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ABSTRACT

The growing world-wide concern over the climate change manifests itself in

the growth of grid-integrated renewable resources (RRs) to cost-effectively re-

duce greenhouse gas emissions and alleviate each nation’s dependence on fuel

imports. However, as the penetrations of RRs deepen into the electric power

grids around the world, their impacts on the grid’s resource adequacy become

issues of growing concern. The marked intermittent and rapidly time-varying

nature of RRs cannot be appropriately represented in the widely used time-

invariant resource adequacy evaluation approach. In this thesis, we describe

the development of a simulation-based resource adequacy evaluation frame-

work with the capability to represent the uncertain and time-varying nature

of the system loads, supply/demand resources, including those of renewable

technologies. For this framework, we deploy stochastic-process-based mod-

els to effectively represent all grid-integrated resources so as to capture the

intermittent, time-varying and uncertain nature of RRs and their correla-

tion with loads and other resources. We make use of past load history and

RR output data to construct the sample paths (s.p.s) associated with the

stochastic process representations. The incorporation of RRs is based on the

net load concept, which is defined to be the net difference between the total

system load and the total RR outputs. In other words, the net load is the

load that must be met by the conventional generation resources. Clearly,

the net load, just as the system load and RRs, is itself a random process

(r.p.) with s.p.s constructed from the s.p.s of the RR outputs and the loads.

As such, the net load, in effect, captures the intermittent and time-varying

nature of RRs. The time-varying framework uses Monte Carlo simulation

techniques to sample the r.p.s of the loads, conventional unit availabilities

and the RR outputs. In every simulation run, the efficient sampling of the

r.p.s is used to construct the realizations of the outputs of the resources

and loads and to evaluate the widely used resource adequacy metrics — the

ii



loss of load probability (LOLP), the loss of load hours (LOLH ), the loss

of load expectation (LOLE ) and the expected unserved energy (EUE ). The

multiple Monte Carlo simulation runs provide the statistical basis for the

values of these metrics. The framework provides the capability to define and

evaluate additional resource adequacy metrics that are particularly appro-

priate for the study of the RR impacts on resource adequacy. We introduce

new sensitivity indices to quantify the impacts of deepening RR penetrations

on the various metrics of interest. The new indices effectively capture the

marginal behavior of the adequacy metrics and provide valuable insights to

grid operators and planners into how each group of RRs affects each metric

for a particular system. We applied the framework to study various resource

adequacy issues on a set of large-scale systems. We present representative

results from our extensive application studies on a realistic large-scale sys-

tem with integrated wind and solar RRs, total installed capacity 40, 000 MW

and projected summer peak load 36, 800 MW. The results provide detailed

quantification of the behavior of the resource adequacy metrics as the RR

penetrations deepen. Specifically, the results demonstrate the improvement

in the grid’s resource adequacy — indicated by the declining values of the

metrics — as the penetrations of wind and solar deepen. An important find-

ing is that solar resources appear to have a significantly more pronounced

impact on the metrics than wind resources. Such findings make sense be-

cause of the generally good and consistent tracking of the load by the solar

generation during the summer months for the summer peaking study system.

However, the behavior of all the resource adequacy metrics is characterized

by significant diminution of marginal returns as the penetrations of solar and

wind deepen. Moreover, the tracking ability of solar during the peak sum-

mer months is insufficient to replace additional retirements of conventional

generation capacity beyond a system-dependent value. Indeed, the resource

adequacy of the system begins to deteriorate, i.e., the values of the metrics

increase as the conventional capacity retirement increases. Notwithstand-

ing deepening RR penetrations for the system discussed, when the ratio of

the total retired conventional capacity over the total integrated RR capac-

ity exceeds the 0.25 value, the inability of the grid to meet the “1 day in

10 years” resource adequacy criterion becomes evident. Such limitations of

RRs in their ability to substitute retired conventional capacity and to provide

resource adequacy, impact the retirement schedule of fossil-fired generation
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units. The sensitivity studies carried out provide additional insights into

the development of appropriate retirement schedules. A significant aspect

of the thesis is the broad range of applications of the proposed framework

to study both the short- and longer-time periods for planning, operations

and other purposes. Furthermore, the framework allows for the evaluation

of resource adequacy metrics for data even with different time resolutions.

The proposed framework, provides a useful assessment mechanism to prepare

large-grid operators in the transition to the greener electricity future.
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CHAPTER 1

INTRODUCTION

In this chapter we set the stage for the work presented in this thesis. Our

research interests lie in the development of a resource adequacy evaluation

framework with the explicit incorporation of renewable resources (RRs). The

proposed framework allows for the consistent evaluation of the industry-

wide resource adequacy metrics and the investigation of the impacts of the

deepening RR penetrations in bulk power system reliability. We start out

by providing an overview of the basic concepts in power system reliability

and continue with the discussion of the motivation for our work and the

background behind our research to allow the reader to better understand the

nature of the problem considered. We then summarize the scope and the

contributions of our work and provide the outline of the rest of the thesis.

1.1 Overview of power system reliability

The primary function of electric power systems is to supply electricity to

all customers at all times and at an acceptable degree of quality. As such,

reliability is an integral requirement in order for power systems to perform

their primary function. The occurrences of several major blackouts in North

America, such as the 1965 Northeast Blackout, led to the formation of the

North American Electric Reliability Corporation (NERC ) in response to the

federal government’s position that “electric reliability was too important to

be left to anyone but the federal government.” NERC is a not-for-profit

entity that consists of eight reliability councils as illustrated in Fig. 1.1.

NERC and its constituent councils develop and enforce reliability standards,

perform annual assessments of short- and long-term reliability and monitor

the bulk power system subject to oversight by the Federal Energy Regulatory

Commission (FERC ) and governmental authorities of Canada.
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Figure 1.1: NERC reliability councils.

In this thesis we use the definition of power systems reliability given by

NERC : the degree of performance of the bulk electric system that results in

electricity being delivered to customers within accepted constraints and in

the amount desired [1]. NERC further characterizes the bulk power system

reliability with two complementary but independent concepts, adequacy and

security. Adequacy is a measure of the system ability to provide adequate

generation to meet all its firm load obligations. In other words, adequacy

is related to the existence of sufficient generation resources in the system to

meet consumer demand. Security describes the system ability to withstand

sudden disturbances occurring in that system. In order to understand the

distinction between the two concepts, we may view adequacy as the area

that relates to the long-term evaluation of a static requirement: the total in-

stalled capacity that the system must plan and construct in advance in order

to ensure adequate supply of future demand. On the other hand, security

relates to maintaining sufficient commited capacity that can be dispatched

within specified short periods — usually in a timescale of seconds to hours

— during actual system operations so as to overcome the impacts of various

contingencies, when and if they occur. Both these areas must be examined
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in the planning regime for the evaluation of alternative generation facilities;

however, once the decision has been made, the short-term security require-

ment becomes an operational problem. In this work our focus is entirely on

the resource adequacy component of bulk power system reliability.

The quantification techniques adopted to perform resource adequacy as-

sessment studies range from analytical to simulation approaches to address

the requirements of the particular study. Such studies involve the prediction

of the capability of the system to meet the inherently uncertain future load

with all other sources of uncertainty explicitly represented. Therefore, in

resource adequacy assessment it is impossible to predict exact figures, and

statements about future events can be made only in terms of averages or the

likelihood of various alternative possibilities. As such, the various approaches

and metrics for facilitating resource adequacy predictions and setting appro-

priate criteria are typically probabilistic in nature.

In resource adequacy assessment studies at the bulk power system, the

two sources of uncertainty typically considered are the loads and the supply

resources, with the transmission network assumed to be 100 % available. In

this context, all supply resources are considered, including conventional fossil-

fired and nuclear units, RRs as well demand response resources (DRRs).

The latter refer to loads capable to adjust their consumption in response

to price signals that provide incentives to curtail consumption and allow

loads to actively participate in ensuring demand-supply equilibrium. In the

traditional resource adequacy evaluation framework the supply resources are,

typically, represented as multi-state components where each state has an

associated probability of occurrence. The system loads are represented by

a probability distribution obtained from the chronological load curve, i.e.,

the system load values for a given time period and time resolution. The

probabilistic models for the loads and supply/demand resources are combined

in the resource adequacy evaluation framework to compute the metrics of

interest. A key aspect of the framework is that it requires the specification of

the smallest time granularity in the load representation with the fundamental

assumption that uniform system conditions hold throughout each unit of

time, i.e., constant values of loads and static capacity states for the supply

resources. As such, the framework lacks the ability to incorporate time-

varying phenomena since the time element has been abstracted out in the

load and supply resource representations.
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The resource adequacy metrics computed from the framework — and the

most widely adopted in the industry — are the loss of load probability

(LOLP), the loss of load expectation (LOLE ), the loss of load hours (LOLH )

and the expected unserved energy (EUE ). The principal use of such metrics

is in planning studies to allow for the side-by-side comparison of different

alternative resource mixes to meet the forecasted electricity demand over a

specified period of time. Resource adequacy metrics are also defined for stud-

ies where the failures in the components of the transmission network are taken

into consideration. Examples of such metrics include the probability of load

curtailments (PLC ), the expected frequency of load curtailments (EFLC ),

expected demand not supplied (EDNS ), the bulk power interruption index

(BPII ) and others. In addition, several resource adequacy metrics are defined

solely for the distribution system such as the system average interruption fre-

quency index (SAIFI ), system average interruption duration index (SAIDI )

or the customer average interruption frequency index (CAIFI ).

The resource adequacy metrics are frequently used to set appropriate cri-

teria or standards to determine the boundary between the acceptable or

adequate outcomes and those that are not. For example, the utility indus-

try and practitioners have adopted for years the industry-wide “1 day in 10

years” criterion, which requires that electric power systems maintain suffi-

cient generation capacity and DRRs so that the event that the system peak

load exceeds the system available supply occurs only once in a 10-year pe-

riod. Although it is not set as the de jure reliability standard, the “1 day

in 10 years” is so well-entrenched in the industry that it has become a de

facto minimum accepted level of resource adequacy in North America. The

“1 day in 10 years” criterion can be traced back to at least 1947 in a paper

written by G. Calabrese [2], although the precise origin of the criterion is not

known with certainty. Many discussions in regulatory, industry and various

technical forums focus on the appropriateness of such reliability criteria for

resource adequacy studies in the rapidly changing electricity industry. The

main questions raised center on the definitions of resource adequacy met-

rics and criteria, their interpretation and the implementation requirements

to comply with NERC standards. Such discussions make evident that there

persists a lack of clarity in the meaning of the “1 day in 10 years” criterion as

well as in the underlying assumptions made in the resource adequacy metric

evaluations. As a result, there co-exist multiple interpretations of the met-
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rics and standards, which make it very challenging to meaningfully compare

resource adequacy across different power systems [3]. In addition, the contin-

ual changes in the resource mix brought about by the deeper penetrations of

intermittent generation, introduce new challenges to resource adequacy stud-

ies and have led to even wider disparities in resource adequacy assessment in

the power industry.

1.2 Motivation

Resource adequacy assessment studies and the evaluation of the associated

metrics — LOLP, LOLE, EUE — are an integral part of the planning regime

in electric utilities and grid operators to ensure that the system maintains

sufficient supply/demand resources to meet the future demand. However, it

is unfortunate that, as yet, there is no uniformity in the definition, evalu-

ation methodology and use of the above adequacy metrics. In many cases,

LOLP and LOLE are used interchangeably, and often resource adequacy

criteria are expressed in terms of the LOLP metric without considering the

appropriate assumptions in its computation. As such, there is an acute need

for a comprehensive and consistent resource adequacy assessment framework

that is no longer subject to misinterpretations. Such a framework can be the

vehicle to clarify the ambiguities between the various interpretations of the

resource adequacy metrics and criteria adopted in the electricity industry.

Furthermore, the various policy initiatives that call for higher integrations of

RRs [4]-[5], introduce new challenges to resource adequacy studies due to the

distinct time-varying, intermittent and uncertain nature of the RRs. For ex-

ample, while unscheduled or forced outages [6] in conventional resources are,

typically, due to various failures, renewable technology resources — although

characterized by high availability — can only generate electricity when the

fuel is available, e.g., the wind blows within acceptable ranges. Hence, the

static representation of RRs [7]-[8] in the conventional, time-abstracted re-

source adequacy framework is unable to appropriately represent their time-

varying output as well as their temporal correlations.

A conventional generator’s capacity contribution to resource adequacy has

been traditionally approached by the concept of the effective load carrying

capability (ELCC ) [9], which generally represents the additional load in MW
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that can be served by the generator at a designated reliability target. More

specifically, a generator contributes to resource adequacy if it reduces the

LOLE (LOLH ) in some or all days (hours) [10]. For RRs, the capacity con-

tribution is a function of the time of delivery and the reductions to LOLE

that would be achieved with that resource. Because LOLE ' 0 (LOLH ' 0)

during most days (hours), a resource can contribute to adequacy if it gen-

erates during times where LOLE 6= 0 (LOLH 6= 0). This implies that if a

renewable resource generates little power during these times, it will have a

low capacity contribution to resource adequacy although it may produce sig-

nificant amount of energy during the rest of year. Non-zero LOLE or LOLH

values may occur for example during the summer months when the load

reaches or is close to its peak value. Solar generation resources are, typically,

characterized by good tracking ability of the peak loads therefore resulting in

a significant reduction of the LOLE. In such cases, the solar resource would

have a capacity contribution close to its rated capacity. However, the pres-

ence of clouds and/or ozone haze may reduce the solar output during load

peaks resulting in the resource’s contribution to be significantly lower than

its rated capacity. Therefore, in order to appropriately incorporate RRs in

the resource adequacy assessment framework, we need to ensure that the

chronological output data used from RR plants are time synchronized with

the chronological load data. Such a requirement is necessary in order to cap-

ture the underlying weather correlation, as weather is the driver not only for

the wind output but also for the load.

An alternative approach to assess RR generation capacity contributions to

resource adequacy is based on the capacity factor evaluation during system

critical periods, such as peak hours. The capacity factor of a resource is

defined as the net electricity generated, for the time considered, to the energy

that could have been generated at continuous full-power operation during the

same period. The capacity factor evaluation approach entails two steps: first,

a time period for the system in question is defined — typically a number

of hours during system peak load for summer and winter — and second,

the average output of the variable resource is calculated over that period.

The advantage of this approach lies in its simplicity, while studies have also

shown that it has a reasonably accurate performance [11]-[12]. Such studies

demonstrate that a good approximation of the wind ELCC is possible but

it depends on the number of hours and the method that these hours are
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selected for the time period. Capacity factor methods are widely adopted

by many independent system operators (ISOs) and regional transmission

organizations (RTOs) in North America, including PJM, ISO-NE, NYISO,

CAISO1 and others. In Table 1.1 we present the various methods employed

to evaluate wind generation resource capacity contributions across various

ISOs/RTOs.2

Table 1.1: Wind capacity contribution evaluation methods in ISOs and
RTOs in North America.

region method comments

PJM peak period average capacity factor for hours 3-6 PM,
June-Aug

NYISO peak period
summer capacity credit for hours 2-6 PM,
June-Aug and winter capacity credit for

hours 4-8 PM, Dec-Feb in previous 5 years

ISO-NE peak period capacity credit is median net output from 2-6
PM, June-Sep in previous 5 years

MISO ELCC analyses indicate a capacity contribution at
8% of rated capacity

CAISO peak period
for a 3-year period, plant output that equals
or exceeds 70% of hours 4-9 PM, Jan-March
and Nov-Dec and hours 1-6 PM, April-Oct

ERCOT ELCC wind generation is included with 8.7% of
nameplate capacity

SPP peak period
assigns monthly wind capacity value as 85th

percentile of wind generation during top 10%
of load hours with 10 years of data

The appropriate incorporation of RRs in resource adequacy studies re-

quires the careful consideration of the impacts that such resources may have

on the profile of the system net load, i.e., the load that must be served from

conventional generation. More specifically, when RRs are integrated to the

1Pennsylvania-New Jersey-Maryland Interconnection (PJM ), ISO New England (ISO-
NE ), New York ISO (NYISO), California ISO (CAISO).

