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Abstract

This thesis considers optimization problems defined over a network of nodes,

where each node knows only part of the objective functions. We are moti-

vated by broad applications of these problems within engineering and sci-

ences, where problems are characterized by either complex networks with a

large number of nodes or massive amounts of data. Algorithms for solving

these problems should be implemented in parallel between the nodes, and

are based only on local computation and communication, necessitating the

development of distributed algorithms.

Our interest, therefore, is to study distributed methods for solving net-

worked optimization problems, where our focus is on distributed gradient al-

gorithms. In particular, we move beyond the existing results to significantly

enhance the performance and reduce the complexity of distributed gradient

methods, while taking practical issues, such as communication delays and

resource uncertainty, into account. Our goal is to bridge the gap between

theory and practice, leading to significant improvement in their performance

for solving real-world problems.

The remainder of this thesis is to focus on three main thrusts — first, we

study the impact of communication delays, an inevitable issue in distributed

systems, on the performance of distributed gradient algorithms. Our results

address a notable omission in the existing literature, where the delays are

often ignored. Second, we study different variants of distributed gradient

algorithms, and show that under certain conditions we can improve their

convergence. Finally, we study an important problem within engineering

and computer science, namely, network resource allocation. For solving this

problem, we propose distributed Lagrangian methods and show that our

methods are robust to resource uncertainty. In addition, we design a novel

algorithm, namely, the distributed gradient balancing protocol, for solving a

special case of network resource allocation problems. We show that our algo-
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rithm achieves a quadratic convergence time, which improves the convergence

of the existing algorithms by a factor of n, the size of the network.
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discussions related to my research. I thank Prof. Dinh Hoa Nguyen and

Joseph Lubars for our collaborations during my last semester here.

One of the best aspects provided to UIUC students is the opportunity to

learn various courses taught by excellent instructors. I am very fortunate

vi



to have experienced classes with the best teachers, for example, Prof. R.

Srikant, Prof. Daniel Liberzon, Prof. Maxim Raginsky, and Prof. Karthik

Chandrasekaran, who have inspired me by their care about students’ learning.

I thank my friends and my research group at UIUC, especially, Trong

Tong, Hoang-Vu Dang, Phuong Minh Cao, Quang Tran, and Philip E. Paré
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Chapter 1

Scope of Thesis

1.1 Introduction

This thesis considers optimization problems defined over a network of nodes,

where each node knows only part of the set of objective functions and con-

straint sets that define the problem of interest. Each node—which may be a

sensor, a processor, an electric power generator, a robot, or an autonomous

vehicle—has computational capabilities and can communicate with other

nodes that are connected to it in the network. We assume that there is

no central coordinator between the nodes, requiring them to cooperatively

solve the problem. Such optimization problems have received increased in-

terest because of their broad applications within engineering and sciences; a

few examples include:

1. Machine Learning — A common problem is to find the parameters of sta-

tistical models through minimizing empirical loss functions defined over

massive amounts of data [1,2]. Due to the explosion in the size of datasets,

on the order of terabytes, both the data and computation must be dis-

tributed over a network of processors. Therefore, the processors have to

perform local computations over their local data, the results of which are

then exchanged to arrive at the globally optimal solution.

2. Estimation over Sensor Networks — An application of interest is the prob-

lem of estimating the radio frequency in a wireless network of sensors [3].

The goal is to cooperatively estimate the radio-frequency power spectral

density through solving a regression problem, which is defined over the to-

tal data locally measured by the sensors. In this application, the sensors

are scattered across a large geographical area, therefore, they are required

to share their estimates with other sensors to find the global density.
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3. Networked Resource Allocation — This problem involves a number of

sources, which can send information through a set of communication

links [4]; one prominent example is the Internet. Each source has a local

utility function defined over the transmission rate assigned to it. The goal

is to decide the source rates that maximize the network utilities subject to

the link capacity constraints, and reduce packet losses. Such a problem can

be solved through considering a networked optimization problem, where

each source knows only a local objective function and the link constraints

associated with it.

4. Power Networks — An important application is solving multi-area eco-

nomic dispatch (tie-line scheduling) problems in power networks [5], wherein

different system operators control parts of an interconnected power net-

work and their associated grid assets. The system operators must coordi-

nate to solve a joint optimal power flow problem to compute the minimum

cost dispatch across the entire power network [6–11].

5. Coverage Control — In this application, the goal is to optimally allocate a

large number of sensors to an unknown environment such that the coverage

area is maximized [12, 13]. The sensors coordinate their local positions

with other local sensors through a wireless network to determine their

optimal locations; for example, finding the centroid of the Voronoi diagram

of the coverage area.

These applications are characterized by either complex networks with a large

number of nodes or massive amounts of data, where centralized access to

information may not be available. This necessitates the development of dis-

tributed algorithms, which can be implemented in parallel between the nodes,

and are based only on local computation and communication. In addition,

the computation and communication in these algorithms should be efficient

enough so that the network latencies and communication failures do not

offset the computational gains. Our main focus is, therefore, to study dis-

tributed algorithms for solving network optimization problems, while taking

into account practical considerations.
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Figure 1.1: The left figure illustrates a general network with 62 edges
between 15 nodes, while the right figure illustrates a star network with 10
nodes connected to a central node.

1.2 History of Distributed Algorithms

In solving networked optimization problems, there are a variety of distributed

algorithms in the literature, which depend on communication structures1

between the nodes. In this thesis, we focus on two types of communication

networks, namely, general networks and star networks. Examples of these two

network structures are given in Fig. 1.1. We provide a brief review of existing

distributed algorithms associated with these two types of communication

networks, which is by no means exhaustive. In addition, we only consider

distributed gradient algorithms in this thesis, often referred to as distributed

first-order methods because the algorithms make use of the gradients of the

objective functions and no higher-order terms.

General network architectures

In a general network, we consider a peer-to-peer architecture where each

node is only connected to a small subset of the other nodes, often referred to

as the node’s neighbors. Such structure imposes communication constraints

on the nodes, that is, each node is only allowed to interact with local nodes.

The nodes, however, do not know the network topology. Distributed gradient

algorithms on this network structure were originally introduced and studied

in the 1980s in the context of parallel and distributed computations [14–16].

Numerous applications of network optimization have motivated a surge of

1In this thesis, the terms communication structures, communication topologies, and
communication networks are used interchangeably.
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interest in distributed gradient algorithms during the past two decades [17–

27], where the focus has been on distributed consensus-based methods. In

particular, the studies in [17, 18] build on the seminal work in [14], which

are the first to provide rigorous analysis for the convergence and convergence

rate of such methods. More recent studies [19–21] are focused on improving

the convergence rate of distributed gradient algorithms, where the main goal

is to obtain the same rate as that attained using standard gradient descent

for solving minimization problems in centralized frameworks. We refer to the

recent survey paper [28] for a summary about the impact of network topology

on the convergence of distributed consensus-based gradient methods.

Master-worker architectures

Master-worker architectures are widely used in computer networks, especially

in data centers, where there is a server (master) connected to several other

processors (workers); this architecture results in a star network toplogy. Dis-

tributed algorithms are relatively simple to implement on such architectures,

for example, distributed stochastic gradient descent is widely used in the

context of machine learning for master-worker architectures. In particular,

the master maintains a copy of the model parameter, while the workers store

the data defining the objective problems. At each iteration in distributed

(stochastic) gradient algorithms, the master sends its current value to the

workers, who estimate their local (stochastic) gradients based on this value.

The workers then send their (stochastic) gradients to the master to update

the master’s variable value. Distributed (stochastic) gradient descent has

been recognized as an efficient method for data-intensive machine learning

problems [29–36], where the focus is to speed up the algorithm through par-

allelizing the computation of the gradients.

1.3 Thesis Outline

The focus of this thesis is to study distributed gradient algorithms for solving

networked optimization problems for general communication networks and

star networks. In particular, we move beyond the existing results to signif-

icantly enhance the performance and reduce the complexity of distributed

gradient methods, while taking practical issues, such as communication de-

4



lays and resource uncertainty, into account. Our goal is to bridge the gap

between theory and practice, leading to significant improvement in their per-

formance for solving real-world problems. The main contributions of this

thesis are briefly discussed in the following.

1. Chapter 2 provides an introduction for the problems studied in this thesis.

We begin by formulating network optimization problems and distributed

algorithms. We then review distributed consensus-based methods, which

are our main focus in the subsequent chapters.

2. Our first contribution is presented in Chapter 3, where we study the im-

pact of communication delays on the performance of distributed gradient

methods. In particular, we provide an explicit formula for the rate of

convergence of such methods, as a function of the network topology and

delay constants. This result addresses a notable omission in the existing

literature, where the delays are often ignored.

3. In Chapter 4, we consider distributed aggregated gradient methods, which

have recently been shown to achieve the same convergence rate as the stan-

dard centralized gradient descent. Our main contribution is to consider

the stochastic variant of such methods and show linear convergence in

expectation to the neighborhood of the optimal solution.

4. While distributed gradient methods are known to work with the Euclidean

norm, we study distributed mirror descent in Chapter 5, which allows for

more general norms. Mirror descent has been shown not only to outper-

form gradient descent when other norms are considered but also to be

applicable to optimization problems formulated in Banach spaces. Our

main result is to establish the convergence of the iterates to an optimal

solution, which to the best of our knowledge, is not available in the liter-

ature. In addition, such convergence is essential in some applications, for

example, in our proposed distributed Lagrangian methods in Chapter 7.

5. The focus of Chapter 6 is to study distributed random projection ap-

proaches for master-worker architectures (star networks) for solving con-

strained optimization problems. We show that distributed random pro-

jection shares the same convergence rate as distributed stochastic gradient

descent, except for a constant factor capturing the regularity condition of

the constraint sets.
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6. In Chapter 7, we consider network resource allocation problems where we

propose distributed Lagrangian methods for solving such problems when

the number of resources is uncertain. The key idea of our approach is

to utilize distributed gradient methods studied in previous chapters for

solving the dual problem.

7. Finally, in Chapter 8 we consider the relaxed resource allocation problem

studied in Chapter 7. Our main contribution is to provide a novel dis-

tributed algorithm, namely, the distributed gradient balancing protocol,

for solving this relaxed problem. In addition, our algorithm achieves a

quadratic convergence time, which is an improvement over the existing

results by a factor of n, the number of nodes in the network.
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Chapter 2

Distributed Optimization

The focus of this chapter is to provide a foundation for our studies in the

subsequent chapters. In particular, we are interested in studying optimiza-

tion problems defined over a network of nodes. In solving such problems,

we are interested in distributed consensus-based methods, a class of truly

distributed algorithms. We will present some preliminary results of such

methods, which are useful for our studies later.

2.1 Problem Statement, Notation, and Assumptions

In network optimization problems, we consider a network of n nodes, where

each node has computational capabilities and can send/exchange messages

with other nodes. Associated with each node i is a function fi : Rd → R,

whose sum is the objective problem; see Fig. 2.1 for an example. The goal

of the nodes is to solve the following minimization problem:

minimize
n∑
i=1

fi(x) over x ∈ X , (2.1)

where X ⊆ Rd is a constraint set. Since each node i knows only one func-

tion fi, the nodes are required to communicate and cooperatively solve the

problem. We assume that there is no central coordination between the nodes

and each node is only allowed to interact with a small subset of the nodes,

referred to as the node’s neighbors. To model this communication structure,

we consider an undirected graph G = (V , E) over the vertex set V = {1, . . . .n}
with the edge set E = (V × V). Here, nodes i and j can communicate with

each other if and only if (i, j) ∈ E . Under this communication constraint, we

are interested in distributed algorithms for solving the problem of Eq. (2.1),

which are defined as below.
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fi

Figure 2.1: A network with 15 nodes, where each node i knows only fi.

Definition 1. A distributed algorithm is an algorithm that is implemented

in parallel between the nodes of a graph or a communication network, and is

based only on local computation and communication.

By this definition, the nodes are only allowed to exchange messages with

their neighboring nodes that are connected to it based on G. In this thesis,

we will focus on studying distributed gradient-based methods, often referred

to as distributed first-order methods, for solving problem (2.1). We give a

brief introduction and motivation of such methods in Section 2.2. In the next

chapters, we study different distributed gradient-based algorithms, which are

designed for solving variants of the network optimization problem (2.1). We

conclude this section with notation and assumptions frequently used in the

remainder of this thesis.

2.1.1 Notation

We consider both continuous-time and discrete-time distributed algorithms

for solving problem (2.1), where we use t and k to denote continuous and

discrete time variables, respectively.

Let G = (V , E) be a graph, where V is the vertex set and E = (V×V) is the

edge set. We only consider undirected graphs, meaning that, if (i, j) ∈ E then

8



(j, i) ∈ E . We denote by Ni the set of node i’s neighbors. In addition, we

use {G(k) = (V , E(k))} to denote a time-varying sequence of graphs, where

E(k) is the set of edges at time k. Similarly, Ni(k) denotes the set of node

i’s neighbors at time k.

We use boldface to distinguish between vectors x in Rn and scalars x in

R. Given any vector x ∈ Rn, we write x = (x1, x2, . . . , xn)T and denote by x̄

the average of the entries of x, i.e.,

x̄ =
1

n

n∑
i=1

xi.

Let ‖x‖2 denote the Euclidean norm of x ∈ Rn; we often drop the subscript

2 when it is clear from the context, i.e., ‖x‖. Otherwise, when other norms

are used we state so explicitly. Given a vector x and a closed set X we write

the projection of x on X as PX [x], i.e.,

PX [x] = arg min
y∈X

‖x− y‖2. (2.2)

We denote by 1 and I a vector whose entries are all 1 and the identity matrix,

respectively. Additionally, we use letters in uppercase and boldface to denote

matrices, e.g., A ∈ Rn×n.

Let X ∗ ⊆ X be the set of optimal solutions to problem (2.1). Finally, we

denote f(x) =
∑n

i=1 fi(x) and given a solution x∗ ∈ X ∗ denote the optimal

value of (2.1) by

f ∗ =
n∑
i=1

fi(x
∗).

Our notation is summarized in Table 2.1.

2.1.2 Assumptions

We start with some basics of graph theory. For a complete treatment in this

area, we refer the readers to the reference [37]. For any fixed graph G, we

assume that it is connected.

Assumption 1. G is connected, i.e., there exists a path between any pair of

nodes in G.

9



Table 2.1: Notation Table.

Notation Meaning

R set of real numbers

t continuous time

k discrete time

G undirected graph

V vertex set

E set of edges

x real scalar

x real vector

X real matrices

1 vector whose entries are 1

I identity matrix

X ∗ optimal set of (2.1)

f ∗ optimal value of (2.1)

On the other hand, we consider the following assumption on the connectiv-

ity of time-varying graphs G(k), which basically states that the sequence of

graphs over k can be disconnected at isolated time instants, but are required

to satisfy a long-term connectivity.

Assumption 2. There exists an integer B ≥ 1 such that the graph

(V , E(kB) ∪ E(kB + 1) ∪ . . . ∪ E((k + 1)B − 1)) (2.3)

is connected for all non-negative integers k.

We denote by A the n×n weighted adjacency matrix corresponding to G,

whose (i, j)-th entries are aij. We often write A as

A =


aT1

. . .

aTn

 ∈ Rn×d. (2.4)

For fixed graphs, we consider the following assumption on A.

Assumption 3. The weight matrix A is doubly stochastic, i.e.,
∑n

i=1 aij =∑n
j=1 aij = 1. Moreover, A is assumed to be irreducible and aperiodic. Fi-

nally, the weights aij > 0 if and only if (i, j) ∈ E otherwise aij = 0.
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We note that the assumption on the irreducibility of A can be satisfied when

G is connected. In addition, the aperiodicity of A is guaranteed when at

least one of its diagonal elements aii is strictly positive. Similarly, we denote

by {A(k)} the sequence of weighted adjacency matrices corresponding to

time-varying graphs G(k), whose (i, j)-th entries are aij(k). In addition, we

consider the following assumption when the graph is time-varying.

Assumption 4. There exists a positive constant η such that the sequence of

matrices {A(k)} satisfies the following conditions:

1. aii(k) ≥ η, for all i, k.

2. aij(k) ∈ [η, 1] if (i, j) ∈ Ni(k) otherwise aij(k) = 0, for all i, j, k.

3.
∑n

i=1 aij(k) =
∑n

j=1 aij(k) = 1, for all i, j, k.

Given the weighted adjacency matrix A, we denote by σ2(A) the second

largest singular value of A, i.e., σ2(A) is the square root of the second-largest

eigenvalue of ATA. Since A satisfies Assumption 3, the Perron-Frobenius

theorem [38, Theorem 8.4.4] and the Courant-Fisher theorem [38, Theorem

4.2.11] give

σ2(A) = max
x 6=0,x∈1⊥

‖Ax‖
‖x‖

∈ (0, 1). (2.5)

In addition, let L = I−A be the corresponding weighted Laplacian matrix

of G. We denote by λ2(L) the Fiedler eigenvalue of L [39], i.e. the second-

smallest eigenvalue of (LT+L)/2, which determines the algebraic connectivity

of the graph, similarly defined as,

λ2(L) = min
x 6=0,1Tx=0

x(L + LT )x

‖x‖
· (2.6)

For convenience, we will often write σ2 and λ2 when their arguments are clear

from the context.

In this thesis, we only consider convex optimization problems, namely, the

functions fi and the set X are convex, which can be stated as follows:

Definition 2 (Convexity [40,41]). The set X is convex if and only if

θx + (1− θ)y ∈ X , ∀x,y ∈ X and ∀ θ ∈ [0, 1].
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In addition, the function f : X → R is convex if and only if X is convex and

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y).

We also consider the following two assumptions on fi and their gradients,

respectively.

Assumption 5. For each i = 1, . . . , n, the function fi is µi-strongly convex

if there exists a positive constant µi such that

fi(x)− fi(y)− ∂fi(y)T (x− y) ≥ µi
2
‖x− y‖2, ∀ x,y ∈ Rd. (2.7)

Assumption 6. For each i = 1, . . . , n, the function fi is Li-smooth if there

exists a constant Li such that

‖∇fi(y)−∇fi(x)‖ ≤ Li‖y − x‖, ∀ x,y ∈ Rd. (2.8)

Here ∇f(·) denotes the gradient of the differential function f . We denote

by ∂f(·) the subgradient of the non-smooth convex function f [42], i.e., the

following holds

∂f(y)T (x− y) ≤ f(x)− f(y), ∀ x,y ∈ Rd, (2.9)

where ∂f(·) = ∇f(·) when f is differentiable. Finally, we consider the fol-

lowing assumption about the Lipschitz property of functions fi.

Assumption 7. For each i = 1, . . . , n, the function fi is Ci-Lipschitz con-

tinuous if there exists a positive constant Ci such that

|fi(x)− fi(y)| ≤ Ci‖x− y‖, ∀x,y ∈ Rn, ∀i ∈ V . (2.10)

The condition in Eq. (2.10) is also equivalent to the condition that the norm

of the subgradient ∂fi is bounded by Ci [43, Lemma 2.6], that is,

‖∂fi(x)‖ ≤ Ci, ∀x ∈ Rn. (2.11)

12



2.2 Distributed Consensus-Based Methods

Our main interest in this thesis is to study distributed consensus-based gradi-

ent methods for solving problem (2.1). As will be seen, such methods provide

a truly distributed approach, that is, they meet the conditions of distributed

algorithms given in Definition 1. For brevity, we often call such methods

distributed gradient methods in the remainder of this thesis. We start our

discussion with distributed consensus methods for solving network consen-

sus problems, a special case of problem (2.1). We then present distributed

gradient methods for solving problem (2.1).

2.2.1 Network Consensus Problems

We consider here consensus problems defined over a network of n nodes,

where their communication structure is imposed by a graph G = (V , E). In

these problems, each node has a real-valued initial estimate, where the goal

is to compute the average of these values in a distributed framework. In

particular, associated with each node i ∈ V is a constant ci ∈ R. The goal of

the nodes is to compute the average c̄ given as

c̄ =
1

n

n∑
i=1

ci.

To solve this problem, the nodes consider distributed consensus methods

presented below. For convenience, we consider both continuous-time and

discrete-time algorithms, which are useful for our later studies.

Continuous-time distributed consensus methods

In this algorithm, each node i, for all i ∈ V , maintains a local estimate xi ∈ R
of c̄, which is initialized to ci. The nodes exchange their values with their

local neighbors and then iteratively update as

ẋi(t) =
∑
j∈Ni

aij (xj(t)− xi(t))︸ ︷︷ ︸
“consensus step”

, ∀ t ≥ 0, (2.12)
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where aij is the weight which node i assigns for the estimate xj(t), received

from its neighbor j at time k. The goal is to asymptotically drive every xi

to c̄, i.e., limk→∞ xi(t) = c̄, elucidating the term consensus problems.1 The

update in Eq. (2.12) is often referred to as a continuous-time consensus step.

The following theorem shows that under an appropriate choice of the weights

aij and the connectivity of G, Eq. (2.12) solves the consensus problems.

Theorem 1 ( [44] ). Suppose that Assumptions 1 and 3 hold. Then we have

‖x(t)− x̄(t)1‖ ≤ ‖x(0)− x̄(0)1‖ e−λ2t, (2.13)

where λ2 is the Fiedler eigenvalue of the Laplacian L, defined in Eq. (2.6).

Proof. Recall that the Laplacian matrix L = I − A. Since A satisfies As-

sumption 3 and the graph G is connected, L has 0 as the smallest eigenvalue

with the corresponding eigenvector 1, and all other eigenvalues are strictly

greater than 0. Using L and Eq. (2.12) gives

ẋ(t) = −Lx(t),

which implies that ˙̄x(t) = 0 and

−Lx(t) = −L(x(t)− x̄(t)1).

Using the two equations above we then obtain

ẋ(t)− ˙̄x(t)1 = −L(x(t)− x̄(t)1),

which implies

x(t)− x̄(t)1 = e−Lt(x(0)− x̄(0)1).

Applying the 2-norm to the above and using Eq. (2.6) gives Eq. (2.13).

1In the literature, such problems are referred to as averaging problems. We often call
these consensus problems.
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Discrete-time distributed consensus methods

Similarly, the discrete-time counterpart of Eq. (2.12) is given as follows:

xi(k + 1) =
∑
j∈Ni

aijxj(k)︸ ︷︷ ︸
“consensus step”

, ∀ k ≥ 0. (2.14)

The following theorem is a variant of Theorem 1.

Theorem 2 ( [45] ). Suppose that Assumptions 1 and 3 hold. Then we have

‖x(k)− x̄(k)1‖ ≤ ‖x(0)− x̄(0)1‖ δk, (2.15)

where δ ≤ min{
(
1− 1

2n3

)
, σ2}. Here σ2 is defined in Eq. (2.5).

Proof. We provide here a proof for the case of δ = σ2, where the first bound

is studied in [24,45]. First, the double stochasticity of A gives

x̄(k + 1)1 =
1

n
1Tx(k + 1)1 =

1

n
1TA(k)x(k)1 = A(k)x̄(k)1.

Using the preceding relation and σ2 ∈ (0, 1) in Eq. (2.5), we obtain

‖x(k + 1)− x̄(k + 1)1‖ = ‖A(x(k)− x̄(k)1)‖ ≤ σ2‖x(k)− x̄(k)1‖,

where we use 1T (x(k) − x̄(k)1) = 0. Iterating the above over k gives Eq.

(2.15).

Remark. In continuous-time distributed consensus methods, ˙̄x(t) = 0 gives

x̄(t) =
1

n
1Tx(t) =

1

n
1Tx(t− 1) = · · · = 1

n
1Tx(0) = x̄(0) = c̄,

which by Eq. (2.13) implies that limt→∞ xi(t) = c̄, for all i ∈ V. In addition,

the rate of convergence is linear and depends on the algebraic connectivity of

the network represented by λ2. A similar conclusion holds for Eq. (2.15).

2.2.2 Distributed Gradient Methods

We now consider problem (2.1) where we study distributed gradient methods,

which are developed based on the consensus methods discussed in Section
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2.2.1. To explain the ideas of distributed gradient methods, we start with

gradient descent methods [46] for solving problem (2.1) when X = R,

x(k + 1) = x(k)− α
n∑
i=1

f ′i(x(k)), ∀ k ≥ 0,

where α is some positive constant stepsize. It is obvious that the gradient

descent method requires the derivatives f ′i(·) of all functions fi at every it-

eration. Such a requirement, in general, may not be achievable or may be

expensive to compute in distributed frameworks due to the absence of a cen-

tral coordinator. To circumvent this requirement, we consider distributed

gradient methods, which are a combination of distributed consensus steps

and local gradient descent steps. In particular, each node i in G maintains a

local estimate xi of the solution x∗ of problem (2.1). The nodes then initialize

their estimates arbitrarily and iteratively update them in parallel as

xi(k + 1) =
∑
j∈Ni

aijxj(k)︸ ︷︷ ︸
“consensus step”

− α(k)f ′i(xi(k))︸ ︷︷ ︸
“local gradient step”

, ∀ i ∈ V , ∀ k ≥ 0, (2.16)

where {α(k)} is a sequence of stepsizes. The update in Eq. (2.16) is composed

of two parts, namely, a consensus step and a local gradient step, hence the

name distributed consensus-based gradient methods. Moreover, the nodes

only require local computation and communication with neighboring nodes.

The update in Eq. (2.16) has a simple interpretation: at any time k ≥ 0,

each node i first combines its value xi(k) with the weighted values received

from its neighbors, with the goal of seeking consensus on their estimates.

Each node then moves along the gradient of its respective objective function

to update its value, pushing the consensus point toward the optimal set X ∗.
We now show that under reasonable conditions on the graph connectivity,

the weighted adjacency matrix A, and the sequence of stepsizes {α(k)}, that

limk→∞ xi(k) = x∗, for all i ∈ V ; this implies that the nodes achieve a

consensus, which is an optimal solution of problem (2.1).

Main ideas: The analysis of distributed gradient methods is composed

of two key steps. In particular, due to the consensus step the nodes asymp-

totically agree on some common quantity, which is the average of the nodes’

values. Second, this average asymptotically converges to the solution of prob-
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lem (2.1), which is a consequence of the local gradient steps.

We review here the existing results on the convergence of Eq. (2.16) as

well as its continuous-time counterpart for solving problem (2.1). We start

with continuous-time distributed gradient methods. For completeness, we

present the analysis in Appendix A, which allows us to study the impact of

communication delays in Chapter 3. We use the following notation in the

remainder of this section,

∇F (x) , [f ′1(x1), . . . , f ′n(xn)]T .

Continuous-time distributed gradient methods

We consider the continuous-time variant of Eq. (2.16) given as

ẋi(t) =
∑
j∈Ni

aij(xj(t)− xi(t))︸ ︷︷ ︸
“consensus step”

− α(t)f ′i(xi(t))︸ ︷︷ ︸
“local gradient step”

, ∀ i ∈ V . (2.17)

We first have the following result, an extension of Theorem 1.

Lemma 1. Suppose that Assumptions 1, 3, and 7 hold. Let the trajectory

{xi(t)}, for all i ∈ V, be generated by Eq. (2.17). Let {α(t)} be a non-

increasing positive scalar sequence with α(t) = 1 for 0 ≤ t ≤ 1. Then the

following statements hold.

1. For all i ∈ V and t ≥ 0

∣∣xi(t)− x̄(t)
∣∣ ≤ e−λ2t‖x(0)‖+

∫ t

0

e−λ2(t−u)α(u)
∥∥∇F (x(u))

∥∥du. (2.18)

2. If limt→∞ α(t) = 0 then

lim
t→∞

∣∣xi(t)− x̄(t)
∣∣ = 0 ∀ i ∈ V . (2.19)

3. If
∫∞
t=0

α2(t)dt <∞ then we obtain∫ ∞
0

α(t)
∣∣xi(t)− x̄(t)

∣∣dt <∞ ∀ i ∈ V . (2.20)
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Based on Lemma 1, we now state the main result of Eq. (2.17), which is

the asymptotic convergence of the nodes’ estimates to x∗.

Theorem 3. Suppose that Assumptions 1, 3, and 7 hold. Let the trajectory

{xi(t)}, for all i ∈ V, be generated by Eq. (2.17). Let {α(t)} be a non-

increasing positive scalar sequence with α(t) = 1 for 0 ≤ t ≤ 1 , and satisfy∫ ∞
t=0

α(t)dt =∞ and

∫ ∞
t=0

α2(t)dt <∞. (2.21)

Then we have

lim
t→∞

x̄(t) = x∗. (2.22)

Finally, to study the convergence rate of Eq. (2.17) we consider the step-

sizes α(t) = 1/
√
t, as motivated by centralized subgradient methods [46].

Using this stepsize, we now show the rate of convergence of Eq. (2.17).

Theorem 4. Suppose that Assumptions 1, 3, and 7 hold. Let the trajectory

{xi(t)}, for all i ∈ V, be generated by Eq. (2.17). Let α(t) = 1/
√
t for t ≥ 1

and α(t) = 1 for 0 ≤ t ≤ 1. Moreover, suppose that each node i, for all

i ∈ V, stores a variable zi ∈ R, which is initialized arbitrarily and updated as

żi(t) =
α(t)xi(t)− α(t)zi(t)

S(t)
, ∀ t > 0, (2.23)

where S(0) = 0 and Ṡ(t) = α(t) for t > 0. Then for all i ∈ V

f(zi(t))− f ∗ ≤ O
(

ln(t)

λ2
2

√
t

)
· (2.24)

Discrete-time distributed gradient methods

Similar to the continuous-time counterpart above, we provide here the con-

vergence results of Eq. (2.16) for solving problem (2.1).

Lemma 2 ( [17, 24]). Suppose that Assumptions 1, 3, and 7 hold. Let the

sequence {xi(k)}, for all i ∈ V, be generated by Eq. (2.16). Let {α(k)} be

a non-increasing positive scalar sequence with α(0) = 1. Then the following

statements hold.
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1. For all i ∈ V and k ≥ 0

∣∣xi(k)− x̄(k)
∣∣ ≤ δk

∥∥x(0)
∥∥+

k∑
t=0

δk−tα(t)
∥∥∇F (x(t))

∥∥, (2.25)

where δ ≤ min{1− 1
2n3 , σ2(A)}.

2. If limk→∞ α(k) = 0 then we have

lim
k→∞

∣∣xi(k)− x̄(k)
∣∣ = 0, ∀ i ∈ V . (2.26)

3. If
∑∞

k=0 α
2(k) <∞ then we obtain

∞∑
k=0

α(k)
∣∣xi(k)− x̄(k)

∣∣ <∞, ∀ i ∈ V . (2.27)

Theorem 5 ( [18]). Suppose that Assumptions 1, 3, and 7 hold. Let the

sequence {xi(k)}, for all i ∈ V, be generated by Eq. (2.16). Let {α(k)} be a

non-increasing positive scalar sequence with α(0) = 1, and satisfy

∞∑
k=0

α(k) =∞ and
∞∑
k=0

α2(k) <∞. (2.28)

Then we have

lim
k→∞

x̄(k) = x∗. (2.29)

Theorem 6. Suppose that Assumptions 1, 3, and 7 hold. Let the trajectory

{xi(k)}, for all i ∈ V, be generated by Eq. (2.16). Let α(k) = 1/
√
k for k ≥ 1

and α(0) = 1. Moreover, suppose that each node i, for all i ∈ V, stores a

variable zi(k) ∈ R, which is initialized arbitrarily and updated as

zi(k + 1) =
α(k + 1)xi(k + 1) + α(k)zi(k)

S(k + 1)
, (2.30)

where S(0) = 0 and S(k) =
∑k

t=0 α(t) for k > 0. Then for all i ∈ V

f(zi(k))− f ∗ ≤ O
(

ln(k)

(1− σ2)2
√
k

)
· (2.31)
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Remark. First, we note that the stepsizes in Eq. (2.28) also satisfy the condi-

tions of stepsizes in Eqs. (2.26) and (2.27) in Lemma 2. Thus, it is immediate

to see that Eq. (2.29) implies limk→∞ xi(k) = x∗, for all i ∈ V.

Second, Theorem 6 reveals that f evaluated at a time-weighted average of

each node’s values converges to the optimal value f ∗. Moreover, it shows

that this convergence occurs at a rate O
(

ln(k)/
√
k
)

. The term O
(

1/
√
k
)

mirrors the convergence results for centralized subgradient algorithms, for ex-

ample, see [46, Chapter 3]. However, the distributed nature of the algorithms

slows the convergence by a factor of ln(k). When the objective functions are

strongly convex, i.e., Assumption 5 holds, we can further show that Eq. (2.16)

achieves a rate O(ln(k)/k) when α(k) = 1/(k+1) [26]. In addition, the con-

vergence rate depends inversely on 1 − σ2, the spectral gap of A. Here, σ2

presents the speed of information among the nodes is diffused over networks.

Third, the results presented above are straightforward to extend to the mul-

tidimentional case d > 1 and constrained problems, X ⊂ R, which can be

found in Appendix B. In particular, for constrained problems we consider the

following distributed projected gradient methods [18]

xi(k + 1) = PX

[∑
j∈Ni

aijxj(k)− α(k)f ′i(xi(k))

]
, ∀ i ∈ V , ∀ k ≥ 0.

We can also extend these results to the case of time-varying graphs G(k) under

Assumptions 2 and 4 as studied in Chapter 7. Finally, all the statements

above hold for the continuous-time counterpart.
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Chapter 3

Convergence Rate of Distributed Gradient
Methods with Communication Delays

3.1 Motivation and Contribution

In this chapter, we consider the optimization problem (2.1), i.e.,

minimize
n∑
i=1

fi(x) over x ∈ X ,

where X ⊆ Rd is a compact convex set known by the nodes. Our focus is

to study distributed gradient methods for solving the problem of Eq. (2.1),

while explicitly accounting for network delays, one of the most critical issues

in distributed systems. In particular, we focus on the convergence rate of

these methods in the presence of inter-node communication delays, which

has been identified as an important problem in [47, see Chapter 10]. Com-

munication delay has been studied in other contexts, such as distributed dual

averaging [48]. The analysis in [48] is based on adding fictitious nodes cor-

responding to the number of time delay steps, thus requiring a modification

of the true network topology. As a result, the influence of the delays on the

convergence rate for the original network topology is not clear. Convergence

under delays is also considered in distributed consensus algorithms [49–53].

However, these results do not apply to the distributed gradient algorithms.

Our goal, therefore, is to address this important problem of proving con-

vergence and obtaining convergence rates for distibuted gradient algorithms

with inter-node communication delays.

