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ABSTRACT 

Since its discovery in 1969, Goss’s wilt, a foliar blight and vascular wilt disease caused by the 

gram-positive bacterium Clavibacter michiganensis subsp. nebraskensis (Cmn), has emerged as 

one of the top four diseases of maize in the United States and Canada. No source of complete 

resistance has been described for Goss’s wilt and little is known about the genetic and 

mechanistic basis of host resistance to Cmn. The objective of this study was to perform a linkage 

mapping and genome-wide association study (GWAS) to identify regions of the genome 

associated with Goss’s wilt resistance. Additionally, we sought to use genomic prediction models 

to evaluate the use of genomic selection in predicting Goss’s wilt phenotypes in a panel of 

diverse maize lines. Within the Intermated B73 x Mo17 (IBM) population and three disease 

resistant introgression lines (DRIL) populations: B73 x Mo17, Mo17 x B73, and NC344 x Oh7B, 

we were able to both identify novel QTL and confirm previous findings. In a GWAS of the 

Goodman maize diversity panel, we were unable to identify any variants significantly associated 

with Goss’s wilt. However, using genomic prediction, we were able to train a model with an 

accuracy of 0.6971. In addition, when evaluating the accuracy of our prediction model under 

reduced marker density, it was shown that only 10,000 single nucleotide polymorphisms, or 

~20% of our total marker set, was necessary to achieve our control model’s prediction accuracy. 

This is the first report of genomic prediction for a bacterial disease of maize, and these results 

highlight the potential of genomic selection for disease resistance in maize.  
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CHAPTER 1: LITERATURE REVIEW 

INTRODUCTION 

 Goss’s wilt, caused by the bacteria Clavibacter michiganensis subsp. nebraskensis, 

produces foliar blight lesions and vascular wilt symptoms in susceptible maize lines and is often 

accompanied by substantial yield losses (Vidaver and Mandel, 1974). The disease was first 

observed in the cornfields of Dawson County, Nebraska in 1969 (Wysong et al., 1973). By 1979, 

Goss’s wilt was widespread throughout Nebraska, Kansas, Iowa, South Dakota, Wyoming, and 

Colorado (Jackson et al., 2007;Vidaver et al., 1981). While initially devastating, disease 

incidence decreased following the initial emergence, due in large part to the development of 

resistant varieties by plant breeders. In fact, by the early 1980’s occurrences were confined to 

highly susceptible varieties or plants that sustained severe physical injury (Jackson et al., 2007). 

This period of remission did not last, however. In 2006, farmers in western Nebraska, 

southeastern Wyoming, and eastern Colorado began reporting symptoms characteristic of Goss’s 

wilt. Submissions of over 50 samples from infected fields to the University of Nebraska-Lincoln 

Panhandle Plant Disease Diagnostic Lab confirmed a reemergence of the disease (Jackson et al., 

2007). In comparison, prior to the 2006 season, only 40 samples total of Goss’s wilt had been 

diagnosed at that same lab since 1998 (Jackson et al., 2007). Since then, the spread of Goss’s 

wilt has been extensive; as of 2013, the disease has been identified in fields stretching from 

Louisiana to Alberta, Canada (Howard et al., 2015;Jackson et al., 2007;Singh et al., 2015). 

To date, little is known about the cause for the reemergence of Goss’s wilt, and no 

permanent solutions exist for combatting its spread. This literature review will examine what is 

known about the pathogen, host, and management of Goss’s wilt in order to evaluate a number of 

existing hypothesis regarding causes of the current outbreak.  



2 

 

THE PATHOGEN 

Basic Anatomy: The pathogen causing Goss’s wilt was first isolated by Anne K. Vidaver and 

Manley Mandel (1974). Thought to be a species of Corynebacterium, the bacterium was 

officially denoted Corynebacterium nebraskense (Vidaver and Mandel, 1974). Then, in 1984, 

Davis et al. (1984) discovered a novel acid within the Corynebacterium peptidoglycan cell wall, 

2,4-diaminobutryic acid.  This warranted the creation of a new genus and the existing species of 

Corynebacterium were divided between Corynebacterium and Clavibacter. Corynebacterium 

nebraskense became Clavibacter michiganensis subsp. nebraskensis (Cmn) (Davis et al., 1984). 

Cmn differs from other subspecies of Clavibacter based on its host range and plasmid content. 

Unlike Clavibacter michiganensis subsp. michiganensis and subsp. sepedonicus, no plasmid is 

necessary for subsp. nebraskensis virulence (Bentley et al., 2008;Vidaver and Mandel, 1974). 

The three main subspecies of Clavibacter are summarized below.  

Subspecies Primary Host Plasmid for Virulence

michganensis Tomato Necessary

sepedonicus Potato Necessary

nebraskensis Corn Unnecessary  

A number of key morphological traits characterize Cmn. It is a non-motile, aerobic, 

gram-positive bacterium with a pleomorphic rod shape (Vidaver and Mandel, 1974). Its primary 

host is maize (Zea mays), but it can also colonize annual ryegrass, johnsongrass, large crabgrass, 

foxtail, barnyard grass, shattercane, and a number of other weedy grasses (Ikley et al., 

2015;Schuster, 1975). Cmn is oxidase negative, catalase positive, and is able to digest and 

produce acids from glucose, sucrose, mannose, xylose, and galactose. It is unable to process 

arabinose, raffinose, or trehalose. Colonies on culture exhibit an orange or apricot pigmentation 

and a butyrous, glistening appearance.  The optimal temperature for colony growth is between 
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24°C and 28°C, with the ability to grow in temperatures as low as 10°C but not exceeding 37°C 

(Vidaver and Mandel, 1974). 

Culturing Cmn is possible on nutrient broth yeast extract agar, potato dextrose agar, and 

synthetic mediums supplemented with yeast extract (Vidaver and Mandel, 1974). Once isolated, 

the culture can be maintained with minimal virulence loss in either a solid or liquid form for up 

to two years via lyophilization or storage in temperatures less than 6°C (Vidaver, 1977). Other 

unpublished, first-hand observations have reported maintenance of viable isolates for over 20 

years when properly lyophilized. For subsequent testing with isolated Cmn, a number of methods 

have been proposed for artificial inoculation. The most common inoculation method for Goss’s 

wilt is the pin-prick procedure, which involves a foam cushion soaked in inoculum at the 

terminal end of a needle on a modified tong (Blanco et al., 1977;Calub et al., 1974;Chang et al., 

1977). As pressure is applied, the needle penetrates the host leaf and the inoculum is squeezed 

from the cushion into the newly created wound. This method is successful in causing leaf blight 

symptoms but rarely causes vascular wilt during testing (Calub et al., 1974).  

Lifecycle: Infection by Cmn can occur through leaves, stem, or roots (Schuster, 1975). The 

pathogen overwinters in infected crop residue on the soil surface. Root, stem, and leaf tissue all 

allow for survival, and the bacteria can persist for up to 10 months before requiring a new host 

(Jackson et al., 2007). Infection occurs most readily though wounded or damaged tissue. Hail 

damage or sand-blasting can both cause the type of mechanical injury necessary for infection, 

but splashing rain is often required to move the pathogen, as Cmn is non-motile (Jackson et al., 

2007). A study conducted by Mallowa et al. (2016) showed that wounding is not always 

necessary for plant inoculation. Given high relative humidity, Cmn is able to enter the host via 

natural openings. At 60% relative humidity, the bacteria was able to infect plants 60% of the 
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time, compared to 37% at ambient humidity and 100% via wounding (Mallowa et al., 2016). 

This may be attributed to the opening of stomata in high humidity conditions, allowing natural 

entry points for the bacteria. It should be noted, however, that Cmn is non-flagellate and must 

already be present on the leaf to enter through natural openings. There is no known vector for 

Cmn, however a recent survey conducted by Langemier et al. (2017) reported a relationship 

between corn rootworm and Goss’s wilt outbreaks. This data suggests the possibility of the 

pathogen entering maize through mechanical damage caused by leaf and root-feeding insects 

(Langemeier et al., 2017).   

Goss’s wilt can be seed-borne; however, this mode of entry is the least common for Cmn. 

Biddle et al. (1990) attempted to measure transmission rates of the bacterium from parent to 

progeny. Using a rifampicin resistant isolate of Cmn, the seeds of fertile infected parents were 

examined to observe if the bacteria was spread to the next generation. They found that only 0.1-

0.4% of the seeds successfully inherited the rifampicin tolerant strain, and the exact method 

mechanism for transmission could not be elucidated (Biddle et al., 1990). Seedling infection, in 

contrast, is much more common. Cmn was recovered at rates ranging from 17-30% both from 

inoculated seeds (Biddle et al., 1990). As such, infected seeds are able to provide an additional 

overwintering site for this pathogen. 

While the specifics of Cmn pathogenesis remain unknown, the general disease cycle can 

be deduced by examining the other Clavibacter subspecies. Both subspecies michiganensis and 

sepedonicus invade their hosts through wounding or natural openings and reside as biotrophic 

pathogens (Benhamou, 1991). Initially, the bacteria multiply via binary fission in the spiral 

vessels that thicken the xylem cell walls (Wallis, 1977). Upon entering the xylem, the bacteria 

quickly spread upwards and outwards, degrading primary phloem walls and blocking xylem 
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vessels. Clavibacter is unable to spread through phloem due to the sieve tube morphology 

(Wallis, 1977).  

Some research has been conducted regarding bacterial movement once inside the host. 

When causing vascular wilt, Cmn appears to colonize preferentially, beginning with the xylem 

annular and spiral rings (Mbofung et al., 2016). This is theorized to allow the bacteria to create a 

foundational biofilm layer before progressing into the lumen. This type of movement can often 

be seen in bacteria that employ quorum-sensing as a colonization method (Koutsoudis et al., 

2006). Quorum-sensing is a method by which small, diffusible molecules are used to regulate 

bacterial population density. This allows colonies to synchronize gene systems and only express 

virulence when their concentration is sufficient to overcome plant defenses (Fuqua et al., 1996). 

Ten days post inoculation, cell organelles become disorganized and indistinguishable from one 

another. In resistant varieties, bundle sheath cells are able to remain intact, but in susceptible 

maize cultivars, lesions are accompanied by an amorphous matrix of bacteria within the xylem 

(Mbofung et al., 2016).  

Symptoms: Goss’s wilt produces two distinct types of symptoms; leaf blight and systemic wilt 

(Schuster, 1975). Foliar blight is more common than systemic wilt, and generally develops on 

relatively mature plants (Calub et al., 1974). Blight symptoms first appear as pale, water-soaked 

lesions near the inoculation point. These points spread parallel to the leaf veins and soon 

coalesce into large, tan lesions (Calub et al., 1974). Along the lesions small, dark green to black, 

discontinuous, water-soaked spots begin to appear, commonly referred to as “freckles”. An 

orange bacterial exudate can be observed as a shiny gleam on infected leaves when dried 

(Jackson et al., 2007).  
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Wilt symptoms are often found on very young plants with severe wounding or as 

carryover from infected seeds (Jackson et al., 2007). Vascular wilt symptoms can be easily 

recognized by the internal orange discoloration of the vascular bundles and by the external 

water-soaked and slimy appearance of the stalk. This type of infection can cause death at any 

point in the season, but is most common early, before the plant has fully developed (Claflin, 

1999;Jackson et al., 2007).  

Disease severity is related to the stage of plant development at infection. In a study by 

Calub et al. (1974), the effect of plant age on Goss’s wilt severity was tested. Maize inoculations 

were performed at two, four, six, and eight weeks to study how maturity influenced disease 

incidence. They found that maize inoculated two weeks after germination showed the most 

severe leaf wilting, with symptoms spreading upwards from the point of infection. Symptoms 

began to appear on the inoculated leaf 9-10 days after inoculation. In contrast, inoculations of 

maize in the tassel stage (eight weeks) took six to ten weeks to express full disease symptoms 

(Calub et al., 1974).  

Virulence: The mechanisms behind Cmn virulence remain largely unknown, and in vivo testing 

is necessary to determine the aggressiveness of any particular strain. In comparison to 

Clavibacter michiganensis subsp. michiganensis and subsp. sepedonicus, no plasmid is 

necessary for Cmn pathogenicity (Bentley et al., 2008). Instead, all major factors needed for host 

colonization appear to chromosomally encoded (Bentley et al., 2008;Vidaver and Mandel, 1974). 

No correlation has been found between colony morphology and plant pathogenicity (Ahmad et 

al., 2015).  

 Ahmad et al. (2015) attempted to isolate the causal genes underlying Cmn virulence using 

PCR-RFLP. Unfortunately, they were only able to characterize one out of twelve putative toxin 
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genes identified. The putative virulence gene is believed to be a chloride anion channel, 

responsible for forming anions channels between planar lipid bilayers in vitro, but its role in 

maize pathogenicity could not be discerned (Ahmad et al., 2015). 

Impact: Host genetics play a large role in determining disease severity. In a replicated, multi-

year study of sweet corn, resistant hybrid yield losses ranged from only 0-8%, while in 

susceptible sweet corn germplasm losses exceeded 27% (Pataky et al., 1988). More recently, 

yield losses of over 50% have been observed in susceptible fields that develop symptoms early in 

the season (Jackson et al., 2007). During the period from 2012 to 2015, approximately 501 

million bushels were lost in the United States and Canada due to Goss’s wilt, making it the 

fourth most severe disease of maize during this period (Mueller et al., 2016).  

CONTROL STRATEGIES 

Management: A number of control strategies are currently employed to combat Goss’s wilt, 

with varying degrees of success. No practical chemical control for Goss’s wilt currently exists.  

For Clavibacter michiganensis subsp. michiganensis, copper hydroxide and citric acid have 

reportedly been successful in disease control (Hausbeck et al., 2000;Ozdemir, 2009). However, 

Mehl et al. (2015) showed that these same chemicals did not decrease Goss’s wilt occurrence at a 

statistically significant level (Mehl et al., 2015).  

A number of cultural strategies can be employed to limit Goss’s wilt occurrence (Jackson 

et al., 2007). Many weedy grass species serve as alternative hosts for Cmn, making proper weed 

control a necessity in at-risk fields (Ikley et al., 2015;Schuster, 1975). The cover crop annual 

ryegrass was recently confirmed as a host for Cmn, making it the first alternative host with a 

winter annual growth pattern (Ikley et al., 2015). This could provide the pathogen a continuous 
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living host for overwintering. Cereal rye, another common cover crop, has not been found to be 

an alternative host, providing an acceptable substitution for susceptible fields (Ikley et al., 2015). 

