
c© 2017 Xin Wei

DESIGN AND IMPLEMENTATION OF THE ANNOTATION MODULE
IN COLDS

BY

XIN WEI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Adviser:

Professor Chengxiang Zhai

ABSTRACT

This thesis describes the design and implementation of the annotation mod-

ule in COLDS (Cloud-based Open Lab for Data Science) system. COLDS

is a general infrastructure system to support data science programming as-

signments on the cloud that is currently being developed at the University

of Illinois at Urbana-Champaign. The annotation module served as a key

module among all the modules the COLDS system may have. The anno-

tation subsystem of COLDS is responsible for allowing instructors design-

ing and distributing annotation tasks, and allowing annotators annotating

searched documents. The function of the annotation module includes pro-

viding communication between search engine and database. It also supports

doing relevance judgment annotation on the results returned from search

engine and store them into database. The thesis describes the design and

implementation of the annotation module, including the requirements, the

design of data schema, the choice of data structures, important implemen-

tation details, and sample screenshots to illustrate its applications. Also, it

introduces the COLDS’ background, related work, sample tasks, challenges

and future work.

ii

To my girlfriend who never showed up in my Master’s program.

iii

ACKNOWLEDGMENTS

Thanks to my advisor Professor Chengxiang Zhai for giving me this great

opportunity to work on such great project. Thanks to my teammate Xiaofo

Yu, Chaoqun Liu, and Guoqiao Li, it is a great pleasure to work with you

guys. Thanks to my neighbor Peiyuan Zhao for all the help provided. Thanks

to all the staff of Daya Tech.

Thanks to my parents, my family and all my friends for all the supports,

I cant finish my thesis without you.

Thanks to Yitong Li for the great performance in The Legend of the Con-

dor Heroes 2017, you were my spiritual support on every Monday and Tues-

day. Thanks to my waifu, Aragakki Yui, you were my spiritual support last

semester.

Thanks to Evo, Miga, God Fella, Star Karoake, and all the restaurants in

Urbana-Champaign area, without you, I would have to cook my own dinner

and may not have enough time to finish my thesis.

Thanks to Netease Music, I cant finish my thesis without your music.

Thanks to BiliBili, AcFun, hupu and zhihu, without you I would have finished

my thesis a month ago. Thanks to Blizzard Entertainment, you weaken Genji

too much that I almost give up on Overwatch, otherwise I wont be able to

finish my thesis.

Thanks to Amazon and Microsoft for give me fulltime offer so I can focus

on my thesis without worrying be unemployed. Thanks to Bloomberg and

Goolge for give me onsite interview, though you didnt give me an offer in the

end.

At last, thanks to University of Illinois at Urbana Champaign and the CS

department, you made me who I am today, I will miss you so much after my

graduation.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Annotation Module . 2

CHAPTER 2 RELATED WORK . 4
2.1 Big Data and Big Data Education 4
2.2 Virtual IR Lab and Lucene4IR 5
2.3 Crowdsourcing Annotations 5
2.4 Information Retrieval Evaluation 6

CHAPTER 3 COLDS AND ITS ANNOTATION SUBSYSTEM . . . 7
3.1 Overview . 7
3.2 Structure of COLDS Annotation Subsystem 7
3.3 Use of Annotation Subsystem 8

CHAPTER 4 DESIGN OF ANNOTATION MODULE 9
4.1 Design Philosophy . 9
4.2 Challenges and Solutions . 9
4.3 Overall Structure . 11

CHAPTER 5 IMPLEMENTATION DETAIL 13
5.1 Flask Server with RESTful API 13
5.2 Bootstrap with jQuery Front End 13
5.3 MongoDB and Mongoengine 14

CHAPTER 6 APPLICATIONS OF THE COLDS’ ANNOTATION
SUBSYSTEM . 15
6.1 Education Application . 15
6.2 Benefits of COLDS’ Annotation Subsystem 16

CHAPTER 7 SUMMARY . 18

REFERENCES . 19

v

CHAPTER 1

INTRODUCTION

This chapter describes the background, motivation and brief overview of

COLDS and its annotation module.

1.1 Background

The growth of the ”big data” created massive opportunities in the industry.

Many companies hire specific data scientists roles to apply big data tech-

niques such as data mining, information retrieval and other machine learn-

ing algorithms to find patterns in the massive raw data for better advertising

or user behavior analyzing which can improve their productivity and make

more profits. Such trend has caused a big gap in the big data industry for

engineers who know big data techniques. As a result, there is great demand

for training a large number of data scientists and engineers quickly and at a

low cost.