Main Contributions. The main contribution of this chapter is to derive

the convergence rate of distributed gradient algorithms under uniform com-

munication delays between nodes. Due to the delays, we first redesign the

algorithm by introducing a free parameter, which allows us to establish the

rate of convergence of the algorithm. We show that the algorithm achieves
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the same rate as in the delay-free case in Eq. (2.24), except for a factor which

captures the impact of delays. In particular, the convergence occurs at rate

O
(
nτ 3 ln(t)/(1− γ)2

√
t
)

, where n is the number of nodes, t is the time vari-

able, and τ is the delay constant. In addition, γ is a constant in (0, 1) that

depends on τ and σ2, which reflects the spectral properties of the network

connectivity of the nodes. We note that such an explicit formula for the con-

vergence rate is not available for dual averaging methods. As remarked, the

existing analysis in distributed optimization literature cannot be extended

to show this result. We, therefore, introduce a new approach by considering

a new candidate Krasovskii Lyapunov function, that directly takes into ac-

count the impact of delays. Finally, while we do not analyze dual averaging

methods in the presence of delays, we provide simulation results comparing

it to distributed gradient methods, which indicate that distributed gradient

methods perform significantly better.

For ease of exposition, we study the convergence rate for the continuous-

time version of distributed gradient methods, Eq. (2.17), with communication

delays in this chapter. In addition, we consider problem (2.1) when the

variable x is a scalar, i.e., d = 1. Extensions for the case d > 1 and the

results of the discrete-time version are presented in Appendix B. The results

in this chapter have been presented in [54,55]

3.2 Continuous-Time Distributed Gradient Methods

with Delays

We consider the continuous-time distributed gradient method in Eq. (2.17)

with uniform communication delays between nodes. In particular, we assume

that at any time t ≥ 0 each node i, for all i ∈ V , only receives a delayed value

xj(t−τ) of xj(t) from node j ∈ Ni, where τ is a constant representing the time

delay of communication between nodes. Each node i then uses these values to

update its estimate as stated in Eq. (3.1), where TX (xi(t)) is the tangent cone

of X at xi(t), β is some positive constant, and α(t) is a sequence of positive

stepsizes. The conditions of β and α(t) to guarantee the convergence of the

algorithm will be given explicitly later. Here, the initial conditions, φi(t), are

assumed to be continuous functions of time. Thus, the estimates xi(t) are

functional since they are functions of φi(t). The continuous-time distributed
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gradient algorithm with communication delays is formulated in Algorithm 1.

Algorithm 1 Continuous-Time Distributed Gradient Algorithm with Delays

1. Initialize: Each node i is initiated with xi(t) = φi(t) ∈ X , t ∈ [−τ, 0].
2. Iteration: For t ≥ 0 each node i ∈ V executes

ẋi(t) = PTX (xi(t))

[
−βxi(t) + β

∑
j∈Ni

aijxj(t− τ)− α(t)f ′i(xi(t))

]
. (3.1)

3.3 Main Results

The focus of this section is to analyze the performance of distributed gradient

methods under communication delays, given in Algorithm 1. In particular,

we provide a rigorous analysis which establishes the convergence rate of Al-

gorithm 1. The main steps of the analysis are as follows.

We first show that the distances between the estimates xi(t) to their av-

erage x̄(t) asymptotically converge to zero. We then study the convergence

rate of Algorithm 1, where we utilize the standard techniques used in the

centralized version of subgradient methods. The key idea of this step is to

introduce a candidate Krasovskii Lyapunov functional, which takes into ac-

count the impact of delays on the system. By using this function, we can

show that the impact of delays is asymptotically negligible. In particular,

we show that if each node maintains a variable zi(t) to compute the time-

weighted average of the estimate xi(t) and if the stepsizes decay with the

rate α(t) = 1/
√
t, the algorithm achieves an asymptotic convergence to the

optimal value estimated on the variable zi(t) at a rate

O
(

nτ 3 ln(t)

(1− γ)2
√
t

)
,

where β ∈ (0 , ln(1/σ2)/τ), γ = σ2e
βτ ∈ (0 , 1), and σ2 is given in Eq. (2.5).

We start our analysis by introducing a bit more notation. We denote by

DX (x) the set of feasible directions of x in X , i.e.,

DX (x) = {y ∈ R | ∃ θ > 0 s.t. x+ θy ∈ X}. (3.2)
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In the sequel we use the following result from [40].

Proposition 1 (Proposition 4.6.2 [40]). Let X be a closed convex set. Then

the tangent cone TX (x) at x ∈ X is closed, convex, and TX (x) = cl(DX (x)),

where cl(DX (x)) is the closure of DX (x).

In addition, we use the following notation

F (x) ,
n∑
i=1

fi(xi), ∇F (x(t)) , [f ′1(x1), . . . , f ′n(xn)]T , C ,
n∑
i=1

Ci,

where recall that Ci is the Lipschitz constant of fi given in Eq. (2.10). In

this case, since the set X is compact, Assumption 7 is always satisfied.

Without loss of generality we consider X = [a, b] for some real numbers

a ≤ b ∈ R. This simplification will allow us to write explicitly the projection

on the tangent cone in Eq. (3.1). In particular, given a real number v we

denote v+ = max(0, v), the positive part of v. Similarly, we denote v− =

max(0,−v), the negative part of v. The update in Eq. (3.1) can now be

rewritten as

vi(t) = −βxi(t) + β
∑
j∈Ni

aijxj(t− τ)− α(t)f ′i(xi(t)) (3.3)

ẋi(t) = P (vi(t)) =


vi(t) if xi(t) ∈ (a, b)

v+
i (t) if xi(t) = a

−v−i (t) if xi(t) = b.

(3.4)

Given vi ∈ X we denote by ζi the error due to projection of vi to TX (xi), i.e.,

ζi(vi) = vi − P (vi) . Using this notation and the weighted adjacency matrix

A defined in Eq. (2.4), Eqs. (3.3) and (3.4) can be rewritten compactly as

v(t) = −βx(t) + βAx(t− τ)− α(t)∇F (x(t)) (3.5)

ẋ(t) = P(v(t)) = v(t)− ζ(v(t)), (3.6)

where P(v(t)) denotes the component-wise projection. Moreover, we have

v̄(t) = −βx̄(t) + βx̄(t− τ)− α(t)

n

n∑
i=1

f ′i(xi(t)) (3.7)

˙̄x(t) = z̄(t)− ζ(v(t)). (3.8)
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As remarked, the first step in our analysis is to show the asymptotic conver-

gence of
∥∥x(t) − x̄(t)1

∥∥ to zero under some appropriate choice of stepsizes.

The following lemma, which will be essential for our analysis later, is an

important facet of this result.

Lemma 3. Suppose that Assumptions 1 and 3 hold. Let the trajectories

of xi(t), for all i ∈ V, be updated by Algorithm 1. Let {α(t)} be a given

non-increasing positive scalar sequence with α(0) = 1. Moreover, let

β ∈
(

0 ,
ln(1/σ2)

τ

)
and γ = σ2e

βτ ∈ (0 , 1).

Then the following statements hold.

1. For all t ≥ 0 we have

∥∥x(t)− x̄(t)1
∥∥ ≤ µ(t) + βσ2

∫ t

0

e−β(1−γ)(t−u)µ(u− τ)du, (3.9)

where

µ(t) =
‖x(0)‖+ 2C

β
e−βt/2 +

2Cα(t/2)

β
· (3.10)

2. If lim
t→∞

α(t) = 0 then we have

lim
t→∞

∣∣xi(t)− x̄(t)
∣∣ = 0, ∀ i ∈ V . (3.11)

3. Further we have∫ t

0

α(u)
∥∥x(u)− x̄(u)1

∥∥du
≤ 8 (‖x(0)‖+ 2C) eβτ/2

β3(1− γ)2
+

4C

β2(1− γ)

∫ t

0

α2(γu/4− τ)du. (3.12)

Proof sketch. The main idea in the proof of Lemma 3 is to show Eq. (3.9).

The analysis of Eqs. (3.11) and (3.12) are the consequences of Eq. (3.9) with

the given assumptions on stepsizes and proper algebraic manipulations. We,

therefore, provide here the key steps for the proof of Eq. (3.9), where the

details are delayed to Section 3.5.
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(a) Denote y(t) , x(t)− x̄(t)1. By Eqs. (3.6) and (3.8), ẏ(t) is given as

ẏ(t) = −βy(t) + βAy(t− τ)− α(t)

(
I− 1

n
11T

)
∇F (x(t))

− α(t)

(
I− 1

n
11T

)
ζ(v(t)). (3.13)

Due to the delay term Ay(t − τ), we would expect an accumulation of

this term for the solution y(t) of Eq. (3.13). Indeed, we have

y(t) = e−βty(0) + β

∫ t

0

e−β(t−u)Ay(u− τ)du

−
∫ t

0

e−β(t−u)α(u)

(
I− 1

n
11T

)(
∇F (x(u)) + ζ(v(u))

)
du.

(b) Next, taking the 2-norm of above and using the triangle inequality give

∥∥y(t)
∥∥ ≤ e−βt

∥∥y(0)
∥∥+ β

∫ t

0

e−β(t−u)
∥∥Ay(u− τ)

∥∥du
+

∫ t

0

e−β(t−u)

∥∥∥∥α(u)

(
I− 1

n
11T

)(
∇F (x(u)) + ζ(v(u))

)∥∥∥∥ du.
By the Cauchy-Schwarz inequality we can show that∥∥∥∥α(u)

(
I− 1

n
11T

)
∇F (x(t))

∥∥∥∥ ≤ α(u)C.

Furthermore, by Eq. (3.4) we can obtain∥∥∥∥α(u)

(
I− 1

n
11T

)
ζ(v(u))

∥∥∥∥ ≤ α(u)C.

(c) Finally, the key step of our analysis is to provide an upper bound for

β

∫ t

0

e−β(t−u)
∥∥Ay(u− τ)

∥∥du,
which is done by applying the Grönwall-Bellman inequality [56].

We are now ready to state the main result of this section, which is the

convergence rate of Algorithm 1 to the optimal value using standard tech-
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niques from the analysis of centralized subgradient methods. One can view

the update x̄(t) in Eq. (3.8) as a centralized projected subgradient used to

solve problem (2.1). Specifically, at any time t ≥ 0 if each node i ∈ V main-

tains a variable zi(t) to compute the time-weighted average of xi(t) and if

the stepsizes α(t) decay as α(t) = 1/
√
t, then the objective function value f

in problem (2.1), estimated at any zi(t), converges to the optimal value with

a rate

O
(

nτ 3 ln(t)

(1− γ)2
√
t

)
,

where γ = σ2e
βτ ∈ (0 , 1) and β ∈ (0 , ln(1/σ2)/τ). We also note that

this condition on the stepsizes is also used to study the convergence rate of

centralized subgradient methods [46]. The following theorem is used to show

the convergence rate of Algorithm 1, and its proof is given in Section 3.5.

Theorem 7. Suppose that Assumptions 1 and 3 hold. Let the trajectories

of xi(t), for all i ∈ V, be updated by Algorithm 1. Let β ∈ (0 , ln(1/σ2)/τ)

and γ = σ2e
βτ ∈ (0 , 1). Let α(t) = 1/

√
t for t ≥ 1 and α(t) = 1 for t ≤ 1.

Moreover, suppose that each node i, for all i ∈ V, stores a variable zi ∈ R,

which is initialized arbitrarily and updated as

żi(t) =
α(t)xi(t)− α(t)zi(t)

S(t)
, ∀ t ≥ 0, (3.14)

where S(0) = 0 and Ṡ(t) = α(t) for t > 0. Then

f (zi(t))− f ∗ ≤
2Γ0(t) + nV (x̄(0))

2
√
t− 1

, ∀ i ∈ V , (3.15)

where

Γ0(t) ,
24C (‖x(0)‖+ 2C) eβτ/2

β3(1− γ)2
+

48C2(1 + τ)

β2γ(1− γ)
+ C2 ln(t) +

48C2 ln(γt− 4τ)

β2γ(1− γ)
·

Sketch of Proof. As mentioned previously, the main idea of this proof is to

introduce a candidate Lyapunov functional, which takes into account the

impact of delays. In particular, a quadractic candidate Lyapunov function,

i.e., (x̄(t)−x∗)2, is often used in the case of no communication delay. However,

since the estimates xi(t) depend on the interval [t− τ, t] we consider an extra

term to study this impact. Specifically, we consider the following candidate
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Krasovskii Lyapunov functional V [57]

V (x̄(t)) =
1

2
(x̄(t)− x∗)2 +

β

2

∫ t

t−τ
(x̄(s)− x∗)2ds.

We then show that V is sufficiently decreasing by considering the following

two main steps.

1. One can show that the derivative of V satisfies

V̇ (x̄(t)) ≤ 2Cα(t)

n

∥∥x(t)− x̄(t)
∥∥+

C2α2(t)

n
− α(t)

n
(f(x̄(t))− f ∗).

2. Integrating the above and using Eq. (3.12) gives the rate in Eq. (3.15).

3.4 Simulations

In this section, we apply the distributed gradient algorithm to study the

well-known linear regression problem in statistical machine learning, which

is the most popular technique for data fitting [1,2]. The goal of this problem

is to find a linear relationship between a set of variables and some real value

outcome. Here, we focus on quadratic loss functions, that is, given a training

set S = {(xi, yi) ∈ Rd×R} for i = 1, . . . , n, we want to learn a parameter w

that minimizes the following least squares problem,

min
w∈X

n∑
i=1

(xTi w − yi)2. (3.16)

We assume that the datasets are distributedly stored in a network of n pro-

cessors, i.e., each processor i knows only the pair (xi, yi).

For the purpose of simulations, we consider the discrete-time version of

Algorithm 1, i.e., Eq. (2.16) with communication delays τ . We simulate

the case when X = [−5, 5]d where d = 10, i.e., w, xi ∈ R10. We consider

simulated training datasets, i.e., (xi, yi) are generated randomly with uniform

distribution between [0, 1]. We consider the performance of the distributed

gradient algorithm on different sizes of network G, where each network is

generated as follows:
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1. We first randomly generate the nodes’ coordinates in the plane with uni-

form distribution.

2. Then any two nodes are connected if their distance is less than a reference

number r, e.g., r = 0.6 for our simulations.

3. Finally we check whether the network is connected. If not we return to

step 1 and run the program again.

To implement our algorithm, the communication matrix A is chosen as a

lazy Metropolis matrix corresponding to G, i.e.,

A = [aij] =


1

2(max{|Ni|,|Nj |}) , if (i, j) ∈ E
0, if (i, j) /∈ E and i 6= j

1−
∑

j∈Ni aij, if i = j.

It is straightforward to verify that the lazy Metropolis matrix A satisfies

Assumption 3. In all simulations considered herein, we set the stepsizes

α(k) = 1/
√
k for k = 1, 2, . . . and α(0) = 1.

In the sequel, we will compare the performance of the discretized version

of distributed gradient (DG) with distributed dual averaging (DA) [48, 58]

for solving problem (3.16) in the delay-free case as well as in the case of

constant delays. For DA, we chose the same stepsize α(k) = 1/
√
k as used

in our algorithm. Simulations show that the distributed gradient algorithm

outperforms distributed dual averaging in both cases.

3.4.1 Delay-free case

In the delay-free case, i.e., τ = 0, we simulate DG and DA for two networks,

namely, with n = 40 and n = 50. In each simulation, we fix the number of

iterations k = 1000 and output the worst-case distance of the function value

to the optimal value, i.e., max
i
|f(zi(k))− f ∗|, where zi(k) = 1

k

∑k
t=1 xi(t).

The simulations are shown in Fig. 3.1, which show that the performance of

DG is slightly better than that of DA. However, overall they seem to share

the same rate O(ln(k)/
√
k), which agrees with the result in Theorem 6.
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A 50-node, 558-link network
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Figure 3.1: Performance of DG and DA in delay-free case over two networks
with 40 and 50 nodes on the top and the bottom plots, respectively.

3.4.2 Uniform delays

To study the impact of uniform communication delays on the performance

of DG and DA, we simulate the two algorithms for two networks above.

We implement DG and DA for each network, and terminate them when

max
i
|f(zi(k)) − f ∗| ≤ 0.2. We let the delay constant τ run from 0 to 10

and output the number of iterations as a function on τ . We plot the number

of iterations as a function on the number of delay steps. The simulations are

shown in Fig. 3.2.

We first note that the delays do influence the convergence rate of the two

algorithms, that is, the greater the delay the more time the algorithms need

to terminate. Second, as shown by the curve for DG the number of iterations

seems to increase as a cubic function of the number of delay steps, which

agrees with our analysis in Theorem 7. Finally, in this example, uniform

delays have a bigger impact on the performance of DA, that is, DA requires
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more iterations to converge than DG under the same number of delay steps.

0 1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000
A 40-node, 505-link network

delay steps

n
u
m
b
e
r
o
f
it
e
ra

ti
o
n
s

 

 
Distributed Gradient
Dual Averaging

0 1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
A 50-node, 679-link network

delay steps

n
u
m
b
e
r
o
f
it
e
ra

ti
o
n
s

 

 
Distributed Gradient
Dual Averaging

Figure 3.2: Performance of DG and DA with delays over two networks with
40 and 50 nodes on the left and the right plots, respectively.

3.5 Proofs for Main Results

We provide here the complete proof of the main results presented in Section

3.3. In the following lemma, we first study some important properties for

the projection error ζi , which can be viewed as the one-dimension version of

Lemma 16 for the general convex set X , stated in Appendix B.

Lemma 4. Suppose Assumptions 1 and 3 hold. Let vi(t) and xi(t) be updated

by Eqs. (3.3) and (3.4), respectively. Then

1. For all t ≥ 0

∣∣ζi(vi(t))∣∣ ≤ ∣∣α(t)f ′i(xi(t))
∣∣ ≤ Ciα(t). (3.17)

2. Given any feasible direction ri, i.e.,{
ri ≤ 0 if xi(t) = b

ri ≥ 0 if xi(t) = a.
(3.18)

We have

(vi(t)− ri) ζi(vi(t)) ≥
[
ζi(vi(t))

]2

. (3.19)
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Proof. 1. Recall that ζi(vi(t)) = vi(t)− PTX (xi(t))
. By Eq. (3.4) consider the

following three cases.

(a) If xi(t) ∈ X = (a, b) then ζi(vi(t)) = vi(t)− vi(t) = 0.

(b) If xi(t) = a then 0 ≤ PTX (xi(t))
= max(0, vi(t)). If vi(t) ≥ 0 then

ζi(vi(t)) = 0. Otherwise if

vi(t) = −βa+ β
∑
j∈Ni

aijxj(t− τ)− α(t)f ′i(xi(t)) < 0,

then since xj(t− τ) ∈ (a, b)

0 ≤ −βa+ β
∑
j∈Ni

aijxj(t− τ).

This gives

−α(t)f ′i(xi(t)) ≤ −βa+ β
∑
j∈Ni

aijxj(t− τ)− α(t)f ′i(xi(t)) ≤ 0.

Thus, since ζi(vi(t)) = vi(t)− PTX (xi(t))
we obtain

∣∣∣ ζi(vi(t)) ∣∣∣ =

∣∣∣∣∣ β∑
j∈Ni

aijxj(t− τ) + α(t)f ′i(xi(t))

∣∣∣∣∣ ≤ ∣∣∣α(t)f ′i(xi(t))
∣∣∣.

(c) Finally, if xi(t) = b then

PTX (xi(t))
= −v−i (t) = −max(0,−v) ≤ 0.

If vi(t) < 0 then PTX (xi(t))
= vi(t) implying ζi(vi(t)) = 0. Otherwise, if

vi(t) ≥ 0 then PTX (xi(t))
= 0, which implies

0 ≤ −βxi(t) + β
∑
j∈Ni

aijxj(t− τ)− α(t)f ′i(xi(t))

= −βb+ β
∑
j∈Ni

aijxj(t− τ)− α(t)f ′i(xi(t))

≤ β(b−
∑
j∈Ni

aijb)− α(t)f ′i(xi(t)) = −α(t)f ′i(xi(t)).

32



Thus we have

∣∣∣ζi(vi(t))∣∣∣
∣∣∣∣∣−βxi(t) + β

∑
j∈Ni

aijxj(t− τ)− α(t)f ′i(xi(t))

∣∣∣∣∣≤ ∣∣∣α(t)f ′i(xi(t))
∣∣∣.

From these three cases, we have
∣∣ζi(vi(t))| ≤ ∣∣α(t)f ′i(xi(t))

∣∣, which by Eq.

(2.11) implies
∣∣∣ ζi(vi(t)) ∣∣∣ ≤ Ciα(t).

2. Let ri be a feasible direction, i.e., ri satisfies Eq. (3.18). Consider

(vi(t)− ri)ζi(vi(t)) = (vi(t)− P(vi(t)) + P(vi(t))− ri)ζi(vi(t))

= ζ2
i (vi(t)) + (P(vi(t))− ri(t))ζi(vi(t))

= ζ2
i (vi(t)) + (P(vi(t))− ri(t))(vi(t)− P(vi(t))), (3.20)

where for convenience we define qi as

qi(P(vi(t))− ri(t))(vi(t)− P(vi(t))).

We investigate the second term of the previous relation for three cases.

(a) If xi(t) ∈ X = (a, b) then P(vi(t)) = vi(t) implying q1 = 0.

(b) If xi(t) = a then

0 ≤ PTX (xi(t))
= v+

i (t) = max(0, vi(t)).

If vi(t) ≥ 0 then P(vi(t)) = vi(t) implying qi = 0. Otherwise if

vi(t) < 0 then P(vi(t)) = 0. Since xi(t) = a we have ri ≥ 0, which

implies qi ≥ 0 since vi(t) ≤ 0.

(c) Finally, if xi(t) = b then

P(vi(t)) = −max(0,−v) ≤ 0.

If vi(t) < 0 then P(vi(t)) = vi(t), implying qi = 0. Otherwise, if

vi(t) ≥ 0 then P(vi(t)) = 0. Since xi(t) = b, ri ≤ 0, this gives q1 ≥ 0

due to vi(t) ≥ 0.

Combining these three cases and by Eq. (3.20) we have Eq. (3.19).
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3.5.1 Proof of Lemma 3

Proof. Let y(t) = x(t)− x̄(t)1 and consider the following notation

g(t) =

(
I− 1

n
11T

)
∇F (x(t)), h(t) =

(
I− 1

n
11T

)
ζ(v(t)).

1. We first show steps 1− 3 stated in the proof sketch of Lemma 3.

(a) Using Eqs. (3.6) and (3.8), and since 1TA = A1 = 1 we have

ẏ(t) = ẋ(t)− ˙̄x(t)1

= −βx(t) + βAx(t− τ) + βx̄(t)1− βx̄(t− τ)1− α(t)∇F (x(t))

+
α(t)

n
11T∇F (x(t))− ζ(v(t)) +

1

n
11T ζ(v(t))

= −β(x(t)− x̄(t)1) + βA(x(t− τ)− x̄(t− τ)1)

− α(t)

(
I− 1

n
11T

)
∇F (x(t))−

(
I− 1

n
11T

)
ζ(v(t))

= −βy(t) + βAy(t− τ)− α(t)g(t)− h(t). (3.21)

The preceding relation gives

y(t) = e−βty(0) +

∫ t

0

e−β(t−u)
(
βAy(u− τ)− α(u)g(u)− h(u)

)
du.

(3.22)

(b) Taking the 2-norm of Eq. (3.22) and using the triangle inequality gives

∥∥y(t)
∥∥ ≤ e−βt

∥∥y(0)
∥∥+

∫ t

0

e−β(t−u)
(
α(u)

∥∥g(u)
∥∥+

∥∥h(u)
∥∥)du

+ β

∫ t

0

e−β(t−u)
∥∥Ay(u− τ)

∥∥du. (3.23)

First, using the triangle inequality and Eq. (2.11) gives

∥∥g(t)
∥∥ ≤ ∥∥∇F (x(t))

∥∥ =

√√√√ n∑
i=1

[
f ′i(xi(t))

]2

(2.11)

≤

√√√√ n∑
i=1

C2
i ≤ C. (3.24)
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Second, by Eq. (3.17) we have

∥∥h(t)
∥∥ =

∥∥∥∥(I− 1

n
11T

)
ζ(v(t))

∥∥∥∥ ≤ Cα(t).

Substituting the above and Eq. (3.24) into Eq. (3.23) we have

∥∥y(t)
∥∥ ≤ e−βt

∥∥y(0)
∥∥+ 2C

∫ t

0

e−β(t−u)α(u)du

+ β

∫ t

0

e−β(t−u)
∥∥Ay(u− τ)

∥∥du. (3.25)

Note that α(t) is non-increasing with α(0) = 1. Consider the second

term on the right-hand side of Eq. (3.25)∫ t

0

e−β(t−u)α(u)du =

∫ t/2

0

e−β(t−u)α(u)du+

∫ t/2

0

e−β(t−u)α(u)du

≤
∫ t/2

0

e−β(t−u)du+ α(t/2)

∫ t/2

0

e−β(t−u)du

≤ 1

β
e−βt/2 +

α(t/2)

β
·

Substituting the above in Eq. (3.25) and using
∥∥y(0)

∥∥ ≤ ∥∥x(0)
∥∥ gives

∥∥y(t)
∥∥ ≤ e−βt

∥∥x(0)
∥∥+

2C

β
e−βt/2 +

2Cα(t/2)

β

+ β

∫ t

0

e−β(t−u)
∥∥Ay(u− τ)

∥∥du. (3.26)

(c) Using Eq. (2.5) in the last term of Eq. (3.26) gives∫ t

0

e−β(t−u)
∥∥Ay(u− τ)

∥∥du ≤ σ2

∫ t

0

e−β(t−u)
∥∥y(u− τ)

∥∥du.
Using β ∈ (0, 1) and the preceding relation in Eq. (3.26) yields

∥∥y(t)
∥∥≤ ∥∥x(0)

∥∥+2C

β
e−βt/2 +

2Cα(t/2)

β

+ βσ2

∫ t

0

e−β(t−u)
∥∥y(u− τ)

∥∥du
= µ(t) + βσ2

∫ t

0

e−β(t−u)
∥∥y(u− τ)

∥∥du, (3.27)
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where µ(t) is defined as

µ(t) =

∥∥x(0)
∥∥+ 2C

β
e−βt/2 +

2Cα(t/2)

β
· (3.28)

We now apply a delayed version of the Grönwall-Bellman inequality

to obtain a bound for Eq. (3.27). Define w(t) be a function of t as

w(t) =

∫ t

0

eβu
∥∥y(u− τ)

∥∥du.
By Eq. (3.27) we have

∥∥y(t)
∥∥ ≤ µ(t) + βσ2e

−βtw(t).

Moreover, w(t) is non-decreasing and w(0) = 0. Consider

ẇ(t) = eβt
∥∥y(t− τ)

∥∥ ≤ eβt
(
µ(t− τ) + βσ2e

−β(t−τ)w(t− τ)
)

= eβtµ(t− τ) + σ2βe
βτw(t− τ) ≤ eβtµ(t− τ) + σ2βe

βτw(t),

where the last inequality is due to the fact that w(t) is non-decreasing,

i.e., w(t) ≥ w(t− τ). The preceding relation implies

ẇ(t)− σ2βe
βτw(t) ≤ eβtµ(t− τ),

which by multiplying both sides by e−σ2βe
βτ t gives

d

dt

(
e−σ2βe

βτ tw(t)
)
≤ e−σ2βe

βτ teβtµ(t− τ).

Taking the integral on both sides of above and using w(0) = 0 gives

w(t) ≤ eσ2βe
βτ t

∫ t

0

eβ(1−σ2eβτ )uµ(u− τ)du. (3.29)

Thus, since
∥∥y(t)

∥∥ ≤ µ(t) + βσ2e
−βtw(t) and by Eq. (3.29) we have

∥∥y(t)
∥∥ ≤ µ(t) + βσ2

∫ t

0

e−β(1−σ2eβτ )(t−u)µ(u− τ)du, (3.30)

which is Eq. (3.9) since γ = σ2e
βτ .

36



2. We now show Eq. (3.11). Since lim
t→∞

α(t) = 0, lim
t→∞

µ(t) = 0 by Eq. (3.28).

Consider the second term on the right-hand side of Eq. (3.30)∫ t

0

e−β(1−γ)(t−u)µ(u− τ)du =

∥∥x(0)
∥∥+ 2C

β

∫ t

0

e−β(1−γ)(t−u)e−β(u−τ)/2du

+
2C

β

∫ t

0

e−β(1−γ)(t−u)α((u− τ)/2)du. (3.31)

First, consider the first term on the right-hand side of Eq. (3.31)

lim
t→∞

∫ t

0

e−β(1−γ)(t−u)e−β(u−τ)/2du = lim
t→∞

e−β(1−γ)t+βτ/2

∫ t

0

eβ(1/2−γ)udu

= eβτ/2 lim
t→∞

e−β(1−γ)t e
β(1/2−γ)t − 1

β(1/2− γ)
= 0. (3.32)

Second, consider the second term on the right-hand side of Eq. (3.31)

lim
t→∞

∫ t

0

e−β(1−γ)(t−u)α((u− τ)/2)du

= lim
t→∞

∫ t/2

0

e−β(1−γ)(t−u)α((u− τ)/2)du

+ lim
t→∞

∫ t

t/2

e−β(1−γ)(t−u)α((u− τ)/2)du

≤ lim
t→∞

∫ t/2

0

e−β(1−γ)(t−u)du+ lim
t→∞

α((u− 2τ)/4)

∫ t

t/2

e−β(1−γ)(t−u)du

≤ lim
t→∞

e−β(1−γ)t/2

β(1− γ)
+ lim

t→∞

α((u− 2τ)/4)

β(1− γ)
= 0, (3.33)

where the last equality is due to γ ∈ (0, 1) and lim
t→∞

α(t) = 0. Using the

preceding relation and Eq. (3.32) in Eq. (3.31) we have

lim
t→∞

∫ t

0

e−β(1−γ)(t−u)µ(u− τ) = 0, (3.34)

which together with lim
t→∞

µ(t) = 0 and Eq. (3.9) gives Eq. (3.11).

3. We now consider Eq. (3.30) where µ(t) is given in Eq. (3.28). Indeed, we

provide a bound for the first term on the right-hand side of Eq. (3.30)∫ t

0

α(u)µ(u)du ≤
∥∥x(0)

∥∥+ 2C

β

∫ t

0

e−βu/2du+
2C

β

∫ t

0

α2(u/2)du
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≤
2
∥∥x(0)

∥∥+ 4C

β2
+

2C

β

∫ t

0

α2(u/2)du. (3.35)

Second, consider the second term of Eq. (3.30). We first have∫ t

u=0

α(u)

∫ u

s=0

e−β(1−γ)(u−s)e−β(s−τ)/2dsdu

≤ eβτ/2
∫ t

u=0

∫ u

s=0

e−β(1−γ)ueβ(1−γ)s/2dsdu

≤ 2eβτ/2

β(1− γ)

∫ t

0

e−β(1−γ)u/2du ≤ 4eβτ/2

β2(1− γ)2
· (3.36)

Next, consider∫ t

u=0

α(u)

∫ u

s=0

e−β(1−γ)(u−s)α((t− τ)/2)dsdu

≤
∫ t

u=0

∫ u

s=0

e−β(1−γ)(u−s)α2((s− τ)/2)dsdu

=

∫ t

u=0

e−β(1−γ)u

∫ u/2

s=0

eβ(1−γ)sα2((s− τ)/2)dsdu

+

∫ t

u=0

e−β(1−γ)u

∫ u

s=u/2

eβ(1−γ)sα2((s− τ)/2)dsdu

≤
∫ t

u=0

e−β(1−γ)u

∫ u/2

s=0

eβ(1−γ)sdsdu

+

∫ t

u=0

e−β(1−γ)uα2((s− 2τ)/4)

∫ u

s=u/2

eβ(1−γ)sdsdu

≤ 1

β(1− γ)

∫ t

u

e−β(1−γ)u/2du

+
1

β(1− γ)

∫ t

u

α2((s− 2τ)/4)du

≤ 2

β2(1− γ)2
+

1

β(1− γ)

∫ t

0

α2((s− 2τ)/4)du. (3.37)

Using Eqs. (3.36) and (3.37) in the second term of Eq. (3.30) gives∫ t

u=0

α(u)

∫ u

s=0

e−β(1−γ)(u−s)µ(s− τ)dsdu

≤
4
(∥∥x(0)

∥∥+ 3C
)
eβτ/2

β3(1− γ)2
+

2C

β2(1− γ)

∫ t

0

α2(γu/4− τ)du. (3.38)
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By adding Eq. (3.38) to Eq. (3.35) and using Eq. (3.30) give∫ t

0

α(u)
∥∥y(u)

∥∥du
≤

2
∥∥x(0)

∥∥+ 4C

β2
+

2C

β

∫ t

0

α2(u/2)du

+
4
(∥∥x(0)

∥∥+ 3C
)
eβτ/2

β3(1− γ)2
+

2C

β2(1− γ)

∫ t

0

α2(γu/4− τ)du

≤
8
(∥∥x(0)

∥∥+ 2C
)
eβτ/2

β3(1− γ)2
+

4C

β2(1− γ)

∫ t

0

α2(γu/4− τ)du, (3.39)

where in the last inequality we use γ ∈ (0, 1) and α(t) is non-increasing,

i.e., α2(u/2) ≤ α2(γu/4− τ) for τ > 0. This shows Eq. (3.12).

3.5.2 Proof of Theorem 7

Proof. Let x∗ be a solution of problem (2.1). Consider a candidate Krasovskii

Lyapunov functional V [57] defined as

V (x̄(t)) =
1

2
(x̄(t)− x∗)2 +

β

2

∫ t

t−τ
(x̄(s)− x∗)2ds, t ≥ 0. (3.40)

Taking the derivative of V above gives

V̇ (x̄(t)) = (x̄(t)− x∗) ˙̄x+
β

2

[
(x̄(t)− x∗)2 − (x̄(t− τ)− x∗)2

]
= (x̄(t)− x∗)

(
−βx̄(t) + βx̄(t− τ)− α(t)

n

n∑
i=1

f ′i(xi(t))− ζ̄(t)

)

+
β(x̄(t)− x∗)2 − β(x̄(t− τ)− x∗)2

2

= β(x̄(t)− x∗)(x̄(t− τ)− x̄(t))− α(t)

n

n∑
i=1

(x̄(t)− x∗)f ′i(xi(t))

+
β(x̄(t)− x∗)2 − β(x̄(t− τ)− x∗)2

2
− 1

n

n∑
i=1

(x̄(t)− x∗)zi(xi(t))

= W1 +W2 −
β

2

(
x̄(t)− x̄(t− τ)

)2

≤ W1 +W2, (3.41)
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where W1,W2 are defined as

W1 = −α(t)

n

n∑
i=1

(x̄(t)− x∗)f ′i(xi(t))

W2 = − 1

n

n∑
i=1

(x̄(t)− x∗)zi(xi(t)).

