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ABSTRACT 

 Heterogeneous computing systems with both general purpose multicore central 

processing units (CPU) and specialized accelerators has emerged recently. Graphics processing 

unit (GPU) is the most widely used accelerator. To fully utilize such a heterogeneous system’s 

full computing power, coordination between the two distinct devices, CPU and GPU, is 

necessary. Previous research has addressed this issue of partitioning the workloads between CPU 

and GPU from various aspects for regular applications which have high parallelism and little 

data dependent control flows. However, it is still not clear how irregular applications, which 

behave differently on different inputs, could be efficiently scheduled on such heterogeneous 

computing systems. Since CPUs and GPUs have different characteristics, task chunks of these 

irregular applications show preference, or affinity, to a particular device in heterogeneous 

computing systems. In this work, we show that by using the method of allocating workloads at 

task chunk granularity based on each chunk’s device affinity, accompanied with work-stealing as 

the load balancing mechanism, we can achieve a performance improvement of as much as 1.5x 

over traditional ratio-based allocation, and up to 5x over naive GPU-only allocation on three 

irregular graph analytics applications. 
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CHAPTER 1.  INTRODUCTION

 To keep processor performance scaling, hardware designers are exploring specialization. 

On more power constrained platforms, such as mobile processors, it is not uncommon to see 

specialized accelerators that target various functions, even a particular OS library on the chip 

[29]. Although in desktop computers specialized hardware is not as popular as on the mobile 

platforms, hardware designers have started moving towards specialization by adopting CPU-

GPU heterogeneous computing systems [30]. 

 In the general purpose GPU (GPGPU) computing model [8], CPU is called the host while 

GPGPU is the device. Originally, the host prepares and copies the data explicitly from the 

system’s main memory to the local memory on the device, configures the device, and offloads 

the work. This work offloading process is called kernel launch. The kernel is a chunk of code 

which executes on the device. After the device finishes executing the kernel, the host has to 

explicitly copy the data back from the device before using it. Since programmers have to move 

data back and forth between the system’s main memory and GPGPU’s specialized local memory 

explicitly, and because certain data is available to either the host or the device at a time, the 

collaboration between host and device is limited. The workload usually has to be fully 

decomposable, and synchronization across devices is only possible at kernel boundaries. 

 Knowing the downside of explicit data movement, the industry has moved towards 

unified memory. CUDA 6 [9] added unified memory that can automatically manage data 

movement for discrete GPGPU’s; chips that integrate both CPU and GPU cores that share a 
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cache coherent, unified memory system, such as AMD APU [10], have been produced recently. 

In addition to these efforts in hardware, work from Sinclair et al. [11], which promises simple 

and efficient fine-grained synchronization in heterogeneous systems, opens up the possibility to 

have applications run simultaneously on both CPU and GPU. Much previous research 

[1,2,3,4,5,6,7] has explored partitioning the workloads between CPU and GPU. However, to the 

best of our knowledge, they are mostly ratio-based. Namely, previous works usually aim for 

finding an ideal ratio and migrate the first certain percentage of the workload to CPU. 

 Multicore CPU and GPGPU each perform well on certain execution patterns. Thus task 

chunks of irregular applications which behave differently depending on input data, show 

preference, or affinity, to a particular device in heterogeneous computing systems. By allocating 

workload at task chunk granularity to both multicore CPU and integrated GPGPU based on each 

chunk’s device affinity, along with work-stealing as the load balancing mechanism, we can 

achieve a performance improvement of up to 1.5x over ratio-based allocation, and up to 5x over 

naive GPU-only allocation. 
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CHAPTER 2.  BACKGROUND

 In this chapter, we first introduce background on the GPGPU execution model and the 

causes of divergence. Then, we provide three examples of irregular applications. We end this 

chapter with a brief review of prior work on how a workload is partitioned between CPU and 

GPU. 

2.1 GPGPU, SIMT, and Divergence

  GPGPU gains high performance on parallel tasks by running a large number of hardware 

threads simultaneously on simple cores that only have moderate single thread performance. By 

context switching between these threads, memory access latency is hidden [13]. Threads are 

divided into small groups, called warps. All threads from a single warp have to execute the same 

instruction. This execution model is often referred to as Single Instruction Multiple Threads 

(SIMT) model [14]. Because of the nature of SIMT, if there is an if-else branch, the execution of 

these two paths is serialized: threads in the warp which take the branch will execute instructions 

in the if-block while other threads are waiting, then threads that do not take the branch execute  

the instructions in the else-block. Such scenario is called control divergence [15]. During the 

execution of a particular instruction, the number of threads that are active over the number of all 

threads in the warp is called lane utilization [16]. Clearly, high lane utilization means better 

performance. Control divergence hurts lane utilization. Thus it hurts GPGPU performance. 