Vascular damage to the plant by Cmn may limit water movement. Therefore, ensuring proper 

irrigation to reduce moisture stress is also recommended (Carson and Wicks, 1991). 

Additionally, since the bacteria overwinter in infected crop residue on the soil surface, any tillage 

practices that incorporate residue and encourage decomposition can help reduce pathogen 

populations at the beginning of the season. Similarly, rotating maize with non-host crops can 

reduce or eliminate primary inoculum (Jackson et al., 2007).  

Host Resistance: Currently, the best control strategy for Goss’s wilt remains to plant resistant 

maize hybrids. Normal pathogen-host interactions follow a “zig-zag” model, as described by 

Jones and Dangl (2006). In this model, the conflict between pathogen infection and host 

resistance is described as an evolutionary arms race, with each organism trying to outcompete 

the other. It starts when pathogen-associated molecular patterns (PAMPs), such as peptidoglycan 

or lipopolysaccharides, are recognized by pattern recognition receptors (PRRs) within the host 

membranes, triggering an innate basal defense called PAMP-triggered immunity (PTI). If the 

pathogen secretes an effector, typically a small molecule capable of selectively bind to and 

regulating protein activity, capable of overcoming the PTI then the plant is once more 

susceptible to colonization. This state is called effector-triggered susceptibility (ETS). An 

effector susceptible host can be colonized by the pathogen and used for nutrients or reproduction. 

Many plants have ways of combatting ETS. Resistant plants encode resistance genes (R-genes), 

typically encoding nucleotide binding leucine rich repeats (NB-LRR) domains. Pathogen 

effectors are recognized by NB-LRR domains and trigger an amplified version of PTI, resulting 

in localized cell death to limit further infection (hypersensitive response). This utilization of NB-
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LRR domains to limit effectors is called effector-triggered immunity (ETI). Finally, if the 

pathogen is able to secrete another effector, undetected by the NB-LRR, ETS is once again 

achieved. As long as the pathogen evolves to secrete novel effectors and the plant develops 

corresponding R-genes, this process can continue indefinitely; hence the “zig-zag” shape 

between susceptibility and resistance (Jones and Dangl, 2006).  

Cmn differs from this model, however. The bacterium lacks the type III secretory system 

(T3SS), one of the main delivery methods of effectors into the host plant (Mbofung et al., 2016). 

Other subspecies of Clavibacter also lack the T3SS and are still able to utilize effectors. A well-

known example is the use of tomatinase by Clavibacter michiganensis subsp. michiganensis to 

degrade α-tomatine, which has antimicrobial properties, in tomatoes (Kaup et al., 2005).  

Quantitative Resistance: Disease resistance in plants can be classified as either qualitative or 

quantitative. Qualitative R-genes confer complete resistance to a disease. To date, no R-genes for 

Goss’s wilt have been discovered and complete immunity does not exist (Jackson et al., 2007). In 

contrast, quantitative disease resistance varies in a continuous fashion across a population 

(Jamann et al., 2015;Poland et al., 2009). While quantitative resistance is generally conferred by 

a single R-gene, quantitative resistance is composed of many quantitative resistance loci (QRL). 

QRL are regions of the genome that are significantly associated with disease resistance (Jamann 

et al., 2015;Stuber, 1995). R-genes impart a large selection pressure on pathogens and quickly 

break down, whereas QRL exert a smaller effect and are therefore more durable (Lindhout, 

2002;Parlevliet, 2002). 

 There are two methods commonly used to map quantitative trait loci (QTL). Linkage 

mapping uses populations derived from controlled crosses. A number of different population 

structures have been developed for linkage mapping. An advanced intercross line (AIL) 
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population increases resolution through multiple generations of intermating. An AIL population 

is created by crossing the parents and self-pollinating the F1 generation, after which each plant is 

used as either a male or a female in a cross with another line. A single kernel is then taken from 

each ear, bulked together with the other seeds collected, and randomly intermated. This process 

is repeated for five generations, resulting in a four-fold increase in the number of recombination 

events captured compared to a conventional breeding methods (Lee et al., 2002). In contrast, 

near isogenic lines (NIL) populations have a uniform genetic background with introgressions 

from a donor parent. NIL populations are created by repeatedly crossing a donor line to a 

recurrent parent for four generations, and then selfing five times with single seed descent to 

generate a population of BC3F4:5 lines (Jamann et al., 2015). While NILs lack the fine resolution 

offered by AILs, their uniform backgrounds allow for the confirmation of QTL and the detailed 

dissection of individual QTL.  

The second method of QTL mapping is association mapping. Genome-wide association 

studies (GWAS) take advantage of historical recombination to identify single nucleotide 

polymorphisms (SNPs) in linkage disequilibrium with a trait of interest (Jamann et al., 2015). 

Advantages of association mapping include elimination of the need to develop biparental 

crosses, increased allelic diversity, and higher resolution (Jamann et al., 2015). One disadvantage 

of association mapping is the need to eliminate confounding effects, such as population structure. 

Within an association panel, sub-populations may contain different allele frequencies for a SNP. 

As such, SNPs in a population with a higher mean trait value may be detected as significant, 

even if they are not linked to a causal variant (Jamann et al., 2015;Lipka et al., 2015). 

Relatedness, or the chances of two alleles being identical by state or identical by descent, can 

also lead to spurious associations (Lipka et al., 2015). To account for relatedness and population 
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structure, a Q+K mixed linear model must be employed when performing GWAS (Price et al., 

2006).  

Resistance Mechanisms: Very little is known about the vascular or foliar resistance 

mechanisms employed by maize to combat Goss’s wilt. Mbofung et al. (2016) compared 

resistant and susceptible maize hybrids and found that the resistant plants were able to reduce 

disease impact by limiting Cmn movement within the internal xylem vessels. This suggests some 

form of pattern recognition receptors (PRR) in the host cell membrane that are able to detect 

conserved structures or peptides on the Clavibacter bacteria (Mbofung et al., 2016). In some 

instances of fungal infection, for example, maize PRRs are able to mount defense responses to 

pathogen colonization by quickly oxidizing their phenolic compounds in order to lignify their 

cell walls (Beckman, 2000). This causes localized cell death, which contains the current infection 

and blocks further pathogen movement through the vasculature. Alternatively, structural 

adaptations in resistant maize may keep Cmn below the quorum sensing density threshold 

necessary for disease (Mbofung et al., 2016). 

Another bacterial maize pathogen that infects through the vasculature is Pantoea 

stewartii, the causal organism of Stewart’s wilt. Pantoea stewartii and Cmn cause many of the 

similar symptoms, including water-soaking and similar shaped lesions. In addition, resistance 

between the two diseases is correlated, despite P. stewartii being a gram-negative bacterium 

while C. michiganensis subsp. nebraskensis is gram-positive (Pataky, 1985;Pataky et al., 

1988;Suparyono and Pataky, 1989). This suggests that multiple disease resistance (MDR) 

effective against both diseases may be present. Multiple disease resistance is defined as “host 

plant resistance to two or more diseases”, although it does not necessarily imply a shared causal 

locus (Nene, 1988;Wiesner-Hanks and Nelson, 2016). Multiple disease resistance may be 
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achieved through pleiotropy, where one gene imparts two, unrelated effects, or through 

colocalization, where genetic resistance for one disease is in linkage disequilibrium with 

resistance to another disease and, as such, the two are inherited together.  

Breeding for Disease Resistance: Quantitative trait locus mapping identifies SNPs in linkage 

disequilibrium with a trait of interest. These molecular markers can then be used to select for 

lines carrying elite agronomic traits, even when the genes underlying those properties are 

unknown. This process of breeding for markers rather than genes is called marker assisted 

selection (MAS) and can be useful for pyramiding complimentary QTL together by selecting for 

lines with the associated SNPs (Ribaut and Hoisington, 1998). Unfortunately, for MAS to be 

successful the trait of interest must not only be in strong linkage disequilibrium with an 

identifiable marker, but must also have a large enough effect size to be detected by QTL 

mapping. In order to account for the genotypic effects too small to detect using classical linkage 

or association mapping, breeders have turned to a new method called genomic selection. 

 Genomic selection uses genome-wide molecular makers to predict the phenotypic value 

of an individual based off all genotypic effects, large and small (Meuwissen et al., 2001). In 

1918, R.A. Fisher proposed the “infinitesimal model”, which states that as the number of genes 

affecting a trait increases, the effect size of each gene decreases (Fisher, 1918). Genomic 

selection is based on the theory that quantitative traits are highly polygenic and thus their 

variation is better captured by modeling of all genome-wide markers. If all genetic variance can 

be explained by the available marker data, then it becomes possible to quantify the additive 

contribution of countless, small effect loci to the phenotypic variation (Goddard and Hayes, 

2007).  



13 

 

Genomic selection is performed by dividing a population into a “training” and a 

“prediction” population. The “training” population consists of both phenotypic and genotypic 

data (Meuwissen et al., 2001). Based off the phenotypic values, a prediction model is calculated 

that assigns an additive effect to each marker in the genotypic dataset. This prediction model is 

then used to calculate a genomic estimated breeding value (GEBV) for the “prediction” 

population using only genotypic data (Meuwissen et al., 2001). If the prediction model has high 

accuracy, elite lines can be selected based on the GEBV rather than relying on time-consuming 

and costly phenotyping. Genomic selection increases gains per unit time and immediately 

expedites the entire breeding cycle (Wong and Bernardo, 2008).  

HYPOTHESES FOR REEMERGENCE 

Genome Shift: Many theories have been proposed regarding the reemergence of Goss’s wilt, but 

to date no single cause has been confirmed. One possible hypothesis is that a shift in the 

pathogen genome has afforded Cmn an advantage in its evolutionary arms race with maize. 

Evidence for this theory can be seen by comparing two existing studies, one performed by 

Vidaver et al in 1981 and one more recently by Agarkova et al. in 2011.  

In the Vidaver et al. (1981) study, the Cmn genome was found to be relatively stable with 

no discernable patterns across years or even geographic location. However, Agarkova et al. 

(2011) revealed that, in the years following 1981, there was a significant shift in the pathogen. 

Using AFLP and BOX-PCR to perform cluster analysis, Cmn was split into two distinct groups, 

subtypes A and B. Population structure can arise when allele frequencies begin to differ within 

sub-populations due to factors such as selection or genetic drift. In the case of Goss’s wilt, 

subtype A was the stable isolate of Cmn seen by Vidaver in 1981. Subtype B, however, appears 

to have only formed after 1999 and has increased genetic diversity (Agarkova et al., 2011). 
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These studies are based on population structure and phylogeny, so it is so far unclear if and how 

this genetic shift impacts Cmn virulence. In addition, the proportion of strains in Subtype B only 

accounted for 18.8% of the total isolates examined in this experiment. This does not make up a 

significant enough proportion of the pathogen population to account for its unprecedented recent 

outbreak.   

Cultural Practices: Many researchers accredit the increase in Goss’s wilt with changes in 

cultural practices. Recent years have seen a shift in both continuous cornfields and reduced or 

no-till systems (Borchers et al., 2014;Wade et al., 2015). Because Cmn overwinters in infested 

maize residue along the soil surface, no-till continuous cornfields are predisposed towards 

Goss’s wilt outbreak (Johal and Huber, 2009). Another cultural trend worth noting is the 

decrease in spacing between maize rows since the 1950’s (Lauer, 1996). This increase in plant 

density has been associated with an increase in Cmn outbreaks. In a survey of over 486 infected 

fields, locations planted with susceptible hybrids at >67,500 seeds/ha displayed Goss’s wilt 

symptoms 88% of the time (Langemeier et al., 2017). This may be due to infected leaves being 

in closer physical proximity to uninfected leaves or a more humid microclimate within the 

foliage. 

Some speculate that glyphosate resistance in maize may be to blame for the increase of 

Cmn in recent years. Survey results from 486 locations across nine states including Nebraska, 

Iowa, Colorado, Indiana, Kansas, Minnesota, South Dakota, and North Dakota showed that 

applications of glyphosate or foliar fungicides were associated with higher levels of disease 

incidence (Langemeier et al., 2017). It should be noted that this paper only notes a correlation, 

and does not attempt to prove any causation between Goss’s wilt and glyphosate application. 

Williams et al. (2015) found no correlation between glyphosate resistance and Goss’s wilt. When 
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maize plants were inoculated both prior to and following glyphosate applications, not only were 

no significant correlations found between Goss’s wilt yield loss and glyphosate resistance, but 

transgenic glyphosate was actually seen to improve yield traits when compared to herbicide free-

treatments (Williams et al., 2015).  

Another factor that may play a role in the spread of Cmn is the increase of severe weather 

events due to climate change (EPA, 2017). Extreme storms are more likely to produce the type of 

strong winds, rain, and hail that cause physical damage to corn fields. Wounding is the primary 

entry method for Cmn and strong rains are needed to splash the non-motile bacteria onto its 

compromised host (Jackson et al., 2007). With climate change showing no signs of abating, 

Goss’s wilt incidence may only get worse.  

CONCLUSIONS 

 Goss’s wilt, caused by Cmn, causes foliar blight lesions and vascular wilt on maize and 

poses a serious threat to our continued corn production abilities. Although Goss’s wilt has 

emerged as one of the leading causes of yield loss in maize over the last decade, this review has 

demonstrated that very little is known about the bacteria’s virulence. Even less is known about 

host resistance mechanisms. Future research should be directed at determining the cause behind 

Goss’s wilt reemergence and characterizing host resistance and bacterial virulence.  

