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Abstract

This thesis identifies the asymptotic properties of generalized empirical likelihood estimators

when moment conditions are not correctly specified. Classical generalized empirical likeli-

hood estimators rely on the correct moment conditions, however, those conditions are mostly

generated from economic theory and some of them are not testable. Hence, it is needed to

understand the property of the estimators and test statistics when moments are misspecified

and provide robust estimators and test statistics when moment conditions are misspecified.

Chapter 1, ”Robust Inference for Instrumental Variable Models with Locally Non-exogenous

Instruments”, highlights that conventional tests often fail to give accurate inferences when

exogeneity conditions are mildly violated in instrumental variable models. The sizes of those

tests can be considerably distorted due to their non-centrally distributed test statistics un-

der the null hypothesis. This paper proposes an adjusted score-type test to correct this

size distortion while preserving good discriminatory power. We prove that under the null

hypothesis, this adjusted score-type test statistic converges to a central chi-squared distri-

bution and thus is not adversely affected by local non-exogeneity. Furthermore, the Monte

Carlo simulations confirm that our newly proposed test has considerable size improvement

over the conventional ones, while their power is not very different.

Chapter 2, ”Mis-specification-Robust Bootstrap for Empirical Likelihood Estimators ”,

proposes an adapted bootstrap testing procedure for empirical likelihood estimators. This

method extends the bootstrap method in Lee (2014) by using the empirical likelihood

weights, which could improve the efficiency if the moment condition model is correctly spec-

ified. This proposed bootstrap method is also robust to model misspecification as shown

in Lee (2014). The first-order asymptotic validity of the proposed procedure is shown, and

multiple Monte Carlo Studies are conducted to support the theoretical findings.

Chapter 3, ”Higher Order MSE Comparisons of Generalized Empirical Likelihood Esti-

mators”, calculates the higher order asymptotic mean square errors (MSE) of generalized

empirical likelihood (GEL) estimators on a simple linear model. It is well known from Newey

and Smith (2004) that the Empirical likelihood (EL) estimator has the smallest higher-order
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asymptotic bias among the GEL estimators; however, in this paper we find that the EL

estimator no longer has this property for the criteria of MSE. We propose a data-driven

method to achieve the least asymptotic higher-order MSE in the GEL family.

iii



Acknowledgments

I would like to thank all the person who help and support me during my PhD life. Thanks

my advisor, Professor Anil K. Bera, for constantly encouraging me, providing guidance to my

research, and teaching me to be a better person. Thanks my committee members, Professor

Xiaofeng Shao, Professor JiHyung Lee, and Professor Eun Yi Chung, for their generous

support and devotion.

I also want to say thanks to my friends who enrich my life and share my emotion at

UIUC. Last, I would like to thank my family for inspiring me to finish my Ph.D. Thanks

my wife, Cong Zhang, for pushing me to complete my dissertation. Thanks my lovely son,

Albert Zuo, for motivating me to work hard and enjoy little things from life.

iv



Table of Contents

Chapter 1 Robust Inference for Instrumental Variable Models with Locally Non-
exogenous Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Model and GEL Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Robust Score Test Statistic . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Generalized Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Empirical Example: Democracy and Income . . . . . . . . . . . . . . . . . . 13
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2 Mis-specification-Robust Bootstrap for Empirical Likelihood Estimators . 16
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 GMM Bootstrap Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 GEL estimators And Model Specification . . . . . . . . . . . . . . . . . . . . 19
2.4 Bootstrapping on testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.1 Correct Model Specification . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 Mis-specified Moment Condition . . . . . . . . . . . . . . . . . . . . . 25

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 3 Higher Order MSE Comparisons of Generalized Empirical Likelihood
Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 The model and Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Stochastic Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Higher Order MSE Calculation . . . . . . . . . . . . . . . . . . . . . 31

3.3 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Appendix A Robust Inference for Instrumental Variable Models with Locally Non-
exogenous Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Appendix B Mis-specification-Robust Bootstrap for Empirical Likelihood Estimators 54

v



Appendix C Higher Order MSE Comparisons of Generalized Empirical Likelihood
Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vi



Chapter 1

Robust Inference for Instrumental Variable Models with
Locally Non-exogenous Instruments

1.1 Introduction

For an instrumental variable (IV) model, the adverse impacts of mildly violated exogeneity

conditions on its inference have become a growing concern in recent literature. The study

of this topic is often referred to as local non-exogeneity (Caner 2014, for example). A recent

development in this field has found that when some of the instruments used do not perfectly

satisfy the exogeneity conditions, inference using conventional tests may fail to have the

correct size (Guggenberger (2012), Berkowitz, Caner and Fang (2008, 2012), and Caner

(2014) among others).

However, few improved methods have been offered to obtain robust size performance

when instruments are locally non-exogenous. Therefore, we ask the question: can we de-

velop a size-robust inference method that is not affected by using locally non-exogenous

instruments? In the following of this paper, we provide a positive answer to this question.

In this paper, we propose an adjusted score-type test statistic in the framework of the

generalized empirical likelihood (GEL) method. We argue that size of the conventional

score-type test statistic can be greatly distorted in the presence of locally non-exogenous

instruments. As an unfavorable results of size distortion, we may falsely reject the null

hypothesis more often than it is supposed to be because the distribution under the null

converges away from its usual distribution. But the adjusted version we proposed can be size-

robust due to the property that its asymptotic distribution is free from nuisance parameters

under the null hypothesis. Furthermore, to improve small sample efficiency, we develope our

inference method under the framework of GEL. This estimating technique is often considered

as a compelling alternative to generalized method of moments (GMM) due to its property
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of small sample bias (Newey and Smith (2004)).

To understand why the conventional score-type test statistic fail to have correct size,

we show that in the presence of local non-exogeneity its asymptotic distribution under the

null hypothesis is a non-central chi-squared distribution. This result is consistent with the

literature. Several recent works have also pointed out the invalidity of other conventional

testing procedures. For example, Berkowitz, Caner and Fang (2008, 2012) showed that both

size of t test and Anderson-Rubin test may greatly diverge from its nominal level (α =

5%) as level of endogeneity in instruments increases. Guggenberger (2012) also compares

finite sample performance of various commonly used test statistics, such as Anderson-Rubin

test, Moreira’s test, and Kleibergen’s K test. He ranked these tests according to their

robustness to non-exogeneity instruments and found that none of them has consistent size

performance as quality of the instruments deteriorates. In this paper, we explicitely develop

the asymptotic distribution of conventional score test in the presence of non-exogenous

instruments. We find that conventional score test adversely converges to a non-central chi-

squared distribution where the magnitude of non-centrality depends on the value of nuisance

parameters. In addition, the finite-sample experiment also shows considerable size distortion

of using conventional score test.

Taking account of the unfavorable size distortion of conventional score test, it is necessary

to develop a test statistic that is robust to local non-exogeneity. This paper proposes an ad-

justed score-type test statistic which can help improve size over its conventional alternatives

by adjusting score test using score functions of nuisance parameters. Taking a close look

at the non-central chi-squared distribution of conventional score test, we find that nuisance

parameters of local non-exogeneity is the main source of size distortion. Naturally, if we can

remove all nuisance parameters from asymptotic distribution of the test statistic under the

null, this test statistic can be size-robust to local non-exogeneity conditions. In Section 3,

we show this removal of nuisance parameters can be achieved by a simple adjustment of the

conventional score test statistic using score functions of nuisance parameters. Therefore, by

doing this, we can obtain correct size. In addition, we explicitely show the relationship be-

tween conventional score test statistic and its adjusted version with an application of linear

structural IV model.
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Finally, our Monte Carlo experiments compare the fintie sample performance of con-

ventional GEL score tests and of our adjusted tests. The results (1) confirms the finding

in the literature that conventional test staistics suffer from size distortion arising from the

invalidity of exogeneity condtions, and (2) shows that our new tests have much improved

finite-sample performance in reducing size distortion without losing much of power.

The rest of this paper is organized as follows. In section 2, we introduce our model

framework and GEL method. In Section 3 we first develop the asymptotic distribution of

conventional score test and explain why the conventional methods fail in the presence of

locally non-exogenous variables. Then we provide an adjusted score-type test and show

how the newly proposed test method is asymptotically robust regardless of the validity of

the exogeneity conditions. A simple application is also discussed in this section. Section 4

reports results of Monte Carlo simulation. Section 5 concludes.

1.2 Model and GEL Estimators

We consider the instrumental variable model as follows:

yi = f(xi, β) + εi, (1.1)

where xi is a k × 1 vector of endogenous variables, β ∈ B ⊂ Rk is a k × 1 vector, f(·, ·)

is a continuous function that maps Rk × B into R. εi is the error term. We assume there

are two types of instruments: zvi, a (q − `) × 1 vector of “valid” instruments for which the

exogeneity condition is perfectly satisfied, and zdi, an `×1 vector of “defective” instruments

in which the moment conditions are locally voilated. Therefore, the moment conditions can

be defined as:

gi(β, δ) = E

 zviεi

zdiεi

 =

 0

δ


where δ is a local nonexogeneity parameter with δ = C/

√
n, and C is a ` × 1 vector of

constants. Under this framework, we characterizes potential local violation of exogeneity

condition in instruments zdi.
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In the following context, we denote parameter θ = (β′, δ′)′ and δ0 = 0.

Definition 1.2.1 (GEL estimation). The GEL estimator θ̂ for θ is defined as (Guggen-

berger and Smith (2011)):

θ̂ := argmin
θ∈Θ

sup
λ∈Λ̂n(θ)

1

n

n∑
i=1

[ρ(λ′gi(θ))], (1.2)

where Θ is a compact subset of Rk+`, Λ̂n(θ) = {λ ∈ Rq : λ′gi(θ) ∈ Q for i = 1, ..., n}, , Q is

an open interval of the real line containing 0, and the real-valued function ρ(.) : Q → R is

strictly concave on its domain.

Assumption 1.2.1 (a) The function ρ(v) is twice continuously differentiable in a neigh-

borhood of 0. (b) ρ1 = ρ2 = −1, where we define ρj(v) = ∂jρ(v)/∂vj with ρj = ρj(0) for any

nonnegative integer j.

The three mostly used GEL estimators in the literature are the empirical likelihood (EL)

estimator of Owen (1988), Qin and Lawless (1994), exponential tilting (ET) estimator of

Kitamura and Stutzer (1997), and continuous-updating estimator (CUE) of Hansen, Heaton

and Yaron (1996) which correspond to ρ(ν) = ln(1 − ν), ρ(ν) = − exp(ν), and ρ(ν) =

−(1+ν)2/2, respectively. See Parente and Smith (2014) for a recent survey on GEL methods.

1.3 Test Statistics

In this section we provide a score-type statistic to test for the parameters of interest with

H0 : β = β0 versus Ha : β 6= β0. We begin with notation and definitions of the score functions

and moment restrictions. Let θ0 = (β0, δ/
√
n), g = 1/n

n∑
i=1

gi(θ). The Gβi = ∂gi(θ)/∂β and

Gδi = ∂gi(θ)/∂δ, Gβ = limn→∞ E[n−1
n∑
i=1

∂gi(θ0)/∂β] and Gδ = limn→∞ E[n−1
n∑
i=1

∂gi(θ0)/∂δ],

and V ar(gi(θ0)) = limn→∞ E[n−1
n∑
i=1

gi(θ0)gi(θ0)′] ≡ Ωq×q.
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Definition 1.3.1 (Score functions) Let θ̂ = (β0, 0), λ̂ = arg supλ∈Λ̂n(θ̂)
1
n

n∑
i=1

[ρ(λ′gi(θ̂)]. By

GEL algorithm, the score functions of β and δ are:

D̂β =
1

n

n∑
i=1

[
ρ1(λ̂′gi(θ̂))G

′
βiλ̂
]
, (1.3)

D̂δ =
1

n

n∑
i=1

[ρ1(λ̂′gi(θ̂))G
′
δiλ̂], (1.4)

respectively.

