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ABSTRACT

As a powerful representation paradigm for networked and multi-typed data,

the heterogeneous information network (HIN) is ubiquitous. Meanwhile,

defining proper relevance measures has always been a fundamental prob-

lem and of great pragmatic importance for network mining tasks. Inspired

by the probabilistic interpretation of existing path-based relevance measures,

we propose to study HIN relevance from a probabilistic perspective. We also

identify, from real-world data, and propose to model cross-meta-path synergy ,

which is a characteristic important for defining path-based HIN relevance and

has not been modeled by existing methods. A generative model is established

to derive a novel path-based relevance measure, which is data-driven and tai-

lored for each HIN. We develop an inference algorithm to find the maximum a

posteriori (MAP) estimate of the model parameters, which entails non-trivial

tricks. Experiments on two real-world datasets demonstrate the effectiveness

of the proposed model and relevance measure.
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CHAPTER 1

INTRODUCTION AND RELATED WORK

1.1 Introduction

In real-world applications, objects of various types are often interconnected

with each other. These objects, together with their relationship, form nu-

merous heterogeneous information networks (HINs) [1, 2]. Bibliographical

information network is a typical example, where researchers, papers, orga-

nizations, and publication venues are interrelated. A fundamental problem

in HIN analysis is to define proper measures to characterize the relevance

between node pairs in the network, which also benefits various downstream

applications, such as similarity search, recommendation, and community de-

tection [1, 2].

Most existing studies derive their HIN relevance measures on the basis of

meta-path [1, 2, 3], which is defined as a concatenation of multiple node types

linked by corresponding edge types. Based on the concept of meta-path,

researchers have proposed PathCount, PathSim [3], and path constrained

random walk [4] to measure relevance between node pairs. On top of these

studies, people have explored the ideas of incorporating richer information

[5, 6] and more complex typed structures [7, 8, 9] to define more effective

relevance scoring functions, or adding supervision to derive task-specific rel-

evance measures [10, 11, 12].

While building upon this powerful meta-path paradigm, we aim to addi-

tionally understand and model relevance from the probabilistic point of view.

In this regard, we establish a probabilistic interpretation of existing HIN rel-

evance measures, which is achieved by modeling the generating process of all

path instances in an HIN and deriving the relevance of a node pair from the

likelihood of observing the path instances connecting them. Relevance and

likelihood can be connected by this approach because only a small portion of
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node pairs in an HIN are actually relevant; and a proper generating process

has low likelihood to generate the path instances between each of these rel-

evant node pairs. We will detailedly discuss this probabilistic interpretation

in Sec. 2.2. Moreover, as a starting point for studying HIN relevance from

the probabilistic perspective, we focus the scope of this paper on the basic

unsupervised scenario. Meanwhile, we assume that the meta-paths of inter-

est are already given. That is, we defer the study on the cases with label

information and meta-path selection to future work.

In order to determine relevance between any pair of nodes, we have the key

insight that a path-based HIN relevance should contain three characteristics

– node visibility , path selectivity , and cross-meta-path synergy – which we

describe in the following paragraphs.

Node visibility. One straightforward way to derive relevance in an HIN is

PathCount [3]. For a meta-path t ∈ {1, . . . , T}, PathCount is defined as the

number of paths, Pst or equivalently P〈uv〉t, under this meta-path between a

node pair s = (u, v) ∈ V × V , i.e.,

PathCount (t)(u, v) := P〈uv〉t.

One obvious drawback of this measure is that it favors nodes with high node

visibility , i.e., nodes with a large number of paths. To resolve this problem,

[3] proposed to penalize PathCount by the arithmetic mean of the numbers

of cycles attached to the two involved nodes, i.e.,

PathSim(t)(u, v) :=
2 · P〈uv〉t

P〈uu〉t + P〈vv〉t
.

A similar design to model node visibility can be found in JoinSim [13], which

is defined as PathCount penalized by geometric mean of the cycle numbers.

Path selectivity. Given any method defining relevance score under one

meta-path, a natural question is how to combine multiple meta-paths to de-

rive a unified relevance score – henceforth referred to as the composite score.

To achieve this goal, Sun et al. [3] proposed to assign different weights to

different meta-paths, and compute the composite score via linear combina-

tion. Let w = {w1, . . . , wT} with wt being the weight for meta-path t, the
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Figure 1.1: (a) The same composite score (x) may be aggregated from
different number of meta-paths, where score is represented by the length of
the rectangles and each fill pattern represents a meta-path. (b) An
observation made from an entity resolution task on the DBLP dataset that
if linear combination is used to compute the composite score, node pairs
with paths under multiple meta-paths are more likely to be relevant than
those under only one meta-path. Prevalence is defined as the number of
relevant node pairs divided by the total number of node pairs.

composite score of PathCount is given by

PathCountw(u, v) :=
T∑

t=1

wt · PathCount (t)(u, v).

Similarly, one can define PathSimw(u, v). This linear combination approach

is adopted by follow-up works with multiple applications [1, 2], including

personalized entity recommendation problem [14], outlier detection [15, 16],

etc. The weights assigned or inferred in these cases specify how selective

each meta-path is. The larger the path selectivity , the more significant this

meta-path is in contributing to the composite score.

Cross-meta-path synergy. Suppose linear combination is used to find

the composite score as in the previous paragraph, the two scenarios shown

in Fig. 1.1a would receive the same composite score (x), where xi equals to

the score from the i-th meta-path multiplied by the corresponding weight.

