.1.2 Proof of Lemma B.1.1

In a classical balls-in-bins setting, we consider k as the number of balls and

d2 as the number of bins. We can consider the number of balls in a par-

ticular bin as the number of times the user i observes item j. Let the

event that this number is at least δ be denoted by the event Ajδ. Then,

P
{
Ajδ
}
≤
(
k
δ

)
1
dδ2
≤
(
ke
d2δ

)δ
. Using the fact that (1/x)x ≤ a for any x ≥

(2 log(1/a))/(log log(1/a)), we let x = d2δ/(ke) to get(
ke

d2δ

)δ
≤ a

ke
d2 ,

for δ ≥ (ke/d2)(2 log(1/a))/(log log(1/a)). Choosing a = (1/d4
2d1)d2/ke, we

have P
{
Ajδ
}
≤ 1/(d1d

4
2), for a choice of

δ = 2 log(d4
2d1) ≥ 2 log(d4

2d1)/(log((d2/ke) log(d4
2d1))).

B.1.3 Proof of Lemma 3.2.3

Recall that the Hessian matrix is a block-diagonal matrix with the i-th block

H(i)(Θ) given by (3.8). We use the following remark from [17] to bound the

Hessian.

Remark B.1.2 ([17, Claim 1]). Given θ ∈ Rr, let p be the column probability

vector with pi = eθi/(eθ1+· · ·+eθρ) for each i ∈ [ρ] and for any positive integer

ρ. If |θi| ≤ α, for all i ∈ [ρ], then

e2α
(

diag(p)− ppT
)
� 1

ρ
diag(1)− 1

ρ2
11T .
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By letting 1Si,` =
∑

j∈Si,` ej and applying the above claim, we have

e2αH(i)(Θ) � 1

k d1

k∑
`=1

(
1

k − `+ 1
diag(1Si,`)−

1

(k − `+ 1)2
1Si,`1

T
Si,`

)

=
1

2 k d1

k∑
`=1

1

(k − `+ 1)2

∑
j,j′∈Si,`

(ej − ej′)(ej − ej′)T

� 1

2 k3 d1

k∑
`=1

∑
j,j′∈Si,`

(ej − ej′)(ej − ej′)T .

Hence,

Vec(∆)∇2L(Θ)VecT (∆) =

d1∑
i=1

(∆T ei)
TH(i)(Θ)(∆T ei)

≥ e−2α

2 k3 d1

d1∑
i=1

k∑
`=1

∑
j,j′∈Si,`

∣∣∣∣∣∣eTi ∆(ej − ej′)
∣∣∣∣∣∣2

2
.

By changing the order of the summation, we get that

k∑
`=1

∑
j,j′∈Si,`

∣∣∣∣∣∣eTi ∆(ej − ej′)
∣∣∣∣∣∣2

2

=
k∑

`,`′=1

〈〈∆, ei,ji,` − ei,ji,`′ 〉〉
2

k∑
`′′=1

I
(
σi(ji,`′′ ) ≤ min{σi(ji,`), σi(ji,`′)}

)
.

(B.8)

Define

χi,`,`′,`′′ ≡ I
(
σi(ji,`′′ ) ≤ min{σi(ji,`), σi(ji,`′)}

)
, (B.9)

and let

H(∆) ≡ e−2α

2 k3 d1

d1∑
i=1

k∑
`,`′=1

〈〈∆, ei,ji,` − ei,ji,`′ 〉〉
2

k∑
`′′=1

χi,`,`′,`′′ .

Then we have VecT (∆)∇2L(Θ)Vec(∆) ≥ H(∆). To prove the theorem, it

suffices to bound H(∆) from the below. First, we prove a lower bound on

the expectation E[H(∆)]. Notice that for ` 6= `′, the conditional expectation
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of χi,`,`′,`′′ ’s, given the set of alternatives presented to user i, is

E
[ k∑
`′′=1

χi,`,`′,`′′
∣∣ ji,1, . . . , ji,k] = 1 +

∑
`′′ 6=`,`′

exp(θi,ji,`′′ )

exp(θi,ji,`′′ ) + exp(θi,ji,`′ ) + exp(θi,ji,`)

≥ 1 +
k − 2

1 + 2e2α
≥ k

3e2α
.

Then

E[H(∆)] =
e−2α

2 k3 d1

∑
i,`,`′

E
[
〈〈∆, ei,ji,` − ei,ji,`′ 〉〉

2E
[ k∑
`′′=1

χi,`,`′,`′′
∣∣ ji,1, . . . , ji,k]]

≥ e−4α

6 k2 d1

d1∑
i=1

∑
`,`′∈[k]

E
[
〈〈∆, ei,ji,` − ei,ji,`′ 〉〉

2
]

=
e−4α

6 k2 d1

d1∑
i=1

∑
` 6=`′∈[k]

(
2

d2

d2∑
j=1

∆2
ij −

2

d2
2

d2∑
j,j′=1

∆ij∆ij′

)

=
e−4α(k − 1)

3 k d1 d2

|||∆|||2F , (B.10)

where the last equality holds because
∑

j∈[d2] ∆ij = 0 for ∆ ∈ Ω2α and for all

i ∈ [d1].

We are left to prove that H(∆) cannot deviate from its mean too much.

Suppose there exists a ∆ ∈ A such that (3.11) is violated, i.e. H(∆) <

(e−4α/(24 d1d2))|||∆|||2F. We will show this happens with a small probability.

From (B.10), we get that for k ≥ 24,

E[H(∆)]−H(∆) ≥ (7k − 8)

24k

e−4α

d1 d2

|||∆|||2F

≥ (20/3) e−4α

24 d1d2

|||∆|||2F . (B.11)

We use a peeling argument as in [13, Lemma 3], [27] to upper bound the

probability that(B.11) is true. We first construct the following family of

subsets to cover A such that A ⊆
⋃∞
`=1 S`. Recall

µ = 210e2ααd2

√
(d1 log d)/(kmin{d1, d2}), define in (3.13). Notice that since

for any ∆ ∈ A, |||∆|||2F ≥ µ|||∆|||nuc ≥ µ|||∆|||F, it follows that |||∆|||F ≥ µ.

53



Then, we can cover A with the family of sets

S` =
{

∆ ∈ Rd1×d2
∣∣∣ |||∆|||∞ ≤ 2α , β`−1µ ≤ |||∆|||F ≤ β`µ ,∑
j∈[d2]

∆ij = 0 for all i ∈ [d1], and |||∆|||nuc ≤ β2`µ
}
,

(B.12)

where β =
√

10/9 and for ` ∈ {1, 2, 3, . . .}, which implies that when there

exists a ∆ ∈ A such that (B.11) holds, then there exists an ` ∈ Z+ such that

∆ ∈ S` and

E[H(∆)]−H(∆) ≥ (20/3) e−4α

24 d1d2

β2(`−1)µ2

≥ e−4α

4 d1d2

β2`µ2 . (B.13)

Applying the union bound over ` ∈ Z+, we get from (B.11) and (B.13)

that

P
{
∃∆ ∈ A , H(∆) <

e−4α

24 d1d2

|||∆|||2F
}

≤
∞∑
`=1

P
{

sup
∆∈S`

(
E[H(∆)]−H(∆)

)
>

e−4α

4 d1d2

(β`µ)2

}

≤
∞∑
`=1

P

{
sup

∆∈B(β`µ)

(
E[H(∆)]−H(∆)

)
>

e−4α

4 d1d2

(β`µ)2

}
, (B.14)

where we define a new set B(D) such that S` ⊆ B(β`µ):

B(D) =
{

∆ ∈ Rd1×d2
∣∣ ‖∆‖∞ ≤ 2α, |||∆|||F ≤ D,∑
j∈[d2]

∆ij = 0 for all i ∈ [d1], µ|||∆|||nuc ≤ D2
}
.

(B.15)

The following key lemma provides the upper bound on this probability.
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Lemma B.1.3. For (16 min{d1, d2} log d)/(3d1) ≤ k ≤ d2
1 log d,

P

{
sup

∆∈B(D)

(
E[H(∆)]−H(∆)

)
≥ e−4α

4d1d2

D2

}
≤ exp

{
− e−4α k D4

219α4d1d2
2

}
.

(B.16)

Let η = exp
(
− e−4α4k(β−1.002)µ4

219α4d1d22

)
. Applying the tail bound to (B.14), we

get

P
{
∃∆ ∈ A , H(∆) <

e−4α

24 d1d2

|||∆|||2F
}
≤

∞∑
`=1

exp
{
− e−4αk(β`µ)4

219α4d1d2
2

}
(a)

≤
∞∑
`=1

exp
{−e−4α4k`(β − 1.002)µ4

219α4d1d2
2

}
≤ η

1− η
, (B.17)

where (a) holds because βx ≥ x log β ≥ x(β − 1.002) for the choice of β =√
10/9. By the definition of µ,

η = exp
{
− 223 e4αd2

2d1(log d)2(β − 1.002)

k(min{d1, d2})2

}
≤ exp{− 218 log d} , (B.18)

where the last inequality follows from the assumption that k ≤ max{d1, d
2
2/d1} log d

= (d2
2d1 log d)/(min{d1, d2})2, and β−1.002 ≥ 2−5. Since for d ≥ 2, exp{−218 log d}

≤ 1/2 and thus η ≤ 1/2, the lemma follows by assembling the last two dis-

played inequalities.

B.1.4 Proof of Lemma B.1.3

Recall that

H(∆) =
e−2α

2 k3 d1

d1∑
i=1

k∑
`,`′=1

〈〈∆, ei,ji,` − ei,ji,`′ 〉〉
2

k∑
`′′=1

χi,`,`′,`′′ ,

with χi,`,`′,`′′ = I
(
σi(ji,`′′ ) ≤ min{σi(ji,`), σi(ji,`′)}

)
. Let Z =

sup∆∈B(D) E[H(∆)] − H(∆) be the worst-case random deviation of H(∆)

form its mean. We prove an upper bound on Z by showing that Z −E[Z] ≤
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e−4αD2/(64d1d2) with high probability, and E[Z] ≤ 9e−4αD2/(40d1d2). This

proves the desired claim in Lemma B.1.3.

To prove the concentration of Z, we utilize the random utility model

(RUM) theoretic interpretation of the MNL model. The random variable Z

depends on the random choice of alternatives {ji,`}i∈[d1],`∈[k] and the random

k-wise ranking outcomes {σi}i∈[d1]. The random utility theory, pioneered by

[28, 29, 30], tells us that the k-wise ranking from the MNL model has the

same distribution as first drawing independent (unobserved) utilities ui,`’s of

the item ji,` for user i according to the standard Gumbel cumulative distri-

bution function (CDF) F (c−Θi,ji,`) with F (c) = e−e
−c

, and then ranking the

k items for user i according to their respective utilities. Given this definition

of the MNL model, we have χi,`,`′,`′′ = I
(
ui,`′′ ≥ max{ui,`, ui,`′}

)
. Thus Z is

a function of independent choices of the items and their (unobserved) utili-

ties, i.e. Z = f({(ji,`, ui,`)}i∈[d1],`∈[k]). Let xi,` = (ji,`, ui,`) and write H(∆)

as H(∆, {xi,`}i∈[d1],`∈[k]). This allows us to bound the difference and apply

McDiarmid’s tail bound. Note that for any i ∈ [d1], ` ∈ [k], x1,1, . . . , xd1,k,

and x′i,`,∣∣ f(x1,1, . . . , xi,`, . . . , xd1,k
)
− f

(
x1,1, . . . , x

′
i,`, . . . , xd1,k

) ∣∣
=
∣∣ sup

∆∈B(D)

(E [H(∆)]−H(∆, x1,1, . . . , xi,`, . . . , xd1,k))−

sup
∆∈B(D)

(
E [H(∆)]−H(∆, x1,1, . . . , x

′
i,`, . . . , xd1,k)

) ∣∣
≤ sup

∆∈B(D)