Also, let Σβ = G′βΩ−1Gβ, Σβδ = G′βΩ−1Gδ, and Σδ = G′δΩ
−1Gδ denote the variance-

covariance matrices of the score functions.

We study the asymptotic properties of the GEL-based test statistics under the following

assumptions.

Assumption 1.3.1 θ0 ∈ int(Θ) is the unique solution to E(g(θ0)) = 0.

Assumption 1.3.2 (a) The moment function g(θ) is continuously differentiable in a neigh-

borhood of β0; (b) E[supθ∈Θ‖g(θ)‖α] <∞ for some α > 2 ; (c) E[supθ∈Θ‖∂g(θ)/∂θ′‖] <∞;

(d) Ω is nonsingular.

Assumption 1.3.3 The matrices Gβ and Gδ are of full ranks.

Remark 1.3.1 Assumptions 2.5.1-1.3.3 follow Newey and Smith(2004) with minor changes(??).

In Assumption 2.5.1 the true parameter θ0 contains nuisance parameter δ to indicate local

nonendogenity. Since

λ̂ = arg sup
λ∈Λ̂n(θ̂)

1

n

n∑
i=1

[ρ(λ̂′gi(θ̂)],

bound conditions for moments evaluated at θ̂ are needed in the classical expansion theory.

Lemma 1.3.1 If exogeneity conditions of instruments zid are valid, i.e., δ = 0, under the

null hypothesis, the standard score test statistic asymptotically follows a central chi-squared

distribution with degrees of freedom k:

RS = nD̂βΣ̂−1
β D̂′β

d−→ χ2
k(0), (1.5)
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where Σ̂β is a consistent estimator of Σβ.

1.3.1 Robust Score Test Statistic

This subsection proves why the conventional score-type inference methods fail in the pres-

ence of locally non-exogeneity and how the newly proposed test method is asymptotically

size-robust using nuisance parameter adjusted score test statistic. We show that the conven-

tioanl score test statistic fails because of its non-central chi-squared distribution where its

noncentrality parameter depends on the nuisance parameters of local non-exogeneity. But

the newly proposed test statistic is nuisance parameter free and has a central chi-squared

distribution. Therefore it is size-robust.

The main source of size distortion in conventional score test is nuisance parameters in the

asymptotic distributions. In the following theorem, we prove that when some instruments

are locally non-exogenous, conventional score test converges to a non-central chi-squared dis-

tribution with non-centrality parameter depending on nuisance parameters of non-exogeneity

condition.

Theorem 1.3.1 Under the null hypothesis, if instruments zdi are locally non-exogenous,

i.e., E(zdiεi) = δ/
√
n, score test statistic is non-pivotal, such that its limiting distribution

depends on values of non-exogeneity parameters δ:

RS = nD̂βΣ̂−1
β D̂′β

d−→ χ2
K(µ2), (1.6)

where µ2 = δ′Σ′βδΣ
−1
β Σβδδ.

Remark 1.3.2 Theorem 1.3.1 indicates that inference of standard score tests is not size-

robust to local non-exogeneity. Its size distortion depends on the value of non-centrality

parameter µ2. If correlation between β and δ are non-zero, that is Σβδ 6= 0, the value of µ2

increases as |δ| becomes large. But if Σβδ = 0, size of the score test may not be affected by

the value of |δ| because µ2 = 0 anyway. In this case, conventional score test is size-robust

despite the validity of exogeneity conditons in zdi.
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To remove nuisance parameters δ from the asymptotic distribution of a score test, we

adjust its test statistic using score functions of δ so that its asymptotic distribtuion under

the null hypothesis is pivotal and centrally distributed.

Theorem 1.3.2 Define an adjusted score function of β as D̂∗ := D̂β − Σ̂βδΣ̂
−1
δ D̂δ. Under

the null hypothesis, given E(zdiεi) = δ/
√
n, we have:

1. adjusted score function of β converges to a normal distribution with mean 0:

√
nD̂∗

d−→ N(0, Σ̂∗), (1.7)

where Σ̂∗ := Σ̂β − Σ̂βδΣ̂
−1
δ Σ̂′βδ.

2. and the adjusted score test statistic:

RS∗ := nD̂∗
′
(Σ̂β − Σ̂βδΣ̂

−1
δ Σ̂′βδ)

−1D̂∗. (1.8)

converges to a central chi-squared distribution with degrees of freedom K:

RS∗
d−→ χ2

K(0). (1.9)

By showing that the adjusted score test has the same asymptotic size as the standard

score test under a correctly specified model, the limiting distribution of RS∗ indicates the

“robustness” of the new test regardless of the presence of nuisance parameters for the local

nonexogeneity conditions. For example, in a case where l instruments potentially have

direct effect on the outcome variable y, these instruments thus may violate the exogeneity

conditions. Our adjusted score test can guarantee to obtain a robust size for any local

invalidity of these instruments without knowing the exact level of nonexogeneity. This is

convenient especially in empirical research where instrumental variable models are used with

multiple instruments. One possible issue associated with this adjusted score test is a trade-off

between the type I error and the ability to reject the null hypothesis when β is distinct from

β0. The simulation experiments in section 1.4 provide some evidences for such a trade-off
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by showing a slightly lower level in power comparing to the standard GEL-based statistics.

Note that such a difference in power between the standard and our adjusted test statistics

are closely negligible if sample size is large.

Corollary 1.3.3 (No misspecification under the local alternative) Given δ = 0, un-

der the local alternative Ha : β = β0 + τ/
√
n,

RS
d−→ χ2

k(µ1), (1.10)

RS∗
d−→ χ2

k(µ3), (1.11)

where µ1 = τ ′Σβτ , µ3 = τ ′(Σβ − ΣβδΣ
−1
δ Σ′βδ)τ .

This corollary compares asymptotic powers of adjusted and standard score tests under

no misspecification. Note that µ3 − µ1 = τ ′ΣβδΣ
−1
δ Σ′βδτ ≥ 0 indicates that our adjusted

score tests may have loss of asymptotic power relative to standard tests when model is

correctly specified. In the language of Bera and Yoon (1993), this is also called a cost of

robustification, where correction of asymptotic size causes declines in power.

1.3.2 Example

A simple application considered is a linear structural instrumental variable model with one

exogenous variable and two instruments:

yi = xiβ + vi, (1.12)

xi = α1z1i + α2z2i + ui, (1.13)

where xi is an endogenous variable, ui and vi are unobserved disturbances. z1i denotes for a

valid instrument, z2i indicates a “nearly” exogenous instrument. Our goal is to test for the

structural parameter β in the case of model misspecification, which is specified in the form

of local nonexogeneity, i.e., E(z2ivi) = δ/
√
n. The moment conditions thus can be obtained
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as:

gi =

 z1i(yi − xiβ)

z2i(yi − xiβ)− δ/
√
n

 .
With some calculations, we obtain

Gβ =

 −α1z2
1 − α2z1z2

−α1z1z2 − α2z2
2

 , Gδ =

 0

−1

 , Ω = σ2

 z2
1 z1z2

z1z2 z2
2

 ,
where A denotes for the sample average of A.

Furthermore,

Σβ =
1

σ2(b1b2 − b2
12)

(α2
1b

2
1b2 + α2

2b
2
2b1 − α2

1b
2
12b1 − α2

2b
2
12b2 − 2α1α2b

3
12 + 2α1α2b1b2b12),

Σβδ =
α2

σ2
,

Σδ =
1

σ2(1− ρ2)b2

,

where b1 = z2
1 , b2 = z2

2 , b12 = z1z2, and ρ2 =
b212
b1b2

.

An interesting observation from this example is if coefficient of the “poor” instrument

z2i, α2, is statistically insignificant our adjusted score test can be equivalent to the standard

score test as the adjustment in RS∗ is merely zero. When instrument z2i is not or weakly

correlated to xi, this over-identified structural model in (1.12)-(1.13) is closely the same as

the model that is just-identified with a single instrument. As a result, RS test and RS∗

test asymptotically reach the same limiting distribution, and have the same non-distorted

size. Therefore one sufficient condition to avoid size distortion in the standard score test is

to have the locally nonexogenous instruments to be non-influential on x.

By Corollary 1.3.3, we can compare the possible power loss when the model is correctly

specified, i.e., δ/
√
n = 0. Unless α2 6= 0 and ρ 6= 1, RS∗ has no loss in power relative to RS,

and our adjusted score test and the standard score test are generally equivalent.
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1.3.3 Generalized Model

In this section we will propose a robust score test under general moment conditions. We

define moment conditions as following:

E[g(xi, θ10, θ20, θ30)] = 0 (1.14)

where θ1 is a parameter needs to be estimated, θ2 is a parameter that we want to test

i.e θ2 = θ20, and θ3 is potentially locally misspecified i.e θ30 = C/
√
n. Instrument variable

model is a special case of this general model. The size-robust score test is formulated as

following:

RS∗ = nD̂∗′(Σ̂22 − Σ̂23Σ̂−1
33 Σ̂32)−1D̂∗ (1.15)

where D̂∗ = D̂θ2− Σ̂23Σ̂−1
33 D̂θ3 , Σ22 = G′2Ω−1G2−G′2Ω−1G1(G′1Ω−1G1)−1G′1Ω−1G2, Σ23 =

G′2Ω−1G3−G′2Ω−1G1(G′1Ω−1G1)−1G′1Ω−1G3, Σ32 = G′3Ω−1G2−G′3Ω−1G1(G′1Ω−1G1)−1G′1Ω−1G2,

and Σ33 = G′3Ω−1G3 −G′3Ω−1G1(G′1Ω−1G1)−1G′1Ω−1G3. Â is a consistent estimator of A.

Theorem 1.3.4 Given θ3 = C/
√
n, under the null hypothesis H0 : θ2 = θ20, the adjusted

score test statistic RS∗ converges to a central chi-squared distribution with degrees of freedom

K:

RS∗
d−→ χ2

K(0). (1.16)

1.4 Monte Carlo Simulation

This simulation experiment is designed for a linear structural model with only one endoge-

nous variable xi:

yi = xiβ + ui, (1.17)

xi = 0.5zvi + 0.5zdi + vi. (1.18)

For the purpose of identification, two instrumental variables are needed: zv denotes for

a valid instrument and zd denotes for an invalid (locally nonexogenous) instrument.

10



We sample zv from a chi-squared distribution with degrees of freedom 2. The error terms,

ui and vi, and the invalid instrument zdi are generated by a multivariate normal distribution:

(ui, vi, zdi) ∼MN (0,Σ),

with

Σ =


1 ϕ δ

ϕ 1 0

δ 0 1

 ,

where ϕ controls for the level of endogeneity of xi, and δ indicates the local nonexogeneity

of zdi. We set ϕ = 0.6. δ is chosen from a set of values (0, 0.1, 0.15, 0.2), where 0 indicates a

valid instrument. Each experiment is simulated 1000 times with a sample size chosen from

(200, 500, 1000).

For the sake of comparison, we consider six types of tests: adjusted score tests and

standard score tests estimated by EL, ET, and CUE algorithm, respectively. Although

previous studies on GEL method have pointed out the asymptotic equivalency among EL,

ET, and CUE, we should not be surprised to finite-sample differences in sizes and powers

obtained by different GEL algorithms. In particular, when sample size is small, for example,

100 or 200, simulation results have shown quite different finite-sample sizes and powers in

EL, ET, and CUE-based tests.

By the result in Table 2-4, we compare the relative sizes of our adjusted score tests and

the standard score tests. When sample size is small as shown in Table 2, adjusted score test,

RS∗, shows little improvement in reducing size distortion caused by the failure of exogeneity

conditions.1 However, in Table 3-4, as sample size increases, size of RS∗ significantly shrinks

toward the true level while size of RS deviates even far away from it. This pattern of

divergence in RS is consistent with our discussion in previous sections that the standard

score test fails to control for the size distortion caused by local misspecification in the model.