However, we have the observation that, when meta-paths do not clearly cor-

relate, the latter scenario tends to imply a higher relevance. We take an

entity resolution task on the DBLP dataset as example, which aims to merge

3



author mentions that refer to the same entity. In this task, each node stands

for an author mention, and each meta-path represents that two author men-

tions have both published papers in one particular research area. We label

two author mentions as relevant if and only if they refer to the same entity,

and we use PathCount with uniform weights as an example to compute the

composite score. Results presented in Fig. 1.1 shows that with the same com-

posite score, node pairs associated by paths under multiple meta-paths are

more likely to be relevant than those under only one meta-path. We refer to

this phenomenon as cross-meta-path synergy . We interpret this phenomenon

as given the occurrence of one path, the happenstance of another path under

the same meta-path may not be surprising, while the co-occurrence of two

paths under two uncorrelated meta-paths may be a strong signal of relevance.

Moreover, we should also realize that not necessarily all meta-path pairs are

uncorrelated. This implies cross-meta-path synergy does not necessarily exist

between all pairs of meta-paths, and a good relevance measure should reflect

this difference.

Regarding the three pivotal characteristics for path-based HIN relevance

discussed above, the major challenge lies in how to integrate all these char-

acteristics in a unified framework. We tackle this challenge by studying

path-based relevance from a probabilistic perspective, and deriving relevance

measure from a generative model. Since the model parameters are trained

to fit each HIN, the derived relevance measure enjoys the property of being

data-driven. That is, the derived relevance measure is tailored for each HIN.

We summarize our contributions as follows:

1. We establish the probabilistic interpretation of existing path-based HIN

relevance measures.

2. We identify and propose to model cross-meta-path synergy , an impor-

tant characteristic in path-based HIN relevance.

3. We propose a novel relevance measure based on a generative model,

which is data-driven and tailored for each HIN, and develop an inference

algorithm with non-trivial tricks.

4. Experiments on two real-world HINs corroborate the effectiveness of

our proposed model and relevance measure.
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1.2 Related Work

In this section, we review the study on HIN relevance. The problem of de-

riving relevance between node pairs has been extensively studied for homo-

geneous information networks. Relevance measures of this type include the

random walk based Personalized PageRank and SimRank [17], the neighbor-

based common neighbors and Jaccard’s coefficient, the path-based Katz [18],

etc. To generalize relevance from the homogeneous networks to the typed

heterogeneous case, researchers have been exploring from multiple perspec-

tives. One perspective, as in PathCount and PathSim from [3] and Path-

Constrained Random Walk from [4], is to first compute relevance score along

each meta-path, and then glue scores from all types together via linear com-

bination to establish the composite measure. A great many applications

[1, 2, 14, 15, 16] based on this meta-path paradigm with linear combination

have been proposed. Our proposed method follows this meta-path paradigm,

but goes beyond linear combination to model cross-meta-path synergy that

we have observed from real-world HIN. Another perspective is to go beyond

meta-path and derive relevance based on the more complex graph structures

[7, 8]. While these approaches can yield good performance, they differ from

our proposed methods for further entailing label information or expertise in

designing graph structure. Also, they do not carry probabilistic interpreta-

tions. Besides, people have explored the idea of incorporating richer infor-

mation [5, 6] to define more effective relevance scoring functions, or adding

supervision to derive task-specific relevance measures [10, 11, 12]. While

being valuable, these works are out of the scope of the problem we study

in this paper, where we address the basic, unsupervised case with no addi-

tional information as our starting point of studying HIN relevance from the

probabilistic perspective.
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CHAPTER 2

PROBABILISTIC INTERPRETATION OF
PATH-BASED RELEVANCE

2.1 Prelimineries

In this section, we introduce the concepts and notations used in this paper.

Definition 2.1.1 (Heterogeneous Information Network) An informa-

tion network is a directed graph G = (V , E) with a node type mapping

f : V → A and a edge type mapping g : E → R. Particularly, when the num-

ber of node types |A| > 1 or the number of edge types |R| > 1, the network

is called a heterogeneous information network (HIN).

Because of the typed essence of HINs, paths that associate node pairs can

be grouped under different meta-paths. Here, we formally define meta-paths

as follows.

Definition 2.1.2 (Meta Path) A meta-path is a concatenation of mul-

tiple nodes or node types linked by edge types.

An example of a meta-path is [author]
writes−−−→ [paper]

writes−1

−−−−−→ [author],

where a phrase in the brackets represents a node type and a phrase above

the arrow refers to an edge type. When context is clear, we simply write

[author]–[paper]–[author]. In this paper, we study the relevance problem

when a set of meta-paths of interest is predefined by users.

To ease presentation, we focus on unweighted HINs, and model path count

defined as follows. Note that the path-based model to be proposed in this

paper can be extended to the weighted case.

Definition 2.1.3 (Path Count) The path count under a given meta-path

t ∈ {1, . . . , T} between a node pair s = (u, v) ∈ V × V is the number of

concrete path instances under this meta-path that start from node u to node

v, which is denoted by Pst or P〈uv〉t.
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Note that the relevance score given by the PathCount measure [3] is exactly

the path count of a meta-path between a node pair.

Lastly, we introduce the probability distributions to be used.

Definition 2.1.4 The probability density functions of three probability dis-

tributions used in this paper are given as follows.

1. Exponential distribution Exp
(
λ̃
)

with rate λ̃ > 0:

p(x) = λ̃ eλ̃x (x > 0).

2. Gamma distribution Γ
(
α̃, β̃

)
with shape α̃ > 0 and rate β̃ > 0:

p(x) =
β̃α̃

Γ(α̃)
xα̃−1 e−β̃x (x > 0),

where Γ(α̃) =
∫∞
0
tα̃−1 e−t dt is the gamma function.