This research intends to identify regions of the host genome associated with Goss’s wilt 

resistance and to evaluate the efficacy of genomic selection in predicting the Goss’s wilt 

phenotype. The insights we gain through these experiments will have implications for other 

vascular diseases of maize. Through this work, we hope to provide a substantial contribution 

towards research across the country to combat this devastating disease.  
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CHAPTER 2: IDENTIFICATION OF QUANTITATIVE TRAIT LOCI FOR GOSS’S 

WILT IN THE INTERMATED B73 X MO17 AND RELATED NILS 

ABSTRACT 

Since its discovery in 1969, Goss’s wilt, a foliar blight and vascular wilt disease caused by the 

gram-positive bacterium Clavibacter michiganensis subsp. nebraskensis (Cmn), has emerged as 

one of the top four diseases of maize in the United States and Canada. No source of complete 

resistance has been described for Goss’s wilt, and little is known about the genetic and 

mechanistic basis of host resistance to Cmn. Our objective was to perform linkage mapping on 

three populations to uncover the genomic regions associated with Goss’s wilt resistance. We 

evaluated the Intermated B73 x Mo17 (IBM) population and two corresponding disease resistant 

introgression lines (DRIL) populations: B73(4) x Mo17 and Mo17(4) x B73. We identified 

putative QTL in bins 1.05-1.06, 2.06, 7.01-7.02, 8.05, and 10.04, both confirming previous 

findings and identifying novel resistance QTL. The QTL on chromosome 1, designated 

qGW1.06, was identified in multiple environments and overlaps with a known multiple disease 

resistance locus. The QTL in bin 8.05 represents a novel region associated with Goss’s wilt. 

Using the data from this study and previous studies, we found that Goss’s wilt resistance was 

correlated with northern leaf blight, but not gray leaf spot or southern leaf blight. These results 

offer a deeper understanding of the genetic basis of resistance to Goss’s wilt in maize that may 

facilitate breeding for resistance and qGW1.06 is a strong candidate for further characterization 

and use.  
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INTRODUCTION 

Little is known about resistance to the recently emerged disease Goss’s wilt of maize 

(Jackson et al., 2007). Goss’s wilt is caused by the gram positive bacterium Clavibacter 

michiganensis subsp. nebraskensis (Cmn), which produces foliar blight lesions and vascular wilt 

symptoms in susceptible maize varieties (Vidaver and Mandel, 1974). The disease was first 

observed in Nebraska in 1969 and over the next ten years was observed in Kansas, Iowa, South 

Dakota, Wyoming, and Colorado (Jackson et al., 2007; Vidaver et al., 1981). While initially 

devastating, disease incidence decreased following the initial emergence, due in large part to the 

development of resistant varieties by plant breeders, and by the early 1980’s occurrences were 

confined to highly susceptible varieties or plants that sustained severe physical injury (Jackson et 

al., 2007). This period of remission did not last, however. In 2006, farmers in western Nebraska, 

southeastern Wyoming, and eastern Colorado began reporting symptoms characteristic of Goss’s 

wilt (Jackson et al., 2007). Since then, the spread of Goss’s wilt has been extensive; as of 2013, 

the disease has been identified in fields stretching from Louisiana to Alberta, Canada (Howard et 

al., 2015; Jackson et al., 2007; Singh et al., 2015). To date, little is known about the cause of this 

sudden reemergence of Goss’s wilt; hypotheses range from pathogen genome shifts (Agarkova et 

al., 2011) to the recent trends towards no-till agriculture practices (Jackson et al., 2007).  

Cmn overwinters in infected crop residue on the soil surface (Schuster, 1975). Infection 

occurs most readily through wounded or damaged tissue; however, disease development can 

occur in unwounded plants subjected to high humidity conditions (Mallowa et al., 2016). Hail 

damage and sand-blasting both cause the type of mechanical injury necessary for infection, but 
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splashing water is often necessary to move the pathogen, as Cmn is non-motile (Jackson et al., 

2007; Vidaver and Mandel, 1974).  

Goss’s wilt is well known for having two distinct types of symptoms - systemic wilt and 

leaf blight. Severe wilt symptoms are often found in young plants, with 2-week-old seedlings 

being the most susceptible (Calub et al., 1974). In contrast, 8-week-old plants may take an 

additional 6-10 weeks to display symptoms (Calub et al., 1974). Seed transmission from infected 

parents is extremely rare, only occurring in 0.04-0.10% of cases (Biddle et al., 1990). Vascular 

wilt symptoms are easily recognizable by the internal orange discoloration of the vascular 

bundles and by the external water-soaked and slimy appearance of the stalk (Jackson et al., 

2007). Mature maize plants are more likely to develop foliar blight lesions rather than vascular 

wilt (Calub et al., 1974). Blight symptoms first appear as pale, water-soaked areas near the 

inoculation point. Necrotic areas develop parallel to the leaf veins and soon coalesce into large, 

tan lesions (Calub et al., 1974). Along the lesions, small, dark green to black, discontinuous, 

water-soaked spots begin to appear, commonly referred to as “freckles” (Jackson et al., 2007).  

Yield losses from Goss’s wilt vary depending on the susceptibility of the maize hybrids 

tested. In a replicated, multi-year study of sweet corn, resistant hybrid yield losses ranged from 

only 0-8%, however, in susceptible sweet corn germplasm losses exceeded 27% (Pataky et al., 

1988). In inoculated trials with field corn germplasm, yield losses in susceptible maize hybrids 

was >40% (Carson and Wicks, 1991). During the period from 2012 to 2015, approximately 501 

million bushels were lost in the United States and Canada due to Goss’s wilt, making it the 

fourth most severe disease of maize during this period (Mueller et al., 2016).  
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Cultural, chemical, and genetic control strategies have been investigated to combat 

Goss’s wilt, with varying degrees of success. No chemical control methods have been shown to 

decrease Goss’s wilt occurrence at a statistically significant level (Mehl et al., 2015). Because 

Goss’s wilt is known to overwinter in infected residue, cultural practices, such as crop rotation 

and conventional tillage systems, have been employed to reduce initial disease incidence 

(Jackson et al., 2007). High plant density has been correlated with increased disease pressure. 

This may be due to increased physical contact between symptomatic and healthy leaves or 

increased humidity within the row canopy (Langemeier et al., 2017). Therefore, fields planted at 

lower densities face a lower risk of a Goss’s wilt outbreak. 

One of the best strategies for mitigating the effects of Goss’s wilt remains to plant 

resistant maize hybrids; however only two previous studies have examined genetic resistance in 

maize and identified genomic regions involved with resistance to Goss’s wilt (Schaefer and 

Bernardo, 2013; Singh et al., 2016). Resistance to Goss’s wilt is quantitative (Treat and Tracy, 

1990), consisting primarily of small, additive effects (Singh et al., 2016). To date, no R-genes for 

Goss’s wilt have been discovered, and complete immunity does not exist (Jackson et al., 2007). 

Several regions of the maize genome have been associated with quantitative resistance to Goss’s 

wilt. Linkage mapping using three recombinant inbred line (RIL) populations, B73 x Oh43, B73 

x HP301, and B73 x P39, identified 19 putative resistance quantitative trait loci (QTL) (Singh et 

al., 2016). The effect size of each QTL was small, and none contributed more than 6% of the 

total observed phenotypic variation. In this study, heritability was high, ranging from 0.60-0.62, 

across all three populations (Singh et al., 2016). Genome-wide association mapping for Goss’s 

wilt was conducted on a panel of historically important maize lines from Minnesota (Schaefer 

and Bernardo, 2013). This study identified 8 putative QTL, located on chromosomes 1, 4, 5, 7, 
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and 9, however this study was conducted in only one environment and requires further validation 

(Schaefer and Bernardo, 2013). 

Populations with previously unstudied allelic diversity are needed to identify novel 

regions associated with Goss’s wilt resistance and to confirm previous findings. The intermated 

B73 x Mo17 (IBM) population, an advanced intercross line (AIL) population, has been used in 

numerous mapping studies of complex quantitative traits and offers high-resolution mapping 

(Lee et al., 2002). The IBM population was generated by self-pollinating the F1 generation, after 

which each plant was used once, either as a male or a female, in a cross with another plant for a 

total of 250 new crosses. A single kernel was then taken from each ear, bulked together with the 

other seeds collected, and randomly intermated. This process was repeated for a total of five 

generations, resulting in a four-fold increase in the number of recombination events captured 

compared to a conventional recombinant inbred line (RIL) population (Lee et al., 2002). 

Compared with a conventional RIL population with the same parents, between 5 and 50 times 

greater mapping resolution was observed in the IBM (Balint-Kurti et al., 2007). 

Two disease resistance introgression line (DRIL) populations complimentary to the IBM 

population have been developed, one with B73 as the recurrent parent and one with Mo17 as the 

recurrent parent (Lopez Zuniga, 2016). The DRIL populations were created by repeatedly 

crossing the donor line to the recurrent parent for four generations and selfing five times with 

single seed descent to generate a population of BC3F4:5 lines (Lopez Zuniga, 2016). While these 

two populations lack the fine resolution of the IBM, their uniform backgrounds allow for the 

confirmation of QTL and the detailed dissection of individual QTL.  
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The objective of this study was to use linkage mapping to identify regions of the genome 

associated with Goss’s wilt resistance, confirm these putative QTLs in the B73(4) x Mo17 and 

Mo17(4) x B73 DRIL populations, and compare these results to previous studies to assess 

whether multiple disease resistance effective against Goss’s wilt and other foliar diseases exists 

in the IBM population.  

MATERIALS AND METHODS 

Germplasm: Three mapping populations were used to identify QTL for Goss’s wilt resistance in 

maize, including the IBM population (Lee et al., 2002) and two related DRIL populations: B73 

(donor) x Mo17 (recurrent) introgression lines (DRIL14) and Mo17 (donor) x B73 (recurrent) 

introgression lines (DRIL41) (Lopez Zuniga, 2016). The DRIL41 and DRIL14 populations were 

derived from a reciprocal cross between B73 and Mo17 and three generations of backcrosses, 

followed by four consecutive generations of self-pollinating via single seed descent (Lopez 

Zuniga, 2016). The seed for the IBM population was obtained from Dr. Steve Moose at the 

University of Illinois at Urbana-Champaign.  

Field Design: Populations were grown as single-row plots in the 2016 and 2017 summer field 

season at the Crop Science Research and Education Center in Urbana, IL. Plots measured 3.2-

meters with 0.76-meter alleys and had a row spacing of 0.762 meters. Plots were machine-

planted at a density of 20 kernels/row. Standard agronomic practices for central Illinois were 

used. In 2016, 287 IBM lines were evaluated for Goss’s wilt with three replications, and, in 

2017, 234 IBM lines were tested over two replications. The difference in the number of lines 

tested in 2016 and 2017 was due to seed availability. An incomplete block design was created 
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using the agricolae package (Mendiburu, 2017) in R statistical software version 3.3.2 (R Core 

Team, 2016) with B73 and Mo17 included as checks in each incomplete block.  

To confirm findings from the IBM population, the DRIL14 and DRIL41 populations 

were evaluated for Goss’s wilt. In 2016, two replications of 48 lines of the DRIL14 population 

were evaluated, followed by two replications of 45 lines in 2017. Additionally, one replication of 

53 lines of the DRIL41 population was evaluated in 2016, and three replications of 47 lines were 

screened in 2017. Different numbers of replications were used in different years due to seed 

availability and space constraints. Due to the small number of total lines, the DRIL experiments 

were designed as randomized complete blocks using the agricolae package (Mendiburu, 2017) in 

R statistical software version 3.3.2 (R Core Team, 2016). One plot of each of the parents (B73 

and Mo17) was included in each replication.  

Inoculation and Disease Rating: Cmn strain 16Cmn001 was previously isolated from diseased 

leaf material from Illinois and maintained in glycerol stocks stored at -80°C for use in the 2016 

and 2017 field seasons. Single colonies were grown in nutrient broth yeast extract (NBY) on a 

shaker for two to three days. The final bacterial cell concentration was adjusted to 107 colony 

forming units per ml using a spectrophotometer (OD600=0.05) (Pataky, 1985). Inoculations were 

performed twice on all plants within the plot, one week apart, between the V4 and V7 stages 

using a pinprick inoculation method to simulate mechanical damage (Blanco et al., 1977; Chang 

et al., 1977).  

Disease ratings were performed twice, approximately every two weeks after initial 

inoculation. Inbreds were scored on a per-plot basis using a 0-100% scale with 5% intervals 

(Figure A.1). Ratings represented the total percent of infected leaf area, with 0% representing no 
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symptoms and 100% denoting complete plant death (Poland and Nelson, 2011). The area under 

disease progress curve (AUDPC) was calculated for each plot to represent disease progression 

throughout the season based on the equation  where  is the 

disease severity rating at time i; is the day interval between two ratings; and n is the 

number of ratings (Wilcoxson et al., 1974) (Figure 1.1).  

Phenotypic Data Analysis: Linear models were run using the lme4 package (Bates et al., 2015) 

in R statistical software version 3.3.2 (R Core Team, 2016). Best linear unbiased predictors 

(BLUPs) were predicted for each of the populations across all years, as well as for each year 

individually. All factors were fit as random effects. For the IBM population genotype, year, 

replication nested within year, and block nested within replication nested within year were 

included in the final combined year model (Table 1.1). The genotype-by-environment interaction 

was not found to be significant and excluded from the final model. The final model for the 

DRIL14 population included genotype and year, as replication and the genotype-by-environment 

interaction were not significant. The final model for the DRIL41 population included genotype, 

year, and the genotype-by-year interaction (Table 1.1), as replication was not significant. 

BLUPs, including the intercept, were calculated for each genotype (Figure 1.1). Individual years 

for the IBM population were analyzed using a linear model where AUDPC ~ genotype, 

replication, and block nested in replication. For the DRIL14 and DRIL41 populations, models for 

individual years included genotype and, in the case of DRIL14 in 2016, a factor for the field 

coordinate range was also included. 

Heritability was calculated using the PROC MIXED procedure of SAS software (SAS 

ver. 9.4, SAS Institute, Cary NC), as described by Holland et al. (2003). A Pearson’s correlation 
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coefficient was obtained between Goss’s wilt BLUPs across years for each population.  

Pearson’s correlation coefficient was also obtained between BLUPs for Goss’s wilt, northern leaf 

blight (NLB), southern leaf blight (SLB), and gray leaf spot (GLS) (Balint-Kurti et al., 2008; 

Balint-Kurti et al., 2010; Balint-Kurti et al., 2007) using the PROC CORR procedure of SAS 

software (SAS version 9.4, SAS Institute). NLB and GLS scores were inverted so that scales 

were consistent between diseases with low values indicating resistance and high values 

indicating susceptibility.  