∣∣H(∆, x1,1, . . . , xi,`, . . . , xd1,k)−H(∆, x1,1, . . . , x
′
i,`, . . . , xd1,k)

∣∣
(a)

≤ e−2α

2 k3 d1

sup
∆∈B(D)

{
2
∑
`′∈[k]

〈〈∆, ei,ji,` − ei,ji,`′ 〉〉
2

k∑
`′′=1

χi,`,`′,`′′

+
∑

`′,`′′∈[k]

〈〈∆, ei,ji,`′ − ei,ji,`′′ 〉〉
2χi,`′,`′′,`

}
(b)

≤ 8α2e−2α

k3 d1

{
2
∑

`′∈[k]\{`}

k∑
`′′=1

χi,`,`′,`′′ +
∑

`′,`′′∈[k],`′ 6=`′′,

χi,`′,`′′,`

}
≤ 16α2e−2α

k d1

, (B.19)

where (a) follows because for a fixed i and `, the random variable xi,` =

(ji,`, ui,`) can appear in three terms, i.e.
∑

`′,`′′〈〈∆, ei,ji,` − ei,ji,`′ 〉〉
2χi,`,`′,`′′ +∑

`′,`′′〈〈∆, ei,ji,`′ − ei,ji,`〉〉
2χi,`′,`,`′′ +

∑
`′,`′′〈〈∆, ei,ji,`′ − ei,ji,`′′ 〉〉

2χi,`′,`′′,`, and (b)
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follows because |∆ij| ≤ 2α for all i, j since ∆ ∈ B(D). The last inequality

follows because in the worst case,
∑

`′∈[k]\{`}
∑k

`′′=1 χi,`,`′,`′′ ≤ k(k− 1)/2 and∑
`′,`′′∈[k],`′ 6=`′′ χi,`′,`′′,` ≤ k(k− 1). This holds with equality if σi(ji,`) = k and

σi(ji,`) = 1, respectively. By bounded differences inequality, we have

P {Z − E [Z] ≥ t} ≤ exp

(
− k2 d2

1 t
2

27 α4e−4αd1k

)
. (B.20)

It follows that for the choice of t = e−4αD2/(64d1d2),

P
{
Z − E [Z] ≥ e−4αD2

64d1d2

}
≤ exp

(
− e−4αkD4

219α4d1d2
2

)
.

We are left to prove the upper bound on E[Z] using symmetrization and

contraction. Define random variables

Yi,`,`′,`′′(∆) ≡ (∆i,ji,` −∆i,ji,`′
)2χi,`,`′,`′′ , (B.21)

where the randomness is in the choice of alternatives ji,`, ji,`′ , and ji,`′′ , and

the outcome of the comparisons of those three alternatives.

The main challenge in applying the symmetrization to
∑

`,`′,`′′∈[k] Yi,`,`′,`′′(∆)

is that we need to partition the summation over the set [k]×[k]×[k] into sub-

sets of independent random variables, such that we can apply the standard

symmetrization argument. To this end, we prove, in the following lemma, a

a generalization of the well-known problem of scheduling a round robin tour-

nament to a tournament of matches involving three teams each. No teams

are present in more than one triple in a single round, and we want to mini-

mize the number of rounds to cover all combination of triples are matched.

For example, when there are k = 6 teams, there is a simple construction

of such a tournament: T1 = {(1, 2, 3), (4, 5, 6)}, T2 = {1, 2, 4), (3, 5, 6)},
T3 = {(1, 2, 5), (3, 4, 6)}, T4 = {(1, 2, 6), (3, 4, 5)}, T5 = {(1, 3, 4), (2, 5, 6)},
T6 = {(1, 3, 5), (2, 4, 6)}, T7 = {(1, 3, 6), (2, 4, 5)}, T8 = {(1, 4, 5), (2, 3, 6)},
T9 = {(1, 4, 6), (2, 3, 5)}, and T10 = {(1, 5, 6), (2, 3, 4)}. This is a perfect

scheduling of a tournament with three teams in each match. For a general

k, the following lemma provides a construction with O(k2) rounds.

Lemma B.1.4. There exists a partition (T1, . . . , TN) of [k]×[k]×[k] for some

N ≤ 24k2 such that Ta’s are disjoint subsets of [k] × [k] × [k],
⋃
a∈[N ] Ta =

[k]× [k]× [k], |Ta| ≤ bk/3c and for any a ∈ [N ] the set of random variables
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in Ta satisfy

{Yi,`,`′,`′′}i∈[d1],(`,`′,`′′)∈Ta are mutually independent. (B.22)

Now, we are ready to partition the summation.

E
[
Z
]

=
e−2α

2 k3 d1

E
[

sup
∆∈B(D)

∑
i∈[d1]

∑
`,`′,`′′∈[k]

{
E[Yi,`,`′,`′′(∆)]− Yi,`,`′,`′′(∆)

}]
=

e−2α

2 k3 d1

E
[

sup
∆∈B(D)

∑
i∈[d1]

∑
a∈[N ]

∑
(`,`′,`′′)∈Ta

{
E[Yi,`,`′,`′′(∆)]− Yi,`,`′,`′′(∆)

}]
≤ e−2α

2 k3 d1

∑
a∈[N ]

E
[

sup
∆∈B(D)

∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

{
E[Yi,`,`′,`′′(∆)]− Yi,`,`′,`′′(∆)

}]
≤ e−2α

k3 d1

∑
a∈[N ]

E
[

sup
∆∈B(D)

∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

ξi,`,`′,`′′Yi,`,`′,`′′(∆)
]

=
e−2α

k3 d1

∑
a∈[N ]

E
[

sup
∆∈B(D)

∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

ξi,`,`′,`′′(∆i,ji,` −∆i,ji,`′
)2χi,`,`′,`′′

]
,

(B.23)

where the first inequality follows from the fact that the sum of the supremum

is no less than the supremum of the sum, and the second inequality follows

from the standard symmetrization argument applied to independent random

variables {Yi,`,`′,`′′(∆)}i∈[d1],(`,`′,`′′)∈Ta with i.i.d. Rademacher random variables

ξi,`,`′,`′′ ’s. Since (∆i,ji,`−∆i,ji,`′
)2χi,`,`′,`′′ ≤ 4α|∆i,ji,`−∆i,ji,`′

|χi,`,`′,`′′ , we have

by the Ledoux-Talagrand contraction inequality that

E
[

sup
∆∈B(D)

∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

ξi,`,`′,`′′(∆i,ji,` −∆i,ji,`′
)2χi,`,`′,`′′

]
≤ 8αE

[
sup

∆∈B(D)

∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

ξi,`,`′,`′′ χi,`,`′,`′′ 〈〈∆, ei(eji,` − eji,`′ )
T 〉〉
]
. (B.24)

Applying Hölder’s inequality, we get that∣∣∣ ∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

ξi,`,`′,`′′ χi,`,`′,`′′ 〈〈∆, ei(eji,` − eji,`′ )
T 〉〉
∣∣∣

≤ |||∆|||nuc

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

ξi,`,`′,`′′ χi,`,`′,`′′
(
ei(eji,` − eji,`′ )

T
)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (B.25)
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We are left to prove that the expected value of the right-hand side of the

above inequality is bounded by C|||∆|||nuc

√
kd1 log d/min{d1, d2} for some

numerical constant C. For i ∈ [d1] and (`, `′, `′′) ∈ Ta, let Wi,`,`′,`′′ =

ξi,`,`′,`′′ χi,`,`′,`′′
(
ei(eji,`− eji,`′ )

T
)

be independent zero-mean random matrices,

such that

|||Wi,`,`′,`′′|||2 =
∣∣∣∣∣∣∣∣∣ξi,`,`′,`′′ χi,`,`′,`′′ (ei(eji,` − eji,`′ )T )∣∣∣∣∣∣∣∣∣

2
≤
√

2 ,

almost surely, and

E[Wi,`,`′,`′′W
T
i,`,`′,`′′ ] = E[

(
ei(eji,` − eji,`′ )

T (eji,` − eji,`′ )e
T
i

)
χi,`,`′,`′′ ]

= 2E [χi,`,`′,`′′ ] eie
T
i

� 2eie
T
i ,

and

E[W T
i,`,`′,`′′Wi,`,`′,`′′ ] = E[

(
(eji,` − eji,`′ )e

T
i ei(eji,` − eji,`′ )

T
)
χi,`,`′,`′′ ]

� E[(eji,` − eji,`′ )e
T
i ei(eji,` − eji,`′ )

T ]

=
2

d2

Id2×d2 −
2

d2
2

11T .

This gives

σ2 = max


∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

E[Wi,`,`′,`′′W
T
i,`,`′,`′′ ]

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

E[W T
i,`,`′,`′′Wi,`,`′,`′′ ]

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

 (B.26)

≤max

{
2|Ta| ,

2d1|Ta|
d2

}
=

2d1|Ta|
min{d1, d2}

≤ 2d1k

3 min{d1, d2}
, (B.27)

since we have designed Ta’s such that |Ta| ≤ k/3. Applying matrix Bernstein

inequality [26] yields the tail bound

P


∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

Wi,`,`′,`′′

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ t

 ≤ (d1 + d2) exp
( −t2/2
σ2 +

√
2t/3

)
.

(B.28)
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Choosing t = max
{√

32kd1 log d/(3 min{d1, d2}), (16
√

2/3) log d
}

, we ob-

tain with probability at least 1− 2d−3,∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

Wi,`,`′,`′′

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ max

{√
32kd1 log d

3 min{d1, d2}
,

16
√

2 log d

3

}
.

(B.29)

It follows from the fact
∣∣∣∣∣∣∣∣∣∑i∈[d1]

∑
(`,`′,`′′)∈TaWi,`,`′,`′′

∣∣∣∣∣∣∣∣∣
2
≤
∑

i,(`,`′,`′′) |||Wi,`,`′,`′′ |||2 ≤√
2d1k/3 that

E

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

Wi,`,`′,`′′

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

 ≤ max

{√
32kd1 log d

3 min{d1, d2}
,
16
√

2 log d

3

}
+

2
√

2d1k

3d3

≤ 2

√
32kd1 log d

3 min{d1, d2}
, (B.30)

where the last inequality follows from the assumption that

(16 min{d1, d2} log d)/(3d1) ≤ k ≤ d2
1 log d. Substituting this in the RHS of

(B.25), and then together with (B.24) and (B.23), this gives the following

desired bound:

E[Z] ≤
∑
a∈[N ]

sup
∆∈B(D)

16αe−2α

k3 d1

√
32kd1 log d

3 min{d1, d2}
|||∆|||nuc

≤
∑
a∈[N ]

e−4α
√

2

16
√

3k2 d1 d2

(
210e2ααd2

√
d1 log d

kmin{d1, d2}

)
︸ ︷︷ ︸

=µ

|||∆|||nuc

≤ 9e−4αD2

40d1d2

, (B.31)

where the last inequality holds because N ≤ 4k2 and µ|||∆|||nuc ≤ D2.

B.1.5 Proof of Lemma B.1.4

Recall that Yi,`,`′,`′′(∆) = (∆i,ji,`−∆i,ji,`′
)2χi,`,`′,`′′ , as defined in (B.21). From

the random utility model (RUM) interpretation of the MNL model presented

in Section 1.1, it is not difficult to show that Yi,`,`′,`′′ and Yi,˜̀,˜̀′,˜̀′′ are mutually

independent if the two triples (`, `′, `′′) and (˜̀, ˜̀′, ˜̀′′) do not overlap, i.e., no
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index is present in both triples.

Now, borrowing the terminologies from round robin tournaments, we con-

struct a schedule for a tournament with k teams where each match involves

three teams. Let Ta,b denote a set of triples playing at the same round, in-

dexed by two integers a ∈ {3, . . . , 2k − 3} and b ∈ {5, . . . , 2k − 1}. Hence,

there are total N = (2k − 5)2 rounds.

Each round (a, b) consists of disjoint triples and is defined as

Ta,b ≡
{

(`, `′, `′′) ∈ [k]× [k]× [k] | ` < `′ < `′′, `+ `′ = a, and `′ + `′′ = b
}
.