3. Symmetric Dirichlet distribution DirL (α̃) of order L and concentration

parameter α̃:

p(x1, . . . , xL) =
Γ (α̃L)

Γ (α̃)L

L∏

i=1

xα̃−1i (xi > 0 and
L∑

i=1

xi = 1),

where Γ(·) is the gamma function.

We denote Exp
(
x ; λ̃

)
:= p(x) the probability density function of Exp

(
λ̃
)

,

and denote x ∼ Exp
(
λ̃
)

if x is generated from Exp
(
λ̃
)

. Similar notations

are also used for Γ
(
α̃, β̃

)
and DirL (α̃).

2.2 Probabilistic Interpretation of Existing Relevance

Measures

In this section, we illustrate the probabilistic interpretation of existing path-

based HIN relevance measures. We can achieve this by studying the gener-

ating process of path counts between node pairs in an HIN, which contains

a connection between relevance and the negative log likelihood. Suppose
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the path count of meta-path t between node pair s is generated from an

exponential distribution

Pst ∼ Exp (λ) ,

with fixed rate λ, then in terms of the rank it yields, the negative log like-

lihood of all observed paths under meta-path t between node pair s will be

equivalent to the PathCount of meta-path t

−LL(t)(s) = − log(λ e−λPst) = λPst − log λ

∝ Pst + const = PathCount (t)(s) + const .

Further, if we assume the path instances under different meta-paths are

generated from exponential distribution with meta-path-specific rates w =

(w1, w2, . . . , wT ), i.e., Pst ∼ Exp (wt), then the negative log likelihood of all

observed path counts will be equivalent to PathCount with weights w for

linear combination

−LL(s) = − log(
∏

t

wt e−wtPst) =
∑

t

wtPst −
∑

t

logwt

=
∑

t

wtPst + const = PathCountw(s) + const .

Moreover, if we assume each node pair s has pair-specific generating rate

proportional to a parameter κs, i.e., Pst ∼ Exp (wt/κs), then the negative log

likelihood of observed path counts will be

−LL(s) =
∑

t

wt ·
Pst
κs

+ T log κs + const .

For node pair s = (u, v), if we drop the logarithm term and set κs to be

the arithmetic mean of the cycle count of the involved nodes u and v, the

formula becomes

∑

t

wt ·
2 · P〈uv〉t

P〈uu〉t + P〈vv〉t
= PathSimw(s)

which is identical to PathSim with weights w for linear combination. In lieu

of arithmetic mean, if we set κs to be the geometric mean of the same quan-

tities, we get
∑

twt ·
P〈uv〉t√

P〈uu〉t·P〈vv〉t
, which is identical to JoinSim with weights
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w for linear combination. Note that all the relevance measures discussed in

this section are special cases of our relevance measure to be proposed in the

next section.

2.3 Proposed Generative Model

With the relevance–likelihood connection established in Sec. 2.2, we propose

our Path-based Relevance from Probabilistic perspective (PReP) likewise

by modeling the generating process of path counts between node pairs, and

further aim to model the three important characteristics. In a nutshell, the

proposed generative-model-based relevance measure consists of two major

parts: (i) inferring model parameters by finding the maximum a posteri-

ori (MAP) estimate to fit the input HIN, and (ii) deriving relevance score

between any node pair based on the learned model.

2.3.1 The PReP Model

Following the existing HIN relevance measures discussed in Sec. 2.2, we as-

sume the path count, Pst or P〈uv〉t, between node pair s = (u, v) under

meta-path t is generated from an exponential distribution with rate λst,

i.e., Pst ∼ Exp (λst). To capture node visibility , path selectivity , and cross-

meta-path synergy , we must design λst in a way that can model these three

characteristics at the same time.

According to the property of exponential distribution, if a random vari-

able X is generated from Exp
(
λ̃
)

, then the expectation of X will be 1/λ̃.

Bearing this in mind, we introduce three components to model the three

characteristics as follows.

• Both the node visibility of u and that of v affect the generation of path

instances. We consider the visibility of this pair of node as node pair

visibility, τs, which is positively correlated with the expectation of Pst.

• We let path instances under the same meta-path share the same path

selectivity . Denote ηt the path selectivity for meta-path t, which is

negatively correlated with the expectation of Pst.
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x1

x2

p(x1, x2, 1� x1 � x2)

T1 : [person]
livesIn����! [location]

livesIn�1

������! [person]

T2 : [person]
livesIn����! [loc. in UK]

livesIn�1

������! [person]

T3 : [person]
livesIn����! [loc. in US]

livesIn�1

������! [person]

T4 : [person]
livesIn����! [loc. in WA]

livesIn�1

������! [person]

T5 : [person]
livesIn����! [loc. in CA]

livesIn�1

������! [person]

3

(       )

(       )

Figure 2.1: Toy example for one part of an HIN, consisting of four node
types: person, university, location, and discipline.

• For node pairs with paths in between, each of them can be linked by

path instances under a different set of meta-paths. We assume an

underlying meta-path distribution ψs = [ψs1, . . . , ψsT ] for node pair s,

where
∑T

t=1 ψst = 1 and ψst ≥ 0. As a distribution over meta-paths, ψs

models the semantics of the relevance between this node pair, because

each meta-path carries its own semantic meaning. With further design

to be introduced, ψs also serves as the basis to capture cross-meta-path

synergy . ψst is positively correlated with the expectation of Pst.

Putting the above three components together considering their correlation

with the expectation of Pst, we find path count generating process as

Pst ∼ Exp

(
ηt

τsψst

)
, (2.1)

where the detailed illustration and design of the three components are to be

further discussed in this section. Note that while we only discuss unweighted

HINs in this paper, the use of exponential distribution in Eq. (2.1) enables the

model to handle weighted HINs, where paths are associated with real-valued

path strengths, and Pst may not be integers to reflect the path strengths.