Massive Open Online Courses(MOOC) education platforms such as Courser,

Udacity and EdX have the technique to support education at a very large

scale. However, the way those MOOC platforms running is more like online

classrooms where students can watch lecture videos and working on online

quizzes. Some of the courses also requires peer grading for complex assign-

ments at a large scale, but the quality of such peer grading is questionable.

But the more serious hold back of those MOOC platform is that it doesn’t

support programming assignments, which is very essential for computer sci-

ence education, especially for data science education.

1

1.2 Motivation

Running data science models requires large amount of data. When doing big

data education, especially online education like Coursera and Edx, keeping

the copy of the datasets locally on students’ machine can be a waste of

resource. Also, when evaluating different data science models, algorithms and

rankers, the difference between OS, hardware, and setups can have multiple

affections on the results. Thus, a cloud based data science platform can

solve the above issues in an efficient way. With the help of cloud platform,

users can reuse the large dataset which is stored on the cloud. The cloud

platform can also provide a uniform environment, including OS, hardware

and configurations to run and evaluate data science models, algorithms and

rankers.

To address this challenge, the Text Information Management and Analysis

group at the University of Illinois at Urbana-Champaign has been develop-

ing a novel Cloud-based Open Lab for Data Science (COLDS) 1 to enable

students to work on programming assignments involving big data sets on the

cloud.

COLDS is based on the powerful MeTA toolkit[1]. The toolkit can support

multiple data science models and algorithms. It is an open-source state-of-

art Information Retrieval toolkit. With the help of MeTA toolkit, COLDS

can provide good and stable performance in the cloud. Since the toolkit is

open-source, users can justify and moderate the toolkit according to their

needs.

On behalf of all the characteristics of the COLDS, it is a great tool for Big

Data education and run controlled data science experiments.

1.3 Annotation Module

A novel and important subsystem of COLDS is its Annotation Subsystem,

which not only enables students to work on data annotation assignments on

the cloud, but also facilitates creation of new annotated data sets to support

novel research in data science.

This thesis describes the design and implementation of the annotation

1https://wiki.illinois.edu/wiki/pages/viewpage.action?pageId=586660414

2

module of the Annotation Subsystem of COLDs. The whole Annotation

Subsystem consists of 3 modules, including search engine module, database

module, and annotation module. The description of the design and imple-

mentation of the other modules of the Annotation Subsystem can be found

in Liu[2] and Yu[3] master thesis.

Annotation module serves the key functionality of the COLDS system.

It interacts with the rest of the parts as follows: when the search module

returned the search engine result, it will pass the result to the annotation

module. Then the annotation module will save the annotation for each docu-

ment into the database module. These annotations can be further used to do

evaluations or used as explicit feedback to enhance the search result. When

doing big data educations, instructor can also assign the students tasks to

do annotation on specific dataset with certain algorithms and data science

models for educational or experimental purposes.

The goal of the annotation module is to let the instructors of big data to

assign annotation tasks to students and save these annotations for future use

such as run experiments against different data science models. The annota-

tion module also needs to serve other parts. It uses the result from search

engine module as the input and saves its output to the database module.

The annotation module enabled COLDS to support 1). flexible design

of annotation assignments 2). experiments for evaluation of different data

science models and algorithms 3). interaction between different modules.

There are 2 main challenges in designing this module, design the database

schema and design the data structure. We discuss how we address these

challenges and present the details of the design and implementation of the

annotation module in chapter 4 and chapter 5. We also show sample results

of using COLDS system to illustrate its potential applications in chapter 6.

The system is available at https://github.com/BtXin/VirtualIRLab

3

CHAPTER 2

RELATED WORK

This chapter describes related works including relevant background, similar

works, and techniques behind COLDS.

2.1 Big Data and Big Data Education

The opportunity of leveraging large amounts of data (i.e., ”big data”) in

all kinds of application domains has been recognized by the US govern-

ment for several years now [4]. In the past a few years, much progress

has been made in big data research as shown by the creation of new con-

ferences dedicated to this topic such as the IEEE Big Data Conference 1.

On the education side, many universities have created new courses on Data

Science; for example, a search with ”data science” as a query on Cours-

era (https://www.coursera.org/) returns a large number of online courses in

the general area of Data Science. However, a significant challenge in these

online courses is how to enable students to work on meaningful large-scale

programming assignments involving large data sets. There have been a few

systems that can help support online programming assignments in Data Sci-

ence. Some examples of them are the MLComp [5] and Kaggle[6], which

support some machine learning experiments with all the experiment details

documented in the system. However, the system does not support grading

of programming assignments, or enable very large data sets to be used. It

also does not support annotations of data sets as COLDS does.