We need to prove that there is no missing triple and no team plays twice

in a single round. First, for any ordered triple (`, `′, `′′), there exists a ∈
{3, . . . , 2k − 3} and b ∈ {5, . . . , 2k − 1} such that `+ `′ = a and `′ + `′′ = b.

Thus all ordered triples are covered by the above construction. Next, given

a pair (a, b), no two triples in Ta,b can share the same team. Suppose there

exists two distinct ordered triples (`, `′, `′′) and (˜̀, ˜̀′, ˜̀′′) both in Ta,b, and one

of the triples is shared. Then, from the two equations `+ `′ = ˜̀+ ˜̀′ = a and

`′+ `′′ = ˜̀′+ ˜̀′′ = b, it follows that all three indices must be the same, which

is a contradiction. This proves the desired claim for ordered triples.

One caveat is that we want to cover the whole [k]× [k]× [k], and not just

the ordered triples. This issue can be resolved by simply taking all Ta,b’s from

the above construction, and making six copies of each round, and permuting

all the triples in each copy according to the same permutation over {1, 2, 3}.
This operation increases the total rounds to N = 6(2k − 5)2 ≤ 24k2. Note

that |Ta,b| ≤ bk/3c since no item can be in more than one triple.

B.2 Proof of Corollary 3.2.5: estimating approximate

low-rank matrices

We follow closely the proof of a similar corollary in [13]. First fix a threshold

τ > 0, and set r = max{j|σj(Θ∗) > τ}. With this choice of r, we have

min{d1,d2}∑
j=r+1

σj(Θ
∗) = τ

min{d1,d2}∑
j=r+1

σj(Θ
∗)

τ
≤ τ

min{d1,d2}∑
j=r+1

(σj(Θ∗)
τ

)q
≤ τ 1−qρq .
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Also, since rτ q ≤
∑r

j=1 σj(Θ
∗)q ≤ ρq, it follows that

√
r ≤ √ρqτ−q/2. Using

these bounds, (3.5) is now∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣2

F
≤ 288

√
2c0e

4αd1d2λ0︸ ︷︷ ︸
=A

(√
ρqτ

−q/2
∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
F

+ τ 1−qρq
)
.

With the choice of τ = A and due to the fact that x2 ≤ bx + x implies

x ≤ (b+
√
b2 + 4c)/2 we get∣∣∣∣∣∣∣∣∣Θ̂−Θ

∣∣∣∣∣∣∣∣∣
F
≤ 2
√
ρqA

(2−q)/2 .

B.3 Proof of Theorem 4: information-theoretic lower

bound for k-wise ranking

The proof uses information-theoretic methods, which reduces the estimation

problem to a multiway hypothesis testing problem. To prove a lower bound

on the expected error, it suffices to prove

sup
Θ∗∈Ωα

P
{∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣2
F
≥ δ2

4

}
≥ 1

2
. (B.32)

To prove the above claim, we follow the standard recipe of constructing a

packing in Ωα. Consider a family {Θ(1), . . . ,Θ(M(δ)} of d1 × d2 dimensional

matrices contained in Ωα satisfying
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣
F
≥ δ for all `1, `2,∈

[M(δ)]. We will use M to refer to M(δ) to simplify the notation. Suppose

we draw an index L ∈ [M(δ)] uniformly at random, and we are given direct

observations σi as per the MNL model with Θ∗ = Θ(L) on a randomly chosen

set of k items Si for each user i ∈ [d1]. It follows from triangular inequality

that

sup
Θ∗∈Ωα

P
{∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣2
F
≥ δ2

4

}
≥ P

{
L̂ 6= L

}
, (B.33)
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where L̂ is the resulting best estimate of the multiway hypothesis testing on

L. The generalized Fano’s inequality gives

P
{
L̂ 6= L|S(1), . . . , S(d1)

}
≥ 1− I(L̂;L) + log 2

logM

≥ 1−
(
M
2

)−1∑
`1,`2∈[M ] DKL(Θ(`1)‖Θ(`2)) + log 2

logM
,

(B.34)

where DKL(Θ(`1)‖Θ(`2)) denotes the Kullback-Leibler (KL) divergence be-

tween the distributions of the partial rankings P
{
σ1, . . . , σd1|Θ(`1), S(1), . . . , S(d1)

}
and P

{
σ1, . . . , σd1|Θ(`2), S(1), . . . , S(d1)

}
. The second inequality follows from

a standard technique, which we repeat here for completeness. Let Σ =

{σ1, . . . , σd1} denote the observed outcome of comparisons. Since L–Θ(L)–Σ–L̂

form a Markov chain, the data processing inequality gives I(L̂;L) ≤ I(Σ;L).

For simplicity, we drop the conditioning on the set of alternatives {S(1), . . . , S(d1)},
and and let p(·) denotes joint, marginal, and conditional distribution of re-

spective random variables. It follows that

I(Σ;L) =
∑

`∈[M ],Σ

p(Σ|`) 1

M
log

p(`,Σ)

p(`)p(Σ)

=
1

M

∑
`∈[M ]

∑
Σ

p(Σ|`) log
p(Σ|`)

1
M

∑
`′ p(Σ|`′)

≤ 1

M2

∑
`,`′∈[M ]

∑
Σ

p(Σ|`) log
p(Σ|`)
p(Σ|`′)

=
1

M2

∑
`,`′∈[M ]

DKL(Θ(`1)‖Θ(`2)) , (B.35)

where the first inequality follows from Jensen’s inequality. To compute

the KL-divergence, recall that from the RUM interpretation of the MNL

model (see Section 1.1), one can generate sample rankings Σ by drawing ran-

dom variables with exponential distributions with mean eΘ∗ij ’s. Precisely, let

X(`) = [X
(`)
ij ]i∈[d1],j∈Si denote the set of random variables, where X

(`)
ij is drawn

from the exponential distribution with mean e−Θ
(`)
ij . The MNL ranking fol-

lows by ordering the alternatives in each Si according to this {X(`)
ij }j∈Si by

ranking the smaller ones on the top. This forms a Markov chain L–X(L)–Σ,
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and the standard data processing inequality gives

DKL(Θ(`1)‖Θ(`2)) ≤ DKL(X(`1)‖X(`2))

=
∑
i∈[d1]

∑
j∈Si

{
eΘ

(`1)
ij −Θ

(`2)
ij − (Θ

(`1)
ij −Θ

(`2)
ij )− 1

}
≤ e2α

4α2

∑
i∈[d1]

∑
j∈Si

(Θ
(`1)
ij −Θ

(`2)
ij )2 , (B.36)

where the last inequality follows from the fact that ex−x−1 ≤ (e2α/(4α2))x2

for any x ∈ [−2α, 2α]. Taking expectation over the randomly chosen set of

alternatives,

ES(1),...,S(d1)[DKL(Θ(`1)‖Θ(`2))] ≤ e2α k

4α2 d2

∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣2

F
. (B.37)

Combined with (B.34), we get that

P
{
L̂ 6= L

}
= ES(1),...,S(d1)[P

{
L̂ 6= L|S(1), . . . , S(d1)

}
] (B.38)

≥ 1−
(
M
2

)−1∑
`1,`2∈[M ](e

2αk/(4α2d2))
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
F

+ log 2

logM
,

(B.39)

The remainder of the proof relies on the following probabilistic packing.

Lemma B.3.1. Let d2 ≥ d1 ≥ 607 be positive integers. Then for each r ∈
{1, . . . , d1}, and for any positive δ > 0 there exists a family of d1×d2 dimen-

sional matrices {Θ(1), . . . ,Θ(M(δ))} with cardinality M(δ) = b(1/4) exp(rd2/576)c
such that each matrix is rank r and the following bounds hold:

∣∣∣∣∣∣Θ(`)
∣∣∣∣∣∣

F
≤ δ , for all ` ∈ [M ] (B.40)∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣
F
≥ δ , for all `1, `2 ∈ [M ] (B.41)

Θ(`) ∈ Ωα̃ , for all ` ∈ [M ] , (B.42)

with α̃ = (8δ/d2)
√

2 log d for d = (d1 + d2)/2.

Suppose δ ≤ αd2/(8
√

2 log d) such that the matrices in the packing set are

entry-wise bounded by α, then the above lemma implies that
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
F
≤
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4δ2, which gives

P
{
L̂ 6= L

}
≥ 1−

e2αkδ2

α2d2
+ log 2

rd
576
− 2 log 2

≥ 1

2
,

where the last inequality holds for δ2 ≤ (α2d2/(e
2αk))((rd/1152) − 2 log 2).

If we assume rd ≥ 3195 for simplicity, this bound on δ can be simplified

to δ ≤ αe−α
√
r d2 d/(2304 k). Together with (B.32) and (B.33), this proves

that for all δ ≤ min{αd2/(8
√

2 log d), αe−α
√
r d2 d/(2304 k)},

inf
Θ̂

sup
Θ∗∈Ωα

E
[ ∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
F

]
≥ δ

4
.

Choosing δ appropriately to maximize the right-hand side finishes the proof

of the desired claim.

B.3.1 Proof of Lemma B.3.1

Following the construction in [13], we use a probabilistic method to prove the

existence of the desired family. We will show that the following procedure

succeeds in producing the desired family with probability at least half, which

proves its existence. Let d = (d1 + d2)/2, and suppose d2 ≥ d1 without loss

of generality. For the choice of M ′ = erd2/576, and for each ` ∈ [M ′], generate

a rank-r matrix Θ(`) ∈ Rd1×d2 as follows:

Θ(`) =
δ√
rd2

U(V (`))T
(
Id2×d2 −

1

d2

11T
)
, (B.43)

where U ∈ Rd1×r is a random orthogonal basis such that UTU = Ir×r and

V (`) ∈ Rd2×r is a random matrix with each entry V
(`)
ij ∈ {−1,+1} chosen

independently and uniformly at random.

By construction, notice that
∣∣∣∣∣∣Θ(`)

∣∣∣∣∣∣
F

= (δ/
√
rd2)

∣∣∣∣∣∣(V (`))T (I− (1/d2)11T )
∣∣∣∣∣∣

F

≤ δ, since
∣∣∣∣∣∣V (`)

∣∣∣∣∣∣
F

=
√
rd2 and (I − (1/d2)11T ) is a projection which can

only decrease the norm.