2The data presented in Table 1.1 are acquired from [10]. The ISOs/RTOs referred in
the table include also the Midcontinent ISO (MISO), the Electric Reliability Council of
Texas (ERCOT ) and the Southwest Power Pool (SPP).
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resource mix, it is possible that both the time and magnitude of the daily net

peak load may change. In Fig. 1.2 we illustrate the net load for a typical sum-

mer day in the New York Control Area (NYCA) for increasing levels of solar

generation penetration [13]. From the diagram it can be seen that as solar

generation penetration deepens, the daily peak load magnitude decreases but

also shifts from 5 PM in the afternoon to 7 PM in the evening. For relatively

low RR penetrations such effects may not be a significant issue. However, as

the integrations of renewable technology resources increase, a resource ade-

quacy evaluation framework that does not consider time-synchronized load

and RR data, may be limited in its ability to capture the actual risk of the

system to meet its future demand. As such, the assessment of the impacts

Figure 1.2: Net load for NYCA in a typical summer day and for
different levels of solar penetration.

of the changes in RR penetrations on the grid’s resource adequacy becomes

an acute necessity. NERC has repeatedly called for adequacy studies that

“provide ongoing evaluation of the potential impacts of the new variable

generation on th grid” [10]. Significant contribution in this direction is the

study presented in [14]. With data of up to 10 years of wind outputs for

the Irish power system, the authors evaluate the ELCC for wind and ana-

lyze the effects of the number of wind farms, the data time period and time
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resolution on the wind capacity contribution. Similar studies on the capac-

ity contribution of solar resources are presented in [15]. However, all these

studies fail to assess the impacts of deepening RR penetrations on the widely

adopted resource adequacy metrics. Such studies are critically important in

order to allow meaningful comparisons among the metrics, shed light on the

requirement for additional new metrics and contribute to the NERC ’s vision

for “more widely adopted energy-related reliability metrics and targets as

the share of variable generation increases in the power systems.” This the-

sis directly addresses all the issues discussed in the incoporation of RRs in

resource adequacy studies and reports on the development of a comprehen-

sive framework that appropriately models the time-varying and intermittent

nature of such resources to evaluate their capacity contributions.

1.3 Scope and contribution of the thesis

In this thesis, we initially discuss the traditional resource adequacy evalua-

tion framework to define the industry-wide metrics and to address a broad

range of inconsistencies associated with the metrics interpretations. We pay

special attention on the underlying assumptions in the metrics evaluation

and clarify the ambiguity between the mulitple interpretations of the “1 day

in 10 years” criterion. The usefulness and physical relevance of the criterion

are out of the scope of this thesis and consequently are not investigated.

The limitations of the traditional resource adequacy assessment approach to

represent the intermittent and time-varying nature of RRs lead us to the

development of a stochastic simulation-based framework for adequacy stud-

ies in systems with integrated RRs. In the simulation-based framework, the

system loads and supply/demand resources are modeled as discrete-time ran-

dom processes (r.p.s), whose distribution have no analytical characterization.

Indeed, the framework uses past historical load, conventional unit availabil-

ity and solar/wind data to construct the sample paths (s.p.s) of the r.p.

representations. A salient aspect of the r.p. representation is the explicit

consideration of the spatial and chronological correlations among the s.p.s

of the loads and supply/demand resources. The evaluation approach makes

use of Monte Carlo simulation techniques [16] for the efficient sampling of

the r.p.s in order to generate realizations of the outputs of the resources
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and loads from which the resource adequacy metrics are evaluated for each

simulation run.

The implementation of the proposed framework provides the ability to fa-

cilitate the computation of additional metrics that the resource adequacy

studies require to further characterize the impacts of the deepening RR pen-

etrations. In this thesis, we are particularly interested to study the marginal

behavior of the resource adequacy metrics with respect to the deepening RR

penetrations. As such, we define and evaluate appropriate sensitivity indices

to quantify the impacts of RR penetrations on the metrics of interest. The

new indices effectively capture the marginal behavior of the adequacy met-

rics and provide valuable insights to grid operators and planners of how each

category of RRs affects each metric in particular. Furthermore, the frame-

work allows for the evaluation of resource adequacy metrics for data even

with different time resolutions. Another useful application of the proposed

scheme is for the computation of the ELCC of each RR. More specifically,

to obtain the ELCC of a particular RR unit, multiple applications of the

framework can be performed to obtain the resource adequacy metrics with

and without the integrated RR. The ELCC of the RR can be evaluated as

the additional conventional generation capacity to attain the same resource

adequacy metric with the RR unit integrated into the grid.

A significant aspect of the thesis is the broad range of applications of

the proposed framework to study both the short and longer time-periods

for planning, operations and other purposes. As such, we perform extensive

studies to quantify the impacts of the deepening RR penetrations on the

resource adequacy of large-scale grids. The distinct impacts of such pene-

trations have not been quantified so far in the way performed in the studies.

Furthermore, the study results provide important information on the care

that grid operators must exercise in order to schedule the retirement of con-

ventional fossil-fired generation resources so as to maintain the “1 day in

10 years” criterion. More specifically, our analysis provides a comprehensive

quantification of the limiting nature of the replacement of controllable re-

sources by RRs as well as the level of conventional resource retirement for

a specific addition of RR facility. The studies we perform aim to promote

a better understanding of the impacts of renewable generation resources on

system resource adequacy and their interaction with conventional resources.

The scope of our discussion in this thesis is limited to resource adequacy
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studies at the bulk power system with both supply and demand-side resources

considered. The transmission network is assumed everywhere to be 100 %

available and congestion-free. The resources at the distribution level are

implicitly incorporated via the load demand. Our focus is only on wind and

solar RRs with pumped-storage hydro generation assumed constant for each

wind and solar penetration scenario. Furthermore, in this thesis we do not

consider how reliable the system and its various subsystems should be. This

is a vitally important question that cannot have a simple answer because

different systems, utilities and customers have different requirements and

expectations.

This thesis consists of four additional chapters and four appendices. In

Chapter 2, we start out with the discussion of the traditional resource ade-

quacy assessment framework and provide the analytical setting for the con-

sistent evaluation of the LOLP, LOLE, LOLH and EUE metrics. In Section

2.4 of this chapter we introduce the stochastic simulation-based resource ade-

quacy evaluation framework with the capability to represent the time-varying

nature of loads and supply/demand resources. We further present the step-

by-step computational procedure to evaluate the resource adequacy metrics

in the simulation-based framework.

In Chapter 3 we provide the technique with which we incorporate RRs

in the simulation-based framework and discuss the impacts of deepening

RR penetrations in the grid’s resource adequacy. We further define addi-

tional sensitivity indices to capture the marginal behavior of the metrics

with respect to deepening renewable penetrations and to investigate the sub-

stitutability of RRs to conventional resources.

In Chapter 4, we provide a brief description of the study system and dis-

cuss the nature and scope of the application studies of the simulation-based

resource adequacy framework. We present the results of two representative

sets of studies on the system. One with integrated wind and solar RRs to-

gether with the existing fleet of conventional resources and a second with

the gradual replacement of the conventional resources by renewable gener-

ation capacity. For each study we analyze multiple scenarios of solar and

wind generation penetrations to evaluate the resource adequacy metrics —

the LOLE, LOLH and the EUE — and their associated sensitivities. The

study results demonstrate the improvement in the grid’s resource adequacy

as the penetrations of RR deepen. Specifically, the results indicate the dis-
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tinct nature of deepening solar and wind penetrations and their common

diminishing marginal return characteristic. When the retirement of fossil-

fired generation units is taken into account, it becomes clear that additional

resources are needed to maintain the grid’s ability to meet the industry-wide

“1 day in 10 years” criterion. We provide in Chapter 5 a summary of the

key findings in the work presented in this thesis. We also indicate directions

for future research in the topic.
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CHAPTER 2

RESOURCE ADEQUACY FRAMEWORKS

In this chapter we start out our discussion of resource adequacy with a focus

on conventional generation resources. A fundamental concept in resource

adequacy studies is the loss of load event, whose mathematical characteriza-

tion is key in the quantification of resource adequacy. Indeed, it becomes the

basic building block in the definition and evaluation of various resource ad-

equacy metrics used for adequacy measurements. Our discussion includes a

review of the analytical resource adequacy evaluation framework. We use the

framework to explain the significance and the salient characteristics of the

industry-wide resource adequacy metrics and to clarify various misconcep-

tions associated with their interpretation. Specifically, we provide an unam-

biguous definition of the widely used “1 day in 10 years” resource adequacy

criterion. Furthermore, we point out the key limitations of the framework

as it cannot accommodate the evaluation of resource adequacy for systems

with time-varying resources.

The limitations of the analytic framework are addressed through the con-

struction of a more general, simulation-based framework that can be used

for the resource adequacy analysis for systems with time-varying resources.

Such a framework can in particular be used for resource adequacy evaluation

of systems with integrated RRs. A key element of this more general frame-

work is the ability to represent in as much detail possible the conventional

generation resources and provide the basis for the definitions of the analogues

of the industry-wide resource adequacy metrics. The chapter provides the

entire analytical basis for the work presented in this thesis.
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2.1 Resource adequacy

Resource adequacy is defined as the ability of the electric system to supply

the aggregate electrical demand and energy requirements of the end-use cus-

tomers at all times, taking into account scheduled and reasonably expected

unscheduled outages of system elements [1]. In this context, a scheduled out-

age is an outage that results when a system component is deliberately taken

out of service at a planned time and for a specified duration, typically, for

purposes of construction, preventive maintenance or repair. An unscheduled

or forced outage is an outage that results from emergency conditions created

by a component, that require the component be taken out of service immedi-

ately, either automatically or as soon as the appropriate switching operations

can be performed, or an outage caused by improper equipment operation or

human error [6]. We point out the difference between a component outage

and a power shortage or interruption. An outage, be it scheduled or forced,

refers to the state of a component when it is not available to perform its

intended function due to the occurrence of some event directly associated

with that component. On the other hand, power shortages or interruptions

describe a situation where the firm load obligations of the system exceed the

instantaneous available generation capacity and consequently result in the

curtailment of firm electricity supply to load customers.1 We refer, typically,

to such situations as loss of load (`.o.`.) events.

In general, a `.o.`. event is caused by one or more component outages,

but a component outage need not result in a `.o.`. event. A `.o.`. event will

occur only when the system load exceeds the total available generation ca-

pacity. Resource adequacy assessment examines the `.o.`. events to evaluate

the probability of such events over a specified period of time. In this thesis,

we focus on resource adequacy of the bulk power system — the high volt-

age transmission, generation and the load resources connected at that level

— to determine the ability of system resources to meet the forecasted de-

mand. The system resources considered include fossil-fired and nuclear units,

1Most customer interruptions of service are due to distribution network events, such
as a squirrel, who seeks to have a warmer environment and enters into a transformer and
ends up electrocuted. Such events may lead to customer outages due to a failure in the
distribution system. Although more frequent, such failures have more localized effects
than outages in the bulk power system. In this thesis, we focus on the failures only in
the generation resources as they affect large portions of the system and therefore can have
widespread consequences for both society and the environment.
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RRs and demand response resources (DRRs). In resource adequacy studies,

we assume that the transmission network is capable to deliver energy from

any generation source to any load location without losses, congestion or bus

deterioration. Moreover, we ignore other parts of the system, such as the

distribution. In conclusion, resource adequacy assessment entails the evalua-

tion of the probabilities associated with `.o.`. events, within a framework of

well-defined and appropriate assumptions.

2.2 The time-abstracted framework

Resource adequacy is one of the most important issues in planning studies

and, various studies are carried out for different duration periods that can

last from days to years. The goal of such studies is to assure that the planned

future system can adequately meet customers’ future load and energy needs.

Therefore, the nature of the problem considered is inherently uncertain as

it requires the prediction of future phenomena and behavior of the system.

The main sources of uncertainty typically considered are the variations in

system loads and the available capacity of the supply resources. The bulk

power system load — the sum of the nodal loads — exhibits wide fluctuations

in a given period due to customers’ variations of electricity usage, changes

in weather conditions, economic factors, government policy decisions, and

other drivers. Also, the uncertainty related with the available capacity of

supply resources at a future time, needs to be explicitly taken into account in

resource adequacy assessment studies. For example, conventional generation

resources, such as coal, nuclear and gas units, experience forced outages

due to various causal factors that result in a unit’s ability to provide only

part or zero of its capacity. Consequently, a resource adequacy evaluation

framework requires the explicit and appropriate representation of the wide

range of sources of uncertainty in the bulk power system.

The time-abstracted framework is an analytical construct for resource ade-

quacy assessment that integrates the models of the load and supply resources

and the computational schemes for the adequacy evaluation and the metrics

of interest. The fundamental assumptions under which we construct the

framework are:

A 1 The only sources of uncertainty considered are in the system loads and
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supply resources.

A 2 The uncertainty in the loads is independent of that in the supply re-

sources.

A 3 The failures/repairs of the system supply resources occur independently

of each other.

At the outset, we define the smallest indecomposable unit of time, i.e., the

resolution of time used, which is typically study-dependent. The framework

is used to perform a study over a given period T , usually specified as a set

of hours or days. Hourly (daily) time resolution implies that the smallest

indecomposable unit of time is one hour (day) and no phenomena of shorter

duration can be represented. For hourly time resolution, we denote by Th

the study period represented by the set that consists of all the H hours

in Th = {h : h = 1, 2, . . . , H}. For a daily resolution, T d is represented

by the set that consists of all the D days in T d = {d : d = 1, 2, . . . , D}.
As an example, we show in Fig. 2.1 a study period of one week whose

Th consists of 168 non-overlapping hourly subperiods and so Th={h : h =

1, 2, . . . , 168}. For a daily resolution, the same one-week period consists

of seven non-overlapping such periods, one for each day of the week and,

consequently T d={d : d = 1, 2, . . . , 7}. Throughout this thesis, we limit the

time resolution to either one hour or one day.

Figure 2.1: Hourly and daily representation of a one-week study
period.

Once the time resolution is specified, we delve into the modeling of loads

and supply/demand resources. We represent probabilistically the uncertainty
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associated with the system load, which we think as a random variable (r.v.)

denoted by L
∼

. The time resolution provides the basis for the appropriate

representation of the loads. Under hourly resolution, the sample space of the

load r.v. is the set of hourly values given by {`h : h ∈ Th}. Each load value

`h is, in fact, a snapshot of the system load at hour h ∈ Th and, under the

stated assumptions the “fixed” load over the entire hour. Such an hourly

value represents the sum of all the loads in the bulk power system for that

hour. Under the daily time resolution, the sample space of L
∼

is given by

{` d : d = 1, 2, . . . , D} with each ` d as the daily peak load. Under the stated

assumptions, for the daily resolution, the system demand is represented by

the peak hourly value of each day. Once the demand values under an hourly

resolution are known, the values ` d, d ∈ T d are computed directly from the

set {`h : h ∈ Th} using

` d = max
{
`24(d−1)+1, `24(d−1)+2, . . . , `24d

}
, (2.1)

where `24(d−1)+h represents the load value at hour h of day d. We observe

that such a representation implies, in effect, an upper bound for the actual

load in the system as the peak load is experienced only during the peak

load hour(s). We illustrate the hourly and daily representations for a one-

week study period in Fig. 2.2. For the hourly resolution, the total load is

represented by the 168 hourly values. The daily peak values are indicated

by the broken lines and the daily resolution model is shown.

