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ABSTRACT

Events in the world generate an enormous amount of textual data like tweets

and news articles. These events also manifest in the form of changes to time-

series numeric data. This thesis deals with the problem of extracting these

events from the timestamped document collection in the form of topics that

cause a change in a time-series. We develop a conceptual framework for that

can be used to analyze different causal topic mining algorithms. We also

propose two novel clustering based algorithms - cCTM-CF and cCTM-CoF

to generate causal topics. We evaluate these algorithms both qualitatively,

and quantitatively by comparing their coherence and correlation scores to

that of the baseline generative causal topic model - gCTM. We found that

cCTM-CoF performs 35% and 62.5% better according to these metrics as

compared to the baseline.
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CHAPTER 1

INTRODUCTION

With the abundance of electronic text data on mediums ranging from news

articles that report recent important happenings to tweets on Twitter that

informally express an individual’s opinion, text mining as a field of study has

gotten incredible attention from the academic community in recent times.

One such popular task, topic mining, refers to the task of identifying groups

of words that are semantically related based on their co-occurrence in a

collection of documents. This problem has been extensively studied by using

different probabilistic models. The two basic topic models are Probabilistic

Latent Semantic Analysis (PLSA) [1] and Latent Dirichlet Allocation (LDA)

[2].

Given the widespread success of these models, there has since been con-

siderable work that incorporates external knowledge – supervised LDA or

sLDA incorporates external knowledge in the topic modeling process [3] (an

example the model is tested on is movie reviews and corresponding ratings);

including authorship information to publications to discover topics covered

by an author [4] – are examples.

1.1 Motivation

Most of these topic models operate on purely textual datasets. However,

typical documents that are considered in experiments are timestamped and

are generally indicative of events that are taking place during the creation

of the document. These events could be short, bursty events like the rise

and fall of internet trends or memes 1 or prolonged over a long period of

time like technological advances by a company. These events also lead to

1A meme is a humorous image, video or a piece of text that is copied (often with slight
variations) and spread rapidly by Internet users.
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changes in many other numerical time-series data. Extending the example

given before, the rise in popularity of a meme could lead to a drastic increase

in the number of times a video or a picture is shared and the breakthroughs

by a company could lead to an increase in the stock price of that company.

This tells us that there exists information about these latent events hidden

in the time series data. One way by which we could extract these events is

in the form of topics by doing an integrated analysis of the time-series and

accompanying documents. For example, doing a topic analysis on articles

from the New York Times2 will identify tags for news articles but adding oil

price trends to the analysis could point us to important events that caused

the change in oil prices.

To that point, the problem we are considering is that of finding topics from

a collection of timestamped documents such that the topics are responsible for

a change in an adjoining time-series datastream.

1.2 Overview

The contributions of this thesis are as follows

• We characterize the architectures of existing existing causal topic mod-

els.

• We propose a novel clustering based approach to generate causal topics.

• Based on existing work, this thesis proposes a baseline generative model

to generate causal topics.

• Finally, we analyze the performance of these different models.

1.3 Thesis structure

The rest of this thesis is structured as follows: We start by introducing the

reader to the background and discuss representative works that are related to

ours. Next follows Chapter 3, where we formulate a conceptual framework

to find causal topics and discuss important features and shortcomings of

2www.nytimes.com
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each category of solution. We then formally define the problem that this

thesis targets. Chapter 4 forms the core of this thesis where we propse a

novel clustering-based approach to finding causal topics. In Chapter 5, we

describe the baseline algorithm, which is a generative model to find causal

topics. The evaluation of the proposed model and the baseline along with

an analysis of the results are in Chapter 6. Finally, Chapter 7 concludes the

thesis by summarizing our findings.
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CHAPTER 2

BACKGROUND

This chapter descibes the background related to this thesis. We discuss how

each work leads to or relates to the models we propose.

2.1 Text and non-text

The integrated study of text and non-text data has seen interest from both

the computer science and economics academic communities. In the domain

of finance and economics, this has been in the form of predicting stock prices

from various forms of text: news articles[5], press releases [6] and tweets on

Twitter1 [7]. There has been considerable work from the computer science

community in using text for predictive tasks. An early example is predicting

box office performance using blog articles [8]. A very popular class of work

is using content on online media in various predictive tasks[9]: using twitter

to predict football games [10], crime [11] and even the stock market [12].

The major difference between this and the problem that we are focussing on

is the perspective. Even though some of the models used in these publications

can be modified to generate topics, the approach is far different from ours.

Most importantly, they don’t explicitly use the information in the time-series

data to generate topics that correlate with tiem-series.