However, a general purpose multicore CPU does not suffer from control divergence. Although 
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CPU cores cannot run a large number of threads in parallel like a GPGPU can, CPU cores do not 

have to execute both paths for a branch. 

 Another kind of divergence that hurts GPGPU performance is memory divergence. When 

the threads in a warp perform a load or store, in the best scenario, all requests can be served by 

accessing a single cache line. However, in some cases where threads request data from different 

regions of the memory, their memory accesses cannot be coalesced into a single one, which 

causes a memory divergence. Instead of sending just one request to the memory, we could end up 

sending a large number of requests, and these requests have to be served one at a time. More 

over, memory divergence does not stall a portion of the warp, it stalls the entire warp, as all 

threads in the same warp have to execute the same instruction the whole warp has to wait until 

all accesses are finished. CPU utilizes multiple levels of caches to deal with high memory 

latency. Scattered memory accesses could induce high cache contention and low reuse rate. Thus, 

unlike control divergence, memory divergence also hurts CPU performance. 

2.2 Irregular Applications

 While GPGPU equipped heterogeneous computing systems evolve from standalone 

accelerator which requires explicit data movement towards tightly coupled CPU-GPU system 

with cache coherent unified memory, the applications users put on heterogeneous platforms 

changed as well. The very first applications have been ported to GPGPU were simple 

applications that have little or no synchronization requirement and high parallelism. These 

applications usually use GPGPUs to compute a large amount of relatively simple calculations. 
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 Later on, researchers started to use GPGPUs to speed up more irregular applications [27]. 

Unlike regular ones, irregular applications usually have more data dependent control flows and 

more fine-grained synchronizations. Such data dependent control flows introduce control 

divergence, memory divergence and load imbalance, all three of which hurt GPGPU 

performance. Graph analytics applications, for instance, PageRank (PR), Single Source Shortest 

Path (SSSP), and Betweenness Centrality (BC) are good examples of irregular applications. In 

this study, these three applications have been chosen to study the behavior of irregular 

applications on a tightly coupled heterogeneous computing system. We ported the 

implementations of PR, SSSP, and BC from the Pannotia benchmark suite [17]. We also made 

minor modifications so they can run on our simulation infrastructure [28, 31, 32]. All three of 

them were parallelized using the vertex-centric method, in which each thread is in charge of a 

vertex in the graph.  

 SSSP from the Pannotia suite is a parallelized version of the well-known Bellman-Ford 

algorithm. The parallel version of SSSP, shown in Figure 2.1, was designed to use double 

buffering. Doing so eliminates the necessity to modify data that is potentially being used by other 

threads. Thus any fine-grained synchronization and atomics are not necessary. With traditional 

GPU-coherence, synchronization and atomic operations are very expensive [11] . The 

pseudocode of SSSP is straightforward with only two simple phases. In the first phase, each 

thread loops through the vertex’s neighbor list and updates its distance accordingly. The second 

phase simply swaps the buffers, so that in the next iteration, threads can read the updated 

distance array. The execution of SSSP stops when the distances of all vertices are converged. 

!5



Figure 2.1 Bellman-Ford algorithm. 

 PageRank [18], named after Larry Page, is also a well-known algorithm. Many 

parallelized PageRank algorithms exist. The version we ported from Pannotia suite is very 

similar to SSSP, where both of them utilize double buffering to eliminate atomic operations. The 

pseudocode of PageRank, shown in Figure 2.2, is also straightforward. For each vertex, a thread 

goes through all its neighbors and sums up its neighbors’ PageRank values from the previous 

iteration. Then in the second phase, each vertex’s PageRank value is normalized based on a fixed 

coefficient, namely, the damping factor. 
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Figure 2.2 PageRank. 

 From the code of SSSP and PR, we can see that depending on the structure of the input 

graph, the amount of work that each thread processes differs, which introduces load imbalance 

from thread granularity to warp granularity. Also, at warp granularity, control divergence is 

potentially unavoidable. 

 Unlike the scenarios in PageRank and SSSP, the usage of atomics is not avoidable in BC. 