Linkage Mapping: For the IBM population we utilized 1,324 genotyped single nucleotide 

polymorphism (SNP) markers for QTL analysis (http://maizegdb.org/data_center/qtl-data). A 

total of 337 genotyped SNPs were used for the DRIL41 DRIL population and 323 genotyped 

SNPs were used for the DRIL14 DRIL population (Lopez Zuniga, 2016). QTL mapping was 

performed on the IBM using R/qtl version 1.41-6 (Broman et al., 2003) and the DRILs using 

ICIMapping version 4.0.6.0 (Meng et al., 2015). Different programs were used due to the 

different population types and program optimization for these population types. In R/qtl, 

genotypes were first imputed using the function “sim.geno” in order to estimate missing 

genotypes based on the observed marker data. A total of 128 imputations were simulated, with a 

step size of two and a genotyping error rate of 0.001. To determine the LOD threshold 

representing an experiment-wide error rate of 0.10 for each population, we performed 1,000 

permutations using the multiple imputation method algorithm (Chen and Kendziorski, 2007; 

Meng et al., 2015). Peak markers with LOD scores above the permuted threshold were identified 

using the multiple imputation “imp” method of the “scanone” function, with a window size of 3 

for each population. A 2-LOD support interval and the percent of phenotypic variance associated 

with each marker were calculated using the R/qtl functions “lodint” and “fitqtl,” respectively. 
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QTL positions are reported by bin number (Davis et al., 1999). For ICIMapping, the 

Chromosome Segment Substitution option was chosen (Meng et al., 2015). Chromosome 

Segment Substitution allows the comparison of trait performance between unique chromosome 

segments and the recurrent parent. A likelihood ratio is then used to identify the segments 

statistically associated with the trait of interest. The step-wise regression likelihood ratio test was 

performed using the RSTEP-LRT-ADD function and QTL with a LOD score greater than 3.00 

were identified.  

RESULTS AND DISCUSSION 

Characterization of Germplasm: The IBM is an AIL population derived from B73 and Mo17 

that offers enhanced genetic resolution compared to other biparental populations. While the 

identified QTL may not be easily used in breeding programs due to the interheterotic group 

nature of the population, there are certain advantages associated with the IBM. It is a powerful 

tool for QTL discovery and is readily available. There are two corresponding DRIL populations 

associated with the IBM; B73 as a donor and Mo17 as the recurrent parent (DRIL14) and Mo17 

as the donor and B73 and the recurrent parent (DRIL41). The DRIL populations can be used to 

corroborate findings and further dissect the QTL mapped in the IBM. Together, these three 

populations can be used to identify the genes underlying resistance to Goss’s wilt. 

Substantial transgressive segregation was observed in the IBM population (Figure 1.1). 

The IBM population had a wide range of disease scores, from 0-95% infected leaf area for 

individual disease ratings. In comparison to the IBM, the DRIL14 and DRIL41 populations 

never reached a disease rating >35% for an individual diseased leaf area rating in either year and 

had lower population means than the IBM population. This is reflected in the BLUP values that 
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were calculated based on the AUDPC scores, where the highest BLUP within the IBM 

population was 335.59, and the highest BLUP in the DRIL14 and DRIL41 populations were 

219.21 and 256.25, respectively. The DRIL14 BLUPs were skewed towards resistance because 

of the relatively resistant phenotype of the recurrent Mo17 and more susceptible phenotype of 

the donor B73. In contrast, the DRIL41 BLUPs were concentrated around the recurrent parent 

B73 and showed susceptible transgressive segregation with lines more susceptible than either the 

recurrent or donor parent. Less disease was observed in the DRIL41 population than in the IBM, 

despite the susceptible parent (B73) being the recurrent parent in the DRIL41 population. We 

believe this is because less disease was observed in 2017 than 2016, and the DRIL41 population 

had 1 replication in 2016 and three replications in 2017, while the IBM had three replications in 

2016 and two replications in 2017. 

Genotype, year, replication, block (for the IBM), and genotype-by-year were included in 

the analysis to determine which factors to include in the BLUP calculations. For the IBM, 

genotype, year, replication nested within year, and block nested within replication nested within 

year were significant in an ANOVA and included in BLUP calculations (Table 1.1). The 

DRIL14 population analysis included genotype and year, while the DRIL41 linear model 

included genotype, year, and the genotype-by-year interaction (Table 1.1). In each population, 

year accounted for the most variance. Unlike previous studies, which found highly significant 

genotype-by-year interactions (Ngong-Nassah et al., 1992; Treat and Tracy, 1990), the genotype-

by-year effect was only significant for one of the three populations. Our findings are consistent 

with Singh et al.’s (2016) findings which did not find significant variation caused by genotype-

by-year in some B73-derived populations. 
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Pearson’s correlation coefficients were calculated for each population across years. 

Between 2016 and 2017, the IBM had a correlation of 0.3465 (P <0.0001), DRIL14 of 0.3741 (P 

<0.0001), and DRIL41 of 0.42272 (P <0.0001). Hot and dry weather conditions during 

inoculations in 2017 may have accounted for some of the differences observed between years; 

however, p-values were significant for all populations. Because of these environmental 

conditions, less disease was observed in 2017 than in 2016.  

Heritability was calculated for each population using the method described by Holland et 

al. (2003). Heritabilities were consistent across populations, with plot heritability values ranging 

from 0.24 to 0.35 and family-mean heritability values falling between 0.53 and 0.63 (Table 1.2). 

In comparison, Singh et al. (2016) reported family-mean heritabilities ranging from 0.60 to 0.62. 

A study by Ngong-Nassah et al. (1992) crossed four resistant x susceptible and two moderately 

resistant x susceptible inbreds to create six populations to study the inheritance of Goss’s wilt 

resistance in maize populations, and broad-sense heritabilities ranged from 0.21 to 0.80. 

Heritability was highest in crosses between extremely resistant and extremely susceptible lines. 

Heritability was lower in populations with parents of more similar phenotypes, as was the case 

with our B73 x Mo17 derived populations.  

Linkage Mapping: We identified seven QTL for Goss’s wilt resistance using linkage mapping 

(Table 1.3 and Figure 1.2). Five QTL were found in the IBM population and were located in bins 

1.05-1.06, 2.06-2.07, 7.01-7.02, 8.05, and 10.04. Two additional QTL were found in the DRIL14 

population in bins 5.09 and 7.00. No significant QTL were identified in the DRIL41 population. 

In the DRIL 41 population, we expected to observe lines that were more resistant than B73, as 

Mo17 is the donor and is more resistant, but were unable to do so (Figure 1.1). Thus, the lack of 
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QTL in this population may have been the result of our inability to accurately distinguish 

phenotypic differences. In addition to the mapping on the combined dataset, linkage mapping 

was performed for individual years. In the IBM, QTL corresponding to those found in the 

combined dataset were identified, with QTL that mapped to 1.05-1.06 and 8.05 in 2017 and 1.05-

1.06, 2.06, and 10.04 in 2016 (Figure 1.2). In the DRIL14 population, the putative QTL at 7.00 

was identified in 2016, however no significant QTL were observed in 2017. It is possible we did 

not identify the chromosome 1 QTL in this population because the population size is small and 

only three lines had introgressions spanning the 1.06 region. 

One of our goals was to confirm IBM QTL in related, yet independent, populations. 

There were no overlapping QTL between the three populations examined. It is possible that the 

chromosome 7 QTL identified in the DRIL14 population and the chromosome 7 IBM QTL are 

the same QTL with slightly shifted positions in the two populations. The lack of correspondence 

in QTL between the three populations may be attributed to a number of possible factors. Small 

population sizes in the DRIL populations reduced the power to detect QTL, particularly the 

power to detect QTL with small effect sizes. The QTL detected in the IBM accounted for a small 

percentage of the total variance (R2 = 3.4 - 7.5%) and had small effect sizes (A= -13.7-9.67) 

(Table 1.3). Phenotyping of the DRIL populations was problematic, as both parents were 

relatively resistant and differences due to the introgressions were difficult to distinguish. While 

we found significant differences between Mo17 and B73 (P-value=4.9x10-8), both parents are 

relatively resistant to Goss’s wilt. Parents with a stronger phenotypic difference would allow for 

more accurate phenotyping and improved QTL detection.  



33 

 

Only two other studies have mapped resistance to Goss’s wilt. Singh et al. (2016) 

reported Goss’s wilt resistance QTL in B73-derived populations, including B73 x HP301, B73 x 

Oh43, and B73 x P39. Their study identified putative QTL on chromosomes 1, 2, 3, 4, 5, 6, 7, 9, 

and 10. Schaefer and Bernardo (2013) examined a collection of Minnesotan inbred lines and 

identified significant associations in bins 1.06, 1.10, 4.05, 4.09, 5.04, 5.05, 7.02, 9.02, and 9.06. 

The QTL we found in 1.05-1.06 colocalizes with the QTL described by Singh et al. (2016) and 

Schaefer and Bernardo (2013). In addition, the QTL we found in 2.06 overlaps with the QTL 

identified by Singh et al. (2016), and the QTL we identified in bins 7.01-7.02 colocalizes with 

the significant association identified by Schaefer and Bernardo (2013). The results of our study 

confirm the previous finding of potential resistance loci on chromosomes 1, 2, and 7, while the 

putative QTL we report in bin 8.05 is the first description of a Goss’s wilt resistance QTL on that 

chromosome. 

Multiple Disease Resistance: Multiple disease resistance refers to either host plant resistance to 

more than one disease or a gene or allele that confers resistance to more than one disease 

(Wiesner-Hanks and Nelson, 2016). We wanted to test the hypothesis that resistance to Goss’s 

wilt is related to resistance to other diseases. Previous studies have reported a correlation 

between sweet corn hybrids evaluated for Goss’s wilt, Stewart’s wilt, and NLB (Pataky, 1985; 

Pataky et al., 1988; Suparyono and Pataky, 1989). Our goal was to test whether there was a 

correlation between Goss’s wilt and other foliar diseases. In addition to Goss’s wilt, the IBM 

population has been evaluated for other diseases including NLB, SLB, and GLS (Balint-Kurti et 

al., 2010; Balint-Kurti et al., 2007; Benson et al., 2015). Pearson’s correlation coefficients were 

calculated for Goss’s wilt, NLB, GLS, and SLB in the IBM population. Goss’s wilt was 

significantly correlated with NLB, but not GLS and SLB (Table 1.4). These results indicate that 
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an IBM line that is more resistant to NLB has an increased probability of being resistant to 

Goss’s wilt. There may be some mechanistic basis for this observation, as the vascular nature of 

pathogenesis by Setosphaeria turcica, causal agent of NLB, is comparable to the vascular nature 

of infection by Cmn (Chung et al., 2010; Jennings and Ullstrup, 1957; Mbofung et al., 2016). 

In order to identify regions that may be implicated in resistance to multiple diseases 

including Goss’s wilt, we compared QTL found in the IBM for the other diseases to those 

identified for Goss’s wilt. The 1.06 region that has been previously associated with resistance to 

GLS (Benson et al., 2015) and NLB (Balint-Kurti et al., 2010) falls within the 1.05-1.06 interval 

associated with Goss’s wilt in our study. Additionally, this QTL falls within the same region on 

chromosome 1 as qMDR1.06, a multiple disease resistance locus identified by Wisser et al. 

(2006). qMDR1.06 has been implicated in resistance to Stewart’s wilt, NLB, SLB, and a number 

of other maize diseases (Chung et al., 2010; Jamann et al., 2014; Wisser et al., 2006). The Goss’s 

wilt resistance QTL at 1.05-1.06, which we will refer to as qGW1.06, was found in 2016, 2017, 

and in the combined dataset. qGW1.06 accounted for the most variance of all QTL detected in 

the IBM, had one of the largest effect sizes, and its presence in multiple years demonstrates that 

it is active across different environments. The effect size of qMDR1.06 varies by disease. While 

it confers a large effect for Stewart’s wilt, it has a smaller effect on NLB (Jamann et al., 2014). 

The pan1 gene which contributes to asymmetric cell division (Cartwright et al., 2009) is located 

within the qGW1.06 interval. Two independent lines homozygous for independent mutations in 

pan1 have increased resistance to the vascular diseases NLB and Stewart’s wilt, implying that 

pan1 is a multiple disease susceptibility gene (Jamann et al., 2014). Further work is needed to 

determine whether pan1 is involved in resistance to Goss’s wilt.  
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CONCLUSIONS 

We have identified several QTL in the IBM and DRIL14 populations associated with 

Goss’s wilt. Quantitative trait loci in bins 1.05-1.06, 2.06-2.07, 7.01-7.02, 8.05, and 10.04 

confirm putative QTL found in previous studies and correspond to known regions associated 

with multiple disease resistance (Balint-Kurti et al., 2010; Benson et al., 2015; Schaefer and 

Bernardo, 2013; Singh et al., 2016; Wisser et al., 2006). In particular, we have identified a QTL 

in bins 1.05-1.06 that overlaps with a known multiple disease resistance locus (Wisser et al., 

2006) and the NLB and Stewart’s wilt susceptibility gene pan1 (Jamann et al., 2014). 

Additionally, we have discovered a novel QTL for Goss’s wilt resistance at 8.05. Future work 

will confirm the QTL identified in this study, examine the role of the pan1 gene with respect to 

Goss’s wilt, and attempt to isolate the casual mechanisms underlying the identified QTL. 

Because so little is known about Cmn pathogenesis, dissection of these QTL may offer insight 

regarding the pathogen’s virulence and the corresponding plant defense mechanisms. In order to 

breed for resistance to Goss’s wilt, future work includes testing the stacking of QTL within the 

DRIL populations and studying hybrid efficacy by testcrossing the best DRILs and recurrent 

parents. These studies would inform the improvement of Goss’s wilt within breeding 

populations. In conclusion, the QTL we have identified improve the understanding of the genetic 

architecture of resistance to Goss’s wilt, and we have identified regions for follow up for 

resistance breeding and to dissect disease resistance mechanisms effective against Cmn.  
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TABLES AND FIGURES 

Table 1.1. Variance component estimates and their standard errors for factors included in 

the analysis for the IBM, DRIL14 (B73(4) x Mo17), and DRIL41 (Mo17(4) x B73) 

populations.  All tabled variance component estimates were found to be significantly 

different than zero (P < 0.05). 