Since node pairs with no paths under any predefined meta-path should

trivially receive the lowest possible relevance score, we only model the gener-

ation of path counts between node pairs with paths in between – henceforth

referred to as nontrivial node pairs – and we denote S the set of all nontrivial

node pairs.

Illustrative example. To better illustrate how each component design

affects the path generation process, we present a toy example in Fig. 2.1,
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which shows a part of an HIN with four node types: person, university,

location, and discipline. We concern three meta-paths in this network:

• M1 : [person]
attends−−−−→ [university]

attends−1

−−−−−→ [person],

• M2 : [person]
livesIn−−−→ [location]

livesIn−1

−−−−−→ [person],

• M3 : [person]
majorsIn−−−−−→ [discipline]

majorsIn−1

−−−−−−→ [person].

Decoupling node pair visibility. To model node visibility, we decouple

node pair visibility τs in Eq. (2.1) into two parts as in PathSim and JoinSim

discussed in Sec. 2.2. The two parts correspond to the node visibility ρu and

ρv, respectively, where s = (u, v), and ρz > 0 for all z ∈ V . In our design, let

τ(u,v) = ρuρv (2.2)

as in JoinSim because decoupling by multiplication eases model inference,

which will be made clear in the next paragraph.

Since a trivial rescaling – multiplying all ρz by a constant and multiplying

all ηt by the square of the same constant – can lead to exactly the same

model (Eq. (2.1)), we further regularize ρz by a gamma prior with a constant

rate parameter

ρz ∼ Γ (α, 1) . (2.3)

Note that we arbitrarily set the rate parameter to be 1 since the shape of

the distribution is solely determined by the shape parameter α. We choose

gamma distribution as the prior for ρz because it is the conjugate prior for

the exponential distribution, and this fact will largely facilitate the inference

algorithm as we will show in Sec. 2.4.2. To determine the shape parameter

α, we fit the gamma distribution to the total path count each node has,

{∑T
t=1

∑
z̃∈V P〈zz̃〉t}z∈V , in the HIN as a rough prior information.

Path selectivity at meta-path level. We assume path instances under

meta-path t share the same path selectivity ηt. In the scope of this paper,

where supervision is not available, we assume uninformative prior on ηt.

In future work where supervision is provided, we can further learn ηt by

minimizing the difference between supervision and model output to derive a

task-specific relevance measure.
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Cross-meta-path synergy and generating patterns. As discussed in

Sec. 1.1, we have observed the existence of cross-meta-path synergy in real-

world HIN, and this characteristic has not been modeled by existing HIN

relevance measures. In case meta-paths do not correlate, we may simply

add a Dirichlet prior, with concentration parameter smaller than 1, over

meta-path distribution ψs for all node pair s. This use of Dirichlet prior

resembles latent Dirichlet allocation (LDA) [19], where the Dirichlet prior

prefers sparse distributions, i.e., most entries of ψs tend to be 0. Therefore,

the co-occurrence of paths under different meta-paths gets a lower likelihood

from this prior, and attains a higher relevance score under our relevance–

likelihood connection.

However, in reality, it would not be surprising to see two people attending

UC Berkeley also both live in the City of Berkeley. This implies cross-meta-

path synergy does not necessarily exist between all pairs of meta-paths, e.g.,

it may not exist between meta-path M1 and meta-path M2 in the toy ex-

ample of Fig. 2.1. To address this situation, we introduce a new component

– generating patterns. Each of a total of K generating patterns is a distribu-

tion over the T meta-paths, where meta-paths that often co-occur between

node pairs will also be included in a common generating pattern, and when a

node pair s generates a path instance in between, it would first choose gener-

ating pattern k with probability φsk, and then choose meta-path t from this

generating pattern with probability θkt. Formally, we describe this process as

ψst =
K∑

k=1

φskθkt, (2.4)

where φs = [φs1, . . . , φsK ] is node pair s’s choices of generative patterns,∑K
k=1 φsk = 1, φsk ≥ 0; and θk = [θk1, . . . , θkT ] is generating pattern k’s

distribution over meta-paths,
∑T

t=1 θkt = 1, θkt ≥ 0.

A symmetric Dirichlet prior is then enforced on φs, such that synergy will

be recognized between and only between meta-paths from different generat-

ing patterns

φs ∼ DirK (β) , (2.5)

where β ∈ (0, 1) is the concentration hyperparameter.

With this design, our model gives a lower likelihood and higher relevance

score to Mordo and Stephen (same university and same major) than Mordo
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Measure Node Pair M1 M2 M3 Composite Truth

PathCount
Mordo & Wong 1 1 0 w1 + w2 −

Mordo & Stephen 1 0 1 w1 + w3 +

PathSim
Mordo & Wong 0.67 1 0 0.67w1 + w2 −

Mordo & Stephen 0.67 0 1 0.67w1 + w3 +

RWR (C = 0.9)
Mordo & Wong 0.29 0.47 0 0.29w1 + 0.47w2 −

Mordo & Stephen 0.25 0 0.31 0.25w1 + 0.31w3 +

PReP
Mordo & Wong 1 generating pattern −

Mordo & Stephen 2 generating patterns +

Table 2.1: Existing measures cannot yield desired relevance, unless we
assert M3 (discipline) is always more selective than M2 (location), while
PReP can achieve this by recognizing the co-occurrence of multiple
generating patterns.

and Wong (attending UC Berkeley and living in the City of Berkeley) in

the toy example of Fig. 2.1 by learning a generating pattern that includes

both M1 and M2. Whereas, other relevance measures cannot achieve this

desired relationship as presented in Tab. 2.1, unless we can set the weights

w2 > w3, or equivalently assert that M2 (location) is always less selective

than M3 (discipline).