BC from Pannotia suite implemented Barndes’ algorithm [19] which works only on unweighted 

graphs. Barndes algorithm for BC has two phases of execution, breadth-first search (BFS) phase, 

and a backtrace phase. From the pseudocode, it is not hard to see that atomic operations are 

necessary as an individual unvisited vertex could be neighbor to more than one vertex on the 

current wavefront. In terms of BFS, the wavefront is formed by newly discovered vertices. As in 
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BFS, a vertex is only processed once when the algorithm first encounters it. Initially, the 

wavefront is the source node. Then the wavefront spreads out to its neighbors, and then its 

neighbors’ undiscovered neighbors. During the BFS phase, it is possible that two or more threads 

would try to set this unvisited vertex’s distance to current wavefront distance plus one (line 15), 

which results in a race. As long as the distance of that vertex is set to the desired value in the end, 

this write does not determine the order of execution. However, it is an unacceptable violation of  

Data-Race-Free (DRF) memory model [20] . Thus, atomic operations have to be used here. 

 Among these three applications, PR and SSSP share the same execution pattern. Namely, 

neither of them forms a wavefront, every vertex is active during every iteration. There is no 

difference between iterations regarding amount of computation and number of memory accesses. 

On the other hand, in both phases of BC, a particular vertex is only active or being processed, at 

a certain iteration, which produces a wavefront. Based on their execution patterns, we divide 

irregular applications into two categories: applications that have uniform behavior across 

iterations, such as PR and SSSP, and applications whose behaviors change across iterations, for 

instance, BC. 
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Figure 2.3 Barnde algorithm for unweighted graphs. 

!9



2.3 Ratio Based CPU-GPU Collaboration

 Since the dawn of CPU-GPU heterogeneous computing systems, researchers have been 

trying to split the workload between multicore CPU and GPGPU, though these efforts are 

usually limited by the necessity of explicit data movement and lack of fine-grained 

synchronization mechanism between host and device. To the best of our knowledge, all previous 

research on partitioning the workload between multicore CPU and accelerators in a 

heterogeneous computing system focuses on ratio based partitioning. 

 Early attempts, such as Qilin [2] , usually have an application-centric view. Qilin keeps a 

database of all applications it has seen so far. When a new application arrives, it conducts serval 

test runs with various partitioning ratios on both devices. Then it constructs two linear 

regressions, which will be used to predict each device’s performance for a given input size. For a 

given actual workload characterized by input size, the intersection point of these two linear 

regressions will unveil the ideal partitioning ratio. By doing so, Qilin assumes that a certain 

application’s performance is independent of input size, since the linear regression is constructed 

once for each application with a single sample input. Later works began to consider input 

dependent behaviors. For instance, in the work of Shen et al. [5], researchers track the running 

history of applications using input size as one of the parameters. 

 In addition to static partitioning methods which usually look at application histories or 

conducting test runs, dynamic partitioning based on more advanced technologies such as 

dynamic profiling at run time was proposed by many researchers as well [3, 4, 6, 7]. However, 

the splitting is still ratio-based. Kofler et al. [4] considered input induced behavior, but their 

mechanism partitions the workload at a very coarse granularity of 10%. Also, their study of input 
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induced behavior focuses on the impact of the size of the input. For more regular applications, 

characterizing input by size might be sufficient, but for irregular ones, such as graph analytics 

applications, it is necessary to look at the internal structures of inputs. Farooqui et al. [6] 

introduced the idea of device affinity in the context of heterogeneous computing system; 

however, their partitioning method still aims for an ideal ratio. In addition to that, device affinity 

is determined by the entire input and is only used to guide load-balancing between devices. 

However, we believe device-affinity information at finer granularity could also lead us to a better 

workload partitioning mechanism. 
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CHAPTER 3.  DEVICE AFFINITY AT CHUNK 
GRANULARITY

 Inspired by the idea of device affinity by Farooqui et al., we decided to determine if 

device affinity also exists at chunk granularity (defined below). In other words, we wanted to 

know if different chunks in the same input would show affinity to different devices. In our 

experimental setup, the workload is divided into chunks. Each chunk has 256 vertices. The size 

256 was determined by other students in our research group while finding optimal chunk size in 

the context of work-stealing. Since work-stealing will be used as the load-balancing mechanism 

in the later parts of this work, the optimized size 256 is used as is. 