2.2 Topics and time

A class of work related to ours is to analyze the evolution of topics over

time. The reason for the similarity is because time can be thought of as a

linearly increasing time-series. The most two popular models that target this

1https://en.wikipedia.org/wiki/Twitter
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Figure 2.1: Graphical representations of related topic models

problem are Dynamic Topic Models (DTM) [13] and Topics over Time (TOT)

[14]. They are both models that build on top of LDA [2] but in different ways.

DTM discretizes time and finds topics by building a state space model on the

natural parameters of the multinomial distributions. DTM uses variational

approximations based on Kalman filters to perform inference. TOT doesn’t

discretize time but instead uses a Beta distribution to model the timestamp

which is drawn from the topic distribution. We’ll explain the generative

process of TOT as the baseline algorithm we propose later in Chapter 5

relates closely to this.

To aid in the explanation of the generative process for TOT, we’ll start by

describing Latent Dirichlet Allocation (LDA) [2], one of the popular proba-

bilistic topic models. LDA like many other topic models models each docu-

ment as a mixture of topics. The generative process of LDA is as follows: For

every document d, θd is the topic proportions distribution and is a multino-

mial over all topics that signifies the probability of a specific topic occurring

in the document. For every document d, θd is first sampled from a Dirichlet

distribution with a parameter α. Then to generate every word wdi in the

document, a specific topic zdi is picked from θd first. For every topic zdi , φzdi
which is a multinomial distribution over all the words in the vocabulary that

signifies the probability of a word being chosen from a topic zdi is sampled

from a Dirichlet distribution with parameter β. Every word wdi in the doc-
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(a) Mexican war (b) Modern tech

Figure 2.2: Evolution of topics as identified by the TOT model

ument di is generated by sampling from φzdi . Refer to Figures 2.1a and 2.1b

for graphical representations of both LDA and TOT.

The intuition behind TOT is that, by modeling the timestamp of a docu-

ment a real valued variable generated from the topic proportions θd, we force

the parameter estimation to find topics that correlate with the temporal in-

formation. Time is modeled as being drawn from a beta distribution ψzdi .

The advantage that TOT has over DTM is that if there is a topic that ap-

pears for a brief period of time and disappears, TOT will create a topic with

a narrow time distribution. Refer Figure 2.2 for examples2 of two topic evo-

lution plots. The words under each topic evolution plot are the words of the

topic. Another advantage that is important in our context is that TOT is a

simple model which aids not only in easy understanding and implementation

but also integration into other more complex generative models.

One simple way to use either of these models described to find causal topics

is to first find the time-evolving-topics and then filter the ones that correlate

best with the time-series. However, such an approach would again not make

2Both these plots were taken from the original TOT paper [14]
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use of the time-series in the topic modeling process. We’ll later describe in

Chapter 5, how we modify the TOT model to find causal topics.

2.3 Causal topics mining

In this section, we’ll describe the works that relate closest to this thesis.

Model 1: Information Retrieval with Time Series Query (IRTSQ) [15]

describes an algorithm that accepts a collection of documents and a time-

series as a query and finds documents that are relevant to the time-series

query. For example, given an input of Apple stock prices 3 and a collection

of news articles, the algorithm would find documents that report big changes

Apple’s stock price. This is achieved by finding the correlation scores of

all the words in the vocabulary with the time-series and scoring documents

based on their content of highly correlated words. This algorithm can be

modified to generate topics that correlate with the time-series rather than

documents that correlate with it.

Model 2: Iterative topic modeling with time series feedback (ITMTF) [16]

solves the exact same problem that this thesis focuses on. Given a collection

of timestamped documents and a time-series, ITMTF finds causal topics.

The steps involved in the algorithm are as follows:

1. Apply any topic model to find topics.

2. Identify significant topics that pass the causality test with the time-

series data.

3. Split significant topics into two. One with words that correlate posi-

tively with the time-series data and another with those that correlate

negatively. Feed these topics as prior to step 1.

Model 3: Supervised Dynamic Topic Models for Associative Topic Ex-

traction with a Numerical Time Series (sDTM) [17] solves the exact same

problem of finding causal topics as well. The algorithm is built on top of the

Dynamic Topic Model (DTM)– by modeling every time-series datapoint as

generated from α – the Dirichlet prior for the topic proportions θ. A dis-

advantage of this model is its need to discretize the time which could lead

3http://finance.yahoo.com/quote/AAPL
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to missing topics that peak for a short time when the peaking time is not

significant compared to the width of the time slice, or if the peak is divided

between two different time slices.

Since all three models relate very closely to our propopsed solution, we’ll

discuss the details and critique each model in Section 3.2.
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CHAPTER 3

A CONCEPTUAL FRAMEWORK FOR
CAUSAL TOPIC MINING

This chapter first provides a conceptual framework for finding causal topics.