We now analyze the terms W1 and W2. First, consider W1

W1 = −α(t)

n

n∑
i=1

(x̄(t)− xi(t) + xi(t)− x∗)f ′i(xi(t))

= −α(t)

n

n∑
i=1

(
x̄(t)− xi(t)

)
f ′i(xi(t))−

α(t)

n

n∑
i=1

(
xi(t)− x∗

)
f ′i(xi(t))

≤ α(t)

n

n∑
i=1

∣∣x̄(t)− xi(t)
∣∣ ∣∣∣f ′i(xi(t))∣∣∣− α(t)

n

(
F (x(t))− f ∗

)
≤ α(t)C

n

∥∥x(t)− x̄(t)1
∥∥− α(t)

n

(
F (x(t))− f ∗

)
=
α(t)C

n

∥∥x(t)− x̄(t)1
∥∥− α(t)

n

(
F (x(t))− f(x̄(t))

)
− α(t)

n

(
f(x̄(t))− f ∗

)
≤ 2α(t)C

n

∥∥x(t)− x̄(t)1
∥∥− α(t)

n

(
f(x̄(t))− f ∗

)
. (3.42)

Second, let ri(t) be defined as

ri(t) = x∗ − xi(t)− βxi(t) + β
∑
j∈Ni

aijxj(t− τ),

and recall from Eq. (3.18) that ri(t) is a feasible direction if{
ri ≤ 0 if xi(t) = b

ri ≥ 0 if xi(t) = 0.
(3.43)

Indeed, if xi(t) = 0 then ri(t) ≥ 0 since x∗, xj(t − τ) ∈ (0, b), for all j ∈ V ,

and A is doubly stochastic. Otherwise, if xi(t) = b then ri(t) ≤ 0. Thus,

ri(t) is a feasible direction, i.e., ri(t) satisfies Eq. (3.43). We now provide an

upper bound for W2. Indeed, using the definition of ri(t) above and vi(t) we
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consider W2

W2 = − 1

n

n∑
i=1

(x̄(t)− x∗)ζi(t))

= − 1

n

n∑
i=1

(
x̄(t)− (1 + β)xi(t) + β

∑
j∈Ni

aijxj(t− τ)− vi(t)

)
ζi(t)

− 1

n

n∑
i=1

(
vi(t) + (1 + β)xi(t)− β

∑
j∈Ni

aijxj(t− τ)− x∗
)
ζi(t)

= − 1

n

n∑
i=1

(
x̄(t)− (1 + β)xi(t) + β

∑
j∈Ni

aijxj(t− τ)− vi(t)

)
ζi(t)

− 1

n

n∑
i=1

(vi(t)− ri(t)) ζi(t), (3.44)

where by Eq. (3.3) the first sum is equivalent to

− 1

n

n∑
i=1

(
x̄(t)− (1 + β)xi(t) + β

∑
j∈Ni

aijxj(t− τ)− vi(t)

)
ζi(t)

= − 1

n

n∑
i=1

(x̄(t)− xi(t) + α(t)f ′i(xi(t))) ζi(t)

≤ 1

n

n∑
i=1

∣∣x̄(t)− xi(t)
∣∣ ∣∣∣ζi(t)∣∣∣+

1

n

n∑
i=1

∣∣α(t)f ′i(xi(t))
∣∣ ∣∣∣ζi(t)∣∣∣

(3.17)

≤ Cα(t)

n

∥∥x(t)− x̄(t)1
∥∥+

C2α2(t)

n
·

Since ri(t) is a feasible direction and by Eq. (3.19), we have

− 1

n

n∑
i=1

(vi(t)− ri(t)) ζi(t) ≤ −
1

n

n∑
i=1

ζ2
i (t) = − 1

n

∥∥ζ(t)
∥∥2
.

Applying the preceding two relations in Eq. (3.44) we obtain

W2 ≤
Cα(t)

n

∥∥x(t)− x̄(t)1
∥∥

2
+
C2α2(t)

n
· (3.45)

Thus, substituting Eqs. (3.42) and (3.45) into Eq. (3.41) we obtain

V̇ (x̄(t)) ≤ 3α(t)C

n

∥∥x(t)− x̄(t)1
∥∥+

C2α2(t)

n
− α(t)

n
(f(x̄(t))− f ∗). (3.46)
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By Eq. (3.12) we have∫ t

0

α(u)
∥∥x(t)− x̄(t)1

∥∥du
≤

8
(∥∥x(0)

∥∥+ 2C
)
eβτ/2

β3(1− γ)2
+

4C

β2(1− γ)

∫ t

0

α2(γu/4− τ)du· (3.47)

Using α(t) = 1 for t ≤ 1 and α(t) = 1/
√
t for t ≥ 1 gives

∫ t

0

α2(γu/4− τ)du =
4

γ

∫ γt
4
−τ

−τ
α2(u)du

=
4

γ

∫ 1

−τ
α2(u)du+

4

γ

∫ γt
4
−τ

1

α2(u)du =
4(1 + τ)

γ
+

4

γ

∫ γt
4
−τ

1

1

t
du

≤ 4(1 + τ)

γ
+

4 ln(γt− 4τ)

γ
·

Substituting above into Eq. (3.47) we obtain

3C

∫ t

0

α(u)
∥∥x(u)− x̄(t)1

∥∥du+
C2

n

∫ t

0

α2(u)du ≤ Γ0(t), (3.48)

where Γ0(t) is defined as

Γ0(t) ,
24C

(∥∥x(0)
∥∥+ 2C

)
eβτ/2

β3(1− γ)2
+

48C2(1 + τ)

β2γ(1− γ)

+ C2 ln(t) +
48C2 ln(γt− 4τ)

β2γ(1− γ)
·

Taking the integral of both sides in Eq. (3.41) and using Eq. (3.48) gives

V (x̄(t))− V (x̄(0)) ≤ 3C

n

∫ t

0

α(u)
∥∥x(u)− x̄(t)1

∥∥du+
C2

n

∫ t

0

α2(u)du

− 1

n

∫ t

0

α(u)(F (x̄(u)1)− f ∗)du

≤ Γ0(t)

n
− 1

n

∫ t

0

α(u)(f(x̄(u)− f ∗). (3.49)

Rearranging Eq. (3.49) and dropping V (x̄(t)) gives∫ t

0

α(u)(f(x̄(u))− f ∗)du ≤ 2Γ0(t) + nV (x̄(0)).
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Dividing both sides of the preceding equation by∫ t

0

α(u)du = 1 +

∫ t

1

1√
u
du = 2

√
t− 1

gives ∫ t
0
α(u)(f(x̄(u))− f ∗)du∫ t

0
α(u)du

≤ Γ0(t) + nV (x̄(0))

2
√
t− 1

,

which by the Jensen inequality implies

f

(∫ t
0
α(u)x̄(u)du∫ t
0
α(u)du

)
− f ∗ ≤ Γ0(t) + nV (x̄(0))

2
√
t− 1

· (3.50)

Moreover, we have

f

(∫ t
0
α(u)xi(u)du∫ t

0
α(u)du

)
− f

(∫ t
0
α(u)x̄(u)du∫ t
0
α(u)du

)

≤ C

∣∣∣∣∣
∫ t

0
α(u)(xi(u)− x̄(u))du∫ t

0
α(u)du

∣∣∣∣∣ (3.46)

≤ Γ0(t)

2
√
t− 1

· (3.51)

By Eq. (3.14) we further obtain

d

dt
(S(t)zi(t)) = Ṡ(t)zi(t) + S(t)żi(t) = α(t)xi(t)

⇒ zi(t) =

∫ t
0
α(u)xi(u)du∫ t

0
α(u)du

, ∀i ∈ V .

Thus, by adding Eq. (3.50) into Eq. (3.51) and using the preceding relation

of zi(t) we obtain Eq. (3.15), which concludes our proof.
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Chapter 4

Distributed Aggregated Stochastic Gradient
Methods

4.1 Motivation and Contribution

In general, distributed gradient methods for solving problem (2.1) achieve

sublinear convergence rates O(ln(k)/
√
k) and O(ln(k)/k) to the optimal

value for non-smooth convex and strongly convex functions, respectively.

One critical assumption required by these methods is the Lipschitz conti-

nuity of the objective functions, which does not often hold in general. For

example, the common quadratic function, x2, is not Lipschitz continuous un-

less the feasible set is bounded. The second condition to guarantee for the

asymptotic convergence of distributed gradient methods is a diminishing se-

quence of stepsizes, which, however, decreases the performance of these meth-

ods. Unlike the standard gradient method, distributed gradient methods of

Eq. (2.16) do not achieve linear convergence rate for strongly convex and

L-smooth objective functions (cf. Assumptions 5 and 6, respectively) [20].

To improve the sublinear rate of distributed gradient methods, distributed

gradient tracking methods have been simultaneously studied in [20, 21]. In

particular, distributed gradient tracking methods achieve the same rate as the

standard gradient descent, that is, a linear rate for L-smooth and strongly

convex functions, while relaxing the previous two critical assumptions in

distributed gradient methods.

Our interest in this chapter is to consider distributed gradient tracking

methods for solving problem (2.1), when there is noise in gradient estimates,

named as a distributed aggregated stochastic gradient (DASG) method. For

ease of exposition, in this chapter we consider problem (2.1) when x is a

scalar, i.e., d = 1. In DASG, we assume that each node i, for all i ∈ V , can

only estimate noisy samples of the gradient of its function fi, i.e., given a
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point y ∈ R each node i can generate

gi(y) = f ′i(y) + ξi(y), (4.1)

where ξi are independent random variables with zero mean, i.e., E[ξi] = 0,

implying gi(·) are unbiased estimates of the derivatives f ′i(·). In addition,

we assume that the noise-norm
∣∣ξi(y)

∣∣ is almost surely bounded, i.e., there

exists a positive constant Ci, for all i ∈ V , such that the following holds with

probability 1

∣∣ ξi(y)
∣∣ ≤ Ci, ∀ y ∈ R. (4.2)

Main Contributions. We will show that our method achieves a linear

convergence rate in expectation to the neighborhood of the optimal solu-

tion, which depends on the noise variance of gradient estimates. The key

idea of our approach is to reduce the difference between the nodes’ gradient

estimates at a linear rate, which is done through consensus steps following

correction steps. This will help to speed up the convergence of the algo-

rithm. Finally, we provide simulation results comparing the performance

of our method with distributed stochastic gradient (DSG) methods [26] for

solving linear regression problems over networks; these simulations indicate

that the distributed aggregated stochastic gradient method outperforms dis-

tributed stochastic gradient methods. The results in this chapter have been

appeared in [59].

4.2 Distributed Aggregated Stochastic Gradient

Methods

DASG is formally stated in Algorithm 2 for solving problem (2.1) over a

graph G = (V , E). Our main motivation is based on the following key obser-

vation. Note that the local stochastic gradient step in Eq. (4.3) is not the

true (global) stochastic gradient step of problem 2.1, i.e.,
∑
i∈V
gi(x). There-

fore, the variable yi in Eq. (4.4) is used to estimate for this quantity, i.e., the

goal is to reduce the difference (variance) between these two quantities. This

is done by making an appropriate combination with the gradient estimate
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Algorithm 2 Distributed Aggregated Stochastic Gradient Method

1. Initialize: Each node i initializes xi arbitrarily and yi(0) = gi(xi(0)).

2. Iteration: For k ≥ 0 each node i ∈ V updates

xi(k + 1) =
∑
j∈Ni

aijxj(k)− αyi(k) (4.3)

yi(k + 1) =
∑
j∈Ni

aijyj(k) + gi(xi(k + 1))− gi(xi(k)). (4.4)

values received from the node i’ neighbors, following a correction step, i.e.,

gi(xi(k + 1))− gi(xi(k)). We will show that DASG achieves a linear conver-

gence rate in expectation to the neighborhood of the optimal solution.

4.3 Main Results

The focus of this section is to analyze the convergence rate of DASG. In

particular, we show that this method achieves a linear convergence rate in

expectation to the neighborhood of the solution of problem (2.1).

Let ḡ(k) , (1/n)
∑

i∈V gi(xi(k)). By Eqs. (4.3) and (4.4) we have

x̄(k + 1) = x̄(k)− αȳ(k) (4.5)

ȳ(k + 1) = ȳ(k) + ḡ(k + 1)− ḡ(k). (4.6)

We now explain the motivation of our analysis. The convergence analysis

of DASG is composed of two steps. First, we show that the distance of∣∣xi(k) − x̄(k)
∣∣ is linearly decreasing, resulting a consensus between the xi.

Second, we show that x̄(k) linearly converges to the minimizer x∗, implying

linear convergence of xi(k) to x∗. These steps are built on the following

fundamental inequality for Eq. (4.3), a randomized version of Lemma 2,

which has been studied in [22,26].

Lemma 5. Suppose that Assumption 3 holds. Let the sequence {xi(k)}, for

all i ∈ V, be generated by Eq. (4.3). Then we have

E
[ ∥∥x†(k)

∥∥ ] ≤ σk2E
[ ∥∥x†(0)

∥∥ ]+ α
k−1∑
t=0

σk−1−t
2 E

[ ∥∥y†(t)∥∥ ]. (4.7)
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4.3.1 Linear Convergence Rate of DASG

The linear convergence rate of DASG algorithm is established under the fol-

lowing condition on the convergence of
∥∥y†(k)

∥∥, which we call the gradient

reduction at a linear rate. To help presenting the analysis of our main result

more rigorously, we discuss this condition in the next section.

Gradient Reduction at a Linear Rate: Let B,D be positive constants,

and γ ∈ (σ2, 1). Suppose that the sequence {y(k)} generated by Eq. (4.4)

satisfies

E
[ ∥∥y†(k)

∥∥ ] ≤ Dγk +B, ∀k ≥ 0. (4.8)

By Eq. (4.7), one can see that the rate of E
[ ∥∥x†(k)

∥∥ ] depends on the rate

of E
[ ∥∥y†(k)

∥∥ ], as given in the following lemma.

Lemma 6. Suppose that Assumptions 1, 3, 5, and 6 hold. Let the sequences

{xi(k)} and {yi(k)}, for all i ∈ V, be generated by Algorithm 2. Then

E
[ ∥∥x†(k)

∥∥ ] ≤
E

[ ∥∥x†(0)
∥∥ ]+Dα

γ − σ2

 γk+
Bα

1− σ2

· (4.9)

Proof. Using Eq. (4.8) and γ ∈ (σ2, 1) into the second term of Eq. (4.7) gives

k−1∑
t=0

σk−1−t
2 E

[ ∥∥y†(t)∥∥ ] ≤ k−1∑
t=0

σk−1−t
2

(
Dγt +B

)
≤ Dγk

γ − σ2

+
B

1− σ2

,

which implies Eq. (4.9) by Eq. (4.7) and γ ∈ (σ2, 1).

As mentioned, yi(k) is used to estimate for ḡ(k), that is, ȳ(0) = ḡ(0)

implies ȳ(k + 1) = ȳ(k) + ḡ(k + 1)− ḡ(k). Thus we obtain

ȳ(k + 1)− ḡ(k + 1) = ȳ(k)− ḡ(k) = . . . = ȳ(0)− ḡ(0) = 0.

Hence, the update in Eq. (4.4) is used to steer yi(k) to ȳ(k), which is ḡ(k).

On the other hand, if xi(k) converges to x̄(k), ḡ(k) converges to the noisy

gradient estimates of problem (2.1). This is the main motivation of our

analysis for the linear convergence rate of DASG. Indeed, under the condition

in Eq. (4.8), we show that x̄(k) converges linearly to the neighborhood of x∗
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in expectation, implying xi(k) converges linearly to the neighborhood of x∗

in expectation by Lemma 6 . We introduce a bit more notation as follows.

C ,
∑
i∈V

Ci, L ,
∑
i∈V

Li, µ ,
∑
i∈V

µi, g(x) , (g1(x1), . . . , gn(xn))T .

Theorem 8. Suppose that Assumptions 1, 3, 5, and 6 hold. Let the sequences

{xi(k)} and {yi(k)}, for all i ∈ V, be generated by Algorithm 2. Given

γ ∈ (σ2, 1), let the stepsize α satisfy

(1− γ2)n(µ+ L)

2Lµ
≤ α ≤ (1− σ2

2)n(µ+ L)

2(1 + τ)Lµ
, (4.10)

where τ > 0 is the tuning parameter. Then we have

E
[
|x̄(k + 1)− x∗|

]
≤

E
[
|x̄(0)− x∗

∣∣]+
LαE

[ ∥∥x†(0)
∥∥ ]

n(γ − σ2)

 γk+1

+
Cα

n(1− γ)
+

L(B +D)α2

n(1− σ2)(1− γ)
· (4.11)

Proof. By Eq. (4.5) and since ȳ(k) = (1/n)
∑
i∈V
gi(xi(k)) we have

x̄(k + 1)− x∗ = x̄(k)− x∗ − α

n

∑
i∈V

gi(xi(k))

= x̄(k)− x∗ − α

n

∑
i∈V

f ′i(x̄(k))− α

n

∑
i∈V

gi(xi(k))− f ′i(x̄(k)),

which by Eq. (4.1) and the triangle inequality implies that

∣∣x̄(k + 1)− x∗
∣∣

≤
∣∣x̄(k)− x∗ − α

n

∑
i∈V

f ′i(x̄(k))
∣∣+

α

n

∑
i∈V

∣∣gi(xi(k))− f ′i(x̄(k))
∣∣.

Using Eq. (4.1) into the preceding equation gives

∣∣x̄(k + 1)− x∗
∣∣ ≤ ∣∣∣∣∣x̄(k)− x∗ − α

n

∑
i∈V

f ′i(x̄(k))

∣∣∣∣∣+
Cα

n
+
Lα

n

∥∥x†(k)
∥∥ .
(4.12)

Observe that the first term of Eq. (4.12) is often used in the analysis of
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the standard gradient method for solving problem (2.1). Thus, by Theorem

2.1.15 in [46] ( [60, Theorem 3.12]) and since α satisfies Eq. (4.10) we have

∣∣x̄(k)− x∗ − α

n

∑
i∈V

f ′i(x̄(k))
∣∣ ≤√1− α 2Lµ

n(µ+ L)

∣∣x̄(k)− x∗
∣∣.

Note that

σ2 <

√
1− α 2Lµ

n(µ+ L)
≤ γ < 1.

Taking the expectation on both sides of Eq. (4.12) and using the previous

relation we obtain

E
[∣∣x̄(k + 1)− x∗

∣∣] ≤ γE
[∣∣x̄(k)− x∗

∣∣]+
Cα

n
+
Lα

n
E
[ ∥∥x†(k)

∥∥ ], (4.13)

which by Eq. (4.7) implies

E
[∣∣x̄(k + 1)− x∗

∣∣]
(4.7)

≤ γE
[∣∣x̄(k)− x∗

∣∣]+
Cα

n

+
Lα

n

(
σk2E

[ ∥∥x†(0)
∥∥ ]+ α

k−1∑
t=0

σk−1−t
2 E

[ ∥∥y†(t)∥∥ ]) .
Using Eq. (4.8) into the last term on the righ-hand side of the preceding

equation and iterating over k further give

E
[∣∣x̄(k + 1)− x∗

∣∣] ≤ E
[∣∣x̄(0)− x∗

∣∣]γk+1 +
Cα

n(1− γ)
+
LαE

[ ∥∥x†(0)
∥∥ ]

n(γ − σ2)
γk+1

+
Lα2

n

k∑
t=0

γk−t
t−1∑
`=0

σt−1−`
2 (Dγ` +B). (4.14)

The last term of on the right-hand side of Eq. (4.14) is bounded by

k∑
t=0

γk−t
t−1∑
`=0

σt−1−`
2 (Dγ` +B) ≤ (D +B)γk

k∑
t=0

γ−t
t−1∑
`=0

σt−1−`
2

≤ D +B

1− σ2

γk
k∑
t=0

γ−t ≤ D +B

(1− γ)(1− σ2)
,
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which substituting into Eq. (4.14) gives us

E
[∣∣x̄(k + 1)− x∗

∣∣] ≤
E
[∣∣x̄(0)− x∗

∣∣]+
LαE

[ ∥∥x†(0)
∥∥ ]

n(γ − σ2)

 γk+1

+
Cα

n(1− γ)
+

L(B +D)α2

n(1− σ2)(1− γ)
·

This concludes our proof.

Remark 1. In Eq. (4.11), the first term on the right-hand side is decaying

linearly to zero. On the other hand, the second and the third terms are

constantly depending on α. Similarly, we have the same observation in Eq.

(4.7). Thus, given any accuracy level ε, one can chose a sufficient small α

such that E
[∣∣xi(k)− x∗

∣∣] < ε for sufficient large k.

4.3.2 Achieving Gradient Reduction with a Linear Rate

We now show that the condition in Eq. (4.8) can be achieved by Algorithm

2. This will complete our analysis for the linear convergence rate of DASG.

Note that the stepsizes considered in this section have to satisfy Eq. (4.10).

We first consider the following sequence of lemmas, where their proofs are

presented in Appendix C. For convenience, we introduce a bit more notation.

β1 =

E
[∣∣x̄(0)− x∗

∣∣]+
E
[ ∥∥x†(0)

∥∥ ]
n(1 + τ)(γ − σ2)

 , β2 =
Lα2

n(θ − σ2)
,

β3 = 2L
(
β1 + E

[ ∥∥x†(0)
∥∥ ]) , β4 = 2C +

2LCα

n(1− σ2)
,

β5 =
2L(β2 + α)

σ2

, β6 =
β5θ

θ − σ2 − Lα
·

(4.15)

In addition, we let θ be defined as

θ =

√
1− α 2Lµ

n(µ+ L)
∈ (σ2, 1).

Lemma 7. Suppose that Assumptions 1, 3, 5, and 6 hold. Let the sequences

{xi(k)} and yi(k)}, for all i ∈ V, be generated by Algorithm 2. Let α satisfy
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Eq. (4.10). Then for some positive constants β1, β2 we have

E
[∥∥x̄(k + 1)1− x∗1

∥∥]+ E
[∥∥x̄(k)1− x∗1

∥∥]
≤ 2β1θ

k +
2Cα

n(1− σ2)
+

2β2

θ

k−1∑
t=0

θk−tE
[ ∥∥y†(t)∥∥ ]. (4.16)

Lemma 8. Suppose that Assumptions 1, 3, 5, and 6 hold. Let the sequences

{xi(k)} and yi(k)}, for all i ∈ V, be generated by Algorithm 2. Let α satisfy

Eq. (4.10). Then for some positive constant β3, β4 we have

E
[∥∥g(x(k + 1))− g(x(k))

∥∥] ≤ β3θ
k + β4 + LαE

[ ∥∥y†(k)
∥∥ ]

+ β5

k−1∑
t=0

θk−tE
[ ∥∥y†(t)∥∥ ]. (4.17)

We now show our main result in this section.

Theorem 9. Suppose that Assumptions 1, 3, 5, and 6 hold. Let the sequences

{xi(k)} and yi(k)}, for all i ∈ V, be generated by Algorithm 2. In addition,

given some constants γ ∈ [θ, 1) and τ > 0, let α satisfy

α ∈
[

(1− γ2)(µ+ L)

2Lµ
,

(1− σ2
2)

2(1 + τ)L

]
· (4.18)

Then, for some positive constants D and B we have

E
[ ∥∥y†(k)

∥∥ ] ≤ Dγk +B. (4.19)

Proof. First, the stepsize α given by Eq. (4.18) also satisfies the condition in

Eq. (4.10), implying θ ∈ (σ2, 1). Second, one can further show that σ2+Lα <

θ < 1 with some proper choice of τ . Third, using Eq. (4.17) gives

E
[ ∥∥y†(k + 1)

∥∥ ]
≤ σ2E

[ ∥∥y†(k)
∥∥ ]+ E

[
‖g(x(k + 1))− g(x(k))1‖

]
(4.17)

≤ σ2E
[ ∥∥y†(k)

∥∥ ]+ β3θ
k + β4

+ LαE
[ ∥∥y†(k)

∥∥ ]+ β5

k−1∑
t=0

θk−tE
[ ∥∥y†(t)∥∥ ]

51



= (σ2 + Lα)E
[ ∥∥y†(k)

∥∥ ]+ β3θ
k + β4 + β5

k−1∑
t=0

θk−tE
[ ∥∥y†(t)∥∥ ]

≤ (σ2 + Lα)k+1E
[ ∥∥y†(0)

∥∥ ]+
β4

1− σ2 − Lα
+ β3

k∑
t=0

(σ2 + Lα)k−tθt

+ β5

k∑
t=0

(σ2 + Lα)k−t
t−1∑
`=0

θt−`E
[ ∥∥y†(`)∥∥ ]

≤ (σ2 + Lα)k+1E
[ ∥∥y†(0)

∥∥ ]+
β4

1− Lα− σ2

+
β3

θ − σ2 − Lα

+ β6

k−1∑
t=0

E
[ ∥∥y†(t)∥∥ ]θk−t, (4.20)

where in the last inequality we use β6 in Eq. (4.15) and

k∑
t=0

(σ2 + Lα)k−t
t−1∑
`=0

θt−`E
[ ∥∥y†(`)∥∥ ]

= (σ2 + Lα)k
k−1∑
`=0

E
[ ∥∥y†(`)∥∥ ]θ−` k∑

t=`+1

(
θ

σ2 + Lα

)t

≤ θ

θ − σ2 − Lα

k−1∑
`=0

E
[ ∥∥y†(`)∥∥ ]θk−`.

Let h(k − 1) =
∑k−1

t=0 θ
−tE
[ ∥∥y†(t)∥∥ ]. Then h(k) is a non-decreasing non-

negative function with h(−1) = 0. In addition, using Eq. (4.20) gives

E
[ ∥∥y†(k + 1)

∥∥ ] ≤ (σ2 + Lα)k+1E
[ ∥∥y†(0)

∥∥ ]
+

β3 + β4

θ − σ2 − Lα
+ β6θ

kh(k − 1). (4.21)

We now provide an upper bound for h(k), i.e., consider

h(k)− h(k − 1) = θ−kE
[ ∥∥y†(k)

∥∥ ],
which by Eq. (4.21) gives

h(k)− h(k − 1)

≤ θ−k
(

(σ2 + Lα)kE
[ ∥∥y†(0)

∥∥ ]+
β3 + β4

θ − σ2 − Lα
+ β6θ

k−1h(k − 2)

)
.
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Since h(k) is non-decreasing and σ2 + Lα < θ, we have from above

h(k) ≤ E
[ ∥∥y†(0)

∥∥ ]+
β3 + β4

θ − σ2 − Lα
θ−k +

(
1 +

β6

θ

)
h(k − 1).

Using the preceding relation, h(−1) = 0, and β6 in Eq. (4.15) we obtain

h(k) ≤ E
[ ∥∥y†(0)

∥∥ ] k−1∑
t=0

(
1 +

β5

θ − σ2 − Lα

)t
+

β3 + β4

θ − σ2 − Lα

k−1∑
t=0

θ−k+t

(
1 +

β5

θ − σ2 − Lα

)t
= E

[ ∥∥y†(0)
∥∥ ] k−1∑

t=0

ηt +
β3 + β4

θ − σ2 − Lα

k−1∑
t=0

θ−k+tηt

=
E
[ ∥∥y†(0)

∥∥ ]
η − 1

ηk +
β3 + β4

θ − σ2 − Lα
θ−k

1− (ηθ)k

1− ηθ
,

where η is defined as

η =

(
1 +

β5

θ − σ2 − Lα

)
.

Note that using Eq. (4.18) and β5 in Eq. (4.15) we can show that

θη = θ

(
1 +

β5

θ − σ2 − Lα

)
< 1.

Thus, using the previous relation into Eq. (4.21) we obtain Eq. (4.19), i.e.,

for some constants B,D and γ ∈ [θ, 1] we obtain

E
[ ∥∥y†(k + 1)

∥∥ ] ≤ Bγk+1 +D.

Remark 2. We note that Eq. (4.18) is well-defined, i.e., as γ goes to 1, the

lower bound goes to 0 while the upper bound is strictly greater than 0.
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4.4 Simulations

In this section, we compare the performance of DASG with distributed stochas-

tic gradient (DSG) methods [26] for solving the linear regression problems,

studied in Section 3.4. For both algorithms, we choose the same stepsizes α,

which satisfy Eq. (4.18). We simulate the two algorithms for two different

sizes of the networks, namely, n = 70, and n = 80. In addition, we consider

the problem when d = 30. We implement DSG and DASG for each network

when the number of iteration is fixed at 400. A plot for the decaying of the

error max
i

E
[
‖xi(k)−x∗‖

]
is shown in Fig. 4.1. As shown in the plots in Fig.

4.1, the performance of DASG is significantly better than DSG.
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Figure 4.1: Performance of DSG and DASG methods over two networks
with 70 and 80 nodes on the top and the bottom plots, respectively.
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Chapter 5

Distributed Mirror Descent Methods

5.1 Motivation and Contribution

In previous chapters, we have studied distributed gradient methods for solv-

ing problem (2.1), where the performance of such methods are restricted to

the Euclidean space. In this chapter, we consider mirror descent methods,

which have been observed to have better performance than gradient descent

methods. The method of Mirror Descent (MD), originally proposed by Ne-

mirovski and Yudin [61], is a primal-dual method for solving constrained

convex optimization problems. MD is fundamentally a (sub)gradient de-

scent (GD) algorithm that exploits the geometry of problems through utiliz-

ing Bregman distances [62]. This method not only generalizes the standard

(GD) method, but also achieves a better convergence rate. In addition, MD is

applicable to optimization problems in Banach spaces where GD is not [60].

Mirror descent methods have been recently shown to be useful for effi-

ciently solving large-scale optimization problems. In general, GD algorithms

are simple to implement and achieve convergence rates, which are indepen-

dent of the problem dimension under the Euclidean norm. However, such

dimension-free convergence rates may not hold under other norms [60]. Al-

ternatively, MD can bypass such limitation of GD, potentially improving its

convergence; see [63] for an early example. Because of these notable benefits,

MD has experienced significant recent attention for applications to large-

scale optimization and machine learning problems in both the continuous

and discrete time settings [64,65], both the deterministic and stochastic sce-

narios [66–69], and both the centralized and distributed contexts [68,70]. MD

has also been applied to a variety of practical problems, e.g., game-theoretic

applications [71], and multi-agent distributed learning problems [72–76].

Most of existing studies have focused on studying the convergence rate of
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MD. In particular, if the stepsizes are properly selected then MD can achieve

a convergence rate of O(1/k) or O(1/
√
k) for strongly convex or convex

objective functions, respectively, [61, 67]. However, the convergence of the

objective function does not, in general, imply the convergence of iterates to

an optimizer.1 To the best of our knowledge, there has not been any prior

work establishing the convergence of these variables to an optimizer. Our

focus, therefore, is to provide such convergence analysis of MD.

We are motiaved by potential applications in Distributed Lagrangian (DL)

methods and Game Theory where the convergence of iterates is required.

Specifically, in the context of DL methods studied in Chapter 7, we can apply

distributed subgradient methods, or preferably distributed MD methods, to

find the solution to the dual problem. In this setting, convergence to the

dual optimizer is needed to complete the convergence analysis of DL methods

[11, 77]. To motivate our study from a game theoretic viewpoint, note that

the dynamics of certain natural learning strategies in routing games have

been identified as the dynamics of centralized mirror descent in the strategy

space of the players; see [78] for an example. In that context, convergence

of the learning dynamics to the Nash equilibria (the minimizers of a convex

potential function of the routing game) is critical; convergence to the optimal

function value is not enough.

Main Contribution. In this chapter, our main contribution is to show

the asymptotic convergence of iterates to an optimizer in MD method for

solving problem (2.1), where the objective function is convex and not neces-

sarily differentiable. For the ease of exposition, we start our analysis with the

centralized setting, which allows us to analyze the convergence of distributed

MD methods. Finally, we provide simulations to show that MD outperforms

GD for solving robust linear regression problems over simplex. The results

in this chapter were presented in [79].

1One can only show the convergence of the sequence of these variables to the optimal
set when this set is bounded.
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5.2 Centralized Mirror Descent

The focus of this section is to study the convergence of centralized MD for

solving problem (2.1), i.e., we consider the following minimization problem

minimize
x∈X

f(x) ,
n∑
i=1

fi(x),

where X ⊆ Rd is a closed convex set. We denote by
〈
x , y

〉
the inner product

of x,y ∈ X . In addition, let ‖ · ‖ be the norm induced by the inner product.

In addition, we denote by ‖ · ‖∗ the dual norm of ‖ · ‖.
In MD, we consider a continuously differentiable µ-strongly convex function

with the induced norm, i.e. given ‖y − x‖2 =
〈
x , y

〉
, ψ satisfies

ψ(y) ≥ ψ(x) +
〈
ψ(x) , y − x

〉
+
µ

2
‖y − x‖2.

Define the Bregman divergence Dψ(·, ·) associated with ψ as

Dψ(y,x) = ψ(y)− ψ(x)−
〈
∇ψ(x) , y − x

〉
, ∀x,y ∈ X . (5.1)

The following two properties of Bregman divergence will be useful for our

analysis given shortly, which are straightforward to derive from Eq. (5.1)

Dψ(y,x)−Dψ(y, z)−Dψ(z,x) =
〈
∇ψ(z)−∇ψ(x) , y − z

〉
(5.2a)

Dψ(z,x) ≥ µ

2
‖z− x‖2 , (5.2b)

for all x, y, z ∈ X . Intuitively, MD iteratively minimizes the local lineariza-

tion of f regularized by Dψ. In particular, MD updates the variable x as

follows:

x(k + 1) = arg min
z∈X

{〈
∇f(x(k)) , z− x(k)

〉
+

1

α(k)
Dψ(z,x(k))

}
, (5.3)

where x is initialized arbitrarily in X . Note that MD achieves a convergence

rate O
(

1/
√
k
)

to the optimal value for α(k) = 1/
√
k [60, 61], i.e.,

f

(
1

k

k∑
t=1

x(t)

)
− f ∗ ≤ O

(
1√
k

)
,
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where f ∗ is the optimal value of f over X . Our interest is the asymptotic

convergence of the problem variables themselves, i.e., whether x(k) converges

to a minimizer for a suitable choice of stepsizes α(k). In the remainder of this

section, we prove such a convergence result for centralized MD, and extend

this to a distributed setting in the next section.

Theorem 10. Suppose that Assumption 7 holds. Let the sequence {x(k)}
be generated by MD in Eq. (5.3). Let {α(k)} be the non-increasing positive

sequence such that

∞∑
k=0

α(k) =∞ and
∞∑
k=0

α2(k) <∞.

Then for some minimizer x∗ of problem (2.1) we have

lim
k→∞

x(k) = x∗.

Proof. Let C =
∑n

i=1Ci where Ci is given in Eq. (2.10). Our proof proceeds

in two steps.