3.1 Experimental Setup

 The SSSP algorithm described in chapter 2 was used to gather GPGPU runtime data with 

following modifications: (1) Instead of launching a grid of chunks, a single chunk of size 256 is 

launched at a time, and the number of cycles from kernel launch to finish is recorded. (2) Instead 

of letting SSSP converge, we ran a fixed 20 iterations. Since there is no wavefront in the 

Bellman-Ford algorithm, during each iteration, a particular thread that processes a specific 

vertex, accesses the same amount of data and does almost the same amount of computation. 

There should be little variance across iterations, so there is no need to run until convergence. We 

ran a serial implementation of the original Bellman-Ford algorithm with a single thread on a 

multicore CPU to gather CPU run time data. The starting time and finishing time for processing 
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every 256 vertices is recorded. We ran a task chunk on a single thread on CPU due to the 

limitation of our simulation infrastructure. 

 Both CPU code and GPGPU code were run on the simulation infrastructure in our 

research group [11]. Specifically, the simulation infrastructure is built out of GEMS [24] and 

GPGPU-sim [22] , and it simulates a heterogeneous computing system with 16 general purpose 

cores, 15 GPU SM’s, and a cache coherent, unified memory. Each core/SM has its private L1 

cache, and all cores and SMs share a single banked L2 cache. More details are described in 

Chapter 5. 

3.2 Results

 In this study of determining if device affinity exists at task chunk granularity, we ran four 

graphs ported from the UF Sparse Matrix Collection [26]: bcsstk13, bcsstm38, rajat27, and 

dictionary28. Table 3.1 summarizes the graphs. Figures 3.1 to 3.4 show the speedup of 

processing a specific chunk in parallel with one GPGPU SM over a single thread on a CPU core.  

Our results show that these four graphs can be divided into three categories: (1) Device affinity is 

observed, but one device is always consistently better than the other with little variance; (2) 

though one device is always better than the other, the speedup is significantly different across 

different chunks, and some chunks can be only sped up moderately; (3) different chunks show 

strong affinity to different devices. 
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Table 3.1 Graphs used in device affinity study. 

Figure 3.1 Bcsstk13 per chunk GPU speedup over CPU. 

Figure 3.2 Bcsstm38 per chunk GPU speedup over CPU. 

Graph # Vertices # Edges

bcsstk13 2003 42943

bcsstm38 8032 7842

rajat27 20640 99777

dictionary28 52652 89038
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Figure 3.3 Rajat27 per chunk GPU speedup over CPU. 

Figure 3.4 Dictionary28 per chunk GPU speedup over CPU. 

 For graphs in category one, where all chunks have a high affinity for a specific device, 

the goal of CPU-GPU collaboration is to minimize total execution time by balancing the 

processing time on both devices. bcsstk13, where performance on GPGPU is consistently better 

than on CPU with little variance, falls into this category. bcsstm38 and dictionary28 fall into 

category two, where though for every chunk in both graphs GPGPU achieves a better 
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performance, certain chunks have relatively low performance degradation on the CPU. For 

instance, in bcsstm38, there are chunks that achieves less than 1.75x speedup, while more than 

half the chunks achieve a speedup of 4x. On the other hand, rajat27 is a more interesting graph, 

as there are both chunks that favor CPU and chunks that favor GPGPU. Note that bcsstk13, 

which falls into category one, is denser than the other three graphs. 

 Although all graphs show a certain amount of device affinity, only the ones in the latter 

two categories are interesting. It is because in the case where GPGPU is consistently and 

considerably faster than CPU, putting a portion of workload on CPU may hurt performance due 

to overheads like implicit data movement and communication, and vice versa. However, graphs 

which have chunks that have similar performance on both devices, and graphs in which some 

chunks strongly favor a certain device, opened up the opportunities to scheduling chunks to 

devices intelligently. In addition to that, these results unveiled one of the potential downsides of 

migrating a certain predetermined ratio of the workload onto CPU in a heterogeneous computing 

system. Figures 3.2 through 3.4 indicate that chunks with low GPU speedup can appear 

anywhere. For instance, in Bcsstm38 (figure 3.2), the chunks that are mostly worthy to migrate 

to CPU, are chunks around chunk ID 23. However, if a ratio based splitting mechanism has been 

used, the first few of chunks which have considerably better performance on GPU would be 

migrated instead of these chunks with low GPU speedup. 
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CHAPTER 4.  INTELLIGENT WORK ALLOCATION

 Task chunk level device affinity and the existence of category two and category three 

graphs, provide us the opportunity to distribute the workload among multicore CPU and GPGPU 

intelligently. Instead of describing a practical mechanism to determine a specific task chunk’s 

device affinity, the goal of this work is to motivate such a study by showing the power of 

intelligently scheduling with an oracle scheduler. Similarly, instead of comparing our oracle 

scheduler to an actual ratio-based partitioning mechanism in later chapters, we used sweeping to 

find out the ideal splitting ratio. Methods described by previous research should ideally produce 

the same ratio, assuming they also migrate the first certain percentage of the workload, even 

though state of the art methods are more efficient and practical than naively sweeping. 