Now, consider
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
F

= (δ2/(rd2))
∣∣∣∣∣∣(I− (1/d2)11T )(V (`1) − V (`2))

∣∣∣∣∣∣2
F

≡ f(V (`1), V (`2)), which is a function over 2rd2 i.i.d. random Rademacher

variables V (`1) and V (`2), which define Θ(`1) and Θ(`2), respectively. Since

f is Lipschitz in the following sense, we can apply McDiarmid’s concentra-
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tion inequality. For all (V (`1), V (`2)) and (Ṽ (`1), Ṽ (`2)) that differ in only one

variable, say Ṽ (`1) = V (`1) + 2eij, for some standard basis matrix eij, we have

∣∣f(V (`1), V (`2))− f(Ṽ (`1), Ṽ (`2))
∣∣ =∣∣∣∣∣ δ2

r d2

∣∣∣∣∣∣∣∣∣∣∣∣(I− 1

d2

11T )(V (`1) − V (`2))

∣∣∣∣∣∣∣∣∣∣∣∣2
F

− δ2

r d2

∣∣∣∣∣∣∣∣∣∣∣∣(I− 1

d2

11T )(V (`1) − V (`2) + 2eij)

∣∣∣∣∣∣∣∣∣∣∣∣2
F

∣∣∣∣∣
=

∣∣∣∣∣ δ2

r d2

∣∣∣∣∣∣∣∣∣∣∣∣2(I− 1

d2

11T )eij

∣∣∣∣∣∣∣∣∣∣∣∣2
F

+
δ2

r d2

〈〈(I− 1

d2

11T )(V (`1) − V (`2)), 2eij〉〉

∣∣∣∣∣
≤ 4 δ2

r d2

+
δ

r d2

∣∣∣∣∣∣∣∣∣∣∣∣(I− 1

d2

11T )(V (`1) − V (`2))

∣∣∣∣∣∣∣∣∣∣∣∣
∞
|||2eij|||1

≤ 12 δ2

r d2

, (B.44)

where we used the fact that (I− 1
d2
11T )(V (`1)−V (`2)) is entry-wise bounded

by four. The expectation E[f(V (`1), V (`2))] is

δ2

r d2

E

[∣∣∣∣∣∣∣∣∣∣∣∣(I− 1

d2

11T )(V (`1) − V (`2))

∣∣∣∣∣∣∣∣∣∣∣∣2
F

]
=

2δ2

r d2

E

[∣∣∣∣∣∣∣∣∣∣∣∣(I− 1

d2

11T )V (`1)

∣∣∣∣∣∣∣∣∣∣∣∣2
F

]

=
2δ2

r d2

E
[∣∣∣∣∣∣V (`1)

∣∣∣∣∣∣2
F

]
− 2δ2

r d2
2

E
[
‖1TV (`1)‖2

]
=

2 δ2 (d2 − 1)

d2

. (B.45)

Applying McDiarmid’s inequality with bounded difference 12δ2/(rd2), we get

that

P
{
f(V (`1), V (`2)) ≤ 2δ2(1− 1/d2)− t

}
≤ exp

{
− t2 r d2

144 δ4

}
. (B.46)

Since there are fewer than (M ′)2 pairs of (`1, `2), setting t = (1−2/d2)δ2 and

applying the union bound gives

P
{

min
`1,`2∈[M ′]

∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣2

F
≥ δ2

}
≥ 1− exp

{
− r d2

144

(
1− 2

d2

)2

+ 2 logM ′
}

≥ 7

8
, (B.47)
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where we used M ′ = exp{rd2/576} and d2 ≥ 607.

We are left to prove that Θ(`)’s are in Ω(8δ/d2)
√

2 log d2 as defined in (3.4).

Since we removed the mean such that Θ(`)1 = 0 by construction, we only

need to show that the maximum entry is bounded by (8δ/d2)
√

2 log d2. We

first prove an upper bound in (B.49) for a fixed ` ∈ [M ′], and use this to

show that there exists a large enough subset of matrices satisfying this bound.

From (B.43), consider (UV T )ij = 〈〈ui, vj〉〉, where ui ∈ Rr is the first r entries

of a random vector drawn uniformly from the d2-dimensional sphere, and

vj ∈ Rr is drawn uniformly at random from {−1,+1}r with ‖vj‖ =
√
r.

Using Levy’s theorem for concentration on the sphere [31], we have

P {|〈〈ui, vj〉〉| ≥ t} ≤ 2 exp
{
− d2 t

2

8 r

}
. (B.48)

Notice that by the definition (B.43), maxi,j |Θ(`)
ij | ≤ (2δ/

√
rd2) maxi,j |〈〈ui, vj〉〉|.

Setting t =
√

(32r/d2) log d2 and taking the union bound over all d1d2 in-

dices, we get

P
{

max
i,j
|Θ(`)

ij | ≤
2δ
√

32 log d2

d2

}
≥ 1− 2d1d2 exp

{
− 4 log d2

}
≥ 1

2
,

(B.49)

for a fixed ` ∈ [M ′]. Consider the event that there exists a subset S ⊂ [M ′]

of cardinality M = (1/4)M ′ with the same bound on maximum entry, then

from (B.49) we get

P
{
∃S ⊂ [M ′] such that

∣∣∣∣∣∣Θ(`)
∣∣∣∣∣∣
∞ ≤

2δ
√

32 log d2

d2

for all ` ∈ S
}

≥
M ′∑

m=M

(
M ′

m

)(1

2

)m
, (B.50)

which is larger than half for our choice of M < M ′/2.

B.4 Proof of Theorem 5: pairwise rank breaking

Analogous to Section B.1, we define the gradient ∇L(Θ) as ∇ijL = ∂L(Θ)
∂Θij

and ∆ ≡ Θ̂−Θ∗, and provide two main technical lemmas.
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Lemma B.4.1. If λ ≥ 2|||∇L(Θ∗)|||2, then we have,

|||∆|||nuc ≤ 4
√

2r|||∆|||F + 4

min{d1,d2}∑
j=ρ+1

σj(Θ
∗) , (B.51)

for all ρ ∈ [min{d1, d2}].

Proof. This follows from the proof of Lemma 3.2.1, which only depends on

the convexity of L(Θ).

Lemma B.4.2. For any positive constant c ≥ 1, if k ≤ max{d1, d
2
2/d1} log d

and d1 ≥ 4 then with probability at least 1− 2d−c,

|||∇L(Θ∗)|||2 ≤

√
16(c+ 4) log d

k d2
1

max

{√
max

{
1

4
,
d1

d2

}
,

2

3

√
2(c+ 4) log d

k

}
.

(B.52)

The proof of this lemma is provided in Section B.4.1. We will simplify the

above lemma by assuming 2(c + 4) log d ≤ k, which implies the last term in

RHS is less than equal to the first term,

2

3

√
2(4 + c) log d

k
≤
√

1

4
. (B.53)

(B.53) simplifies (B.52) as

|||∇L(Θ∗)|||2 ≤

√
16(c+ 4) log d

k d2
1

max

{
1

4
,
d1

d2

}

≤

√
32d (c+ 4) log d

k d2
1 d2

(a)

≤
√

32(c+ 4)λ , (B.54)

where (a) is due to (3.22) .

For Lemma B.4.1 and further proof of Theorem 5 we want λ ≥ 2|||∇L(Θ)|||2;

therefore, we assume that

λ ∈ [2
√

32(c+ 4)λ, cpλ], for some cp ≥ 2
√

32(c+ 4) . (B.55)
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Similar to the k-wise ranking, we will divide the proof into two cases, and

each part we will prove that |||∆|||2F ≤ 36e2α c λ d1d2 |||∆|||nuc with probability

at least 1− 2/dc − 2/d213 . We define a new constant µ as

µ = 16α

√
48 d1d2

2 log d

k min{d1, d2}
. (B.56)

Case 1: Assume µ|||∆|||nuc ≤ |||∆|||
2
F.

Since L is a sum of a linear function of Θ and log-sum-exponential functions,

which are convex, we know that L is a convex function of Θ. Therefore, by

convexity and Taylor expansion we get

L(Θ̂) = L(Θ∗)− 〈〈∇L(Θ∗),∆〉〉 + (B.57)

1

2! d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

e
Θi,ui,m1 e

Θi,ui,m2(
e

Θi,ui,m1 + e
Θi,ui,m2

)2

(
∆i,ui,m1

−∆i,ui,m2

)2

,

where Θ = aΘ∗ + (1− a)Θ̂ for some a ∈ [0, 1] and P0 = {(i, j)| 1 ≤ i < j ≤
k}. We lower bound the final term in (B.57) as

1

2! d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

e
Θi,ui,m1 e

Θi,ui,m2(
e

Θi,ui,m1 + e
Θi,ui,m2

)2

(
∆i,ui,m1

−∆i,ui,m2

)2

(a)

≥ 1

2 d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

e−αeα

(e−α + eα)2

(
∆i,ui,m1

−∆i,ui,m2

)2

≥ 1

2 d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

e−2α

4

(
∆i,ui,m1

−∆i,ui,m2

)2

,

(B.58)

where (a) is due to the fact that ∆ij’s are upper and lower bounded by α and

−α, respectively. We can bound this term further according to the following

lemma.

Lemma B.4.3. For (4 log d)/9 ≤ k ≤ max{d1, d
2
2/d1} log d, with probability
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at least 1− 2d−213,

1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

(
∆i,ui,m1

−∆i,ui,m2

)2

≥ 1

3d1d2

|||∆|||2F , (B.59)

for all ∆ ∈ Ap where,

A =

{
∆ ∈ Rd1×d2

∣∣∣ |||∆|||∞ ≤ 2α,
∑
j∈[d2]

∆ij = 0 ∀i ∈ [d2], and,

µ|||∆|||nuc ≤ |||∆|||
2
F

}
. (B.60)

The proof is given in Section B.4.2. Now using Lemma B.4.3 and (B.58)

with high probability we get

1

2! d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

e
Θi,ui,m1 e

Θi,ui,m2(
e

Θi,ui,m1 + e
Θi,ui,m2

)2

(
∆i,ui,m1

−∆i,ui,m1

)2

≥ e−2α

24 d1 d2

|||∆|||2F . (B.61)

Incorporating the above inequality in (B.57) we obtain

e−2α

24 d1 d2

|||∆|||2F ≤ L(Θ̂)− L(Θ∗) + 〈〈∇L(Θ∗),∆〉〉 . (B.62)

From the definition of Θ̂, we have L(Θ̂)−L(Θ∗) ≤ λ
(
|||Θ∗|||nuc −

∣∣∣∣∣∣∣∣∣Θ̂∣∣∣∣∣∣∣∣∣
nuc

)
≤

λ|||∆|||nuc, and we assume that λ ≥ 2
√

32(c+ 1) λ, so that λ ≥ 2|||∇L (Θ∗)|||2
is true with a probability of at least 1 − 2d−c from Lemma B.4.2. These

inequalities give us the following with probability at least 1− 2d−c − 2d−213 .

e−2α

24 d1 d2

|||∆|||2F ≤ λ|||∆|||nuc + |||∇L(Θ∗)|||2|||∆|||nuc

≤ 3λ

2
|||∆|||nuc , (B.63)
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which gives us

|||∆|||2F ≤ 36e2α λ d1d2 |||∆|||nuc

(a)

≤ 36e2α cp λ d1d2 |||∆|||nuc , (B.64)

where (a) is due to the fact that λ ≤ cpλ.

Case 2: Assume |||∆|||2F ≤ µ|||∆|||nuc.

Here we prove that µ ≤ 36 e2α cpλ d1d2.

µ

36 e2α cpλ d1d2

(a)

≤ α

e2α
× 16

√
48

72
√

32(c+ 4)
×

√
d1d2

min{d1, d2}d
(b)

≤ 1× 16
√

48

72
√

32× 4
×
√

max{d1, d2}
d

(c)

≤
√

max{d1, d2}
2d

(d)

≤ 1 , (B.65)

where (a) is by substituting µ, λ, and cp from (B.56), (3.22), and (B.55),

respectively; (b) is because x ≤ ex; and (c) is because d = (max{d1, d2} +

min{d1, d2})/2.

Now combining the above result with (B.51) we get with probability at

least 1− 2d−c − 2d−213 ,

1

d1d2

|||∆|||2F ≤ 144
√

2e2αcpλ
√
r|||∆|||F + 144e2αcpλ

min{d1,d2}∑
j=ρ+1

σj(Θ
∗) . (B.66)

B.4.1 Proof of Lemma B.4.2

From definition of L(Θ) in (3.20), we get

∇Lp(Θ∗) =
1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

ei
(
eli(m1,m2) − ehi(m1,m2)

)T
1 + exp

(
Θ∗i,li(m1,m2) −Θ∗i,hi(m1,m2)

) ,
(B.67)

where P0 = {(i, j)| 1 ≤ i < j ≤ k}. We use the matrix Bernstein inequality

[26] for the sum of independent matrices. Similar to Lemma C.1.4, we can
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partition the set of all pairs P0 into (k − 1) sets {Pa}a∈[k−1] of k/2 disjoint

pairs each. Define Ya ≡
∑d1

i=1

∑
(m1,m2)∈Pa X̃i,m1,m2 , and

X̃i,m1,m2 ≡
exp

(
Θ∗i,li(m1,m2)

)
exp

(
Θ∗i,hi(m1,m2)

)
+ exp

(
Θ∗i,li(m1,m2)

)ei (eli(m1,m2) − ehi(m1,m2)

)T
,

such that

∇Lp(Θ∗) =
1

d1

(
k
2

) k−1∑
a=1

Ỹa . (B.68)

For a fixed value of a, it is easy to see that X̃i,m1,m2 ’s are independent.