1. We first show that x(k) satisfies

Dψ(z,x(k + 1))−Dψ(z,x(k))

≤ α(k)
〈
∇f(x(k)) , z− x(k)

〉
+
α2(k)L2

2µ
, (5.4)

for each z ∈ X . Indeed, the optimality of x(k + 1) in Eq. (5.3) implies

0 ≤
〈
α(k)∇f(x(k)) +∇1Dψ(x(k + 1),x(k)) , z− x(k + 1)

〉
, (5.5)

where ∇1Dψ denotes the gradient of Dψ with respect to the first coordi-

nate. The properties of the divergence in Eqs. (5.2a) and (5.2b) yield〈
∇1Dψ(x(k + 1),x(k)) , z− x(k + 1)

〉
=
〈
∇ψ(x(k + 1))−∇ψ(x(k)) , z− x(k + 1)

〉
(5.2a)
= Dψ(z,x(k))−Dψ(z,x(k + 1))−Dψ(x(k),x(k + 1))

(5.2b)

≤ Dψ(z,x(k))−Dψ(z,x(k + 1))− µ

2
‖x(k + 1)− x(k)‖2 .
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Substituting the above relation in Eq. (5.5), we get

Dψ(z,x(k + 1))−Dψ(z,x(k))

≤ α(k)
〈
∇f(x(k)) , z− x(k + 1)

〉
− µ

2
‖x(k + 1)− x(k)‖2

= α(k)
〈
∇f(x(k)) , z− x(k)

〉
− µ

2
‖x(k + 1)− x(k)‖2

+ α(k)
〈
∇f(x(k)) , x(k)− x(k + 1)

〉
. (5.6)

By the Cauchy-Schwarz inequality, we can upper bound the last term on

the right-hand side of Eq. (5.6) as〈
α(k)∇f(x(k)) , x(k)− x(k + 1)

〉
≤ α2(k)

2µ

∥∥∇f(x(k))
∥∥2

+
µ

2
‖x(k + 1)− x(k)‖2 .

Using the preceding relation into Eq. (5.6) we obtain Eq. (5.4), i.e.,

Dψ(z,x(k + 1))−Dψ(z,x(k))

≤ α(k)
〈
∇f(x(k)) , z− x(k)

〉
+
α2(k)

2µ
‖∇f(x(k))‖2

∗

≤ α(k)
〈
∇f(x(k)) , z− x(k)

〉
+
C2α2(k)

2µ
,

where the last inequality is due to the Lipschitz continuity of fi.

2. We now show the convergence of x(k) through utilizing Eq. (5.4). Let x∗

be an optimizer of f over X . Then, the convexity of f implies〈
∇f(x(k)) , x∗ − x(k)

〉
≤ f ∗ − f(x(k)).

Using the above relation in Eq. (5.4) with z = x∗ gives

Dψ(x∗,x(k + 1)) ≤ Dψ(x∗,x(k))− α(k)
(
f(x(k))− f ∗

)
+
C2α2(k)

2µ
· (5.7)

Let V (k) be defined as

V (k) = Dψ(x∗,x(k)) +
C2

2µ

∞∑
t=k

α2(t).
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First, due to the square summability of α(k) we have V (0) is bounded.

Adding C2

2µ

∑∞
t=k+1 α

2(t) to both sides of Eq. (5.7) we obtain

V (k + 1) ≤ V (k),

implying the sequence {V (k)} is non-increasing and bounded. Thus we

have V (k) is convergent, which implies that Dψ(x∗,x(k)) is convergent

for every solution x∗ of problem (2.1). Second, summing both sides of Eq.

(5.7) over k from 0 to K, we get

Dψ(x∗,x(K + 1)) +
K∑
k=0

α(k)
(
f(x(k))− f ∗

)
≤ Dψ(x∗,x(0)) +

C2

2µ

K∑
k=0

α2(k),

which by letting K →∞ and using the square summability of α(k) gives

∞∑
k=0

α(k)
[
f(x(k))− f ∗

]
<∞.

The non-summability of α(k) further yields

lim inf
k→∞

f(x(k)) = f ∗.

The convergence of Dψ(x∗,x(k)) for each x∗ implies the boundedness of

x(k). Let {x(k`)} be the bounded subsequence of x(k) such that

lim
k`→∞

f(x(k`)) = lim inf
k→∞

f(x(k)) = f ∗. (5.8)

This bounded sequence {x(k`)} has a convergent subsequence. By Eq.

(5.8) and the continuity of f , this subsequence converges to a point in

X ∗. Call this point x∗. Since Dψ(x∗,x(k)) converges we get

lim
k→∞

Dψ(x∗,x(k)) = 0,

implying lim
k→∞

x(k) = x∗ due to Eq. (5.2b). This completes our proof.
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5.3 Distributed Mirror Descent

In this section, we consider a distributed variant of MD for solving problem

(2.1) over G = (V , E). In particular, each node i maintains a local copy xi of

x∗, a solution of problem (2.1). The nodes then update their variables as

vi(k) =
∑
j∈Ni

aijxj(k)

xi(k + 1) = arg min
z∈X

{〈
∇f(vi(k)) , z− vi(k)

〉
+

1

α(k)
Dψ(z,vi(k))

}
,

(5.9)

where A = [aij] satisfies Assumption 3. As mentioned, our focus is to show

the asymptotic convergence of the iterates in the above distributed mirror

descent (DMD) algorithm to a common optimizer x∗ of f over X .

Theorem 11. Suppose that Assumptions 1, 3, and 7 hold. Let the sequence

{xi(k)}, for all i ∈ V, be generated by DMD in Eq. (5.9). Let {α(k)} be the

non-increasing positive sequence of stepsizes with α(0) = 1 such that

∞∑
k=0

α(k) =∞ and
∞∑
k=0

α2(k) <∞.

In addition, we assume that Dψ(x,y) is convex on y for fixed x. Then for

some minimizer x∗ of problem (2.1) we get

lim
k→∞

xi(k) = x∗, for all i ∈ V .

Proof. By the optimality of xi(k + 1) in Eq. (5.9) we get〈
α(k)∇fi(vi(k)) +∇1Dψ(xi(k + 1),vi(k)) , z− xi(k + 1)

〉
≥ 0, (5.10)

for every z ∈ X . The property of Bregman divergence in Eq. (5.2a) yields〈
∇1Dψ(xi(k + 1),vi(k)) , z− xi(k + 1)

〉
=
〈
∇ψ(xi(k + 1))−∇ψ(vk) , z− xi(k + 1)

〉
= Dψ(z,vi(k))−Dψ(z,xi(k + 1))−Dψ(vi(k),xi(k + 1)).

(5.11)

61



Substituting the above equality into Eq. (5.10) and summing over i ∈ V give∑
i∈V

Sik(z) +
∑
i∈V

T ik(z) ≥ 0, (5.12)

where for each z ∈ X

Sik(z) :=
〈
α(k)∇fi(vi(k)) , z− xi(k + 1)

〉
T ik(z) := Dψ(z,vi(k))−Dψ(z,xi(k + 1))−Dψ(xi(k + 1),vi(k)).

We provide bounds on each term above separately.

1. We first consider
∑

i∈V S
i
k(z)∑

i∈V

Sik(z) =
∑
i∈V

〈
α(k)∇fi(vi(k)) , z− vi(k)

〉
+
∑
i∈V

〈
α(k)∇fi(vi(k)) , vi(k)− xi(k + 1)

〉
.

First, using the convexity and Lipschitz continuity of fi we get〈
∇fi(vi(k)) , z− vi(k)

〉
≤ fi(z)− fi(vi(k))

= fi(z)− fi(x̄(k)) + fi(x̄(k))− fi(vi(k))

≤ fi(z)− fi(x̄(k)) +
〈
∇fi(vi(k)), x̄(k)− vi(k)

〉
≤ fi(z)− fi(x̄(k)) + Ci ‖x̄(k)− vi(k)‖ . (5.13)

Second, by the Cauchy-Schwarz inequality we have〈
α(k)∇fi(vi(k)) , vi(k)− xi(k + 1)

〉
≤ α2(k)

2µ

∥∥∇fi(vi(k))
∥∥2

∗ +
µ

2
‖vi(k)− xi(k + 1)‖2

≤ α2(k)C2
i

2µ
+
µ

2
‖vi(k)− xi(k + 1)‖2 . (5.14)

Third, the double stochasticity of A and the convexity of ‖·‖ gives∑
i∈V

Ci ‖x̄(k)− vi(k)‖ ≤
∑
i∈V

Ci ‖x̄(k)− xi(k)‖ .
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Combining the preceding equation with Eqs. (5.13) and (5.14) we obtain∑
i∈V

Sik(z) ≤ α(k)
[
f(z)− f(x̄(k))

]
+ α(k)

∑
i∈V

Ci ‖x̄(k)− vi(k)‖

+
C2

2µ
α2(k) +

µ

2

∑
i∈V

‖vi(k)− xi(k + 1)‖2

≤ α(k)
[
f(z)− f(x̄(k))

]
+ α(k)

∑
i∈V

Ci ‖x̄(k)− xi(k)‖

+
C2

2µ
α2(k) +

µ

2

∑
i∈V

‖vi(k)− xi(k + 1)‖2 . (5.15)

2. Second, we provied an upper bound for
∑

i∈V T
i
k(z)∑

i∈V

T ik(z) =
∑
i∈V

[
Dψ(z,vi(k))−Dψ(z,xi(k + 1))

]
−
∑
i∈V

Dψ(xi(k + 1),vi(k)).

Utilizing the convexity of Dψ in the second argument gives

∑
i∈V

Dψ(z,vi(k)) =
∑
i∈V

Dψ

(
z,
∑
j∈Ni

aijxi(k)

)
≤
∑
i∈V

Dψ (z,xi(k)) ,

which when combining with Eq. (5.2b) gives∑
i∈V

T ik(z) ≤
∑
i∈V

[
Dψ(z,xi(k))−Dψ(z,xi(k + 1))

]
− µ

2

∑
i∈V

‖vi(k)− xi(k + 1)‖2 . (5.16)

We now utilize the bounds on
∑

i∈V S
i
k(z) and

∑
i∈V T

i
k(z) to show the con-

vergence of xi(k), for all i ∈ V . Let x∗ be an optimizer of f over X . Applying

the bounds in Eqs. (5.15) and (5.16) to Eq. (5.12) with z = x∗ gives∑
i∈V

[
Dψ(x∗,xi(k + 1))−Dψ(x∗,xi(k))

]
+ α(k)

(
f(x̄(k))− f(x∗)

)
≤ α(k)

∑
i∈V

Ci ‖x̄(k)− xi(k)‖+
C2

2µ
α2(k)·
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Summing the above over k = 0, . . . , K, for some K ≥ 0 we obtain

∑
i∈V

[
Dψ(x∗,xi(K + 1))−Dψ(x∗,xi(0))

]
+

K∑
k=0

α(k)
(
f(x̄(k))− f(x∗)

)
≤

K∑
k=0

∑
i∈V

α(k)Ci ‖x̄(k)− xi(k)‖+
C2

2µ

K∑
k=0

α2(k). (5.17)

We mimic the proof of Theorem 10 to complete the derivation. We first pro-

vide a bound on the right-hand side of Eq. (5.17). For convenience, consider

W := I− 1

n
11

ᵀ ∈ Rn×n and X =


xT1
...

xTn

 ∈ Rn×d·

By the Cauchy-Schwarz inequality, we then have∑
i∈V

Ci ‖x̄(k)− xi(k)‖ ≤ C ‖WX(k)‖F , (5.18)

where ‖·‖F denotes the Frobenius norm. Next, we consider

‖WX(k + 1)‖F = ‖W (AX(k) + X(k + 1)−V(k))‖F
≤ ‖AWX(k)‖F + ‖W (X(k + 1)−V(k))‖F
≤ σ2 ‖WX(k)‖F + ‖X(k + 1)−V(k)‖F , (5.19)

where the last inequality is due to Eq. (2.5). To bound each term in Eq.

(5.19), we utilize Eqs. (5.10) and (5.11) with z = vi(k) to obtain〈
α(k)∇fi(vi(k)) , vi(k)− xi(k + 1)

〉
≥
〈
∇ψ(vi(k))−∇ψ(xi(k + 1)) , vi(k)− xi(k + 1)

〉
. (5.20)

Since fi is Ci-Lipschitz we have and ψ is µ-strongly convex, we have〈
α(k)∇fi(vi(k)) , vi(k)− xi(k + 1)

〉
≤ α(k)Ci ‖vi(k)− xi(k + 1)‖〈

∇ψ(vi(k))−∇ψ(xi(k + 1)) , vi(k)− xi(k + 1)
〉
≥ µ ‖vi(k)− xi(k + 1)‖2 ,
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that together with Eq. (5.20) gives

‖vi(k)− xi(k + 1)‖ ≤ Ciα(k)

µ
·

Summing the above over i ∈ V gives a bound of Eq. (5.19), i.e.,

‖WX(k + 1)‖F ≤ σ2 ‖WX(k)‖F +
C

µ
α(k)· (5.21)

Iterating the above inequality gives

‖WX(k)‖F ≤ σk2 ‖WX(0)‖F +
C

µ

k−1∑
`=0

α(`)σk−`−1
2 ,

which further yields

K∑
k=0

α(k) ‖WX(k)‖F

≤
K∑
k=0

α(k)σk2 ‖X(0)‖F +
C

µ

K∑
k=0

α(k)
k−1∑
`=0

α(`)σk−`−1
2 . (5.22)

Since α(k) is non-increasing with α(0) = 1 and σ2 < 1 we get

K∑
k=0

α(k)σk2 ≤
1

1− σ2

·

Using the preceding inequality in Eq. (5.22) we have

K∑
k=0

∑
i∈V

α(k) ‖x̄(k)− xi(k)‖

≤ ‖X(0)‖F
1− σ2

+
C

µ

K∑
k=0

k−1∑
`=0

α2(`)σk−`−1
2

=
‖X(0)‖F
1− σ2

+
C

µ

K−1∑
`=0

α2(`)
K∑

k=`+1

σk−`−1
2

≤ ‖X(0)‖F
1− σ2

+
C
∑K−1

k=0 α
2(k)

µ(1− σ2)
· (5.23)
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Utilizing Eq. (5.23) into Eq. (5.17) yields

∑
i∈V

[
Dψ(x∗,xi(K + 1))−Dψ(x∗,xi(0))

]
+

K∑
k=0

α(k)[f(x̄(k))− f(x∗)]

≤ ‖X(0)‖F
1− σ2

+
C

µ(1− σ2)

K∑
k=0

α2(k) +
C2

2µ

K∑
k=0

α2(k).

Repeating the same argument on the preceding relation as in the proof of

Theorem 10 we achieve

lim
k→∞

xi(k) = x∗, for all i ∈ V .

Remark. Note that the assumption on the convexity of Dψ(x,y) over y

for fixed x is crucial to our proof. A sufficient condition is derived in [80],

that requires ψ to satisfy Hψ(x) and Hψ(x) +∇Hψ(x)(x− y) being positive

semi-definite, for all x,y ∈ X , where Hψ is the Hessian of ψ.

5.4 Simulations

Theorems 10 and 11 guarantee the convergence of the iterates to the opti-

mizer, but do not provide convergence rates with non-summable but square

summable stepsizes. Given the lack of rates, we empirically illustrate that

mirror descent – both in centralized and distributed settings – often outper-

forms vanilla subgradient methods on simple examples with our stepsizes.

Consider the following robust linear regression problem over a simplex.

minimize
x∈Rd

‖Gx− h‖1 , subject to 1
ᵀ
x = 1, x ≥ 0. (5.24)

Robust regression fits a linear model to the data G ∈ RN×d,h ∈ RN , which

are chosen uniformly at random from [0, 1] in this simulation. It differs from

ordinary least squares in that the objective function penalizes the entry-wise

absolute deviation from the linear fit rather than the squared residue, and

is known to be robust to outliers [81]. Consider two different Bregman di-

vergences on the d-dimensional simplex X defined by the Euclidean distance
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ψ1(x) := 1
2
‖x‖2

2, and negative entropy ψ2(x) :=
∑d

j=1 xj log xj.

Centralized mirror descent with Dψ1 amounts to a projected subgradient

algorithm where each iteration is a subgradient step followed by a projection

on X . With Dψ2 , the updates define an exponentiated gradient method, also

known as the entropic mirror descent algorithm (cf. [62,82])

xj(k + 1) :=
xj(k) exp

(
−α(k)f ′j(x(k))

)∑d
`=1 x`(k)exp

(
− α(k)f ′`(x(k))

) ,
where the objective in problem (5.24) is f(x), and f ′j(x) is the j-th entries

of the gradient of f(x)

∇f(x) =
n∑
j=1

sgn ([gi]
Tx− hi)gi.

Here, sgn (·) denotes the sign of the argument, and [gi]
T is the i-th row of G.

For solving problem (5.24), negative entropy being a ‘natural’ function over

simplex, entropic mirror descent enjoys faster convergence than projected

subgradient descent, as shown in Fig. 5.1 using stepsizes α(k) = 1
k+1

.

Next, consider the case where each node i ∈ V in a graph only knows gi

and hi, and their goal is to cooperatively solve the problem in Eq. (5.24). The

plots in Fig. 5.2 show that the distributed variant of entropic mirror descent

outperforms the projected subgradient method with stepsizes α(k) = 1
k+1

.

We choose A as the Metropolis-Hastings matrix corresponding to graphs G,

where each G is generated by using the same steps described in Section 3.4.

Centralized algorithms converge faster than distributed algorithms; however,

the denser the graph, the faster the convergence is of the distributed algo-

rithms.
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Figure 5.1: The convergence behavior of projected subgradient method
( ) and entropic mirror descent ( ) for solving problem (5.24).
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Figure 5.2: The convergence behavior of distributed projected subgradient
method ( ) and distributed entropic mirror descent ( ) over a network
with n = 100. Here, the top plot simulates for a graph with 939 edges,
while the bottom plot simulates for a denser graph with 2678 edges.
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Chapter 6

Distributed Random Projections

6.1 Problem Statement and Motivating Applications

In this chapter, we study problem (2.1) where the objective function and

the constraint set are composed of local functions and local constraint sets,

respectively. Due to the large number of these functions and constraint sets,

we assume that they are distributed over a network of processors. Moreover,

the communication structure between the processors is modeled by a star

graph G = (V , E); see Fig. 1.1. For this structure, we are interested in the

master-worker model, where there are n worker nodes connected to a master.

In particular, associated with each worker i are a convex function fi : Rd → R
and a convex constraint set Xi ⊂ Rd. The goal of the master is to coordinate

these nodes to solve the following problem

minimize
n∑
i=1

fi(x) (6.1a)

such that x ∈ X ,
n
∩
i=1
Xi ⊂ Rd. (6.1b)

We further consider the case where the local constraint set Xi at the node i

is also expressed as an intersection of a large number of compact sets, i.e.,

Xi = ∩
j∈Ii
Xij, for all i = 1, . . . , n, (6.2)

where each Xij is assumed to have simple structure so that it is easy to im-

plement projection. Since |Ii| is large, projecting onto Xi is costly, therefore,

it is necessary to consider projections onto individual sets Xij.
A concrete motivating example for this problem is the distributed version of

the well-known SVM problem [2] solved over a network of processors. SVM is

one of the most popular methods for solving non-separable data classification
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problems in statistical learning theory. The goal of this problem is to find

a hyper-plane with the largest margin to separate a collection of datasets.

Mathematically, SVM can be formulated as the optimization problem

minimize
w, b, ξi

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t.
vi

(
wTui + b

)
≥ 1− ξi

ξi ≥ 0

 ∀i = 1, . . . , n,

where {(ui, vi)} are data points with very high dimension stored at processor

i. The slack variables ξi are used to handle the non-separable data. The goal

is to find a hyper-plane represented by the normal vector w such that it has

the largest margin (i.e., 1/‖w‖) on this dataset.

In solving problems (6.1), projected stochastic gradient descent (SGD) is a

natural choice. However, such an approach would require one to project the

result of each gradient descent step onto the feasible set, which can be com-

putationally prohibitive. Therefore, there is a growing body of work which

considers projections onto a random subset of the convex sets, see for ex-

ample [83–86]. In [83–85], the focus is on centralized approaches, while [86]

considers a fully distributed approach based on the so-called consensus al-

gorithm. However, the consensus-based approach is not directly relevant for

machine learning applications, since all processors that perform the com-

putations are assumed to be peers, with no master node coordinating their

actions. Here, we consider a distributed version where there is a master node

(often called a parameter server) and a collection of other processors which

are called workers. This model is a special case of the consensus model con-

sidered in [86]; however the simplicity of the parameter-server model allows

one to derive convergence rates for the algorithm.

Main Contributions. The main contribution of this chapter is to derive

the convergence rate of SGD with distributed random projections under the

parameter-server model. In particular, we study the rate of convergence for

two cases, namely, when the objective functions are convex and strongly

convex, respectively. We provide an explicit formula for the convergence rate

of the methods when the stepsizes are constant and time-varying. Under

a mild regularity condition on the convex sets, we show that the rate of

convergence of distributed SGD is unaffected by the presence of constraints,
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except for a factor which captures the regularity conditions. Since we perform

random projections at each step, it is possible that the decision variables do

not satisfy the constraints at each step of the SGD iteration. Our convergence

rate results indicate that both the rate of convergence of the objective to its

optimal value and the rate of convergence of the decision variables to the

constraint set are the same.

In practice, the distributed algorithm when applied to real datasets can be

implemented in multiple ways. In particular, each worker can select a subset

of the data available to it and choose to implement each step of the algorithm

on the chosen subset of data. Such a chosen subset is called a minibatch. In

the simulations section, we study the impact of the number of workers and

the mini-batch size on SGD with random projections.

Relationship to Prior Work. Our analysis is strongly motivated by

similar analysis in [84,86]. The results in [84] are for the centralized case and

the analysis in [86] is for a more general distributed consensus algorithm.

However their assumptions on the (sub)gradient are different, and therefore,

one cannot reach the main conclusion of our results from their results, i.e.,

that the convergence rates with and without projections in the parameter

server model are essentially the same.

6.2 Distributed Random Projection Methods

To solve problem (6.1) we study distributed random projection methods un-

der the parameter-server model, formally stated in Algorithm 3. Specifically,

the master maintains a global variable x̄ ∈ Rd used to estimate the mini-

mizer x∗ of problem (6.1), while each node maintains a variable xi ∈ Rd.

At each iteration k ≥ 0, each node receives x̄(k) from the master and up-

dates xi(k + 1) by a local stochastic subgradient step followed by a random

projection step, as given in Eq. (6.3). In Eq. (6.3), gi(x̄(k),ωi(k)) is an

unbiased estimate of node i’s subgradient where ωi is a random vector, i.e.,

Eωi [gi(x̄(k),ωi(k))] ∈ ∂fi(x̄(k)), the subdifferential of fi at x̄(k). In addition,

at each iteration node i only projects its value to one subset Xiζi(k) chosen

randomly from its constraint set Ii, i.e., ζi is a random variable taking values

in Ii. The nodes then send their values xi(k + 1) to the master to update

x̄(k + 1) by taking the average of xi(k + 1), as given in Eq. (6.4).

71



Algorithm 3 Distributed Random Projection Method

1. Intialize: x̄(0) = x0 ∈ Rd and ε > 0
2. Repeat: For k ≥ 0

Each worker i receives x̄(k) and implements

xi(k + 1)=PXiζi(k)
[
x̄(k)− α(k)gi(x̄(k),ωi(k))

]
. (6.3)

The master receives xi(k + 1) and updates x̄ as

x̄(k + 1) =
1

n

n∑
i=1

xi(k + 1). (6.4)

Until: ‖x̄(k)− x∗‖ ≤ ε.

6.3 Main Results

In this section we present the convergence analysis of Algorithm 3 when the

functions fi are convex and strongly convex. Our focus is to establish the rate

of its convergence. In particular, our main result basically states that under

a mild regularity condition (due to Bauschke and Borwein [87, Definition

5.6], [88, (Definition 4.2.1]) on the constraint sets, the rate of convergence

of distributed SGD with distributed random projections is the same as that

of distributed SGD applied to a problem with no constraints, except for

the appearance of a factor which captures the regularity assumption. When

removing the constraint sets, our results reduce to those for distributed SGD.

We start our analysis by stating the following assumptions, which are

necessary to our later analysis.

Assumption 8. For all ∈ V and all k ≥ 0 the sequences of random vec-

tors {ωi(k)} and random variables {ζi(k)} are independent and identically

distributed. In addition, P{ζi(k) = j} > 0, for all j ∈ Ii and all i ∈ V.

The condition P{ζi(k) = j} > 0, for all j ∈ Ii, implies that each subset

Xij of Xi is chosen infinitely often.

Assumption 9. For all i ∈ V there exists positive number ci such that

gi(x,ωi) satisfies

Eωi

[
‖gi(x,ωi)‖2

]
≤ c2

i + ‖∇fi(x)‖2. (6.5)
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We note that Assumption 9 is standard in the literature of stochastic gradi-

ent descent, i.e., it states that the variance of gi(x,ωi) is mildly restricted [89].

Let F(k) denote the filtration that contains all the information generated

by Algorithm 3 up to time k, i.e., all the variables x̄(t),xi(t),ωi(t), ζi(t) and

so forth for t = 0, . . . , k. We assume the following regularity condition of X .

Assumption 10. For all i ∈ V there exists a positive constant D > 0 such

that for all x ∈ Rd

dist2(x,X ) ≤ Dmax
i∈V

Eζi(k)

[
dist2(x,Xiζi(k)) | F(k)

]
. (6.6)

Assumption 10, can be referred as the linear regularity condition of convex

sets and first introduced by Bauschke and Borwein, is essential in our anal-

ysis. It basically states that the distance of a point x to the feasible set X
can be upper-bouneded by its distance to individual sets Xi. Assumption 10

is quite general, i.e., it holds when the set X has a nonempty interior [90] or

the sets Xi are half spaces [91], for example, the latter holds in the example

of SVMs. Finally, this assumption has been recently considered in [83–86].

Since the sets Xij are compact, Xi is compact. Hence, by Assumption 9,

there exists a positive constant Ci such that

E
[
‖gi(x,ωi(k))‖2

]
≤ C2

i , ∀x ∈ Rd. (6.7)

For convenience, the local update in Eq. (6.3) can be rewritten as

vi(k) = x̄(k)− α(k)gi(x̄(k),ωi(k)) (6.8)

xi(k + 1) = PXiζi(k)
[
vi(k)

]
. (6.9)

Finally, we denote by x∗ a solution of problem (6.1), and consider a bit more

notation

r̄(k) = x̄(k)− x∗, e(k) = x̄(k)− PX [x̄(k)]

f(x) =
n∑
i=1

fi(x), f ∗ =
n∑
i=1

fi(x
∗), C =

∑
i=1

Ci, µ =
n∑
i=1

µi. (6.10)

Here ‖e(k)‖ denotes the feasibility violation of x̄(k) at time k.

We now present the main result of this section, which is the convergence
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rate of Algorithm 3. In particular, we provide the rate of convergence when

fi are convex and strongly convex as well as when the stepsizes α are constant

and time-varying. To do this, we first state two preliminary results in the

following lemmas. In the first lemma, we use the property of the projection

step in Eq. (6.9) to upper bound the distance ‖x̄(k+1)−x∗‖2 by the average

of ‖v(k)−x∗‖2 and the feasibility violation e(k) of x̄(k). The second lemma

provides an upper bound on the distance ‖v(k) − x∗‖2 via Eq. (6.8). Their

proofs are presented in Appendix D.

Lemma 9. Suppose that Assumptions 8–10 hold. Let the sequences {xi(k)},
{v(k)}, and {x̄(k)} satisfy Eqs. (6.9), (6.8), and (6.4), for all i ∈ V. Denote

β1 = 8C2/Dn2. Then,

E
[
‖r̄(k + 1)‖2

]
≤ 1

n

n∑
i=1

E
[
‖v(k)− x∗‖2

]
+ β1α

2(k)−
E
[
‖e(k)‖2

]
2Dn

· (6.11)

Lemma 10. Suppose that Assumptions 8–10 hold. Let the sequences {xi(k)},
{v(k)}, and {x̄(k)} satisfy Eqs. (6.9), (6.8), and (6.4), for all i ∈ V. Let

y = PX
[
x̄(k)

]
∈ X and denote β2 = (8Dn+ 1)C2. Then,

1. If Assumption 5 holds then

1

n

n∑
i=1

E
[
‖v(k)− x∗‖2

]
≤
(

1− µα

n

)
E
[
‖r̄(k)‖2

]
+ β2α

2(k)

−
2α(k)E

[
f(y)− f ∗

]
n

+
E
[
‖e(k)‖2

]
4Dn

· (6.12)

2. If the functions fi are convex for all i ∈ V then

1

n

n∑
i=1

E
[
‖v(k)− x∗‖2

]
≤ E

[
‖r̄(k)‖2

]
+ β2α

2(k)

− 2α(k)

n
E
[
f(y)− f ∗

]
+

E
[
‖e(k)‖2

]
4Dn

· (6.13)

We are now ready to study the convergence rate of Algorithm 3. As noted

previously, our results basically states that under Assumption 10 the rate of

convergence of Algorithm 3 is the same as that of distributed SGD applied to

a problem with no constraints, except for the scaling D. The following two
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theorems present these results, where their analyses are based on coupling

the results in Lemmas 9 and 10. The key idea is to show that the random

projection at each node does not cause the variables to oscillate between the

local sets, but rather pushes them toward the global feasible set X . We first

derive the convergence rate of Algorithm 3 when the functions fi are strongly

convex under two conditions, namely, constant and time-varying stepsizes.

Theorem 12. Suppose that Assumptions 5 and 8–10 hold. Let the sequences

{xi(k)}, {v(k)}, and {x̄(k)} satisfy Eqs. (6.9), (6.8), and (6.4), for all i ∈ V.

Let β = β1 + β2 where β1 = 8C2/Dn2 and β2 = (8Dn+ 1)C2. Then

1. Consider α(k) = α for all k ≥ 0 where α ∈ (0, n/µ). In addition, let

γ = (1− µα/n) ∈ (0, 1). Then we have

E
[
‖r̄(k)‖2

]
≤ γkE[‖r̄(0)‖2] +

nβα

µ
· (6.14)

2. Let α(k) = n/µ(k + 1), then we have for k ≥ 1

E
[
‖r̄(k + 1)‖2

]
≤

4µ2E
[
‖r̄(1)‖2

]
+ n2β ln(k + 1)

4µ2(k + 1)
· (6.15)

Proof. We proceed the proof of Theorem 12 in two steps as follows:

1. Since each fi is strongly convex, µ > 0. Then we have

γ = 1− µα

n
∈ (0, 1).

By Eq. (6.11) with α(k) = α

E
[
‖r̄(k + 1)‖2

]
≤ 1

n

n∑
i=1

E
[
‖vi(k)− x∗‖2

]
+ β1α

2 − 1

2Dn
E
[
‖e(k)‖2

]
,

which by Eq. (6.12) with y = PX [x̄(k)] and β = β1 + β2 implies

E
[
‖r̄(k + 1)‖2

]
≤ γE

[
‖r̄(k)‖2

]
+ β2α

2 − 2α

n
E
[
f(PX [x̄(k)])− f ∗

]
+

1

4n
E
[
‖e(k)‖2

]
+ β1α

2 − 1

2n
E
[
‖e(k)‖2

]
≤ γE

[
‖r̄(k)‖2

]
+ βα2 − 1

4n
E
[
‖e(k)‖2

]
, (6.16)
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where we use the fact that f (PX [x̄(k)]) − f ∗ ≥ 0. Recursively updating

Eq. (6.16) we obtain Eq. (6.14), i.e.,

1

4n
E
[
‖r̄(k)‖2

]
≤ γE

[
‖r̄(k)‖2

]
+ βα2 ≤ γk+1E

[
‖r̄(0)‖2

]
+ βα2

k∑
t=0

γk−t

≤ γk+1E
[
‖r̄(0)‖2

]
+

βα2

1− γ
≤
(

1− µα

n

)k
E
[
‖r̄(0)‖2

]
+
nβα

µ
·

2. We now consider α(k) = n/µ(k + 1) for all k ≥ 0. Then by Eq. (6.16)

with γ = 1− µα(k)/n = 1− 1/(k + 1) we have

E
[
‖r̄(k + 1)‖2

]
≤ k

k + 1
E
[
‖r̄(k)‖2

]
+

n2β

4µ2(k + 1)2
.

Multiplying both sides of the preceding relation by k + 1

(k + 1)E
[
‖r̄(k + 1)‖2

]
≤ kE

[
‖r̄(k)‖2

]
+

n2β

4µ2(k + 1)
,

which when summing both sides over k from 1 to K for some K ≥ 1 gives

(K + 1)E
[
‖r̄(K + 1)‖2

]
≤ E

[
‖r̄(1)‖2

]
+
n2β ln(K + 1)

4µ2
, (6.17)

where we use the following condition

K∑
k=1

1

k + 1
≤ 1

2
+

∫ K

1

dt

t+ 1
≤ ln(K + 1).

Dividing both sides of Eq. (6.17) by K + 1 we have

E
[
‖r̄(K + 1)‖2

]
≤

4µ2E
[
‖r̄(1)‖2

]
+ n2β ln(K + 1)

4µ2(K + 1)
·

We now derive the rate of Algorithm 3 when the functions fi are convex.

Given any sequence {x(k)} we denote by x̂(k) its time α-weighted average

x̂(k) =

∑k−1
t=0 α(t)x(t)∑k−1
t=0 α(t)

· (6.18)
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Theorem 13. Suppose that Assumptions 8–10 hold. Let the sequences

{xi(k)}, {v(k)}, and {x̄(k)} satisfy Eqs. (6.9), (6.8), and (6.4), for all i ∈ V.

Let β = β1 + β2 where β1 = 8C2/Dn2 and β2 = (8Dn+ 1)C2.