We develop a probability distribution of L
∼

from the hourly load curve for

the given period: if we ignore time, we can rearrange the loads in order

of decreasing values from the highest to the lowest and construct the load

duration curve (LDC ). Figure 2.3 illustrates the LDC curve for the demand

given in Fig. 2.2, with the time axis normalized to have 168 hours equal to

100 percent. Note that such a reordering involves complete loss of all ideas

related to time and so the chronological order of loads in the period is no

longer available. Every point (t, `) on the LDC represents the percentage of

time t that load exceeds the given value `. We interpret this fraction of time

as the probability that load exceeds the value `.

We next consider the representation of the conventional generation re-

sources in the supply system that consists of G such resources and we denote

them as G = {g
k

: k = 1, 2, . . . , G}. Each g
k
∈ G denotes a generation plant
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Figure 2.2: Example of the system loads for a week under hourly
resolution. Each peak hour is indicated by the bold broken line and is

used to construct the load values under daily resolution.

Figure 2.3: Load duration curve with normalized time axis.
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that may consist of a single or a block of units and from now on we will use

the term unit to refer to any such generation plant. We model each conven-

tional unit by a multi-state r.v., whose states represent the discrete capacity

values of the unit, from total unavailability — the unit is fully outaged — to

full capacity. Each state has an associated probability and at any point in

time the unit can be in only one of its possible states. The state probabilities

are the long-run probabilities determined from the steady-state behavior of

the unit and are independent of time [6]. Furthermore, each generation unit’s

model satisfies the assumption of uniform representation of the supply sys-

tem for the entire simulation period. In effect, the model of each generation

unit is time independent with the time abstracted out. Mathematically, the

model of each g
k
∈ G with n states, in terms of the available capacity r.v.

A
∼ k

is given by

A
∼ k

=



c k, with probability p k

d 1
k with probability r 1

k

d 2
k with probability r 2

k

...

dn−2k with probability r n−2k

0 with probability 1−
n−2∑
j=1

r jk − p k .

(2.2)

The expression in (2.2) describes the probability mass function (p.m.f.) of

the r.v. A
∼ k

. The sum
G∑
k=1

A
∼ k

represents the total system available capacity

r.v., which we denote by A
∼ T

. Its distribution can easily be derived from

the p.m.f.s of the statistically independent r.v.s A
∼ k

in the sum [17]. The

statistical independence assumption is reasonable given the fact that the

conventional units are put in service at different times, have different outages

and may have different generation technology implemented. The number of

states of A
∼ T

is J , which may be a very large number for a large value of

G. Each state corresponds to a distinct2 configuration of available capacity

2The states of A
∼ T

need not have distinct values since multiple configurations of the indi-

vidual states of the units may result in the same total available capacity aj , j = 1, 2, . . . , J .
In such cases, we can merge states with the same aj to determine the probability as the
sum of the merged states’ respective probabilities.
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that we denote by aj for j = 1, 2, . . . , J . Every state aj has an associated

probability denoted by pj.

The resource adequacy quantification entails the evaluation of the prob-

ability of a `.o.`. event over a specified period Th or T d. From this point

on and without any loss of generality, we assume hourly time resolution un-

less we explicitly state otherwise. The probability of a `.o.`. event, which

we refer to as loss of load probability (LOLP), is defined as the probabil-

ity of the event that load exceeds the total available capacity [17] and is

mathematically expressed by

ρ = P
{
A
∼ T

< L
∼

}
. (2.3)

Here we use ρ to denote the LOLP and P{·} to denote probability. To

evaluate the expression in (2.3) we make use of the convolution formula and

of assumption A 2. Then for ∀ x ∈ R,

F
A∼ T
−L∼

(x) = P
{
A
∼ T
− L

∼
≤ x

}
= P

{
A
∼ T
≤ L

∼
+ x
}

∫ +∞

−∞
P
{
A
∼ T
≤ `+ x

∣∣∣∣L∼ = `

}
f
L∼
(`) d` =∫ +∞

−∞
P
{
A
∼ T
≤ `+ x

}
f
L∼
(`) d` =

∫ +∞

−∞
F
A∼ T

(`+ x)f
L∼
(`) d` .

(2.4)

In expression (2.4), f
L∼
(`) denotes the probability density function (p.d.f.)

of demand and F
A∼ T

(·) the cumulative distribution function (c.d.f.) of the

total system available capacity. We devote Appendix A to provide a detailed

discussion of the analytical details in the computation of ρ for a study period

Th, which we denote by ρ
Th

.

The LOLP for a period Th is evaluated as the weighted sum of the LOLP

values for each demand level `h. The mathematical expression of LOLP is

given in (A.6), which we repeat here to facilitate our discussion:

ρ
Th

=
1

H

H∑
h=1

φ(`h) . (2.5)

We can similarly derive the LOLP for a period T d where the smallest time

granularity is one day. The evaluation procedure is essentially analogous

to the hourly resolution approach. The key difference is that, in the daily
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representation we condition on the event of being in any of the D days in

the period and each load value ` d represents a daily peak load. We note

that the order in which the probability computations are performed in either

scheme, is not of impact to the determination of ρ. Each φ(`h) or φ(` d)

simply represents a term in the summation and the order of the term in the

addition is irrelevant in the evaluation of the LOLP for the entire period.

Therefore,

ρ
T d

=
1

D

D∑
d=1

φ(` d) . (2.6)

From the previous discussion we conclude that resource adequacy is related

to the idea of a `.o.`. event and its probability of occurrence — the LOLP.

The definition of the LOLP encompasses two key sources of uncertainty:

the system loads and the supply/demand resources. In order to correctly

interpret the LOLP, it is critical to clarify the time resolution and the length

of the evaluation period. The value of the LOLP by itself provides incomplete

information on the system resource adequacy absent the specification of such

underlying assumptions in its evaluation. In general, the LOLP depends on

a number of additional other factors such as the demand that the supply

resources must meet, the total number of generation units in the supply

system as well as their availability states and their associated probabilities.

2.3 Resource adequacy metrics

With the developed mechanisms and the framework to evaluate the LOLP,

we proceed with the discussion of industry’s widely used resource adequacy

metrics. We make detailed use of the analysis presented for the LOLP com-

putation, which we view as the basic building block for the computation of

each of the resource adequacy indices of interest. We begin our discussion

with the evaluation of LOLP for a time resolution of a day and a study period

T d. The LOLP metric calculated under such assumptions is also frequently

referred to as the loss of load expectation (LOLE ). The LOLE index for

a specified period, is defined, as the expected number of days with a `.o.`.

event, under the explicit assumption that each day’s load is represented by

its daily peak value. The LOLE measures the mean number of `.o.`. events

in the specified period T d and is expressed as number of events per number
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of days in T d. In order to gain more insights into the meaning and inter-

pretation of the LOLE, we present an alternative procedure to evaluate the

LOLE. We note that the LOLE value equals the LOLP value for the period.

We define the binary-valued r.v. M d
∼

for each day d ∈ T d as

M d
∼

=


1, if `.o.`. occurs in day d ∈ T d

0, otherwise ·

(2.7)

If ` d is the peak load of day d, the probability of the value m of M d
∼

is given

by

P
{
M d
∼

= m

}
=


φ(` d), if m = 1

1− φ(` d), if m = 0 ·

(2.8)

Then, for the D-day period T d, the LOLE ξ
Td

is

ξ
T d

= E

{
D∑
d=1

M d
∼

}
days

D days
=

D∑
d=1

[1 · φ(` d) + 0 · (1− φ(` d))]
days

D days

=
D∑
d=1

φ(` d)
days

D days
·

(2.9)

We interpret ξT d
to be the expected number of days out of D days in

which the daily peak load exceeds the total supply system available capacity.

The LOLE index is simply the value of the long-run average of the number

of days with a `.o.`. event in the period T d of D days. Since the smallest

unit of time is a day and no fraction of a day can be represented, the LOLE

index cannot measure neither the capacity shortfall to meet the load nor the

duration of the `.o.`. event. For each day d, the procedure evaluates whether

or not the total available generation capacity in the system is able to meet

the daily peak load. Each day d with a `.o.`. event contributes to the LOLE

the amount P
{
A
∼ T

< ` d

}
and a day without a `.o.`. event does not impact

its value.

The daily peak load representation, in the LOLE evaluation in (2.9), is
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unable to capture the more realistic situation that the `.o.`. event happens

only in those hours of day d in which the hourly load exceeds the correspond-

ing hourly system total available generation capacity. Hence, we need to use

a finer resolution of one hour as the smallest indecomposable unit of time to

do so. For such a representation, we examine independently — of each other

hour — each hour in the period Th to evaluate the probability of inadequate

generation to meet demand. The LOLP of a period Th is, typically, referred

to as the loss of load hours (LOLH ) in order to distinguish its value from the

LOLE metric, which is determined with a time granularity of one day. More

specifically, the LOLH index is defined as the expected number of hours with

an `.o.`. event in a period Th. We define the binary-valued r.v. Mh
∼

for each

hour h ∈ Th

Mh
∼

=


1, if `.o.`. occurs in hour h ∈ Th

0, otherwise .

(2.10)

For an H-hour period Th, the LOLH ηTh
is

η
Th

= E

{
H∑
h=1

Mh
∼

}
hours

H hours
=

H∑
h=1

φ(`h)
hours

H hours
. (2.11)

We interpret η
Th

as the expected number of hours out ofH hours in which the

hourly load exceeds the system total available generation capacity. Since the

smallest time unit is one hour, no fraction of the hour can be represented and

no duration of the `.o.`. event can be measured. For every hour h ∈ Th, we

examine whether the total available generation capacity exceeds the demand

`h for that hour. Every hour h that experiences a `.o.`. event contributes to

η
Th

the probability of the event P
{
A
∼ T

< `h

}
, while the hours with no `.o.`.

events have zero contribution to the LOLH. We note that ξ
T d

is a unitless

quantity as is η
Th

, since (2.9) and (2.11) are similar.

While the indices ξ
T d

and η
Th

are similar, there are important differences.

It is incorrect to substitute 1 day by 24 hours in (2.9) to evaluate η
Th

due

to the inability to represent any fractional unit of time less than one day.

Indeed, there exists no one-to-one and onto mapping between ξ
T d

and η
Th

.

For a given daily period T d and the corresponding hourly period Th, the
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relationship that captures the behavior between the two indices is given by

the following inequalities

ξ
Td
≤ η

Th
≤ 24 ξ

Td
. (2.12)

The left inequality in (2.12) states that η
Th

is an upper bound for ξ
Td

. Fur-

thermore the right inequality in (2.12) states that η
Th

is bounded by 24 ξ
Td

for the period of evaluation. The equality η
Th

= 24 ξ
Td

holds only for the case

where the load in each of the 24 hours of each day in T d remains constant

at its daily peak value. The equality ξ
T d

= η
Th

holds when there is exactly

one `.o.`. event for each day in the entire study period and that event occurs

for the single hour with the daily peak load value. We present the proof of

the inequalities in (2.12) in Appendix B.

We note that we are not restricted to use only hourly or daily load rep-

resentations and there may be multiple resource adequacy metrics defined

and evaluated as we use coarser or finer time resolutions. Such flexibility

also dictates the necessity to thoroughly understand both the nature and

the implications of the modeling assumptions so as to allow the comparative

study of resource adequacy indices for the same system on a meaningful and

consistent basis.

The resource adequacy metrics discussed so far do not consider the severity

of the `.o.`. event. A metric that evaluates the sum of the average firm

hourly load shed, expressed in MWh, is the expected unserved energy (EUE ).

The EUE metric measures the expected value of energy not served due to

inadequate available generation capacity in the system that causes the `.o.`.

events in the period Th. We denote u
Th

the EUE for the period Th. We

evaluate u
Th

u
Th

=
H∑
h=1

E {MWh not served in hour h}

=
H∑
h=1

E
{
MWh not served

 hour h}P {hour h} ,

(2.13)

where, we condition on each equiprobable event of being in the hour h of the

period Th. In order to evaluate u
Th

we first define the capacity deficiency
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r.v.

∆
∼ h

= max
{

0, L
∼
− A

∼ T

}
, (2.14)

where the subscript h of ∆
∼ h

indicates the hourly resolution of the study pe-

riod. We partition the sample space of ∆
∼ h

into two non-overlapping events:

L
∼
> A

∼ T
and L

∼
≤ A

∼ T
. To evaluate u

Th
, we make use of conditional expec-

tation and reduce the calculations to the sample space defined by the event

L
∼
> A

∼ T
. In this way,

u
Th

= H · E
{

∆
∼ h

}
= H · E

{
L
∼
− A

∼ T

∣∣∣∣ L∼ > A
∼ T

}
P
{
L
∼
> A

∼ T

}
+

H · E
{

0

∣∣∣∣ L∼ ≤ A
∼ T

}
P
{
L
∼
≤ A

∼ T

}
= H ·

H∑
h=1

E
{
`h − A

∼ T

∣∣∣∣ `h > A
∼ T

}
P
{
A
∼ T

< `h

}
· P
{
L
∼

= `h

}
=

H∑
h=1

E
{
`h − A

∼ T

∣∣∣∣ `h > A
∼ T

}
φ(`h) .

(2.15)

The EUE, in principle, may also be calculated for a load model with daily

resolution under the assumption that the daily peak load is used to represent

load. The EUE augments the information provided by the LOLE and LOLH

metrics as it provides a measure in MWh of the energy not met due to `.o.`.

events. We note that each `.o.`. event in a period contributes to the ξ
T d

(η
Th

)

an amount equal to its respective probability. However, the contribution of

a 100 MWh or 1, 000 MWh loss is weighted by the respective probability of

the `.o.`. event to compute u
T d

(u
Th

).

We use this analysis to gain some insights into the meaning of the widely

used industry standard of “1 day in 10 years”. This measure of adequacy is

sometimes expressed as ξ
T d

= 0.1 day/year or as ξ
T d

= 1 day/10 years. The

interpretation of the “1 day in 10 years” standard is that the electric system

maintains adequate generation and DRRs such that the system peak load is

likely to exceed the available capacity at most once in any ten-year period.

A frequent misconception in the interpretation of the “1 day in 10 years”

criterion is that it is equivalent to η
Th

= 24 hours/10 years. Such inference

may result from the misinterpretation of the term “1 day” in the criterion
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to refer to the entire time period of one day. Given that a day consists of

24 hours, it is easy to deduce that “1 day in 10 years” corresponds to “24

hours in 10 years”, which translates to η
Th

= 24 hours/10 years. However,

based on the discussion for the metrics evaluation in the previous sections,

such statements are inaccurate. The evaluation of ξ
T d

in days/year is based

on the conduction of repeated experiments where the time resolution is fixed

and the load representation remains uniform throughout each experiment

for the entire study period T d. The LOLE ξ
T d

is the long-run expectation

of the dichotomous outcomes of each experiment under the daily peak load

representation. We cannot use the value of ξ
T d

to derive information on the

value of η
Th

since we lack the required level of detail in the load represen-

tations. The evaluation of each metric involves two similar albeit different

in terms of the underlying assumption procedures. The assumptions in the

evaluation framework require the careful interpretation of each metric with

full consideration of the limitations imposed by the resolution level, i.e., the

definition of the smallest indecomposable unit of time.