Further, we can easily show that E
[
X̃i,m1,m2

]
= 0, and ‖X̃i,m1,m2‖2 ≤

√
2.

We also have

E
[
X̃i,m1,m2X̃

T
i,m1,m2

]
� 2 eie

T
i E

E
 exp

(
Θ∗i,li(m1,m2)

)2

(
exp

(
Θ∗i,ui,m1

)
+ exp

(
Θ∗i,ui,m2

))2

∣∣∣∣∣ui,m1 , ui,m1




(a)
= 2 eie

T
i E

 exp
(

Θ∗iui,m1

)
exp

(
Θ∗iui,m2

)
(

exp
(

Θ∗i,ui,m1

)
+ exp

(
Θ∗i,ui,m2

))2


(b)

� 1

2
eie

T
i , (B.69)

where we get (a) from the MNL model for the random choice of li(m1,m2) and

(b) is due to the fact that xy/(x+y)2 ≤ 1/4 for all x, y > 0. Define pi,m1,m2 ≡(
exp

(
Θ∗i,ui,m1

)
eui,m1

+ exp
(

Θ∗i,ui,m2

)
eui,m2

)
/
(

exp
(

Θ∗i,ui,m1

)
+ exp

(
Θ∗i,ui,m2

))
to get

E
[
X̃T
i,m1,m2

X̃i,m1,m2

]
= E

[
(ehi(m1,m2) − pi,m1,m2)(ehi(m1,m2) − pi,m1,m2)

T
]

= E
[
ehi(m1,m2)e

T
hi(m1,m2)

]
− E

[
pi,m1,m2p

T
i,m1,m2

]
(a)

� E
[
eui,m1

eTui,m1
+ eui,m2

eTui,m2

]
=

2

d2

Id2×d2 , (B.70)
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where (a) comes from the fact that pi,m1,m2p
T
i,m1,m2

is a positive semi-definite

matrix. Therefore using (B.69) and (B.70), we get

σ2 ≡


∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

∑
i∈[d1],(m1,m2)∈Pa

E
[
X̃i,m1,m2X̃

T
i,m1,m2

]∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

∑
i∈[d1],(m1,m2)∈Pa

E
[
X̃T
i,m1,m2

X̃i,m1,m2

]∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2


≤ kmax

{
1

4
,
d1

d2

}
. (B.71)

Define ρ ≡ max {1/4, d1/d2}, then by the matrix Bernstein inequality [26],

∀ a ∈ [k − 1],

P
(∣∣∣∣∣∣∣∣∣Ỹa∣∣∣∣∣∣∣∣∣

2
> t
)
≤ (d1 + d2) exp

(
−t2/2

kρ+
√

2t/3

)
,

which gives a tail probability of 2d−c/(k − 1) for the choice of

t = max

{√
4kρ ((1 + c) log d+ log(k − 1)) ,

4
√

2((1 + c) log d+ log(k − 1))

3

}
.

(B.72)

For this choice of t, using union bound we can get the probabilistic bound

on the derivative of log likelihood as

P

(
‖∇Lp(Θ∗)‖2 ≥

k − 1

d1

(
k
2

) t) ≤ P

(
k−1∑
a=1

∣∣∣∣∣∣∣∣∣Ỹa∣∣∣∣∣∣∣∣∣
2
≥ (k − 1)t

)
(a)

≤ P

(
max
a∈[k−1]

∣∣∣∣∣∣∣∣∣Ỹa∣∣∣∣∣∣∣∣∣
2
≥ t

)
(b)

≤
k−1∑
a=1

P
(∣∣∣∣∣∣∣∣∣Ỹa∣∣∣∣∣∣∣∣∣

2
≥ t
)

= 2 d−c , (B.73)

where we obtain (a) by the pigeon-hole principle, which implies that among
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a set of numbers, there should be, at the very least, one number greater or

equal to the average of the set of numbers and (b) by union bound. Assuming

k ≤ max{d1, d
2
2/d1} log d and d1 ≥ 4, we have

(c+ 1) log d+ log(k − 1) ≤ (c+ 4) log d , (B.74)

from log(k − 1) ≤ log (max{d1, d
2
2/d1} log d) ≤ log(((d2

1 + d2
2) log d)/d1) ≤

log ((4 d2 log d)/d1) ≤ 3 log d. This proves the desired lemma.

B.4.2 Proof of Lemma B.4.3

With a slight abuse of notation, we define H̃ as

H̃(∆) ≡ 1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

(
∆i,ui,m1

−∆i,ui,m2

)2

(B.75)

and provide a lower bound. The mean is easily computed as

E
[
H̃(∆)

]
=

1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

 2

d2

∑
j∈[d2]

∆2
ij −

2

d2
2

∑
j∈[d2]

∆ij

∑
j′∈[d2]

∆ij′


=

2

d1d2

|||∆|||2F , (B.76)

where we used the fact that
∑

j ∆ij = 0. We want to upper bound the

probability that H̃(∆) ≤ 1
3d1d2
|||∆|||2F for some ∆ ∈ A. As in the case of

k-wise ranking we using the following peeling argument used in [13, Lemma

3], [27]. The strategy is to split this above event as the union of many event

events as follows. We construct the following family of subsets {S̃`} such

that A ⊆ ∪∞`=1S̃` and

S̃` =

{
∆ ∈ Rd1×d2

∣∣∣ |||∆|||∞ ≤ 2α, β`−1µ ≤ |||∆|||F ≤ β`µ,

∑
j∈[d2]

∆ij = 0 for all i ∈ [d2], and |||∆|||nuc ≤ β2`µ

}
,

(B.77)
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where β =
√

10/9 and ` ∈ {1, 2, 3, . . .}, which is true since, for any ∆ ∈ A,

|||∆|||2F ≥ µ|||∆|||nuc and this implies |||∆|||2F ≥ µ|||∆|||F (or, |||∆|||F ≥ µ). Also

note that

H̃(∆) ≤ 1

3d1d2

|||∆|||2F =⇒ 2

d1d2

|||∆|||2F − H̃(∆) ≥ 5

3d1d2

|||∆|||2F

=⇒
(
E
[
H̃(∆)

]
− H̃(∆)

)
≥ 5

3d1d2

|||∆|||2F . (B.78)

Therefore using union bound we get

P
(
∃ ∆ ∈ A s.t. H̃(∆) ≤ 1

3d1d2

|||∆|||2F
)

≤
∞∑
`=1

P

(
sup
∆∈S̃`

(E
[
H̃(∆)

]
− H̃(∆)) ≥ 5

3d1d2

|||∆|||2F

)
(a)

≤
∞∑
`=1

P

(
sup
∆∈S̃`

(E
[
H̃(∆)

]
− H̃(∆)) ≥ 3

2d1d2

(β`µ)2

)
(b)

≤
∞∑
`=1

P

(
sup

∆∈B̃(β`µ)

(E
[
H̃(∆)

]
− H̃(∆)) ≥ 3

2d1d2

(β`µ)2

)
, (B.79)

where B̃(D) is defined as

B̃(D) =

{
∆ ∈ Rd1×d2

∣∣∣ |||∆|||∞ ≤ 2α, |||∆|||F ≤ D,

∑
j∈[d2]

∆ij = 0 for all i ∈ [d2], and µ|||∆|||nuc ≤ D2

}
,

(B.80)

and (a)is true because for ∆ ∈ S̃l,

5

3d1d2

|||∆|||2F ≥
5

3d1d2

(β`−1µ)2 =
3

2d1d2

(β`µ)2 , (B.81)

and (b) is true because S̃` ⊂ B̃(β`µ).

Now we use following lemma to upper bound (B.79).
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Lemma B.4.4. For 4(log d)/3 ≤ k ≤ d2 log d,

P

(
sup

∆∈B̃(D)

(E
[
H̃(∆)

]
− H̃(∆)) ≥ 3

2d1d2

D2

)
≤ exp

(
−kD4

2048 α4 d1d2
2

)
(B.82)

Proof has been relegated to Section B.4.3. Now by (B.79) and Lemma

B.4.4 we get

P
(
∃ ∆ ∈ A s.t. H̃(∆) ≤ 1

3d1d2

|||∆|||2F
)
≤

∞∑
`=1

exp

(
−k
(
β` µ

)4

2048 α4 d1d2
2

)
(a)

≤
∞∑
`=1

exp

(
−213 9 β4` d1d

2
2 log2 d

k min2{d1, d2}

)
(b)

≤
∞∑
`=1

exp

(
−213 9 4`× 1

36
d1d

2
2 log2 d

k min2{d1, d2}

)
(c)

≤
∞∑
`=1

exp
(
−213 ` log d

)
=
∞∑
`=1

(
1

d213

)`
(d)
=

1/d213

1− 1/d213

(e)

≤ 2

d213
, (B.83)

where we get (a) by substituting µ from (B.56); (b) by the fact that for

β =
√

10/9 and x ≥ 1, βx ≥ x log β ≥ x(β − 1) ≥ x/32; (c) by assuming

k ≤ max{d1, d
2
2/d1} log d; (d) because we are summing an infinite geometric

sequence with common ratio of 1/d213 ; and (e) because for d ≥ 2, 1/d213 is

less than 1/2.

B.4.3 Proof of Lemma B.4.4

With a slight abuse of notations, let Z̃ ≡ sup∆∈B̃(D)

(
E
[
H̃(∆)

]
− H̃(∆)

)
.

Notice that Z̃ is a function of d1k random variables, {ui,`}i∈[d1],`∈[k]. We apply

the McDiarmid’s bounded differences inequality. Let Z̃1 and Z̃2 be two real-

izations of Z̃ where the value of only one random variable ui′,`′ is changed to
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u′i′,`′ . Also with a little more abuse of notation, the two realizations of H̃(∆)

are written as H̃(∆′, u1,1, . . . , ui′,`′ , . . . , ud1,k) and H̃(∆′, u1,1, . . . , u
′
i′,`′ , . . . , ud1,k).

We let ∆∗ be the maximizer of max{Z̃1, Z̃2}. Maximum absolute difference

between them is upper bounded as follows:

|Z̃1 − Z̃2|

=

∣∣∣∣∣ max
∆∈B̃(D)

(
E
[
H̃(∆)

]
− H̃(∆, u1,1, . . . , ui′,`′ , . . . , ud1,k)

)
−

sup
∆′∈B̃(D)

(
E
[
H̃(∆′)

]
− H̃(∆′, u1,1, . . . , u

′
i′,`′ , . . . , ud1,k)

) ∣∣∣∣∣
(a)

≤

∣∣∣∣∣ (E [H̃(∆∗)
]
− H̃(∆∗, u1,1, . . . , ui′,`′ , . . . , ud1,k)

)
−

(
E
[
H̃(∆∗)

]
− H̃(∆∗, u1,1, . . . , u

′
i′,`′ , . . . , ud1,k)

) ∣∣∣∣∣
≤ sup

∆∈B̃(D)

∣∣∣∣∣H̃(∆, u1,1, . . . , ui′,`′ , . . . , ud1,k)− H̃(∆, u1,1, . . . , u
′
i′,`′ , . . . , ud1,k)

∣∣∣∣∣
(b)

≤ sup
∆∈B̃(D)

∣∣∣∣∣ 1

d1

(
k
2

)∑
6̀=`′

(
∆i′,ui′,`

−∆i′,ui′,`′

)2

−
(

∆i′,ui′,`
−∆i′,u′

i′,`′

)2

∣∣∣∣∣
(c)

≤ 1

d1

(
k
2

)(k − 1) (4α)2 =
32α2

d1k
. (B.84)

where (a) follows from the fact that ∆∗ is maximizer of max{Z̃1, Z̃2}, (b) is

due to the fact that the terms which change because of u′i′,`′ are the k − 1

difference square terms between ∆iui′, 6̀=`′
and ∆i, ui′,`′

, and (c) is because the

maximum and the minimum value of difference square terms are (4α)2 and

0, respectively. Using McDiarmid’s bounded differences inequality, we get

P{Z̃ − E
[
Z̃
]
≥ ε} ≤ exp

− 2ε2

d1k
(

32α2

d1k

)2

 , (B.85)
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because of (B.84) and the fact that there are d1k random variables. We

upper bound E
[
Z̃
]

as follows.