We do this to make it easy to classify causal topic models and analyze their

strengths and weaknesses easily. We then define the input and output to all

our algorithms and then also formally define our problem. We classify the

existing solutions (refer Chapter 2) as one of the three types of models.

3.1 Problem definition

Input:

• Collection of D documents and their respective timestamps

C = < (d1, ts1), (d2, ts2), . . . , (dD, tsD) >

• Numeric time-series data x with M datapoints and their respective

times x = {(x1, t1), (x2, t2), . . . (xM , tM)} >

• Number of causal topics required T .

Assert:

• Range(t1, t2, . . . , tM) = Range(ts1, ts2, . . . , tsD)

• ti 6= tj ∀ ti, tj ∈ {t1, t2, . . . , tM}

Output:

• List of T causal topics

• Causality score of each topic

We use the same following definition for causal topics as introduced in Kim

et. al. [16]

9



Figure 3.1: Causal topic mining model architectures

Definition 3.1.1. Causal topics are semantically coherent topics–identified

from a collection of timestamped documents–that have a strong, possibly

lagged, correlation with the time-series data.

Causal topic mining is the process of finding such causal topics. The

lag that the definition discusses, could be positive or negative depending

on whether the document caused the change in the time-series data or vice

versa. 1

3.2 Mining architecture

All three causal topic mining models that were described in Section 2.3 can be

classified broadly as confirming to one three different types of architectures

shown in Figure 3.1.

Type (a) first generates topics from the collection C and uses causality

tests [18] or correlation analysis to yield causal topics. One disadvantage

of this model is that any latent information in the time-series data is not

utilized in the topic modeling process. That is, the topics would be the same

irrespective of what time-series data is used. An advantage of this model

would be its simplicity and hence time taken to run. A modified version of

IRTSQ [15] would be an example of this category.

1Note that the word “causal” is being used loosely in this thesis as we only require
correlation and never actually test for actual causality.
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Figure 3.2: Complexity–Quality tradeoff

Type (b) adds an additional step to (a) by feeding the causal topics back

to the topic model as prior and iteratively refines the topics found. This is

not as fast as (a) and does not generate causal topics of as high a quality as

(c). ITMTF [16] is an example of this category.

Type (c) involves feeding both the text and non-text data to a generative

model that finds topics by increasing the likelihood of the observed data given

the latent topic proportions. The algorithm forces the topics discovered to

be correlated with the time-series. sDTM [17] is an example of a causal topic

mining algorithm that falls under this category. The shortcoming of a model

of this type would be its complexity therefore leading to high running times.

It can be seen that there is a tradeoff between complexity and quality

of the causal topics with (a) and (c) at either extremes. Figure 3.2 is a

visual depiction of this tradeoff. We now propose two causal topic mining

approaches that each belongs to one of the three model types. They lie on

either extremes of this tradeoff:

• Clustering-based Causal Topic Mining (cCTM) – Type (a) – We would

want cCTM to remain a fast algorithm but generate topics of better

quality.

• Generative Causal Topic Model (gCTM), a generative topic model that

we use as our baseline – Type (c) – We expect gCTM to be simpler

and faster while still generating high quality causal topics.

11



CHAPTER 4

CLUSTERING BASED CAUSAL TOPIC
MINING

In this chapter, we describe the clustering based Causal Topic Mining (cCTM),

a novel way to find causal topics along with its different variants. Accord-

ing to Definition 3.1.1, a cluster of words has to satisfy the following two

requirements to be considered a causal topic

1. The words should be semantically coherent – indicated by co-occurrence

2. The occurrence of the topic should correlate with the time-series

It has been shown that words can be clustered into groups of words that co-

occur [19, 14]. Therefore, to enforce the first requirement, rather than using

a topic model like most existing algorithms do, we use a clustering algorithm

instead. This vastly brings down the complexity of algorithm–leading to

improvements in running time, understandability and implementation – as

compared to using a topic model. The second requirement is enforced using

a correlation test that we define later in Section 4.2.1.

4.1 Clustering first or correlation first?

Since we only require that both requirements of causal topics are met, either

clustering or correlation can be performed first, albeit leading to different

topics and properties. Intuitively, performing clustering first would generate

topics from the document collection and the correlation test would identify

topics that are correlated. If the correlation test were to be performed first,

we would find words that correlate with the time-series and then cluster

them into topics. Clustering-first and correlation-first approaches will be

referred to as cCTM-CF and cCTM-CoF henceforth. We’ll now describe the

algorithms for both the approaches.