1http://cci.drexel.edu/bigdata/bigdata2017/index.html

4

2.2 Virtual IR Lab and Lucene4IR

Virtual Information Retrieval Laboratory was a web based information re-

trieval laboratory[7]. It used a more interactive way of implementing in-

formation retrieval functions, unlike the pre-existing command line based

toolkits. Users can run their retrieval functions directly over the data sets

stored in the VIR Lab’s server, which is similar to COLDS system. Users

can implement the retrieval function with few lines of code, and can process

evaluation and pair-wise comparison with the web interface.

However, Virtual IR Lab doesn’t have an annotation system. As a result,

it cannot support task assignment and direct explicit feedback. Also, the

Virtual IR Lab is not open sourced, which means users can’t deploy and

modify the system according to their needs. Thus, Virtual IR Lab is not as

suitable as COLDS for big data education.

Azzopardi described Lucene4IR[8]. in his workshop paper as an evaluation

process tool. The tool used Apache Lucene toolkit, which is mostly used in

industry. The tool is mainly used for academic purposes. They chose Lucene

to decrease the gap between academic and industry.

However, the tool is not cloud-based, which means you have to keep the

data sets locally for each user. It also doesn’t have an annotation subsystem.

2.3 Crowdsourcing Annotations

Creation of annotated data sets is required in order to evaluate algorithms

in Data Science. However, annotations generally require much manual labor,

thus is expensive. This limited the availability of annotated data sets that can

be used for supporting new research in data science. Recently, crowdsourcing

annotations of data sets has become very popular due to its affordability[9]

[10] [11]. However, existing methods mostly rely on paying many cheap

labors (e.g., using Amazon Mechanical Turk). In contrast, the Annotation

Subsystem of COLDS enables a novel way of crowdsourcing annotations of

potentially very large data sets by leveraging student assignments where a

large data set can be distributed among many students to create annotations

and all the annotations can then be aggregated to form a large data set. This

novel strategy potentially enables creation of annotated data sets without any

5

cost since the students would learn evaluation skills from working on such

annotation assignments. Such an assignment-based annotation strategy has

proven effective when used in the Text Retrieval and Search Engines course

on Coursera (https://www.coursera.org/learn/text-retrieval).

2.4 Information Retrieval Evaluation

The Annotation Subsystem supported by the work in this thesis currently

supports annotations for search engine evaluation. The evaluation methodol-

ogy supported by this system is based on the Cranfield Evaluation methodol-

ogy [12], also called test-collection evaluation [13]. In such an approach, the

main challenge is to create a test collection consisting of three parts: sample

queries, sample documents, and relevance judgments. Collecting documents

is relatively easy, but collecting queries and relevance judgments is challeng-

ing since it involves user effort. The traditional approaches to solving this

problem rely on paying users to make annotations or running evaluation

competitions as done in TREC [14]. The Annotation Subsystem of COLDS

provides a more scalable way to solve this problem, which would enable cre-

ation of potentially many new data sets for evaluating search engines.

6

CHAPTER 3

COLDS AND ITS ANNOTATION
SUBSYSTEM

This chapter provides brief introduction to COLDS and its annotation sub-

system.

3.1 Overview

The basic idea of COLDS is to deploy software toolkits that contain al-

gorithms for processing and analyzing big data sets on a cloud-computing

infrastructure (currently Microsoft Azure). Currently COLDS integrated

MeTA[1] toolkit to support big data analysis. The users can directly run

experiments with algorithms and their parameters in the toolkit to learn

the behaviors of algorithms on real data sets that are available on the cloud

without downloading the data set locally.

3.2 Structure of COLDS Annotation Subsystem

The Annotation Subsystem of COLDS consists 3 different modules: search

module, database module and annotation module. Search module directly

connects with the toolkit, run the algorithms with user defined parameters

on real data sets in the cloud, and return the results to the user. Database

module record every action and stores them into the database. The stored

data can be later used by other modules such as annotation module. Annota-

tion module communicates search module and database module and provide

the relevance judgement annotation functionality which can be further used

to evaluate the algorithms and expand to leaderboard. The detail of search

module and database module can be found in Liu[2] and Yu’s[3] thesis.