1In an effort to improve size of RS∗ in small sample cases, we apply bootstrapping technique for n = 100
and 200. After bootstrapping for 5000 times, sizes of RS∗ have been greatly reduced towards 0.05 although
instruments are locally nonexogenous, while those of RS grow far away from 0.05 as parameter values of δ
increases. The bootstrapping results are available upon request.
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Based on Theorem 1.3.2, size of the adjusted score test eventually will converge to 0.05, not

being affected by any local deviation of δ from 0, as a result of the fact that RS∗ test is

robust to local nonexogeneity conditions. Among three types of adjusted score tests, CUE-

based test has the smallest size regardless of the sample size. Sizes of EL and ET are very

close in general. EL-based test is slightly better than ET-based test in large sample cases

while ET test performs better in small sample cases. It is worth noting that CUE-based

test - either adjusted or unadjusted - pays a price for its excessive under-rejection of the

null such that it persistently stays low in power, particularly when sample size is small.

Although this is not an unusual trade-off between size and power in statistical inference,

we still should be cautious when the CUE-based score test is applied. Kleibergen (2005)

provides one possible explanation for such an unexpected small power associated to CUE-

based score test that test statistics of these tests are equivalent to the first-order derivative

of the GMM objective function thereby spurious results are generated around the value of

θ where the objective function reaches its maximal or is at an inflection point. Kitamura

(2001) have also mentioned that weighting matrix in the objective function of continuous-

updating GMM is likely to be inflated at values of β which are far away from its “true” value,

thereby resulting in small value of the objective function and high probability of acceptance

of the null hypothesis.

Table 5-16 list the comparison of RS∗ and RS test in powers.2 In the case of no local

nonexogeneity, Table 5, 9, 13 show powers of RS∗ and RS grow similarly approaching to

one as β of the alternative deviates away from 0. The slight decline of RS∗ in power,

relative to RS, generally reflects the result in Corollary 1.3.3. When the parameter of local

nonexogeneity is large, power of RS∗ declines if sample size is small, while unsurprisingly

power of RS is merely affected by the presence of non-zero δ. In contrast, in Table 3, 13

where sample sizes are large, RS∗ test produces good power properties that are similar to

RS test.

2All powers of RS∗ test and RS test reported in this paper are size-adjusted.
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1.5 Empirical Example: Democracy and Income

In this section, we re-explore the study on the causal relationship between democracy and

income by Ancemoglu, et al. (2008). By examining their instrumental variable strategy, we

discuss possible violations of the instruments used to identify the casual effect of countries’

economic growth on democracy, and thereby try to provide another view of their story under

potential misspecification of the model. Note that our goal is not to reconstruct the economic

story in Ancemoglu, et al. (2008), but to investigate the model and data more carefully by

examining the exogeneity conditions which are crucial in an instrumental variable model.

For the sake of simplicity, we focus on the comparison of our results to the results in

Ancemoglu, et al. (2008) using the basic model studies in their paper:

Democracyi,t = α + β · Incomei,t−1 + εt. (1.19)

The instruments proposed, for example, for per capita income of country i at time t− 1 are

country i’s past savings rates, si,t−2 and trade-weighted world income, Ŷi,t−1, which reflects

trade linkages across countries.

In their paper, Ancemoglu, et al. (2008) find no cross-country correlation between income

and democracy after controlling for the country fixed effects. This result is quite different

from the conclusion in previous literature in which the result can be summarized as “de-

mocratization came with growth”3. Ancemoglu, et al. claim that such a spurious correlation

between income and democracy can be a result when common factors that simultaneously

affect both income and democracy, such as country fixed effects, are ignored in the model.

Thereby by including country fixed effects in the model, they show the strong correlation

between income and democracy disappears.

To identify the causal relationship between income and democracy, they use an instru-

mental variable model where income is treated as an endogenous variable.4 To make robust

3Ancemoglu, et al. 2008, page 808.
4Although Ancemoglue, et al. (2008) have proposed two instruments for variable Income, they only use

one each time for the regression of their model. In our example, we use both instruments for each of the
regressions. Note that the estimation results of β using both instruments in one regression is not much
different from the results in their paper.
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inference on parameter β, two basic conditions need to be satisfied by the proposed in-

struments: (1) strong correlation between income and instruments; (2) exogeneity between

instruments and ε. The first stage regression in their paper shows condition (1) is unlikely

to be a problem in practice. For the second condition, the authors admit that they cannot

verify it by providing a precise theory but argue the unlikely failure of excludability by mak-

ing ad-hoc checks on modified models. Thereby it is still possible that one of the exclusion

conditions is invalid such that it is correlated to democracy by some other connections. For

example, it is difficult to rule out the possibility that past saving rate could be correlated

with equilibrium political institutions, which in fact do have impact on democracy.

With this caveat in mind, we test for the significance of β using our adjusted score test,

where the test result is shown to be robust to local nonexogeneity of instruments, and the

standard score test, which suffers from size distortion as shown in our theory. In this example,

we treat past saving rates as an invalid instrument and trade-weighted world income as a

valid instrument. The results in Table ?? show a stronger relationship between income and

democracy by RS∗ test than the results by RS test as test statistic of RS∗ is much larger

than that of RS. This naturally raises our concerns about the possibility on parameter β

that it would remain significant after controlling for the fixed country effects. If this is true,

Ancemoglu, et al. (2008) may need to provide stronger evidences to claim that no causal

effect of income on democracy.

1.6 Conclusion

This paper proposes an adjusted GEL-based score test statistic for instrumental variable

models. The limiting behavior of this test statistic have shown to be robust to local violation

of exogeneity conditions, which often appears in empirical studies. Because it converges to

a central chi-squared distribution regardless of the presence of nuisance parameters of local

nonexogeneity, it produces asymptotically correct size under local misspecification of the

model. However we do pay a price of slight reduction in power for such a robustification of

size. Furthermore, by studying an example of the linear structural model, we have discussed a

sufficient condition where our adjusted score test is asymptotically equivalent to the standard
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score test in the sense of asymptotic size and power. We also apply our newly proposed test to

an empirical example in Ancemoglu, et al. (2008) where causal effect of income on democracy

has been extensively explored. By examining the instruments used in their paper, we have

shown that when one of their instruments is locally nonexogenous, pooled OLS regression

renders a significant β which has much smaller p-value using the adjusted score test than

the p-value calculated using the standard score test.
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Chapter 2

Mis-specification-Robust Bootstrap for Empirical
Likelihood Estimators

2.1 Introduction

Hansen’s Generalized method of moment (GMM) (1982) has been widely used for applied

economics. Hansen and Singleton (1982) used it to estimate asset pricing models; Chris-

tiano and Haan (1996) applied it for business cycle models; Ruge-Murcia (2007) found an

application in stochastic dynamic general equilibrium models. Despite the popularity of the

GMM method, the GMM estimator has poor finite sample performance. Altonji and Segal

(1996) and Hansen, Heaton, and Yaron (1996) have both addressed this subject.

To improve the small sample properties of GMM, multiple alternative estimators have

been proposed. The Empirical Likelihood (EL) estimator of Owen (1988), Qin and Lawless

(1994), the Exponential Tilting estimator of Kitamura and Stutzer (1997) and Imbens,

Spady, and Johnson (1998), the Continuously Updating (CU) estimator of Hansen, Heaton,

and Yaron (1996), and the Minimum Distance Estimator (MDE) of Kitamura, Ostu, and

Evdokimov (2013). Additionally, other efforts have been made to approximate the small

sample distribution of GMM more accurately. This includes bootstrap methods by Hahn

(1996), Hall and Horowitz (1996), Andrews (2002), Brown and Newey (2002), Lee (2014),

and Allen, Gregory, and Shimotsu (2011).

Although GEL estimators are favorable alternatives to GMM, there is little evidence that

the finite sample performance of the GEL test statistics is well enough based on the first-order

asymptotics. Guggenberger and Hahn (2005) and Guggenberger(2008) find that the first-

order asymptotic approximation to El estimators may be poor. Tt is then natural to consider

a bootstrap method to improve the finite sample performance. Brown and Newey(2002) first

introduced the bootstrap method to GMM estimators, and Allen, Gregory, and Shimotsu
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(2011) extended it to dependent data. And notably, Brown and Newey (2002) invented

a method of bootstrapping for GMM that used implied empirical likelihood weights for

resampling. They showed that the method achieves significant improvement in the Monte

Carlo studies, however, few paper deal with GEL estimators. One important and quite

related paper is Lee (2014) which proposes a bootstrap procedure for the GEL estimators.

Lee showed that the bootstrap t test statistics achieves sharp asymptotic refinements.

Furthermore, the validity of inferences based on the GEL estimators depends on the

model specification. Although model misspecification can be detected asymptotically by an

overidentification test, one might not make the correct inference for a finite sample. It is still

interesting to explore the properties under possible misspecification. More details can be

found in Lee (2014) and Schennach (2007). Since no parameter could satisfy all the moment

conditions simultaneously, a pseudo-true value would be defined. Such pseudo-true values

are still the object of interest in some cases, i.e., Hellerstein and Imbens (1999), and Bravo

(2010).

In this paper I focus on two points: bootstrapping with empirical likelihood weights

and robustness of model specification. Lee (2014) also proposes a bootstrap procedure that

deals with these two aspects. However, he uses equal weights in the bootstrap procedure

because of possible misspecified models that would lose some efficiency if the model were

actually correctly specified. In this paper I propose a new bootstrap method based on an

overidentification J test to improve the efficiency by using the empirical likelihood weights

but not the equal weights.

The plan of the paper is as follows. In Section 2, we briefly introduce the GEL method

and model specification.Section 3 presents proof of first-order validity. In Section 4 show

some Monte Carlo Studies, and the last section includes conclusion and possible extensions.

2.2 GMM Bootstrap Method

In this section we review the GMM bootstrap method in Brown and Newey (2002) using the

same notations. Let zi (i=1,...,n) be i.i.d observations. They satisfy the moment conditions
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with true parameter θ0:

E(g(z, θ0)) = 0,

where g(z, θ) is an m × 1 vector of moment conditions and m ≥ p.

Let gi(θ) = g(zi, θ), ĝ(θ) =
∑n

i=1 gi(θ)/n, and Ω̂ =
∑n

i=1 gi(θ)gi(θ)
′/n. A two-step GMM

estimator is defined as

θ̂ = argmin
θ∈Θ

ĝ(θ)′Ω̃−1ĝ(θ),

where Ω̃−1 = Ω̂(θ̃) with some preliminary GMM estimator β̃.

Definition 2.2.1 (GMM-empirical likelihood Bootstrapping)

We are interested in testing the null hypothesis H0 : θk = θ0,k.

1. Calculate

π̂i =
1

n(1− λ̂′ĝi)
, i = 1, ..n,

λ̂ = arg max
λ′ĝi<1

n∑
i=1

ln(1− λ′ĝi).

2. Draw n iid observations zb1, z
b
2...z

b
n with replacement from z1, z2...zn using the distribu-

tion with Pr(z = zi) = π̂i.

3. Calculate tb =
θ̂bk−θ̂k√
V̂ b
kk/n

.

4. Repeat steps 2 and 3 B times, to obtain t1, t2...tB, and use the empirical distribution

of t1, t2...tB to compute the critical values.

This method differs from standard GMM bootstrap in the use of empirical likelihood rather

than equal weights in step 2. As it’s shown in Brown and Newey (2002) this method is

asymptotically efficient, achieving the semi parametric efficiency bound of Brown and Newey

(1998) for estimators of the cdf under the moment restrictions.

However, there are two aspects that could be extended to this method. Firstly, as it’s

shown in Newey and Smith (2004), the EL estimator enjoys better theoretical property

than the GMM estimator, so we could use the EL estimator in the first step. 2. Although
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overidentification test can eventually detect the moment misspecification, it’s still useful to

utilize the pseudo-true values when there is no parameter that can satisfy all the moment

conditions at the same time. In next section we will discuss the method in Lee (2014) and

modify it to integrate the empirical likelihood weights.