E
[
Z̃
]

=

E sup
∆∈B̃(D)

1

d1

(
k
2

) ∑
i∈[d1]

(m1,m2)∈P0

E
[(

∆i, ui,m1
−∆i, ui,m2

)2
]
−
(

∆i, ui,m1
−∆i, ui,m2

)2

(a)

≤ E sup
∆∈B̃(D)

1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

2ξ̃i,m1,m2

(
∆i, ui,m1

−∆i, ui,m2

)2

(b)

≤ E sup
∆∈B̃(D)

1

d1

(
k
2

) d1∑
i=1

k−1∑
a=1

∑
(m1,m2)∈Pa

2ξ̃i,m1,m2

(
∆i, ui,m1

−∆i, ui,m2

)2

(c)

≤
k−1∑
a=1

E sup
∆∈B̃(D)

1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈Pa

2ξ̃i,m1,m2

(
∆i, ui,m1

−∆i, ui,m2

)2

,

(B.86)

where (a) is by the standard symmetrization technique as used in k-wise

ranking and {ξi,m1,m2}i∈[d1], m1,m2∈[k] are i.i.d. Rademacher variables, (b) is

due to the fact that we can partition set of all pairs into k − 1 independent

sets as in (B.68), and (c) is because of fact that the supremum of the sum

is less than or equal to sum of supremum and the linearity of expectation.

Since |∆i, ui,m1
−∆i, ui,m2

| ≤ 4α, we can use the Ledoux-Talagrand contraction

inequality on (B.86) to get

E[Z̃] ≤
k−1∑
a=1

E sup
∆∈B̃(D)

1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈Pa

2ξ̃i,m1,m2

(
∆i, ui,m1

−∆i, ui,m2

)2

≤
k−1∑
a=1

E sup
∆∈B̃(D)

1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈Pa

4α 2ξ̃i,m1,m2

(
∆i, ui,m1

−∆i, ui,m2

)
(a)

≤
k−1∑
a=1

8α

d1

(
k
2

)E sup
∆∈B̃(D)

〈〈
d1∑
i=1

∑
(m1,m2)∈Pa

W̃i,m1,m2 ,∆〉〉

(b)

≤
k−1∑
a=1

8α

d1

(
k
2

)E
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
d1∑
i=1

∑
(m1,m2)∈Pa

W̃i,m1,m2

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

 sup
∆∈B̃(D)

|||∆|||nuc , (B.87)
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where we get (a) by putting W̃i,m1,m2 = ξ̃i,m1,m2ei(eui,m1
− eui,m2

)T and (b) is

due to Hölder’s inequality (〈〈x, y〉〉 ≤ |||x|||2|||y|||nuc). Now we use Bernstein’s

inequality [26] to upperbound the above expectation terms. First fix a to

value in [k − 1]. We can easily show that W̃i,m1,m2 is zero mean and∣∣∣∣∣∣∣∣∣W̃i,m1,m2

∣∣∣∣∣∣∣∣∣
2
≤
√

2 . (B.88)

We also get

E
[
W̃i,m1,m2W̃

T
i,m1,m2

]
= 2eie

T
i E
[
1− eTui,m1

eui,m2

]
� eie

T
i

(
2− 2

d2

)
� 2eie

T
i , (B.89)

and

E
[
W̃ T
i,m1,m2

W̃i,m1,m2

]
= E

[
2eui,m1

eTui,m1
− 2eui,m1

eTui,m2

]
� 2

d2

Id2×d2 −
2

d2
2

11d2×d2

� 2

d2

Id2×d2 . (B.90)

Therefore, using (B.89) and (B.90), the standard deviation of
∑

(i,m1,m2) Zi,m2,m2

is

σ2 ≤
∑
i∈[d1]

(m1,m2)∈Pa

max
{∣∣∣∣∣∣∣∣∣E [W̃i,m2,m2W̃

T
i,m2,m2

]∣∣∣∣∣∣∣∣∣
2
,
∣∣∣∣∣∣∣∣∣E [W̃ T

i,m2,m2
W̃i,m2,m2

]∣∣∣∣∣∣∣∣∣
2

}

≤ d1k

2
max

{
2

d1

|||I|||2,
2

d2

|||I|||2
}

=
kd1

min{d1, d2}
. (B.91)

By matrix Bernstein inequality [26], ∀ a ∈ [k − 1],
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P

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[d1]

∑
(m1,m2)∈Pa

W̃i,m2,m2

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

> t


≤ (d1 + d2) exp

( −t2/2
2kd1/min{d1, d2}+

√
2t/3

)
, (B.92)

which gives a tail probability of 2d−c1 for the choice of

t = max

{√
8kd1 ((1 + c1) log d)

min{d1, d2}
,

4
√

2 ((1 + c1) log d)

3

}

=

√
8kd1 ((1 + c1) log d)

min{d1, d2}
,when k ≥ 4(c1 + 1) log d/9 . (B.93)

Therefore ∀ a ∈ [k − 1],

E

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
d1∑
i=1

∑
(m1,m2)∈Pa

W̃i,m2,m2

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

 ≤√8kd1 ((1 + c1) log d)

min{d1, d2}
+

2

dc1

√
2d1k

2
,

(B.94)

because from (B.88) we get

∣∣∣∣∣∣∣∣∣∣∣∣∑ i∈[d1]
(m1,m2)∈Pa

W̃i,m2,m2

∣∣∣∣∣∣∣∣∣∣∣∣
2

≤
∑

i∈[d1]
(m1,m2)∈Pa

∣∣∣∣∣∣∣∣∣W̃i,m2,m2

∣∣∣∣∣∣∣∣∣
2

≤ d1k/2(
√

2). From (B.87) and (B.94), putting c1 = 2, we get

E
[
Z̃
]
≤

k−1∑
a=1

8α

d1

(
k
2

) (√24 kd1 log d

min{d1, d2}
+

√
2d1k

d2

)
sup

∆∈B̃(D)

|||∆|||nuc

(a)

≤ 8α

(
2

√
24 log d

k d1 min{d1, d2}
+

2
√

2

d2

)
D2

µ

(b)

≤ 16α

√
48 log d

k d1 min{d1, d2}
D2 1

16α

√
k min{d1, d2}
48d1d2

2 log d

=
D2

d1d2

, (B.95)

where (a) is obtained because of (B.80), which gives supD∈B(D) |||∆|||nuc ≤
D2/µ and (b) can be obtained by assuming that k ≤ d2 log d. Using the
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above bound in (B.85), we get

P{Z̃ −D2/(d1d2) ≥ ε} ≤ P{Z̃ − E
[
Z̃
]
≥ ε} ≤ exp

− 2ε2

d1k
(

32α2

d1k

)2

 ,

(B.96)

and using ε = D2/(2d1d2) will get us the required bound.
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APPENDIX C

PROOFS OF BUNDLED CHOICES

C.1 Proof of Theorem 6: performance guarantee for

bundled choices

We use similar notations and techniques as the proof of Theorem 3 in Ap-

pendix B.1. From the definition of L(Θ) in (4.3), we have for the true pa-

rameter Θ∗, the gradient evaluated at the true parameter is

∇L(Θ∗) = − 1

n

n∑
i=1

(euie
T
vi
− pi) , (C.1)

where pi denotes the conditional probability of the MNL choice for the i-th

sample. Precisely, pi =
∑

j1∈Si

∑
j2∈Ti pj1,j2|Si,Tiej1e

T
j2

, where pj1,j2|Si,Ti is the

probability that the pair of items (j1, j2) is chosen at the i-th sample such that

pj1,j2|Si,Ti ≡ P {(ui, vi) = (j1, j2)|Si, Ti} = eΘ∗j1,j2/(
∑

j′1∈Si,j′2∈Ti
e

Θ∗
j′1,j
′
2 ), where

(ui, vi) is the pair of items selected by the i-th user among the set of pairs of

alternatives Si × Ti. The Hessian can be computed as

∂2L(Θ)

∂Θj1,j2 ∂Θj′1,j
′
2

=
1

n

n∑
i=1

I
(
(j1, j2) ∈ Si × Ti

)∂pj1,j2|Si,Ti
∂Θj′1,j

′
2

=
1

n

n∑
i=1

I
(
(j1, j2), (j′1, j

′
2) ∈ Si × Ti

)
×(

pj1,j2|Si,TiI((j1, j2) = (j′1, j
′
2))− pj1,j2|Si,Tipj′1,j′2|Si,Ti

)
. (C.2)

We use ∇2L(Θ) ∈ Rd1d2×d1d2 to denote this Hessian. Let ∆ = Θ∗ − Θ̂ where

Θ̂ is an optimal solution to the convex optimization in (4.2). We introduce

the following key technical lemmas.

The following lemma provides a bound on the gradient using the concen-

tration of measure for sum of independent random matrices [26].
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Lemma C.1.1. For any positive constant c ≥ 1 and

n ≥ (4(1 + c)e2αd1d2 log d)/max{d1, d2}, with probability at least 1− 2d−c,

|||∇L(Θ∗)|||2 ≤

√
4(1 + c)e2α max{d1, d2} log d

d1 d2 n
. (C.3)

Since we are typically interested in the regime where the number of samples

is much smaller than the dimension d1 × d2 of the problem, the Hessian is

typically not positive definite. However, when we restrict our attention to

the vectorized ∆ a with relatively small nuclear norm, then we can prove

restricted strong convexity, which gives the following bound.

Lemma C.1.2 (Restricted strong convexity for bundled choice). Fix

any Θ ∈ Ωα and assume (min{d1, d2}/min{k1, k2}) log d ≤ n and n ≤
min{d5 log d, k1k2 max{d2

1, d
2
2} log d}. Under the random sampling model of

choosing the alternatives {jia}i∈[n],a∈[k1] from the first set of items [d1], {jib}i∈[n],b∈[k1]

from the second set of items [d2] and the random outcome of the comparisons

described in section 1.1, we have, with probability larger than 1− 2d−225,

Vec(∆)T ∇2L(Θ) Vec(∆) ≥ e−2α

8 d1 d2

|||∆|||2F , (C.4)

for all ∆ in A where

A =
{

∆ ∈ Rd1×d2
∣∣ |||∆|||∞ ≤ 2α ,

∑
j1∈[d1],j2∈[d2]

∆j1j2 = 0 and |||∆|||2F ≥ µ|||∆|||nuc

}
,

(C.5)

with

µ ≡ 210 α d1d2

√
log d

n min{d1, d2} min{k1, k2}
. (C.6)

Building on these lemmas, the proof of Theorem 6 is divided into the

following two cases. In both cases, we will show that

|||∆|||2F ≤ 12 e2αc1λ d1d2 |||∆|||nuc , (C.7)

with high probability. Applying Lemma 3.2.1 proves the desired theorem.

We are left to show (C.7) holds.
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Case 1: Suppose |||∆|||2F ≥ µ |||∆|||nuc. With ∆ = Θ∗ − Θ̂, the Taylor

expansion yields

L(Θ̂) = L(Θ∗)− 〈〈∇L(Θ∗),∆〉〉+
1

2
Vec(∆)∇2L(Θ)VecT (∆), (C.8)

where Θ = aΘ̂ + (1− a)Θ∗ for some a ∈ [0, 1]. It follows from Lemma C.1.2

that with probability at least 1− 2d−225 ,

L(Θ̂)− L(Θ∗) ≥ −|||∇L(Θ∗)|||2|||∆|||nuc +
e−2α

8 d1 d2

|||∆|||2F .

From the definition of Θ̂ as an optimal solution of the minimization, we have

L(Θ̂)− L(Θ∗) ≤ λ
(
|||Θ∗|||nuc −

∣∣∣∣∣∣∣∣∣Θ̂∣∣∣∣∣∣∣∣∣
nuc

)
≤ λ|||∆|||nuc .