7

3.3 Use of Annotation Subsystem

With the help of Annotation Subsystem, a leaderboard would be main-

tained by COLDS for every programming task to record the best the per-

formance figures of the best performing algorithms submitted by learners or

researchers. When the data set and task are new, such an infrastructure

naturally supports research in data science as well, essentially removing the

boundary of education and research. The search module makes it easy to run

big data algorithms on real data sets. Moreover, as a research infrastructure,

COLDS ensures reproducibility of all the experiments since they are all well

documented in the infrastructure system and stored in the database module.

Since a researcher does not have to re-produce any baseline methods (as they

are already available via COLDS), the researcher only needs to implement

and experiment with his/her new ideas, thus the workload of a researcher

is minimized. In this sense, COLDS helps improve research productivity as

well.

8

CHAPTER 4

DESIGN OF ANNOTATION MODULE

This chapter describes the design philosophy, challenges encountered and

solutions to the challenges, and the structure of the annotation module.

4.1 Design Philosophy

The annotation module serves the key functionality of COLDS and all its

modules. One functionality of the annotation module is to serve as a com-

munication port between each different module. It will take the result from

search engine module as input and save the annotation for each result as out-

put to the database module. The annotation module also need to support

the task assignment by interface module.

Since the module needs to satisfy those requirements to communicate each

modules as well as serve its original functionality: do annotation on the query

results, the module itself should be robust and scalable. In order to make

the module itself more extensible, the design philosophy of the system also

followed the principle of high cohesion and low coupling[15].

4.2 Challenges and Solutions

This section addresses the challenges encountered and solutions for those

challenges

4.2.1 Design of Schema

The first challenge and decision choice for the Annotation Module, is the

data schema used to store the annotation of each query and documents.

9

Figure 4.1: The database schema for annotation module

The schema for the annotation module needs to be elegant, but at the same

time stored all the information needed. The annotations have to store the

information of the query, who the annotator is, what dataset the annotation

is on and what relevance judgement the annotator made. At the same time,

the schema needs to be efficient enough to support queries across multiple

tables. As a result, the schema was designed to contain annotator, dataset,

document ID and judgement, and made annotator and dataset as foreign

key which followed the BCNF[16]. rule to satisfy all the requirement for the

schema. Figure 4.1 shows an example of record stored in the database with

such schema where ’ id’ is the object id provided by the database system,

’annotator’ is the user who did such relevance annotation, ’data set’ is the

experiment data set, ’query’ is the query user ran on the data set, ’doc’ is the

document id inside the data set, and ’judgment’ is the relevance judgement

user made on this document.

4.2.2 Design of Data Structure

The second challenge and decision choice is the data structure used to store

the annotation on the front end. The data structure should store each infor-

mation needed in the schema. However, each annotation only has one anno-

tator, data set and query information, but has multiple relevance judgement

for each document inside the data set. The key point here is to efficiently

store each information needed without redundancy. We need to store every

relevance judgement for each document but at the same time store annotator,

data set and query only once. To meet all the requirement, the data struc-

ture was designed in to a JSON object which stores annotator, data set and

query as dictionary and relevance judgement as a list, each element contains

the dictionary of document ID and relevance judgement of the document. In

such a way, the data structure can both contain the information we needed

10

Figure 4.2: The data structure for annotation module

for annotation but as well as eliminate the redundancy.

4.3 Overall Structure

The overall structure of the annotation subsystem contains several parts to

handle different requirements.

4.3.1 Interface

For educational purposes, we divided the web interface into two parts, the

one for instructors and the one for students. The web interface for instructors

can define annotation tasks for students. They can define the assignment on

specific data set, the query content, and the algorithms and parameters they

wanted to use. The user can choose 5 algorithms now. The default ranker is

OkapiBM25[17].is the most commonly used ranker in search engine. It also

supports Pivoted-length Normalization[18], Dirichlet Prior Smoothing[19],

Jelinek-Mercer Smoothing[9]. and simply counting the number of appears of

the keywords in the documents.

The web interface for students contains a list of tasks they ought to fin-

11

ish. Each task will do a pre-defined query on selected data sets with given

ranker and parameters provided by the instructor. Students’ interface can

also support new queries defined by the students. The users can use this

interface to start a new query and define the data set, query contents, algo-

rithms and parameters by themselves, and do relevance judgement annota-

tions on the returned results. The students’ web interface can also serve as

an experiments tool to discover queries on different algorithm with different

parameters. Sample illustration of interface is showed in chapter 6.