12



4.2 Clustering first

While many different clustering methods can be used, we use a spectral

clustering algorithm called the K-Spectral Centroid algorithm [20]. Spectral

clustering is a technique that reduces the dimensionality of the data and clus-

ters the input points in the reduced space using the similarity matrix of the

data. The general way to perform spectral clustering is as follows: If the sim-

ilarity between n datapoints is described by the symmetric similarity matrix

S where the element Sij represents a quantitative measure of the similarity

between the ith and jth data points, use a standard clustering algorithm like

K-Means [21] on the relevant eigenvectors of A to generate clusters. The fol-

lowing spectral method clusters the words in our vocabulary based on their

occurrence trend over time. In other words, we want clusters of words that

change in a similar way with time. These clusters are ranked according to

their correlation with the time-series data. The topics which correlate sig-

nificantly (negatively or positively) are causal topics. The causality metric

called the Pearson correlation coefficient will be defined in Section 4.2.1.

We’ll first describe the K-spectral centroid clustering algorithm that is

used. The algorithm was formulated by Yang and Leskovec [20] as a way to

analyze the dynamics of online content. The distane metric used by the algo-

rithm is time and shift-invariant leading to clusters of datapoints with similar

variational trends over time irrespective of the actual count of occurrence.

The K-SC algorithm has since been used in a variety of tasks involving social

media like studying the evolution of hashtags [22] and forecasting popularity

of news [23]. Given two time series x and y, if y(q) represents y shifted by q

units, the distance metric d̂(x, y) used by the K − SC algorithm is defined

as follows:

d̂(x, y) = min
α,q

||x− αy(q)||
||x||

(4.1)

where || · || represents the L2 norm. Note that this distance metric is sym-

metric and will not change if x and y are interchanged. α is the scale factor

for y and its optimal value can be determined for a given q as follows

α̂ = argmin
α

||x− αy(q)||
||x||

=
xTy(q)
||y(q)||2

(4.2)

13



Algorithm 1 Clustering-first clustering-based Causal Topic Model

Require: Document collection with timestamps C =
{(d1, ts1), (d2, ts2), . . . , (dD, tsD)}, time-series data x =
{(x1, t2), (x2, t2), . . . , (xM , tM)}, Number of topics T.

1: Compute time-series cwi
∀i ∈ 1, . . . , V . The jth element in cwi

is the
number of times wi occurs in any document with timestamp tj

2: Assign words randomly to the K clusters {C1, C2, . . . , CK}, K ∈ Z+

3: repeat
4: Ĉ ← C
5: for j = 1 to K do
6: M ←

∑
x∈Cj

(
I − x·xT

||x||2
)

7: µj ← Eigenvector corresponding to the smallest Eigenvalue of M
8: Cj ← ∅
9: end for

10: for i = 1 to N do
11: j∗ ← arg minj=1 to K d̂(xi, µj)
12: Cj∗ ← Cj∗

⋃
{i}

13: end for
14: this
15: until Ĉ = C
16: for i = 1 to K do
17: scorei ← Pearson correlation coefficient of x and µi
18: end for
19: t← T clusters with maximum magnitude score
20: return t

The optimal value of q can only be found by a linear search. The significance

of q in our topic modeling application dictates that this search has to be done

only for a very small number of values. With the distance function defined,

we can now use an approach similar to the K-Means algorithm–the K-SC

algorithm has an assignment and an update step. Here is a brief description

• The assignment step assigns words to clusters based on the position of

the centroids. This step is straightforward as we just assign every word

to the closest centroid’s cluster.

• The update step updates the centroids based on the new cluster as-

signments. Again, like the K-Means algorithm, centroids are computed

by minimizing the sum of square of distances of every point to the

respective centroid. This optimization leads to the following update

equation – If Ck refers to the set of points assigned to cluster k, the

14



new centroid of the kth cluster is the eigenvector corresponding to the

smallest eigenvalue of the following matrix M :

M =
∑
x∈Ck

(
I − x · xT

||x||2
)

(4.3)

where I is an identity matrix of appropriate dimensions.

The topics are ranked according to the magnitiude of the Pearson correla-

tion coefficient between the time-series and the centroid identified by the

K-SC algorithm. The top T topics are returned as the causal topics. Refer

Algorithm 1 for the pseudocode.

4.2.1 Pearson correlation

Pearson correlation coefficient is a metric that determines if two (time) series

increase or decrease together significantly. 1 Given two random variables

X, Y it is defined as

ρX,Y =
cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
(4.4)

where cov(·) represents the covariance function and E[X] stands for the ex-

pected value of the random variable X. High magnitudes of ρ indicates high

correlation.

4.3 Correlation first

In this approach, all the V words in the vocabulary are ranked according

to their Pearson correlation coefficient with the time-series. All words with

a correlation of greater than δpos or lesser than δneg are considered. We

then cluster words based on their co-occurrence. That is, if count(wi, wj)

represents the number of times words wi and wj occur in the same sentence,

for a word wi we compute maxwj∈Cj
count(wi, wj) and if this value is lesser

than δcount we add wi to cluster C. If not, we create a new cluster with

only wi in it. We return all the resulting clusters as the list of causal topics.