 Variance Standard Error 

IBM   

Genotype 2672.3 51.69 

Year 15043.2 122.65 

Replication(Year) 403.9 20.1 

Block(Replication(Year)) 925.8 30.43 

Error 5295.5 72.77 

   

DRIL14   

Genotype 1758 41.93 

Year 2809 53 

Error 3581 59.84 

   

DRIL41   

Genotype 1418.3 37.66 

Year 9960.1 99.8 

Genotype * Year 687.4 26.22 

Error 1537.6 39.21 
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Table 1.2. Heritabilities on a plot and family-mean basis with corresponding standard 

errors (SE) for the IBM, DRIL14 (B73(4) x Mo17), and DRIL41 (Mo17(4) x B73) 

populations.  

Population Heritability  

(Plot basis)  

(SE†) 

Heritability (Family-

mean basis) 

(SE†) 

IBM 0.312(0.038) 0.630(0.051) 

B73(4) x Mo17 DRIL 0.235(0.104) 0.525(0.162) 

Mo17(4) x B73 DRIL 0.348(0.109) 0.565(0.128) 
† Standard error 
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Table 1.3. Significant genetic markers for the IBM and DRIL14 (B73(4) x Mo17 

Introgression Line) populations in the combined 2016&17 dataset, as well as individual 

years.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset†: Population followed by year(s). 

Chr.‡: Chromosome. 

Bin§: Chromosome bin location of each QTL (Davis et al., 1999). 

2-LOD interval¶: Physical map positions in Mb (RefGen_v3); For DRIL14 population only the 

physical position of peak marker is given (RefGen_v3). 

LOD#: The log of odds (LOD) value at the position of the peak likelihood of the QTL. 

Threshold††: LOD threshold to identify significant QTL corresponding to an empirical Type I 

error value of 0.10 produced from 1000 imputations. A LOD score of 3 was used to detect 

significant QTL in the DRIL14 population. 

R2‡‡: Proportion of phenotypic variance explained by the detected QTL. 

A§§: Additive effect estimates of the detected QTL. Effects are in terms of the disease rating 

scale employed. A negative value indicates that the Mo17 allele is the more resistant allele, while 

a positive value indicates that the B73 allele is the resistant allele. 

 

 

 

 

Dataset† Chr.‡ Bin§ Peak Marker 2-LOD interval¶ LOD# Threshold†† R2‡‡ A§§ 

IBM-2016&17 1 1.05-

1.06 

asg58 168.0-187.8 

 

6.54 3.44 7.60 -11.8 

IBM-2016&17 2 2.06-

2.07 

uaz194a 184.0-189.4  

 

4.14 3.44 5.24 9.67 

IBM-2016&17 7 7.01-
7.02 

bnlg2203 8.837-89.907 
 

3.22 3.44 4.10 8.77 

IBM-2016&17 10 10.04 isu058b 84.172-124.4  

 

3.72 3.44 3.43 7.96 

IBM-2016 1 1.05-

1.06 

c1.loc482 155.7-188.1 

 

4.84 3.19 5.77 -9.85 

IBM-2016 2 2.06-
2.07 

uaz194a 175.1-189.4 
 

3.69 3.19 4.35 8.69 

IBM-2016 10 10.04 c10.loc260 84.172-124.4 

 

3.77 3.19 5.07 2.35 

IBM-2017 1 1.05-

1.06 

asg58 156.4-177.1 

 

3.78 3.09 6.37 -11.5 

IBM-2017 8 8.05 c8.loc346 110.3-137.7 
 

4.02 3.09 6.55 -13.7 

DRIL14-

2016&17 

5 5.09 PHM13639.13    215.8 3.29 3.00 22.32 35.80 

DRIL14-

2016&17 

7 7.00 PZA02035.5 2.584 3.65 3.00 23.45 35.9 

DRIL14- 2016 7 7.00 PZA02035.5 2.584 3.16 3.00 27.30 49.82 
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Table 1.4. Pearson’s correlations for multiple disease resistance in the IBM population. A 

correlation coefficient and p-value is included for each comparison. Correlations were found by 

comparing BLUPs of AUDPC scores for each of the diseases. Data were derived from this and 

three previous studies (Balint-Kurti et al., 2008; Balint-Kurti et al., 2010; Balint-Kurti et al., 

2007). 

 Northern Leaf 

Blight 

Gray Leaf Spot Southern Leaf 

Blight 

Goss’s wilt 0.384*** 0.025 0.117 

Northern Leaf Blight  0.291*** 0.160* 

Gray Leaf Spot   0.407*** 

 

*Significant at P < 0.05 

** Significant at P < 0.001 

***Significant at P < 0.0001 
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Figure 1.1. Phenotypic distribution of Goss’s wilt in the IBM (Intermated B73 x Mo17), 

DRIL14 (B73(4) x Mo17 Introgression Line), and DRIL41 (Mo17(4) x B73 Introgression 

Line) populations. Lines were assessed visually using a 0-100% scale, and the area under the 

disease progress curve values were calculated based on these visual scores. The phenotypic data 

shown is expressed as best linear unbiased predictors of the area under disease progress curve 

including the intercept. 
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Figure 1.2. Peak SNPs in a 2-LOD interval from the IBM (Intermated B73 x Mo17) and 

DRIL14 (B73(4) x Mo17) populations overlaid on a physical map of the maize genome. 

Chromosomes are denoted as vertical gray bars, with blue bars representing IBM QTL and 

orange bars denoting DRIL14 QTL. 
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CHAPTER 3: USE OF THE NC344 X OH7B INTROGRESSION LINES TO IDENTIFY 

QUANTITATIVE TRAIT LOCI FOR GOSS’S WILT OF MAIZE 

ABSTRACT 

Little is known about the genetic architecture underlying Goss’s wilt resistance. Since it 

reemergence in 2006, a number of studies have attempted to identify sources of quantitative 

resistance to the disease in maize. Unfortunately, these studies failed to identify any large effect 

QTL, nor have most of their findings been further verified in subsequent work. The objective of 

this study was to perform linkage mapping on the NC344 x Oh7B disease resistant introgression 

lines (DRIL78) in order to identify novel sources of resistance to Goss’s wilt, as well as confirm 

putative QTL previously identified in the literature. We found five QTL in the DRIL78 

population previously QTL identified by Cooper et al. (2018) and Singh et al. (2016). No novel 

sources of resistance were found. The QTL found in this study are in clean Oh7B background, 

and will allow future work to further dissect the underlying causal mechanisms.  
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INTRODUCTION 

The geographical range of Goss’s wilt is expanding, and control methods are limited to 

cultural practices and host resistance; no effective chemical controls exist (Mehl et al., 2015). 

The disease, caused by Clavibacter michiganensis subsp. nebraskensis (Cmn), causes foliar 

blight and vascular wilt symptoms on susceptible maize lines (Schuster, 1975;Vidaver and 

Mandel, 1974). First identified in Nebraska, the disease gained notoriety in the western Corn 

Belt throughout the 1970’s (Vidaver et al., 1981;Vidaver and Mandel, 1974). After breeders 

developed resistant hybrids, incidence of the disease began to fall and remained low until the 

early 2000’s (Jackson et al., 2007). In 2006, Goss’s wilt reappeared in Nebraska with over 50 

confirmed samples, compared to the 40 total samples seen throughout the state since 1998 

(Jackson et al., 2007). The range of the disease currently reaches from Alberta, Canada through 

Louisiana (Howard et al., 2015;Jackson et al., 2007;Singh et al., 2016). 

Yield losses from Goss’s wilt can be quite severe. Losses of over 50% have been 

observed in susceptible fields that develop symptoms early in the season (Jackson et al., 2007). 

In the period from 2012-2015, an estimated 501 million bushels were lost to this disease, making 

it the 4th most harmful pathogen of maize during the time (Mueller et al., 2016). Severity of 

Goss’ wilt is influenced by interactions between the host, the pathogen, and the environment. 

Together, these factors make up a pathological concept known as the disease triangle (Agrios, 

2005). Attempts to control Goss’s wilt must focus on altering any of the three points on this 

triangle.   

The extreme weather events in the Corn Belt provide the ideal environment for Cmn. The 

pathogen is non-motile and must rely on wounding of the host plant for entry (Vidaver and 

Mandel, 1974). Hail storms and sandblasting winds are common throughout the central United 
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States and help facilitate this type of infection (Jackson et al., 2007). In addition, very little is 

known about Cmn virulence. No correlations exist between colony morphology and plant 

pathogenicity, and attempts to identify underlying virulence genes have been largely 

unsuccessful (Ahmad et al., 2015). With no way to change local weather patterns and little 

meaningful data on Cmn pathogenicity, attempts to control Goss’s wilt must rely on 

improvement of host resistance.  

No major resistance genes exist for Goss’s wilt (Schaefer and Bernardo, 2013;Singh et 

al., 2016). Instead, resistance to Cmn is quantitative in nature; it is composed of numerous, small 

effect, quantitative trait loci (QTL) (Treat and Tracy, 1990). Previous studies have successfully 

identified a number of QTL associated with Goss’s wilt. Association mapping was performed on 

a panel of historically significant Minnesotan maize lines. Eight QTLs, found on chromosomes 

1, 4, 5, 7, and 9, were identified and proposed as potential sources of quantitative resistance 

(Schaefer and Bernardo, 2013). This study represented the first example of QTL mapping for 

Goss’s wilt in maize. In the following years, a joint linkage mapping study on three recombinant 

inbred line (RIL) populations, B73 x Oh43, B73 x HP301, and B73 x P39, was conducted. 

Putative QTLs were found on every chromosome aside from chromosome 8. More recently, 

linkage mapping on the Intermated B73 x Mo17 and related near isogenic lines revealed QTL 

overlapping with the Singh et al. (2016) and Schaefer and Bernardo (2013) results, and, in 

addition, identified the first QTL for Goss’s wilt on chromosome 8 (Cooper et al., 2018).  

Unfortunately, these studies had their own challenges as well. The association mapping 

by Schaefer and Bernardo (2013) was only conducted in one year, and therefore requires further 

validation. The joint linkage mapping of the B73 derived populations found many potential 

resistance QTL, but each were very small in effect and not useful for marker assisted selection in 
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their current, unstacked state (Singh et al., 2016). Finally, the IBM and related near isogenic lines 

were only able to find a QTL on chromosome 8 in one year of their dataset, not in the multi-year 

analysis (Cooper et al., 2018). 

To confirm these previous findings, we performed linkage mapping on the NC344(4) x 

Oh7B disease resistance introgression lines (DRIL78) (Lopez, 2016). This population was 

generated via three generations of backcrosses, followed by four consecutive generations of self-

pollination (Lopez, 2016). The parents were selected from the Goodman Diversity panel based 

on multiple disease resistance (MDR) and multiple disease susceptibility (MDS) characteristics 

(Flint-Garcia et al., 2005). Diseases considered in line selection included northern corn leaf 

blight, southern corn leaf blight, and gray leaf spot (Lopez, 2016). Oh7B has shown moderate 

susceptibility for Goss’s wilt and NC344 displays moderate resistance. The diverse parental 

phenotypes used to create the DRIL78s provide a clear contrast between resistant and susceptible 

introgression lines. This allows for accurate phenotyping for lines containing Goss’s wilt QTL 

and will provide loci that may serve useful in future attempts to determine underlying casual 

resistance mechanisms. 

 The objective of our study was to identify novel sources of allelic diversity for Goss’s 

wilt and confirm putative QTL identified in previous literature. In addition, we sought to 

distinguish clean introgressions of the resistant NC344 genome in an Oh7B background that may 

prove useful for future molecular studies. 

MATERIALS AND METHODS 

Germplasm: The DRIL78 mapping population was used to identify Goss’s wilt QTL (Lopez, 

2016). The population was created by backcrossing the F1 of the donor NC344 and the recurrent 
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Oh7B parent back to the Oh7B recurrent parent for three generations. This was followed by four 

generations of self-pollinating via single seed descent to create a final population of BC3F4:5 lines 

(Lopez, 2016). Seed was obtained from Dr. Randall Wisser at the University of Delaware.  

Field Design: The DRIL78 population was grown as single-row plots in 2016 at the Crop 

Science Research and Education Center in Urbana, IL (2016Urbana) and the 2017 summer field 

season in Urbana, IL (2017Urbana) and Monmouth, IL (2017Monmouth). Plots measured 3.2-

meters with 0.76-meter alleys and had a row spacing of 0.762 meters. Plots were machine-

planted at a density of 20 kernels/row. Standard agronomic practices for central Illinois were 

used. In 2016Urbana, one replication of 209 DRIL78 lines was evaluated for Goss’s wilt. In 

2017Urbana, two replications of 194 DRIL78s were phenotyped in Urbana, IL and two 

additional replications of 186 DRIL78s were evaluated in 2017Monmouth. Differences in the 

number of lines tested were due to seed and space availability. Experiments were laid out as an 

incomplete block design using the agricolae package (Mendiburu, 2017) in R statistical software 

version 3.3.2 (R Core Team, 2016). Included as check lines in each block were the resistant 

inbred lines NC344 or NC258 and the susceptible inbred line Oh7B.  

Inoculation and Disease Rating: The Illinois Cmn strain 16Cmn001 was maintained in glycerol 

stocks stored at -80°C for use in the 2016 and 2017 field seasons. Inoculations were conducted as 

described in Cooper et al. (2018). Single colonies were grown on a shaker table in nutrient broth 

yeast extract for two to three days. A spectrophotometer was used to adjust a final inoculum 

concentration to 107 colony forming units per mL (OD600=0.05) (Pataky, 1985). Inoculations 

were performed twice, one week apart, between the V4 and V7 stages using a pinprick 

inoculation method to simulate mechanical damage (Blanco et al., 1977;Chang et al., 1977). 

Disease ratings were taken three times on a per-plot basis, beginning two weeks after the initial 
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inoculation. A scale of 0%-100% with 5% intervals was used to visually score disease severity 

(Poland and Nelson, 2011). The area under disease progress curve (AUDPC) was calculated for 

each plot to represent disease severity throughout the season (Figure 2.1) (Wilcoxson et al., 

1975).  

Phenotypic Data Analysis: Linear models were run for the response variable AUDPC using 

lme4 package (Bates et al., 2015) in R statistical software version 3.3.2 (R Core Team, 2016). 