2.3 GEL estimators And Model Specification

We first review the model structure of Lee (2004). Let zi (i=1,...,n) be i.i.d observations.

They satisfy the moment conditions with true parameter θ0:

E(g(z, θ0)) = 0,

where g(z, θ) is an m × 1 vector of moment conditions where θ ∈ Θ ⊂ Rp, and m ≥ p. We

follow the same notations as in Lee (2014). Let G(j)(Zi, θ) denote the partial derivatives

with respect to θ of order j. For instance, G(1)(Zi, θ) ≡ G(Zi, θ) ≡ (∂/∂θ′)g(Zi, θ) and

G(2)(Zi, θ) ≡ (∂/∂θ′)vec{G(Zi, θ)}. To simplify the notation, we let gi(θ) = g(Zi, θ), G
j
i (θ) =

G(1)(Zi, θ), ĝi = g(Zi, θ̂), and Ĝ
(j)
i = G(j)(Zi, θ̂), where θ̂ is the EL estimator.

One alternative estimation to GMM is generalized empirical likelihood (GEL). We follow

the definition from Guggenberger and Smith (2011):

Definition 2.3.1 (GEL estimation). The GEL estimator θ̂ for θ is defined as (Guggen-

berger and Smith (2011)):

θ̂ := argmin
θ∈Θ

sup
λ∈Λ̂n(θ)

1

n

n∑
i=1

[ρ(λ′gi(θ))], (2.1)

where Θ is a compact subset of Rk+`, Λ̂n(θ) = {λ ∈ Rq : λ′gi(θ) ∈ Q for i = 1, ..., n}, , Q is

an open interval of the real line containing 0, and the real-valued function ρ(.) : Q → R is

strictly concave on its domain.

Assumption 2.3.1 (a) The function ρ(v) is twice continuously differentiable in a neigh-

borhood of 0. (b) ρ1 = ρ2 = −1, where we define ρj(v) = ∂jρ(v)/∂vj with ρj = ρj(0) for any

19



nonnegative integer j.

The three most used GEL estimators in the literature are the empirical likelihood (EL)

estimator of Owen (1988), Qin and Lawless (1994), the exponential tilting (ET) estimator

of Kitamura and Stutzer (1997), and the continuous-updating estimator (CUE) of Hansen,

Heaton and Yaron (1996) which corresponds to ρ(ν) = ln(1 − ν), ρ(ν) = − exp(ν), and

ρ(ν) = −(1 + ν)2/2, respectively. See Parente and Smith (2014) for a recent survey on GEL

methods.

The first-order conditions of equation (1) are

1

n

n∑
i=1

ρ1(λ̂′ĝi)Ĝi
′
λ̂ = 0,

1

n

n∑
i=1

ρ1(λ̂′ĝi)ĝi = 0.

The model is correctly specified if there is a unique θ0 satisfy Eg(zi, θ0) = 0. If the model

is misspecified then there is no θ0 that can satisfy Eg(zi, µ0) = 0 simultaneously under the

overidentified case. Following Schennach(2007) we define the pseudo-true values β0 = (θ′0, λ
′
0)

solving the population version of the FOCs

Eρ1(λ′0gi0)G′i0λ0 = 0,

Eρ1(λ′0gi0)gi0 = 0.

These FOC conditions hold regardless of model specification so these pseudo-true values also

hold even if the model is not correctly specified. For the EL estimator, Chen, Hong, and

Shum (2007) provide regularity conditions for
√
n consistency and asymptotic normality

under misspecification. Particularly, they assume that the moment function is uniformly

bounded:

sup
θ∈Θ,z∈Z

||g(z, θ)|| <∞, inf
θ∈Θ,λ∈Λ(θ),z∈Z

(1− λ′g(z, θ)) > 0,

under some regularity conditions we could have the asymptotic property of the pseudo-true
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estimators as follows:
√
n(θ̂ − θ0)

d−→ N(0,Γ−1Ψ(Γ′)−1) (2.2)

where Γ = E(∂/∂θ′)ψ(xi, θ0) and Ψ = E(ψ(xi, θ0)ψ(xi, θ0)′). and,

ψ(xi, θ) =

 − 1
(1−λ′gi(β))

Gi(β)′λ

− 1
(1−λ′gi(β))

gi(β)

 .

Γ and Ψ can be estimated by Γ̂ = 1
n

∑n
i=1 ∂ψ(xi, θ̂)/∂θ

′ andΨ̂ = 1
n

∑n
i=1 ψ(xi, θ̂)ψ(xi, θ̂)

′.

The upper left submatrix of Γ−1Ψ(Γ′)−1 is the asymptotic variance matrix of
√
n(θ̂−θ0),

which could be used for a testing problem.

2.4 Bootstrapping on testing

Let θ̂ be the EL estimator and Σ̂ be the corresponding variance matrix estimator. Let θk

denote the kth element of θ, and Σ̂k is the kth diagonal element of Σ̂. The t statistic for

testing the null hypothesis H0 : θk = θ0,k is

T =
θ̂k − θ0,k√

Σ̂k/n
, (2.3)

which has an asymptotic N(0,1) distribution under H0 without assuming the correct models.

However, applying this asymptotic normal distribution as a reference distribution does not

work well in the finite sample. Please see the Monte Carlo Studies in Lee (2014). He proposed

a nonparametric bootstrap method by resampling Z∗1 , ..., Z
∗
n randomly with replacement from

the sample Z1, ..., Zn. Let Σ̂∗ be the upper left p× p submatrix of the bootstrap version of

the covariance matrix. Then the bootstrap t test statistics is defined as

T ∗ =
θ̂∗k − θ̂k√

Σ̂∗r/n
.

It is natural to implement the bootstrap method with EL weights when we resample
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the observations; however, as shown in Lee(2014), the cdf estimators based on such weights

would be inconsistent for the true cdf if the model is misspecified because
∑

i pig(zi, θ̂) = 0

holds even for large sample, while Eg(zi, θ0) 6= 0. Hence Lee (2014) proposed to using equal

weights in his paper since the empirical distribution function is always consistent. However,

we will lose some efficiency if the moment condition is correctly specified as shown in Brown

and Newey (2002). In this paper we extend Lee’s method to use the empirical likelihood

weights.

Definition 2.4.1 (Adapted Bootstrap Weights)

wi = p̂i1(ÔI < χ2
(m−1,1−α)) +

1

n
1(ÔI ≥ χ2

(m−1,1−α)) (2.4)

where p̂i is the EL implied weights, ÔI = 2[nln(1/n) −
∑n

i=1 lnp̂i] is the overidentification

test statistics, α is the size of the overidentification test, and l is the number of moment

conditions.

The intuition is to utilize the EL weights when we don’t have strong evidence to reject the

overidentification test and only equal weights when we have strong evidence to reject the

overidentification test.

2.5 Main Results

We rely extensively on the results of Lee (2014). P ∗ is the probability distribution of the

bootstrap sample.

Assumption 2.5.1

Zi, i = 1...n are i.i.d.

Assumption 2.5.2

1. Γ is nonsingular and Ψ is positive definite.
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2. g(z, θ) is d+1 times differentiable with respect to θ in the neighborhood of θ0, for all z

in the domain.

3. There is a function C(Z) such that ||G(j)(z, θ)−G(j)|| < C(z)||θ − θ0|| for all z in the

domain and all θ in the domain.

4. There is a function C2(Z) such that |ρj(λ′g(z, θ)) − ρj(λ′0g(z, θ0))| ≤ C2(z)||(θ′, λ′) −

(θ′0, λ
′
0)|| for all z in the domain and θ in the domain; EC2(Z) <∞.

Assumption 2.5.3

1. Θ is compact and θ0 is an interior point of Θ; Λ(θ) is a compact and λ(θ) contains a

zero vector.

2. (θ̂, λ̂) is the EL estimator; (θ0, λ0) is the pseudo-true value that uniquely solves the

FOC of population version.

3. For some Function C3(Z) such that ||g(z, θ1 − g(z, θ2)|| < C3(Z)||θ1 − θ2|| for all z in

the domain and θ in the domain; EC3(Z) <∞.

4. For some Function C4(Z) such that ||ρ(λ′1g(z, θ1))−ρ(λ′2g(z, θ12))|| < C4(Z)||(θ′1, λ′1)−

(θ′2, λ
′
2)|| for all x in the domain and θ in the domain; EC4(Z) <∞.

Lemma 2.5.1 Suppose Assumptions 5.1, 5.2, 5.3, and the uniformly bounded condition

hold. Then λ̂
p−→ 0, and θ̂ − θ0

p−→ 0.

Lemma 2.5.2 Suppose Assumptions 5.1, 5.2, 5.3, and the uniformly bounded condition

hold. Then For any ε > 0 and δ > 0,

lim
n→∞

P [P ∗[|θ∗ − θ̂| > ε] > δ] = 0

.

Theorem 2.5.1 Under Assumptions 5.1, 5.2, 5.3, and the uniformly bounded condition

holds.,

sup
z∈R
|P ∗(T ∗ ≤ z)− P (T ≤ z)| p−→ 0. (2.5)
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2.6 Simulation Study

In this section, multiple Monte Carlo Studies compare the finite sample performance of using

different reference distributions under correct specification and misspecification. We use the

same warp-speed Monte Carlo method of Lee (2014). The Warp-speed method only draws

one bootstrap sample for each Monte Carlo repetition rather than B times, allowing for a

significant computation advantage. The number of Monte Carlo repetition is 5,000. We

compare 4 tests:

1. “Asymp”-Use normal distribution without bootstrapping

2. “Boot-equal”-Use equal weights in the bootstrap process

3. “Boot-EL”-Use EL weights in the bootstrap process

4. “Boot-Adapted”-Use adapted EL weights in the bootstrap process

2.6.1 Correct Model Specification

Consider the same AR(1) dynamic panel model of Lee (2014). Suppose i = 1, 2, ..n and

t = 1, 2.., 4, and the DGP is:

yit = ρ0yi,t−1 + ηi + νit, (2.6)

where ηi ∼ N(0, 1); νit ∼ χ2
1−1√

2
; yi1 = ηi/(1 − ρ0) + µi1; µi1 ∼ N(0, 1/(1 − ρ2

0)), and the

moments that are used:

Eyi2(4yi4 − ρ04yi3) = 0 (2.7)

Eyi1(4yi4 − ρ04yi3) = 0 (2.8)

Eyi1(4yi3 − ρ04yi2) = 0 (2.9)

E4yi3(yi4 − ρ0yi3) = 0 (2.10)

E4yi2(yi3 − ρ0yi2) = 0 (2.11)

24



Moment conditions (6), (7), and (8) are derived from taking the differences of (5), and the

lagged values of yit are used as instruments. Moment conditions (9) and (10) are using

lagged values as the instruments. n=100, 200 are considered. The size of t test is 0.1. ρ0 is

chosen from (0.4, 0.9), where the latter represents the near unit root process. α is the size

of overidentification test, and we choose from (0.05, 0.1, 0.2).

Table 2-7 show the rejection rates under different scenarios. We observe that all three

bootstrap methods outperform the method using normal distribution , and if the moment

conditions are correctly specified, Boot-EL has the best performance and Boot-Adapted

performs better than Boot-equal. If the size of the J-test is smaller, Boot-adapted is closer

to Boot-EL since it has less chance to reject the null hypothesis when moment conditions

are actually correctly specified.