The unified model. For notation convenience, we use the bold italic

form to represent the corresponding matrix or vector of each symbol with

subscripts. For instance, the (s, t) element of P is Pst and the t-th element

of η is ηt. Under this notation, combining Eq. (2.1), (2.3), and (2.5), with

Eq. (2.2) and (2.4) substituted into Eq. (2.1), yields the total likelihood of

the full PReP model

L = p(P ,η,ρ,Φ,Θ | α, β)

=

{∏

u∈V

Γ (ρu ; (α, 1))

}
·
{∏

s∈S

DirK (φs ; β)

}

·





∏

s∈S
(u,v)=s

T∏

t=1

Exp

(
Pst ;

ηt

ρuρv
∑K

k=1 φskθkt

)




(2.6)
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2.3.2 The PReP Relevance Measure

Given the unified model (Eq. (2.6)), we have two options to derive relevance

measure using likelihood: (i) find the maximum a posteriori estimate for all

parameters and compute the total likelihood of the observed data, and (ii)

consider all model parameters as hidden variables and define the relevance

as the marginal likelihood of the observed data. However, the marginal

likelihood does not have a closed-form representation in our case, nor can we

approximate it with regular Markov chain Monte Carlo algorithms due to

the large number of hidden variables. Therefore, we adopt the first option

and defer the other to future work.

Once the model parameters {η,ρ,Φ,Θ} are estimated, we define the PReP

relevance for a node pair s = (u, v) as the negative log-likelihood involving

this node pair, − log p(Ps,:,φs | Θ,ρ,η, α, β), without the log term as in the

derivation of PathSim in Sec. 2.2

r(s) =
T∑

t=1

Pst

ρuρvηt
∑K

k=1 φskθkt
+ (1− β)

K∑

k=1

log φsk. (2.7)

Note that PathCount, PathSim, and JoinSim discussed in Sec. 2.2 are special

cases of this PReP relevance measure, when {η,ρ,Φ,Θ} are heuristically

specified accordingly.

2.4 Model Inference

In this section, we introduce the inference algorithm for the PReP model

(Eq. (2.6)) proposed in Sec. 2.3.

2.4.1 The Optimization Problem

We find the maximum a posteriori (MAP) estimate for model parameters

by minimizing the negative log-likelihood of the proposed model (Eq. 2.6),
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Algorithm 1: Inference algorithm for the PReP model

Input : the observed path counts P and the hyperparameters
Output: the model parameters η, ρ, Φ, and Θ
begin

Initialize ρ, Φ, and Θ
while not converged do

Update η by the closed-form Eq. (2.10)
while not converged do

for u ∈ V do
Update ρu by the closed-form solution to Eq. (2.11)

Update Φ via parallelized PGD with gradient in Eq. (2.13)
Update Θ via PGD with gradient in Eq. (2.12)

which, with an offset of a constant, is given by

O =
∑

u∈V

(ρu − (α− 1) log ρu)− (β − 1)
∑

s∈S

K∑

k=1

log φsk

+ T
∑

(u,v)∈S

(log ρu + log ρv)− |S|
T∑

t=1

log ηt

+
∑

s∈S
(u,v)=s

T∑

t=1

[
log

K∑

k=1

φskθkt +
ηtPst

ρuρv
∑K

k=1 φskθkt

]
, (2.8)

and the optimization problem is therefore

min
η,ρ,Φ,Θ

O(η,ρ,Φ,Θ). (2.9)

We solve the above minimization problem with an iterative algorithm to

be detailed in the following Sec. 2.4.2.

2.4.2 The Inference Algorithm

We iteratively update one of η, ρ, Φ, and Θ when the others are fixed. The

inference algorithm is summarized in Algorithm 1.

Update η given {ρ,Φ,Θ} . Once given ρ, Φ, and Θ, the optimal η that

minimizes O in Eq. (2.8) has a closed-form solution. One can derive this
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closed-form update formula by looking back to the total likelihood given in

Eq. (2.6), since

L ∝
∏

s∈S

T∏

t=1

Exp

(
Pst ;

ηt

τs
∑K

k=1 φskθkt

)

=
T∏

t=1

[
Exp

(
1

|S|
∑

s∈S

Pst

τs
∑K

k=1 φskθkt
; ηt

)]|S|
,

where τs = ρuρv for node pair s = (u, v). Using the property of exponential

distributions, we find the η that maximizes L, and hence minimizes O, can

be computed by

ηt =

(
1

|S|
∑

s∈S

Pst

τs
∑K

k=1 φskθkt

)−1
. (2.10)

Update ρ given {η,Φ,Θ} . Unlike η, closed-form formula for updating ρ

does not exist because (i) ρ has an informative prior, and (ii) the generating

process for paths between node pair (u, v) involves the coupling of ρu and ρv.

Fortunately, the gamma distribution is the conjugate prior to the exponential

distribution. Therefore, for each u, when the rest {ρv}v 6=u are fixed, the

closed-form update formula for ρu can be derived as follows. Denote {ξs}s∈S
the following quantities that are fixed during the ρ update phase

ξs :=
T∑

t=1

ηtPst∑K
k=1 φskθkt

,

and we have ∂O
∂ρu

=
∑

v∈V\{u}
s=(u,v)

[∑T
t=1

1
ρu
− ξs

ρ2uρv

]
− α−1

ρu
+ 1. Setting this partial

derivative to 0 leads to

ρ2u + [(|V| − 1) · T − (α− 1)] ρu −
∑

v∈V\{u}
s=(u,v)

ξs
ρv

= 0. (2.11)

Note that Eq. (2.11) is a single-variable quadratic equation with one pos-

itive and one negative roots. Furthermore, O is convex w.r.t. ρu on the

positive half-axis, and the positive root is a minimum of O. Therefore, the

optimal ρu that minimizes O is given by the positive root of the quadratic

equation (Eq. (2.11)), which has closed-form solution. Holistically, we up-
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date ρ by iterating through u ∈ V to update ρu with the aforementioned

closed-form solution to Eq. (2.11).