4.3.2 Backend Service

The backend service serves as a middle layer to connect the other two parts.

The interface sends its requests to the backend service. Backend service will

parse the request and exact the information from the request. The backend

service will then manipulate the data and reform the data structure to better

fit the schema of the database and save the data to the database.

The request may also ask the data from database. The process is similar

to the request to store data in database. The backend service will also parse

the request to extract the information needed. Then, it will communicate

with the database according to the requirements got from the request. Once

got the required data in the database, the backend service will wrap the data

into a JSON file and send it back to the interface with a status of 200.

4.3.3 Database

The database system serves will keep all the record into the data store. It will

record the actions the user took and served as future use. When instructor

assigns tasks, the database will store each task with the given data set,

query, algorithm and parameter information. When the students start a

task, the database will provide the task information stored by the instructor

earlier. When the user does new queries, the database would also store the

information which then can be further used for annotation purposes. The

relevance judgment annotation is also stored in the database, and can be

downloaded to run further experiment such as to compute the F-1 score and

precision and recall of some ranker and parameters.

12

CHAPTER 5

IMPLEMENTATION DETAIL

This chapter introduces the implementation details of COLDS some code

snippet.

5.1 Flask Server with RESTful API

The COLDS system was built with Python Flask framework. The server

accepts each incoming HTTP request with RESTful API. With RESTful

API, the server can handle each request in a clearer way, and each module

can only handle the incoming HTTP request as API calls. The server can

also use route render to separate each page. Python Flask is a light weighted

micro web framework. It can support RESTful API and parse each request

easily, and it is very easy to learn. As a result, users can easily modify the

system according to their needs. Figure 5.1 shows a code snippet of Flask

server.

5.2 Bootstrap with jQuery Front End

The front end of the annotation system was built with Bootstrap framework

with jQuery library. The whole user interface webpage was made as a flask

Figure 5.1: Code snippet for Flask Server

13

Figure 5.2: Ajex Reqeust for search

Figure 5.3: MongoDB table as an Object

template, and each component was generated and rendered as a Bootstrap

component. Once the webpage was rendered, user can input data in the

web interface. When the user finished input data, the interface will send

an ajex request with jQuery library. When the ajex requests returns, the

callback function would be triggered and re-render the page with returned

data packages. Figure 5.2 shows a code snippet of ajex request for search.

5.3 MongoDB and Mongoengine

COLDS used MongoDB as the data store. MongoDB is an open source, dis-

tributed NoSQL database. The database was hosted on Mongo Lab, which is

a free online MongoDB. The backend service of COLDS used Mongoengine

to connect and manipulate the MongoDB database. Mongoengine is a docu-

ment object mapper from MongoDB to python. It let the user to manipulate

the MongoDB in an ORM style, which instead of writing complex queries,

user can operate MongoDB as the table is an object. Figure 5.3 shows a code

snippet of mongoengine.

14

CHAPTER 6

APPLICATIONS OF THE COLDS’
ANNOTATION SUBSYSTEM

This chapter describes some potential applications of COLDS and its Anno-

tation Subsystem, and the benefits of using COLDS.

6.1 Education Application

COLDS and its Annotation Subsystem is naturally useful for big data edu-

cation, especially Massive Online Open Courses (MOOCs). Using COLDS

and its Annotation Subsystem, MOOC platform such as Cousera, Udacity

and Edx can improve their existing data science courses by providing on-

line programming assignment with COLDS and its Annotation Subsystem.

Taking the online version of CS410 course of University of Illinois at Urbana

Champaign as an example. Students can register at COLDS platform to do

online programming assignment. Figure 6.1 shows a sample illustration of

signup page.

The TA and instructors of the course can upload real data sets to the

platform and assign tasks to each student. The students of the course can

Figure 6.1: Signup Page

15

Figure 6.2: Upload Page

select assignment on their side and finish them. The students can also try to

run the algorithms on these data sets to do some experiments and learn from

them with the platform. Figure 6.2 shows a sample illustration of upload

page. Figure 6.3 shows a sample illustration of students’ page. Figure 6.4

shows a sample of search results page.

6.2 Benefits of COLDS’ Annotation Subsystem

From education perspective, besides enabling big data programming assign-

ments to be done at large scale, COLDS ensures the students learn skills that

would be directly useful for solving an industry problem, thus minimizing the

distance between education and applications in big data. From an industry

partners perspective, contributing data sets to COLDS has multiple bene-

fits, including visibility, training highly relevant labor force for the company,

access to potential candidates for hiring, and annotating their data sets via

crowdsourcing annotations using annotation assignments. This last benefit

would enable new research to be done in data science also, but requires a

general annotation system to be included in COLDS.