2.4 The time-dependent framework

In the time-abstracted framework discussed in the previous sections, we pre-

specified the smallest indecomposable unit of time and decomposed the entire

study period into a set of non-overlapping such time-units. We further im-

posed the fundamental assumption that throughout each time-unit in the

set, the system conditions are uniform and therefore no time dependence is

represented in the study. Indeed, throughout each experiment performed for

each hour h ∈ Th or day d ∈ T d, the system load is fixed and the avail-

able generation is statically represented by a set of capacity states. As a

result, the time-abstracted framework, lacks the capability to represent the

time-dependent nature of the demand and supply resources, particularly the

RRs. Taking into consideration the recent policies adopted in various coun-

tries that push toward more RR integration into the grid, there is an acute

need for resource adequacy assessment tools that can explicitly account for

the RR intermittent and stochastic nature. Consequently, in order to explic-

itly represent the time-varying nature and temporal correlations of system

load and supply/demand resources, we veer from the random-variable-based
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time-abstracted scheme to a random-process-based framework for resource

adequacy assessment.

The time-dependent framework is a simulation-based construct for which

assumptions A 1−A 3 also hold. In the framework, we require the specifica-

tion of the smallest indecomposable unit of time and of the study period for

which we wish to perform resource adequacy assessment studies. Through-

out this report we assume the smallest indecomposable unit of time to be

one hour for a study period Th consisting of H hours.

For the study period Th, we represent the system load as a discrete-time

random process (r.p.) denoted by
{
L
∼

[h] : h = 1, 2, . . . , H
}

. The r.p. is a

collection of time-indexed r.v.s where each L
∼

[h] represents the r.v. of the

system load in hour h. The complete representation of the load by a r.p.

further requires the specification of its sample space as well as of the proba-

bility law that maps each element of the sample space to the interval [0, 1].

The procedure of how to construct the sample space of the load r.p. has

been extensively discussed in [18] and we adopt the same representation in

this report. In effect, the sample space Ω{
L
∼
[h] : h=1,2,...,H

} of the system load

r.p. is assembled by using historical data where each set of H hourly loads

represents a sample path (s.p.) of
{
L
∼

[h] : h = 1, 2, . . . , H
}

. Such a repre-

sentation explicitly considers the time-correlations among hourly loads, since

every historical s.p. has the time-correlation of the hourly loads embedded

in it. Each s.p. is assumed to be equiprobable with probability one over the

total number of s.p.s making up the sample space. An example of a s.p. for

the load r.p. is shown in Fig. 2.2 for a week-long period.

For each conventional generation unit g k ∈ G , we denote by Ak
∼

[h] the

unit’s available capacity r.v. in hour h. We further assume that, for each

hour h the state of unit k is independent of the state of any other unit k′,

k′ 6= k. Hence, Ak
∼

[h] and Ak′
∼

[h] are statistically independent r.v.s. In order to

capture the variation of the availability of each conventional unit, we deploy

a discrete Markov process with the appropriate number of states, where the

transition times between states are assumed statistically independent and

exponentially distributed r.v.s. As a side note, we clarify that it is necessary

to “discretize” the continuous transition time r.v.s, in order to provide a

consistent representation of both the system demand and unit availabilities

in terms of the time resolution of the study period Th. A procedure of how to
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Figure 2.4: A day-long sample path for a two-state generation unit.

convert the continuous-time availability s.p.s to ones of hourly resolution is

discussed in [18]. Therefore, we denote the availability of each unit g k ∈ G by

the discrete-time r.p.

{
Ak
∼

[h] : h = 1, 2, . . . , H

}
. By sampling the transition-

time exponential distribution, we can determine the time period that the

unit g k spends at each of the capacity states. The statistical independence

assumption allows for the construction of individual s.p.s for each g k ∈ G .

The collection of hourly realizations {a
k
[h] : h = 1, 2, . . . , H} constitutes a

s.p. of resource g k’s available capacity and it essentially represents a sequence

of states through which the unit passes over each hour of the period Th. We

illustrate the concept of a s.p. for conventional generation resources with

a simple example. Assume unit g k ∈ G is described by only two states:

the state up represents the state where the unit operates at full capacity ck

and the state down where the unit provides zero capacity. A sample path

for the availability r.p. is an alternating sequence of periods that the unit

spends in states up and down and is illustrated in Fig. 2.4. The methodology

for simulating the available capacity of conventional generation resources is

well documented in the literature and interested readers can refer to [19] for

more details. We represent the total available capacity in the system by the

discrete-time r.p.
{
A
∼ T

[h] : h = 1, 2, . . . , H
}

. From the s.p.s of the available

capacity of each unit, we can derive the s.p. {a
T
[1], a

T
[2], . . . , a

T
[H]} for the

total available capacity where

a
T
[h] =

G∑
k=1

ak[h] , (2.16)

for every h ∈ Th.
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Figure 2.5: Determination of loss of load events via comparison of the
demand and availability s.p.s.

The time-dependent framework makes use of the systematic sampling of

the load and generation units availability r.p.s to simulate the behavior of

the system and to generate the realizations of the loads and supply/demand

resources. From the obtained realizations we can approximate the resource

adequacy metrics of the sytem for the entire study period. More specifically,

multiple runs of the simulation procedure are performed for a given study

period Th. At every simulation run, s.p.s of the system load and generation

unit availability are randomly sampled. The s.p.s of the units are combined to

produce the s.p. of the total available capacity in the system. The realization

of the load is superimposed on the realization of the total available capacity

as illustrated in Fig. 2.5. By observing the realized behavior of the system,

we count the `.o.`. event occurrences and record their duration for the entire

study period Th. From Fig. 2.5, we observe that two `.o.`. events occurred

during the day: one at 8 AM and the other at 7 PM, each of hourly duration.

The example in Fig. 2.5 represents a single simulation run of the system, for

a day study period. In order to produce estimates of the resource adequacy

metrics with good fidelity, we need to repeat the experiment multiple times.
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Issues regarding the number of simulation runs and the stopping criteria for

the simulation procedure are discussed in [19].

We denote the total number of simulation runs by N and each run by i.

Then, for each hour h and simulation run i we define the `.o.`. event index

β(i)[h] =


1, if `(i)[h]− a(i)

T
[h] > 0

0, otherwise

, (2.17)

where `(i)[h] and a(i)
T

[h] denote the realizations of L
∼

[h] and A
∼ T

[h] respectively

at the ith run. We further define the capacity deficiency for each hour h as

δ(i)[h] = max
{

0, `(i)[h]− a(i)[h]
}

. At the completion of simulation run i, the

output s.p.s
{
β(i)[h] : h = 1, 2, . . . , H

}
and

{
δ(i)[h] : h = 1, 2, . . . , H

}
for the

`.o.`. event index and the capacity deficiency are collected. Then, all the

metrics of interest can be derived from the generated s.p.s. For example, the

LOLP for the computed period Th is given by

ρ(i)
Th

=
H∑
h=1

β(i)[h]
hours

H hours
. (2.18)

The EUE can be evaluated as

u(i)
Th

= H ·
H∑
h=1

δ(i)[h] MWh . (2.19)

To evaluate the LOLE metric for the simulation run i, we require the knowl-

edge of how many days in the study period experienced a `.o.`. event. We

can derive the LOLE by the following procedure:

1. Since the study period Th can be of any length H, we need to determine

how many days are in Th. Therefore, we decompose Th into [D] non-

overlapping subperiods, where D = H/24 and [D] denotes the largest

integer contained in D.

2. For each day d = 1, 2, . . . , [D], the subperiod

Th


d

= {24(d− 1) + h : h = 1, 2, . . . , 24} , (2.20)
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essentially represents the hours in day d.

3. We define the binary-valued index α(i)[d] that takes value 1 if there

exists at least one non-zero value of β(i)[h] in the set

{
β(i)[24(d− 1) + h] : h = 1, 2, . . . , 24

}
. (2.21)

Otherwise, α(i)[d] takes the value zero.

4. We increase the index d = d + 1 and proceed to the next subperiod

Th


d
.

5. When d > [D], ξ(i)
Th

is

ξ(i)
Th

=

[D]∑
d=1

α(i)[d]
days

D days
. (2.22)

The final values of the metrics of interest, after N runs of the simulation

procedure, can be approximated as the simple average of the generated se-

quence of N values. For example, the LOLP index for the study period Th

is given by

ρ
Th
≈

N∑
i=1

η(i)
Th

N
. (2.23)

Similarly, for the EUE

u
Th
≈

N∑
i=1

u(i)
Th

N
. (2.24)

2.5 Conclusions

In this chapter we discussed two resource adequacy evaluation frameworks:

the time-abstracted and time-dependent framework. We defined and pro-

vided the analytical expressions of the industry-wide resource adequacy met-

rics and discussed the mechanisms for the metrics consistent evaluation. The

underlying assumption of the time resolution in the load model is key to

understand the nature and meaning of each metric. However, the limita-

tions of the time-abstracted framework in the representation of the uncer-
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tain and time-varying nature of load and supply/demand resources motivated

the development of a simulation-based scheme where load and resources are

modeled as r.p.s, whose distribution has no analytical characterization. A

salient aspect of the r.p. representation is the explicit consideration of the

spatial and chronological correlations among the s.p.s of the loads and sup-

ply/demand resources. The systematic sampling of the r.p.s generates the

realizations of the outputs of the loads and resources from which the re-

source adequacy metrics are evaluated for each simulation run. In Chapter

3 we describe how we make use of the time-dependent framework to explic-

itly represent the stochastic and intermittent nature of RRs and discuss the

impacts of the deepening RR penetrations in the resource adequacy metrics.
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CHAPTER 3

RESOURCE ADEQUACY ANALYSIS FOR
SYSTEMS WITH INTEGRATED RRS

In this chapter, we make detailed use of the time-dependent framework to

develop the approach for the assessment of resource adequacy for systems

with integrated RRs. As a first step, we introduce the net load concept

for the incorporation of RRs in the framework. Basically, we think of net

load as the net difference between the total system load and the total RR

outputs, in other words as the load that has to be met by the conventional

resources. Clearly the net load, just as the RRs and the load, is itself a

r.p. that effectively captures the intermittent and time-varying nature in

the RR outputs. The framework with incorporated RRs is a sufficiently

broad and comprehensive scheme that allows for the effective quantification

of resource adequacy via the evaluation of the LOLP, LOLE, LOLH and

EUE metrics. Our interests also lie in the investigation of the marginal

behavior of the resource adequacy metrics with respect to the deepening RR

penetrations. As such, we define and evaluate a set of sensitivity indices that

aim to quantify the impacts of RR integration on the metrics of interest. The

time-dependent framework with incorporated RRs is applicable to resource

adequacy studies over short and longer-time periods and its implementation

allows for the metrics evaluation even for data with different time resolutions.

3.1 The net load concept

The integration of large-scale RR generation into the grids introduces major

challenges in the power system operation and planning regimes. Contrary to

the conventional resources, RRs are non-controllable units due to their inter-

mittent, stochastic and time-varying nature. The uncertain and intermittent

nature of such resources is associated with fluctuating weather conditions,

which are difficult to forecast accurately, particularly with long lead times.
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Figure 3.1: Projected load, net load and RR generation in CAISO for
April 2020. (Source: www.caiso.com)

For example, the wind power output depends on the wind speed, whose pre-

dictability is problematic. As such, the RR expected power output is difficult

to predict — in fact, it is generally more difficult to predict the RR power

output than the system load [20]. The high variability in the RR outputs

results in the reduced capability of such resources to track the system load.

As illustrated in Fig. 3.1, during the course of the day, may occur multiple

misalignments of the aggregate wind power generation with the system load.

For example, between 5-9 AM and 6-8 PM, the load increases rapidly while

the wind power output decreases. Solar generation appears to track more

effectively the system load during the morning and mid-day hours, although

it rapidly declines after 6 PM while the load is still high. Furthermore, the

diagram reveals the requirements imposed to the conventional resources for

tracking the net load, i.e., the net difference between the total system load

and the total RR power outputs (including the net scheduled interchanges)

[18]. From 6 to 7 PM, the net load change triples its magnitude while the RR

generation declines, resulting in significant requirements for available genera-

tion capacity and ramping capability from conventional resources. Moreover,

between 8-10 AM, the net load and the system load move in opposite direc-

tions. Consequently, the net load may be characterized by periods of steep
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ramp-ups and down-ramps and may not exhibit the diurnal regularity pattern

of the aggregate system load. However, the net load, by definition, incorpo-

rates the intermittent and time-varying effect of RRs. In the context of the

time-dependent framework, we take advantage of the net load to extend the

framework to take into consideration the RR stochastic and time-varying

nature. In this regard, we represent the RRs as discrete-time r.p.s, similar

to those of load and conventional supply resource representations. As such,

the net load is also a discrete-time r.p., whose s.p.s are constructed from the

s.p.s of the RR and load r.p.s as detailed in the following section.

3.2 The time-dependent framework with incorporated

RRs

We consider the system with G conventional resources and integrated groups

of RRs from different technology types. We define a technology type group of

RRs to be the set of all the integrated generation plants of the same renewable

generation technology. For example, the set of all solar farms integrated into

the grid constitutes a distinct RR technology type group. Similarly, the set

of all the integrated wind farms constitutes another group. We assume there

are Q technology type groups of RRs integrated into the system denoted

by the set Q =
{
q k : k = 1, 2, . . . , Q

}
, where each q k ∈ Q corresponds to a

group of RRs. For each group q k, we denote the aggregate generation output

of the group by the r.p.
{
R
∼
k[h] : h = 1, 2, . . . , H

}
. In order to construct a

s.p. for R
∼
k[h], we make use of historical data1 from multiple units in the

group q k. We represent the RR units that belong to group q k by the set

W k =
{
w k
n : n = 1, 2, . . . ,W k

}
and the installed capacity of each unit in the

set is denoted by κ kn. The set
{
rk[h] : h = 1, 2, . . . , H

}
represents a s.p. for

R
∼
k[h] such that

rk[h] =

Wk∑
n=1

r kn[h]κ kn

Wk∑
n=1

κ kn

, (3.1)

1We assume that the historical data for the construction of the sample space of RR
r.p.s correspond to the same time period as the load historical data. Such practice aims to
ensure that the weather correlation between demand and RR generation output is taken
into consideration.
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Figure 3.2: Chronological hourly MISO wind power output for the
November 2-8, 2016 period. (Source:www.misoenergy.org)

where r kn[h] denotes the generation output of RR unit n, in the technology

type group q k for hour h, obtained from historical data. Note that r k[h]

represents the aggregate power output of all the RR units in the technology

type group q k. An example of a week-long s.p. forR
∼
k[h], with q k representing

the class of wind generation resources, is illustrated in Fig. 3.2.

For all the Q groups of RRs integrated into the grid, we define their ag-

gregate generation output by the r.p.
{
R
∼

[h] : h = 1, 2, . . . , H
}

with s.p.