1https://en.wikipedia.org/wiki/Pearson correlation coefficient
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Algorithm 2 Correlation-first clustering-based Causal Topic Model algo-
rithm

1: corri ← Pearson correlation between word count time-series for word
wi∀i ∈ {1, . . . , V }

2: Spos ← {wi∀i ∈ 1, . . . , V if corri ≥ δpos}
3: Sneg ← wi∀i ∈ 1, . . . , V if corri ≤ δneg
4: CT ← {}
5: for S ∈ {Spos, Sneg} do
6: C ← {}
7: for word wi ∈ S do
8: if C is empty then
9: C ← C

⋃
{{wi}}

10: else
11: Ĉ ← argmaxCj∈C{maxwj∈Cj

count(wi, wj)}
12: if maxwj∈Ĉ count(wi, wj) ≥ δcount then

13: Ĉ ← Ĉ
⋃
wi

14: end if
15: end if
16: end for
17: CT ← CT

⋃
C

18: end for

Intuitively, this can be thought of as an agglomerative clustering [24] of

words where the proximity metric is the co-occurrence is a pair of words.

Refer Algorithm 2 for a more detailed pseudocode.
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CHAPTER 5

BASELINE METHOD: GENERATIVE
CAUSAL TOPIC MODEL

In this chapter, we describe the baseline model that we use – generative

Causal Topic Model (gCTM).

5.1 Intuition

We want to model the time-series jointly with the word co-occurrences by

correlating both. This is under the assumption to the overall problem that

there are latent events that affect both the documents and the time-series.

As in any generative model, we want to find parameters that maximize the

likelihood of the observed data. Very similar to the TOT agorithm described

in Chapter 2, we model each time-series datapoint to be generated from the

topic proportion θ along with the topics, thereby driving parameter estima-

tion to find topics that “explain” the change in time-series. Similar to how

TOT found topics that appeared for different periods of time, gCTM will

find topics that appear corresponding to different rates of change in the time

series. An example of this could be finding topics pertaining to Apple CEO

Steve Job’s death to occur for high drops in the company’s stock prices.

5.2 Generative process

Please refer to Chapter 2 for the description of LDA as we build on top of

it. Table 5.1 summarizes the notations used in this chapter.

We replace the timestamps in TOT, with the time series data, x to correlate

topics with the time-series. Just like in TOT, x is a continuous variable

modeled by a Beta distribution normalized to a range of 0 to 1. This is

quite convenient as discretizing brings in additional questions about the bin

size and width, adding an additional parameter to tune which will affect the

17
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Figure 5.1: Graphical representation of gCTM

results produced. Later, in the experiments section, we describe the difference

between considering the time series data, x itself or ∆x – the rate of change

of the time series. For now, we use the former to explain the generative

process. Figure 5.1 shows the plate diagram of the graphical model we use

to perform approximate inference using Gibbs sampling. It corresponds to

the following generative process:

1. Draw T multinomials, φz over all the V words in the vocabulary, one

for each topic. φz|β ∼ Dirichlet(β)

2. For every document d, draw a multinomial θd from the Dirichlet prior

α: θd|α ∼ Dirichlet(α) For every word wdi in the document,

(a) From the multinomial θd, draw a topic zdi |θd ∼ Multinomial(θd)

(b) From θzdi , draw a word wdi |φzdi ∼ Multinomial(φzdi )

(c) From the beta distribution ζzdi , draw a time-series value

xdi |ζzdi ∼ Beta(ζzdi ).

Notice that we draw a time-series datapoint for every word rather than one

every document. We do this to make inference possible. In our experiments

we duplicate the time-series datapoint for every word in the document. This

workaround comes with a cost – we lose the generative capacity of the model

as generated documents will have a different timestamp for every word. The

18



Table 5.1: Notations for gCTM

D Number of documents
T Number of topics
V Number of words in vocabulary
Nd Number of words in document d
θd Multinomial distribution over all topics for document d
φz Multinomial distribution over all words for topic z
ζdi Beta distribution for the time-series for topic zdi
zdi Topic drawn for generating the ith word in document d
wdi The ith word in document d
xdi The time-series datapoint associated with the ith word

in document d

Algorithm 3 Gibbs sampling inference for gCTM

1: for i = 1 to Niter do
2: for d = 1 to D do
3: for w = 1 to Nd do
4: draw zdw from P (zdw|w, t, z−dw, α, β, ζ)
5: update nzdww and mdzdw
6: end for
7: end for
8: for z = 1 to T do
9: update ζz

10: end for
11: end for
12: compute the posterior estimates of θ and φ

values of the hyperparameters α and β can be updated using the Gibbs

EM algorithm [25]. For simplicity, the hyperparameters are set as follows:

α = 50/T , β = 0.1.