Update Θ given {η,ρ,Φ} . To update Θ, we use the projected gradient

descent (PGD) algorithm [20]. The gradient is given by

∂O
∂Θ

= Φ>
[

1

ΦΘ
− P

(τ (η◦−1)>) ◦ (ΦΘ)◦2

]
, (2.12)

where [·] ◦ [·], [·]
[·] , and [·]◦[·] are element-wise multiplication, division, and

power. Additional constraint fed into PGD is that each row of Θ lies in the

standard (T − 1)-simplex, i.e.,
∑T

t=1 θkt = 1 for all k ∈ {1, ..., K} and θkt ≥ 0

for all (k, t) ∈ {1, ..., K}×{1, ..., T}. Projection onto the standard simplex or

the direct product of multiple standard simplices can be achieved efficiently

using the method introduced in [21].

Update Φ given {η,ρ,Θ} . Similarly, we use PGD to update Φ, where

the gradient is given by

∂O
∂Φ

=

[
1

ΦΘ
− P

(τ (η◦−1)>) ◦ (ΦΘ)◦2

]
Θ> − β − 1

Φ
. (2.13)

However, directly updating the entire Φ using PGD can be problematic,

because the row number of Φ is the same as the number of nontrivial node

pairs, |S|, which can be very big compared to Θ.

Fortunately, we can decompose the update scheme for Φ by rows, because

each row is independent from others. Specifically, we update each row s using

PGD in parallel, with gradient ∂O
∂Φs,:

=
[

1
Φs,:Θ

− Ps,:

(τs(η◦−1)>)◦(Φs,:Θ)◦2

]
Θ>− β−1

Φs,:
,

and constraints
∑K

k=1 φsk = 1 for all s ∈ S and φst ≥ 0 for all (s, k) ∈
S × {1, ..., K}.

2.4.3 Implementation Details

For program reproducibility, we provide details in parameter initialization

and computational singularity handling.

Since the inference algorithm starts with updating η, no initialization for

η is needed. ρ is initialized by drawing random samples from its prior dis-

tribution, Γ (α, 1), where α is estimated from data as discussed in Sec. 2.3.

Φ is initialized uniformly at random within the row-wise simplex constraint.
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Algorithm 2: Efficient projection onto shrunk simplex

Input : the original vector z ∈ RK and the shrinking factor δ
Output: the projection x ∈ RK

begin
Sort z into u: u1 ≥ u2 ≥ . . . ≥ uK
ρ← max{1 ≤ j ≤ K|uj + 1

j
(1− δK −∑j

i=1 ui) > 0}
λ← 1

ρ
(1− δK −∑ρ

i=1 ui)

xi ← max{zi + λ, 0}+ δ

For Θ, the first T rows of this K × T matrix are initialized to be an identity

matrix, because many node pairs with paths in between involve only one

meta-path, and we initialize the rest K−T rows uniformly at random within

the row-wise simplex constraint. This choice is out of the consideration that

the PReP model is not convex over all parameters.

Dirichlet distribution is defined over open sets with unbounded probability

density function. As a result, when using MAP, certain components of Φ can

be inferred to approach the singularities along the boundary. Therefore, in

practice, we let Φ to be bounded away from the boundary with a infinites-

imal quantity δ, i.e., each of its entries must not only be positive, but also

be greater or equal to δ. In this way, we keep the capability of Dirichlet dis-

tribution in modeling cross-meta-path synergy , while ensuring the model is

computationally meaningful. In our experiment, we set δ = 10−50. With this

constraint, the domain of definition for Φ is no longer a standard simplex as

discussed in [21]. For this reason, we provide the algorithm for efficient pro-

jection onto the standard simplex shrunk by δ, {x ∈ RK |xi ≥ δ,
∑K

i=1 xi = 1},
in Algorithm 2, which is required by the inference algorithm. Note that if

one wishes to evade the point estimation of parameters in the PReP model,

Eq. (2.6), and thereby avoid computational singularity, they can treat all

model parameters as hidden variables and derive relevance from the marginal

likelihood of the observed data as discussed in Sec. 2.3.2. The exploration

of this direction requires novel method, such as a sampling algorithm design

for our model, to efficiently calculate marginal likelihood, and we defer this

to future work.
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CHAPTER 3

EXPERIMENTS

In this chapter, we quantitatively evaluate the proposed model on two pub-

licly available real-world HINs: Facebook and DBLP. We first describe the

datasets and the unsupervised tasks used for evaluation. Baselines and model

variations for comparison are then introduced. Afterward, we present exper-

iment results together with discussions, which demonstrate the advantage of

using probability as the backbone of relevance.

3.1 Data Description and Evaluation Tasks

In this section, we introduce the two publicly available real-world datasets

and the evaluation tasks.

The Facebook dataset. This dataset [22] contains nodes of 11 types,

including user, major, degree, school, hometown, surname, location, em-

ployer, work-location, work-project, and other. It consists of 5, 621 nodes

and 98, 023 edges, among which 4, 167 nodes are of the user type. We aim

to determine the relevance between users, using 10 meta-paths, each of the

form [user]–[X]–[user], where X is any of the 11 node types except for other.