{r[h] : h = 1, 2, . . . , H}, derived from the s.p.s of R
∼
k[h] as follows

r[h] =

Q∑
k=1

r k[h] . (3.2)

For a study period Th and at a specified level of installed RR capacity κ k, we

define the generation penetration of the RR group q k as the ratio of the total

generation from RRs in the group over the total energy produced by all the

system supply resources in the period. We denote the generation penetration

of the RR group q k by γk. We emphasize that each γk is a function of the

installed RR capacity κ k, the system loads and supply/demand resource

generation. As such, the values of γ k are obtained after the realizations of
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the system load, conventional resource availability and RR generation output

r.p.s. We define the vector of RR installed capacity κ ∈ RQ as

κ =
[
κ1 κ2 . . . κQ

]†
, (3.3)

and the RR penetration vector

γ =
[
γ1 γ2 . . . γQ

]†
, (3.4)

with entries the penetrations of each group of RRs. At a specified level of

RR installed capacity κ, we incorporate the RRs in the resource adequacy

framework via the system load modification: we subtract each aggregate RR

generation output s.p. from the system load s.p. that corresponds to the

same time-period. The generated s.p. represents a s.p. for the net load. In

mathematical terms, we represent the net load at a level of κ RR installed

capacity, by the discrete-time r.p.{
L
∼

[h]
∣∣∣
κ

= L
∼

[h]−R
∼

[h] : h = 1, 2, . . . , H

}
, (3.5)

with a s.p. given by the set{
`[h]
∣∣∣
κ

= `[h]− r[h] : h = 1, 2, . . . , H

}
. (3.6)

Each s.p. has an associated probability equal to one over the total number

of s.p.s in the sample space of L
∼

[h]
∣∣∣
κ
. The computational procedure for the

evaluation of the LOLP and all the other resource adequacy metrics remains

unchanged in the time-dependent scheme for the realizations of the net load,

at the specified level of RR installed capacity κ. Fig. 3.3 shows a single-day

net load s.p. that is compared with the daily s.p. of the total available

capacity. For the particular realization of the system net load and supply

availability, we can readily register the occurrence of the `.o.`. events —

namely the single event at 7 PM — and measure its magnitude. The time-

dependent evaluation procedure with incorporated RRs, entails the collection

of the total number of `.o.`. event occurrences as well as their magnitude, for

multiple and repeated realizations of the system net load and conventional

resource availability. In effect, the computational procedure is exactly similar
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Figure 3.3: Determination of loss of load events via comparison of the
net load and available capacity s.p.s.

with the case where RRs are not incorporated in the framework, i.e., κ = 0.

Therefore, we view the time-dependent framework with incorporated RRs as

a generalized scheme that can be applied for any value of κ.

We define for each hour h and each simulation run i, the hourly `.o.`. event

index

β(i)[h]
∣∣∣
κ

=


1, if `(i)[h]

∣∣∣
κ
− a(i)[h] > 0

0, otherwise

. (3.7)

We further define the capacity deficiency for each hour h as

δ(i)[h]
∣∣∣
κ

= max

{
0, `(i)[h]

∣∣∣
κ
− a(i)[h]

}
. (3.8)

The LOLP for the entire period Th is given by

ρ(i)
Th

∣∣∣
κ

=
H∑
h=1

β(i)[h]
∣∣∣
κ

hours

H hours
. (3.9)
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Similarly, the EUE can be evaluated by

u(i)
Th

∣∣∣
κ

= H ·
H∑
h=1

δ(i)[h]
∣∣∣
κ
MWh . (3.10)

The computation of the LOLE requires the evaluation of the daily `.o.`.

event index

α(i)[d]
∣∣∣
κ

=


1, if β(i)[h]

∣∣∣
κ
> 0, ∀h ∈ Th


d

0, otherwise

. (3.11)

Then, the LOLE for the period Th can be derived as

ξ(i)
Th

∣∣∣
κ

=

[D]∑
d=1

α(i)[d]
∣∣∣
κ

days

D days
. (3.12)

After N simulation runs, the final values of all resource adequacy metrics

are assessed as the simple average of the sequence of N values, each value

generated at the end of every simulation run. For example, the LOLE

ξ
Th

∣∣∣
κ
≈

N∑
i=1

ξ(i)
Th

∣∣∣
κ

N
. (3.13)

3.3 Impacts of integrated RR capacity additions

In Section 3.2 we developed the framework to evaluate the resource adequacy

metrics for systems with integrated RR capacity. We are particularly inter-

ested to provide a quantification of the impacts of RR integration on the

resource adequacy metrics. In this regard, we augment the set of metrics

with new sensitivity indices with the objective to measure each metric’s sen-

sitivity with respect to the penetration γ k around a reference penetration

level γ
0
. More specifically, if we assume a small variation δγ k for the RR

group q k, then the sensitivity of the resource adequacy metric χ with respect
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to γ k is defined as

ψχ
γ k

∣∣∣
γ

0

=
χ
∣∣
γ

0
+1 kδγ k

− χ
∣∣
γ

0

δγ k
, (3.14)

where 1 k = [0, 0, . . . , 1, . . . , 0]T with entry 1 in the kth row. The sensitivity

index ψχ
γ k

∣∣∣
γ

0

captures the change in the resource adequacy metric χ with

respect to γ k and aims to provide additional insights on how each group of

RRs may have different influence on the resource adequacy of the system.

To understand how the integration of RRs impacts the resource adequacy

of the system, we look on the representation of such resources in the time-

dependent framework. In effect, the incorporation of RRs is embedded in

the net load, which implies that the conventional generation resources of the

system with κ 6= 0, must meet, each hour, a load value that is less than or

equal to the load faced when κ = 0. The fact that the output of a RR is

a non-negative quantity implies that there is a non-negative contribution to

the system resource adequacy associated with the integration of a non-zero

RR capacity. Therefore we can write

ρ
Th

∣∣∣
κ
≤ ρ

Th
. (3.15)

The main idea behind inequality (3.15) can be readily captured in the context

of the time-dependent framework if we think that in every simulation run

the realization of the conventional capacity availability is compared with the

realization of the net load, whose hourly s.p. values are in the worst case

equal to the load s.p. for κ = 0. Consequently, the sum of the elements in the

set

{
β(i)[h]

∣∣∣
κ

: h = 1, 2, . . . , H

}
is bounded above by the sum of the elements

in
{
β(i)[h] : h = 1, 2, . . . , H

}
. We can further verify such physically intuitive

outcomes through the deployment of the analytical means offered by the

time-abstracted framework. Recall that the LOLP is evaluated as the sum

of the cumulative probabilities φ(`h) at a specified load level `h. However,

cumulative probabilities satisfy the non-decreasing property: if `h ≤ `h′ then

φ(`h) ≤ φ(`h′). Given that the LOLP is simply the sum of the non-negative

quantities φ(·) over the specified period Th, we can deduce that the LOLP

for a system with κ 6= 0 is bounded above by the LOLP for the system with

κ = 0. Given that φ(·) is the building block for the LOLH, LOLE and EUE,

we can derive analogous inequalities to (3.15) for all the resource adequacy
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metrics. We emphasize that inequality (3.15) holds under the assumption

that the set of conventional generation resources does not change throughout

the study period Th. In other words, no conventional generation capacity is

retired or displaced by RRs at any hour h ∈ Th. Therefore, the integration of

RR generation capacity to the fleet of conventional resources, can only have

a non-negative impact on the resource adequacy within the time-dependent

framework.

3.4 Conclusions

In this chapter we discussed the net load concept and its salient characteristic:

the ability to effectively incorporate the intermittent and time-varying nature

of RRs. We take advantage of the net load to generalize the time-dependent

framework so as to take into account any RR technology type group. By

making use of historical RR output data we construct the s.p.s of the RR

r.p.s, which we subtract from the load s.p.s to derive the s.p.s of the net

load. The time-dependent resource adequacy evaluation framework is similar

for the net load representation to the framework discussed in Chapter 2.

In order to investigate the impacts of deepening RR penetrations in the

resource adequacy, we augment the set of resource adequacy metrics with

sensitivity indices that measure the sensitivity of each primary metric with

respect to the deepening penetrations of each RR group. The non-negative

output of RRs, leads to the conclusion that RR capacity has a non-negative

contribution in the resource adequacy. As such, the values of the resource

adequacy metrics for the system with integrated RR capacity are bounded

above by the values of the metrics for the system with zero RR capacity —

provided that the set of conventional resources does not change. In Chapter 4

we present representative applications of the time-dependent framework with

incorporated RRs and evaluate the augmented set of indices for two distinct

cases: RRs are integrated into the existing fleet of conventional generation

resources and, RRs are integrated by displacing conventional resources.
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CHAPTER 4

NUMERICAL STUDY RESULTS

We devote this chapter to discuss a set of representative studies that we

obtain with the application of the resource adequacy evaluation framework

presented in Chapter 3. We are particularly interested in longer-term plan-

ning studies with a specific focus on the investigation of the impacts of deep-

ening RR penetrations on the resource adequacy metrics. We capture the

marginal behavior of each resource adequacy metric through a set of sensi-

tivity indices in order to provide valuable insights in the way each group of

RRs affects each metric in particular. Through extensive applications of the

framework we study the coupled effects of the deepening RR penetrations

with the retirement of conventional generation units. We analyze numerous

cases of RR penetrations and conventional capacity replacements. The sen-

sitivity studies carried out provide meaningful insights in the behavior of the

resource adequacy metrics with respect to the factors of influence considered

and highlight the limitations of RRs in the provision of resource adequacy.

4.1 The scope and nature of the studies

The focus of the application studies reported here is on solar and wind RRs.

We apply the resource adequacy evaluation framework in a large-scale, repre-

sentative test system.1 The studies performed use scaled historical load data

from the geographical footprint of the New York state control area (NYCA)

from 2011 to 2015.2 The annual summer peak load forecast for 2030 is equal

36, 800 MW. Forecasts until the year 2026 and projection methodologies for

the NYCA are extensively provided in the annual “Gold Book” [21]. The

1The details of the test system are available online at: https://github.com/Mariola-
Nd/master-thesis-data.

2Available online at: http://www.nyiso.com/public/markets operations/market data
/load data/index.jsp.
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conventional generation resources in the system have a total nameplate ca-

pacity of 31, 500 MW and include coal, gas, oil and nuclear units. The system

also incorporates 6, 000 MW of hydro renewable resources, which are modeled

as a constant injection. The imports into the system are also represented as

a constant injection of 2, 500 MW. We assume no DRRs in the system, i.e.,

all the demand is met by conventional generation units and RRs. Under this

assumption, we, in effect, consider a worst-case condition and as such, the

values of the resource adequacy metrics may be viewed as upper bounds, since

any deployment of DRRs has the impact to improve each resource adequacy

metric. We model each conventional generation resource as a two-state unit

with its own FOR. The imports are modeled as a conventional generation unit

that is 100 % available — in effect as a reduction of the load by 2, 500 MW.

For the studies, we use FOR data from the NERC generation availability

data system (GADS ). For the representation of the wind and solar farms, we

have 5-year historical wind and solar data from the geographical footprint

of NYCA for the 2011-2015 period.3 The 12 wind farms and the seven solar

farms are spread at various locations in the NYISO footprint. The nameplate

capacities of the integrated wind and solar generation resources are 15, 000

MW and 4, 000 MW, respectively.

To study the effects of the deepening RR penetrations on the resource ad-

equacy metrics, we perform two sets of studies on the system. In the first

study set, we consider the grid with the integrated solar and wind farms and

the existing fleet of conventional resources. We evaluate the LOLE, LOLH

and EUE metrics for each specified pair of solar and wind capacity values

and compute their associated sensitivities as defined in (3.14). In the second

study set we assess the impacts of the retirement of conventional generation

capacity on the resource adequacy metrics. In the latter case, solar and wind

resources are integrated into the grid via the gradual replacement of conven-

tional capacity. Such an implementation provides a more realistic perspective

on the effects of deepening RR penetrations into the grid’s resource adequacy

as the integration of RRs aims to replace polluting fossil-fired generation re-

sources. The application and sensitivity studies are carried out for a period

of 8760 hours for the year 2030.

3The solar data are available online at: https://github.com/Mariola-
Nd/master-thesis-data. The wind generation data are available online at:
https://github.com/mikerahk/FoDS Capstone/tree/master/Data.
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In the application studies, we construct 59 different cases of integrated so-

lar and wind capacities that correspond to different generation penetrations,

i.e., different values of γ = [γ s, γ w]†. From this point on, we use superscript

s and w notation to denote the group of solar and wind resources respec-

tively in order to facilitate our discussion of the study results. We define the

set of cases C = {c j : j = 1, . . . , 59} where each case c j is represented by

the capacity vector κ j =
[
κ sj , κ

w
j

]†
, which corresponds to the penetration

vector γ
j

=
[
γ sj , γ

w
j

]†
. Clearly, κ 1 = [0, 0]† results in γ

1
= [0, 0]†, i.e.,

the system has zero generation penetrations of solar and wind resources in

the case c 1. The study case c 59 corresponds to κ 59 = [4, 000, 15, 000]† and

gives γ
59

= [6.03 20.06]†, i.e., the maximum total generation penetration of

solar and wind obtained is 26.09%. The study system has a 25% penetration

from renewable hydro generation and as such, to achieve the goal of 50%

total penetration from RRs, we need an additional 25% from wind and solar

resources. Therefore, the goal of 50% RR penetration is achieved for the

study system in case c 59. Note that such a penetration level corresponds

to the case where the fleet of conventional generation resources remains in-

tact. The RR penetrations will change considerably once the retirement of

conventional capacity is taken into account.

We construct the 59 cases by the combination of nine values for κ sj and

11 values for κwj . For the solar capacity, κ sj , takes values from 0 MW to

4, 000 MW with increments of 500 MW. The wind installed capacity, κwj ,

takes values from 0 MW to 15, 000 MW with increments of 1, 250 MW. We

do not consider every possible combination (9×11) of κ sj and κwj , but rather

limit the framework applications to a subset of combinations that are rep-

resentative and sufficient to derive meaningful results. For each case, the

system has a specific value of total installed solar and wind capacity denoted

by κ sj and κwj respectively.

To evaluate the metric sensitivities under the retirement of conventional

capacity we introduce the notion of a retirement fraction denoted by ζ. We

define the retirement fraction as the fraction of the retired conventional ca-

pacity of the total solar and wind capacity added. We carry out simulation

studies with the retirement fraction ζ assuming the values in the set

Z = {ζ i = 0.05i, i = 1, 2, ..., 18} . (4.1)
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For example, ζ 2 = 0.1 implies that for 100 MW of nameplate solar and wind

capacity integrated in the system, 10 MW of conventional capacity is retired.

We construct a total of 373 cases from a subset of cases c j ∈ C and for each

ζ i ∈ Z and evaluate the resource adequacy metrics. Note that the resulting

solar and wind penetrations in each case depend both on the values of the

installed wind and solar capacities but also on the values of ζ i.

4.2 The study results

We discuss the key results and findings for the first set of studies without

the combination of retirements in the resource mix. We start out with the

presentation of the values of the resource adequacy metrics — LOLE, LOLH

and EUE — with respect to γ sj and γ wj . In Figs. 4.1 to 4.3 we plot each

resource adequacy metric for a set of representative cases. The complete

results for each case considered are listed in the Appendix C of this report.

Each point in the diagrams represents a different case, which corresponds

to a distinct pair of values
[
γ sj , γ

w
j

]†
. The horizontal axis represents the

penetration of integrated solar capacities and each scattered line indicated

by different symbol and color, corresponds to distinct wind generation pen-

etrations. As we move horizontally in the diagram from left to right, the

solar generation penetrations deepen while moving from the top to bottom

vertically, the penetrations of wind generation deepen.

We note that the results indicate that each metric decreases as the pene-

trations of wind and/or solar generation increase. For example, the LOLE

for case c 1 is equal to 0.06 days/year and it drops to approximately 0.01

days/year for scenario c 59 ([γ s59 γ
w
59]
† = [6.03, 20.06]†). If the study system

were to comply to the LOLE ≤ 0.1 days/year criterion, then the system is

resource adequate even in the case c 1. Thus the installed conventional gen-

eration resource capacity and the imports from neighboring entities suffice

to meet the system’s total forecasted load in 2030 without any integrated

wind/solar resources.