5.3 Inference

Just like in TOT, we do approximate inference using Gibbs sampling and

estimate the Beta distributions ζz using Method of Moments estimation to

aid in speed and simplicity. The conditional probability distribution can be

19



expressed as follows

P (zdi |w,x, z−di
, α, β, ζ) ∝ (mdzdi

+ αzdi − 1)

×
nzdiwdi

+ βwdi
− 1∑V

v=1(nzdiv + βwdi
)− 1

(1− xdi)
ζzdi

1−1(xdi)
ζzdi

2−1

B(ζzdi1, ζzdi2)

(5.1)

where nzv is the number of tokens of word v that are assigned to topic z, mdz

represents the number of tokens in document d that are assigned to topic z.

If the parameters of the Beta distribution ζzdi are ζzdi1 and ζzdi2 , the Method

of Moments estimation gives us

ζzdi1 = x̄z

( x̄z(1− x̄z)
sz2

− 1
)

ζzdi2 = (1− x̄z)
( x̄z(1− x̄z)

sz2
− 1
) (5.2)

The derivation of these update equations for these parameters is very similar

to that in TOT [14] and hence we skip them for brevity. Refer Algorithm 3

for the inference pseudocode.
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CHAPTER 6

EXPERIMENTAL EVALUATION

In this chapter, we describe the experiments we ran with the models de-

scribed, the results of these experiments and its evaluation. We’ll also de-

scribe the datasets that we used in these experiments and their characteris-

tics. Our goal here is to analyze the causal topics generated by each algorithm

and compare their performance. We also want to test the performance of the

algorithms in downstream tasks to assess them quantitatively.

6.1 Datasets

The datasets that we use in the experiments are as follows

• NYT – Around 12,000 news articles from the New York Times for

a period of 6 months, from April to September 20031. We use this

dataset along with historical stock prices from the same period for

various companies downloaded from the Yahoo! Finance website2.

• SOU – The State of Union address by Presidents of United States of

America for 21 decades downloaded from the Gutenberg project website
3. This dataset is studied along with the historical unemployment rates

made public by the United States Department of Labor. 4

We use the following notation for convenience – NYT-AAPL refers to using

the New York Times dataset along with Apple stock prices and SOU-UNEMP

refers to using the SOU text dataset with the historical unemployment rates.

Figure 6.1 shows a visual representation of the number of unique words in

each text dataset. The average sentence length after removing stop words is

1https://catalog.ldc.upenn.edu/LDC2008T19
2https://finance.yahoo.com/quote/AAPL/
3http://www.gutenberg.org/ebooks/5050
4https://data.bls.gov/timeseries/LNS14000000
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Figure 6.1: The number of unique words in each text dataset

17 words in the NYT dataset and 20 in the SOU dataset. While the NYT

dataset has an overlap of 124 days with the AAPL stock data we use, the

SOU-UNEMP overlap is 60 datapoints.

6.2 Setup

In this section we’ll explain the experiments we run to test each of the algo-

rithms proposed in Section 3.2 along with the datasets that we tested each

algorithm on. All experiments were run on a Linux server with 24 cores

and 65GB main memory. The number of topics was set at 40 for all the

experiments. All iterative experiments are run for 200 epochs.

We use cCTM-CF and cCTM-CoF to denote the clustering first and corre-

lation first methods introduce in Chapter 4 and gCTM to denote the baseline

model in Chapter 5. We set the number of topics to 30 in cCTM-CF and

gCTM. In cCTM-CoF we set δpos to 0.1, δneg to −0.1 and δcount to 10−5. We

set the parameters in gCTM α and β at 50/T and 0.1 respectively as we

can not constrain the number of topics. Note that we also do not feed the

raw stock prices as the time-series to gCTM but the percentage of the stock

prices. This lead to better results and can be explained by the fact that the

current stock price is dependent on the previous prices and the topic pro-

portions can only determine the percentage change and not the actual value.

Note that we also restrict the size of the vocabulary to the most frequent

3000 words in the collection.
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6.3 Qualitative results

Let’s first qualitatively look at the causal topics generated by each algorithm.

6.3.1 Clustering first

Score = -0.23 Score = -0.24 Score = -0.16 Score = -0.15 Score = 0.12

legislature china vaccine voter captain
defendent negative pollution campaign marine
customer september sars ballot custody

pound import severe district lincoln
cash donation spam abortion headline
. . . . . . . . . . . . . . .