2.6.2 Mis-specified Moment Condition

We consider the same misspecified model of Lee (2014) in which the DGP follows an AR(2)

while the model is based on the AR(1) specification. Suppose i = 1, 2, ..n and t = 1, 2.., 4,

and the true DGP is:

yit = ρ1yi,t−1 + ρ2yi,t−2 + ηi + νit, (2.12)

where ηi ∼ trN(0, 1); νit ∼ trχ2
1−1√
2

; yi1 = ηi/(1−ρ1−ρ2)+µi1; µi1 ∼ trN(0, 1); yi2 ∼ trN(0, 1),

and trN(0,1) and trχ2
1 are truncated standard normal between -4 and 4, and truncated chi-

square between 0 and 16. The moments are still from previous AR(1) model as:

Eyi2(4yi4 − ρ04yi3) = 0 (2.13)

Eyi1(4yi4 − ρ04yi3) = 0 (2.14)

Eyi1(4yi3 − ρ04yi2) = 0 (2.15)

E4yi3(yi4 − ρ0yi3) = 0 (2.16)

E4yi2(yi3 − ρ0yi2) = 0 (2.17)
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In this model there is no ρ0 that could satisfy all the 5 moments simultaneously. Interestingly,

four of the moment conditions identify ρa = ρ1− ρ2 and the other identifies ρb = ρ1 + ρ2
ρ1−ρ2 .

The pseudo-true value ρ0 is defined as ρ0 = wρa + (1 − w)ρb where w is between 0 and

1.n=100, 200, and 500 are considered. The size of t test is 0.1. Two sets of rho1 and rho2

are chosen. ρ1 = 0.6, ρ2 = 0.2, and ρ1 = 0.3, ρ2 = 0.4. The pseudo-true value is simulated

using sample size n=30,000. The size of overidentification is chosen from (0.05, 0.1, 0.2).

Tables 7-12 show the rejection rates under misspecified moment conditions. We find that

three Bootstrap methods still work better than using the normal distribution. In addition,

the rejection rates of Boot-EL start to diverge as n goes large, which is consistent with the

theoretical findings.

2.7 Conclusion

We propose an adapted bootstrap procedure for the empirical likelihood estimators. This

method extends the bootstrap method in Lee (2014) by using the empirical likelihood

weights, which improves efficiency if the moment condition model is correctly specified.

Simulation Studies support the findings.
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Chapter 3

Higher Order MSE Comparisons of Generalized
Empirical Likelihood Estimators

3.1 Introduction

This paper calculates asymptotic higher-order mean squared error (MSE) for a simple linear

model with only two moment conditions with a univariate parameter. This is done without

assuming that generalized third moments of moment conditions are 0. We find that the

Empirical Likelihood (EL) estimator no longer has the least higher-order MSE in the GEL

family, and we also propose a data-driven GEL estimator that could minimize the higher-

order MSE. This paper is motivated by two questions: (i) Does the EL estimator still has the

least asymptotic higher-order MSE? and (ii) If not, can we find a favorable GEL estimator

to minimize the higher order MSE?

Traditionally, generalized method of moments (GMM) estimators of Hansen (1982) have

been invented to estimate method of moments. It is known that two-step GMM estimators

might not yield good small sample performances. Hansen, Heaton, and Yaron (1996) pro-

vided a good explanation on this matter. To improve the small sample properties of GMM,

multiple alternative estimators have been proposed. Empirical likelihood (EL) estimator of

Owen (1988), Qin and Lawless (1994), the exponential tilting estimator of Kitamura and

Stutzer (1997) and Imbens, Spady, and Johnson (1998), the continuously updating (CU) es-

timator of Hansen, Heaton, and Yaron (1996), and the minimum distance estimator (MDE)

of Kitamura, Ostu, and Evdokimov (2013). Additionally, other efforts have been made to ap-

proximate the small sample distribution of GMM more accurately. This includes bootstrap

methods by Hahn (1996), Hall and Horowitz (1996), Andrews (2002), Brown and Newey

(2002), Lee (2014), and Allen, Gregory, and Shimotsu (2011).

Newey and Smith (2004) developed a family of Generalized empirical (GEL) estimators
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that includes EL, ET, and CUE estimators. They showed that GEL and GMM estimators

have the same first order asymptotic distribution but different higher order asymptotic dis-

tributions. Anatolyev (2005) generalized this to a dependent data structure and found that

EL still has the nice small bias property. They found that EL’s asymptotic bias does not

grow with the number of moment restrictions. Hence the finite sample bias would be smaller

with many moment conditions than GMM and other GEL estimators.

Although the small bias property of EL is attractive, there are few papers talking about

higher order MSE comparisons on the GEL estimator. Newey and Smith (2004) showed that

after correcting bias and applying EL probabilities, the higher order variance is relatively

smaller compared to other bias corrected estimators. However, it is also interesting to com-

pare higher order MSE when bias is not corrected, which is more common for practitioners.

Imbens and Spady (2005) calculated higher-order asymptotic bias and MSE of GEL esti-

mators and assumed third moments of moment conditions to be zero. They found that all

GEL estimators have equivalent higher order properties. Meanwhile, it is not straightfor-

ward to observe an EL estimator’s advantage from finite sample simulations. Guggenberger

(2008) did comprehensive Monte Carlo studies to compare the finite sample properties of

GEL estimators and other instrumental variable (IV) estimators. He found no significant

advantages of using an EL estimator and suggested using two-stage least square estimators,

which are simpler to compute. Lee (2016) also argued that there is little evidence that GEL

estimators have a better approximation of the finite sample distribution.

Hence there is a need to explore the higher order MSE properties of GEL estimators. In

this paper we use a very simple moment condition structure to compute the higher order

MSE of GEL estimators. Due to the simple structure, we do not need to assume that the

estimator is bias corrected nor that third moment conditions are zero. I find that higher-

order MSE depends on the third derivatives of the ρ function in GEL estimator, and hence

the EL estimator might not yield the least higher order MSE. In the end I also derive a

data-driven GEL estimator that minimizes the higher order MSE.

The plan of the paper is as follows. In section 2, we briefly introduce our GEL method and

review the equivalence between GEL estimators and minimum discrepancy (MD) estimators

. In section 3 we introduce our moment condition model and the stochastic expansions.
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Section 4 presents the higher order MSE of GEL estimators and proposes a data-driven

estimator minimizing the higher order MSE. Section 5 concludes and discusses possible

extensions and future work.

3.2 The model and Estimators

We first review the model structure from Newey and Smith (2004). We use the same nota-

tions. Let zi (i=1,...,n) be i.i.d observations. They satisfy the moment conditions with true

parameter θ0:

E(g(z, θ0)) = 0,

where g(z, θ) is an m × 1 vector of moment conditions and m ≥ p.

One alternative estimation to GMM is the generalized empirical likelihood (GEL). We

follow the definition from Guggenberger and Smith (2011):

Definition 3.2.1 (GEL estimation). The GEL estimator θ̂ for θ is defined as (Guggen-

berger and Smith (2011)):

θ̂ := argmin
θ∈Θ

sup
λ∈Λ̂n(θ)

1

n

n∑
i=1

[ρ(λ′gi(θ))], (3.1)

where Θ is a compact subset of Rk+`, Λ̂n(θ) = {λ ∈ Rq : λ′gi(θ) ∈ Q for i = 1, ..., n}, , Q is

an open interval of the real line containing 0, and the real-valued function ρ(.) : Q → R is

strictly concave on its domain.

Assumption 3.2.1 (a) The function ρ(v) is twice continuously differentiable in a neigh-

borhood of 0. (b) ρ1 = ρ2 = −1, where we define ρj(v) = ∂jρ(v)/∂vj with ρj = ρj(0) for any

nonnegative integer j.

The three most used GEL estimators in the literature are the empirical likelihood (EL)

estimator of Owen (1988), Qin and Lawless (1994), the exponential tilting (ET) estimator

of Kitamura and Stutzer (1997), and the continuous-updating estimator (CUE) of Hansen,

Heaton and Yaron (1996) which correspond to ρ(ν) = ln(1 − ν), ρ(ν) = − exp(ν), and
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ρ(ν) = −(1 + ν)2/2, respectively. See Parente and Smith (2014) for a recent survey on GEL

methods.

Newey and Smith (2004) presented the dual relationship between GEL and the minimum

discrepancy (MD) estimator. The MD estimation is formulated as follows:

θ̄ := argmin
θ∈Θ

n∑
i=1

[h(πi)],

subject to:
n∑
i=1

πigi(θ) = 0,

n∑
i=1

πi = 1.

For each GEL estimator there is a dual MD estimator of a member in Cressie and Read

(1984) family, where h(π) = [γ(γ+ 1)]−1[(nπ)γ+1− 1]/n. They prove that the GEL and MD

estimators are equivalent under the following relationship:

ρ(v) = −(1 + γv)(γ+1)/γ/(γ + 1).

The CR family estimator has been widely used in statistics and econometrics. Hence it’s

also interesting to explore what is the “ best ” CR family estimator.

3.2.1 Stochastic Expansion

In this section we will repeat the stochastic expansion of Newey and Smith (2004), which is

used as the basis for our higher-order MSE calculations. They find the stochastic expansions

for GEL estimator as below:

√
n(θ̂ − θ0) = ψ̃ +Q1(ψ̃, ã, F0)/

√
n+Q2(ψ̃, ã, b̃, F0)/n+Rn,

The details of this expansion can be found in the Appendix. Applying this expansion
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Newey and Smith (2004) showed that the asymptotic higher order bias is given by

Bias(θ̂) = E[Q1(ψi, ai, F0)/n],

and they got the higher order bias expressions for GMM and GEL estimators

Bias(θ̂GMM) = BI +BG +BΩ +BW ,

Bias(θ̂GEL) = BI + (1 + ρ3/2)BΩ,

where BI = H(−a + E[GiHgi])/n, BΩ = −ΣE[G′iPgi]/n, BΩ = HE[gig
′
iPgi]/n, and BW =

−H
p∑
i=1

Ω̄βj(HW −H)′ej/n. Especially, Bias(θ̂EL) = BI . This shows their conclusion that EL

has the preferred higher order bias property.

3.2.2 Higher Order MSE Calculation

The model we consider here is to estimate the mean of a bivariate model. To describe it,

suppose

X =

 z1

z2


, and {Xi}ni=1 are i.i.d samples from some unknown distribution F. From previous knowledge

we know that the model has a true parameter µ0 satisfying the moment conditions:

E(z1) = µ0 (3.2)

E(z2) = µ0 (3.3)

An important estimator of µ is the two-step GMM estimator of Hansen(1982). The

alternatives to GMM we consider here are generalized empirical likelihood(GEL) estimators,

as in Smith(1997). To describe GEL let ρ(v) be a function of a scalar v that is concave on its

domain. The estimator is the solution to a saddle point problem of (1), where gi = (xi−µ).

The EL estimator is a special case with ρ(v) = ln(1− v). The exponential tilting estimator
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is a special case with ρ(v) = −ev, and the continuous updating estimator(CUE) is a special

case with ρ(v) = −(1 + v)2/2.

We follow the work of Newey and Smith(2004) to derive the expansion equation. Here are

some notations that are needed in the later expressions. Without loss of generality, we assume

E(z1i−µ)2 = E(z2i−µ)2 = 1. Let a1n =

n∑
i=1

(z1i−µ)

n
, a2n =

n∑
i=1

(z2i−µ)

n
, c1n =

n∑
i=1

(z1i−µ)2/n−1,

c2n =
n∑
i=1

(z2i − µ)2/n − 1, bn =
n∑
i=1

(z1i − µ)(z2i − µ)/n, d1n =
n∑
i=1

(z1i − µ)2(z2i − µ)/n

d2n =
n∑
i=1

(z2i − µ)2(z1i − µ)/n, e1n =
n∑
i=1

(z1i − µ)3/n− µ3, and e2n =
n∑
i=1

(z2i − µ)3/n− µ3.

Theorem 3.2.1 Following Lemma A4 of Newey and Smith(2004) with Assumption 1 and

2 in the Appendix, then,

µ̂− µ0 = 1/2(a1n + a2n) + 1/4(c1n − c2n)(a2n − a1n)− 1/8ρ3µ3(a2n − a1n)2

+ 1/8(c1n − c2n)(c1n + c2n − 2bn)(a1n − a2n) + 1/8ρ3µ3(a2n − a1n)2(c1n + c2n − 2bn))

+ 1/8(a2n − a1n)2(a1n + a2n + 1/16ρ3(d1n + d2n − e1n − e2n)(a1n − a2n)2

+ 1/8ρ3(a1n − a2n)2(a1n + a2n) +Op(n
−2).