Similar decline with the LOLE is observed on both the LOLH and EUE

metrics. For example, the LOLH index drops from 0.182 hours/year to 0.025

hours/year for cases c 1 and c 59 respectively. The corresponding values for

the EUE are 273.0 MWh/year which drops to only 20.805 MWh/year. The
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Figure 4.1: LOLE values for different wind and solar penetrations.

decline in the resource adequacy indices is certainly not surprising. It is

Figure 4.2: LOLH values for different wind and solar penetrations.
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Figure 4.3: EUE values for different wind and solar penetrations.

worthwhile to note that a 6.69% penetration of wind generation alone, has a

significant impact on the metrics. Under such conditions, which correspond

to case c 5, with [γ s5 γ
w
5 ]† = [0, 6.69]†, the LOLE metric exhibits a drop of

approximately 50%, from 0.06 to 0.0368 days/year. Similar impacts are ob-

served on the LOLH and EUE values. However, we note that the decline in

the resource adequacy metrics is diminishing as the penetrations of wind and

solar deepen. Indeed, the scatter “curves” become flatter (less sloped) as we

move towards the right. The behavior of the metrics indicates diminishing

marginal returns, which implies that the contribution of 1 MW of integrated

solar and wind capacity to the improvement in resource adequacy is signifi-

cantly smaller at γ
56

= [6.03, 10.04]† than at γ
3

= [0, 3.35]†. To verify the

diminishing returns, we evaluate the sensitivities of each resource adequacy

metric as defined in (3.14).

In Figs. 4.4 and 4.5 we present the absolute sensitivity values of the LOLE

with respect to the wind and solar generation penetrations, respectively.

From these plots we observe that the sensitivity of the LOLE decreases as

the penetrations of wind and solar generation increase. The results indicate

that the reduction in the LOLE becomes smaller as we deepen the RR pen-
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Figure 4.4: Sensitivity of the LOLE metric with respect to wind
generation penetration.

Figure 4.5: Sensitivity of the LOLE metric with respect to solar
generation penetration.
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Figure 4.6: Sensitivity of the LOLH metric with respect to wind
generation penetration.

etrations into the grid. For example, from Fig. 4.4 we note that for γ sj = 0,

an increase of γ w1 from 0 % to γ w2 at 1.67 % results in a decrease of the LOLE

of approximately 45.69 × 10−4 days/year/% of penetration. However, an

increase of γ w9 from 13.37 % to γ w10 16.73 % results in the reduction of the

LOLE by only 8.05× 10−4 days/year/% of penetration. Similar conclusions

are drawn for the sensitivity of the LOLE index with respect to solar gen-

eration penetrations. Another interesting observation is that for only 4.52%

solar penetration (cyan-colored stars), the decrease in the LOLE is slightly

greater than zero for a change of wind penetration from 3.35% to as high

as 16%. For this test system, the comparative sensitivities under deepening

solar and wind penetrations are 10 times more impactful for each % change

in solar penetration than in wind penetration. Although the deepest solar

generation penetration is about a third of the deepest wind penetration in

these application studies, solar appears to be a far more impactful choice

than wind to improve the resource adequacy of the system.

We observe similar behavior in the sensitivities of the LOLH and EUE to

changes in wind and solar penetrations. We provide some illustrative rep-
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Figure 4.7: Sensitivity of the LOLH metric with respect to solar
generation penetration.

resentative results in Figs. 4.6 – 4.9. We observe from the diagrams that a

change in γ w0 = 0% to γ w1 = 1.67% results in the decrease of the LOLH by

12 × 10−3 hours/year/% of penetration. However, a change in γ s0 = 0% to

γ s1 = 0.75% — less than half the increase in the wind penetration — drops

the LOLH by 57.98 × 10−3 hours/year/% of penetration. The EUE met-

ric exhibits a decrease by 10.67 MWh/year/% of penetration for a change in

γ w0 = 0% to γ w1 = 1.67% and by 66.15 MWh/year/% of penetration for an

increase in γ s0 = 0% to γ s1 = 0.75%. However, a 0.75% percent change in γ sj

for the cases γ s7 = 5.27% to γ s8 = 6.03% results in a decrease of the LOLH

by only 6.92× 10−3 hours/year/% of penetration. This result is significantly

lower than the 57.98 × 10−3 hours/year/% of penetration obtained for an

equivalent change in the γ sj and indicates the diminution of the marginal

returns with deepening solar penetrations. Similar results are obtained for

the EUE metric for deepening RR penetrations. Such outcomes in the met-

rics values indicate that the contribution of 1 MW of integrated solar/wind

capacity to the resource adequacy of the system diminishes as the solar/wind

penetrations deepen.
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Figure 4.8: Sensitivity of the EUE metric with respect to wind
generation penetration.

4.3 The retirement case

In the second set of the sensitivity studies we evaluate the resource adequacy

metrics with respect to γ sj , γ
w
j and ζ i. For each value of ζ i we require that

the system satisfies the “1 day in 10 years” resource adequacy criterion, i.e.,

LOLE less than or equal to 1 days in 10 years. Therefore, any combina-

tion of values of γ
j

and ζ i that results in LOLE strictly greater than 1 day

in 10 years, is assumed to make the system inadequate to supply its fore-

casted load in 2030. In Figs. from 4.10 to 4.14 we plot the LOLE metric

for different values of ζ i and RR penetrations. The abscissa (ordinate) in

the diagrams represents solar (wind) generation penetrations. The center of

each circle in the diagram corresponds to a distinct pair of
[
γ sj , γ

w
j

]†
for a

specified value of ζ i. The size of each circle represents the value of the LOLE

metric. Our focus is not at the exact value of the LOLE at each case but

rather wish to investigate how the solar and wind penetrations affect the

LOLE at a specified conventional resource retirement fraction. Each circle

in Fig. 4.10 depicts the LOLE value that results under ζ 2 = 0.1, i.e., for
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Figure 4.9: Sensitivity of the EUE metric with respect to solar
generation penetration.

every 10 MW of integrated solar and wind generation capacity, 1 MW of con-

ventional generation capacity is removed from the system. For example, the

circle with center [0, 28.4]† corresponds to the system with 0 MW integrated

solar capacity and 15, 000 MW of integrated wind capacity. The retirement

fraction ζ 2 = 0.1 allows the retirement of 1, 500 MW conventional capacity.

The plot indicates that for ζ 2 = 0.1 the LOLE values decrease as we move

in either direction, that increases solar or wind penetration. However, the

decrease is more marked as we move from left to right for deeper values of

solar penetrations than from bottom to top, i.e., deeper wind penetrations.

Our simulation studies further indicate that the decrease in the LOLE

values for deeper wind penetrations, seizes to occur for ζ i ≥ 0.25. Conven-

tional capacity retirement at the fraction of 0.25 (0.5) means that for every

10 MW of integrated RR capacity, 2.5 MW (5 MW) of conventional capacity

is retired. In these cases, the substitutability of retired generation by wind

resources becomes so limited that the addition of multiples of the retired

conventional capacity by wind resources is inadequate to maintain the “1
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Figure 4.10: LOLE metric for 10% conventional generation
retirement.

day in 10 years” criterion. We point out, however, that solar substitutabil-

ity continues to maintain that criterion at both ζ 5 = 0.25 and ζ10 = 0.50

retirement fractions. This substitutability also reaches a limit for ζ i ≥ 0.75

as illustrated in Figs. 4.13 and 4.14.

The behavior of the LOLH and EUE metric for ζ 10 = 0.50 are shown in

Figs. 4.15 and 4.16 respectively.4 We observe that for this value of the retire-

ment fraction the substitutability of conventional capacity by wind resources

is limited while solar resources continue to have a positive contribution to the

resource adequacy of the study system. For ζ 10 = 0.50, the maximum (min-

imum) LOLH value is equal to 2 hours/year (0.164 hours/year) and corre-

sponds to the case [8.2, 30.7]† ([5, 0]†). The maximum (minimum) value for

the EUE metric at 0.5 retirement fraction is found to be 3, 962.1 MWh/year

(201.744 MWh/year) that corresponds to the case [8.2, 30.7]† ([9.7, 0]†). In

regard with the maximum values observed for the LOLH and EUE met-

rics for all the simulation cases, we found that those occur at 0.9 retirement

4The study results for each case with the analytical values of the LOLE, LOLH and
EUE are available online at: https://github.com/Mariola-Nd/master-thesis-data.
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Figure 4.11: LOLE metric for 0.25 retirement fraction.

Figure 4.12: LOLE metric for 0.5 retirement fraction.

fraction and are equal to 34.25 hours/year and 50, 102.69 MWh/year, respec-

tively. Both these values correspond to the case [9.8, 30.7]† with ζ 18 = 0.9.
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Figure 4.15: LOLH metric for 0.5 retirement fraction.

Figure 4.16: EUE metric for 0.5 retirement fraction.
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4.4 Key findings from the studies

The study results presented in Sections 4.2 and 4.3 provide some very use-

ful insights into the reliability impacts of deepening RR penetrations. The

large-scale system with 37, 500 MW of installed conventional and hydro re-

source capacity satisfies the “1 day in 10 years” resource adequacy criterion

by itself. Clearly, the addition of solar and wind resource capacity can only

improve the resource adequacy of the system as shown by the declining val-

ues of the metrics as the RR penetrations deepen. Indeed, for the study

system, the LOLE drops from 0.06 days/year to 0.01 days/year when a to-

tal of 19, 000 MW of solar and wind capacity is integrated into the system.

Similar declines are also observed in the LOLH and EUE metrics that de-

crease from 0.18 hours/year to 0.025 hours/year and from 273 MWh/year to

20.8 MWh/year respectively.

For the fixed conventional resource mix, the impacts of the solar RRs ap-

pear to be significantly more pronounced than those of wind on the resource

adequacy metrics. For example, with 500 MW (2, 500 MW) of installed solar

(wind) capacity for the study system, which result in 0.75% (3.35%) solar

(wind) penetrations, the impact of solar (wind) capacity on the decrease of

the LOLE is 23.15× 10−3 (35.80× 10−4) day/year. Such results make sense

because of the generally good and consistent tracking of the load by the

solar generation during the peak summer months. On the other hand, the

mismatch of the wind generation with the load is so consistent, that a five

times greater capacity addition has an order of magnitude smaller impact

on the LOLE. In terms of the days that 90% of the LOLE contributions

come from the 10% peak load values, the hot summer days, when the load

is close to or reaches its peak value, are the days or hours of day with the

highest contribution to the LOLE. Consequently, deepening penetrations of

solar generation have a more drastic impact on the resource adequacy met-

rics due to the closer tracking of load by solar resources. Therefore, the solar

resources integrated into such systems, contribute significantly more to re-

duce the LOLE metric than wind as a function of the penetration level. The

impacts of integrated solar RRs are similarly more marked on the LOLH

and EUE metrics than those of wind RRs. However, the behavior of all

the resource adequacy metrics is characterized by significant diminution of

the marginal returns as the penetrations of solar and wind deepen. In effect,
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when solar capacity increases from e.g., 0 MW to 500 MW, the declines in the

resource adequacy metrics are significantly larger compared to the declines

attained when solar capacity increases by the same amount from 3, 500 MW

to 4, 000 MW. Similar behavior of the metrics is also exhibited by increased

integrated capacities of wind resources.

The diminishing returns of deeper penetrations of solar and wind resources

constitute limitations to the substitutability of retired conventional resource

capacity by RRs. Our studies indicate that the retirement fraction ζ i consti-

tutes another limitation for the test system. Indeed, the studies in the test

system indicate that the declining effect of both wind and solar RRs on the

LOLE metric persists until the limiting value ζ 2 = 0.1. For 0.1 < ζ i ≤ 0.50,

while the declining effect of solar continues to exists, the deepening pene-

trations of wind appear to increase the LOLE values. To understand such

outcomes that highlight the distinct behavior of wind and solar resources, we

need to consider two important aspects of the study. First, the step at which

we gradually integrate solar capacity in the system for each case is equal

to 500 MW, while for wind is 1, 250 MW. This implies that as wind pene-

trations deepen, the retired conventional capacity in MW value is greater

than when solar panetrations deepen, although the overal retirement ratio

stays the same. For example, assume a case c j with κ sj = 500 MW and

κwj = 1, 250 MW. A retirement fraction of ζ 5 = 0.25 implies that 437.5 MW

of conventional capacity are replaced by 1, 750 MW of RR capacity. If we in-

crease the wind capacity by a single step we move to the case c j′ , j
′ 6= j with

κwj′ = 2, 500 MW and κ sj′ = 500 MW. For a retirement fraction ζ 5 = 0.25 the

total retired conventional capacity is now equal to 750 MW. If from the case

c j we wish to increase the solar capacity by a single step, we move to the

case c ĵ, ĵ 6= j, with κw
ĵ

= 1, 250 MW and κ s
ĵ

= 1, 000 MW. In this case, the

replaced conventional capacity is equal to 562.5 MW. As such, more conven-

tional generation capacity is retired as we move to deeper wind than solar

penetrations. The second aspect is again related to the closer tracking of the

load by the solar RRs as evidenced by the declines of the metric values as

solar penetrations deepen.

The tracking ability of solar resources during the peak summer months

is limited for 0.75 ≤ ζ i ≤ 0.9. Indeed, as illustrated in the Figs. 4.13

and 4.14 the LOLE metric increases rapidly with both solar and wind gen-

eration penetrations. We note that for ζ 18 = 0.9, although we start with

59



a resource adequate system that satisfies LOLE < 0.1 days/year, we end

up with LOLE > 2 days/year. More specifically, at 19, 000 MW of total

installed wind and solar capacity and 17, 100 MW retired conventional ca-

pacity, the LOLE w 6.0 days/year. Such limitations on RR substitutability

for retired conventional capacity require careful attention from grid opera-

tors. The approach used in the studies makes effective use of the framework

to facilitate the development of appropriate retirement schedules that have

acceptable resource adequacy characteristics.

4.5 Conclusions

In this chapter we presented representative results from our extensive appli-

cation studies on a realistic large-scale system with total installed capacity

of 40,000 MW and projected summer peak load 36,800 MW. The study re-

sults provide quantifications of the behavior of the resource adequacy metrics

with respect to deepening solar and wind penetrations. For a fixed set of

conventional supply resources, the deepening RR penetrations have a major

contribution to the improvement of the resource adequacy, as evidenced by

the declining values of the metrics. More specifically, the results demonstrate

the significantly more marked impacts of solar resources to the resource ad-

equacy of the system compared to those of wind resources. Furthermore, we

observe the diminution of the marginal returns in each metric for deepen-

ing penetrations of both solar and wind generation. When the retirement

of conventional capacity is taken into consideration, the substitutability of

conventional resources by wind RRs becomes limited for retirement fractions

ζ i ≥ 0.25. Solar resources, however, are capable to effectively substitute

the retired conventional capacity up to the limiting retirement fraction value

ζ 10 = 0.5. For values of ζ i > 0.5 neither solar or wind integrated capacity

is capable to efficiently substitute the retired conventional capacity and thus

resulting in values of the resource adequacy metrics well above the acceptable

standards.
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CHAPTER 5

CONCLUDING REMARKS

The breakthroughs in technology and the environmental concerns over the

climate change are the key drivers in the wider implementation of RRs ev-

erywhere. This thesis focuses on the important aspect of resource adequacy

to study the impacts of the deepening penetrations of RR generation in the

grid’s reliability and the quantification of these impacts for wind and solar

RRs in particular. We start out with a review of the conventional time-

abstracted resource adequacy assessment framework, which we view as the

mechanism to define and evaluate the industry-wide reliability metrics on a

consistent basis. These metrics include the LOLP, LOLH, LOLE and the

EUE. We use the time-abstracted framework to provide the analytical ex-

pressions of the metrics and discuss their salient characteristics in order to

clarify various misconceptions associated with the metrics interpretation.