1. Let α be some positive constant. Then for all k ≥ 0

E
[
‖ê(k)‖2

]
≤

4DnE
[
‖r̄(0)‖2

]
k

+ 4Dnβα2 (6.19a)

E
[∣∣f(ˆ̄x(k))− f ∗

∣∣] ≤ nE
[
‖r̄(0)‖2

]
2αk

+
(nβ + 4DC2)α

2
· (6.19b)

2. Let α(k) = 1/
√
k + 1. Then for all k ≥ 0

E
[
‖ê(k)‖2

]
≤

4DnE
[
‖r̄(0)‖2

]
+ 4Dnβ(ln(k) + 1)
√
k + 1

(6.20a)

E
[∣∣f(ˆ̄x(k))− f ∗

∣∣] ≤ nE
[
‖r̄(0)‖2

]
2
√
k + 1

+
(nβ + 4DC2) (ln(k) + 1)

2
√
k + 1

· (6.20b)

Proof. We proceed the proof of this theorem as follows:

1. Denote by y(k) = PX
[
x̄(k)

]
and let α(k) = α. Using Eqs. (6.11) and

(6.13) gives

E
[
‖r̄(k + 1)‖2

]
≤ E

[
‖r̄(k)‖2

]
+ βα2

− 1

4Dn
E
[
‖e(k)‖2

]
− 2α

n
E
[
f(y(k))− f ∗

]
,

which when reorganizing both sides implies

1

4Dn
E
[
‖e(k)‖2

]
+

2α

n
E
[
f(y(k))− f ∗

]
≤
(
E
[
‖r̄(k)‖2

]
− E

[
‖r̄(k + 1)‖2

])
+ βα2. (6.21)

Summing Eq. (6.21) over k from 0 to K − 1 for some K ≥ 1 and since

f ∗ ≤ f(y(k)) gives

1

4Dn

K−1∑
k=0

E
[
‖e(k)‖2

]
≤ E

[
‖r̄(0)‖2

]
+ βα2K.
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Dividing both sides of above by K and using the Jensen inequality give

E
[
‖ê(K)‖2

]
≤

4DnE
[
‖r̄(0)‖2

]
K

+ 4Dnβα2,

which is Eq. (6.19a). In addition, by the triangle inequality consider

E
[∣∣f(x̄(k))− f ∗

∣∣] ≤ E
[∣∣f(x̄(k))− f(y(k))

∣∣]+ E
[∣∣f(y(k))− f ∗

∣∣]
(6.7)

≤ CE
[
‖e(k)‖

]
+ E

[∣∣f(y(k))− f ∗
∣∣]. (6.22)

The preceding relation implies that

2α

n
E
[∣∣f(x̄(k))− f ∗

∣∣] ≤ 2Cα

n
E[‖e(k)‖] +

2α

n
E[|f(y(k))− f ∗

∣∣]
≤ 1

4Dn
E
[
‖e(k)‖2

]
+

4DC2α2

n
+

2α

n
E
[∣∣f(y(k))− f ∗

∣∣]
(6.21)

≤

(
E
[
‖r̄(k)‖2

]
− E

[
‖r̄(k + 1)‖2

])
+ βα2 +

4DC2α2

n
.

Summing both sides of above over k from 0 to K − 1 for K ≥ 1 gives

2α

n

K∑
k=0

E
[∣∣f(x̄(k))− f ∗

∣∣] ≤ E
[
‖r̄(0)‖2

]
+

(
βα2 +

4DC2α2

n

)
K,

which by dividing by K and using the Jensen inequality gives Eq. (6.19b).

2. Let α(k) = 1/
√
k + 1 for k ≥ 0. By Eq. (6.21) we have

1

4Dn
E
[
‖e(k)‖2

]
+

2α(k)

n
E
[
f(y(k))− f ∗

]
≤

(
E
[
‖r̄(k)‖2

]
− E

[
‖r̄(k + 1)‖2

])
+ βα2(k),

which since α(k) ≤ 1 implies that

α(k)E
[
‖e(k)‖2

]
4Dn

+
2α(k)E

[
f(y(k))− f ∗

]
n

≤

(
E
[
‖r̄(k)‖2

]
− E

[
‖r̄(k + 1)‖2

])
+ βα2(k). (6.23)
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Summing Eq. (6.23) over k from 0 to K − 1 for K ≥ 1 and since f ∗ ≤
f(y(k)) gives

K−1∑
k=0

α(k)E
[
‖e(k)‖2

]
4Dn

≤

(
E
[
‖r̄(0)‖2

]
− E

[
‖r̄(K)‖2

])
+

K−1∑
k=0

β

k + 1

≤ E
[
‖r̄(0)‖2

]
+ β(ln(K) + 1), (6.24)

where the last inequality is due to

K−1∑
k=0

1

k + 1
≤ ln(K) + 1,

as given earlier. We further have the following inequality since K ≥ 1

K−1∑
k=0

1√
k + 1

≥ 1 +

∫ K

1

du√
u+ 1

≥
√
K + 1. (6.25)

Dividing both sides of Eq. (6.24) by
K−1∑
k=0

α(k) and using Eq. (6.25) we have

K−1∑
k=0

α(k)E
[
‖e(k)‖2

]
K−1∑
k=0

α(k)

≤
4DnE

[
‖r̄(0)‖2

]
+ 4Dnβ(ln(K) + 1)
√
K + 1

, (6.26)

which is Eq. (6.20a) due to the Jensen inequality. By Eq. (6.22) we obtain

2α(k)

n
E
[∣∣f(x̄(k))− f ∗

∣∣]
≤ 2Cα(k)

n
E
[
‖e(k)‖

]
+

2α(k)

n
E
[∣∣f(y(k))− f ∗

∣∣]
≤ 1

4Dn
E
[
‖e(k)‖2

]
+

4DC2α2(k)

n
+

2α(k)

n
E
[∣∣f(y(k))− f ∗

∣∣].
Using Eq. (6.23) into above gives

2α(k)

n
E
[∣∣f(x̄(k))− f ∗

∣∣]
≤

(
E
[
‖r̄(k)‖2

]
− E

[
‖r̄(k + 1)‖2

])
+
nβ + 4DC2

n
α2(k),
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which by summing both sides over k from 0 to K − 1 for K ≥ 1 implies

2

n

K−1∑
k=0

α(k)E
[∣∣f(x̄(k))− f ∗

∣∣]
≤ E

[
‖r̄(0)‖2

]
+
nβ + 4DC2

n

K−1∑
k=0

α2(k)

≤ E
[
‖r̄(0)‖2

]
+
nβ + 4DC2

n
(ln(K) + 1) .

Dividing both sides of the preceding relation by
K−1∑
k=0

α(k) and by the Jensen

inequality we obtain Eq. (6.20b).

6.4 Simulations

In this section, we perform experiments to demonstrate the convergence of

our algorithm in distributed SVM. We suppose that SVM is applied to a

dataset consisting of N points and we assume that the dataset is divided

into n equal parts and stored at n different workers. Let Di denote the

subset of data points stored at worker i. We take the formulation of SVM

described in Section 6.1, and define fi and Xi for each data point so that the

original objective can be decomposed according to Eqs. (6.1a) and (6.1b)

fi(w, b,Xi) =
1

2n
‖w‖2 + C

∑
j∈Di

Xij

Xi = {(w, b,Xi) : vj(〈w,uj〉+ b) ≥ 1−Xij,Xij ≥ 0,∀j ∈ Di} .

Here (uj, vj) denotes a single data point. For all k ≥ 0, each worker i runs in

parallel, has access to Di, receives an estimate w̄(k), and produces an update

of the form

wi(k + 1) = P̂Xi [w̄(k)− α(k)∇fi(w̄(k))] ,

where P̂Xi is an estimate of the projection onto the set Xi at time k.
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In this simulation, P̂Xi(z) is computed as follows:

P̂Xi(z) =
1

B

∑
`∈Ii(k)

PXi`(z), for all z,

where Ii(k) is a randomly selected subset of Di with cardinality B. The

master receives each wi(k + 1) and updates w̄ as:

w̄(k + 1) =
1

n

n∑
i=1

wi(k + 1).

For our tests, we repeat this process for 100,000 iterations and examine the

relative error
∣∣f(w̄(k))−f(w∗)

∣∣ / ∣∣f(w∗)
∣∣, where w∗ is found by running the

LIBLINEAR SVM solver until convergence.

Our simulations use the “a1a” dataset from the LIBSVM dataset collec-

tion [92]. This dataset attempts to predict whether income exceeds 50k/yr,

based on census data. It contains 1605 labeled data points and 123 fea-

tures. For testing, we split the data into n roughly equal portions and run

the Distributed Stochastic Subgradient Descent with Random Projection for

100, 000 iterations, with a batch size of B per worker. The stepsizes α(k) are

set to 1/
√
k + 1 and C is set to 1.

Figure 6.1: Relative error, with two different values of B and varying
numbers of workers

First, we fix the minibatch size B and vary the number of workers n, and

plot the relative error over the run of the algorithm in Figure 6.1. Second,

we fix the number of workers and vary the minibatch size, as seen in Figure

6.2. The relative error decreases faster as B increases. In both figures, as the
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theory suggests, the relative errors asymptotically become small for large k,

regardless of n or B.

Our findings for Distributed Stochastic Subgradient Descent with Random

Projection appear to reflect classic results for Minibatch SGD. Although both

algorithms are proven to converge even for minibatch sizes of 1, there is a

significant practical benefit from increasing the minibatch size. This may be

due to the increased number of total data points per iteration contributing

to a similar averaging effect. We have observed that increasing the number

of workers has a similar effect.

Figure 6.2: Relative error, with two different values of n and varying
minibatch sizes
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Chapter 7

Distributed Lagrangian Methods for Network
Resource Allocation

7.1 Problem Statement, Motivation, and Contribution

In this chapter, we consider an optimization problem, defined over time-

varying graphs G(k) = (V , E(k)), of the form

P :



minimize
x1,x2,...,xn

n∑
i=1

fi(xi)

subject to xi ∈ Xi, ∀i ∈ V
n∑
i=1

xi = b,

(7.1a)

(7.1b)

where each node i ∈ V stores a variable xi ∈ R. We assume that each

fi : R → R is a convex function, and Xi ⊂ R is a compact set, where both

are known by node i.

Problem P is often referred to as a network resource allocation problem,

where the goal is to optimally allocate a fixed quantity of resource b over

a network of nodes. Each node i suffers a cost given by function fi of the

amount of resource xi allocated to it. The goal of this problem is to seek

an optimal allocation such that the total cost
∑

i∈V fi(xi) incurred over the

network is minimized while satisfying the nodes’ local constraints, i.e., xi ∈
Xi. Often problem P is described in terms of utility functions, where each

function is the nodes’ utility and the goal is to maximize the total utility.

Network resource allocation is a fundamental and important problem that

arises in a variety of application domains within engineering. One standard

example is the problem of congestion control where the global objective is to

route and schedule information in a large-scale Internet network such that

a fair resource allocation between users is achieved [4]. Another example

is coverage control problems in wireless sensor networks, where the goal is
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to optimally allocate a large number of sensors to an unknown environment

such that the coverage area is maximized [12,13]. Furthermore, resource allo-

cation may be viewed as a simplification of the important economic dispatch

problem in power systems, wherein geographically distributed generators of

electricity must coordinate to meet a fixed demand while maintaining the

stability of the system [93,94].

Due to its broad applications, especially, in power engineering, there has

been a great interest in studying distributed methods for problem P. In par-

ticular, the authors in [95–99] design distributed algorithms for solving eco-

nomic dispatch problems, an application of P, where objective functions are

assumed to be quadratic. The authors in [100, 101] relax the assumption on

quadratic costs to convex cost functions with Lipschitz continuous gradients,

and consider relaxed problems by using appropriate penalty functions for the

nodes’ local constraints. In a similar approach, the authors in [102] consider

problem (7.1) with general non-smooth convex cost functions and propose a

method with a convergence rate o(1/k) where k is the number of iterations.

In this chapter, we provide a distributed algorithm, namely a distributed

Lagrangian method, for problem P. The hallmark of this approach is the

eliminatation of the need for a central coordinator to update the dual vari-

ables, where these authors employ the distributed gradient method presented

in Section 2.2.2 to solve the dual problem of P. The results in this chapter

are based on our recent work in [77, 103]. Distributed Lagrangian methods

have been also considered in [104], which requires an assumption of strict

convexity of the objective functions. Our focus in this chapter is to con-

sider problem P when the objective functions are convex and the number of

resources is uncertain.

Main Contribution. Previous approaches that have been proposed to

solve problem P assume the number of resources b is constant. This critical

assumption is impractical in most applications. For example, in power sys-

tems load demands are typically time-varying and the data defining such load

demands may be uncertain [105]. For this reason, any solution to network

resource allocation problems should be robust to uncertainty. This issue has

not been addressed in the literature. Therefore, our main contribution in this

chapter is to address this question. Specifically, our primary contributions

are summarized as follows:
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1. We first study a distributed Lagrangian method for problem P, where the

total quantity of resource b is assumed to be constant over time-varying

networks. The development and analysis in this case allows for an exten-

sion to the case where b is uncertain.

2. We then propose a distributed randomized Lagrangian approach for prob-

lem P for the case where b is unknown and may be time-varying. We

show that our approach is robust to this uncertainty, that is, our random-

ized method achieves an asymptotic convergence in expectation to the

optimal value. Moreover, we show that our method converges with rate

O(n ln(k)/δ
√
k), where δ is a parameter representing spectral properties

of the graph structure underlying the connectivity of the nodes, n is the

number of nodes, and k is the number of iterations.

3. To illustrate the effectiveness of the proposed methods, we present nu-

merical results from applications to economic dispatch problems using the

benchmark IEEE-14 and IEEE-118 bus test systems for three case studies.

For ease of exposition, we put all the proofs of the main results in this

chapter to Appendix E.

7.2 Distributed Lagrangian Methods

Lagrangian methods have been widely used to construct a decentralized

framework for problem P, where each node in the network only has par-

tial knowledge of the objective function and the constraints; this approach

requires a central coordinator to update and distribute the Lagrange mul-

tiplier to the nodes. In this section, we present an alternative approach

that allows us to bypass the need for a central coordinator, that is, our pro-

posed approach allows for a truly distributed implementation, thus leading

to a more efficient algorithm. The development in this section also informs

our approach on distributed randomized Lagrangian methods for network

resource allocation problems, which is presented in Section 7.3.
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Algorithm 4 Distributed Lagrangian Method for Solving P.

1. Initialize: Each node i ∈ V initializes λi(0) ∈ R.
2. Iteration: Each node i ∈ V , executes

vi(k + 1) =
∑

j∈Ni(k)

aij(k)λj(k) (7.2)

xi(k + 1) ∈ arg min
xi∈Xi

fi(xi) + vi(k + 1)(xi − bi) (7.3)

λi(k + 1) = vi(k + 1) + α(k) (xi(k + 1)− bi) . (7.4)

7.2.1 Main Algorithm

Without loss of generality, we assume that each node i knows the constant

bi such that
∑n

i=1 bi = b. Here bi can be interpreted as the initial resource

allocation at node i. One specific choice is to initially distribute b equally

to all nodes, i.e., bi = b/n for all i ∈ V . We note that the design of our

algorithm as well as our analysis given later does not depend on the choice

of these bi since they are only used for notational convenience.

We now explain the mechanics of our approach. Consider the Lagrangian

function L : Rn × R→ R of P given as

L(x, λ) ,
∑
i∈V

fi(xi) + λ

(∑
i∈V

(xi − bi)

)
, (7.5)

where λ ∈ R is the Lagrangian multiplier associated with Eq. (7.1b). The

dual function d : R→ R of problem P for some λ value is then defined as

d(λ) := min
x∈Rn

{∑
i∈V

fi(xi) + λ

(∑
i∈V

(xi − bi)

)}
=
∑
i∈V

{−f ∗i (−λ)− λbi},

where f ∗i is the Fenchel conjugate of fi, defined by

f ∗i (u) = sup
x∈R
{ux− fi(x)}.

The dual problem of P, denoted by DP, is given by

DP : max
λ∈R

∑
i∈V

{−f ∗i (−λ)− λbi},
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which is then equivalent to solving

min
λ∈R

∑
i∈V

f ∗i (−λ) + λbi︸ ︷︷ ︸
=qi(λ)

, (7.6)

where qi : R→ R is a convex function since f ∗i is a convex function [106]. We

assume the following Slater’s condition to guarantee for the strong duality.

Assumption 11 (Slater’s condition [40]). There exists a point x̃ that belongs

to the relative interior of X and satisfies
∑

i∈V x̃i = b.

As remarked, Lagrangian methods [107] require a central coordinator to

update and distribute the multiplier λ to the nodes. The key idea of our ap-

proach is to eliminate this requirement by utilizing the distributed bgradient

method in Section 2.2.2 to compute the solution of problem (7.6). In partic-

ular, we have each node i stores a local copy λi of the Lagrange multiplier λ,

and then iteratively update λi upon communicating with its neighbors. The

update of λi in Eq. (7.4) is the distributed gradient update in Eq. (2.16),

where the subgradient of qi at vi(k + 1) is given by

bi − xi(k + 1) ∈ ∂qi(vi(k + 1)). (7.7)

These two steps, coupled with the primal update in the Lagrangian approach,

results in our distributed Lagrangian algorithm as presented in Algorithm 4.

7.2.2 Convergence Analysis

We now present our main result on the convergence results of Algorithm

4. For the ease of exposition, we present their proofs in the appendix. We

denote by Li : R× R→ R the local Lagrangian function at node i

Li(xi, vi) = fi(xi) + vi(xi − bi). (7.8)

We show that the sequence of each dual variable {λi(k)}, for all i ∈ V ,

converges to a dual solution of DP under some proper choice of the sequence

of stepsizes {α(k)}. This result is formally stated in the following theorem.

Theorem 14. Suppose that Assumptions 2, 4, and 11 hold. Let the sequences

{xi(k)} and {λi(k)}, for all i ∈ V, be generated by Algorithm 4. Assume that
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the stepsizes α(k) are non-increasing, α(0) = 1, and satisfies the following

conditions

∞∑
k=1

α(k) =∞,
∞∑
k=1

α2(k) <∞. (7.9)

Then we have

(a) lim
k→∞

λi(k) = λ∗, for all i ∈ V, where λ∗ is an optimizer of DP.

(b) lim
k→∞

∑
i∈V Li(xi(k), λi(k)) is the optimal value of P.

A specific choice for the sequence of stepsizes is α(k) = 1/k for k ≥ 1,

which obviously satisfies the conditions in Eq. (7.9). Part (a) of Theorem

14 is a consequence of Theorem 5, while part (b) can be derived using the

strong duality of P and DP. A key step in showing part (a) requires that

∂qi(vi(k)) remains bounded for all k ≥ 0. Given the compactness of Xi and

by Eq. (7.7), this boundedness condition is satisfied; this is formally stated

in the following.

Proposition 2. Let the sequences {xi(k)} and {λi(k)}, for all i ∈ V, be

generated by Algorithm 4. Then there exists a positive constant Ci such that

∣∣∂qi(vi(k))
∣∣ ≤ Ci, ∀ k ≥ 0, ∀ i ∈ V . (7.10)

Note that while the local copies of the dual variable λi(k) tend to a dual

optimizer λ∗ of DP, Theorem 14 does not automatically imply that

x(k) :=
(
xT1 (k), . . . , xTn (k)

)T
converges to an optimal solution of P. Such a convergence is guaranteed,

however, when the functions fi are strongly convex.

On the other hand, if every node i maintains a variable to track a time-

weighted average of its dual variable, the distributed Lagrangian method

converges at a rate O(n ln(k)/δ
√
k) when the stepsizes decay as1 α(k) =

1/
√
k and δ is a parameter representing the spectral properties of the network

graph. This is a consequence of Theorem 6.

1Note that the choice of α(k) = 1/
√
k does not satisfy Eq. (7.9). Hence, we only

establish the rate of convergence to the optimal value.
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7.3 Distributed Randomized Lagrangian Methods

We now study problem P under uncertainty, where the portion of resources

b is unknown. Our goal in this section is to design a distributed randomized

Lagrangian method, and demonstrate that this method is robust to resource

uncertainty. Motivated by the analysis in Section 7.2.2, we also provide an

upper bound for the rate of convergence of this method in expectation on

the size and the topology of the underlying networks.

7.3.1 Main Algorithm

We assume the exact allotment of some resource, b, is unknown and we

can only estimate it from noisy data. For example, power generation levels

in power systems at any time are predicted from hourly day-ahead energy

consumption data, which may not be accurate. Therefore, we assume that at

any time k ≥ 0 each node i is able to access only a partial noisy measurement

of b, i.e., each node i can sample `i(k) from the data, where

`i(k) = bi + ηi(k), k ≥ 0, (7.11)

and the random variables ηi represent random fluctuations in the allocations

of the resources at the nodes; the sum of constants bi represents the expected

resource shared by the nodes. We note that we do not assume the constants

bi are known by the nodes, thus our model is general enough to cover the

case of time-varying resources. We do, however, assume that the random

variables ηi satisfy the following assumption.

Assumption 12. The random variables ηi are independent with zero mean,

i.e., E[ηi] = 0, for all i ∈ V. Moreover, they are almost surely bounded, i.e.,

there exists a scalar ci > 0 such that |ηi| ≤ ci, for all i ∈ V, almost surely.

This assumption implies that we only allow finite, but possibly arbitrarily

large, perturbations limited by the constant c, in the nodes’ measurements.

This condition is reasonable, for example, in actual power systems the hourly

day-ahead data is often approximately accurate with respect to the current

consumption. Moreover, small fluctuations in loads are often seen in practice

since large fluctuations may lead to a blackout condition. The condition on
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Algorithm 5 Distributed Randomized Lagrangian Method (DRLM) for
Solving P under Uncertainty.

1. Initialize: Each node i ∈ V initializes λi(0) ∈ R.
2. Iteration: Each node i ∈ V executes

vi(k + 1) =
∑
j∈Ni

aij(k)λj(k) (7.12)

xi(k + 1) ∈ arg min
xi∈Xi

fi(xi) + vi(k + 1)(xi − `i(k)) (7.13)

λi(k + 1) = vi(k + 1) + α(k) (xi(k + 1)− `i(k)) . (7.14)

zero mean implies that while being robust to the noisy measurements of bi,

the goal is to meet the expected number of loads defined by
∑

i∈V bi.

We now proceed to present our distributed randomized Lagrangian method

for solving problem P under the uncertainty described above. Recall that in

the distributed Lagrangian method we utilize the distributed subgradient

algorithm to solve the dual problem DP of P. However, due to the uncer-

tainty of b, at any time k ≥ 0 each node i only has access to a partial noisy

measurement of b represented by `i(k). The nodes i, therefore, have to use

these measurements to update their dual variables λi(k), resulting in a dis-

tributed noisy subgradient update for problem DP. The proposed distributed

randomized Lagrangian algorithm is formally presented in Algorithm 5.

Algorithm 5 shares similar mechanics to Algorithm 4. A notable difference

is in the step in Eq. (7.14) of Algorithm 5 where λi is updated by using a

noisy subgradient of qi at vi(k + 1), given by

gi(k + 1) , `i(k)− xi(k + 1), (7.15)

that is gi(k) is a noisy measurement of the subgradient of qi at vi(k). We

note that the variables vi, xi, and λi are now random variables.

7.3.2 Convergence analysis

We now present our main results on the convergence of Algorithm 4. We

first show that the sequence of every local copy {λi(k)} converges to a dual

solution of DP almost surely (a.s.). This result, which can be viewed as a

stochastic version of Theorem 14, is formally stated in the following theorem.
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Theorem 15. Suppose that Assumptions 2, 4, 11, and 12 hold. Let the se-

quences {xi(k)}, {λi(k)}, for all i ∈ V, be generated by Algorithm 5. Assume

that the stepsizes α(k) is non-increasing, α(0) = 1, and satisfy

∞∑
k=1

α(k) =∞,
∞∑
k=1

α2(k) <∞. (7.16)

Then the sequences {xi(k)} and {λi(k)} satisfy

(a) lim
k→∞

λi(k) = λ∗ a.s., for all i ∈ V, where λ∗ is an optimizer of DP.

(b) lim
k→∞

E
[∑

i∈V Li(xi(k), λi(k))
]

is the optimal value of P.

Similar to Theorem 14, the key step is to show part (a), which again

requires that gi(vi(k)) remains bounded almost surely for all k ≥ 0. Thank

to the compactness of Xi and Assumption 12, this condition is guaranteed.

Proposition 3. Suppose that Assumption 12 holds. Let the sequences {xi(k)}
and {λi(k)}, for all i ∈ V, be generated by Algorithm 5. Then there exists a

constant Di > 0, for all i ∈ V, such that

∣∣gi(vi(k + 1))
∣∣ ≤ Di a.s., ∀ k ≥ 0, ∀ i ∈ V . (7.17)

Finally, similar to the results in Theorem 6 we show that Algorithm 5

converges at a rate O(n ln(k)/δ
√
k) to the optimal value in expectation.

Theorem 16. Suppose that Assumptions 2, 4, 11, and 12 hold. Let the

sequences {xi(k)} and {λi(k)}, for all i ∈ V, be generated by Algorithm 5.

Let α(k) = 1/
√
k for k ≥ 1 and α(0) = 1. Moreover, suppose that every node

i stores the variable yi(k) ∈ R, which is initialized arbitrarily and updated by

yi(k) =

∑k
t=0 α(t)λi(t)∑k

t=0 α(t)
, ∀k ≥ 0. (7.18)

Then, let δ ≤ min{(1− 1
2n3 )1/B,maxk≥0 σ2(A(k))} we have for all i ∈ V

E
[
q(yi(k + 1))

]
− q∗

≤
E
[
‖λ(0)− λ∗1

∥∥2
]

2
√
k + 1

+
DE
[∥∥λ(0)

∥∥]
2(1− δ)

√
k + 1

+
D2(2 + ln(k))

2(1− δ)
√
k + 1

· (7.19)
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7.4 Simulations

In this section, we consider case studies that demonstrate the effectiveness

of the two methods proposed in Sections 4 and 5, for solving economic dis-

patch problems in power systems, where power flow equations between buses

are ignored. We first consider the IEEE-14 bus test system [108] where we

consider two cases, constant loads and uncertain loads. We then apply our

method to the IEEE-118 bus test system [109], assuming a constant load.

In all cases, we model the communication between nodes by a sequence of

time-varying graphs. Specifically, we assume that at any iteration k ≥ 0, a

graph G(k) = (V , E(k)) is generated randomly such that G(k) is undirected

and connected, i.e., in Assumption 2 the constant B = 1. The sequence of

communication matrices {A(k)} is then set equal to the sequence of lazy

Metropolis matrices corresponding to G(k), i.e., for all k ≥ 0,

A(k) = [aij(k)] =


1

2(max{|Ni(k),Nj(k)|}) , if (i, j) ∈ E(k)

0, if (i, j) /∈ E and i 6= j

1−
∑

j∈Ni(k) aij(k), if i = j.

(7.20)

Since G(k) are undirected and connected graphs, A(k) satisfy Assumption

4. Finally, for all studies the simulations are terminated when the relative

errors are less than 5%, i.e., |λi(k)− λ∗| < 0.05 λ∗ for all i ∈ V .

7.4.1 Economic dispatch for IEEE 14-bus test systems

We now consider economic dispatch problems on the IEEE 14-bus test system

[108]. Each generator i suffers a quadratic cost as a function of the amount of

its generated power xi, i.e., fi(xi) = cix
2
i+dixi where ci, di are cost coefficients

of generators i and xi ∈ [0, Pmax
i ]. The coefficients of the generators are listed

in Table 7.1 which are adopted from [98]. The expected load addressed by

the network is assumed to be P = 300(MW).

We first consider the case of constant loads, in which we initialize the

generator power levels such that
∑

i∈V xi(0) = P = 300. We apply the

distributed Lagrangian method to solve this dispatch problem. Simulations

of this case are shown on the left of Fig. 7.1, where the top plot shows

that our method achieves the optimal cost, while the bottom plot shows that
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the total generated power of the network,
∑

i∈V xi, meets the load demand

P = 300(MW ).

Table 7.1: Node Parameters (MU= Monetary Units).

Gen. Bus ci[MU/MW 2] di[MU/MW ] Pmax
i [MW ]

1 1 0.04 2.0 80

2 2 0.03 3.0 90

3 3 0.035 4.0 70

4 6 0.03 4.0 70

5 8 0.04 2.5 80

We then consider the case of uncertain loads, where we assume that at any

iteration k ≥ 0, each node i has access to a noisy measurement bi +ηi(k). At

each iteration k ≥ 0, ηi(k) are generated as independent zero-mean random

variables. We apply the distributed randomized Lagrangian method to this

case. Similar to the deterministic case, simulations also demonstrate the

convergence of our algorithm; see the plots on the right in Fig. 7.1.

7.4.2 Economic dispatch for IEEE 118-bus test systems

We now consider economic dispatch problems on a larger system, the IEEE-

118 bus test system [109]. This system has 54 generators connected by

bus lines. Each generator i suffers a quadratic cost as a function of gen-

erated power xi, i.e., fi(xi) = ci + diPi + qiP
2
i . The coefficients of functions

fi belong to the ranges ci ∈ [6.78, 74.33], di ∈ [8.3391, 37.6968], and qi ∈
[0.0024, 0.0697]. The units of ci, di, areMBtu,MBtu/MW andMBtu/MW 2,

respectively.

In addition, each xi is constrained on some interval [Pmin
i , Pmax

i ] where

these values vary as Pmin
i ∈ [5, 150] and Pmax

i ∈ [150, 400]. The unit of power

in this system is MW . The total load required from the system is assumed

to be P = 6000(MW ), which is initially distributed equally to the nodes,

i.e., xi(0) = P/54 ∀i ∈ V . We apply the distributed Lagrangian method for

this study, with resulting simulations shown in Fig. 7.2. The plots in Fig.

7.2 suggest that our method is applicable to large-scale systems.
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Figure 7.1: Simulations on IEEE 14 bus test system with constant loads on
the left and load uncertainty on the right.
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Figure 7.2: Simulations on IEEE 118 bus test system.
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Chapter 8

Distributed Resource Allocation on Dynamic
Networks in Quadratic Time

8.1 Problem Statement and Contribution

In this chapter, we consider problem P studied in Chapter 7 when Xi = R.

We refer this problem to as a relaxed resource allocation problem, given as

minimize
x1,...,xn

n∑
i=1

fi(xi) (8.1a)

subject to
n∑
i=1

xi = b. (8.1b)

We are interested in studying distributed algorithms for solving problem

(8.1) over a sequence of time-varying undirected graphs G(k) = (V , E(k)).

For simplicity, we denote by f the objective function and by X the feasible

set of problem (8.1), i.e.,

f(x) =
∑
i∈V

fi(xi), X = {x ∈ Rn :
∑
i∈V

xi = b}.

We will be assuming that there exists at least one optimal solution.

Assumption 13. There exists a vector x∗ = (x∗1, x
∗
2, . . . , x

∗
n) with x∗ ∈ X

which achieves the minimum of problem (8.1).

We will use X ∗ to denote the set of optimal solutions to problem (8.1); the

previous assumption ensures that X ∗ is not empty.

As will be seen shortly, the constraint relaxation, Xi = R, will allow us

to exploit more about the optimality condition of problem (8.1), leading to

a faster convergence algorithm. Our focus in this chapter is on designing

protocols with good convergence speed. Specifically, we are interested at

how the gap to the optimal objective value scales in the worst case with
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iteration k and the number of nodes n in the system.

The best previously known results were provided in the antecedent papers

[101, 110]. Both papers considered the class of costs which have Lipschitz-

continuous derivatives. The paper [110] considers schemes which randomly

pick pairs of neighbors to perform a center-free update; if the pairs are chosen

uniformly at random the convergence time implied by the results of [110]

is O(Ln4/k) in expectation1 on fixed graphs; here L is the largest of the

Lipschitz constants of the derivatives of the cost functions. However, we

note here that it is possible to shave off a factor of n off this bound by

adjusting the probabilities in a graph-dependent way. The paper [101] does

not give an explicit convergence rate for the objective, but gives a worst-case

O(LBn3/k) rate for the decay of the average of squared gradient differences

in the graph; here B is a constant which measures how long it takes for

the time-varying graph sequence to reach connectivity. Improved rates were

obtained in [111] and in [112] for a more general problem, but under the

assumption that the graph is a fixed complete graph.

Main Contribution. In this chapter, we show a convergence rate of

O (LBn2/k) for the objective under the same assumptions of Lipschitz-

continuous derivatives in the more general setting of time-varying graphs.

Additionally, when the costs are strongly convex, we demonstrate a geometric

rate of O
(

(1− µ/(4Ln2))
k/B
)

where µ is the parameter of strong convexity.

For both of these rates, the number of iterations until the objective is within

ε of its optimal value scales quadratically with the number of nodes n. This

is an improvement over the results described above, though we note that

our protocol involves every node contacting its neighbors and performing an

update at every step (which involves O(|E(k)|) messages exchanged, where

E(k) is the set of edges at time k, and O(n) updates); whereas [110] relied

on only a pair of randomly chosen nodes updating at each step.

1The convergence rate in [110] is given in terms of the eigenvalues of a certain matrix;
the quartic bound above follows by putting [110] together with the well-known fact that
the smallest eigenvalue of the Laplacian of a connected, undirected graph on n is Ω(1/n2).
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8.2 Gradient Balancing Protocol

In this section, we will introduce a distributed protocol, which we call the

gradient balancing protocol, to solve problem (8.1). Before giving a statement

of the algorithm, we provide some brief motivation for its form.

Previous protocols for problem (8.1) tended to be “center-free” updates

[101,110,113,114] where each node i, for all i ∈ V , updates its variable as

xi(k + 1) = xi(k)−
∑

i∈Ni(k)

aij

(
f ′i(xi(k))− f ′j(xj(k))

)
, (8.2)

where aij is a collection of non-negative weights. The protocol of [110] had a

different form but proceeded in the same spirit; in that protocol, edges were

repeatedly chosen according to some probability distribution and a form of

the above update was performed by the incident nodes.

The protocol we propose in this section speeds up this update by employing

some local “pruning” wherein each node tries to perform a version of Eq.

(8.2), but only with the two nodes whose derivative is largest and smallest in

its neighborhood. Thus nodes essentially ignore neighbors whose derivatives

are close to their own. Intuitively, by focusing on nodes whose derivatives

are far apart we increase the speed at which information propagates through

the network. The idea has been previously used in [45] and is inspired by an

algorithm from [16, Chapter 7].

We now describe the steps node i executes at step k to update its value

from xi(k) to xi(k + 1). We assume that all nodes execute these steps syn-

chronously, and furthermore that all four steps of the protocol given below

can be executed before the graph changes from G(k) to G(k + 1). Speaking

informally, the protocol consists of each node repeatedly trying to “match”

itself to the node in its neighborhood whose derivative is smallest and smaller

than its own in order to perform a center-free update. Finally, we will be

assuming that our algorithm starts from a feasible point.

Assumption 14. x(0) ∈ X .

The Gradient Balancing Protocol

1. Node i broadcasts the value f ′i(xi(k)) and Lipschitz constant Li to its

neighbors.
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2. Going through the messages it has received from neighbors as a result

of step 1, node i finds the neighbor with the smallest derivative that is

strictly less than its own. Let p be a neighbor with this derivative; ties

can be broken arbitrarily. Formally,

p ∈ arg min
j

{
f ′j(xj(k)) | j ∈ Ni(k), f ′j(xj(k)) < f ′i(xi(k))

}
.

Node i then sends a message to node p the quantity

∆ip(k) =
1

2

f ′i(xi(k))− f ′p(xp(k))

Li + Lp
·

If no neighbor of i has a derivative strictly less than f ′i(xi(k)), node i does

nothing during this step.