By the assumption, we choose λ ≥ 8λ. In view of Lemma C.1.1, this implies

that λ ≥ 2|||∇L(Θ∗)|||2 with probability at least 1−2d−3. It follows that with

probability at least 1− 2d−3 − 2d−225 ,

e−2α

8d1d2

|||∆|||2F ≤
(
λ+ |||∇L(Θ∗)|||2

)
|||∆|||nuc ≤

3λ

2
|||∆|||nuc .

By our assumption on λ ≤ c1λ, this proves the desired bound in (C.7)

Case 2: Suppose |||∆|||2F ≤ µ |||∆|||nuc. By the definition of µ and the fact

that c1 ≥ 128/
√

min{k1, k2}, it follows that µ ≤ 12 e2αc1λ d1d2, and we get

the same bound as in (C.7).

C.1.1 Proof of Lemma C.1.1

Define Xi = −(euie
T
vi
− pi) such that ∇L(Θ∗) = (1/n)

∑n
i=1Xi, which is

a sum of n independent random matrices. Note that since pi is entry-wise

bounded by e2α/(k1k2),

|||Xi|||2 ≤ 1 +
e2α

√
k1k2

,
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and

n∑
i=1

E[XiX
T
i ] =

n∑
i=1

(E[euie
T
ui

]− pipTi ) (C.9)

�
n∑
i=1

E[euie
T
ui

] (C.10)

� e2α n

d1

Id1×d1 , (C.11)

where the last inequality follows from the fact that for any given Si, ui will

be chosen with probability at most e2α/k1, if it is in the set Si which happens

with probability k1/d1. Therefore,∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

E[XiX
T
i ]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ e2α n

d1

. (C.12)

Similarly, ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

E[XT
i Xi]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ e2α n

d2

. (C.13)

Applying matrix Bernstein inequality [26], we get

P {|||∇L(Θ∗)|||2 > t}

≤ (d1 + d2) exp
{ −n2t2/2

(e2αnmax{d1, d2}/(d1d2)) + ((1 + (e2α/
√
k1k2))nt/3)

}
,

(C.14)

which gives the desired tail probability of 2d−c for the choice of

t = max
{√4(1 + c)e2α max{d1, d2} log d

d1d2n
,

4(1 + c)(1 + e2α√
k1k2

) log d

3n

}
=

√
4(1 + c)e2α max{d1, d2} log d

d1d2n
,

where the last equality follows from the assumption that

n ≥ (4(1 + c)e2αd1d2 log d)/max{d1, d2}.

85



C.1.2 Proof of Lemma C.1.2

The quadratic form of the Hessian defined in (C.2) can be lower bounded by

Vec(∆)T ∇2L(Θ) Vec(∆) ≥ e−2α

2 k2
1 k

2
2 n

n∑
i=1

∑
j1,j′1∈Si

∑
j2,j′2∈Ti

(
∆j1,j2 −∆j′1,j

′
2

)2

︸ ︷︷ ︸
≡H(∆)

,

(C.15)

which follows from Remark B.1.2. To lower bound H(∆), we first compute

the mean:

E[H(∆)] =
e−2α

2 k2
1 k

2
2 n

n∑
i=1

E
[ ∑
j1,j′1∈Si

∑
j2,j′2∈Ti

(
∆j1,j2 −∆j′1,j

′
2

)2]
(C.16)

=
e−2α

d1 d2

|||∆|||2F , (C.17)

where we used the fact that E[
∑

j1∈Si,j2∈Ti ∆j1,j2 ] = k1k2
d1d2

∑
j′1∈[d1]
j′2∈[d2]

∆j′1,j
′
2

= 0

for ∆ ∈ Ω2α in (4.4).

We now prove that H(∆) does not deviate from its mean too much. Sup-

pose there exists a ∆ ∈ A defined in (C.5) such that (C.4) is violated, i.e.

H(∆) < (e−2α/(8k1k2d1d2))|||∆|||2F. In this case,

E[H(∆)]−H(∆) ≥ 7 e−2α

8d1d2

|||∆|||2F . (C.18)

We will show that this happens with a small probability. We use the same

peeling argument as in Appendix B.1 with

S` =
{

∆ ∈ Rd1×d2 | |||∆|||∞ ≤ 2α, β`−1µ ≤ |||∆|||F ≤ β`µ,∑
j1∈[d1],j2∈[d2]

∆j1,j2 = 0, and |||∆|||nuc ≤ β2`µ
}
, (C.19)

where β =
√

10/9 and for ` ∈ {1, 2, 3, . . .}, and µ is defined in (C.6). By the

peeling argument, there exists an ` ∈ Z+ such that ∆ ∈ S` and

E[H(∆)]−H(∆) ≥ 7 e−2α

8d1d2

β2`−2(µ)2 ≥ 7 e−2α

9 d1d2

β2`(µ)2 . (C.20)
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Applying the union bound over ` ∈ Z+,

P
{
∃∆ ∈ A , H(∆) <

e−2α

8 d1 d2

|||∆|||2F
}

≤
∞∑
`=1

P
{

sup
∆∈S`

(
E[H(∆)]−H(∆)

)
>

7 e−2α

9d1d2

(β`µ)2

}

≤
∞∑
`=1

P

{
sup

∆∈B(β`µ)

(
E[H(∆)]−H(∆)

)
>

7e−2α

9d1d2

(β`µ)2

}
,

(C.21)

where we define the set B(D) such that S` ⊆ B(β`µ):

B(D) =
{

∆ ∈ Rd1×d2
∣∣ ‖∆‖∞ ≤ 2α, |||∆|||F ≤ D,∑
j1∈[d1],j2∈[d2]

∆j1j2 = 0, µ|||∆|||nuc ≤ D2
}
. (C.22)

The following key lemma provides the upper bound on this probability.

Lemma C.1.3. For (min{d1, d2}/min{k1, k2}) log d ≤ n ≤ d5 log d,

P

{
sup

∆∈B(D)

(
E[H(∆)]−H(∆)

)
≥ e−2αD2

2d1d2

}
≤ exp

{
− n min{k2

1, k
2
2} k1k2D

4

210α4d2
1d

2
2

}
.

(C.23)

Let η = exp
(
−nk1k2 min{k21 ,k22}(β−1.002)(µ)4

210α4d21d
2
2

)
. Applying the tail bound to

(C.21), we get

P
{
∃∆ ∈ A , H(∆) <

e−2α

8 d1d2

|||∆|||2F
}

≤
∞∑
`=1

exp
{
− n k1k2 min{k2

1, k
2
2} (β`µ)4

210α4d2
1d

2
2

}
(a)

≤
∞∑
`=1

exp
{
− nk1k2 min{k2

1, k
2
2}`(β − 1.002)(µ)4

210α4d2
1d

2
2

}
≤ η

1− η
, (C.24)

where (a) holds because βx ≥ x log β ≥ x(β − 1.002) for the choice of β =√
10/9. By the definition of µ,

η = exp
{
− 230 k1k2 max{d2

2, d
2
1}(log d)2(β − 1.002)

n

}
≤ exp{− 225 log d} ,
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where the last inequality follows from the assumption that β − 1.002 ≥ 2−5,

and n ≤ k1k2 max{d2
1, d

2
2} log d. Since for d ≥ 2, exp{−225 log d} ≤ 1/2

and thus η ≤ 1/2, the lemma follows by assembling the last two displayed

inequalities.

C.1.3 Proof of Lemma C.1.3

Let Z ≡ sup∆∈B(D) E[H(∆)]−H(∆) and consider the tail bound using McDi-

armid’s inequality. Note that Z has a bounded difference of 8α2e−2αmax{k1,k2}
k21k

2
2n

when one of the k1k2n independent random variables is changed, which gives

P {Z − E[Z] ≥ t} ≤ exp
(
− k4

1k
4
2n

2t2

64α4e−4α max{k2
1, k

2
2}k1k2n

)
. (C.25)

With the choice of t = D2/(4e2α d1d2), this gives

P
{
Z − E[Z] ≥ e−2α

4d1d2

D2

}
≤ exp

(
− k3

1k
3
2nD

4

210α4d2
1d

2
2 max{k2

1, k
2
2}

)
. (C.26)

We first construct a partition of the space similar to Lemma B.1.4. Let

k̃ ≡ min{k1, k2} . (C.27)

Lemma C.1.4. There exists a partition (T1, . . . , TN) of {[k1]× [k2]}×{[k1]×
[k2]} for some N ≤ 2k2

1k
2
2/k̃ such that T`’s are disjoint subsets,

⋃
`∈[N ] T` =

{[k1]× [k2]} × {[k1]× [k2]}, |T`| ≤ k̃, and for any ` ∈ [N ] the set of random

variables in T` satisfy

{(∆ji,a,ji,b −∆ji,a′ ,ji,b′
)2}i∈[n],((a,b),(a′,b′))∈T` are mutually independent .(C.28)

where ji,a for i ∈ [n] and a ∈ [k1] denote the a-th chosen item to be included

in the set Si.

Now we prove an upper bound on E[Z] using the symmetrization technique.

Recall that ji,a is independently and uniformly chosen from [d1] for i ∈ [n]

and a ∈ [k1]. Similarly, ji,b is independently and uniformly chosen from [d1]
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for i ∈ [n] and b ∈ [k2].

E[Z]

=
e−2α

2 k2
1 k

2
2 n

E

 sup
∆∈B(D)

∑
i∈[n]

a,a′∈[k1]
b,b′∈[k2]

E
(
∆ji,a,ji,b −∆ji,a′ ,ji,b′

)2 −
(
∆ji,a,ji,b −∆ji,a′ ,ji,b′

)2



≤ e−2α

2 k2
1 k

2
2 n

∑
`∈[N ]

E

 sup
∆∈B(D)

∑
i∈[n]

(j1,j2,j′1,j
′
2)∈T`

E
(
∆j1,j2 −∆j′1,j

′
2

)2 −
(
∆j1,j2 −∆j′1,j

′
2

)2


≤ e−2α

k2
1 k

2
2 n

∑
`∈[N ]

E

 sup
∆∈B(D)

n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2
(
∆j1,j2 −∆j′1,j

′
2

)2

 ,

(C.29)

where the first inequality follows from the fact that the supremum of the

sum is smaller than the sum of supremum, and the second inequality follows

from the standard symmetrization with i.i.d. Rademacher random variables

ξi,j1,j2,j′1,j′2 ’s. It follows from Ledoux-Talagrand contraction inequality that

E

 sup
∆∈B(D)

n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2
(
∆j1,j2 −∆j′1,j

′
2

)2


≤ 8αE

 sup
∆∈B(D)

n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2
(
∆j1,j2 −∆j′1,j

′
2

)
≤ 8αE

 sup
∆∈B(D)

|||∆|||nuc

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2
(
ej1,j2 − ej′1,j′2

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2


≤ 8αD2

µ
E

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2
(
ej1,j2 − ej′1,j′2

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

 , (C.30)

where the second inequality follows for Hölder’s inequality and the last in-

equality follows from µ|||∆|||nuc ≤ D2 for all ∆ ∈ B(D). To bound the

expected spectral norm of the random matrix, we use matrix Bernstein’s in-

equality. Note that
∣∣∣∣∣∣ξi,j1,j2,j′1,j′2c∣∣∣∣∣∣2 ≤ √2 almost surely, E[(ej1,j2−ej′1,j′2)(ej1,j2−
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ej′1,j′2)
T ] � (2/d1)Id1×d1 , and E[(ej1,j2 − ej′1,j′2)

T (ej1,j2 − ej′1,j′2)] � (2/d2)Id2×d2 .