Corollary 3.2.2 Following Theorem 1 then,

E(µ̂− µ0)2 = C +
3

16

ρ2
3µ

2
3

n2
+
ρ3µ

2
3

n2
+

3

4

ρ3

n2
− 1

4

ρ3µ4

n2
+ o(n−2) (3.4)

Remark 3.2.1 With some simple calculations we get the higher order bias of the GEL

estimator as follows:

E(µ̂− µ0) = −µ3

4n
(2 + ρ3) + o(n−1) (3.5)

When the EL estimator, i.e, ρ3 = −2, the first term of higher-order bias vanishes. This

result is consistent with the result in Newey and Smith(2004).

Remark 3.2.2 From the higher-order MSE expansion we observe that if µ3 = 0, the leading

term vanishes, and the minimum point of MSE would not exist. All the GEL estimators

would have the same higher order MSE, and this result is consistent with the findings in

Imbens and Spady (2005).
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Remark 3.2.3 If µ3 6= 0 when ρ̂3 = −3/8 + 2µ4−6
3µ23

the higher-order MSE is minimized.

Equivalently we get the MD estimator γ̂ by ρ3 = −(1− γ).

3.3 Conclusion and Future Work

In this paper we calculate the higher-order MSE of GEL estimators with a bivariate mean

model. We find that the EL estimator no longer enjoys the smallest higher-order bias

property in the criteria of MSE. From the expansion equation we observe that all GEL

estimator would have the same higher order MSE if the third moment is 0. In addition we

calculate a data-driven GEL estimators that minimizes the higher order MSE. In this paper

we only explore the higher-order MSE property of the simple bivariate mean model, which

significantly reduces the calculations. In the future more work could be conducted in more

generalized settings.
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Appendix A

Robust Inference for Instrumental Variable Models with
Locally Non-exogenous Instruments

Proof of Lemma 1: Lemma 1 is a classical result, so we just give a sketchy proof. Under

the null hypothesis, Lagrange multiplier λ in the GEL objective function can be consistently

estimated as:

λ̂ = sup
λ∈Λ̂n(θ̂)

n∑
i=1

1

n
[ρ(λ′gi(θ̂)]. (A.1)

By first order conditions, we obtain:

1

n

n∑
i=1

[
ρ1(λ̂′gi(θ̂))gi(θ̂)

]
= 0. (A.2)

Following Newey and Smith (2004) (proof of Theorem 3.2), we expand our first order

conditions around λ = 0. This gives:

√
ng +

√
nΩλ̂ = op(1) ⇒

√
nλ̂

d−→ N(0,Ω−1). (A.3)

Since D̂β = −G′1λ̂+ op(1), we obtain:

nD̂βΣ̂−1
1 D̂′β

d−→ χ2
K(0).

Q.E.D.

To proof theorem 1 we need some lemmas. These lemmas extensively rely on Newey and

Smith(2004).In particular, I use Lemma A1, A2, Theorem 3.1, and Theorem 3.2 of Newey

and Smith(2004). We let gi(θ) = zi(yi−f(xi, β))−∆ = gi(β)−∆, θ0 = (β0, Cδ/
√
n) denotes

the true parameter, and θ̂ = (β0, 0).

Lemma 1 If Assumption 1 is satisfied, then for any 1/α < ζ < 1/2 and Λn = {λ : ||λ|| ≤
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n−ζ}, supβ∈B,λ∈Λn
|λ′gi(β)| p−→ 0.

This lemma is just the Lemma A1 of Newey and Smith(2004).

Lemma 2 If assumption 1 is satisfied, and g(β0) = Op(n
−1/2),

then λ̂ = supλ∈Λ̂n(θ̂)

n∑
i=1

1
n
[ρ(λ′gi(β0)] exists w.p.a.1, and λ̂ = Op(n

−1/2).

Proof. Let g(β) = E[g(x, β)], and by uniform weak law of large numbers(UWL), supβinB ||g(β)−

g(β)|| p−→ 0, and according to Assumption 1 E(g(x, β0)) = Cδ/
√
n. By triangle inequalities

g(β0) = Op(n
−1/2). Since ρ(v) is twice continuously differentiable in a neighborhood of zero,

then λ̂ = supλ∈Λ̂n(θ̂)

n∑
i=1

1
n
[ρ(λ′gi(β0)] exists w.p.a.1. Follow the same argument of Lemma A2

of Newey and Smith(2004) ||λ̂|| = Op(n
−1/2).

Proof of Theorem 1: Let η = (λ, β, δ), and β0 denote for the true value of β. Considering

different values of η, we specify η0 = (0, β0, Cδ/
√
n), η∗ = (0, β0, 0), and η̂ = (λ̂, β0, 0), where

λ̂ = arg supλ∈Λ̂n(θ̂)
1
n

n∑
i=1

[ρ(λ′gi(θ̂)]. LetP (η) = 1
n

n∑
i=1

[ρ(λ′gi(θ)].

Taylor expansion of the score function w.r.t. λ around η0 gives

√
n
∂P (η∗)
∂λ

=
√
n
∂P (η0)

∂λ
+
√
n
∂2P (η0)

∂λ∂δ′
(0− Cδ√

n
) = op(1), (A.4)

⇒
√
n
∂P (η∗)
∂λ

= −
√
ng +G2Cδ + op(1). (A.5)

By definition, ∂P (η̂)
∂λ

= 0. Taylor expansion of the same score function around η̂ gives:

√
n
∂P (η∗)
∂λ

=
√
n
∂P (η̂)

∂λ
+
√
n
∂2P (η̂)

∂λ∂λ′
(0− λ̂) + op(1), (A.6)

⇒
√
n
∂P (η∗)
∂λ

=
√
nΩλ̂+ op(1). (A.7)

From equation (A.20) and (A.22) we obtain

√
nλ̂ = −

√
nΩ−1g + Ω−1G2Cδ + op(1). (A.8)
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Taylor expansion on the score function of β at η̂ around value of η0 gives:

√
nD̂β =

√
n
∂P (η̂)

∂β
(A.9)

=
√
n
∂P (η0)

∂β
+
√
n
∂2P (η0)

∂β∂λ′
(λ̂− 0) +

√
n
∂2P (η0)

∂β∂δ′
(0− Cδ/

√
n) + op(1)(A.10)

= −
√
nG′1λ̂+ op(1). (A.11)

By (A.8) and (A.11), it is easy to show

√
nD̂β =

√
nG′1Ω−1g −G′1Ω−1G2Cδ + op(1). (A.12)

According to Lindberg-Levy CLT, therefore,

nD̂βΣ̂−1
1 D̂′β

d−→ χ2
K(µ2), (A.13)

where µ2 = C ′δΣ
′
12Σ−1

1 Σ12Cδ.

Q.E.D.

Proof of Lemma 2: Use the same argument of Theorem 1.3.1, we obtain

√
nD̂δ = −

√
nG′2λ̂+ op(1) =

√
nG′2Ω−1g −G′2Ω−1G2Cδ + op(1). (A.14)

Q.E.D.

Proof of Theorem 2: By Theorem 1 and Lemma 2, we have

√
nD̂β0 =

√
nG′1Ω−1g −G′1Ω−1G2Cδ + op(1), (A.15)

√
nD̂δ =

√
nG′2Ω−1g −G′2Ω−1G2Cδ + op(1). (A.16)

⇒ D̂β − Σ̂12Σ̂−1
2 D̂δ = (G′1Ω−1 − Σ12Σ−1

2 G′2Ω−1)g + op(1). (A.17)

Therefore, we can show

√
n(D̂β − Σ̂12Σ̂−1

2 D̂δ)
d−→ N(0,Σ12Σ−1

2 Σ′12). (A.18)
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Q.E.D.

Proof of Theorem 3: The proof of Theorem 3 is quite similar to the proof of Theorem 1.

The only difference is θ1 needs to be estimated. Let η = (λ, θ1, θ2, θ3). Considering different

values of η, we specify η0 = (0, θ10, θ20, C/
√
n), η∗ = (0, θ10, θ20, 0), and η̂ = (λ̂, θ̂1, θ20, 0),

where θ̂1 = arg minθ1∈Θ supλ∈Λ̂n(θ̂)
1
n

n∑
i=1

[ρ(λ′gi(θ1, θ20, 0)]. LetP (η) = 1
n

n∑
i=1

[ρ(λ′gi(θ)].

Taylor expansion of the score function w.r.t. λ around η0 gives

√
n
∂P (η∗)
∂λ

=
√
n
∂P (η0)

∂λ
+
√
n
∂2P (η0)

∂λ∂θ′30

(0− C√
n

) + op(1), (A.19)

⇒
√
n
∂P (η∗)
∂λ

= −
√
ng +G3C + op(1). (A.20)

By definition, ∂P (η̂)
∂λ

= 0. Taylor expansion of the same score function around η̂ gives:

√
n
∂P (η∗)
∂λ

=
√
n
∂P (η̂)

∂λ
+
√
n
∂2P (η̂)

∂λ∂λ′
(0− λ̂) +

√
n
∂2P (η̂)

∂λ∂θ′1
(θ10 − θ̂1) + op(1), (A.21)

⇒
√
n
∂P (η∗)
∂λ

=
√
nΩλ̂−

√
nG1(θ10 − θ̂1) + op(1). (A.22)

From equation (A.20) and (A.22) we obtain

√
nΩλ̂ = −

√
ng +G3Cδ −

√
nG1(θ̂1 − θ10) + op(1). (A.23)

Taylor expansion of the score function w.r.t θ1 around η0 gives:

√
n
∂P (η̂)

∂θ1

=
√
n
∂P (η0)

∂θ1

+
√
n
∂2P (η0)

∂θ1∂λ′
(λ̂− 0) +

√
n
∂2P (η0)

∂θ1∂θ′1
(θ̂1 − θ1) (A.24)

+
√
n
∂2P (η0)

∂θ1∂θ′3
(0− C/

√
n) + op(1), (A.25)

⇒
√
nG′1λ̂ = op(1) (A.26)

By substituting equation(A.23) into equation(A.26) we have,

√
n(θ̂1 − θ10) = −(G′1Ω−1G1)−1G′1Ω−1

√
ng + (G′1Ω−1G1)−1G′1Ω−1G3C + op(1) (A.27)
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Plugging equation(A.27) into equation(A.23) we will get,

√
nλ̂ = −(Ω−1 − Ω−1G1(G′1Ω−1G1)−1G′1Ω−1)

√
ng

+Ω−1(G3C −G1(G′1Ω−1G1)−1G′1Ω−1G3C) + op(1)

Meanwhile,

D̂∗ = D̂θ2 − Σ̂23Σ̂−1
33 D̂θ3 = (Σ̂23Σ̂−1

33 G
′
3 −G′2)

√
nλ̂+ op(1) (A.28)

Then according to Lindeberg-Levy CLT,

√
nD̂∗

d−→ N(0,Σ22 − Σ23Σ−1
33 Σ32) (A.29)