4.1 Rank Based Oracle Scheduler

 As we have shown in Chapter 3, for graphs in category two and three, GPU speedup over 

CPU varies significantly from chunk to chunk. When dealing with category three graphs, which 

have a portion of chunks that favor a certain device, scheduling these chunks to that device first 

is necessary. For category two graphs, in which all chunks have better performance on a certain 

device, but the amount of speedup varies, scheduling chunks with the least performance 

degradation after the migration is a reasonable choice. In the context of CPU-GPU 

heterogeneous computing systems, we implemented a simple rank based oracle scheduler: after 

measuring the device affinity by calculating GPU speedup over CPU like what was done in 

Chapter 3, chunks are ranked based on their GPU speedup in reverse order. By doing so, chunks 
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that strongly favor CPU would have the highest rank, followed by chunks that suffer from the 

least performance degradation after migration from GPU to CPU. The rest are chunks that have 

considerably large speedup and definitely should be put on the GPU. At run time, the oracle 

scheduler greedily allocates the chunks with the highest ranks (until some threshold) to the 

multicore CPU. The chunks below this threshold are allocated to the GPU. The rank threshold 

for allocation is also determined in an oracular fashion. Specifically, in our study, we did a sweep 

over several rank thresholds to determine which would be best for each application and used that 

threshold. 

4.2 Load Balancing Through Device Affinity Aware Work-

Stealing

 Although an Oracle scheduler based on the ranking described above should be able to 

split the workload in an optimal way, one needs to keep in mind that the data used to calculate 

the ranking was gathered by running a single chunk at a time using only one core or one SM. 

During application execution time, when all chunks are being processed by many cores and SMs, 

interference is unavoidable. To resolve such inaccuracy and potential load imbalance across 

chunks, work-stealing is applied as the load-balancing mechanism. We applied another student’s 

work on GPU work-stealing [28], and made minor modifications to add the ability of stealing 

between CPU and GPU. Here Farooqui et al.’s [6] idea of device affinity aware work-stealing 

was adopted as well, though they introduced this idea for a slightly different purpose. Farooqui et 

al. measured device affinity at input graph granularity. They would determine if a certain input is 
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more suitable for GPU or CPU. Their main concern here is that since CPU has a higher 

frequency than GPU, it may steal faster than GPU and steal a lot of workloads that do not favor 

CPU. Device affinity aware stealing is essential to this study because for category three graphs, 

stealing from another device would mostly likely result in lower performance, as chunks are 

assigned to the device they strongly favor. Thus, unless there is no work left in any core in the 

CPU, a CPU core is not allowed to steal from GPU, and vice versa. 

 In this study we examined three stealing policies: steal-successor-one, steal-successor-

three and steal-all [28]. As their names indicate, under steal-successor-one and steal-successor-

three policies, a core/SM attempts to steal from its neighbors, and gives up trying after falling 

one or three times based on the specific policy. However, in these two scenarios, a core/SM gives 

up before trying everyone else. Thus there is no way to determine if the device is empty, and 

stealing across devices is not allowed in steal-successor-one and steal-successor-three policies. 

On the other hand, a core/SM under the steal-all policy would first attempt to steal from all 

cores/SM’s in the same device. If all attempts in the same device failed, it would attempt to steal 

from another device.  

Table 4.1 Stealing policies. 