16

Figure 6.3: Student Page

Figure 6.4: Search Page

17

CHAPTER 7

SUMMARY

With the trend of big data, the industry required more data scientists and

engineers with such skills more than ever. Big data education has gained

more popularity than before. However, present online education platforms

such as Cousera, Udacity and Edx lack the ability to provide online pro-

gramming assignments. This thesis presented COLDS and its Annotation

Subsystem, which is a novel cloud based general infrastructure to online

assignment efficiently at a low cost. This thesis mainly focused on design

and implementation of the annotation module of COLDS and showed some

example application with sample illustrations.

In conclusion, COLDS and its annotation subsystem has a great potential

in future big data online education and can make big impact.

18

REFERENCES

[1] S. Massung, C. Geigle, and C. Zhai, “Meta: A unified toolkit for text
retrieval and analysis,” ACL 2016, p. 91, 2016.

[2] C. Liu, “Design and implementation of the database module in colds for
data annotation,” M.S. thesis, University of Illinois at Urbana Cham-
paign, Urbana, 2017.

[3] X. Yu, “Design and implementation of the search module in colds,” M.S.
thesis, University of Illinois at Urbana Champaign, Urbana, 2017.

[4] Tom Kalil and Fen Zhao, “Unleashing the power of big data,” 2013.
[Online]. Available: https://obamawhitehouse.archives.gov/blog/2013/
04/18/unleashing-power-big-data

[5] “Ml comp,” 2013. [Online]. Available: http://mlcomp.org/

[6] “Kaggle,” 2017. [Online]. Available: https://www.kaggle.com

[7] H. Fang, H. Wu, P. Yang, and C. Zhai, “Virlab: A web-based
virtual lab for learning and studying information retrieval models,”
in Proceedings of the 37th International ACM SIGIR Conference
on Research & 38; Development in Information Retrieval, ser.
SIGIR ’14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2600428.2611178 pp. 1249–1250.

[8] L. Azzopardi, Y. Moshfeghi, M. Halvey, R. S. Alkhawaldeh,
K. Balog, E. Di Buccio, D. Ceccarelli, J. M. Fernández-Luna,
C. Hull, J. Mannix, and S. Palchowdhury, “Lucene4ir: Developing
information retrieval evaluation resources using lucene,” SIGIR
Forum, vol. 50, no. 2, pp. 58–75, Feb. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3053408.3053421

[9] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6,
pp. 1–4, 2006.

[10] H. Su, J. Deng, and L. Fei-Fei, “Crowdsourcing annotations for visual
object detection,” in Workshops at the Twenty-Sixth AAAI Conference
on Artificial Intelligence, vol. 1, no. 2, 2012.

19

[11] A. Wang, C. D. V. Hoang, and M.-Y. Kan, “Perspectives on crowdsourc-
ing annotations for natural language processing,” Language resources
and evaluation, vol. 47, no. 1, pp. 9–31, 2013.

[12] K. S. Jones, Readings in information retrieval. Morgan Kaufmann,
1997.

[13] M. Sanderson et al., “Test collection based evaluation of information
retrieval systems,” Foundations and Trends R© in Information Retrieval,
vol. 4, no. 4, pp. 247–375, 2010.

[14] E. M. Voorhees, D. K. Harman et al., TREC: Experiment and evaluation
in information retrieval. MIT press Cambridge, 2005, vol. 1.

[15] S. McConnell, Code complete. Pearson Education, 2004.

[16] E. F. Codd, Recent Investigations in Relational Data Base Systems.
IBM Thomas J. Watson Research Division, 1974.

[17] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gat-
ford et al., “Okapi at trec-3,” Nist Special Publication Sp, vol. 109, p.
109, 1995.

[18] A. Singhal, C. Buckley, and M. Mitra, “Pivoted document length nor-
malization,” in Proceedings of the 19th annual international ACM SI-
GIR conference on Research and development in information retrieval.
ACM, 1996, pp. 21–29.

[19] C. Zhai and J. Lafferty, “A study of smoothing methods for language
models applied to ad hoc information retrieval,” in Proceedings of the
24th annual international ACM SIGIR conference on Research and de-
velopment in information retrieval. ACM, 2001, pp. 334–342.

20