Table 6.1: K-SC topics for NYT-AAPL

Table 6.1 shows representative topics for the NYT-AAPL dataset that were

obtained using the K-SC-Pearson method with each topic represented by 5

words. The score for each topic is the Pearson correlation coefficient between

the centroid of the topic with the time-series. From a purely qualitative

assessment of the words, the table suggests that the clustering algorithm

works well by finding words that are related somehow. It would not be too

hard to assign topic labels for each of the topics shown in the table. However,

there is no clear justification for the correlation score between the topics and

the time-series. For example, the third topic which seems to be about the

SARS5 disease outbreak has a negative correlation witht the stock prices of

Apple. While there seems puzzling, a closer look tells us that the month of

April, 2003 was when Apple’s stock prices were at a relative high (due to the

release of the iPod classic 6) and this was also one of the last months of the

SARS outbreak7, which tells us that the event was in-fact correlated.

Table 6.2 shows similar representative topics for the SOU-UNEMP datset.

From a first glance, it looks like the topics are more discriminative than for

the previous dataset. This could be because of the size of the dataset itself.

Again, the algorithm seems to find discriminative topics that can be given

5https://en.wikipedia.org/wiki/Severe acute respiratory syndrome
6https://en.wikipedia.org/wiki/Timeline of Apple Inc. products
7https://en.wikipedia.org/wiki/Timeline of the SARS outbreak
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labels. An interesting trend can be noticed: Topics with words like “mili-

tary” and “battle” seem to be negatively correlated with the unemployment

rate while positive words like “opportunity” and “inspiration” are positively

correlated. The explanation to this could be that the unemployment rate

typically goes down during wars 8 and Presidents would want to use posi-

tive, reassuring words during times when unemployment rates are high.

Score = 0.13 Score = 0.12 Score = -0.16 Score = 0.09 Score = 0.08

recovery religious cuba school military
opportunities god battle job protection

inspiration reliable territory technologies service
deterrance oldest war hire refugee
recovery hero vietnam computer revitalize
. . . . . . . . . . . . . . .

Table 6.2: cCTM-CF topics for SOU-Unemployment rate

6.3.2 Correlation first

Before looking at topics obtained from the clustering first approach, let’s

first consider the words that were found to correlate with the time-series.

In Table 6.3 “april” was the most highly correlated word and this is again

because of the relatively high prices that Apple stocks were trading at in the

month of April, 2003. Words related to the SARS disease outbreak are also

highly correlated while words related to the September 11 terror attacks were

negatively correlated with the stock prices. We can see that these words were

rightly put in the same topic bu the clustering-first approach as well.

Positive words Score Negative words score

april 0.61 sept -0.70
respiratory 0.51 libor -0.62

sars 0.49 oct -0.62
acute 0.47 9/11 -0.48

disease 0.45 hurricane -0.48

Table 6.3: Highest positive and negatively correlated words for NYT-AAPL

8https://www.quora.com/What-happened-to-unemployment-rates-during-the-world-
war
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Table 6.4 lists words that are highly correlated with the unemployment

rate. Again, we see a very observation that positive words correlate positively

with unemployment rate and words about war correlate negatively. These

words seem to have a high co-occurrence (from the topics in clustering-first)

and a high correlation which indicates that the naive clustering algorithm

will give us good causal topics.

Positive words Score Negative words score

ensure 0.51 june -0.45
sector 0.51 korea -0.44

incentive 0.51 district -0.42
growth 0.51 men -0.41
future 0.49 nation -0.41

recovery 0.49 shall -0.40
needy 0.49 measure -0.39
victim 0.48 relate -0.38

regulatory 0.47 upon -0.38
spend 0.47 communist -0.37

Table 6.4: Highest positive and negatively correlated words for
SOU-UNEMP

Table 6.5 shows representative causal topics generated by the cCTM-CoF

algorithm for the NYT-AAPL dataset. The score for each topic is assigned

as the average correlation coefficient of all the words in the topic. We only

considered the topics that had atleast 20 words. These causal topics are

significantly more discriminative compared to the cCTM-CF algorithm and

is also much better in terms of the correlation scores.

Score = 0.16 Score = 0.17 Score = -0.18 Score = -0.17 Score = -0.19

smoke sars bush voter denver
explode vaccine govern campaign quarterback
bomb outbreak afghanistan politics patriot
tank disease capitol regulation davis

chemical destroy blame rule transfer
. . . . . . . . . . . . . . .

Table 6.5: cCTM-CoF topics for NYT-AAPL
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6.3.3 Baseline-gCTM

Table 6.6 shows us similar representative topics for the same NYT-AAPL

dataset by the baseline gCTM model. We can see that the topics are much

more discriminative than the two models we propose. It is the easiest to

assign labels as well. However, it has to be noted that these are the highest

correlated topics among all the causal topics and the correlation scores are

much lower than both clustering methods. Eventhough such graphical mod-

els are really sensitive to the values of hyperparameters, we found that for

this specific application, this behavior was unmodified by the hyperparameter

values.