Q.E.D.
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Table A.1: Size: N=200

endogeneity ELadj size ETadj size CUEadj size EL size ET size CUE size t size
0 0.065 0.062 0.025 0.065 0.066 0.023 0.052
0.01 0.078 0.068 0.03 0.071 0.068 0.024 0.051
0.02 0.046 0.048 0.024 0.046 0.037 0.013 0.042
0.03 0.056 0.055 0.021 0.056 0.052 0.018 0.065
0.04 0.073 0.071 0.026 0.067 0.062 0.02 0.064
0.05 0.062 0.062 0.029 0.072 0.067 0.022 0.076
0.06 0.087 0.079 0.034 0.076 0.071 0.027 0.086
0.07 0.086 0.08 0.039 0.076 0.07 0.024 0.095
0.08 0.065 0.062 0.027 0.071 0.062 0.021 0.102
0.09 0.087 0.086 0.03 0.07 0.067 0.022 0.09
0.1 0.085 0.078 0.045 0.067 0.064 0.015 0.098
0.11 0.067 0.063 0.03 0.054 0.051 0.014 0.101
0.12 0.076 0.075 0.032 0.066 0.065 0.019 0.128
0.13 0.088 0.077 0.042 0.072 0.066 0.018 0.134
0.14 0.098 0.095 0.037 0.085 0.082 0.014 0.132
0.15 0.086 0.08 0.035 0.075 0.069 0.016 0.148
0.16 0.114 0.109 0.043 0.072 0.072 0.011 0.146
0.17 0.122 0.126 0.065 0.098 0.089 0.016 0.179
0.18 0.102 0.107 0.049 0.095 0.095 0.012 0.199
0.19 0.112 0.115 0.057 0.085 0.074 0.008 0.195
0.2 0.128 0.128 0.055 0.091 0.082 0.01 0.222

39



Table A.2: Size: N=500

endogeneity adjusted EL adjusted ET adjusted CUE EL ET CUE t
0 0.044 0.043 0.033 0.04 0.041 0.03 0.043
0.01 0.052 0.054 0.039 0.051 0.053 0.039 0.054
0.02 0.076 0.075 0.056 0.073 0.072 0.052 0.071
0.03 0.047 0.045 0.027 0.051 0.047 0.034 0.06
0.04 0.044 0.046 0.038 0.055 0.059 0.039 0.07
0.05 0.055 0.059 0.044 0.071 0.073 0.054 0.08
0.06 0.057 0.062 0.041 0.063 0.068 0.049 0.083
0.07 0.051 0.051 0.034 0.076 0.078 0.056 0.101
0.08 0.062 0.062 0.041 0.085 0.083 0.051 0.111
0.09 0.051 0.055 0.037 0.08 0.084 0.056 0.115
0.1 0.063 0.073 0.046 0.093 0.1 0.065 0.129
0.11 0.066 0.06 0.037 0.111 0.108 0.074 0.163
0.12 0.057 0.061 0.035 0.101 0.106 0.064 0.168
0.13 0.061 0.066 0.034 0.104 0.108 0.051 0.182
0.14 0.065 0.07 0.033 0.127 0.138 0.087 0.216
0.15 0.068 0.079 0.039 0.132 0.136 0.082 0.227
0.16 0.071 0.081 0.041 0.15 0.153 0.091 0.243
0.17 0.069 0.084 0.04 0.165 0.178 0.095 0.289
0.18 0.081 0.093 0.053 0.161 0.17 0.088 0.294
0.19 0.095 0.111 0.047 0.156 0.169 0.077 0.338
0.2 0.091 0.109 0.056 0.171 0.184 0.083 0.344
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Table A.3: Size: N=1000

endogeneity adjusted EL adjusted ET adjusted CUE EL ET CUE t
0 0.044 0.047 0.043 0.056 0.058 0.052 0.053
0.01 0.044 0.045 0.039 0.038 0.04 0.032 0.044
0.02 0.05 0.052 0.04 0.058 0.058 0.052 0.063
0.03 0.043 0.041 0.038 0.056 0.057 0.055 0.067
0.04 0.05 0.053 0.045 0.069 0.072 0.061 0.088
0.05 0.048 0.049 0.039 0.073 0.075 0.062 0.087
0.06 0.058 0.061 0.051 0.088 0.092 0.076 0.113
0.07 0.062 0.066 0.05 0.086 0.092 0.066 0.113
0.08 0.063 0.066 0.048 0.126 0.128 0.107 0.167
0.09 0.066 0.07 0.048 0.136 0.144 0.12 0.2
0.1 0.058 0.058 0.043 0.148 0.154 0.125 0.215
0.11 0.065 0.069 0.055 0.164 0.179 0.147 0.245
0.12 0.056 0.061 0.042 0.179 0.196 0.146 0.273
0.13 0.057 0.07 0.041 0.208 0.217 0.167 0.321
0.14 0.056 0.067 0.042 0.214 0.23 0.175 0.347
0.15 0.076 0.085 0.045 0.221 0.24 0.188 0.379
0.16 0.075 0.093 0.058 0.262 0.283 0.194 0.418
0.17 0.08 0.096 0.056 0.236 0.269 0.172 0.457
0.18 0.081 0.093 0.066 0.259 0.291 0.194 0.492
0.19 0.093 0.121 0.071 0.293 0.328 0.208 0.542
0.2 0.115 0.153 0.094 0.302 0.334 0.21 0.576
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Table A.4: Power: N=200, δ=0

Beta adjEL scp adjET scp adjCUE scp EL scp ET scp CUE scp t scp
-0.3 1 1 0.652 1 1 0.832 1
-0.275 1 1 0.764 1 1 0.889 1
-0.25 1 1 0.887 1 1 0.949 1
-0.225 1 1 0.91 1 1 0.963 1
-0.2 0.996 0.999 0.94 0.998 1 0.967 0.999
-0.175 0.985 0.986 0.945 0.99 0.994 0.962 0.99
-0.15 0.904 0.914 0.867 0.943 0.946 0.902 0.946
-0.125 0.805 0.813 0.752 0.837 0.838 0.789 0.809
-0.1 0.651 0.657 0.639 0.657 0.655 0.64 0.65
-0.075 0.4 0.412 0.403 0.419 0.429 0.432 0.355
-0.05 0.199 0.199 0.195 0.217 0.212 0.21 0.182
-0.025 0.121 0.124 0.119 0.122 0.109 0.115 0.093
5.55E-17 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.025 0.059 0.052 0.05 0.062 0.07 0.053 0.101
0.05 0.098 0.099 0.066 0.125 0.116 0.093 0.137
0.075 0.206 0.195 0.136 0.267 0.245 0.18 0.345
0.1 0.3 0.293 0.162 0.358 0.376 0.294 0.513
0.125 0.398 0.368 0.176 0.497 0.491 0.332 0.678
0.15 0.603 0.616 0.316 0.679 0.71 0.535 0.773
0.175 0.659 0.671 0.27 0.73 0.759 0.558 0.883
0.2 0.745 0.734 0.319 0.869 0.871 0.682 0.938
0.225 0.859 0.876 0.397 0.934 0.943 0.651 0.975
0.25 0.841 0.857 0.247 0.935 0.946 0.594 0.98
0.275 0.93 0.919 0.261 0.973 0.981 0.621 0.994
0.3 0.932 0.939 0.235 0.984 0.987 0.59 0.998

42



Table A.5: Power: N=200, δ=0.01

Beta adjEL scp adjET scp adjCUE scp EL scp ET scp CUE scp t scp
-0.3 1 1 0.633 1 1 0.826 1
-0.275 1 1 0.77 1 1 0.901 1
-0.25 1 1 0.905 1 1 0.95 1
-0.225 1 1 0.905 1 1 0.945 1
-0.2 0.998 0.998 0.946 0.999 0.999 0.97 1
-0.175 0.976 0.979 0.936 0.981 0.987 0.963 0.991
-0.15 0.921 0.926 0.879 0.929 0.945 0.899 0.947
-0.125 0.823 0.833 0.784 0.839 0.841 0.815 0.829
-0.1 0.626 0.64 0.601 0.618 0.623 0.582 0.689
-0.075 0.387 0.418 0.403 0.403 0.432 0.441 0.421
-0.05 0.202 0.207 0.224 0.212 0.215 0.237 0.199
-0.025 0.095 0.103 0.095 0.095 0.09 0.096 0.085
5.55E-17 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.025 0.055 0.051 0.038 0.065 0.072 0.068 0.075
0.05 0.094 0.094 0.067 0.136 0.125 0.105 0.155
0.075 0.145 0.139 0.107 0.206 0.215 0.176 0.298
0.1 0.335 0.31 0.23 0.381 0.408 0.337 0.462
0.125 0.425 0.427 0.255 0.535 0.586 0.478 0.649
0.15 0.569 0.562 0.269 0.677 0.706 0.542 0.771
0.175 0.643 0.647 0.327 0.799 0.824 0.633 0.899
0.2 0.803 0.8 0.415 0.881 0.903 0.691 0.943
0.225 0.861 0.857 0.36 0.944 0.955 0.763 0.98
0.25 0.922 0.938 0.407 0.985 0.984 0.789 0.991
0.275 0.927 0.919 0.238 0.978 0.984 0.672 0.99
0.3 0.929 0.908 0.194 0.978 0.985 0.64 0.995
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Table A.6: Power: N=200, δ=0.1

Beta adjEL scp adjET scp adjCUE scp EL scp ET scp CUE scp t scp
-0.3 1 1 0.728 1 1 0.76 1
-0.275 1 1 0.806 1 1 0.803 1
-0.25 1 1 0.854 1 1 0.84 1
-0.225 0.998 0.999 0.93 0.998 0.999 0.896 1
-0.2 0.994 0.996 0.929 0.989 0.99 0.858 1
-0.175 0.981 0.983 0.954 0.966 0.97 0.845 0.986
-0.15 0.923 0.933 0.885 0.869 0.877 0.754 0.944
-0.125 0.774 0.78 0.765 0.665 0.667 0.564 0.811
-0.1 0.589 0.596 0.597 0.467 0.439 0.368 0.657
-0.075 0.36 0.369 0.379 0.225 0.226 0.206 0.364
-0.05 0.193 0.207 0.222 0.101 0.102 0.098 0.162
-0.025 0.099 0.105 0.114 0.056 0.051 0.045 0.073
5.55E-17 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.025 0.033 0.036 0.029 0.088 0.088 0.085 0.075
0.05 0.069 0.057 0.035 0.176 0.181 0.16 0.162
0.075 0.165 0.149 0.085 0.371 0.374 0.342 0.348
0.1 0.24 0.214 0.086 0.501 0.539 0.425 0.516
0.125 0.364 0.347 0.151 0.684 0.7 0.572 0.688
0.15 0.492 0.478 0.142 0.744 0.779 0.643 0.78
0.175 0.605 0.568 0.205 0.83 0.854 0.712 0.852
0.2 0.68 0.639 0.177 0.926 0.94 0.702 0.932
0.225 0.78 0.738 0.182 0.95 0.967 0.709 0.979
0.25 0.786 0.741 0.12 0.965 0.976 0.687 0.98
0.275 0.822 0.76 0.087 0.984 0.989 0.663 0.994
0.3 0.863 0.822 0.093 0.988 0.994 0.623 0.998
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Table A.7: Power: N=200, δ=0.2

Beta adjEL scp adjET scp adjCUE scp EL scp ET scp CUE scp t scp
-0.3 1 1 0.725 1 1 0.576 1
-0.275 1 1 0.774 1 1 0.678 1
-0.25 0.999 0.999 0.859 0.998 0.999 0.665 1
-0.225 0.999 0.999 0.912 0.996 0.998 0.689 1
-0.2 0.987 0.993 0.91 0.965 0.973 0.682 0.996
-0.175 0.978 0.985 0.935 0.923 0.929 0.664 0.98
-0.15 0.881 0.902 0.902 0.769 0.762 0.542 0.929
-0.125 0.794 0.809 0.823 0.546 0.545 0.391 0.856
-0.1 0.521 0.557 0.545 0.351 0.345 0.268 0.544
-0.075 0.363 0.375 0.364 0.172 0.156 0.112 0.382
-0.05 0.237 0.226 0.214 0.086 0.081 0.063 0.202
-0.025 0.091 0.095 0.112 0.044 0.037 0.035 0.074
5.55E-17 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.025 0.032 0.029 0.019 0.102 0.111 0.088 0.059
0.05 0.05 0.036 0.023 0.261 0.232 0.186 0.162
0.075 0.057 0.029 0.011 0.336 0.367 0.304 0.304
0.1 0.087 0.057 0.007 0.416 0.445 0.358 0.439
0.125 0.151 0.107 0.015 0.602 0.633 0.482 0.571
0.15 0.255 0.153 0.02 0.691 0.735 0.489 0.745
0.175 0.361 0.262 0.028 0.849 0.881 0.62 0.891
0.2 0.438 0.34 0.026 0.875 0.886 0.543 0.921
0.225 0.529 0.438 0.035 0.928 0.955 0.545 0.965
0.25 0.652 0.468 0.028 0.942 0.961 0.516 0.981
0.275 0.65 0.52 0.02 0.956 0.983 0.515 0.988
0.3 0.733 0.581 0.009 0.971 0.991 0.47 0.997
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Table A.8: Power: N=500, δ=0