To derive ground truth label between user pairs for evaluation, we use being

friends on Facebook as a proxy for being relevant. This dataset is collected

by recruiting participants to label their own Facebook friends It consists of

10 distinct ego networks, where an ego network consists of one ego user and

all her friends together with edges attached to these users. We hence perform

one sub-task for each ego network, where the compared measures are used to

calculate the relevance between all pairs of non-ego users in this ego network.

We use two evaluation metrics widely adopted for tasks with multiple rel-

evant instances: the area under the receiver operating characteristic curve

(ROC-AUC) and the area under precision-recall curve (AUPRC). The re-
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ceiver operating characteristic curve (ROC) is created by plotting true posi-

tive rate against false positive rate as the threshold varies, while the precision-

recall curve (PRC) is drawn by plotting precision against recall as the thresh-

old varies. Higher values are more preferred for both ROC-AUC and AUPRC.

We further average each of the above metrics across ego networks with the fol-

lowing methods – uni.: average over all ego networks uniformly; rel.: weight

by the number of relevant pairs in each ego network; tot.: weight by the total

number of pairs in each ego network.

The DBLP dataset. This dataset is derived from the DBLP dataset

processed by Tang et al. [23] containing computer science research papers

together with author names and publication venue associated to each paper.

It consists of 13, 697 nodes and 19, 665 edges, among which 1, 546 nodes are of

the author type. Notably, in this dataset, the same author name associated

with two papers may not necessarily be the same person. Based on this fact,

we design an entity resolution task as follows. First, we use the labels made

available by Tang et al. [23] to group all author name mentions corresponding

to one person to define an author node. In this way, an author node is linked

to multiple papers written by her. Then, for each author name, we split the

author node with the most author name mentions into two nodes, and we

define two nodes to be relevant if and only if they actually refer to the same

person. Finally, we perform one sub-task for each author name, where the

compared measures are used to calculate the relevance between all pairs of

nodes with the same author name.

We use 14 meta-paths in this task, each of the form [author]–[paper]–

[venue domain]–[paper]–[author], where a node of the venue domain type

corresponds to one of the 14 computer science research areas. The definition

of the 14 areas is derived from the Wikipedia page: List of computer science

conferences1. Since only one relevant pair exists in each sub-task, the mean

reciprocal rank (MRR) is used as the evaluation metric, where, for each sub-

task, the reciprocal rank is the reciprocal of the rank of the relevant pair.

Higher values indicate better results for MRR. We also average the above

metrics across different sub-tasks using three methods: uni., rel., and tot.

Note that uni. and rel. are equivalent in this entity resolution task because

each sub-task has exactly one relevant pair.

1https://en.wikipedia.org/wiki/List of computer science conferences
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3.2 Baselines and Variations

In this section, we describe the meta-path-based baseline methods and vari-

ations of the PReP model, which are used to compare with our proposed

full PReP model. Existing meta-path-based unsupervised HIN measures de-

fine relevance computation method on each meta-path and then use linear

combination to find the composite score. Therefore, each baseline consists

of two parts: (i) the base measure that calculates the relevance score on one

meta-path, and (ii) the weights assigned to different meta-paths used in the

linear combination. The 4 base measures we used are:

• PathCount [3]. PathCountw(s) :=
∑

twtPst.

• PathSim [3]. PathSimw(s) :=
∑

twt ·
2·P〈uv〉t

P〈uu〉t+P〈vv〉t
.

• JoinSim [13]. JoinSimw(s) :=
∑

twt ·
P〈uv〉t√

P〈uu〉t·P〈vv〉t
.

• SimRank. We adopt SimRank [17] with meta-path constraints. Let

A be a matrix, where Auv is the number of paths under this meta-path

between node pair (u, v) after column normalization. The SimRank

score is then given by Suv, where S is the solution to S = max{C ·
(A>SA), I}, and C is the decay factor to be specified. Note that we

use SimRank instead of random walk with restart because SimRank is

a symmetric relevance measure.

Without any supervision available, we use 2 heuristics to determine the

weights w for linear combination.

• Mean. Let wt be the reciprocal of the mean of all scores computed

using the corresponding base measure on meta-path t.

• SD. Let wt be the reciprocal of the standard deviation of all scores

computed using the corresponding base measure on meta-path t. Note

that this heuristic normalizes the original score in the way that is similar

to z-score.

Combining the aforementioned 4 base measures and 2 heuristic for setting

weights, we have 8 baselines in total.

Additionally, we also experiment with three variations of PReP, which are

partial models with one of the three components knocked out from the full

PReP model.
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Dataset Metric
PathCount PathSim JoinSim SimRank PReP

Mean SD Mean SD Mean SD Mean SD No-NV No-PS No-CS (full)

Facebook

ROC-AUC
uni. 0.8056 0.8598 0.8367 0.8586 0.8326 0.8547 0.7977 0.8303 0.8310 0.6702 0.8689 0.8850
rel. 0.8612 0.8879 0.8578 0.8888 0.8556 0.8872 0.8076 0.8596 0.8556 0.6713 0.8880 0.9133
tot. 0.8558 0.8849 0.8577 0.8866 0.8557 0.8851 0.8096 0.8594 0.8547 0.6773 0.8893 0.9139

AUPRC
uni. 0.2456 0.2832 0.2370 0.2845 0.2340 0.2803 0.2055 0.2435 0.2183 0.1650 0.3273 0.3269
rel. 0.2496 0.3048 0.2142 0.2873 0.2117 0.2837 0.1764 0.2408 0.2067 0.1283 0.3354 0.3486
tot. 0.2107 0.2542 0.1841 0.2460 0.1821 0.2432 0.1523 0.2071 0.1760 0.1089 0.3010 0.3080

DBLP MRR
uni./rel. 0.8091 0.8130 0.6922 0.7003 0.7454 0.7538 0.6636 0.6738 0.8223 0.8494 0.8365 0.8517

tot. 0.7839 0.7871 0.6612 0.6731 0.7128 0.7244 0.6302 0.6357 0.8234 0.8407 0.8264 0.8391

Table 3.1: Quantitative evaluation results on two real-world datasets using
the proposed measure, PReP, and other measures.