Score = 0.003 Score = 0.002 Score = 0.006 Score = 0.002 Score = -0.0008

hospital coffee govern strike flood
dna meat force inning air

expose egg troop baseball hurricane
virus recipe tank sox pressure

vaccine kitchen uniform oakland sky
. . . . . . . . . . . . . . .

Table 6.6: gCTM topics for NYT-AAPL

6.4 Quantitative results

In this section, we perform quantitative evaluation of the causal topics in

order to compare algorithms. There are essentially two qualities we want to

measure in causal topics: semantic coherence and time-series correlation.

6.4.1 Semantic coherence

baseline-gCTM cCTM-CF cCTM-CoF

coherence 0.006 0.0054 0.0081

Table 6.7: coherence scores

This metric tests whether the cluster of words form a coherent meaningful

topic. We use the pointwise mutual information between all pairs of words

26



in the topic. The pointwise mutual information between words wi and wj is

defined as follows

PMI(wi, wj) = log2

Pr(wi, wj)

Pr(wi) Pr(wj)

∝ log2

[
c(wi, wj)/

∑
wi,wj∈T c(wi, wj)

c(wi)c(wj)/(
∑

wi
c(wi))

2

] (6.1)

where c(wi, wj) represents the number of times words wi and wj occur in

the same sentence in the collection and c(wi) represents the number of times

word wi occurs in the collection. So, the semantic coherence score of topic T

can be computed as

coherence(T ) =

∑
wi,wj∈T PMI(wi, wj)

|T ||T − 1|
(6.2)

Table 6.7 shows the average coherence scores for all the topics for each of

the three models we discussed.

6.4.2 Time-series correlation

baseline-gCTM cCTM-CF cCTM-CoF

correlationpos 0.001 0.00062 0.002
correlationneg -0.0008 -0.00098 -0.0013

Table 6.8: correlation scores

The measure of time-series correlation of a topic is just given by the average

of time-series correlation measures of all the words. We simply find the

avearge correlation of all the words in the topic with the time-series and use

their mean as the metric for the topic. For a topic T and time-series x

correlation(T ) =

∑
w∈T corr(w, x)

|T |
(6.3)

where corr(·) represents the Pearson correlation coefficient (refer Section

4.2.1). We compute correlationpos as the average of correlation all positively

correlated topics and correlationneg as the average over negatively correlated

topics. Ideally, we want both their magnitudes to be as close to 1 as possible.
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Table 6.8 shows the average positive and negative correlation scores over all

the topics for each of the three models we discussed.

6.5 Analysis

Let’s now analyze the results of these experiments in detail. While the re-

spresentative topics are not very easy to parse and draw conclusions from,

due to the sheer size of topics, a quick glance suggested that gCTM gen-

erated the most discriminative topics, closely followed by cCTM-CoF. The

topics generated by cCTM-CF are not very easy to classify into topics and

the reason for this could be the large amount of noise in the count of word

occurrences over time. The clustering algorithm works well only for starkly

different trends over a long period of time.

The coherence and correlation scores gave us a much more deeper analysis

of the algorithms. Surprisingly, we found that cCTM-CoF had the highest

coherence score of all the three algorithms eventhough the topics suggested

otherwise. One contributing reason to this could be the fact that we restrict

the number of topics for gCTM and cCTM-CF to 30 which forces the algo-

rithms to cluster words that are not that semantically related into the same

topic. cCTM-CoF does not have this restriction as it assigns words that

are very different from others to a separate cluster leading to higher seman-

tic scores. cCTM-CF had the least semantic score which came as less of a

surprise given the quality of the topics. cCTM-CoF got the highest corre-

lation score, followed by cCTM-CF and finally gCTM. This stems from the

fact that cCTM-CoF essentially restricts the vocabulary to a set of words

that are highly correlated with the time-series. It is also noteworthy that

cCTM-CoF was by far the fastest algorithm as both the other algorithms

are iterative and have high running times. Another disadvantage of both

iterative algorithms is that they try to optimize a global loss function which

is too expensive and could lead to non-deterministic behavior as there could

be multiple local maxima.
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CHAPTER 7

CONCLUSION

We presented a novel clustering based algorithm and a baseline generative

model for generating causal topics from a collection of documents and time-

series. We evaluated these models and found that the cCTM-CoF model

generated the best causal topics and achieved a 35% improvement on the

coherence score and 62.5% improvement on the correlation score as com-

pared to the baseline model. We also formulated a conceptual framework

for causal topic models thereby making it easier to classify and analyze such

algorithms.
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