The genotype, environment, genotype-by-environment interaction, replication nested in 

environment, and block nested in replication nested in environment factors were all examined for 

significance. The final model for the combined DRIL78 dataset included genotype, environment, 

genotype-by-environment interaction, replication nested in environment, and block nested in 

replication nested in environment. The 2016Urbana model included only genotype, whereas the 

2017Monmouth and 2017Urbana models included genotype, replication, and block nested in 

replication. Best linear unbiased predictors (BLUPs) were calculated for the combined year and 

the individual environment datasets (Table 2.1). Heritability was calculated using the PROC 

MIXED procedure of SAS software (SAS ver. 9.4, SAS Institute, Cary NC), as described by 

Holland et al. (2003). A Pearson’s correlation coefficient was obtained between Goss’s wilt 

BLUPs across environments using the PROC CORR procedure of SAS software (SAS version 

9.4, SAS Institute).  

Linkage Mapping: A total of 240 single nucleotide polymorphisms were used as genetic 

markers for QTL mapping (Lopez, 2016). Genetic mapping was performed using the 

Chromosome Segment Substitution option in ICIMapping version 4.0.6.0 (Meng et al., 2015). 

This option allows for the comparison of unique donor chromosome introgressions to the 

recurrent parent. A likelihood ratio is then used to identify the segments statistically associated 
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with the trait of interest. The step-wise regression likelihood ratio test was performed using the 

RSTEP-LRT-ADD function and QTL with a LOD score greater than 3.00 were identified.  

RESULTS AND DISCUSSION 

Characterization of Germplasm: Oh7B and NC344 were selected from the Goodman Diversity 

panel based on their reaction to multiple disease. Oh7B was chosen because it displays MDS to 

northern corn leaf blight, southern corn leaf blight, and gray leaf spot. In contrast, NC344 has 

MDR for these three diseases (Lopez, 2016). Our goal was to determine whether this MDR and 

MDS also pertained to Goss’s wilt. 

The phenotypic distribution of the DRIL78 population is normally distributed around the 

recurrent, susceptible, Oh7B parent (Figure 2.1). The genome of a BC3F4:5 population is >90% of 

the recurrent parent due to the repeated backcrossing. Therefore the majority of the lines should 

display similar phenotypes as the recurrent parent (Jamann et al., 2015). A small proportion of 

lines exhibited resistance in accordance with the donor, resistant NC344 parent. In addition, 

transgressive segregation was observed in a fraction of susceptible lines. These lines displayed 

higher susceptibility than the Oh7B parent.  

 Phenotypes were consistent between environments. In the combined dataset, Oh7B had 

an average AUDPC of 520, and NC344 of 170. Pearson correlation coefficients between 

environments were all statistically significant (Table 2.2). 2016Urbana had a positive correlation 

of 0.543 with 2017Urbana and 0.603 with 2017Monmouth. 2017Urbana had a positive 

correlation of 0.655 with 2017Monmouth. A significant genotype-by-environment interaction 

was observed in the combined dataset. This is consistent with previous studies, which also 
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observed highly significant genotype-by-environment interactions (Ngong-Nassah et al., 

1992;Treat and Tracy, 1990).  

Heritabilities for this population were moderately high. The plot heritability was 0.42 

(Standard Error 0.036) and the family heritability was 0.76 (Standard Error 0.029). These results 

are consistent with heritabilities found in other Goss’s wilt studies.  Singh et al. (2016) found 

family-mean heritabilities ranging from 0.60 to 0.62 and Cooper et al. (2018) reported family-

mean heritabilities between 0.53 and 0.63.  

Linkage Mapping: We were successful in identifying putative QTL on five chromosomes – 

1.05, 2.07, 3.06, 7.04, and 9.03. Confidence intervals were delimited by selecting the first 

markers on either side of the significant SNP with a threshold less than our 3.00 LOD score. The 

QTL on chromosome 2.07 was the only significant QTL found in all three environments and the 

combined dataset. Like previous Goss’s wilt QTL, it had a small effect size of only around 7-

11% (Table 2.3). This QTL overlaps with the results found in 2.07 by Singh et al. (2016) and 

Cooper et al. (2018). Only the 2.07 QTL overlapped between our study and the B73 and Mo17 

derived populations (Cooper et al., 2018). This may be due to the difference in alleles sampled. 

There is an evident lack of similarity between B73 and Mo17 alleles compared to Oh7B and 

NC344 alleles. In contrast, a number of close similarities were found between our results and the 

results of Singh et al. (2016). This can be attributed to the Oh43 inbred lines used in their joint 

linkage mapping, which is closely related to the DRIL78 parental line Oh7B. Another possibility 

is that the small population sizes and marker density in the B73 and Mo17 introgression lines 

reduced their power to detect other significant QTL.  

The QTL found on chromosome 3.06, 7.04, 9.03 also correspond with previously 

identified Goss’s wilt QTL (Singh et al., 2016).  However, no QTL were seen to overlap with the 
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Minnesota association mapping trial performed by Schaefer and Bernardo (2013). The QTL on 

chromosome 1.05, found in the combined dataset and 2017Monmouth, had two peak SNPs next 

to each other with LOD scores of 24.1 and 12.8. The proximity and significance of these two 

markers indicates that this could be one large QTL. This QTL also explained the largest 

proportion of phenotypic variance observed (Table 2.3). Unfortunately, this QTL did not overlap 

with any other studies, and therefore needs further verification before it can be used for breeding.  

None of our QTL overlapped with the regions associated with resistance to other 

diseases, including northern corn leaf blight, southern corn leaf blight or gray leaf spot (Lopez, 

2016). These results indicate that resistance to Goss’s wilt does is not related to resistance to any 

of these diseases in this population. In contrast, Cooper et al. (2018) found that Goss’s wilt 

severity in the B73 x Mo17 derived populations was significantly associated with northern corn 

leaf blight, but not with gray leaf spot or southern leaf blight. Further research is needed to 

determine if this association also exists in the DRIL78 population.   

CONCLUSIONS 

The DRIL78s are a collection of near isogenic lines derived from the resistant, donor, 

parent NC344 and the susceptible, recurrent, parent Oh7B. We were successful in identifying a 

number of Goss’s wilt QTL in the DRIL78 population. QTL were found in bins 2.03, 3.06, 7.04, 

and 9.03 which confirmed QTL identified in previous studies (Cooper et al., 2018;Singh et al., 

2016). No novel QTL were discovered, indicating that the potential of linkage mapping to 

identify novel allelic diversity for Goss’s wilt may be almost spent. Future work should begin to 

focus on identifying causal genes within known QTL. Due to the clean introgressions it offers, 

the DRIL78 population will allow future work to examine the underlying causal mechanisms of 

the QTL found in this study. Future dissection of these QTL may offer clues into the underlying 



54 

 

pathogen virulence mechanisms or host defense systems for Goss’s wilt. In conclusion, the QTL 

we have identified provide both confirm previous findings and offer new introgression lines to be 

used to dissect resistance mechanisms for Goss’s wilt.  
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TABLES AND FIGURES 

Table 2.1. Variance component estimates and their standard errors for factors included in 

the analysis for the DRIL78 (NC344(4) x Oh7B) population.  All tabled variance 

component estimates were found to be significantly different than zero (P < 0.05). 

  Variance Standard Error 

Combined   

Genotype 16443 128.23 

Environment 20800 144.22 

Genotype * Environment 4842 69.58 

Replication(Environment) 1137 33.71 

Block(Replication(Environment)) 6053 77.8 

Error 9646 98.21 

   
2016-Urbana   

Genotype 2488 157.8 

Error 11814 108.7 

   
2017-Monmouth 

  
Genotype 23935 154.71 

Replication 2690 51.86 

Block(Replication) 5277 72.64 

Error 11751 108.4 

   2017-Urbana 
  

Genotype 15811 125.7 

Replication 711.7 26.68 

Block(Replication) 9424 97.1 

Error 11919 109.2 
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Table 2.2. Pearson correlation coefficients for Goss’s wilt severity between 2016Urbana, 

2017Urbana and 2017Monmouth. All coefficients were found to be significant at (P < 

0.0001). 

 2017Urbana 2017Monmouth 

2016Urbana 0.543 0.603 

2017Urbana 
 

0.655 
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Table 2.3. Significant genetic markers for the DRIL78 (NC344(4) x Oh7B) population in 

the combined 2016&17 dataset, as well as individual years.  

 

 

Dataset†: Year followed by location. 

Chr.‡: Chromosome. 

Bin§: Chromosome bin location of each QTL (Davis et al., 1999). 

2-LOD interval¶: Physical map positions in Mb (RefGen_v3); For DRIL78 population only the 

physical position of peak marker is given (RefGen_v3). 

LOD#: The log of odds (LOD) value at the position of the peak likelihood of the QTL. 

Threshold††: LOD threshold to identify significant QTL corresponding to an empirical Type I 

error value of 0.10 produced from 1000 imputations. A LOD score of 3 was used to detect 

significant QTL in the DRIL14 population. 

R2‡‡: Proportion of phenotypic variance explained by the detected QTL. 

A§§: Additive effect estimates of the detected QTL. Effects are in terms of the disease rating 

scale employed.  

 

 

 

 

Dataset† Chr.‡ Bin§ Peak Marker 
Peak 

Position 
2-LOD 

interval¶ 
LOD# R2‡‡ A§§ 

Combined 1 1.05 PHM12633.15 103835578 75.7-103.8 24.1042 39.7323 119.8655 

Combined 1 1.05 PHM3463.18 107373210 107.4-119.7 12.8581 18.6399 -89.7924 

Combined 2 2.07 PHM14412.4 203610640 197.6-212.0 8.1186 11.2036 -59.2559 

Combined 3 3.06 PZA02402.1 171487608 170.2-188.0 5.0486 6.7964 -50.9722 

2017Urbana 2 2.07 PHM14412.4 203610640 197.6-212.0 5.0941 9.587 -50.3995 

2017Urbana 9 9.03 PZA00588.2 62366576 28.4-82.0 4.0001 7.3537 -47.2447 

2017Monmouth 1 1.05 PHM12633.15 103835578 75.7-103.8 20.2144 45.0987 156.4043 

2017Monmouth 1 1.05 PHM3463.18 107373210 107.4-119.7 10.6927 21.0141 -119.3963 

2017Monmouth 2 2.07 PHM14412.4 203610640 197.6-212.0 4.1098 7.3916 -54.0658 

2017Monmouth 7 7.04 PHM10225.15 167977360 155.4-168.7 2.9784 5.3664 -46.8954 

2017Monmouth 9 9.03 PHM5185.13 18905238 156.2-268.3 3.9465 7.05 -72.3229 

2016Urbana 2 2.07 PHM14412.4 203610640 197.6-212.0 4.1091 8.0882 -148.8606 

2016Urbana 3 3.06 PZA02402.1 171487608 170.2-188.0 3.5101 6.9011 -148.7274 
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Figure 2.1. Phenotypic distribution of Goss’s wilt in the DRIL78 (NC344(4) x Oh7B) 

population. Lines were assessed visually using a 0-100% scale, and the area under the disease 

progress curve values were calculated based on these visual scores. The phenotypic data shown 

is expressed as best linear unbiased predictors of the area under disease progress curve including 

the intercept. 
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Figure 2.2. Peak SNPs in a 2-LOD interval from the DRIL78 (NC344(4) x Oh7B) 

population overlaid on a physical map of the maize genome. Chromosomes are denoted as 

vertical gray bars, with green bars representing 

QTL.
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CHAPTER 4: GENOME-WIDE ANALYSIS AND GENOMIC PREDICTION OF GOSS’S 

WILT RESISTANCE IN MAIZE 

ABSTRACT 

Goss’s wilt is one of the most important foliar diseases of maize. To date, neither large-effect 

resistance genes have been identified nor does practical chemical control exist. The importance 

of discovering durable host resistance necessitates additional genetic mapping for this disease. 

Unfortunately, due to the biology of the pathogen and the highly significant genotype-by-

environment interaction effect observed with Goss’s wilt, consistent phenotyping across multiple 

years poses a hurdle for genetic studies and conventional breeding methods. The objective of this 

study was to perform a genome-wide association study to identify regions of the genome 

associated with Goss’s wilt resistance, as well as use genomic prediction models to evaluate the 

use of genomic selection in predicting Goss’s wilt phenotypes in a panel of diverse maize lines. 

Using genome-wide association mapping, we were unable to identify any variants significantly 

associated with Goss’s wilt. However, using genomic prediction, we were able to train a model 

with an accuracy of 0.69. In addition, when evaluating the accuracy of our prediction model 

under reduced marker density, it was shown that only 10,000 single nucleotide polymorphisms, 

or ~20% of our total marker set, was necessary to achieve our model’s prediction accuracy. This 

is the first report of genomic prediction for a bacterial disease of maize and these results 

highlight the potential of genomic selection for disease resistance in maize. 
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INTRODUCTION 

Since its discovery in 1969, no source of complete genetic control has been found for 

Goss’s wilt. The disease, caused by the gram-positive bacterium Clavibacter michiganensis 

subsp. nebraskensis (Cmn), produces foliar blight lesions and vascular wilt symptoms in 

susceptible maize varieties (Schuster, 1975). The bacterium overwinters in infected crop residue 

on the soil surface, where it relies on splashing rain for dissemination (Schuster, 1975). The 

pathogen is non-motile (Vidaver and Mandel, 1974) and most likely to infect through wounded 

or damaged tissue; however, disease development has been observed in unwounded plants under 

high humidity conditions (Mallowa et al., 2016). 

Goss’s wilt is endemic from Louisiana to Alberta, Canada (Howard et al., 2015;Jackson 

et al., 2007;Singh et al., 2015). Yield losses greater than 40% have been observed in susceptible 

maize hybrids due to Goss’s wilt (Carson and Wicks, 1991). An estimated 501 million bushels of 

maize were lost to Goss’s wilt in the United States and Canada between 2012 and 2015, making 

it the fourth most severe disease during this period (Mueller et al., 2016). With limited success, 

cultural, chemical, and genetic control strategies have all been employed to curb Goss’s wilt 

occurrence. No chemical control methods have been shown to decrease Goss’s wilt occurrence at 

a statistically significant level (Mehl et al., 2015).  

As with many plant pathogens, genetic resistance remains the best control strategy for 

Goss’s wilt. Linkage mapping, which uses populations derived from controlled crosses to 

identify quantitative trait loci (QTL) associated with a trait of interest, has been used to identify 

several regions of the maize genome associated with Goss’s wilt resistance. Singh et al. (2016) 

conducted joint linkage mapping for Goss’s wilt resistance in three recombinant inbred line 

populations (B73 x Oh43, B73 x HP301, and B73 x P39). Using these populations, 19 putative 
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QTL on all chromosomes excluding 8 were identified; however, the effect size of each QTL was 

small, and none contributed >6% of the total observed phenotypic variance (Singh et al., 2016). 