3. Node i goes through any ∆ji(k) it has just received from its neighbors

j ∈ Ni(k) as a result of step 2, and finds the largest among them; ties can

be broken arbitrarily. Let us suppose this is ∆qi(k). Node i then sets

yi(k) = xi(k) + ∆qi(k).

Furthermore, node i sends an “accept” message to node q and a “reject”

message to any other neighbor j that sent it a ∆ji(k) in step 2.

If node i did not receive any ∆ji(k) in step 2, it sets yi(k) = xi(k).

4. If node i did not send out ∆ip(k) during step 2, or if it received a “reject”

from the node p to whom it sent ∆ip(k), it sets xi(k + 1) = yi(k).

If node i has received an “accept” from node p, it sets

xi(k + 1) = yi(k)−∆ip(k).

Informally, we will refer to the numbers ∆ij(k) as “offers.” We may sum-

marize the gradient balancing protocol as follows. Each node i makes an offer

to the node with the smallest derivative (below its own) in its neighborhood,

and the size of the offer is proportional to the difference of the derivatives

normalized by the sum of the respective Lipschitz constants. Each node then

accepts the largest offer it has received and rejects the rest. Note that each

node “accepts” at most one offer and “makes” at most one offer. The final

98



result is something like Eq. (8.2), except that the graph has been pruned

to be of degree at most two and contain only edges between nodes whose

derivatives are “far apart.”

We remark that an immediate consequence of Assumption 14 is that x(k) ∈
S for all k ≥ 0, since every accepted offer involves an increase at the receiving

node and a decrease at the offering node of the same magnitude.

For concreteness, we provide an example of our protocol; see Fig. 8.1. The

top part of the figure shows xi(k) and f ′i(xi(k)) for each node in parenthesis,

respectively. We assume that Li = 1/2 for all i ∈ V . The bottom part of the

figure shows the new values xi(k + 1). As we can see that node B and node

C send offers to node D but node D only accepts node B’s offer. Node D

also sends an offer to node E and node E accepts since it is the only offer it

receives. Nodes A and C do not end up participating in any accepted offers

and consequently for those nodes xi(k + 1) = xi(k).

"!
# 
A : 4 "!
# 
B : 3 "!
# 
C : 5 "!
# 
D : 6 "!
# 
E : 3

New values

"!
# 
A

(4, 9) "!
# 
B

(6, 9) "!
# 
C

(5, 6) "!
# 
D

(4, 3) "!
# 
E

(2, 1)

Figure 8.1: A step of the gradient balancing protocol.

8.3 Convergence Analysis

We now turn to the convergence analysis of the gradient balancing protocol.

We will prove upper bounds on f(x(k)) − f(x∗) which imply that the time

until this quantity shrinks below ε is quadratic in the number of nodes n.

For the remainder of this chapter, we will be assuming that Assumptions

2, 4, 6, 13, and 14 hold without mention. We start this section with a

characterization of the points in the optimal set X ∗; the proof is immediate.

Proposition 4. We have that x ∈ X ∗ if and only if x ∈ X and f ′i(xi) =

f ′j(xj) for all i, j ∈ V.
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Second, observe that the gradient balancing protocol may be rewritten in

a particularly convenient way. Denote by E(k) the set of pairs (i, j) such that

either i accepts an offer from j at time k or vice versa. We can then write

xi(k + 1) = xi(k)−
∑

j | (i,j)∈E(k)

f ′i(xi(k))− f ′j(xj(k))

2(Li + Lj)
· (8.3)

We now begin with a series of lemmas which lead the way to our main

convergence result. Our first lemma shows the monotonicity of the largest

and smallest derivatives in the network.

Lemma 11. The function mini∈V f
′
i(xi(k)) is non-decreasing in k and the

function maxi∈V f
′
i(xi(k)) is non-increasing in k.

Proof. Consider node j. We show that there is always some node q such that

f ′j(xj(k + 1)) ≥ f ′q(xq(k)).

This will prove the monotonicity of the smallest derivative; the monotonicity

of the largest derivative is proved analogously. Indeed, if j does not make

any offers during step 2 of the gradient balancing protocols, or if it makes an

offer which is rejected, then we must have xj(k + 1) ≥ xj(k). Since fj(·) is

convex this implies that

f ′j(xj(k + 1)) ≥ f ′j(xj(k)).

Thus we may take q = j in this case. On the other hand, suppose j makes

an offer during step 2 which is accepted, say by node m. From Eq. (8.3),

xj(k + 1) ≥ xj(k)−
f ′j(xj(k))− f ′m(xm(k))

2(Lm + Lj)
,

and since the function fj(·) is convex and Lj-smooth,

f ′j(xj(k + 1)) ≥ f ′j

(
xj(k)−

f ′j(xj(k))− f ′m(xm(k))

2(Lm + Lj)

)

≥ f ′j(xj(k))−
Lj

(
f ′j(xj(k))− f ′m(xm(k))

)
2(Lm + Lj)

> f ′m(xm(k)),

so that we may take q = m in this case.
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We will often need to be making statements about the d largest deriva-

tives at time k. To avoid overburdening the reader with notation, we will

begin many of our lemmas with a variation on the words “let us relabel

the vertices so that the sequence f ′1(x1(k)), f ′2(x2(k), . . . , f ′n(xn(k)) is non-

increasing.” Under this assumption, the d largest derivatives may be taken

to be f ′1(x1(k)), . . . , f ′d(xd(k)).

Furthermore, assuming the nodes have been relabeled as above, we will

say that edge (i, j) crosses the cut d if one of i, j belongs to {1, . . . , d} while

the other belongs to {d+ 1, . . . , n}.
An example of the use of these definitions is in the following corollary,

which is an immediate consequence of Lemma 11.

Corollary 1. Let us relabel the nodes so that the sequence f ′1(x1(k)), f ′2(x2(k)),

. . . , f ′n(xn(k)) is non-increasing. Suppose that during times t = k, k+1, . . . , k+

T we have that E(t) did not include any edges crossing the cut d. Then

for i = 1, . . . , d, we have that f ′i(xi(t + T + 1)) ≥ f ′d(xd(t)), while for

i = d+ 1, . . . , n, f ′i(xi(t+ T + 1)) ≤ f ′d+1(xd+1(t)).

Our next lemma essentially says that cuts in the graph which separate

larger derivatives from smaller derivatives must have edges in E(k) which

cross them eventually. The proof follows from Assumption 4 onB-connectivity

and is the same as the proof of Lemma 3 in [45], so we omit it.

Lemma 12. Let ` ≥ 0 and let us relabel the nodes so that the sequence

f ′1(x1(`B)), f ′2(x2(`B)), . . . , f ′n(xn(`B)) is non-increasing. Then for every d ∈
{1, . . . , n− 1}, either f ′d(xd(`B)) = f ′d+1(xd+1(`B)), or there exist some time

k ∈ {`B, . . . , (`+ 1)B − 1} when an edge in E(k) crosses the cut d.

We now proceed to our first substantial lemma, which shows that the gra-

dient balancing protocol is a descent protocol, i.e., f(x(k)) is non-increasing.

Lemma 13.

f(x(k + 1)) ≤ f(x(k))−
∑

(i,j)∈E(k)

(
f ′i(xi(k))− f ′j(xj(k))

)2

4(Li + Lj)
· (8.4)

Proof. Assumption 2 immediately implies that for all xi, yi ∈ R

fi(yi) ≤ fi(xi) + f ′i(xi)(yi − xi) +
Li
2

(yi − xi)2.
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Summing up both sides over i ∈ V , we obtain

f(y) ≤ f(x) +
n∑
i=1

f ′i(xi)(yi − xi) +
n∑
i=1

Li
2

(yi − xi)2.

Replacing x by x(k), y by x(k + 1), we obtain

f(x(k + 1)) ≤ f(x(k)) +
n∑
i=1

f ′i(xi(k))(xi(k + 1)− xi(k))

+
n∑
i=1

Li
2

(xi(k + 1)− xi(k))2. (8.5)

On the other hand, one consequence of Eq. (8.3) is that

n∑
i=1

f ′i(xi(k))(xi(k + 1)− xi(k))

= −
n∑
i=1

∑
j | (i,j)∈E(k)

f ′i(xi(k))

2(Li + Lj)

(
f ′i(xi(k))− f ′j(xj(k))

)

= −
∑

(i,j)∈E(k)

(
f ′i(xi(k))− f ′j(xj(k))

)2

2(Li + Lj)
· (8.6)

Furthermore, another consequence of Eq. (8.3) is that

n∑
i=1

Li
2

(xi(k + 1)− xi(k))2 =
n∑
i=1

Li
2

( ∑
j | (i,j)∈E(k)

f ′i(xi(k))− f ′j(xj(k))

2(Li + Lj)

)2

≤
n∑
i=1

∑
j | (i,j)∈E(k)

2Li

(
f ′i(xi(k))− f ′j(xj(k))

)2

8(Li + Lj)2

=
∑

(i,j)∈E(k)

(
f ′i(xi(k))− f ′j(xj(k))

)2

4(Li + Lj)
, (8.7)

where the inequality follows because node i is incident to at most two edges

in E(k), which allows us to use the inequality (a+ b)2 ≤ 2(a2 + b2). Finally,

we substitute Eqs. (8.6) and (8.7) into Eq. (8.5) gives Eq. (8.4).

Glancing at Eq. (8.4), we might guess that the second term on the right is
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ultimately going to determine how fast the gradient balancing protocol will

converge. Our next two lemmas provide useful lower bounds for this quantity

over the time interval k = `B, . . . , (`+ 1)B − 1.

Lemma 14. Let us relabel the nodes so that the sequence f ′1(x1(`B)), . . . ,

f ′n(xn(`B)), is in non-increasing order. Then,

(`+1)B−1∑
k=`B

∑
(i,j)∈E(k)

(
f ′i(xi(k))− f ′j(xj(k))

)2

≥
n−1∑
d=1

(
f ′d(xd(`B))− f ′d+1(xd+1(`B))

)2

.

Proof. We begin the proof by introducing a bit more notation. For all k ∈
{`B, `B+1, . . . , (`+1)B−1}, we use D(k) to denote the set of d ∈ {1, . . . , n−
1} such that time k is the first time in {`B, `B + 1, . . . , (l + 1)B − 1} with

an edge (i, j) ∈ E(k) crossing the cut d. Note that D(k) may be empty.

Furthermore, given the edge (i, j) ∈ E(k) we will use Fij(k) to denote all the

cuts d ∈ D(k) crossed by (i, j) at time k. Likewise, it may be the case that

Fij(k) is empty.

We begin with the following observation. Suppose Fij(k) = {d1, . . . , dq}
where d1 < d2 < · · · < dq. Then(

f ′i(xi(k))− f ′j(xj(k))
)2

≥
∑

d∈Fij(k)

(
f ′d(xd(`B))− f ′d+1(xd+1(`B))

)2

. (8.8)

We now justify Eq. (8.8). Indeed, since d1 ∈ Fij(k), we have d1 ∈ D(k).

By definition of D(k) there were no edges (i, j) during times `B, . . . , k − 1

which crossed the cut d1. Applying Corollary 1, we have that f ′i(xi(k))) ≥
f ′d1(xd1(`B)) and that f ′j(xj(k)) ≤ f ′dq+1(xdq+1(`B)). Therefore,

f ′i(xi(k))− f ′j(xj(k)) ≥ f ′d1(xd1(`B))− f ′dq+1(xdq+1(`B))

≥
∑

d∈Fij(k)

f ′d(xd(`B))− f ′d+1(xd+1(`B)).

This implies that(
f ′i(xi(k))− f ′j(xj(k))

)2

≥
∑

d∈Fij(k)

(
f ′d(xd(`B))− f ′d+1(xd+1(`B))

)2

·
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A consequence of this last inequality is that

(`+1)B−1∑
k=`B

∑
(i,j)∈E(k)

(
f ′i(xi(k))− f ′j(xj(k))

)2

≥
(`+1)B−1∑
k=`B

∑
(i,j)∈E(k)

∑
d∈Fij(k)

(
f ′d(xd(`B))− f ′d+1(xd+1(`B))

)2

=

(`+1)B−1∑
k=`B

∑
d∈D(k)

(
f ′d(xd(`B))− f ′d+1(xd+1(`B))

)2

=
n−1∑
d=1

(
f ′d(xd(`B))− f ′d+1(xd+1(`B))

)2

,

where the final equality used the fact that every d ∈ {1, . . . , n − 1} such

that f ′d(xd(`B)) − f ′d+1(xd+1(`B)) 6= 0 appears in some D(k), which is a

restatement of Lemma 12.

We provide below more convenient bounds than those in Lemma 14.

Lemma 15.

(`+1)B−1∑
k=`B

∑
(i,j)∈E(k)

(
f ′i(xi(k))− f ′j(xj(k))

)2

≥ 1

n2

n∑
i=1

(
f ′i(xi(`B))− f ′i(x∗i )

)2

. (8.9)

Proof. By Lemma 14, if we relabel the nodes so that f ′1(x1(`B)),

f ′2(x2(`B)), . . . , f ′n(xn(`B)) is non-increasing,

∑(`+1)B−1
k=`B

∑
(i,j)∈E(k)

(
f ′i(xi(k))− f ′j(xj(k))

)2

∑n
i=1

(
f ′i(xi(`B))− f ′i(x∗i )

)2

≥

∑n−1
i=1

(
f ′i(xi(`B))− f ′i+1(xi+1(`B))

)2

∑n
i=1

(
f ′i(xi(`B))− f ′i(x∗i )

)2 ·

Let q = f ′1(x∗1); by Proposition 4, we have that q = f ′i(x
∗
i ) for all i ∈ V .
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Define gi(z) = fi(z)− qz. We can then rewrite the above inequality as

∑(`+1)B−1
k=`B

∑
(i,j)∈E(k)

(
f ′i(xi(k))− f ′j(xj(k))

)2

∑n
i=1

(
f ′i(xi(`B))− f ′i(x∗i )

)2

≥

∑n−1
i=1

(
g′i(xi(`B))− g′i+1(xi+1(`B))

)2∑n
i=1 g′2i (xi(`B))

·

Clearly, the sequence g′1(x1(`B)), . . . , g′n(xn(`B) is in non-increasing order.

It therefore follows that

∑(`+1)B−1
k=`B

∑
(i,j)∈E(t)

(
f ′i(xi(k))− f ′j(xj(k))

)2

∑n
i=1

(
f ′i(xi(`B))− f ′i(x∗i )

)2

≥ min
s1≥s2≥...≥sn

∑n−1
i=1 (si − si+1)2∑n

i=1 s2
i

· (8.10)

Lemma 5 of [45] shows that the right-hand side is at least 1/n2. This imme-

diately implies the lemma.

We now turn to the statement and proof of our main result. We will use

R0 to denote a measure of initial distance to an optimal solution defined as

R0 = sup
x∈X :f(x)≤f(x(0))

sup
x∗∈X ∗

x − x∗‖.

In words, R0 is the largest distance to the set of optimal solutions from any

point whose objective not larger than the objective at x(0). Note that R0

may not be finite, in which case part of our result below will be vacuously

true. Our main result is then the following theorem.

Theorem 17.

f(x(k))− f(x∗) ≤ 8LR2
0n

2

bk/Bc
, (8.11)

where L = max
i∈V

Li and bzc denotes the largest integer which is at most z.

Furthermore, if all fi(·) are µ-strongly convex, i.e., Assumption 5 holds for

µi = µ ≥ 0 for all i ∈ V, then we also have

f(x(k))− f(x∗) ≤
(

1− µ

4Ln2

)bk/Bc (
f(x(0))− f(x∗)

)
. (8.12)
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Proof. By Lemma 13 we have

f(x((`+ 1)B)) ≤ f(x(`B))−
(`+1)B−1∑
k=`B

∑
(i,j)∈E(k)

(
f ′j(xj(k))− f ′i(xi(k))

)2

4(Li + Lj)

≤ f(x(`B))−
n∑
i=1

(
f ′i(xi(`B))− f ′i(x∗i )

)2

8Ln2
, (8.13)

where the last step is due to Lemma 15 and the inequality Li + Lj ≤ 2L.

Next, since f is convex we have

f(x∗)− f(x(`B)) ≥
(
x∗ − x(`B)

)T
∇f(x(`B))

=
(
x∗ − x(`B)

)T(
∇f(x(`B))−∇f(x∗)

)
,

where the last equality follows since, by Proposition 4, the components of

∇f(x∗) are identical and since x(`B), x∗ ∈ S, we have that the entries of

x∗−x(`B) sum to zero. Next, negating both sides of the above equation and

using the Cauchy-Schwarz inequality

f(x(`B))− f(x∗) ≤ R0

∥∥∇f(x(`B))−∇f(x∗)
∥∥, (8.14)

where we used that f(x(k)) is non-increasing. Combining Eqs. (8.9) and

(8.14) we have

f(x((`+ 1)B))− f(x∗) ≤ f(x(`B))− f(x∗)−
n∑
i=1

(
f ′i(xi(`B))− f ′i(x∗i )

)2

8Ln2

≤ f(x(`B))− f(x∗)−

(
f(x(`B))− f(x∗)

)2

8Ln2R2
0

· (8.15)

We now show the last inequality implies Eq. (8.11) via some standard equa-

tion manipulations. Letting ∆(k) = f(x(k)) − f(x∗), note that ∆(k) is

non-increasing by Lemma 13. We have just shown

∆((`+ 1)B) ≤ ∆(`B)− ∆2(`B)

8LR2
0n

2
·
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Dividing both sides of this by ∆((`+ 1)B)∆(`B) and rearranging, we obtain

1

∆((`+ 1)B)
≥ 1

∆(`B)
+

1

8LR2
0n

2

∆(`B)

∆((`+ 1)B)
≥ 1

∆(`B)
+

1

8LR2
0n

2
,

where we used the monotonicity of ∆(k). Summing this inequality over

` = 0, . . . , k − 1, we obtain

f(x(kB))− f(x∗) ≤ 8LR2
0n

2

k
,

and using the monotonicity of f(x(k)) we obtain Eq. (8.11).

Turning now to Eq. 8.12, let us define as before gi(x) = fi(x)− qx where

q = f ′1(x∗1), and further let G(x) =
∑n

i=1 gi(xi). Observe that G(x) is µ-

strongly convex and has global minimizer at x∗. Consequently if x ∈ X ,

n∑
i=1

(
f ′i(xi)− f ′i(x∗i )

)2

= ||∇G(x)||2 ≥ 2µ(G(x)−G(x∗))

= 2µ(f(x)− f(x∗)),

where the final equality used the fact that the sum of the entries of x and x∗

is the same since both are in X . Thus from Eq. (8.15),

f(x((`+ 1)B))− f(x∗) ≤ f(x(`B))− f(x∗)−
n∑
i=1

2µ (f(x(`B))− f(x∗))

8Ln2
,

which immediately implies Eq. (8.12).

Remark 3. Note that although Eq. (8.1) does not have constraints on the

variables xi, for certain functions fi(xi) our algorithm automatically solves

a constrained version of the problem. For example, if the initial conditions

xi(0) are all non-negative and f ′i(0) = f ′j(0) for all i, j, then by Lemma 11

the constraint xi ≥ 0 will automatically be satisfied throughout the execution

of the gradient balancing method. In other words, the constraints xi ≥ 0

can be added “for free.” The condition on the functions fi(x) is somewhat

restrictive, but admissible fi include, for example, all polynomials with non-

negative coefficients whose linear coefficient is zero.
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8.4 Simulations

We now describe a simulation of the gradient balancing protocol on some

particular graphs. We consider local objective functions

fi(xi) = wi(xi − ai)4,

where the non-negative coefficient wi and the coefficient ai are chosen uni-

formly on [0, 1]. We set b = 0. We show simulations of the line and lollipop

graphs in Fig. 8.2, where we plot the first time f(x(k))− f(x∗) < 1/100 on

the y-axis. The figures appear to be broadly consistent with the quadratic

bound of Theorem 17.
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Figure 8.2: Convergence time for gradient balancing as a function of the
number of nodes for the line graph on the left and the lollipop graph on the
right.
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Chapter 9

Concluding Remarks

In this thesis, we have studied distributed algorithms for solving network

optimization problems, where the focus is on understanding the performance

of distributed gradient methods under practical considerations, such as com-

munication delays, random projections, and resource uncertainty. The main

contributions of the thesis is summarized as below.

1. In Chapter 3, we provide an explicit formula for the rate of convergence

of distributed gradient methods under communication delays, a criti-

cal issues in distributed systems. We studied both continuous-time and

discrete-time variants of these methods.

2. To improve the convergence of distributed gradient methods, we study

distributed aggregated gradient methods and distributed mirror descent

methods in Chapters 4 and 5, respectively. We analyze the convergence of

these two methods and provide numerical simulations to show that they

outperform distributed gradient methods.

3. In Chapter 6 our focus is to study distributed random projection ap-

proaches for master-worker architectures. Our main observation is that

distributed random projection shares the same convergence rate as dis-

tributed stochastic gradient methods, except for a constant factor captur-

ing the regularity condition of the constraint sets.

4. In Chapter 7, we consider network resource allocation problems where

we propose distributed Lagrangian methods for solving these problems

through utilizing distributed gradient methods studied in Chapter 2. On

the other hand, we study the relaxed variant of network resource allocation

problems in Chapter 8, where our main contribution is to design the

distributed gradient balancing protocol for solving this relaxed problem.

In addition, we show that our algorithm achieves a quadratic convergence
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time, which is an improvement over the existing results by a factor of n,

the number of nodes in the network.

Although we have been able to address some important questions in the

area of distributed algorithms, many practical challenges remain unsolved.

We provide here a list of such challenges, which we leave for our future

studies.

1. A natural question left by Chapter 3 is whether the results of uniform

delays can be generalized when delays are heterogeneous or time-varying,

conditions which often arise in highly noisy environments, for example, in

mobile sensor networks.

A second challenge is to investigate the impact of packet drops in inter-

processor communication. Can we distinguish between packet drops and

communication delays among the processors?

2. A question left by Chapter 4 is the convergence rate of distributed aggre-

gated gradient methods when the noise is multiplicative, that is, can we

achieve an asymptotic convergence with a linear rate? In addition, what

is the convergence rate when there are constraints distributed over the

network? Can we utilize the condition of set regularity in Chapter 6 to

achieve the same rate as in unconstrained problems?

3. In Chapter 6, we have observed through simulations that increasing batch

size does improve the performance of distributed random projection, which

is similar to observations in distributed SGD. However, it has been ob-

served that SGD suffers a phenomenon known as speedup saturation, that

is, the algorithms converge slower when the batch size is greater than a

certain threshold. Thus, an interesting question left by our work is to

characterize the impact of batch sizes on the performance of distributed

random projection?

4. Can we improve the convergence rate of distributed Lagrangian method

for solving network resource allocation problems when the objective prob-

lems are strongly convex? The sublinear convergence rate established in

Chapter 7 is much slower than the linear rate of distributed gradient bal-

ancing protocols studied in Chapter 8 for the relaxed problem.
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5. Finally, recall that all the results in this thesis are designed based on crit-

ical assumptions regarding convexity of the problems. A natural question

to ask is whether we can generalize these results for nonconvex problems,

since practical problems, such as, optimal power flow problems in power

networks and distributed estimations in machine learning are purely non-

convex. Nonconvexity of optimization problems implies a combinatorial

structure, which often makes the computation fundamentally intractable

for general problems, as compared to its convex counterpart. However,

we may be able to utilize the geometric structure of individual problems

through duality theory, leading to a good approximation to the global

optimal solution with some complexity guarantees.
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Appendix A

Proofs of Section 2.2 in Chapter 2

We provide here the proofs of Lemma 1, and Theorems 3 and 4 in Section

2.2. In the sequel, let y = x− x̄1 and consider the following notation,

F (x) ,
n∑
i=1

fi(xi), ∇F (x) , [f ′1(x1), . . . , f ′n(xn)]T , C ,
n∑
i=1

Ci.

A.1 Proof of Lemma 1

1. By Eq. (2.17) we have

˙̄x(t) = −x̄(t) + +
α(t)

n

n∑
i=1

f ′i(xi(t)).

Thus, using L1 = 0 and let g(t) =
(
I− 1

n
11T

)
∇F (x(t)) we have

ẏ(t) = −Ly(t)− α(t)g(t). (A.1)

Using the Cauchy-Schwarz inequality and Assumption 7 gives

‖g(t)‖2 =

∥∥∥∥(I − 1

n
11T

)
∇f(x(t))

∥∥∥∥2

≤ ‖∇f(x(t))‖2
(2.11)

≤ C2, (A.2)

which implies that ‖g(t)‖ ≤ C. Second, Eq. (A.1) gives

y(t) = e−Lty(0)−
∫ t

0

α(u)e−L(t−u)g(u)du.

Applying the 2-norm to the preceding relation gives

‖y(t)‖ ≤ ‖e−Lty(0)‖+

∫ t

0

‖α(u)e−L(t−u)g(u)‖du,
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where using Eq. (A.2) and ‖y(0)‖ ≤ ‖x(0)‖ yields

‖y(t)‖
(2.6)

≤ e−λ2t‖x(0)‖+ C

∫ t

0

α(u)e−λ2(t−u)du. (A.3)

This completes our proof of Eq. (2.18).

2. Suppose that {α(t)} is a non-increasing positive scalar sequence such that

limt→∞ α(t) = 0. We first show that

lim
t→∞

∫ t

0

α(u)e−λ2(t−u)du = 0. (A.4)

Indeed, since α(t) is non-increasing with α(0) = 1 we have

lim
t→∞

∫ t

0

α(u)e−λ2(t−u)du = lim
t→∞

(∫ t/2

0

α(u)e−λ2(t−u)du+

∫ t

t/2

α(u)e−λ2(t−u)du
)

≤ lim
t→∞

(∫ t/2

0

e−λ2(t−u)du+ α(t/2)

∫ t

t/2

e−λ2(t−u)du
)

= lim
t→∞

e−λ2(t−t/2) − e−λ2t

λ2

+ lim
t→∞

α(t/2)
1− e−λ2(t−t/2)

λ2

= 0. (A.5)

Using Eqs. (A.3) and (A.5) gives Eq. (2.19), i.e.,

lim
t→∞
‖y(t)‖ ≤ lim

t→∞
e−λ2t‖x(0)‖+ lim

t→∞
C

∫ t

0

α(u)e−λ2(t−u)du = 0.

3. Suppose further that
∫∞

0
α2(t)dt <∞. Integrating Eq. (A.3) gives∫ t

0

α(t)‖y(t)‖dt

≤
∫ t

0

α(t)e−λ2t‖x(0)‖dt+ C

∫ t

0

α(u)

∫ u

0

α(s)e−λ2(u−s)dsdu. (A.6)

First, the first term on the right-hand side of above is bounded by∫ t

0

α(t)e−λ2t‖x(0)‖dt ≤ ‖x(0)‖
∫ t

0

e−λ2tdt ≤ ‖x(0)‖
λ2

· (A.7)

Second, using λ2 ∈ (0, 1) we obtain a bound for the second term on the
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right-hand side of Eq. (A.6)

C

∫ t

0

α(u)

∫ u

0

α(s)e−λ2(u−s)dsdu ≤ C

∫ t

0

∫ u

0

α2(s)e−λ2(u−s)dsdu

= C

∫ t

0

∫ u/2

0

α2(s)e−λ2(u−s)dsdu+ C

∫ t

0

∫ u

u/2

α2(s)e−λ2(u−s)dsdu

≤ C

∫ t

0

∫ u/2

0

e−λ2(u−s)dsdu+ C

∫ t

0

α2(u/2)

∫ u

u/2

e−λ2(u−s)dsdu

= C

∫ t

0

e−λ2u
eλ2u/2 − 1

λ2

du+ C

∫ t

0

α2(u/2)e−λ2u
eλ2u − eλ2u/2

λ2

du

≤ C

∫ t

0

(e−λ2u/2
λ2

+
α2(u/2)

λ2

)
du ≤ 2C

(λ2)2
+
C

λ2

∫ t

0

α2(u/2)du. (A.8)

Substituting Eqs. (A.7) and (A.8) into Eq. (A.6), and letting t→∞ give∫ ∞
0

α(t)‖y(t)‖dt ≤ ‖x(0)‖
λ2

+
2C

(λ2)2
+
C

λ2

lim
t→∞

∫ t

0

α2(u/2)du

=
‖x(0)‖
λ2

+
2C

(λ2)2
+

2C

λ2

lim
t→∞

∫ t/2

0

α2(u)du

=
‖x(0)‖
λ2

+
2C

(λ2)2
+

2C

λ2

∫ ∞
0

α2(t)dt <∞. (A.9)

This completes the proof of Lemma 1.

A.2 Proof of Theorem 3

Let x∗ ∈ X ∗. Consider a candidate Lyapunov function V : R→ R given as,

V (x̄(t)) =
1

2
(x̄(t)− x∗)2. (A.10)

Recall that f(x) =
∑

i∈V fi(x). The derivative of V along Eq. (2.17) is

V̇ (x̄(t)) = (x̄(t)− x∗) ˙̄x = −α(t)

n

n∑
i=1

(x̄(t)− x∗)f ′i(xi(t))

= −α(t)

n

n∑
i=1

(x̄(t)− xi(t))f ′i(xi(t))−
α(t)

n

n∑
i=1

(xi(t)− x∗)f ′i(xi(t)).
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which by using the Cauchy-Schwarz inequality on the first term and the

convexity of F on the second term gives

V̇ (x̄(t)) ≤ α(t)

n
‖x(t)− x̄(t)1‖

√√√√ n∑
i−1

|f ′i(xi(t))|2 −
α(t)

n
(F (x(t))− f ∗)

(2.11)

≤ Cα(t)

n
‖x(t)− x̄(t)1‖ − α(t)

n
(F (x(t))− f ∗)

=
Cα(t)

n
‖x(t)− x̄(t)1‖ − α(t)

n
(F (x(t))− F (x̄(t)1))

− α(t)

n
(F (x̄(t)1)− f ∗)

(2.11)

≤ 2Cα(t)

n
‖x(t)− x̄(t)1‖ − α(t)

n
(f(x̄(t))− f ∗), (A.11)

where the last inequality is due to Eq. (2.10) and we use f(x̄(t)) = F (x̄(t)1).

Integrating both sides of Eq. (A.11) from t1 to t2, for 0 ≤ t1 ≤ t2, gives

V (x̄(t2)) ≤ V (x̄(t1)) +

∫ t2

t1

α(u)‖x(u)− x̄(u)‖du.

Let h(t) , V (x̄(t)) +
∫∞
t
α(u)‖x(u) − x̄(u)‖du. Adding both sides of the

inequality above by
∫∞
t2
α(u)‖x(u)−x̄(u)‖du gives h(t2) ≤ h(t1). This implies

that h(t) is non-increasing and bounded since h(0) is bounded due to Eq.

(2.20). Thus, we have h(t) is convergent, which gives

lim
t→∞

V (x̄(t)) exists implying (x̄(t)− x∗)2 converges. (A.12)

Integrating both sides of Eq. (A.11) again and rearranging the terms give,

0 ≤
∫ ∞

0

α(t)

n
(f(x̄(t))− f ∗)dt ≤ γ + V (x̄(0)) <∞,

implying lim inf
t→∞

f(x̄(t)) = f ∗ since
∫∞

0
α(t)dt = ∞. Let x̄(t`) be a subse-

quence of x̄(t) such that

lim
t`→∞

f(x̄(t`)) = lim inf
t→∞

f(x̄(t)) = f ∗. (A.13)

By Eq. (A.12) x̄(t) is bounded, which without loss of generality implies that

x̄(t`) is converging to some x̃ (otherwise we can in turn select a convergent
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subsequence of x̄(t`)). Therefore, limt`→∞ f(x̄(t`)) = f(x̃). This implies that

x̃ is a solution of problem (2.1) due to Eq. (A.13). By letting x∗ = x̃ in Eq.

(A.12) we obtain that limt→∞ x̄(t) = x̃, which concludes our proof.

A.3 Proof of Theorem 4

Using α(t) = 1/
√
t into Eq. (A.9) and since λ2 ∈ (0, 1) we have∫ t

0

α(t)‖x(t)− x̄1‖dt

≤ ‖x(0)‖
λ2

+
2C

(λ2)2
+

2C

λ2

∫ t/2

0

α2(u)du

=
‖x(0)‖
λ2

+
2C

(λ2)2
+

2C

λ2

(∫ 1

0

α2(u)du+

∫ t/2

1

α2(u)du
)

≤ ‖x(0)‖
λ2

+
4C

(λ2)2
+

2C ln(t)

λ2

. (A.14)

Taking the integration of Eq. (A.11) and using Eq. (A.14) gives

V (x̄(t))− V (x̄(0))

≤ 2C

n

∫ t

0

α(u)‖x(u)− x̄(u)1‖du− 1

n

∫ t

0

α(u)(f(x̄(u))− f ∗)du

≤ 2C‖x(0)‖
nλ2

+
8C2

(λ2)2
+

4C2 ln(t)

λ2

− 1

n

∫ t

0

α(u)(f(x̄(u))− f ∗)du. (A.15)

Rearranging Eq. (A.15), dropping V (x̄(t)), and using λ2 ∈ (0, 1) we have∫ t

0

α(u)(f(x̄(u))− f ∗)du ≤ 2C‖x(0)‖
λ2

+
12C2 ln(t)

(λ2)2
+ nV (x̄(0)),

which when diving both sides by∫ t

0

α(u)du =

∫ t

0

1√
u
du = 2

√
t

implies∫ t
0
α(u)(f(x̄(u))− f ∗)du∫ t

0
α(u)du

≤ C‖x(0)‖
λ2

√
t

+
6C2 ln(t)

(λ2)2
√
t

+
nV (x̄(0))

2
√
t
·
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By the Jensen inequality the preceding relation implies

f

(∫ t
0
α(u)x̄(u)du∫ t
0
α(u)du

)
− f ∗ ≤ C‖x(0)‖

λ2

√
t

+
6C2 ln(t)

(λ2)2
√
t

+
nV (x̄(0))

2
√
t
· (A.16)

Recall that S(0) = 0, Ṡ(t) = α(t) for t > 0, and by Eq. (2.23) we have

d

dt
(S(t)zi(t)) = Ṡ(t)zi(t) + S(t)żi(t)

(2.23)
= α(t)xi(t)

⇒ zi(t) =

∫ t
0
α(u)xi(u)du∫ t

0
α(u)du

∀i ∈ V ,

which by the Lipschitz continuity of fi implies

f(zi(t))− f
( ∫ t

0 α(u)x̄(u)du∫ t
0 α(u)du

)
≤ C

∣∣∣ ∫ t
0 α(u)(xi(u)−x̄(u))du∫ t

0 α(u)du

∣∣∣
(A.14)

≤ C‖x(0)‖
2λ2

√
t

+
2C2

(λ2)2
√
t

+
C2 ln(t)

λ2

√
t
· (A.17)

Adding Eq. (A.17) into Eq. (A.16) we obtain Eq. (2.24).