The limitations of the time-abstracted framework in the incorporation of

the intermittent and time-varying nature of RRs motivated the development

of a simulation-based, time-dependent resource adequacy framework with the

capability to represent the uncertain and time-varying nature of loads and

demand/supply resources, including the intermittency in the outputs of RRs.

In this framework, the loads, supply/demand resources and RRs are modeled

as stochastic processes with sample paths (s.p.s) constructed from historical

data. Such representation effectively incorporates the spatial and chronolog-

ical correlations among the s.p.s of the loads, the supply/demand resources

and the RRs. The RRs in the system are incorporated via the net load,

whose sample space is constructed from load and RR data from the same

time period to ensure that the weather correlation between loads and RRs

is taken into consideration. To evaluate the resource adequacy metrics, we

derive the analogues of the analytical expressions of the metrics in the time-

dependent framework. Furthermore, the implementation of the framework

provides additional degrees of freedom for the definition and evaluation of

61



new metrics that are particularly appropriate for the study at hand. As such,

we develop new sensitivity indices to quantify the marginal behavior of each

resource adequacy metric with respect to the deepening RR penetrations.

The effectiveness of the time-dependent framework is demonstrated via its

extensive applications to evaluate the resource adequacy of large-scale study

systems. In the studies, we characterize the impacts of deepening RR pen-

etrations on the resource adequacy through the behavior of the evaluated

metrics — LOLH, LOLE and EUE. Given the non-negative output of RRs,

the net load s.p.s are bounded above by the system load s.p.s, resulting in

the decrease of all the metrics. Solar and wind RRs appear to have dis-

tinct impacts on the metrics, with solar contributing significantly more to

the reduction of the LOLE than wind, as a function of the RR penetra-

tion level. Another important finding is the diminishing marginal returns

characteristic on each metric associated with the deepening wind and solar

penetrations. More specifically, the improvement on the system’s resource

adequacy becomes minuscule for integrated solar and wind capacities greater

than 2, 000 MW and 7, 500 MW respectively.

The extensive resource adequacy studies we conducted are useful not only

in illustrating the nature of the behavior of the metrics with deepening RR

penetrations but also for the quantified assessment of the substitutability of

the conventional generation resources by RRs. More specifically, we observe

that notwithstanding deepening RR penetrations, the resource adequacy of

the study system begins to deteriorate, i.e., increasing values of metrics, with

the conventional generation retirement. In fact, for conventional retirement

fraction greater than 0.25, the inability of the grid to meet the “1 day in

10 years” resource adequacy criterion becomes evident. The increase in the

number of violations of the “1 day in 10 years” criterion is notably marked for

retirement fraction values at 0.75 and 0.9, with LOLE below 0.1 days/year

only for a limited number of cases. Such results demonstrate the limited

ability of RRs in the provision of resource adequacy and highlight the care

that grid operators must exercise in the retirement of fossil-fired units. A

particularly interesting finding is that for conventional retirement fractions

greater than 0.25, the integration of 15, 000 MW wind and 0MW solar ca-

pacity appears as the worst planning strategy as evidenced by the escalating

values of all the resource adequacy metrics. In fact, the studies indicate that

any conventional resource retirement schedule that is not coupled with the
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integration of solar capacity, but rather focuses entirely on wind resources,

results in significant deterioration in the grid’s resource adequacy. The LOLH

and EUE metrics increase rapidly with the wind penetration at 0.5 conven-

tional retirement fraction. At the same time, solar resources continue to

influence the indices in the opposite, i.e., decreasing, direction. However,

the positive influence of solar generation vanishes at higher values of the re-

tirement fraction. It is difficult to conclude at which values of conventional

retirement fractions and for which cases the study system is resource inade-

quate, since there do not exist widely accepted criteria expressed in terms of

the LOLH or EUE metrics. NERC has long called for “more widely-adopted

energy-related reliability metrics and targets as the share of variable genera-

tion increases in the power systems”[10] and such metrics are already being

used in various parts of the world [3]. However, in this study we focus on

the “1 day in 10 years” resource adequacy standard, yet the usefulness and

appropriateness of this standard are out of the scope of our studies. The

question of whether the EUE and LOLH metrics are more appropriate for

setting resource adequacy criteria than the LOLE as well as the introduc-

tion of entirely new metrics that are appropriate for systems with high RR

penetrations, are interesting topics of further research.

In the time-dependent framework discussed in this thesis the integration of

RRs to the existing fleet of conventional resources is expected to have a non-

negative contribution to the grid’s resource adequacy given the non-negative

outputs of RRs. In terms of the overall coupled effects of the deepening

RR penetrations and conventional capacity retirement, we cannot establish

general conclusions for every study system. The conclusions that we draw

depend on the characteristics of the loads, demand/supply resources as well

as the integrated RR capacities in each case for the particular study at hand.

For example, in a winter-peaking system we may not observe the marked con-

tributions of solar RRs to resource adequacy reported here and furthermore,

the impact of wind generation may be more pronounced.

There are a number of extensions of the work presented here. The time-

dependent framework described in this thesis is sufficiently general to allow

the respresentation of various other resources such as DRRs or other technol-

ogy type groups of RRs. In the modeling area, the simulation-based frame-

work described in this thesis assumes that the network is 100 % available

and congestion-free. As such, the metric values derived in the studies do not
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incorporate the probability that a `.o.`. event may occur due to the fact that

the grid is incapable to deliver the power supply to the loads. Therefore, a

key topic of interest is the incorporation of the network effects in the resource

adequacy evaluation. The presence of congestion in the network or failures

on the transmission lines may prevent the delivery of power from the sup-

ply resources to the loads, even if there exists sufficient available generation

capacity. In this regard, the impacts of possible line failures and congestion

need to be taken into consideration. This work requires both analytic devel-

opment and computational implementation. In addition, the modeling of the

network is critical to allow the respresentation of distributed energy resource

aggregations that are starting to play an increasingly significant role in bulk

power systems.
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APPENDIX A

LOLP EVALUATION MECHANICS

In this appendix we provide an analytical computation of the LOLP for a

system with G conventional generation units. Based on the general expres-

sion (2.4), we explicitly make use of conditional probability and assumptions

A 2 and A 3 to derive two equivalent alternative approaches to calculate the

LOLP.

The first approach is based on the combination of exact generation capacity

states with cumulative demand levels [6]. Cumulative demand levels can be

obtained from the LDC. The LOLP can be viewed as the probability that

the system demand is strictly greater than any available capacity state of the

supply resources. For the system with J distinct available capacity states,

if we condition on the event of being in each state aj, then (2.3) can be

rewritten as

ρ =
J∑
j=1

P
{
L
∼
> aj

∣∣∣∣AT
∼

= aj

}
P
{
AT
∼

= aj

}
. (A.1)

In (A.1) the first term can be rewritten as P
{
L
∼
> aj

}
(due to assumption

A 2) and is obtained from the LDC : for a demand level equal to aj the abscissa

indicates the fraction of time, i.e., the probability, that demand exceeds the

value aj. The terms P
{
AT
∼

= aj

}
for j = 1, . . . , J , are the state probabilities

pj.

The second approach to evaluate the LOLP is based on distinct demand

levels and cumulative available generation capacity states. In this scheme, we

condition on the event of being at each demand level. We assume there exist

H̃ ≤ H hours with distinct demand levels. We denote the set of such hours by

the subset H ⊆ Th and define it as H = {h : `h 6= `h′ ∀h, h′ ∈ Th, h 6= h′}.
Each demand level `h for h ∈H , has an associated probability of occurrence

equal to the ratio of the total number of times `h appears in the sample space
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of L
∼

divided by the cardinality of the sample space, i.e., H. If we denote the

total number of occurrences of `h by ωh, then the probability of `h is equal

to
ωh
H

, for h ∈H and ωh ≥ 1. The LOLP is defined as the probability that

the total available generation capacity is strictly less than any demand level,

or in mathematical terms

ρ =
∑
h∈H

P
{
AT
∼
< `h

∣∣∣∣L∼ = `h

}
P
{
L
∼

= `h

}
. (A.2)

We define the loss of load probability function φ(· ) : R+ → [0, 1] as φ(`h) =

P
{
AT
∼
< `h

}
to represent the probability of `.o.`. at any load level `h.

Therefore, we can rewrite (A.2) as

ρ =
∑
h∈H

φ(`h)
ωh
H

. (A.3)

In order to calculate the values of φ(`h), we need to derive an expression of

the c.d.f. of the r.v. AT
∼

. Under the assumption A 3 and making use of the

convolution formula we write,

P

{
G∑
k=1

A k
∼
≤ `h

}
= P

{
G−1∑
k=1

A k
∼
≤ `h

∣∣∣∣AG
∼

= 0

}
P
{
A
G

∼
= 0

}

+P

{
G−1∑
k=1

A k
∼
≤ `h − d 1

G

∣∣∣∣AG
∼

= d 1
G

}
P
{
A
G

∼
= d 1

G

}

+P

{
G−1∑
k=1

A k
∼
≤ `h − d 2

G

∣∣∣∣AG
∼

= d 2
G

}
P
{
A
G

∼
= d 2

G

}

+ . . .+ P

{
G−1∑
k=1

A k
∼
≤ `h − cG

∣∣∣∣AG
∼

= c
G

}
P
{
A
G

∼
= c

G

}

= P

{
G−1∑
k=1

A k
∼
≤ `h

}[
1−

n−2∑
j=1

r j
G
− p

G

]
+ P

{
G−1∑
k=1

A k
∼
≤ `h − cG

}
p
G

+
n−2∑
j=1

P

{
G−1∑
k=1

A k
∼
≤ `h − d jG

}
(r j

G
) = F

A∼ T/g
G

(`h)

[
1−

n−2∑
j=1

r j
G
− p

G

]

+ F
A∼ T/g

G

(`h − cG) p
G

+
n−2∑
j=1

F
A∼ T/g

G

(`h − d jG) r j
G
,

(A.4)
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where

A
∼ T/g

G

=
G−1∑
k=1

A k
∼
. (A.5)

The application of the convolution formula enables the construction of a

powerful recursive technique that may be used to evaluate the c.d.f. of the

sum of any finite number of available capacity r.v.s. The impact of the

addition of a new n-state generation unit, with n ≥ 2, on the LOLP, is

determined by conditioning on the unit being in any of its n possible states.

Thus, we derive a final expression of the c.d.f. of the G units that depends

on the state probabilities of unit g
G

and on the c.d.f. values of the sum of

available capacities of the G−1 units, whose computation is iteratively done.

In this way, the probability of loss of load for the entire period Th is based

on the evaluation of the LOLP at each demand level `h weighted by the

probabilities of `h.

Alternatively, we can evaluate the LOLP through the conduction of H

independent experiments, one for each hour in the period, where the cumu-

lative available capacity states are compared with the hourly demand value.

In this approach, we condition on the event of being at each hour h in the pe-

riod. For each h ∈ Th, we examine whether for a given single demand level

for the entire hour, the total available generation capacity is sufficient to

meet that demand — the no `.o.`. condition. Everytime we condition on the

event of being in any hour h ∈ Th, the demand r.v. takes the corresponding

value `h in that hour. Hence, we can evaluate the LOLP as

ρ =
H∑
h=1

P
{
AT
∼
< `h

∣∣∣∣hour h}P {hour h} . (A.6)

Note that in (A.5) the conditional probabilities are the values of φ(`h) since

the events {hour h} and

{
AT
∼
< `h

}
are assumed statistically independent.

The weights of φ(`h) are the probabilities of being in every hour h. Under

the assumption that the events of being in any hour h, for each h ∈ Th, are

equiprobable,

ρ =
1

H

H∑
h=1

φ(`h) . (A.7)

Equations (A.3) and (A.7) yield exactly the same values for ρ. The subtlety
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is that in the first scheme we condition on the events of being at each distinct

demand level `h, which are not equiprobable since |H | ≤ |Th|.
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APPENDIX B

PROOF OF THE INEQUALITIES (2.12)

In this appendix we provide a proof for the inequalities (2.12). Without

any loss of generality we can assume T d to consist of a single day {d1} and

Th = {h1, h2, . . . , h24} . In this case ξT d
is given by

ξ
T d

= φ(`d1)
days

1 day
, (B.1)

where `d1 = max{`h1 , `h2 , . . . , `h24} = `hp with hp denoting the peak load

hour of day d1. For the computation of η
Th

,

η
Th

=
24∑
k=1

φ(`hk) = φ(`h1) + φ(`h2)+, . . . ,+φ(`hp)+, . . . ,+φ(`h24)

= φ(`h1) + φ(`h2)+, . . . ,+ξT d
+, . . . ,+φ(`h24)

hours

24 hours
≥ ξ

T d
,

(B.2)

since φ(`hk) are non-negative quantities. We can restrict the maximum value

of ξ
T d

if we take the maximum value of φ(`hk) in the period, which corre-

sponds to the peak hourly load

η
Th

=
24∑
k=1

φ(`hk)
hours

24 hours
≤

24∑
k=1

φ(`hp)
hours

24 hours

= 24 φ(`hp)
hours

24 hours
= 24 ξ

T d
.

(B.3)

From inequalities (B.2) and (B.3) we arrive to

ξ
T d
≤ η

Th
≤ 24 ξ

T d
. (B.4)
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APPENDIX C

STUDY RESULTS

Table C.1: Resource adequacy metrics for wind and solar capacity integrations
for cases c 1 to c 13.

c j ξ (days/year) η (hours/year) u (MWh/year)

c 1 0.06034 0.18178 273.024

c 2 0.05272 0.16227 255.222

c 3 0.04669 0.14618 239.783

c 4 0.04131 0.13278 226.857

c 5 0.03676 0.12089 214.943

c 6 0.03319 0.11145 204.216

c 7 0.03018 0.10372 195.087

c 8 0.02799 0.09726 187.121

c 9 0.02601 0.09149 179.258

c 10 0.02331 0.08329 166.991

c 11 0.02145 0.0767 155.108

c 12 0.04293 0.13818 223.261

c 13 0.03666 0.12303 209.815
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Table C.2: Resource adequacy metrics for wind and solar capacity integrations
for cases c 14 to c 31.

c j ξ (days/year) η (hours/year) u (MWh/year)

c 14 0.03164 0.11031 198.164

c 15 0.02778 0.10034 188.294

c 16 0.02525 0.09242 179.034

c 17 0.02941 0.10583 183.313

c 18 0.02555 0.09514 172.999

c 19 0.02244 0.08631 164.023

c 20 0.02032 0.07956 156.24

c 21 0.01894 0.07415 148.79

c 22 0.01733 0.06635 136.099

c 23 0.01618 0.06068 125.103

c 24 0.01566 0.05691 115.984

c 25 0.01514 0.05352 107.184

c 26 0.02121 0.08327 150.351

c 27 0.01909 0.07582 142.299

c 28 0.01754 0.0699 135.465

c 29 0.01682 0.06582 128.823

c 30 0.01612 0.06173 122.668

c 31 0.01707 0.0678 122.31
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Table C.3: Resource adequacy metrics for wind and solar capacity integrations
for cases c 32 to c 49.

c j ξ (days/year) η (hours/year) u (MWh/year)

c 32 0.01612 0.06305 115.79

c 33 0.01554 0.0592 109.907

c 34 0.01517 0.05621 104.605

c 35 0.01498 0.05372 99.408

c 36 0.01456 0.0513 95.123

c 37 0.01443 0.04968 90.69

c 38 0.01435 0.04844 86.542

c 39 0.01419 0.04688 82.409

c 40 0.01389 0.0444 74.986

c 41 0.01354 0.04221 68.372

c 42 0.01508 0.05786 100.176

c 43 0.01423 0.04766 80.347

c 44 0.01436 0.05103 80.367

c 45 0.01394 0.04611 71.322

c 46 0.01383 0.04318 63.413

c 47 0.0137 0.04087 56.471

c 48 0.01334 0.03835 50.231

c 49 0.01276 0.03628 44.57
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Table C.4: Resource adequacy metrics for wind and solar capacity integrations
for cases c 50 to c 59.

c j ξ (days/year) η (hours/year) u (MWh/year)

c 50 0.01216 0.03417 39.886

c 51 0.01389 0.04505 63.452

c 52 0.01354 0.03875 48.914

c 53 0.01359 0.03981 48.931

c 54 0.01349 0.03683 42.358

c 55 0.01338 0.03429 35.922

c 56 0.01293 0.03195 31.102

c 57 0.01215 0.02934 26.971

c 58 0.01135 0.0269 23.601

c 59 0.01055 0.02461 20.805

Table C.5: Sensitivity indices of the LOLE and LOLH with respect to wind
penetration for cases c 1 to c 4.