It follows that σ2 = 2n|T`|/min{d1, d2}, where |T`| ≤ min{k1, k2}. It follows

that

P


∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2
(
ej1,j2 − ej′1,j′2

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

> t


≤ (d1 + d2) exp

{
−t2/2

2nmin{k1,k2}
min{d1,d2} +

√
2t
3

}
, (C.31)

Choosing t = max{
√

64n(min{k1, k2}/min{d1, d2}) log d, (16
√

2/3) log d}, we

obtain a bound on the spectral norm of t with probability at least 1 −
2d−7. From the fact that

∣∣∣∣∣∣∣∣∣∑n
i=1

∑
(j1,j2,j′1,j

′
2)∈T` ξi,j1,j2,j′1,j′2

(
ej1,j2 − ej′1,j′2

)∣∣∣∣∣∣∣∣∣
2
≤

(n/
√

2) min{k1, k2}, it follows that

E

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2
(
ej1,j2 − ej′1,j′2

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2


≤ max

{√64n min{k1, k2} log d

min{d1, d2}
, (16
√

2/3) log d
}

+
2nmin{k1, k2}√

2d7

≤

√
66n min{k1, k2} log d

min{d1, d2}
(C.32)

which follows form the assumption that nmin{k1, k2} ≥ min{d1, d2} log d

and n ≤ d5 log d. Substituting this bound in (C.29), and (C.30), we get that

E[Z] ≤ 16e−2ααD2

µ

√
66 log d

nmin{k1, k2}min{d1, d2}
≤ e−2αD2

4 d1d2

. (C.33)

C.2 Proof of Theorem 7: information-theoretic lower

bound

This proof follows closely the proof of Theorem 4 in Appendix B.3. We apply

the generalized Fano’s inequality in the same way to get (B.34)

P
{
L̂ 6= L

}
≥ 1−

(
M
2

)−1∑
`1,`2∈[M ] DKL(Θ(`1)‖Θ(`2)) + log 2

logM
,(C.34)
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The main challenge in this case is that we can no longer directly apply

the RUM interpretation to compete DKL(Θ(`1)‖Θ(`2)). This will result in

over estimating the KL-divergence, because this approach does not take into

account that we only take the top winner, out of those k1k2 alternatives.

Instead, we compute the divergence directly, and provide an appropriate

bound. Let the set of k1 rows and k2 columns chosen in one of the n sampling

be S ⊂ [d1] and T ⊂ [d2] respectively. Then,

DKL(Θ(`1)‖Θ(`2))

(a)
=

n(
d1
k1

)(
d2
k2

)∑
S,T

∑
i∈S
j∈T

eΘ
(`1)
ij∑

i′∈S
j′∈T

e
Θ

(`1)

i′j′
log

e
Θ

(`1)
ij
∑

i′∈S
j′∈T

e
Θ

(`2)

i′j′

eΘ
(`2)
ij
∑

i′∈S
j′∈T

e
Θ

(`1)

i′j′


(b)

≤ n(
d1
k1

)(
d2
k2

)∑
S,T

∑
i,j

e2Θ
(`1)
ij
∑

i′,j′ e
Θ

(`2)

i′j′ − eΘ
(`1)
ij +Θ

(`2)
ij
∑

i′,j′ e
Θ

(`1)

i′j′

eΘ
(`2)
ij

(∑
i′,j′ e

Θ
(`1)

i′j′

)2


(c)

≤ ne2α

k2
1k

2
2

(
d1
k1

)(
d2
k2

)∑
S,T

∑
i,j

(
e2Θ

(`1)
ij −Θ

(`2)
ij

∑
i′,j′

e
Θ

(`2)

i′j′ − eΘ
(`1)
ij

∑
i′,j′

e
Θ

(`1)

i′j′

)

=
ne2α

k2
1k

2
2

(
d1
k1

)(
d2
k2

)∑
S,T

∑
i′,j′

e
Θ

(`2)

i′j′
∑
i,j

(
eΘ

(`1)
ij − eΘ

(`2)
ij

)2

eΘ
(`2)
ij

−
(∑

i,j

eΘ
(`1)
ij − eΘ

(`2)
ij

)2


(d)

≤ ne4α

k1k2

(
d1
k1

)(
d2
k2

)∑
S,T

∑
i,j

(
eΘ

(`1)
ij − eΘ

(`2)
ij

)2

(e)

≤ ne5α

k1k2

(
d1
k1

)(
d2
k2

)∑
S,T

∑
i,j

(
Θ

(`1)
ij −Θ

(`2)
ij

)2

(f)
=
ne5α

d1d2

∣∣∣∣∣∣∣∣∣Θ(`1)
ij −Θ

(`2)
ij

∣∣∣∣∣∣∣∣∣2
F

(C.35)

Here (a) is by definition of KL-distance and the fact that S, T are chosen

uniformly from all possible such sets and (b) is due to the fact that log(x) ≤
x−1 with x = (eΘ

(`1)
ij
∑

i′∈S,j′∈T e
Θ

(`2)

i′j′ )/(eΘ
(`2)
ij
∑

i′∈S,j′∈T e
Θ

(`1)

i′j′ ). The constants

at (c) are due to the fact that each element of Θ(`1) is upper bounded by α

and lower bounded by −α. We can get (d) by removing the second term,

which is always negative, and using the bond of α. (e) is obtained because
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ex where −α ≤ x ≤ α is Lipschitz continuous with Lipschitz constant eα. At

last (f) is obtained by simple counting of the occurrences of each ij. Thus

we have,

P
{
L̂ 6= L

}
≥ 1−

(
M
2

)−1∑
`1,`2∈[M ]

ne5α

d1d2

∣∣∣∣∣∣∣∣∣Θ(`2)
ij −Θ

(`2)
ij

∣∣∣∣∣∣∣∣∣2
F

+ log 2

logM
, (C.36)

The remainder of the proof relies on the following probabilistic packing.

Lemma C.2.1. Let d2 ≥ d1 be sufficiently large positive integers. Then

for each r ∈ {1, . . . , d1}, and for any positive δ > 0, there exists a family

of d1 × d2 dimensional matrices {Θ(1), . . . ,Θ(M(δ))} with cardinality M(δ) =

b(1/4) exp(rd2/576)c such that each matrix is rank r and the following bounds

hold:

∣∣∣∣∣∣Θ(`)
∣∣∣∣∣∣

F
≤ δ , for all ` ∈ [M ] (C.37)∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣
F
≥ 1

2
δ , for all `1, `2 ∈ [M ] (C.38)

Θ(`) ∈ Ωα̃ , for all ` ∈ [M ] , (C.39)

with α̃ = (8δ/d2)
√

2 log d for d = (d1 + d2)/2.

Suppose δ ≤ αd2/(8
√

2 log d) such that the matrices in the packing set

are entry-wise bounded by α, then the above lemma C.2.1 implies that∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣2

F
≤ 4δ2, which gives

P
{
L̂ 6= L

}
≥ 1−

e5αn4δ2

d1d2
+ log 2

rd2
576
− 2 log 2

≥ 1

2
, (C.40)

where the last inequality holds for δ2 ≤ (rd1d
2
2/(1152e5αn)) and assuming

rd2 ≥ 1600. Together with (C.40) and (C.38), this inequality proves that for

all δ ≤ min{αd2/(8
√

2 log d), rd1d
2
2/(1152e5αn)},

inf
Θ̂

sup
Θ∗∈Ωα

E
[ ∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
F

]
≥ δ/4 .

Choosing δ appropriately to maximize the right-hand side finishes the proof

of the desired claim. Also by symmetry, we can apply the same argument to

get a similar bound with d1 and d2 interchanged.
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C.2.1 Proof of Lemma C.2.1

We show that the following procedure succeeds in producing the desired

family with probability at least half, which proves its existence. Let d =

(d1 + d2)/2, and suppose d2 ≥ d1 without loss of generality. For the choice of

M ′ = erd2/576, and for each ` ∈ [M ′], generate a rank-r matrix Θ(`) ∈ Rd1×d2

as follows:

Θ(`) =
δ√
rd2

U(V (`))T
(
Id2×d2 −

1TU(V (`))T1

d1d2

11T
)
, (C.41)

where U ∈ Rd1×r is a random orthogonal basis such that UTU = Ir×r and

V (`) ∈ Rd2×r is a random matrix with each entry V
(`)
ij ∈ {−1,+1} cho-

sen independently and uniformly at random. By construction, notice that∣∣∣∣∣∣Θ(`)
∣∣∣∣∣∣

F
≤ (δ/

√
rd2)

∣∣∣∣∣∣U(V (`))T
∣∣∣∣∣∣

F
= δ.

Now, by triangular inequality, we have

∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣

F

≥ δ√
rd2

∣∣∣∣∣∣U(V (`1) − V (`2))T
∣∣∣∣∣∣

F
− δ |1TU(V (`1) − V (`2))T1|

d1d2

√
rd2

∣∣∣∣∣∣11T ∣∣∣∣∣∣
F

(C.42)

≥ δ√
rd2

∣∣∣∣∣∣V (`1) − V (`2)
∣∣∣∣∣∣

F︸ ︷︷ ︸
A

− δ√
r d1 d2

2

(
|1TU(V (`1))T1|︸ ︷︷ ︸

B

+|1TU(V (`2))T1|
)
.

(C.43)

We will prove that the first term is bounded by A ≥
√
rd2 with probability at

least 7/8 for all M ′ matrices, and we will show that we can find M matrices

such that the second term is bounded by B ≤ 8
√

2rd2 log(32r) log(32d) with

probability at least 7/8. Thus with probability at least 3/4, there exists M

matrices such that

∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣

F
≥ δ

(
1−

√
27 log(32r) log(32d)

d1d2

)
≥ 1

2
δ ,

for all `1, `2 ∈ [M ] and for sufficiently large d1 and d2.

Applying McDiarmid’s inequality as in (B.47) in Appendix B.3, it follows

that A2 ≥ rd2 with probability at least 7/8 for M ′ = erd2/576 and a sufficiently

large d2.
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To prove a bound on B, we will show that for a given `,

P
{
|1TU(V (`))T1| ≤ 8

√
2rd2 log(32r) log(32d)

}
≥ 7

8
. (C.44)

Then using the similar technique as in (B.50), it follows that we can find

M = (1/4)M ′ matrices all satisfying this bound and also the bound on

the max-entry in (C.45). We are left to prove (C.44). We apply a se-

ries of concentration inequalities. Let H1 be the event that {|〈〈V (`)
i ,1〉〉| ≤√

2d2 log(32r) for all i ∈ [r]}. Then, applying the standard Hoeffding’s in-

equality, we get that P {H1} ≥ 15/16, where V
(`)
i is the i-th column of

V (`). We next change the variables and represent 1TU as
√
d1u

T Ũ , where

u is drawn uniformly at random from the unit sphere and Ũ is a r dimen-

sional subspace drawn uniformly at random. By symmetry,
√
d1u

T Ũ have

the same distribution as 1TU . Let H2 be the event that {|〈〈Ũi, (V (`))T1〉〉| ≤√
16r(d2/d1) log(32r) log(32d) for all i ∈ [d1]}, where Ũi is the i-th row of Ũ .

Then, applying Levy’s theorem for concentration on the sphere [31], we have

P {H2|H1} ≥ 15/16. Finally, letH3 be the event that {|
√
d1〈〈u, Ũ(V (`))T 〉〉1| ≤

8
√

2rd2 log(32r) log(32d)}. Then, again applying Levy’s concentration, we

get P {H3|H1, H2} ≥ 15/16. Collecting all three concentration inequalities,

we get that with probability at least 13/16,

|1TU(V (`))T1| ≤ 8
√

2rd2 log(32r) log(32d), which proves (C.44).

We are left to prove that Θ(`)’s are in Ω(8δ/d2)
√

2 log d2 as defined in (4.4).

Similar to (B.49), applying Levy’s concentration gives

P
{

max
i,j
|Θ(`)

ij | ≤
2δ
√

32 log d2

d2

}
≥ 1− 2 exp

{
− 2 log d2

}
≥ 1

2
, (C.45)

for a fixed ` ∈ [M ′]. Then using the similar technique as in (B.50), it follows

that there exists M = (1/4)M ′ matrices all satisfying this bound and also

the bound on B in (C.44).
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