Policy Failed attempts before give up Allow steal across devices

Steal-successor-one 1 No

Steal-successor-three 3 No

Steal-all (#CPU cores + #GPU cores) -1 Yes
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CHAPTER 5.  METHODOLOGY

 All studies in this work were conducted on a simulated CPU-GPU heterogeneous system 

with cache coherent unified memory [11, 12]. This simulator was built out of several popular 

architecture simulators. The Simics [21] full system simulator models a multicore CPU. Here we 

adopted a simple in-order core model, which assumes that all non-memory access operations 

take only one cycle. GPU was modeled by GPGPU-Sim [22], which is similar to an NVIDIA 

GTX 480. The whole system has a 16-core CPU and 15 GPU SMs. The multicore CPU and 15 

SM’s form a 4 x 4 mesh network, which is modeled by Garnet [23]. The memory system in this 

simulator is modeled by Wisconsin GEMS memory timing simulator [24]. In our simulation 

infrastructure, each core/SM has its private L1 cache, and all cores/SMs share a single banked L2 

cache. We use DeNovo coherence protocol [25], and a data-race-free memory consistency model 

[20]. In this study, we only utilized 5 cores to keep synchronization overhead low.  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Table 5.1 Simulator parameters.  

CPU Frequency 2 GHz

# CPU Cores 16 (5 used in case studies)

GPU Frequency 700 MHz

# GPU SM’s 15

L1 Size 32 KB L1D, 32 KB L1I

L1 Hit Latency 1 cycle

Remote L1 Hit Latency 35 - 83 cycles

L2 Size 4 MB

L2 Hit Latency 29 - 61 cycles

Memory Latency 197 - 261 cycles
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CHAPTER 6.  CASE STUDIES

 We implemented the oracle schedulers for three applications, PageRank (PR), Single 

source shortest path (SSSP), and Betweenness centrality (BC), based on the mechanism 

described before in Chapter 4. In Chapter 2 we divided irregular applications into two categories: 

applications that have uniform behavior across iterations, and applications whose behaviors 

change across iterations. We will examine these two categories separately. 

6.1 PR and SSSP: Applications with Uniform Behavior Across 

Iterations 

 As we haven seen in Chapter 2, the algorithms for PR and SSSP have many similarities. 

The most noticeable difference between these two applications is that SSSP has one more branch 

to find the nearest neighbor while PR simply sums up a vertex’s neighbors’ values. Since these 

two applications are similar, we combined them into one case study. In this case study, 

dictionary28 and rajat27 were chosen to be the representatives of category two and category 

three graphs respectively. 

 We took the single chunk performance data of device affinity study in Chapter 2 and 

produced rankings for each graph. Then we implemented both algorithms to support 

simultaneous running on CPU and GPU. The program starts with the main thread, and the main 

thread will first perform input reading and data structure initialization. During this period, the 

oracle scheduler would fill each core/SM’s software work queue [28] by picking chunks based 
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on the method described in Chapter 4. After initializing all data structures, the main thread 

creates one worker thread on each CPU core to process the chunks allocated to that core, and 

performs a GPU kernel launch. All threads are synchronized through a tree barrier after finishing 

each iteration. Based on the same argument we made in Chapter 3, instead of running PR and 

SSSP until convergence, we ran a fixed number of iterations for each graph. In this particular 

study, the number of iterations we ran is 15. One may also notice that for both PR and SSSP, 

their secondary kernels (buffer switching for SSSP and scaling by damping factor for PR) are 

much more regular than their main kernel. Namely, both secondary kernels do not suffer from 

any significant control or memory divergence. Thus we implemented these two secondary 

kernels as simple grid computing kernels, and there is no CPU-GPU collaboration for them since 

they have high parallelism and minimum divergence that intuitively make them favor GPGPU 

regardless of input graphs. One downside of this design is that it could potentially reduce L1 

cache hit rate on both CPU and GPGPU since data is moved around during this phase. In this 

study, we utilize 5 CPU threads (1 master thread and 4 worker threads) and 15 SM’s. GPU kernel 

thread block size is the same as task chunk size (256). We conducted an experiment to find the 

optimal ratio of splitting by sweeping from 0% to 70% of the chunks on CPU with 10% steps, 

along with all three stealing policies: steal-successor-one, steal-successor-three, and steal-all 

which allows stealing between devices. In addition to finding ideal splitting ratio, we also tested 

our rank based oracle scheduler. Results are shown in figure 6.1 and figure 6.2. 
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Figure 6.1 Rajat27 ratio sweep + Oracle. 
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Figure 6.2 Dictionary28 ratio sweep + Oracle. 