γ†
0

δγ wj

ψξ
γ w
j

∣∣∣
γ

0

days/year

% of penetration

ψη
γ w
j

∣∣∣
γ

0

hours/year

% of penetration

[0 0] 1.66788 -0.00457 -0.01170

[0 1.67] 1.68429 -0.00358 -0.00955

[0 3.35] 1.67274 -0.00322 -0.00801

[0 5.02] 1.66220 -0.00274 -0.00715
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Table C.6: Sensitivity indices of the LOLE and LOLH with respect to wind
penetration for cases c 5 to c 21.

γ†
0

δγ wj

ψξ
γ w
j

∣∣∣
γ

0

days/year

% of penetration

ψη
γ w
j

∣∣∣
γ

0

hours/year

% of penetration

[0 6.69] 1.66788 -0.00214 -0.00566

[0 8.35] 1.68429 -0.00179 -0.00459

[0 10.04] 1.67274 -0.00131 -0.00386

[0 11.71] 1.66222 -0.00119 -0.00347

[0 13.37] 3.35575 -0.00080 -0.00244

[0 16.73] 3.33000 -0.00056 -0.00198

[1.50 0] 1.66788 -0.00231 -0.00641

[1.50 1.67] 1.68429 -0.00185 -0.00524

[1.50 3.35] 1.67274 -0.00127 -0.00404

[1.50 5.02] 1.66220 -0.00083 -0.00325

[1.50 6.69] 3.35218 -0.000480 -0.00233

[1.50 10.04] 3.33496 -0.000345 -0.00170

[1.50 13.37] 3.35575 -0.00015 -0.00112

[1.50 16.73] 3.33000 -0.00016 -0.00102

[3.01 0] 1.66788 -0.00057 -0.00285

[3.01 1.67] 1.68429 -0.00034 -0.00228

[3.01 3.35] 1.67274 -0.00022 -0.00179
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Table C.7: Sensitivity indices of the LOLE and LOLH with respect to wind
penetration for cases c 22 to c 38.

γ†
0

δγ wj

ψξ
γ w
j

∣∣∣
γ

0

days/year

% of penetration

ψη
γ w
j

∣∣∣
γ

0

hours/year

% of penetration

[3.01 5.02] 1.66220 -0.00011 -0.00150

[3.01 6.69] 1.66788 -0.00025 -0.00145

[3.01 8.35] 1.68429 -7.71836×10−5 -0.00096

[3.01 10.04] 1.67274 -4.78257×10−5 -0.00074

[3.01 11.71] 1.66222 -9.62569×10−5 -0.00094

[3.01 13.37] 3.35575 -8.93988×10−5 -0.00074

[3.01 16.73] 3.33000 -0.00011 -0.00066

[4.52 0] 3.35217 -0.00013 -0.00147

[4.52 3.35] 3.33494 -3.29841×10−5 -0.00088

[4.52 6.69] 3.35218 -3.87808×10−5 -0.00069

[4.52 10.04] 3.33496 -0.00011 -0.00076

[4.52 13.37] 3.35575 -0.00017 -0.00062

[4.52 16.73] 3.33000 -0.00018 -0.00063

[6.03 0] 3.35217 -2.98314×10−5 -0.00089

[6.03 3.35] 3.33494 −3.29841× 10−5 -0.00076

[6.03 6.69] 3.35218 -0.00013 -0.00070

[6.03 10.04] 3.33496 -0.00023 -0.00078
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Table C.8: Sensitivity indices of the LOLE and LOLH with respect to solar
penetration for cases c 1 to c 17.

γ†
0

δγ sj

ψξ
γ s
j

∣∣∣
γ

0

days/year

% of penetration

ψη
γ s
j

∣∣∣
γ

0

hours/year

% of penetration

[0 0] 0.75199 -0.02315 -0.05798

[0.75 0] 0.75220 -0.01797 -0.04300

[1.50 0] 0.75235 -0.01090 -0.02999

[2.26 0] 0.75759 -0.00546 -0.02057

[3.01 0] 0.75199 -0.00265 -0.01322

[3.76 0] 0.75221 -0.00096 -0.00908

[4.51 0] 0.75235 -0.00062 -0.00795

[5.27 0] 0.75759 -0.00040 -0.00692

[0 3.35] 0.75199 -0.02001 -0.04770

[0.75 3.35] 0.75220 -0.01223 -0.03191

[1.50 3.35] 0.75235 -0.00651 -0.02181

[2.25 3.35] 0.75759 -0.00264 -0.01412

[3.01 3.35] 1.50420 -0.00106 -0.00870

[4.51 3.35] 1.50994 -0.00030 -0.00614

[0 6.69] 0.75199 -0.01531 -0.03786

[0.75 6.69] 0.75220 -0.00839 -0.02429

[1.50 6.69] 0.75235 -0.00375 -0.01651
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Table C.9: Sensitivity indices of the LOLE and LOLH with respect to solar
penetration for cases c 18 to c 28.

γ†
0

δγ sj

ψξ
γ s
j

∣∣∣
γ

0

days/year

% of penetration

ψη
γ s
j

∣∣∣
γ

0

hours/year

% of penetration

[3.01 6.69] 0.75199 -0.00100 -0.00806

[3.76 6.69] 0.75221 -0.00053 -0.00596

[4.52 6.69] 0.75235 -0.00039 -0.00589

[0 16.73] 1.50419 -0.00509 -0.01754

[1.50 16.73] 1.50994 -0.00117 -0.00829

[3.01 16.73] 1.504196 -0.00075 -0.00539

[4.52 16.73] 1.50994 -0.00093 -0.00621

[0 20.06] 1.50419 -0.00419 -0.01541

[1.50 20.06] 1.50994 -0.00106 -0.00749

[3.01 20.06] 1.50420 -0.00092 -0.00534

[4.52 20.06] 1.50994 -0.00106 -0.00633

Table C.10: Sensitivity indices of the EUE with respect to wind penetration for
cases c 1 to c 3.

γ†
0

δγ wj ψu
γ w
j

∣∣∣
γ

0

MWh/year

% of penetration

[0 0] 1.66788 -10.67341

[0 1.67] 1.68429 -9.16648

[0 3.35] 1.67274 -7.72745
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Table C.11: Sensitivity indices of the EUE with respect to wind penetration for
cases c 4 to c 23.

γ†
0

δγ wj ψu
γ w
j

∣∣∣
γ

0

MWh/year

% of penetration

[0 5.02] 1.66220 -7.16760

[0 6.69] 1.66788 -6.43151

[0 8.35] 1.68429 -5.42007

[0 10.04] 1.67274 -4.76224

[0 11.71] 1.66222 -4.73042

[0 13.37] 3.35575 -3.65552

[0 16.73] 3.33000 -3.56847

[1.50 0] 1.66788 -6.18389

[1.50 1.67] 1.68429 -5.32925

[1.50 3.35] 1.67274 -4.65285

[1.50 5.02] 1.66220 -4.48201

[1.50 6.69] 3.35218 -3.78590

[1.50 10.04] 3.33496 -3.29719

[1.50 13.37] 3.35575 -2.71743

[1.50 16.73] 3.33000 -2.64264

[3.01 0] 1.66788 -3.90915

[3.01 1.67] 1.68429 -3.49287

[3.01 3.35] 1.67274 -3.16965

[3.01 5.02] 1.66220 -3.12658

[3.01 6.69] 1.66788 -2.56912
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Table C.12: Sensitivity indices of the EUE with respect to wind penetration for
cases c 24 to c 38.

γ†
0

δγ wj ψu
γ w
j

∣∣∣
γ

0

MWh/year

% of penetration

[3.01 8.35] 1.68429 -2.63196

[3.01 10.04] 1.67274 -2.47976

[3.01 11.71] 1.66222 -2.48644

[3.01 13.37] 3.35575 -2.21202

[3.01 16.73] 3.33000 -1.98619

[4.52 0] 3.35217 -2.69825

[4.52 3.35] 3.33494 -2.37156

[4.52 6.69] 3.35218 -2.07089

[4.52 10.04] 3.33496 -1.87109

[4.52 16.73] 3.33000 -1.40661

[6.03 0] 3.35217 -1.96082

[6.03 3.35] 3.33494 -1.92987

[6.03 6.69] 3.35218 -1.43787

[6.03 10.04] 3.33496 -1.23870

Table C.13: Sensitivity indices of the EUE with respect to solar penetration for
cases c 1 to c 3.

γ†
0

δγ sj ψu
γ s
j

∣∣∣
γ

0

MWh/year

% of penetration

[0 0] 0.75199 -66.17533

[0.75 0] 0.75220 -53.10791

[1.50 0] 0.75235 -43.81184
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Table C.14: Sensitivity indices of the EUE with respect to solar penetration for
cases c 4 to c 25.

γ†
0

δγ sj ψu
γ s
j

∣∣∣
γ

0

MWh/year

% of penetration

[2.26 0] 0.75759 -37.01357

[3.01 0] 0.75199 -29.43399

[3.76 0] 0.75221 -26.33447

[4.51 0] 0.75235 -262.48287

[5.27 0] 0.75759 -19.16736

[0 3.35] 0.75199 -55.34536

[0.75 3.35] 0.75220 -45.38793

[1.50 3.35] 0.75235 -37.95821

[2.25 3.35] 0.75759 -33.73606

[3.01 3.35] 1.50420 -25.65158

[4.51 3.35] 1.50994 -19.18221

[0 6.69] 0.75199 -47.75215

[0.75 6.69] 0.75220 -40.20716

[1.50 6.69] 0.75235 -34.72037

[3.01 6.69] 0.75199 -25.34749

[3.76 6.69] 0.75221 -25.34749

[4.52 6.69] 0.75235 -19.27160

[0 16.73] 1.50419 -33.90991

[1.50 16.73] 1.50994 -27.15206

[3.01 16.73] 1.50420 -20.22077

[4.52 16.73] 1.50994 -13.88730

80



REFERENCES

[1] NERC, “Glossary of terms used in NERC reliability standards,” August
2016. [Online]. Available: http://www.nerc.com/files/glossary of terms.
pdf

[2] G. Calabrese, “Generating reserve capacity determined by the prob-
ability method,” Transactions of the American Institute of Electrical
Engineers, vol. 66, no. 1, pp. 1439–1450, Jan 1947.

[3] J. P. Pfeifenberger, K. Spees, K. Carden, and N. Wintermantel,
“Resource adequacy requirements: Reliability and economic impli-
cations,” September 2013. [Online]. Available: http://www.ferc.gov/
legal/staff-reports/2014/02-07-14-consultant-report.pdf

[4] J. H. Nelson and L. M. Wisland, “Achieving 50 percent renewable
electricity in California,” August 2015, Union of Concerned Scientists.
[Online]. Available: http://www.ucsusa.org/sites/default/files/attach/
2015/08/Achieving-50-Percent-Renewable-Electricity-In-California.pdf

[5] “Order adopting a clean energy standard,” August 2016,
State of New York Public Service Commission. [Online].
Available: http://documents.dps.ny.gov/public/MatterManagement/
CaseMaster.aspx?MatterCaseNo=15-e-0302

[6] J. Endrenyi, Reliability Modeling in Electric Power Systems. Toronto,
Canada: John Wiley & Sons, 1978.

[7] C. D’Annunzio and S. Santoso, “Noniterative method to approximate
the effective load carrying capability of a wind plant,” IEEE Transac-
tions on Energy Conversion, vol. 23, no. 2, pp. 544–550, June 2008.

[8] N. Maisonneuve and G. Gross, “A production simulation tool for systems
with integrated wind energy resources,” IEEE Transactions on Power
Systems, vol. 26, no. 4, pp. 2285–2292, Nov 2011.

[9] L. L. Garver, “Effective load carrying capability of generating units,”
IEEE Transactions on Power Apparatus and Systems, vol. PAS-85,
no. 8, pp. 910–919, Aug 1966.

81



[10] NERC, “Methods to model and calculate capacity contributions of
variable generation for resource adequacy planning,” March 2011.
[Online]. Available: http://www.nerc.com/files/ivgtf1-2.pdf

[11] M. Milligan and B. Parsons, “A comparison and case study of capacity
credit algorithms for intermittent generators,” April 1997. [Online].
Available: http://www.nrel.gov/docs/legosti/fy97/22591.pdf

[12] M. Milligan and K. Porter, “Wind capacity credit in the United States,”
Power and Energy Society General Meeting - Conversion and Delivery
of Electrical Energy in the 21st Century, 2008 IEEE, pp. 1–5, July 2008.

[13] NYISO, “Solar impact on grid integration: An initial assessment,” June
2016. [Online]. Available: http://www.nyiso.com/public/webdocs/
markets operations/services/planning/Documents and Resources/
Special Studies/Special Studies Documents/Solar%20Integration%
20Study%20Report%20Final%20063016.pdf

[14] B. Hasche, A. Keane, and M. O’Malley, “Capacity value of wind power,
calculation, and data requirements: The Irish power system case,” IEEE
Transactions on Power Systems, vol. 26, no. 1, pp. 420–430, Feb 2011.

[15] R. Duignan, C. J. Dent, A. Mills, N. Samaan, M. Milligan, A. Keane,
and M. O’Malley, “Capacity value of solar power,” in Proc. of 2012
IEEE Power and Energy Society General Meeting, pp. 1–6, July 2012.

[16] J. Kleijnen, Statistical Techniques in Simulation - Parts 1 and 2. New
York: Marcel Dekker Inc., 1974.

[17] G. Gross, “Notes for ECE 588-Electricity Resource Planning,” Univ. of
Illinois at Urbana-Champaign, Fall 2014.

[18] Y. Degeilh, “Stochastic simulation of power systems with integrated
renewable and utility-scale storage resources,” Ph.D. dissertation,
Univ. of Illinois at Urbana-Champaign, Urbana, March 2015. [Online].
Available: http://gross.ece.illinois.edu/files/2015/03/Yannick-Degeilh.
pdf

[19] R. Billinton and W. Li, Reliability Assessment in Electric Power Systems
Using Monte Carlo Methods. New York: Springer Science & Business
Media, 1994.

[20] A. Kargarian, G. Hug, and J. Mohammadi, “A multi-time scale co-
optimization method for sizing of energy storage and fast-ramping gen-
eration,” IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp.
1351–1361, Oct 2016.

82



[21] “Load and capacity data 2016,” April 2016, New York In-
dependent System Operator. [Online]. Available: http://www.
nyiso.com/public/webdocs/markets operations/services/planning/
Documents and Resources/Planning Data and Reference Docs/
Data and Reference Docs/2016 Load Capacity Data Report.pdf

83