• No node visibility (No-NV): Set ρ = 1|V|, and do not update ρ during

model inference.

• No path selectivity (No-PS): Set η = 1T , and do not update η during

model inference.

• No cross-meta-path synergy (No-CS): Set Φ = 1|V|×K/K, Θ = 1|V|×T/T ,

and do not update Φ and Θ during model inference.

Note that 1M stands for all one column vector of size M and 1M×N denotes

all one matrix of size M ×N .

3.3 Effectiveness and Discussion

In this section, we present the quantitative evaluation results on both the

Facebook and the DBLP datasets. We tune the decay factor C in the baseline

measure, SimRank, to have the best performance with C = 0.5 for both

SimRank-Mean and SimRank-SD on Facebook, and C = 0.8 for SimRank-

Mean, C = 0.7 for SimRank-SD on DBLP. We set hyperparameters of PReP

as K = 15 and β = 10−4 for Facebook and K = 14 and β = 10−2 for DBLP.

The choice of hyperparameters will be further discussed in this section.

As presented in Tab. 3.1, PReP outperformed all 8 baselines under various

metrics. Moreover, PReP outperformed its 3 variations under most metrics,

suggesting each component of the model generally has a positive effect on the

performance of the full PReP model. Note that under MRR (tot.), PReP

performed slightly worse than PReP-No-PS, the partial model without ηt

for path selectivity . This happened because, as discussed in Sec. 2.3, we

cannot enforce task-specific design on path selectivity ηt due to the lack of
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supervision, and we expect path selectivity ηt to play a more important role

in future work where relevance labels are provided as supervision.

Additionally, we have made the following observations.

Using heuristics cannot yield robust relevance measures. Compared

with PathCount, both PathSim and JoinSim further model node visibility ,

which penalizes the relevance with nodes that are highly visible. However,

as Tab. 3.1 presents, PathSim and JoinSim cannot always outperform Path-

Count. Moreover, JoinSim performs better than PathSim on DBLP, while

PathSim is slightly better than JoinSim on Facebook. We interpret these

results as, PathSim and JoinSim model node visibility in a deterministic

heuristic way. Unlike our generative-model-based measure that derives rel-

evance measure based on parameters inferred from each HIN, the heuristic

approach adopted by PathSim and JoinSim can have varying performance

on different HINs. This is due to the data-driven property of PReP.

Non-one-hot generating patterns help only when meta-paths cor-

relate. In our experiment, we set K = 14 = T for DBLP. Recall that we

initialized the first T rows of Θ, the matrix representing the K generating

patterns, to be T one-hot vectors corresponding to T meta-paths. We ob-

served in the DBLP experiment that after model fitting, Θ was still the same

as its initialization, meaning each inferred generating pattern only generated

path instances under exactly one meta-path. Moreover, by increasing the

value of K, we did not see improvement in performance. This observation

is inline with the situation that it is not frequently seen that two authors

both publish papers in two distinct research areas, where the 14 areas on

the Wikipedia page have been defined to be distinct areas including theory,

software, parallel computing, etc. In this case, it is preferred to model syn-

ergy across every pair of meta-paths, and not to employ any non-one-hot

generating patterns.

On the other hand, we used K = 15 > T for Facebook, and we did

observe non-one-hot generating patterns after model fitting. The most pop-

ular non-one-hot generating pattern consisted of three meta-paths: [user]–

[hometown]–[user], [user]–[school]–[user], and [user]–[user]–[user], where we

define popularity of a generating pattern as the fraction of node pairs adopt-

ing this pattern, i.e., pop(k) =
∑

s∈S φsk. This generating pattern corre-

sponds to two users sharing the same hometown, the same school, and hav-
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(a) Facebook (b) DBLP

Figure 3.1: Performance with varying β.

ing common friends. This scenario is common for two people sharing similar

friend group back in the hometown school.

Sensitivity of β in modeling cross-meta-path synergy . In the PReP

model (Eq. (2.6)) =+and relevance measure (Eq. (2.7)), the concentration

parameter β of the Dirichlet prior controls the extent to which we boost

cross-meta-path synergy . Experiment results in Fig 3.1 shows performance

of PReP do not significantly change around the values we have set for β (10−4

for Facebook, 10−2 for DBLP).
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CHAPTER 4

CONCLUSION AND FUTURE WORK

Inspired by the probabilistic interpretation of existing path-based relevance

measures, we studied HIN relevance from a probabilistic perspective. We

identified cross-meta-path synergy as one of the three characteristics that we

deem important for HIN relevance. A generative model was proposed to de-

rive a novel path-based relevance measure, PReP, which could capture the

three important characteristics. An inference algorithm was also developed

to find the maximum a posteriori (MAP) estimate of the model parameters,

which entailed non-trivial tricks. Experiments on real-world HINs demon-

strated the effectiveness of our relevance measure, which is data-driven and

tailored for each HIN.

Future work includes the exploration of defining relevance from the pro-

posed PReP model with marginal likelihood as discussed in Sec. 2.3.2. Fur-

ther add-on designs to adapt the proposed model to a supervised setting are

also worth exploring to unleash the potential of our model.
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