!25



 We first looked at how work-stealing helps when allocating the entire workload on GPU 

only, namely 0% [28]. Note that GPU-only allocation with steal-all policy is not available as we 

have a fixed number of four working threads and we cannot prevent a CPU thread from stealing 

GPU chunks. From the results, we can see that work-stealing provides considerable performance 

improvement in dictionary28. However, performance is only sightly improved in rajat27. To 

understand why this is the case, we looked into the single chunk execution time data we 

collected during the study of device affinity at task chunk granularity in Chapter 3. Figure 6.3 

shows the normalized execution time of each task chunk on GPU in both graphs. Execution time 

is normalized to the shortest chunk in the graph. Through figure 6.3 we can see that load 

imbalance does exist in rajat27, but still, work-stealing does not help much since there are a few 

chunks that have much longer execution time than other chunks. Thus, the overall execution time 

is bounded by those few slow chunks, and the benefit of load-balancing is masked. On the other 

hand, dictionary28 does not have outliers as rajat27 does, which makes work-stealing more 

efficient. Note that in dictionary28 the slowest chunk only takes 9x longer than the fastest chunk. 

However, in rajat27, seven chunks are 100x slower. 
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Figure 6.3 Normalized execution time. 

 The lack of performance improvement from work-stealing in the cases such as rajat27, 

and the existence of chunks that favor CPU over GPU, motivated running a single workload 

simultaneously on both CPU and GPU. We discuss the scenarios in rajat27 and dictionary28 

separately.  

 In the case of rajat27 with steal-none, steal-successor-one, and steal-successor-three, from 

0% to 50% of the chunks on CPU along with various stealing policies, the performance 

difference between configurations is relatively small. This is caused by, again, the fact that there 

are a few time-consuming chunks that slow down the overall process. Their performance on 
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GPU is so bad that even though moving a certain portion of workload to CPU may speed up or 

slow down the execution of the chunks moved, the impact is masked by these few chunks’ long 

execution time on GPU. At the mark of 60% on CPU, we see a significant drop in execution 

time. If we refer to figure 6.3, we can easily notice that moving from 50% to 60% of the chunks 

on CPU, the slowest chunk (chunk ID 42) which is more than 500x slower than the fastest 

chunk, is migrated to CPU. Combined with figure 3.3 from Chapter 3, we observe that chunk 42 

has a GPU speedup over CPU far less than 1.0, which indicates that it strongly favors CPU. 

Thus, moving such a chunk to CPU results in a large performance improvement. When we move 

from 60% to 70% on CPU, the performance degrades again because too many chunks are 

allocated to the CPU, and now CPU becomes the new bottleneck. On the other hand, our rank 

based oracle scheduler provides a robust performance improvement. Even without work-stealing, 

oracle scheduling performance matches the best performance one can get from a ratio based 

splitting method. When combined with the work-stealing, oracle is 1.5x faster than the best 

configuration of ratio based splitting, and 5x better than work-stealing on GPU only. For rajat27, 

while steal-successor-one and steal-successor-three slightly improve performance at 60% and 

70% of CPU, steal-all hurts performance badly. When 60% or 70% of the workload is allocated 

on CPU, GPU SMs will empty their work queues relatively fast when CPU cores are still busy. 

Then under the steal-all policy, SMs would begin to steal from CPU work queues and steal 

chunks that favor CPU back to GPU. 

 In the case of dictionary28, which is an example of category two graphs, our rank based 

Oracle scheduler still shows performance better than best ratio-based method, though the 

improvement is relatively small compare to what we achieved in rajat27, which is a category 
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three graph. From the results, we see that for both applications with dictionary28 as input, as we 

sweep from 0% to 70%, the overall execution time slightly drops and then increases quickly. 

Lacking large internal variance as we have seen in rajat27, the improvement over naive GPU 

only allocation is not significant. One may notice that unlike the case in rajat27 where steal-all 

almost always hurts performance, it helps a lot in many configurations in dictionary28. If we 

look closer, we can observe that steal-all helps more in configurations that have a performance 

far worse than optimal ones. In case of 10% of chunks on CPU, which is the best ratio based 

solution, and oracle, steal-all only helps a little or even slightly hurts performance. However, in 

configurations where other stealing policies are far worse, for instance, 40% of CPU with steal-

successor-one is 2.33x slower than GPU only without work-stealing, steal-all helps a lot. This is 

because in the ideal cases, both ratio-based and rank based, the amount of workload on both 

devices is balanced, while in other cases, there is room for load balancing across devices. Recall 

that all chunks of graphs in category two favor the same device. In this case, all chunks in 

dictionary28 favor GPU. As we migrate more chunks to GPU, we observe significant 

performance degradation without work-stealing across devices as they take longer to run on 