An evaluation of the intermated B73 x Mo17 population identified seven putative QTL on 

chromosomes 1, 2, 7, 8, and 10, both confirming Singh et al.’s findings and presenting the first 

source of resistance on chromosome 8 (Cooper et al., 2018). In addition, the QTL on 

chromosome 1 overlaps with the known multiple disease resistance locus qMDR1.06, which has 

been associated with reduced incidence of Stewart’s wilt, northern leaf blight, southern leaf 

blight, and a number of other maize diseases (Chung et al., 2010;Jamann et al., 2014;Wisser et 

al., 2006).  

Another method of genetic mapping is association mapping, which takes advantage of 

historical recombination to identify markers in linkage disequilibrium with a trait of interest 

(Myles et al., 2009). The diverse subpopulations of maize, including stiff stalk, non-stiff stalk, 

popcorn, sweet corn, tropical, and mixed varieties, offer high allelic diversity that can be 

unlocked by association mapping (Flint-Garcia et al., 2005). In addition, high heritability has 

been reported for Goss’s wilt resistance (Schaefer and Bernardo, 2013;Singh et al., 2016). This 

makes Goss’s wilt ideal for multi-year, multi-environment trials required for association 

mapping. When a genome-wide association study (GWAS) for Goss’s wilt was conducted on a 

panel of historically important maize lines from Minnesota, eight small-effect QTL were 

identified (Schaefer and Bernardo, 2013). 

Ideally, favorable alleles of the QTL identified for Goss’s wilt resistance in maize could 

be directly incorporated into maize breeding programs via marker-assisted selection (MAS).  

However, given the absence of simply inherited resistance genes for Goss’s wilt and the lack of 

large-effect QTL, the use of MAS is not ideal for this disease. The genetic architecture for 
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Goss’s wilt appears to be polygenic in nature, consisting of multiple loci, each with a small effect 

(Cooper et al., 2018;Schaefer and Bernardo, 2013;Singh et al., 2016). To effectively account for 

these multiple small-effect loci in a breeding program for resistance to Goss’s wilt, the efficacy 

of genomic selection (GS) needs to be explored. Using genome-wide molecular makers to 

predict the phenotypic value of an individual based on all genotypic effects (Meuwissen et al., 

2001), GS is based on the theory that quantitative traits are highly polygenic and thus their 

variation is best captured by modeling of all genome-wide markers. If all genetic variance can be 

explained by available marker data, then it becomes possible to quantify additive contribution of 

numerous, small effect loci to the phenotypic variation (Goddard and Hayes, 2007).  

The ability of GS to predict trait values is evaluated by dividing a population into a 

“training” and a “prediction” population; both of which are genotyped by the same set of 

markers. The “training” population uses both phenotypic and genotypic data to fit a GS model 

where the phenotype of interest is the response variable and all markers throughout the genome 

are the explanatory variables (Meuwissen et al., 2001). This prediction model is then used to 

calculate a genomic estimated breeding value (GEBV) for the “prediction” population based only 

on the marker data (Meuwissen et al., 2001). This method of continually splitting the population 

into training and prediction subsets is known as k-fold cross-validation (Mostellar and Tukey, 

1968). If a sufficiently large correlation between the actual trait values and the GEBVs are 

observed across all prediction subsets, then GS can be used to immediately and significantly 

increase selection gains per unit time and expedite the entire breeding cycle (Heffner et al., 

2010;Wong and Bernardo, 2008).  

Genomic selection has been used with varying success for a number of plant diseases, 

most notably for modeling resistance to wheat stem rust (Poland and Rutkoski, 2016;Rutkoski et 
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al., 2011). It was estimated that a prediction accuracy of 0.56-0.62 could reduce breeding cycles 

in wheat by up to two-fold (Rutkoski et al., 2012;Rutkoski et al., 2011). Similar studies utilizing 

GS for Fusarium head blight resistance (FHB) of wheat and barley found prediction accuracies 

between 0.41 and 0.68 using k-fold cross-validation (Lorenz et al., 2012;Rutkoski et al., 2012). 

Lorenz et al. (2012) found genomic predictions comparable to observed phenotypic means, and 

estimated that the cost of phenotyping for FHB was four times the cost of genotyping.  

In maize, GS has been evaluated for improvement of resistance to many major pathogens, 

including Gibberella ear rot, northern leaf blight, southern leaf blight, and gray leaf spot. 

Riedelsheimer et al. (2013) used GS to predict disease severity of Gibberella ear rot and 

deoxynivalenol concentration in five double haploid families. Validation was high within full-sib 

families, (0.65-0.70), but fell for both severity (0.25-0.60) and deoxynivalenol concentration 

(0.05-0.70) when comparing across families (Riedelsheimer et al., 2013). A similar study by 

Technow et al. (2013) evaluated the use of GS to predict northern leaf blight severity. Two 

distinct heterotic maize inbred heterotic groups were examined, dent and flint, from the 

University of Hohenheim breeding program. Validation within each group was high (0.64-0.71) 

but when attempting to predict GEBVs across heterotic groups this accuracy dropped sharply 

(0.11-0.29) (Technow et al., 2013). In an evaluation of the nested association mapping 

populations, southern leaf blight displayed a prediction accuracy of 0.50-0.52 (Bian and Holland, 

2017). However, in that same population, the prediction accuracy of gray leaf spot was only 

0.22-0.25 (Bian and Holland, 2017). No hypothesis was given regarding the reduced power of 

the gray leaf spot prediction model, and this study shows that GS may not be equally effective 

for all diseases.  
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Goss’s wilt is a strong candidate for GS for a number of reasons. The genetic architecture 

of Goss’s wilt resistance is polygenic and no large-effect loci have been identified (Cooper et al., 

2018;Schaefer and Bernardo, 2013;Singh et al., 2016). Additionally, the inoculation of Goss’s 

wilt represents a significant challenge in obtaining accurate and consistent phenotypic data. 

Phenotyping for Goss’s wilt is labor-intensive. The non-motile nature of the pathogen 

necessitates individual wounding and application of inoculum to each plant, which also increases 

the error observed within the experiment. In areas where Goss’s wilt has not yet spread, an 

accurate genomic prediction model would allow screening of future commercial lines without the 

risk of introducing Goss’s wilt to the local community. Genomic selection could be also 

implemented in pre-breeding to remove highly susceptible lines before selections begin (Poland 

and Rutkoski, 2016). 

The combined use of association mapping and genomic prediction may offer the best 

strategy for identifying loci associated with Goss’s wilt resistance and testing whether 

populations can be improved using genomic selection. Statistically significant QTL identified 

using association mapping would offer insight into the genetic mechanisms governing resistance, 

while GS would increase the efficiency of breeding for resistance in the absence of large-effect 

QTL. The objectives of this study were to (i) perform a GWAS on the Goodman maize diversity 

panel to identify putative Goss’s wilt quantitative trait nucleotides (QTN) and (ii) test the 

accuracy of GS for population improvement to Goss’s wilt. 

MATERIALS AND METHODS 

Field Design: The Goodman maize diversity panel (Flint-Garcia et al., 2005) was grown at the 

Crop Science Research and Education Center in Urbana, IL in single-row plots during the 2016 

and 2017 summer field seasons. Each plot was 3.2-meters long, with 0.76-meter alleys and a row 
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spacing of 0.762 meters. Plots were machine-planted at a density of 20 kernels/row, and standard 

agronomic practices for central Illinois were followed. Initial seed for the diversity panel was 

obtained from the Germplasm Resources Information Network (GRIN). In 2016, disease ratings 

were obtained for two replications of 300 lines of the diversity panel. In 2017, disease ratings 

were obtained for two replications of 223 lines of the diversity panel. The difference in the 

number of lines tested in 2016 and 2017 was due to seed availability. An incomplete block 

design was implemented in the agricolae package (Mendiburu, 2017) of R version 3.3.2 (R Core 

Team, 2016) using resistant (FR4326) and susceptible (CQ183 and CQ184A) check lines in each 

block. Blocks in 2016 contained 18 lines, and blocks in 2017 contained 17 lines. A total of four 

replications were evaluated across two years. 

Phenotyping: Cmn strain 16Cmn001 was maintained in glycerol stocks stored at -80°C for use 

in the 2016 and 2017 field seasons. Inoculations were conducted as described in Cooper et al. 

(2018). Briefly, single colonies were grown in nutrient broth yeast extract (NBY) on a shaker at 

room temperature for two to three days. The final bacterial cell concentration was adjusted to 107 

colony forming units per mL using a spectrophotometer (OD600=0.05) (Pataky, 1985). 

Inoculations were performed twice, one week apart, between the V4 and V7 stages using a 

modified pinprick inoculation method to simulate mechanical damage (Blanco et al., 

1977;Chang et al., 1977). Disease ratings were performed three to four times, approximately 

every two weeks after initial inoculation using the methods described in Cooper et al. (2018). 

Inbreds were scored on a per-plot basis using a 0-100% scale with 5% intervals (Cooper et al., 

2018). Ratings represented the total percent of infected leaf area, with 0% representing no 

symptoms and 100% denoting complete plant death (Poland and Nelson, 2011). Using the 

formula , where y refers to individual disease scores and t equals 



69 

 

time between ratings, the area under disease progress curve (AUDPC) was calculated for each 

plot to represent disease progression throughout the season (Wilcoxson et al., 1975). Days to 

anthesis notes were taken on a plot basis and the date was recorded when 50% of the tassels were 

shedding pollen.  

Phenotypic Data Analysis: A log10 transformation was performed on the raw AUDPC scores to 

normalize the data. A linear model was then run in R/lme4 (Bates et al., 2015) and best linear 

unbiased predictors (BLUPs) were calculated. All factors were fit as random effects. Variance 

components of significant factors in BLUP calculations were obtained using R/lme4 (Bates et al., 

2015). For the 2016-2017 combined dataset genotype, year, the genotype-by-year interaction, 

replication, and block were included in the model (Table 3.1). To account for a potentially large 

genotype-by-year interaction, BLUPs were also calculated for each year individually. A 

Scheffe’s multiple comparison test was conducted on the raw AUDPC scores to discern 

phenotypic differences between the subpopulations (Scheffe, 1959). Heritability was calculated 

using the PROC MIXED function in SAS software (SAS version 9.4, SAS Institute, Cary, NC) 

as described by Holland et al. (2003). Pearson’s correlation coefficients were obtained using the 

PROC CORR function in SAS software (SAS version 9.4, SAS Institute).  

Association Mapping: Three separate association mapping analyses were run, one for the 

combined 2016 and 2017 dataset and one for each year individually. The BLUPs for disease 

resistance of each line were used as the phenotypic dataset for association mapping; the 

combined BLUPs across 2016 and 2017 were used for the multi-year analysis, while the BLUPs 

calculated for each individual year used for the single year analyses. The genotype-by-

sequencing (GBS) single nucleotide polymorphisms (SNPs) of the USA national maize inbred 

seed bank, the Illumina MaizeSNP50 BeadChip (55K), and the 4K SNP marker set available on 
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the Panzea database (4K) (http://www.panzea.org) were combined and used in this analysis for a 

total of 416,376 markers (Cook et al., 2012;Romay et al., 2013;Zhao et al., 2006). A compressed 

unified mixed linear model (Zhang et al., 2010) was implemented in the R package Genome 

Association and Prediction Integrated Tool (Lipka et al., 2012). Principal component analysis 

was conducted by Lipka et al. (2013) using the 34,368 non-industry SNPs from the Illumina 

MaizeSNP50 BeadChip 55K marker set. To account for population substructure at an 

appropriate level, Bayesian information criterion (BIC; (Schwarz, 1978)) -based backwards 

elimination was used to select between zero to three of these first three principal components to 

include as fixed-effect covariates in the model. A kinship matrix was derived in GAPIT from the 

Illumina MaizeSNP50 BeadChip 55K to account for relatedness between the inbreds (Lipka et 

al., 2012). The Benjamini and Hochberg (1995) procedure was used to control the false 

discovery rate (FDR) at 10%; thus any SNPs with FDR-adjusted P-values of less than or equal to 

0.10 were declared to be significantly associated with resistance to Goss’s wilt. Manhattan and 

QQ plots were created in R/qqman (Turner, 2014) using the GAPIT results. 

Genomic Prediction: Ridge regression best linear unbiased prediction (RR-BLUP) was 

performed using the rrBLUP package (Endelman, 2011) in R version 3.3.2 (R Core Team, 2016) 

using the BLUPs calculated for the diversity panel. In RR-BLUP, a mixed linear model is fit in 

which all markers are considered random effects (Whittaker et al., 2000). Each marker 

contributes an additive effect equal to the genetic variance divided by the total number of 

markers. Additionally, zero covariance between markers is assumed. RR-BLUP predicts GEBVs 

by estimating marker effects from a training population and then multiplying the effects of each 

marker by the prediction genotype to approximate phenotypic breeding values (Whittaker et al., 

2000). 
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The 55K marker dataset, filtered to exclude markers with a minor allele frequency less 

than 0.05, was used for genomic prediction. A five-fold cross validation scheme with 100 

iterations was used to generate the training and prediction populations. The prediction accuracy 

was calculated using the formula: . This represents the average 

correlation between the GEBVs and observed phenotypically estimated breeding values (PEBVs) 

divided by the square root of the plot heritability ( ). Subsets consisting of 100, 1000, 5000, 

10000, and 25000 markers from the 55K marker dataset were randomly generated, and 

prediction accuracies across 100 iterations of a five-fold cross validation scheme were averaged 

to assess the impact of maker density and genomic prediction accuracy. Dunnett’s (1955) 

multiple comparisons were performed between each marker density and the full 55K marker set 

using R/multcomp (Hothorn et al., 2008).  

The linear function y ~ x was fit using the “lm” function in base R version 3.3.2 (R Core 

Team, 2016) to plot the relationship between GEBVs and phenotypically estimated breeding 

values (PEBVs). The slope and intercept of this linear regression was used to estimate our 

prediction bias (Arruda et al., 2015;Zhang et al., 2014). The linear relationship and confidence 

interval was plotted using R/ggplot2 (Wickham, 2009).  