117



Appendix B

Extensions of Chapter 3

We use uppercase letters in boldface for matrices. Let xi ∈ Rd, for all i ∈ V ,

and fi : Rd → R. We define the following notation

X =


xT1

. . .

xTn

 ∈ Rn×d, x̄ =
1

n

n∑
i=1

xi ∈ Rd, A =


aT1

. . .

aTn

 ∈ Rn×d,

W = I− 1

n
11T , Y(t) = X(t)− 1x̄(t)T = WX(t). (B.1)

F (X) ,
n∑
i=1

fi(xi), ∇F (X) =


∇fT1 (x1)

. . .

∇fTn (xn)

 , G(t) = W∇F (X(t)).

Moreover, we write ‖A‖F as the Frobenius norm of A. Given a matrix X

and a set X , we denote by PX [X] the row-wise projection of X on X .

B.1 Extension to Rd for Continuous-Time Distributed

Gradient Methods with Delays

We present here a sketch of key steps to extend our analysis for the case

d ≥ 1. We rewrite the updates in Eqs. (3.3)–(3.8) in matrix form as

V(t) = −βX(t) + βAX(t− τ)− α(t)∇F (X(t))

Ẋ(t) = PTX (X(t))
[X(t)] = V(t)− ζ(V(t))

v̄(t) = −βx̄(t) + βx̄(t− τ)− α(t)

n

n∑
i=1

∇fi(xi(t))

˙̄x(t) = v̄(t)− ζ̄(v̄(t)).

118



We make use of the following result studied in [18], which is a general version

of Lemma 4, to analyze the impact of the projection.

Lemma 16 (Lemma 1 [18]). Let X be a nonempty closed convex set in Rd.

Then, we have for any x ∈ Rd

(a) (PX [x]− x)T (x− y) ≤ −‖PX [x]− x‖2 for all y ∈ X .

(b)
∥∥PX [x]− y

∥∥2 ≤
∥∥x− y

∥∥2 −
∥∥PX [x]− x

∥∥2
for all y ∈ X .

We now present the analysis for the general versions of Lemma 3 and

Theorem 7, which are given in the following two lemmas.

Lemma 17. Suppose that Assumptions 1 and 3 hold. Let the trajectories of

xi(t), for all i ∈ V, be updated by Algorithm 1. Let {α(t)} be a non-increasing

positive scalar sequence with α(t) = 1 for 0 ≤ t ≤ 1. Moreover, let

β ∈
(

0 ,
ln(1/σ2)

τ

)
and γ = σ2e

βτ ∈ (0 , 1).

Then

1. For all t ≥ 0 we have∥∥∥X(t)− 1x̄(t)T
∥∥∥
F
≤ µ(t) + βσ2

∫ t

0

e−β(1−γ)(t−u)µ(u− τ)du, (B.2)

where

µ(t) = e
‖X(0)‖F + 2C

β
e−βt/2 +

2Cα(t/2)

β
· (B.3)

2. If limt→∞ α(t) = 0 then we have

lim
t→∞

∥∥xi(t)− x̄(t)
∥∥ = 0, for all i ∈ V . (B.4)

3. Further we have∫ t

0

α(u)
∥∥∥X(u)− 1x̄(u)T

∥∥∥
F
du

≤
8
(
‖X(0)‖F + 2C

)
eβτ/2

β3(1− γ)2
+

4C

β2(1− γ)

∫ t

0

α2(γu/4− τ)du. (B.5)
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Proof sketch. As mentioned, the key step in the proof of Lemma 17 is to

show Eq. (B.2). The analysis of Eqs. (B.4) and (B.5) are consequences of

Eq. (B.2). Consider the following notation:

H(t) =

(
I− 1

n
11T

)
ζ(V(t)) = Wζ(V(t)).

We first consider

ẏi(t) = ẋi(t)− ˙̄x(t)

= −βxi(t) + β

n∑
j=1

aijxj(t− τ)− α(t)∇fi(xi(t))− ζi(vi(t))

+ βx̄(t)− βx̄(t− τ) +
α(t)

n

n∑
j=1

∇fj(xj(t)) + ζ̄(v̄(t))

= −yi(t) + β
n∑
j=1

aijyj(t− τ)− α(t)gi(t)− hi(t),

which implies

yi(t) = e−tyi(0) +

∫ t

0

e−(t−u)

(
β

n∑
j=1

aijyj(u− τ)− α(t)gi(u)− hi(u)

)
du.

Thus we obtain

Y(t) = e−βtY(0) + β

∫ t

0

e−β(t−u)AY(u− τ)du

−
∫ t

0

e−β(t−u) (α(u)G(u) + H(u)) du. (B.6)

In addition, note that 1TY(t) = 1T (I − 1
n
11T )X(t) = 0, implying that

each column of Y(t) /∈ span{1}. Indeed, if there exists at least one column

of Y(t), namely, p`(t), such that p`(t) ∈ span{1} then 1Tp`(t) 6= 0, but

1TY(t) = 0, a contradiction. The previous observation implies that

‖AY(t)‖2
F =

n∑
i=1

‖Api(t)‖2 ≤
n∑
i=1

σ2‖pi(t)‖2 = σ2‖Y‖2
F , (B.7)

where pi(t) are columns of Y(t). Taking the Frobenius norm on both sides
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of Eq. (B.6), and using Eqs. (3.24) and (B.7) we have

‖Y(t)‖F ≤ e−βt‖Y(0)‖F + βσ2

∫ t

0

e−β(t−u)‖Y(u− τ)‖Fdu

+ C

∫ t

0

e−β(t−u)α(u)du+

∫ t

0

e−β(t−u)‖ζ(V(u))‖Fdu. (B.8)

We now use Lemma 16 to construct an upper bound for the last term on

the righ-hand side of Eq. (B.8). First, since A is doubly stochastic and

xj(t− τ) ∈ X , for all j ∈ V , we have∑
j∈Ni

aijxj(t− τ) ∈ X .

Thus, by Eq. (3.2) with θ = β−1 we have

ri(t) = −βxi(t) + β
∑
j∈Ni

aijxj(t− τ) ∈ DX (xi(t)).

Hence, by Proposition 1 we have ri(t) ∈ TX (xi(t)). Using Lemma 16(b) gives

‖PTX (xi(t))[vi(t)]− ri(t)‖2 ≤ ‖vi(t)− ri(t)‖2 − ‖PTX (xi(t))[vi(t)]− vi(t)‖2,

which since ζi(vi(t)) = vi(t)− PTX (xi(t))[vi(t)] implies

‖ζi(vi(t))‖ ≤ ‖vi(t)− ri(t)‖ = ‖α(t)∇fi(xi(t))‖ ≤ Ciα(t). (B.9)

Thus we obtain ‖ζ(V(t))−1ζ̄(v̄(t))T‖F ≤ ‖ζ(V(t))‖F ≤ Cα(t). Substituting

the previous relation into Eq. (B.8) and using Eq. (3.29) we obtain Eq. (B.2).

Lemma 18. Suppose that Assumptions 1 and 3 hold. Let the trajectories of

xi(t), for all i ∈ V, be updated by Algorithm 1. Suppose that

β ∈
(

0,
ln(1/σ2)

τ

)
and γ = σ2e

βτ ∈ (0, 1).

Let α(t) = 1/
√
t for t ≥ 1 and α(t) = 1 for t ≤ 1. Then for each i ∈ V

f

(∫ t
0
α(u)xi(u)du∫ t

0
α(u)du

)
− f ∗ ≤ 2Γ0(t) + nV (x̄(0))

2(
√
t− 1)

, (B.10)
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where

Γ0(t) ,
24C (‖X(0)‖F + 2C) eβτ/2

β3(1− γ)2
+

48C2(1 + τ)

β2γ(1− γ)
+ C2 ln(t)

+
48C2 ln(γt− 4τ)

β2γ(1− γ)
· (B.11)

Proof Sketch. Let x∗ be a solution of problem (2.1). Consider the candidate

Krasovskii Lyapunov function given in Eq. (3.40), where its derivative is

given as

V̇ (x̄(t)) ≤ −α(t)

n

n∑
i=1

(x̄(t)− x∗)T∇fi(xi(t))︸ ︷︷ ︸
W1

− 1

n

n∑
i=1

(x̄(t)− x∗)T ζi(vi(t))︸ ︷︷ ︸
W2

≤ W1 +W2. (B.12)

The term W1 can be upper bounded by Eq. (3.42). We focus on delivering the

upper bound of W2. Recall that ζi(vi(t)) = vi(t)−PTX (xi(t))
[vi(t)]. Consider

W2 = −(x̄(t)− x∗)T ζ̄(v̄(t))

= − 1

n

n∑
i=1

(
x̄(t)− (1 + β)xi(t) + β

n∑
j=1

aijxj(t− τ)− vi(t)

)T

ζi(vi(t))

− 1

n

n∑
i=1

(
vi(t) + (1 + β)xi(t)− β

n∑
j=1

aijxj(t− τ)− x∗

)T

ζi(vi(t)),

(B.13)

where by Eq. (3.3) the first sum on the right-hand side is equivalent to

− 1

n

n∑
i=1

(
x̄(t)− (1 + β)xi(t) + β

n∑
j=1

aijxj(t− τ)− vi(t)

)T

ζi(vi(t))

= − 1

n

n∑
i=1

(x̄(t)− xi(t) + α(t)∇fi(xi(t)))T ζi(vi(t))

≤ 1

n

n∑
i=1

‖x̄(t)− xi(t)‖‖ζi(vi(t))‖+
1

n

n∑
i=1

α(t)‖∇fi(xi(t))‖‖ζi(vi(t))‖

(B.9)

≤ Cα(t)

n
‖X(t)− 1x̄(t)T‖F +

C2α2(t)

n
·
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On the other hand, let ri(t) be defined as

ri(t) = x∗ − (1 + β)xi(t) + β
n∑
j=1

aijxj(t− τ).

Consider

xi(t) +
1

2
ri(t) =

1− β
2

xi(t) +
1

2
x∗ +

β

2

n∑
j=1

aijxj(t− τ) ∈ X ,

which by Eq. (3.2) with θ = 1/2 implies ri(t) ∈ DX (xi(t)). In addition, by

Proposition 1 we have ri(t) ∈ TX (xi(t)). Thus, by applying Lemma 16(1a)

into the second term on the right-hand side of Eq. (B.13) we obtain

− 1

n

n∑
i=1

(vi(t)− ri(t))
T ζi(vi(t))

≤ − 1

n

n∑
i=1

∥∥∥vi(t)− PTX (xi(t))
[vi(t)]

∥∥∥2

= − 1

n
‖ζ(V(t))‖2

F ·

Applying the preceding two relations into Eq. (B.13) we obtain

W2 ≤
Cα(t)

n
‖X(t)− 1x̄(t)T‖F +

C2α2(t)

n
− 1

n
‖ζ(V(t))‖2

F

≤ Cα(t)

n
‖X(t)− 1x̄(t)T‖F +

C2α2(t)

n
· (B.14)

Thus we obtain the same result as in Eq. (3.46), i.e.,

V̇ (x̄(t)) ≤ 3α(t)C

n
‖X(t)− 1x̄(t)T‖F +

C2α2(t)

n
− α(t)

n
(f(x̄(t))− f ∗).

The rest of this proof is the same as the one of Theorem 7.

B.2 Discrete-Time Distributed Gradient Methods with

Communication Delays

Here, we consider the discrete-time version of Algorithm 1 with a positive

constant stepsize α, presented in Algorithm 6. Our focus is to establish the

convergence rate of this algorithm. Specifically, if each node i maintains a
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variable vi to compute the time-weighted average of its estimate xi, then the

objective function of problem (2.1), estimated at any variable vi, converges

to the neighborhood of the optimal value with a rate O
(

n
k(1−η)

)
, where η is

a positive constant depending on σ2 in Eq. (2.5) and the delay constant τ .

An explicit formula for η will be given later. We first rewrite Eq. (B.21)

Z(k) = (1− β)x(k) + βAx(k − τ)− α∇F (x(k)) (B.15)

x(k + 1) = Z(k)− ζ(Z(k)). (B.16)

Moreover, since A is doubly stochastic we have

z̄(k) = (1− β)x̄(k) + βx̄(k − τ)− α

n

n∑
i=1

∇fi(xi(k)) (B.17)

x̄(k + 1) = z̄(k)− ζ̄(z̄(k)). (B.18)

We now proceed with our analysis. The proofs presented here will hold

the same merit with those in Chapter 3. The first step is to show that

‖X(k)− 1x̄(k)T‖F converges to the neighborhood of zero.

Lemma 19. Suppose that Assumptions 1 and 3 hold. Let xi(k), for all i ∈ V ,
be updated by Algorithm 6. Suppose that β ∈ (0, 1).

1. Then for all k ≥ 0

‖Y(k)‖F ≤ (1− β)k+1 ‖Y(0)‖F +
2αC

β

+ σ2β

k∑
t=0

(1− β)k−t ‖Y(t− τ)‖F . (B.19)

2. In addition, if β ∈
(
0, 1− e− ln(1/σ2)/τ

)
then

‖Y(k)‖F ≤ 2‖Y(0)‖Fηk+1 +
4Cα

1− η
, (B.20)

where

η = 1− β +
σ2β

(1− β)τ
∈ (1− β, 1)·
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Algorithm 6 Distributed Gradient Algorithm with Communication Delays

1. Initialize: Each node i initializes arbitrarily xi(k) ∈ X for k = −τ, . . . , 0.

2. Iteration: For k ≥ 0 each node i ∈ V implements

xi(k + 1) = PX

[
(1− β)xi(k) + β

n∑
j=1

aijxj(k − τ)− α∇fi(xi(k))

]
. (B.21)

Proof. Recall that

W = I− 1

n
11T and G(t) = W∇F (X(t)).

1. By Eqs. (B.15) and (B.18) we have

x̄(k + 1)T = (1− β)1x̄(k)T + β1x̄(k − τ)T

− α

n
1

n∑
i=1

∇fi(xi(k))T − 1ζ̄(z̄(k))T

= (1− β)
1

n
11Tx(k) + β

1

n
11Tx(k − τ)

− α

n
11T∇F (X(k))− 1

n
11T ζ(Z(k)).

Thus, using Eq. (B.16) and notation in Eq. (B.1) we have

Y(k + 1) = (1− β)Y(k) + βAY(k − τ)−G(k)−Wζ(Z(k)),

which when updating iteratively until Y(0) we obtain

Y(k + 1) = (1− β)k+1 Y(0) + β
k∑
t=0

(1− β)k−t AY(t− τ)

−
k∑
t=0

(1− β)k−t [G(t) + Wζ(Z(t))] . (B.22)

Using Eq. (B.7) gives

‖AY(k)‖2
F ≤

n∑
i=1

σ2‖yi(k)‖2 = σ2‖Y(k)‖F . (B.23)
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Second, Eq. (3.24) implies

‖G(k)‖F = α‖W∇F (x(k))‖F ≤ αC.

Third, let ζi(k) = (1− β)xi(k) + β
∑n

j=1 aijxj(k − τ). We have ζi(k) ∈ X
since xj(k − τ) ∈ X , for all j ∈ V , k ≥ 0, and A is doubly stochastic.

Thus, by Lemma 16(b), Eq. (B.21), and Eq. (B.15) we have

‖xi(k + 1)− ζi(zi(k))‖2 ≤ ‖zi(k)− ζi(zi(k))‖2 − ‖xi(k + 1)− zi(k)‖2.

Since ζi(zi(k)) = zi(k)− xi(k + 1) the preceding relation gives

‖ζi(zi(k))‖ ≤ ‖zi(k)− ζi(k)‖ ≤ Ciα, (B.24)

which implies that ‖ζ(Z(k))‖F ≤ Cα. Thus, we obtain

‖Wζ(Z(k))‖F ≤ ‖ζ(Z(k))‖F ≤ Cα. (B.25)

Applying the 2-norm to Eq. (B.22), using Eqs. (B.23)–(B.25) gives

‖Y(k + 1)‖F

≤ (1− β)k+1 ‖Y(0)‖F + 2αC
k∑
t=0

(1− β)k−t

+ σ2β
k∑
t=0

(1− β)k−t ‖Y(t− τ)‖F

≤ (1− β)k+1 ‖Y(0)‖F + 2αC (1− β)k
1−

(
1

1−β

)k+1

1− 1
1−β

+ σ2β

k∑
t=0

(1− β)k−t ‖Y(t− τ)‖F

≤ µ(k + 1) + σ2β
k∑
t=0

(1− β)k−t ‖Y(t− τ)‖F , (B.26)

where

µ(k + 1) = (1− β)k+1 ‖Y(0)‖F +
2αC

β
· (B.27)
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2. We now apply the delayed version of the Grönwall-Bellman inequality

for a finite sum in Eq. (B.26). Indeed, let w(k) be

w(k) =
k∑
t=0

(1− β)−t ‖Y(t− τ)‖F .

Thus by convention we have w(−1) = 0 and w(k) is a non-decreasing

non-negative function of time. Moreover, by Eq. (B.26) we have

‖Y(k)‖F ≤ µ(k) + σ2β (1− β)k−1w(k − 1).

Consider

w(k + 1)− w(k)

=
k+1∑
t=0

(1− β)−t ‖Y(t− τ)‖F −
k∑
t=0

(1− β)−t ‖Y(t− τ)‖F

= (1− β)−k−1 ‖Y(k + 1− τ)‖,

which implies that

w(k + 1) = (1− β)−k−1 ‖Y(k + 1− τ)‖+ w(k)

≤ (1− β)−k−1 µ(k + 1− τ)

+ σ2β (1− β)−k−1 (1− β)k−τ w(k − τ) + w(k)

= (1− β)−k−1 µ(k + 1− τ)

+ σ2β (1− β)−τ−1w(k − τ) + w(k)

≤ (1− β)−k−1 µ(k + 1− τ)

+

(
1 +

σ2β

(1− β)τ+1

)
w(k)

=
k+1∑
t=0

(
1 +

σ2β

(1− β)τ+1

)k+1−t

(1− β)−t µ(t− τ), (B.28)

where w(−1) = 0. Substituting Eq. (B.28) into Eq. (B.26) we have

‖Y(k + 1)‖F ≤ µ(k + 1) + σ2β
k∑
t=0

(
1− β +

σ2β

(1− β)τ

)k−t
µ(t− τ).

(B.29)
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Let

η = 1− β +
σ2β

(1− β)τ
.

Since β ∈
(
0, 1− e− ln(1/σ2)/τ

)
we have η ∈ (0, 1). First, using η into the

second term on the right-hand side of Eq. (B.29) gives

k∑
t=0

ηk−t (1− β)t−τ ≤ (1− β)−τ

η + β − 1
ηk+1 =

1

σ2β
ηk+1. (B.30)

Second, we have

k∑
t=0

ηk−t = ηk
1− η−k−1

1− η−1
≤ 1

1− η
· (B.31)

Thus, using Eqs. (B.27), (B.30), and (B.31) into Eq. (B.29) we obtain

k∑
t=0

(
1− β +

σ2β

(1− β)τ

)k−t
µ(t− τ)

=
k∑
t=0

ηk−t
(

(1− β)k−τ ‖Y(0)‖F +
2αC

β

)
≤ ‖Y(0)‖F

σ2β
ηk+1 +

2Cα

β(1− η)
,

which by Eqs. (B.26) and (B.27) implies Eq. (B.20).

Let x∗ ∈ X ∗ be a solution of problem (2.1). Consider the following lemma.

Lemma 20. Suppose that Assumptions 1 and 3 hold. Let {xi(k)}, for all

i ∈ V, be updated by Algorithm 6 and d(k) = x̄(k) − x∗. Suppose that

β ∈ (0, 1). Then for all ` ∈ V

‖d(k + 1)‖2 ≤ ‖d(k)‖2 +
2C2α2

n(1− β)

+ β
(
‖d(k − τ)‖2 − ‖d(k)‖2

)
+

6Cα

n
‖X(k)− 1x̄(k)T‖F −

2α

n
(f(x`(k))− f ∗) . (B.32)
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Proof. By Eqs. (B.15) and (B.18) we have

‖d(k + 1)‖2 = ‖x̄(k + 1)− x∗‖2

=

∥∥∥∥∥(1− β)x̄(k) + βx̄(k − τ)− x∗ − α

n

n∑
i=1

∇fi(xi(k))− ζ̄(z̄(k))

∥∥∥∥∥
2

= ‖x̄(k)− x∗‖2 + 2β(x̄(k)− x∗)T (x̄(k − τ)− x̄(k))

− 2 (x̄(k)− x∗)T
(
α

n

n∑
i=1

∇fi(xi(k)) + ζ̄(z̄(k))

)

+

∥∥∥∥∥β(x̄(k − τ)− x̄(k))− α

n

n∑
i=1

∇fi(xi(k))− ζ̄(z̄(k))

∥∥∥∥∥
2

= ‖x̄(k)− x∗‖2 + β‖x̄(k − τ)− x∗‖2

− β
(
‖x̄(k)− x∗‖2 + ‖x̄(k − τ)− x̄(k)‖2

)
− 2 (x̄(k)− x∗)T

(
α

n

n∑
i=1

∇fi(xi(k)) + ζ̄(z̄(k))

)

+

∥∥∥∥∥β(x̄(k − τ)− x̄(k))− α

n

n∑
i=1

∇fi(xi(k))− ζ̄(z̄(k))

∥∥∥∥∥
2

. (B.33)

Applying the Cauchy-Schwarz inequality to the last term on the right-hand

side of Eq. (B.33) gives

‖d(k + 1)‖2 ≤ ‖x̄(k)− x∗‖2 + β‖x̄(k − τ)− x∗‖2

− β
(
‖x̄(k)− x∗‖2 + ‖x̄(k − τ)− x̄(k)‖2

)
− 2 (x̄(k)− x∗)T

(
α

n

n∑
i=1

∇fi(xi(k)) + ζ̄(z̄(k))

)

+
β2

2
‖x̄(k − τ)− x̄(k)‖2 + 2

∥∥∥∥∥αn
n∑
i=1

∇fi(xi(k)) + ζ̄(z̄(k))

∥∥∥∥∥
2

= ‖x̄(k)− x∗‖2 + β
(
‖x̄(k − τ)− x∗‖2 − ‖x̄(k)− x∗‖2

)
− β‖x̄(k − τ)− x̄(k)‖2 + 2

∥∥∥∥∥αn
n∑
i=1

∇fi(xi(k)) + ζ̄(z̄(k))

∥∥∥∥∥
2

− 2 (x̄(k)− x∗)T
(
α

n

n∑
i=1

∇fi(xi(k)) + ζ̄(z̄(k))

)
≤ ‖d(k)‖2 + β(‖d(k − τ)‖2 − ‖d(k)|‖2) +H1 +H2, (B.34)
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where H1 and H2 are defined as

H1 = 2

∥∥∥∥∥αn
n∑
i=1

∇fi(xi(k)) + ζ̄(z̄(k))

∥∥∥∥∥
2

H2 = −2 (x̄(k)− x∗)T
(
α

n

n∑
i=1

∇fi(xi(k)) + ζ̄(z̄(k))

)
.

We first analyze H1. Indeed, we have∥∥∥∥∥αn
n∑
i=1

∇fi(xi(k)) + ζ̄(z̄(k))

∥∥∥∥∥ ≤
∥∥∥∥∥αn

n∑
i=1

∇fi(xi(k))

∥∥∥∥∥+
∥∥ζ̄(z̄(k))

∥∥
≤ 2αC

n
,

which implies that

H1 ≤
8α2C2

n2
· (B.35)

Second, we analyze H2. In particular, consider the first term of H2

−2α

n

n∑
i=1

∇fi(xi(k))T (x̄(k)− x∗)

= −2α

n

n∑
i=1

(∇fi(xi(k)))T (x̄(k)− xi(k) + xi(k))T (xi(k)− x∗)

≤ 2α

n

n∑
i=1

‖∇fi(xi(k))‖ ‖x̄(k)− xi(k)‖ − 2α

n

n∑
i=1

∇fi(xi(k))T (xi(k)− x∗)

≤ 2Cα

n
‖X(k)− 1x̄(k)T‖F −

2α

n

n∑
i=1

∇fi(xi(k))T (xi(k)− x∗)· (B.36)

For some fixed ` ∈ V , we have

− 2α

n

n∑
i=1

∇fi(xi(k))T (xi(k)− x∗) ≤ −2α

n
(F (X(k))− f ∗)

= −2α

n

(
F (X(k))− F (1x̄(k)T )

)
− 2α

n

(
F (1x̄(k)T )− f(x`(k))

)
− 2α

n
(f(x`(k))− f ∗)

(2.10)

≤ 4Cα

n
‖X(k)− 1x̄(k)T‖F −

2α

n
(f(x`(k))− f ∗) . (B.37)
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Substituting Eq. (B.37) into Eq. (B.36) gives

−2α

n

n∑
i=1

∇fi(xi(k))T (x̄(k)− x∗)

≤ 6Cα

n
‖X(k)− 1x̄(k)T‖F −

2α

n
(f(x`(k))− f ∗) . (B.38)

We now consider the second term of H2. Specifically, denote by pi(k)

pi(k) = zi(k)− β
n∑
j=1

aijxj(k − τ) = (1− β)xi(k)− α∇fi(xi(k)).

Note that since A is doubly stochastic,

q(k) = β

n∑
j=1

aijxj(k − τ) + (1− β)x∗ ∈ X .

Then by Lemma 16(a) we have

−(pi(k)− (1− β)x∗)T ζi(zi(k)) ≤ −‖zi(k)− PX [zi(k)]‖2 .

In addition, using the double stochasticity of A we obtain

n∑
i=1

‖(1− β)x̄(k)− ζi(k)‖‖ζi(zi(k))‖

=
n∑
i=1

‖(1− β)(x̄(k)− xi(k)) + α∇fi(xi(k))‖‖ζi(zi(k))‖

≤ (1− β)
n∑
i=1

∥∥∥∥∥x̄(k)−
n∑
j=1

aijxj(k)

∥∥∥∥∥ ‖ζi(zi(k))‖

+
n∑
i=1

‖α∇fi(xi(k))‖‖ζi(zi(k))‖

≤ (1− β)Cα‖X(k)− 1x̄(k)T‖F + C2α2·

Thus, using the last two relations into the second term of H2 gives

− 2 (x̄(k − x∗)T ζ̄(z̄(k)) ≤ 2Cα

n
‖X(k)− 1x̄(k)T‖F +

2C2α2

n(1− β)
. (B.39)

Using Eqs. (B.35), (B.36) and (B.39) into Eq. (B.34) we obtain Eq. (B.32).
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Using Lemmas 19 and 20, we now show the convergence rate of Algorithm

6. In particular, we show that the objective function f of problem (2.1)

converges to the neighborhood of f ∗ with a rate O (1/k). Our analysis is

based on considering the discrete-time candidate of the Krasovskii Lyapunov

function V in Chapter 3.

V (x̄(k)) = (1− β)‖x̄(k)− x∗‖2 + β

k∑
t=k−τ

‖x̄(t)− x∗‖2. (B.40)

Theorem 18. Suppose that Assumptions 1 and 3 hold. Let the sequence

{xi(k)}, for all i ∈ V, be generated by Algorithm 6 where

β ∈
(
0, 1− e− ln(1/σ2)/τ

)
·

Moreover, suppose that each node i maintains a variable vi and updates as

vi(k + 1) =
1

k + 1

k∑
t=0

xi(t), ∀k ≥ 0. (B.41)

Then using η in Lemma 19, we have for all i ∈ V,

f(vi(k))− f ∗ ≤ 1

k + 1

(
nV (x̄(0))

2α
+

6C‖Y(0)‖F
1− η

)
+

C2α

1− β
+

12C2α

1− η
.

(B.42)

Proof. Let x∗ ∈ X ∗ and d(k) = x̄(k)− x∗. Adding both sides of Eq. (B.32)

by β
∑k

t=k+1−τ ‖x̄(t)−x∗‖ and using the definition of V in Eq. (B.40) implies

V (x̄(k + 1))

≤ ‖d(k)‖2 + β

k∑
t=k+1−τ

‖d(t)‖+ β
(
‖d(k − τ)‖2 − ‖d(k)‖2

)
+

2C2α2

n(1− β)
+

6Cα

n
‖X(k)− 1x̄(k)T‖F −

2α

n
(f(x`(k))− f ∗)

= V (x̄(k)) +
2C2α2

n(1− β)
+

6Cα

n
‖X(k)− 1x̄(k)T‖F

− 2α

n
(f(x`(k))− f ∗) .
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Iteratively updating the previous relation over k we have

V (x̄(k + 1)) ≤ V (x̄(0)) +
6Cα

n

k∑
t=0

‖X(t)− 1x̄(t)T‖F +
2C2α2

n(1− β)
(k + 1)

− 2α

n

k∑
t=0

(f(x`(t))− f ∗) · (B.43)

Using Eq. (B.20) and η ∈ (0, 1) gives

k∑
t=0

‖X(t)− 1x̄(t)T‖F ≤
2‖Y(0)‖F

1− η
+

4Cα

1− η
(k + 1).

Substituting the previous relation into Eq. (B.43) we have

V (x̄(k + 1)) ≤ V (x̄(0)) +
2C2α2

n(1− β)
(k + 1) +

24C2α2

n(1− η)
(k + 1)

+
12Cα‖Y(0)‖F
n(1− η)

− 2α

n

k∑
t=0

(f(x`(t))− f ∗) .

Reorganizing above and dropping the non-negative term V (x̄(k + 1) imply

k∑
t=0

(f(x`(t))− f ∗)

≤ nV (x̄(0))

2α
+

C2α

1− β
(k + 1) +

12C2α

1− η
(k + 1) +

6C‖Y(0)‖F
1− η

.

Thus, dividing both sides of the preceding equation by (k + 1) and by the

convexity of f gives Eq. (B.42).
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Appendix C

Proofs of Lemmas 7 and 8 in Chapter 4

C.1 Proof of Lemma 7

Recall from Eq. (4.15) that

θ =

√
1− α 2Lµ

n(µ+ L)
∈ (σ2, 1).