CPU, but with steal-all, the workload that GPU steals back from CPU favors GPU, which 

improves the performance. 
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6.2 BC: Applications Whose Behavior Varies Between 

Iterations

 Unlike PR and SSSP, BC forms a wavefront when exploring the input graph, which 

results in different behavior between iterations. We implemented BC in a similar manner as we 

implemented PR and SSSP. However, instead of running a fixed number of iterations, we ran BC 

until convergence from a single source vertex. By doing so, we make sure each vertex, that is 

accessible from the source, is active during a certain iteration. Thus we can observe the correct 

variance of behavior between iterations. Since running until convergence takes a significant 

amount of time with dictionary28, this study was conducted on rajat27 only.  

 Before we start, we first need to understand how a certain chunk behaves over time. The 

execution time (in terms of GPU cycles) of two chunks over time are shown in figure 6.4. If we 

refer to figure 3.3 in Chapter 3, we will find that chunk 10 favors CPU while chunk 30 favors 

GPU. However, through figure 6.4, we can see that after iteration 14, both of them strongly favor 

GPU. We took a closer look and found that after iteration 14, both chunks have no vertex on the 

wavefront. Thus, there is no divergence, regardless of the graph structure. This shows that for 

applications like BC, a single prediction of device affinity is insufficient; we need to dynamically 

determine the affinity for the next iteration. 
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Figure 6.4 Behaviors of a particular chunk over time. 

 Another important observation we made before is that divergence is usually caused by the 

fact that vertices in a particular chunk have different numbers of neighbors. When only a portion 

of vertices in a chunk are on the wavefront, the problem of divergence is worse, since we can 
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view a vertex that is not on the wavefront as a vertex with no neighbor. Thus, lane utilization 

degrades even more in BC. 

 Having made these two observations, we made minor changes to our rank based oracle 

scheduler. Namely, we cannot put a chunk on CPU solely based on its rank. We only migrate a 

chunk, that is picked by the original oracle scheduler to allocate on CPU, when the number of 

active edges is larger than a particular threshold. This is done by re-populating the work queues 

on CPU and GPU between iterations. The number of active edges is calculated by summing up 

the degrees of vertices on the wavefront in a particular task chunk dynamically during runtime. 

Same as PR and SSSP, experiments on BC utilized 5 CPU threads (1 master thread + 4 worker 

threads) and 15 SM’s on our simulated CPU-GPU heterogeneous system. Results are shown in 

figure 6.5. 

Figure 6.5 Betweenness centrality: Rajat27 ratio sweep + Oracle. 

 From ratio sweep part of figure 6.6, we can see the same pattern as we have seen in figure 

6.4, in which as the portion of workload migrated to CPU increases, the performance increases 
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until a certain point and then drops. Also, our modified rank based oracle schedule is consistently 

better than the best ratio based solution under all stealing policies.  
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CHAPTER 7.  CONCLUSION

 As tightly coupled CPU-GPU heterogeneous computing becomes increasingly popular, 

applications that utilize both kinds of devices at the same time have emerged. During the 

development of these applications, a good understanding of how to partition the workload 

between multicore CPU and GPGPU is necessary. Previous research has inspected this issue 

while aiming for an ideal partitioning ratio. However, to the best of our knowledge, no previous 

work has studied how device affinity at task chunk granularity, caused by the internal structures 

of inputs, could guide the partitioning of the irregular workloads on CPU-GPU heterogeneous 

systems. In this work, we first showed that device affinity exists not only at input granularity, as 

Farooqui et al. have shown [6], but also at task chunk granularity. Through the case studies of 

two categories of graph analytics applications, we have shown that for graphs which have chunks  

favoring different devices, our affinity aware rank based oracle scheduler could achieve 

performance improvement up to 1.5x over traditional ratio based splitting method, or up to 5x 

compared to naive GPU only allocation. For graphs where all chunks favor a certain device, our 

rank based Oracle scheduler can still achieve the same or slightly better performance compare to 

previous ratio based partitioning mechanisms. However, this work has many limitations need to 

be resolved in the future. For instance, our multicore CPU simulator assumes a one cycle 

execution time for all non-memory access operations. Also, determining the ranking of each task 

chunk dynamically is the key to make the proposed method practical. In this study, we assumed 

oracular knowledge of such a ranking. We expect that the number of edges in a vertex could be 

used to formulate a heuristic to drive a practical ranking algorithm. We leave this to future work. 
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