RESULTS AND DISCUSSION 

Characterization of Germplasm: The Goodman maize diversity panel is composed of 

temperate, tropical, sweet, and popcorn lines and encompasses 75% of the allelic diversity of 

maize (Romay et al., 2013). The diversity panel had a wide range of disease scores, from 0-100% 

infected leaf area (Figure 3.1). Severe Goss’s wilt symptoms, including vascular wilt, foliar 

necrosis, stunting, lodging, and premature death were observed in susceptible lines. Moderately 
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resistant lines displayed foliar lesions beyond inoculated leaves. Only highly resistant inbreds 

were able to limit disease incidence to inoculated leaves.  

Disease severity was compared between subpopulations within the diversity panel. 

Tropical and sub-tropical varieties displayed the highest levels of susceptibility to Goss’s wilt 

(Figure 3.2). Stiff and non-stiff stalk lines, while moderately resistant on average, both displayed 

long tails of outlying susceptibility. While trends did exist, all subpopulations exhibited a wide 

range of resistant and susceptible lines. In a Scheffe’s multiple comparison test, tropical/sub-

tropical, mixed, stiff stalk, popcorn, and sweet corn were found to compose one distinct 

statistical group. Stiff stalk, popcorn, sweet corn, and non-stiff stalk formed the second group. 

Overall, non-stiff stalk maize lines contain the greatest resistance to Goss’s wilt. However, due 

large to the number of outliers in all subpopulations, it would be unwise to rule out identifying 

resistance alleles from any class. 

Disease incidence was more severe in the 2016 growing season than in 2017. To assess 

reproducibility, Pearson’s correlation coefficients were calculated for each replication across 

years. Replications within 2016 had a correlation coefficient of 0.782 (P <0.0001), and 

replications within 2017 had a correlation coefficient of 0.796 (P <0.0001). The correlation 

coefficients between years was 0.584 (P <0.0001). Hot and dry weather conditions during 

inoculations in 2017 may account for some of the differences observed between years. 

Heritability was calculated using the method described by Holland et al. (2003). For the 

2016-2017 combined dataset, a plot heritability of 0.638 with a standard error of 0.034 and a 

family heritability of 0.782 (standard error of 0.028) was estimated. Previous studies have 

reported plot and family heritabilities for Goss’s wilt ranging from 0.24-0.35 and 0.53-0.62, 

respectively (Cooper et al., 2018;Singh et al., 2016). The highest heritability estimates have been 
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observed in crosses between diverse phenotypes (Ngong-Nassah et al., 1992). The high 

heritabilities displayed within the diversity panel indicate that a large proportion of overall 

variation in Goss’s wilt resistance within the population can be explained by genetic differences 

among individuals. There was also an environmental component for disease resistance. The 

genotype-by-environment interaction within the diversity panel accounted for >7% of the total 

phenotypic variation and was significant at P<0.001. 

Association Mapping: The ANOVA revealed a large genotype-by-year interaction, which 

demonstrates environmental conditions play a role in disease resistance (Table 3.1). Therefore, 

we chose to perform association mapping on both the combined and the individual year datasets. 

Despite the heritable nature of our trait and evident diversity of our population, no significant 

SNPs were detected in the combined or individual year datasets (Figure 3.3). Due to the allelic 

diversity present in the panel and the range of resistance and susceptibility within each 

subpopulation, allele frequencies may have been too low to detect significant SNPs. In addition, 

Goss’s wilt resistance is polygenic in nature. While QTL may be present within the genome, 

their effect size may be too small to detect through conventional GWAS methods. Increased 

population size may allow additional detection of significant associations. 

 Maturity has been shown to play a large role in Goss’s wilt development. Two week-old 

seedlings display the most susceptibility, with increased resistance achieved as the plants mature 

(Calub et al., 1974). Tropical lines within the diversity panel mature slower than temperate lines 

that are adapted to the Illinois climate. The increased susceptibility of young tropical lines during 

inoculation may have confounded our attempts to accurately rate disease severity. Additionally, a 

Pearson correlation coefficient of -0.223 (P <0.0001) was observed between days to anthesis and 

Goss’s wilt severity. As maturity decreases, Goss’s wilt severity increases, and vice-versa. 
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However, even when days to anthesis was included as a covariate in our BLUP calculations, no 

significant GWAS SNPs were identified. 

Genomic Prediction: Using RR-BLUP, a direct correlation of 0.553±4.4e-05 was obtained for 

Goss’s wilt using the 55K marker set (Table 3.2), translating to a prediction accuracy of 0.69. In 

comparison, the largest published QTL for Goss’s wilt resistance explains less than 10% of 

phenotypic variance (Cooper et al., 2018;Schaefer and Bernardo, 2013;Singh et al., 2016). 

Performing precise and consistent Goss’s wilt inoculations poses a significant challenge in 

obtaining accurate phenotyping data. The non-motile nature of the pathogen requires individual 

wounding and application of inoculum to each plant. Furthermore, senescence of the inoculated 

leaves can impair disease ratings later in the season. These factors and the high prediction 

accuracies displayed in our prediction model provide a convincing argument for the use of 

genomic prediction for breeding for Goss’s wilt resistance. 

 Different maturation rates between temperate and tropical inbreds may have influenced 

disease severity, biasing our prediction model. To test for this, days to anthesis was included as a 

covariate in our BLUP calculations, and prediction accuracy was compared between models with 

and without days to anthesis. Although maturity was significantly associated with Goss’s wilt 

severity, including it as a covariate did not significantly alter our 0.69 prediction accuracy. 

Therefore, it was excluded from our final results. 

 Due to the absence of significant QTL for Goss’s wilt, RR-BLUP was the best model for 

genomic prediction. Other studies have attempted to incorporate GWAS results into their 

prediction model to increase accuracy. Gowda et al. (2015) examined the efficacy of GWAS and 

GS on lethal necrosis in a panel of Sub-Saharan maize lines. Twenty-four putative SNPs were 

identified in the GWAS which, when added to the prediction model, caused only a slight 
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increase in the overall prediction accuracy (Gowda et al., 2015). This confirms the hypothesis 

that prediction accuracy is mainly associated with the many, small-effect QTL spread across the 

genome and does not require large-effect QTL to be effective.  

 RR-BLUP has been shown to respond well under reduced marker densities (Habier et al., 

2007). To evaluate the optimal marker density for GS of Goss’s wilt, genomic prediction was 

performed on 100 random samples of 100, 1,000, 5,000, 10,000, and 25,000 SNPs from the 55K 

marker set. At 5,000 (10% of total marker dataset) markers, the gain in prediction accuracy due 

to increased marker coverage begins to lessen (Figure 3.4). At 10,000 (20% of total dataset) and 

25,000 (50% of total dataset) SNPs, prediction accuracy is no longer significantly different then 

predictions made using the full 51,471 SNP marker set (Table 3.2). There is a clear point of 

diminishing returns when increasing marker density for GS no longer provides substantial 

additional prediction accuracy. This point appears to be between 5,000 and 10,000 SNPs. This 

indicates that exhaustive genotyping is not necessary for genomic prediction of Goss’s wilt 

resistance. These results correlate with previous studies, which found that only 1,000 out of 

14,000 (Gowda et al., 2015) and 500 out of 20,000 (Cao et al., 2017) SNPs were necessary to 

achieve comparable accuracies to the full SNP analysis. 

The bias of our predictions was plotted as a simple linear regression model with PEBV as 

the response variable and GEBV as the explanatory variable. The results of this fitted model 

suggest a strong linear relationship between these variables (Figure 3.5). Values were plotted 

evenly along the fitted regression line of y = 0.99x + 0.02, with a narrow confidence interval 

near the middle of the distribution and slightly more variable values near each end (Figure 3.4). 

The formula was fit to our data. An intercept of zero and a slope of one indicate an unbiased 

prediction model (Arruda et al., 2015). The confidence interval of our intercept was [-0.31, 0.35] 
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and the confidence interval for our slope was [0.88, 1.1]. These results indicate that our model 

was both accurate and unbiased.  

The Goodman maize diversity panel is far outside the normal range of breeding material 

for Illinois, however conclusions from this panel will translate well to germplasm in actual 

breeding programs. A study by Yu et al. (2016) developed prediction models for biomass traits 

including yield, plant height, root lodging, and stalk number, based off of 962 sorghum 

accessions from 33 countries, covering five races. The large allelic diversity and sup-population 

structure of this panel is very similar to the diversity found in the Goodman panel (Flint-Garcia 

et al., 2005). The prediction models were then applied to 580 exotic sorghum lines that had been 

previously collected but not phenotyped for the same biomass traits. Prediction accuracies of 

0.76 for yield, 0.32 for height, 0.78 for root lodging, and 0.42 for stalk number were obtained 

(Xiaoqing et al., 2016). This shows that genomic selection models can be applied across 

populations, and highlights the ability of diverse germplasm collections to predict complex 

phenotypic traits. 

Moderate to high prediction accuracies were obtained for Goss’s wilt when comparing 

our results to previous studies. Goss’s wilt achieved similar accuracies to northern corn leaf 

blight (0.64-0.71), Gibberella ear/stalk rot (0.65-0.70), and tar spot complex (0.55-0.74) (Cao et 

al., 2017;Riedelsheimer et al., 2013;Technow et al., 2013). Prediction accuracy for Goss’s wilt 

was higher than southern leaf blight (0.50-0.52), maize lethal necrosis (0.36-0.56), and gray leaf 

spot (0.22-0.25) (Bian and Holland, 2017;Gowda et al., 2015). Out of the available literature, 

fungal pathogens appear to have the highest and most stable prediction accuracies (Cao et al., 

2017;Technow et al., 2013). Current research also shows high prediction accuracies for viral 

diseases, but with lower precision between populations (Gowda et al., 2015). Goss’s wilt is the 
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first assessment of genomic prediction accuracy for a bacterial pathogen. Our results indicate that 

genomic prediction accuracy is strong for bacterial diseases, and should be considered for other 

high-impact diseases.  

CONCLUSIONS 

 Genomic selection is an emerging method used by breeders to circumvent long and costly 

phenotyping and can be effective when other methods of marker-assisted breeding fail (Heffner 

et al., 2010;Meuwissen et al., 2001). In addition, GS has merit when dealing with emerging 

diseases under quarantine or other federal regulation (Poland and Rutkoski, 2016). In such 

instances, GS allows for the development of resistant varieties without the potential release of a 

pathogen to limited geographical ranges. In this study, we were able to achieve a prediction 

accuracy of 0.69 for Goss’s wilt in the Goodman diversity panel. Therefore, given the difficulty 

of phenotyping and the lack of large-effect QTL for Goss’s wilt (Cooper et al., 2018;Schaefer 

and Bernardo, 2013;Singh et al., 2016), GS may provide the most promising option. In 

conclusion, where GWAS for Goss’s wilt proved unsuccessful at identifying targets for MAS, 

GS has emerged as successful alternative for increasing Goss’s wilt resistance in maize. 
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TABLES AND FIGURES 

Table 3.1. Variance component estimates and standard errors for factors included in the 

combined and individual year Goodman maize diversity panel analysis. All factors were 

significant at  0.05. 

 Variance Standard Error 

2016-2017   

Genotype 0.041 0.201 

Year 

Genotype*Year 

0.051 

0.009 

0.226 

0.093 

Block(Replication(Year)) 0.010 0.102 

Error 0.017 0.129 

   

2016   

Genotype 

Replication 

0.040 

1.0E-04 

0.200 

0.014 

Block(Replication) 0.002 0.041 

Error 

 

0.0122 0.109 

2017   

Genotype 0.065 0.254 

Replication 0.009 0.096 

Block(Replication) 0.021 0.143 

Error 0.023 0.150 

   

 

 

 

 

 

 



79 

 

Table 3.2. Average predictive ability, standard deviation, prediction accuracy, and 

Dunnett’s comparison to full 55K marker set of prediction accuracy for 100 iterations of 

genomic prediction using five-fold cross validation in rrBLUP under variable marker 

densities.  

Number of Markers 
 

Standard Error 
 

Pr(>|t|)   

 

100 0.359 0.006 0.449 <0.001*** 

1,000 

5,000 

10,000 

25,000 

51,471 

0.495 

0.538 

0.546 

0.551 

0.553 

0.003 

0.002 

0.001 

6.9E-04 

4.4E-05 

0.619 

0.673 

0.673 

0.690 

0.693 

<0.001*** 

<0.001*** 

0.182 

0.921 

NA 

: Predictive ability as a Pearson’s correlation coefficient 

: Prediction accuracy 

*** Significant at P < 0.001 
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Figure 3.1. Phenotypic distribution of Goss’s wilt resistance in Goodman maize diversity 

panel. Raw area under disease progress curves (AUDPC) values revealed a tail of 

susceptibility within the diversity panel. A log10 transformation was performed on the best 

linear unbiased predictions (BLUPs) to normalize the data before a genome-wide 

association study was conducted. 
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Figure 3.2. Goss’s wilt untransformed area under disease progress curve (AUDPC) values 

between subpopulations. In a Scheffe’s multiple comparison test, tropical/sub-tropical, 

mixed, stiff stalk, popcorn, and sweet corn were found to compose one distinct statistical 

group. Stiff stalk, popcorn, sweet corn, and non-stiff stalk formed the second 

group.
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Figure 3.3. Quantile-quantile and Manhattan plots for the 2016-2017 combined dataset and 

the individual year analyses. A false discovery rate of 10% was used to determine 

significant single nucleotide polymorphisms (SNPs). No significant quantitative trait loci 

(QTL) were detected. 

 

 

 



83 

 

Figure 3.4. Effect of marker density on Pearson’s correlation representing predictive 

ability for 100 iterations of genomic prediction for obtained from ridge regression best 

liner unbiased predictions (RR-BLUP) using five-fold cross validation. Datasets including 

10,000, 25,000, and 51,471 markers all achieved comparable prediction accuracies. 
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Figure 3.5. Relationship between phenotypically estimated breeding values (PEBVs) and 

genomic-estimated breeding values (GEBVs) obtained from ridge regression best linear 

unbiased prediction (RR-BLUP) using five-fold cross validation. The linear nature of our 

model y = 0.99x + 0.02 indicates an unbiased prediction model. 
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APPENDIX A: SCALE FOR PHENOTYPING OF GOSS’S WILT 

 

 

Figure A.1: Representative photograph for assigning diseased leaf area percentages to leaves 

infected by Clavibacter michiganensis subsp. nebraskensis. Numbers indicate the percentage of 

leaf area that is diseased. 

 