Using Eq. (4.13) gives

E
[∣∣x̄(k + 1)− x∗

∣∣] ≤ θE
[∣∣x̄(k)− x∗

∣∣]+
Cα

n
+
Lα

n
E
[∥∥x†(k)

∥∥]
(4.7)

≤ θE
[∣∣x̄(k)− x∗

∣∣]+
Cα

n

+
Lα

n

(
E
[∥∥x†(0)

∥∥]σk2 + α
k−1∑
t=0

σk−1−t
2 E

[∥∥y†(t)∥∥]) ,
which when iterating over k gives

E
[∣∣x̄(k + 1)− x∗

∣∣]
≤ θk+1E

[∣∣x̄(0)− x∗
∣∣]+

Cα

n

k∑
t=0

θt +
LαE

[∥∥x†(0)
∥∥]

n

k∑
t=0

θk−tσt2

+
Lα2

n

k∑
t=0

θk−t
t−1∑
`=0

σt−1−`
2 E

[∥∥y†(`)∥∥]

≤ θk+1E
[∣∣x̄(0)− x∗

∣∣]+
Cα

n(1− θ)
+
LαE

[∥∥x†(0)
∥∥]

n(θ − σ2)
θk+1

+
Lα2

n

k∑
t=0

θk−t
t−1∑
`=0

σt−1−`
2 E

[∥∥y†(`)∥∥]. (C.1)
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We provide a bound for the last term on the right-hand side of Eq. (C.1)

k∑
t=0

θk−t
t−1∑
`=0

σt−1−`
2 E

[∥∥y†(`)∥∥]
= θk

k−1∑
`=0

E
[∥∥y†(`)∥∥]σ−`−1

2

k∑
t=`+1

(σ2

θ

)t
≤ θk

k−1∑
`=0

E
[∥∥y†(`)∥∥]σ−`−1

2

(
σ2
θ

)`+1

1− σ2
θ

≤ 1

θ − σ2

k−1∑
`=0

E
[∥∥y†(`)∥∥]θk−`·

Using above and the notation in Eq. (4.15) into Eq. (C.2) gives

E
[∣∣x̄(k + 1)− x∗

∣∣]
≤

E
[∣∣x̄(0)− x∗

∣∣]+
E
[∥∥x†(0)

∥∥]
n(1 + τ)(γ − σ2)

 θk+1

+
Cα

n(1− θ)
+

Lα2

n(θ − σ2)

k−1∑
`=0

E
[∥∥y†(`)∥∥]θk−`

= β1θ
k+1 +

Cα

n(1− θ)
+ β2

k−1∑
t=0

θk−tE
[∥∥y†(t)∥∥]. (C.2)

Thus by Eq. (C.2) we obtain Eq. (4.16), i.e.,

E
[∥∥x̄(k + 1)1− x∗1

∥∥]+ E
[∥∥x̄(k)1− x∗1

∥∥]
≤ β1θ

k+1 +
Cα

n(1− σ2)
+ β2

k−1∑
t=0

θk−tE
[∥∥y†(t)∥∥]

+ β1θ
k +

Cα

n(1− σ2)
+ β2

k−2∑
t=0

θk−1−tE
[∥∥y†(t)∥∥]

≤ β1γ
k+1 +

Cα

n(1− σ2)
+ β2

k−1∑
t=0

θk−tE
[∥∥y†(t)∥∥]

+ β1γ
k +

Cα

n(1− σ2)
+ β2θ

−1

k−2∑
t=0

θk−tE
[∥∥y†(t)∥∥]

≤ 2β1θ
k +

2Cα

n(1− σ2)
+

2β2

θ

k−1∑
t=0

θk−tE
[∥∥y†(t)∥∥]·
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C.2 Proof of Lemma 8

By Eq. (4.2) and the triangle inequality we have

E
[∥∥g(x(k + 1))− g(x(k))

∥∥]
≤ E

[∥∥∇F (x(k + 1))−∇F (x(k))
∥∥]+ E

[∥∥ξ(x(k + 1))− ξ(x(k))
∥∥]

(4.2)

≤
(2.8)

LE
[∥∥x(k + 1)− x(k)

∥∥]+ 2C

≤ LE
[∥∥x(k + 1)− x̄(k + 1)1

∥∥]+ LE
[∥∥x̄(k + 1)1− x∗1

∥∥]
+ LE

[∥∥x̄(k)1− x(k)
∥∥]+ LE

[∥∥x∗1− x̄(k)1
∥∥]+ 2C. (C.3)

Using Eq. (4.7) gives

E
[∥∥x(k + 1)− x̄(k + 1)1

∥∥]+ E
[∥∥x̄(k)1− x(k)

∥∥]
≤ σk+1

2 E
[∥∥x†(0)

∥∥]+ α
k∑
t=0

σk−t2 E
[∥∥y†(t)∥∥]

+ σk2E
[∥∥x†(0)

∥∥]+ α
k−1∑
t=0

σk−1−t
2 E

[∥∥y†(t)∥∥]
≤ 2E

[∥∥x†(0)
∥∥]σk2 + αE

[∥∥y†(k)
∥∥]+

2α

σ2

k−1∑
t=0

σk−t2 E
[∥∥y†(t)∥∥]. (C.4)

Substituting Eqs. (C.4) and (4.16) into Eq. (C.4) we obtain Eq. (4.17), i.e.,

E
[∥∥g(x(k + 1))− g(x(k))

∥∥]
≤ 2C + 2LE

[∥∥x†(0)
∥∥]σk2 + LαE

[∥∥y†(k)
∥∥]+

2Lα

σ2

k−1∑
t=0

σk−t2 E
[∥∥y†(t)∥∥]

+ 2Lβ1θ
k +

2LCα

n(1− σ2)
+

2Lβ2

θ

k−1∑
t=0

θk−tE
[∥∥y†(t)∥∥]

≤ 2C +
2LCα

n(1− σ2)
+ 2L

(
β1 + E

[∥∥x†(0)
∥∥]) θk + LαE

[∥∥y†(k)
∥∥]

+
2L(β2 + α)

σ2

k−1∑
t=0

θk−tE
[∥∥y†(t)∥∥],

where β3 and β4 are defined in Eq. (4.15).
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Appendix D

Proofs of Lemmas 9 and 10 in Chapter 6

D.1 Proof of Lemma 9

Proof. Since x∗ ∈ X then x∗ ∈ Xi. By Eq. (6.9) we have

∥∥xi(k + 1)− x∗
∥∥2

=
∥∥vi(k)− x∗ −

(
vi(k)− PXiζi(k)

[
vi(k)

]) ∥∥2

=
∥∥vi(k)− x∗

∥∥2
+
∥∥∥vi(k)− PXiζi(k)

[
vi(k)

]∥∥∥2

− 2
(
vi(k)− PXiζi(k)

[
vi(k)

])T
(vi(k)− x∗)

≤
∥∥vi(k)− x∗

∥∥2 −
∥∥vi(k)− PXiζi(k)

[
vi(k)

]∥∥2
, (D.1)

where in the last inequality we use the projection inequality to have

− 2
(
vi(k)− PXiζi(k)

[
vi(k)

])T
(vi(k)− x∗)

= −2
∥∥∥vi(k)− PXiζi(k)

[
vi(k)

]∥∥∥2

− 2
(
vi(k)− PXiζi(k)

[
vi(k)

])T (
PXiζi(k)

[
vi(k)

]
− x∗

)
≤ −2

∥∥∥vi(k)− PXiζi(k)
[
vi(k)

]∥∥∥2

,

Taking the expectation and averaging on both sides of Eq. (D.1) gives

1

n

n∑
i=1

E
[∥∥xi(k + 1)− x∗

∥∥2
]

≤ 1

n

n∑
i=1

E
[∥∥vi(k)− x∗

∥∥2
]
− 1

n

n∑
i=1

E
[∥∥vi(k)− PXiζi(k)

[
vi(k)

]∥∥2
]
. (D.2)

We now use the regularity Assumption 10 to bound the last term on the

right-hand side of Eq. (D.2). First, we note that
∥∥a∥∥2 ≥ 2(a− b)Tb +

∥∥b∥∥2
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for all a,b ∈ Rd. Let a = vi(k) − PX
[
vi(k)

]
and b = x̄(k) − PX

[
x̄(k)

]
implying e(k) = b. This gives

∥∥vi(k)− PX
[
vi(k)

]∥∥2

≥ 2
(
vi(k)− PX

[
vi(k)

]
− x̄(k) + PX

[
x̄(k)

])T
e(k) +

∥∥e(k)
∥∥2

≥ −2
(∥∥vi(k)− x̄(k)

∥∥+
∥∥PX [vi(k)

]
− PX

[
x̄(k)

]∥∥)∥∥e(k)
∥∥+

∥∥e(k)
∥∥2
,

where using the non-expansiveness property of the projection gives

∥∥vi(k)− PX
[
vi(k)

]∥∥2 ≥ −4
∥∥vi(k)− x̄(k)

∥∥∥∥e(k)
∥∥+

∥∥e(k)
∥∥2

(6.8)
= −4

∥∥α(k)gi(x̄(k),ωi(k))
∥∥∥∥e(k)

∥∥+
∥∥e(k)

∥∥2

≥ −8α2(k)
∥∥gi(x̄(k),ωi(k))

∥∥2 − 1

2

∥∥e(k)
∥∥2

+
∥∥e(k)

∥∥2

= −8α2(k)
∥∥gi(x̄(k),ωi(k))

∥∥2
+

1

2

∥∥e(k)
∥∥2
, (D.3)

where the second inequality is due to the Cauchy-Schwarz inequality. Taking

the expectation of Eq. (D.3), using Eq. (6.7), and summing over i = 1, . . . , n

on both sides yields

n∑
i=1

E
[∥∥vi(k)− PX

[
vi(k)

]∥∥2
]
≥ −8α2(k)

n∑
i=1

C2
i +

n

2
E
[∥∥e(k)

∥∥2
], (D.4)

By the regularity Assumption 10 we have

1

n

n∑
i=1

∥∥vi(k)− PX
[
vi(k)

]∥∥2

≤ 1

n

n∑
i=1

D max
i=1,...,n

E
[∥∥vi(k)− PXiζi(k)

[
vi(k)

]∥∥2 | F(k)
]

≤ D

n∑
i=1

E
[∥∥vi(k)− PXiζi(k)

[
vi(k)

]∥∥2 | F(k)
]
,

which by taking the expectation on both sides yields

1

n

n∑
i=1

E
[∥∥vi(k)− PX

[
vi(k)

]∥∥2
]
≤ D

n∑
i=1

E
[∥∥vi(k)− PXiζi(k)

[
vi(k)

]∥∥2
]
.
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Using Eq. (D.4) into the preceding relation implies

1

n

n∑
i=1

E
[∥∥vi(k)− PXiζi(k)

[
vi(k)

]∥∥2
]

≥ 1

Dn2

n∑
i=1

E
[∥∥vi(k)− PX

[
vi(k)

]∥∥2
]

(D.4)

≥ −8α2(k)

Dn2

n∑
i=1

C2
i +

1

2Dn
E
[∥∥e(k)

∥∥2
]

≥ −8C2α2(k)

Dn2
+

1

2Dn
E
[∥∥e(k)

∥∥2
]
. (D.5)

Taking the expectation of Eq. (D.5) and substituting into Eq. (D.2), we have

1

n

n∑
i=1

E
[∥∥xi(k + 1)− x∗

∥∥2
]

≤ 1

n

n∑
i=1

E
[∥∥vi(k)− x∗

∥∥2
]

+
8C2α2(k)

Dn2
− 1

2Dn
E
[∥∥e(k)

∥∥2
]
,

which using the Jensen inequality on the 2-norm function gives Eq. (6.11).

D.2 Proof of Lemma 10

Proof. Since x∗ ∈ X , by Eq. (6.8) we first have

E
[∥∥vi(k)− x∗

∥∥2
]

= E
[∥∥x̄(k)− x∗ − α(k)gi(x̄(k),ωi(k))

∥∥2
]

= E
[∥∥x̄(k)− x∗

∥∥2
]

+ E
[∥∥α(k)gi(x̄(k),ωi(k))

∥∥2
]

− 2α(k)E
[
(x̄(k)− x∗)Tgi(x̄(k),ωi(k))

]
(6.7)

≤ E
[∥∥x̄(k)− x∗

∥∥2
]

+ C2
i α

2(k)− 2α(k)E
[(

x̄(k)− x∗
)T∇fi(x̄(k))

]
, (D.6)

where using the strong convexity of fi, the last term is bounded by

− 2α(k)E
[(

x̄(k)− x∗
)T∇fi(x̄(k))

]
≤ −2α(k)E

[
fi(x̄(k))− f(x∗)

]
− µiα(k)E

[∥∥x̄(k)− x∗
∥∥2
]
.
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Let y ∈ X . The preceding equation can be further written as

− 2α(k)E
[(

x̄(k)− x∗
)T∇fi(x̄(k))

]
= −2α(k)E

[
fi(y)− fi(x∗)

]
− µiα(k)E

[∥∥x̄(k)− x∗
∥∥2
]

− 2α(k)E
[
fi(x̄(k))− fi(y).

]
(6.7)

≤ −2α(k)E
[
fi(y)− fi(x∗)

]
− µiα(k)E

[∥∥x̄(k)− x∗
∥∥2
]

+ 2Ciα(k)E
[∥∥x̄(k)− y

∥∥]
≤ −2α(k)E

[
fi(y)− fi(x∗)

]
− µiα(k)E

[∥∥x̄(k)− x∗
∥∥2
]

+
1

4Dn
E
[∥∥x̄(k)− y

∥∥2
]

+ 4DnC2
i α

2(k), (D.7)

where the last inequality is due to the Cauchy-Schwarz inequality. Substi-

tuting Eq. (D.7) into Eq. (D.6) we obtain

E
[∥∥vi(k)− x∗

∥∥2
]
≤ (1− µiα(k))E

[∥∥x̄(k)− x∗
∥∥2
]

+ (4Dn+ 1)C2
i α

2(k)

− 2α(k)E
[
fi(y)− fi(x∗)

]
+

E
[∥∥x̄(k)− y

∥∥2
]

4Dn
· (D.8)

1) If 0 < µi, for all i ∈ V , then by averaging over i on both sides of Eq. (D.8)

and using Eq. (6.10), we obtain Eq. (6.12), i.e.,

1

n

n∑
i=1

E
[∥∥vi(k)− x∗

∥∥2
]

≤
(

1− µα(k)

n

)
E
[∥∥x̄(k)− x∗

∥∥2
]

+ (4Dn+ 1)C2α2(k)

− 2α(k)

n
E
[
F (y)− F (x∗)

]
+

1

4Dn
E
[∥∥x̄(k)− y

∥∥2
]
.

2) Similarly, if µi = 0, for all i ∈ V , then we obtain Eq. (6.13).
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Appendix E

Proofs of Main Results in Chapter 7

We provide here the proofs of main results in Sections 7.2 and 7.3. We start

with some preliminaries and notation.

E.1 Preliminaries and Notation

In the sequel, we denote by X the Cartesian products of Xi, i.e.,

X = X1 ×X2 × . . .×Xn.

The feasible set S of problem P is given as

S =

{
x ∈ X

∣∣∣ ∑
i∈V

xi = b

}
.

Let f denote the sum of fi, i.e.,

f(x) =
∑
i∈V

fi(xi).

Since the constraint set S is compact and the function f is continuous, there

exists a vector x∗ = (x∗1, x
∗
2, . . . , x

∗
n) ∈ S which achieves the minimum of P.

However, this solution is not unique. We denote the set of solutions of P as

S∗. Let λ∗ be an optimizer of DP and let x∗ be the corresponding optimizer

of P, such that, (x∗, λ∗) is a saddle point of L in Eq. (7.5), i.e.,

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), ∀x ∈ X , λ ∈ R. (E.1)

We present here the so-called distributed perturbed consensus algorithm

studied in [26], a noisy version of Eq. (2.14). As will be seen, the distributed
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subgradient method in Eq. (2.16) is a special case of this algorithm. The

distributed perturbed consensus method on a given sequence of time-varying

undirected graphs G(k) = (V , E(k)), is given as

λi(k + 1) =
∑

j∈Ni(k)

aij(k)λi(k) + εi(k), (E.2)

where εi(k) is some perturbation or disturbance at node i and aij(k) is the

weight which node i assigns for the message received from node j at time k.

By allowing εi(k) to take different forms, or using differing assumptions, we

can study different classes of algorithms for different problems. For example,

this method reduces to distributed subgradient methods for dual problem

(7.6) when εi(k) = −α(k)∂qi(λi(k)), for all i ∈ V and k ≥ 0.

We state here some important results which we will utilize in our devel-

opment later. We first state a result on almost supermartingale convergence

studied in [115] (see also in [116, Lemma 11, Chapter 2]), which may refer

to as Robbins-Siegmund Lemma. We then present an important lemma of

distributed perturbed consensus methods, an extension of Lemma 2.

Lemma 21 ( [115]). Let {y(k)}, {z(k)}, {w(k)}, and {β(k)} be non-negative

sequences of random variables. Suppose that these sequences satisfy

E
[
y(k + 1)|Fk] ≤ (1 + β(k))y(k)− z(k) + w(k) (E.3)

∞∑
k=0

β(k) <∞ a.s,
∞∑
k=0

w(k) <∞ a.s, (E.4)

where Fk = {y(0), y(1), . . . , y(k)}, the history of y up to time k. Then the

sequence {y(k)} converges a.s., and
∑∞

k=0 z(k) <∞ a.s.

Lemma 22 ( [26]). Suppose that Assumptions 2 and 4 hold. Let the sequence

{λi(k)}, for all i ∈ V, be generated by Eq. (E.2) with an arbitrary initial

condition λi(0) ∈ R, for all i ∈ V. Then we have

1. For all i ∈ V and k ≥ 0

∣∣λi(k)− λ̄(k)
∣∣ ≤ δk

∥∥λ(0)
∥∥+

k∑
t=1

δk−t
∥∥ε(t)∥∥, (E.5)

where δ ≤ min{(1− 1
4n3 )1/B,maxk≥0 σ2(A(k))}.
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2. Further if lim
k→∞

εi(k) = 0, for all i ∈ V, then we have

lim
k→∞

∣∣λi(k)− λ̄(k)
∣∣ = 0, ∀i ∈ V . (E.6)

3. If we are further given a non-increasing positive scalar sequence {α(k)}
such that

∑∞
k=0 α(k)|εi(k)| <∞, for all i ∈ V, then we obtain

∞∑
k=0

α(k)
∣∣λi(k)− λ̄(k)

∣∣ <∞, ∀i ∈ V . (E.7)

E.2 Proofs of Results in Section 7.2

We now present the proof of part (b) in Theorem 14; recall that part (a) is a

consequence of Theorem 5. Let C =
∑

i∈V Ci where Ci is given in Eq. (7.10).

Proof of part (b) Theorem 14. Let (x∗, λ∗) is a saddle point of L, i.e., (x∗, λ∗)

satisfies Eq. (E.1). Recall from Eq. (7.8) that∑
i∈V

Li(xi, vi) =
∑
i∈V

fi(xi) + vi(xi − bi).

To show our main result, we will show the following relation,

0 ≤
∑
i∈V

Li(x∗i , vi(k + 1))− Li(xi(k + 1), vi(k + 1))

≤ C
∥∥v(k + 1)− λ∗1

∥∥+
∑
i∈V

vi(k + 1)(x∗i − bi). (E.8)

We note that by part (a) limk→∞ λi(k) = λ∗ for all i ∈ V . This implies that

limk→∞ vi(k) = λ∗ since

vi(k) =
∑
j∈Ni

aij(k)λj(k − 1)

and A(k) is a doubly stochastic matrix. In addition, since x∗ ∈ S we have

lim
k→∞

∥∥v(k + 1)− λ∗1
∥∥ = 0 and lim

k→∞

∑
i∈V

vi(k + 1)(x∗i − bi) = 0.
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Thus, we obtain

0 ≤ lim
k→∞

∑
i∈V

Li(x∗i , vi(k + 1))− Li(xi(k + 1), vi(k + 1))

= lim
k→∞

∑
i∈V

Li(x∗i , λ∗)− Li(xi(k + 1), λ∗) = 0.

By Eqs. (7.5) and (7.8) the preceding equation implies that

0 ≤ L(x∗,λ∗)− lim
k→∞
L(x(k + 1),λ(k))

= f(x∗)− lim
k→∞
L(x(k + 1),λ(k)) = 0, (E.9)

where we use the fact that L(x∗,λ∗) = f(x∗) and

lim
k→∞

λ(k) = lim
k→∞

v(k) = λ∗.

We now proceed to show Eq. (E.8). Since xi(k) satisfies Eq. (7.3) and by the

definition of Li we have for any k ≥ 0

0 ≤ Li(x∗i , vi(k + 1))− Li(xi(k + 1), vi(k + 1)), ∀i ∈ V ,

which when summing over i ∈ V implies that

0 ≤
∑
i∈V

Li(x∗i , vi(k + 1))− Li(xi(k + 1), vi(k + 1))

=
∑
i∈V

fi(x
∗
i ) + vi(k + 1)(x∗i − bi)

−
∑
i∈V

fi(xi(k + 1)) + vi(k + 1)(xi(k + 1)− bi). (E.10)

By Assumption 11 we have the strong duality holds, i.e.,∑
i∈V

fi(x
∗
i ) = −

∑
i∈V

qi(λ
∗).

Moreover by Eqs. (7.6) and (7.3) in Algorithm 4 we have

qi(vi(k + 1)) = −fi(xi(k + 1))− vi(k + 1)(xi(k + 1)− bi).
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Substituting the previous two preceding relations into Eq. (E.10) we obtain

0 ≤
∑
i∈V

Li(x∗i , vi(k + 1))− Li(xi(k + 1), vi(k + 1))

=
∑
i∈V

(
qi(vi(k + 1))− qi(λ∗) + vi(k + 1)(x∗i − bi)

)
(7.10)

≤
∑
i∈V

(
− ∂qi(vi(k + 1))(λ∗ − vi(k + 1)) + vi(k + 1)(x∗i − bi)

)
≤
∑
i∈V

(
Ci
∣∣λ∗ − vi(k + 1)

∣∣+ vi(k + 1)(x∗i − bi)
)

≤ C
∥∥λ∗1− v(k + 1)

∥∥+
∑
i∈V

vi(k + 1)(x∗i − bi),

where the last inequality is due to the Cauchy-Schwarz inequality. This

concludes our proof.

E.3 Proofs of Results in Section 7.3

In this section, we provide the proofs for main results on the convergence of

the distributed randomized Lagrangian method presented in Section 7.3. The

distributed noisy sub-gradient method has also been studied in [26] where the

authors consider the case of strongly convex objective functions. We analyze

here the convergence of such methods when the objective function is convex.

To do this we need to introduce more notation. Let Lsi : Xi×R×R→ R be

the local stochastic Lagrangian function at node i defined as,

Lsi (xi, vi, `i) = fi(xi) + vi(xi − `i). (E.11)

We define Fk to be all the information generated by the randomized dis-

tributed primal-dual method up to time k, i.e., all the xi(k), vi(k), λi(k),

gi(vi(k)), and so forth for k ≥ 0. We start with the analysis of Theorem 15.

Proof of Theorem 15. Let D =
∑

i∈V Di where Di is given in Eq. (7.17).

Recall that the dual function in DP is given as

q(λ) =
∑
i∈V

qi(λ).
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1. Proof of part (a): Let λ∗ be a dual solution of dual problem (7.6). By

Eqs. (7.12) and (7.14) in Algorithm 5, and Eq. (7.15) we have

∑
i∈V

(
λi(k + 1)− λ∗

)2

=
∑
i∈V

(
vi(k + 1)− α(k)gi(vi(k + 1))− λ∗

)2

=
∑
i∈V

(
vi(k + 1)− λ∗

)2

+
∑
i∈V

α2(k)
[
gi(vi(k + 1))

]2

− 2α(k)
∑
i∈V

gi(vi(k + 1))
(
vi(k + 1)− λ∗

)
. (E.12)

Recall from Eqs. (7.7) and (7.15) that

∂qi(vi(k)) = xi(k)− bi and gi(vi(k)) = xi(k)− `i(k − 1).

Thus, by Assumption 12 and Eq. (7.11) we have

E
[
gi(vi(k + 1)) | Fk

]
= ∂qi(vi(k + 1)).

Taking the conditional expectation of above with respect to Fk and using

Eq. (7.17) we obtain

E
[∥∥λ(k + 1)− λ∗1

∥∥2 | Fk
]

=
∥∥v(k + 1)− λ∗1

∥∥2
+ α2(k)E

[∑
i∈V

(
gi(vi(k + 1))

)2

| Fk

]
− 2α(k)

∑
i∈V

∂qi(vi(k + 1))
(
vi(k + 1)− λ∗

)
(7.17)

≤
∥∥v(k + 1)− λ∗1

∥∥2
+ α2(k)

∑
i∈V

D2
i

− 2α(k)
∑
i∈V

∂qi(vi(k + 1))
(
vi(k + 1)− λ∗

)
≤
∥∥v(k + 1)− λ∗1

∥∥2
+Dα2(k)

+ 2α(k)
∑
i∈V

(
qi(λ

∗)− qi(vi(k + 1))
)
, (E.13)

where the last inequality is due to the Cauchy-Schwarz inequality and the
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convexity of qi, for all i ∈ V . Consider the last term on the right-hand

side of Eq. (E.13)∑
i∈V

(
qi(λ

∗)− qi(vi(k + 1))
)

=
∑
i∈V

(
qi(λ

∗)− qi(λ̄(k)) + qi(λ̄(k))− qi(vi(k + 1))
)

≤
∑
i∈V

(
qi(λ

∗)− qi
(
λ̄(k)

))
+
∑
i∈V

(
Di

∣∣λ̄(k)− vi(k + 1)
∣∣)

≤ q∗ − q
(
λ̄(k)

)
+D‖λ̄(k)1− v(k + 1)‖.

Substituting the preceding relation into (E.13) yields

E
[∥∥λ(k + 1)− λ∗1

∥∥2 | Fk
]

≤
∥∥v(k + 1)− λ∗1

∥∥2
+Dα2(k)

+ 2α(k)
(
q∗ − q

(
λ̄(k)

)
+D‖λ̄(k)1− v(k + 1)‖

)
≤
∥∥λ(k)− λ∗1

∥∥2
+Dα2(k)

+ 2α(k)
(
q∗ − q

(
λ̄(k)

)
+D‖λ̄(k)1− λ(k)‖

)
, (E.14)

where the last inequality is due to

∥∥v(k + 1)− λ̄(k)1‖1 ≤ ‖λ(k)− λ̄(k)1‖∥∥v(k + 1)− λ∗1
∥∥2 ≤ ‖λ(k)− λ∗1

∥∥2
.

Recall that Eq. (7.14) in Algorithm 5 is a special case of the perturbed

consensus protocol in Eq. (E.2) where

εi(k) = −α(k)gi(vi(k + 1)) = −α(k)(∂qi(vi(k + 1))− ηi(k)).

Since α(k) satisfies Eq. (7.16) and by Eq. (7.17) we obtain

∞∑
k=0

α(k)‖ε(k)‖ =
∞∑
k=0

α2(k)‖∇q(v(k + 1)) + η(k)‖

≤ nD

∞∑
k=0

α2(k) <∞ a.s.,
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which satisfies Eq. (E.5). Thus we obtain

∞∑
k=0

α(k)
∣∣λi(k)− λ̄(k)

∣∣ <∞ a.s., ∀i ∈ V .

This implies

nD2

∞∑
k=0

α2(k) + 2C
∞∑
k=0

α(k)‖λ(k)− λ̄(k)1‖ <∞ a.s.

Thus, since Eq. (E.14) satisfies all conditions in Lemma 21 we obtain{
‖λ(k)− λ∗1

∥∥} converges a.s. for each λ∗ (E.15)

∞∑
k=0

α(k)
(
q
(
λ̄(k)

)
− q∗

)
<∞ a.s., (E.16)

which since
∞∑
k=0

α(k) =∞ gives

lim inf
k→∞

q
(
λ̄(k)

)
= q∗ a.s.

Eq. (E.15) implies that the sequence {λ̄(k)} is bounded, so there exists a

bounded subsequence {λ̄(k`)} of {λ̄(k)} such that

lim
k`→∞

q
(
λ̄(k`)

)
= lim inf

k→∞
q
(
λ̄(k)

)
= q∗ a.s. (E.17)

This bounded subsequence {λ̄(k`)} has a convergent subsequence. By Eq.

(E.17) and the continuity of f this subsequence converges to a point in

S∗. Call this point λ̃, a solution of Eq. (7.1). By letting λ∗ = λ̃ in Eq.

(E.15) we obtain that

lim
k→∞

λ̄(k) = λ̃ a.s.

Finally, since α(k) satisfies Eq. (7.16), lim
k→∞

α(k) = 0. Thus, by Eq. (E.6)

we have

lim
k→∞
|λi(k)− λ̄(k)| = 0 a.s., ∀i ∈ V ,

which further implies that

lim
k→∞

λi(k) = λ̃ a.s., ∀i ∈ V .
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2. Proof of part (b)

Recall that (x∗, λ∗) is a saddle point of the Lagrangian in Eq. (7.5). Since

xi(k) satisfies Eq. 7.13 and by Eq. (E.11) we have for all i ∈ V and k ≥ 0

0 ≤Lsi (x∗i , vi(k + 1), `i(k))− Lsi (xi(k + 1), vi(k + 1), `i(k)),

which when summing over i ∈ V implies

0 ≤
∑
i∈V

Lsi (x∗i , vi(k + 1), `i(k))− Lsi (xi(k + 1), vi(k + 1), `i(k))

=
∑
i∈V

fi(x
∗
i ) + vi(k + 1)(x∗i − `i(k))

−
∑
i∈V

fi(xi(k + 1)) + vi(k + 1)(xi(k + 1)− `i(k)). (E.18)

By Assumption 11 the strong duality holds, i.e.,∑
i∈V

fi(x
∗
i ) = −

∑
i∈V

qi(λ
∗). (E.19)

Recall from Eq. (7.6) that

qi(vi(k)) = −fi(xi(k))− vi(k)(xi(k)− bi). (E.20)

Taking the conditional expectation of Eq. (E.18) with respect to Fk, and

using Eqs. (E.19) and (E.19) give

0 ≤
∑
i∈V

E
[
Lsi (x∗i , vi(k + 1), `i(k)) | Fk

]
−
∑
i∈V

E
[
Lsi (xi(k + 1), vi(k + 1), `i(k)) | Fk

]
=
∑
i∈V

E
[
qi(vi(k + 1))− qi(λ∗) | Fk

]
+
∑
i∈V

E
[
vi(k + 1)(x∗i − bi) | Fk

]
≤
∑
i∈V

E
[
− ∂qi(vi(k + 1))(λ∗ − vi(k + 1)) | Fk

]
+
∑
i∈V

E
[
vi(k + 1)(x∗i − bi) | Fk

]
,
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which by using the Cauchy-Schwarz inequality and Eq. (7.17) gives

0 ≤
∑
i∈V

E
[
Lsi (x∗i , vi(k + 1), `i(k)) | Fk

]
−
∑
i∈V

E
[
Lsi (xi(k + 1), vi(k + 1), `i(k)) | Fk

]
≤
∑
i∈V

Ci
∣∣λ∗ − vi(k + 1)

∣∣+
∑
i∈V

vi(k + 1)(x∗i − bi)

≤ C‖v(k + 1)− λ∗1‖+
∑
i∈V

vi(k + 1)(x∗i − bi)

≤ C‖λ(k)− λ∗1‖+
∑
i∈V

vi(k + 1)(x∗i − bi).

Taking the limit as k →∞ of the preceding relation gives

0 ≤ lim
k→∞

∑
i∈V

E
[
Lsi (x∗i , vi(k + 1), `i(k)) | Fk

]
− lim

k→∞

∑
i∈V

E
[
Lsi (xi(k + 1), vi(k + 1), `i(k)) | Fk

]
≤ C lim

k→∞
‖λ(k)− λ∗1‖+ lim

k→∞

∑
i∈V

vi(k + 1)(x∗i − bi) = 0 a.s., (E.21)

where we use the conditions

lim
k→∞

λi(k) = λ∗ and
∑
i∈V

x∗i − bi = 0.

By Assumption 12 and recall the definition of Li in Eq. (7.8) we have

E
[
Lsi (x∗i , vi(k), `i(k))

]
= E

[
Li(x∗i , vi(k))

]
E
[
Lsi (xi(k), vi(k), `i(k))

]
= E

[
Li(xi(k), vi(k))

]
.

Thus taking the expectation of Eq. (E.21) and using the convergence of

λi(k), for all i ∈ V , give

lim
k→∞

E

[∑
i∈V

Li(xi(k + 1), λi(k))

]
= f ∗.
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Finally, we present the proof of Theorem 16.

Proof of Theorem 16. Recall that Eq. (7.14) in Algorithm 5 is a special case

of a perturbed averaging protocol in Eq. (E.2), where

εi(k) = −α(k)gi(vi(k + 1)) = −α(k)
(
∂qi(vi(k + 1))− ηi(k)

)
.

By Eqs. (E.5) and (7.17), for all i ∈ V and K ≥ 1, we have

K∑
k=1

α(k)
∣∣λi(k)− λ̄(k)

∣∣
≤ ‖λ(0)‖

K∑
k=1

δkα(k) +D
K∑
k=1

α(k)
k∑
t=1

δk−tα(t) a.s. (E.22)

Since α(k) = 1/
√
k ≤ 1 and δ < 1, Eq. (E.22) is equivalent to

K∑
k=1

α(k)|λi(k)− λ̄(k)| ≤ δ

1− δ
‖λ(0)‖+Di

K∑
k=1

k∑
t=1

δk−t

t

=
δ

1− δ
‖λ(0)‖+Di

K∑
t=1

1

t

K−t∑
`=0

δ`

≤ δ

1− δ
‖λ(0)‖+

Di

1− δ

K∑
t=1

1

t

≤ δ

1− δ
‖λ(0)‖+

Di(1 + ln(K))

1− δ
, (E.23)

where the last inequality is due to

K∑
t=1

1

t
= 1 +

K∑
t=2

1

t
≤ 1 +

∫ K

1

du

u
= 1 + ln(K). (E.24)

Since α(0) = 1 we have

α(0)‖λ(0)− λ̄(0)1‖ ≤ ‖λ(0)‖. (E.25)

Adding Eq. (E.25) to both sides of Eq. (E.22) and using D =
∑

i∈V Di give

K∑
k=0

α(k)
∥∥λ(k)− λ̄(k)1

∥∥ ≤ 1

1− δ
‖λ(0)‖+

D(1 + ln(K))

1− δ
a.s. (E.26)

151



Recall from Eq. (E.14) that

E
[
‖λ(k + 1)− λ∗1

∥∥2 | Fk
]
≤
∥∥λ(k)− λ∗1

∥∥2 − 2α(k)(q(λ̄(k))− q∗)

+D2α2(k) + 2Dα(k)‖λ(k)− λ̄(k)1‖. (E.27)

Summing both sides of Eq. (E.27) over k = 0, . . . , K for some K ≥ 0, and

using Eqs. (E.23) and (E.24), give

E
[∥∥λ(K + 1)− λ∗1

∥∥2 | Fk
]

≤
∥∥λ(0)− λ∗1

∥∥2 − 2
K∑
k=0

α(k)(q(λ̄(k))− q∗)

+D2

K∑
k=0

α2(k) + 2D
K∑
k=0

α(k)
∥∥λ(k)− λ̄(k)1

∥∥,
(E.23)

≤
(E.24)

‖λ(0)− λ∗1
∥∥2 − 2

K∑
k=0

α(k)(q(λ̄(k))− q∗)

+
2D
∥∥λ(0)

∥∥
1− δ

+
2D2(2 + ln(K))

1− δ
, (E.28)

which when taking the expectation of both sides implies

E
[
‖λ(K + 1)− λ∗1

∥∥2
]
≤ E

[∥∥λ(0)− λ∗1
∥∥2
]
− 2

K∑
k=0

α(k)E
[
q(λ̄(k))− q∗

]

+
2DE

[∥∥λ(0)
∥∥]

1− δ
+

2D2(2 + ln(K))

1− δ
· (E.29)

Dividing both sides of the preceding relation by 2
∑K

k=0 α(k + 1), using δ ∈
(0, 1), and rearranging the terms give

∑K
k=0 α(k)E

[
q(λ̄(k))

]
∑K

k=0 α(k)
− q∗

≤
E
[∥∥λ(0)− λ∗

∥∥2
]

2
∑K

k=0 α(k)
+

DδE
[∥∥λ(0)

∥∥]
(1− δ)

∑K
k=0 α(k)

+
D2(2 + ln(K))

(1− δ)
∑K

k=0 α(k)

≤
E
[∥∥λ(0)− λ∗

∥∥2
]

2
∑K

k=0 α(k)
+

DE
[∥∥λ(0)

∥∥]
(1− δ)

∑K
k=0 α(k)

+
D2(2 + ln(K))

(1− δ)
∑K

k=0 α(k)
· (E.30)
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Since α(k) = 1/
√
k and α(1) = 1 we have

K∑
k=0

α(k) =
K∑
k=0

1√
k
≥
∫ K+1

0

du√
u

= 2
√
K + 1. (E.31)

Using Eq. (E.31) and the Jensen inequality into Eq. (E.30) gives

E

[
q

(∑K
k=0 α(k)λ̄(k)∑K

k=0 α(k)

)]
− q∗

≤
E
[
‖λ(0)− λ∗1

∥∥2
]

2
√
K + 1

+
DδE

[∥∥λ(0)
∥∥]

2(1− δ)
√
K + 1

+
D2(2 + ln(K))

2(1− δ)
√
K + 1

· (E.32)

Fixed some i ∈ V . Using Eqs. (E.32) and (7.18) gives

E

[
q(yi(K + 1))− q

(∑K
k=0 α(k)λ̄(k)∑K

k=0 α(k)

)
| Fk

]

= E

[
q

(∑K
k=0 α(k)λi(k)∑K

k=0 α(k)

)
− q

(∑K
k=0 α(k)λ̄(k)∑K

k=0 α(k)

)]

≤ DE

[ ∣∣∣∣∣
∑K

k=0 α(k)λi(k)∑K
k=0 α(k)

−
∑K

k=0 α(k)λ̄(k)∑K
k=0 α(k)

∣∣∣∣∣
]

≤ D∑K
k=0 α(k)

K∑
k=0

α(k)|λi(k)− λ̄(k)|

≤ D

2
√
K + 1

K∑
k=0

α(k)|λi(k)− λ̄(k)|

(E.23)

≤ D‖λ(0)‖
2(1− δ)

√
K + 1

+
D2(1 + ln(K))

2(1− δ)
√
K + 1

. (E.33)

Thus, taking the expectation of Eq. (E.33) and then adding the result to Eq.

(E.32) give Eq. (7.19). This completes our proof of Theorem 16.
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[40] D. Bertsekas, A. Nedić, and A. Ozdaglar, Convex Analysis and Opti-
mization. Cambridge, MA: Athena Scientific, 2004.

[41] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY:
Cambridge University Press, 2004.

[42] R. T. Rockafellar, Convex Analysis, 1970.

[43] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Foundations and Trends in Machine Learning, vol. 4, pp. 107–194,
2012.

[44] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Transactions
on Automatic Control, vol. 49, no. 9, pp. 1520–1533, Sept 2004.
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