Beta adjEL scp adjET scp adjCUE scp EL scp ET scp CUE scp t scp
-0.3 1 1 0.962 1 1 0.996 1
-0.275 1 1 0.981 1 1 0.997 1
-0.25 1 1 0.99 1 1 0.998 1
-0.225 1 1 0.994 1 1 0.999 1
-0.2 1 1 0.999 1 1 0.999 1
-0.175 1 1 0.997 1 1 0.998 1
-0.15 1 1 1 1 1 1 1
-0.125 0.989 0.992 0.991 0.994 0.995 0.995 0.996
-0.1 0.942 0.949 0.951 0.961 0.966 0.964 0.963
-0.075 0.766 0.764 0.753 0.784 0.799 0.799 0.776
-0.05 0.4 0.396 0.419 0.436 0.428 0.433 0.458
-0.025 0.174 0.17 0.164 0.162 0.161 0.157 0.156
5.55E-17 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.025 0.125 0.127 0.112 0.124 0.118 0.117 0.145
0.05 0.239 0.233 0.218 0.273 0.283 0.267 0.319
0.075 0.517 0.542 0.495 0.617 0.623 0.607 0.609
0.1 0.772 0.778 0.743 0.866 0.874 0.858 0.896
0.125 0.891 0.901 0.854 0.929 0.94 0.933 0.967
0.15 0.95 0.958 0.92 0.968 0.976 0.966 0.986
0.175 0.988 0.991 0.947 0.997 0.999 0.992 1
0.2 0.989 0.993 0.95 1 1 0.998 1
0.225 0.999 1 0.959 1 1 0.997 1
0.25 1 1 0.943 1 1 0.994 1
0.275 1 1 0.919 1 1 0.995 1
0.3 0.999 1 0.867 1 1 0.99 1
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Table A.9: Power: N=500, δ=0.01

Beta adjEL scp adjET scp adjCUE scp EL scp ET scp CUE scp t scp
-0.3 1 1 0.95 1 1 0.993 1
-0.275 1 1 0.978 1 1 0.995 1
-0.25 1 1 0.985 1 1 0.996 1
-0.225 1 1 0.991 1 1 0.998 1
-0.2 1 1 0.997 1 1 0.999 1
-0.175 1 1 0.999 1 1 0.999 1
-0.15 1 1 0.999 0.999 1 1 1
-0.125 0.993 0.996 0.994 0.998 0.998 0.996 0.998
-0.1 0.95 0.945 0.946 0.955 0.958 0.954 0.957
-0.075 0.727 0.729 0.728 0.747 0.752 0.748 0.768
-0.05 0.413 0.417 0.422 0.409 0.402 0.402 0.443
-0.025 0.147 0.139 0.158 0.15 0.151 0.151 0.103
5.55E-17 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.025 0.051 0.065 0.071 0.094 0.095 0.097 0.111
0.05 0.238 0.241 0.251 0.322 0.352 0.34 0.411
0.075 0.561 0.545 0.503 0.635 0.671 0.669 0.67
0.1 0.723 0.755 0.704 0.812 0.828 0.82 0.855
0.125 0.859 0.862 0.818 0.939 0.942 0.937 0.952
0.15 0.959 0.963 0.923 0.984 0.987 0.983 0.992
0.175 0.987 0.992 0.955 0.996 0.997 0.995 0.998
0.2 0.992 0.994 0.961 1 1 0.998 1
0.225 0.999 1 0.937 1 1 0.995 1
0.25 0.999 1 0.914 1 1 0.998 1
0.275 0.999 0.999 0.88 1 1 0.99 1
0.3 0.999 1 0.808 1 1 0.989 1
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Table A.10: Power: N=500, δ=0.1

Beta adjEL scp adjET scp adjCUE scp EL scp ET scp CUE scp t scp
-0.3 1 1 0.966 1 1 0.969 1
-0.275 1 1 0.978 1 1 0.974 1
-0.25 1 1 0.992 1 1 0.983 1
-0.225 1 1 0.997 1 1 0.995 1
-0.2 1 1 0.998 1 1 0.99 1
-0.175 1 1 1 1 1 0.99 1
-0.15 0.999 1 1 0.997 0.998 0.986 1
-0.125 0.989 0.991 0.992 0.95 0.951 0.91 0.993
-0.1 0.951 0.95 0.954 0.786 0.8 0.751 0.962
-0.075 0.71 0.731 0.747 0.472 0.474 0.434 0.717
-0.05 0.425 0.426 0.439 0.155 0.161 0.146 0.382
-0.025 0.173 0.162 0.175 0.049 0.041 0.035 0.156
5.55E-17 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.025 0.053 0.061 0.049 0.187 0.194 0.179 0.119
0.05 0.179 0.188 0.142 0.43 0.435 0.437 0.309
0.075 0.423 0.409 0.281 0.679 0.711 0.703 0.654
0.1 0.6 0.607 0.429 0.849 0.883 0.871 0.82
0.125 0.767 0.754 0.552 0.944 0.962 0.95 0.948
0.15 0.907 0.91 0.683 0.991 0.996 0.993 0.993
0.175 0.951 0.963 0.725 0.997 0.998 0.994 0.999
0.2 0.99 0.994 0.818 0.999 1 0.992 0.999
0.225 0.986 0.991 0.665 1 1 0.995 1
0.25 0.994 0.997 0.695 0.999 1 0.988 1
0.275 0.994 1 0.589 1 1 0.967 1
0.3 0.996 0.999 0.53 1 1 0.973 1
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Table A.11: Power: N=500, δ=0.2

Beta adjEL scp adjET scp adjCUE scp EL scp ET scp CUE scp t scp
-0.3 1 1 0.95 1 1 0.758 1
-0.275 1 1 0.966 1 1 0.804 1
-0.25 1 1 0.987 1 1 0.881 1
-0.225 1 1 0.995 1 1 0.909 1
-0.2 1 1 0.997 0.998 1 0.902 1
-0.175 1 1 0.997 0.991 0.998 0.884 1
-0.15 0.999 0.998 0.999 0.965 0.968 0.831 0.998
-0.125 0.984 0.988 0.995 0.812 0.838 0.662 0.991
-0.1 0.922 0.929 0.937 0.565 0.566 0.411 0.927
-0.075 0.732 0.743 0.763 0.21 0.212 0.169 0.758
-0.05 0.44 0.453 0.476 0.06 0.056 0.039 0.419
-0.025 0.172 0.175 0.18 0.022 0.017 0.017 0.141
5.55E-17 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.025 0.022 0.015 0.014 0.184 0.201 0.205 0.132
0.05 0.03 0.023 0.011 0.434 0.441 0.402 0.341
0.075 0.147 0.096 0.03 0.7 0.741 0.672 0.686
0.1 0.309 0.236 0.067 0.799 0.834 0.773 0.847
0.125 0.494 0.414 0.127 0.927 0.944 0.917 0.93
0.15 0.645 0.598 0.174 0.957 0.986 0.927 0.984
0.175 0.732 0.655 0.113 0.996 0.999 0.981 1
0.2 0.864 0.861 0.177 0.994 1 0.959 1
0.225 0.863 0.846 0.102 0.994 1 0.947 1
0.25 0.931 0.92 0.107 0.998 1 0.948 1
0.275 0.939 0.926 0.069 1 1 0.923 1
0.3 0.988 0.977 0.114 1 1 0.852 1
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Table A.12: Power: N=1000, δ=0

Beta adjEL scp adjET scp adjCUE scp EL scp ET scp CUE scp t scp
-0.3 1 1 0.997 1 1 1 1
-0.275 1 1 0.999 1 1 1 1
-0.25 1 1 1 1 1 1 1
-0.225 1 1 1 1 1 1 1
-0.2 1 1 1 1 1 1 1
-0.175 1 1 1 1 1 1 1
-0.15 1 1 1 1 1 1 1
-0.125 1 1 1 1 1 1 1
-0.1 0.996 0.995 0.995 0.998 0.998 0.998 0.998
-0.075 0.951 0.952 0.951 0.959 0.959 0.955 0.955
-0.05 0.626 0.628 0.635 0.683 0.679 0.682 0.67
-0.025 0.208 0.209 0.215 0.236 0.228 0.226 0.197
5.55E-17 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.025 0.178 0.186 0.185 0.219 0.229 0.231 0.23
0.05 0.529 0.52 0.517 0.573 0.572 0.576 0.632
0.075 0.859 0.858 0.835 0.89 0.899 0.899 0.935
0.1 0.986 0.989 0.986 0.995 0.996 0.996 0.997
0.125 0.997 0.997 0.996 0.998 0.998 0.998 0.998
0.15 1 1 1 1 1 1 1
0.175 1 1 1 1 1 1 1
0.2 1 1 1 1 1 1 1
0.225 1 1 1 1 1 1 1
0.25 1 1 0.994 1 1 1 1
0.275 1 1 0.993 1 1 1 1
0.3 1 1 0.988 1 1 1 1
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Table A.13: Power: N=1000, δ=0.01

Beta adjEL scp adjET scp adjCUE scp EL scp ET scp CUE scp t scp
-0.3 1 1 0.995 1 1 1 1
-0.275 1 1 0.998 1 1 1 1
-0.25 1 1 1 1 1 1 1
-0.225 1 1 1 1 1 1 1
-0.2 1 1 1 1 1 1 1
-0.175 1 1 1 1 1 1 1
-0.15 1 1 1 1 1 1 1
-0.125 1 1 1 1 1 1 1
-0.1 0.998 0.998 0.998 0.999 0.999 0.999 0.999
-0.075 0.945 0.946 0.945 0.964 0.968 0.967 0.972
-0.05 0.665 0.663 0.65 0.699 0.699 0.69 0.712
-0.025 0.205 0.2 0.21 0.212 0.205 0.197 0.213
5.55E-17 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.025 0.18 0.18 0.18 0.21 0.216 0.21 0.23
0.05 0.493 0.507 0.493 0.576 0.576 0.582 0.569
0.075 0.814 0.816 0.807 0.887 0.896 0.883 0.903
0.1 0.961 0.964 0.956 0.983 0.983 0.98 0.985
0.125 0.989 0.992 0.99 0.997 0.996 0.997 0.996
0.15 1 1 0.999 1 1 1 1
0.175 1 1 1 1 1 1 1
0.2 1 1 1 1 1 1 1
0.225 1 1 0.999 1 1 1 1
0.25 1 1 0.999 1 1 1 1
0.275 1 1 0.995 1 1 1 1
0.3 1 1 0.98 1 1 1 1
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Table A.14: Power: N=1000, δ=0.1

Beta adjEL scp adjET scp adjCUE scp EL scp ET scp CUE scp t scp
-0.3 1 1 0.998 1 1 0.997 1
-0.275 1 1 0.999 1 1 1 1
-0.25 1 1 0.999 1 1 0.999 1
-0.225 1 1 1 1 1 0.999 1
-0.2 1 1 1 1 1 0.999 1
-0.175 1 1 1 1 1 0.998 1
-0.15 1 1 1 1 1 0.998 1
-0.125 1 1 1 1 1 0.997 1
-0.1 0.999 0.999 0.999 0.954 0.967 0.952 0.999
-0.075 0.934 0.934 0.949 0.636 0.642 0.614 0.961
-0.05 0.703 0.715 0.722 0.239 0.227 0.213 0.677
-0.025 0.246 0.25 0.266 0.028 0.025 0.025 0.243
5.55E-17 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.025 0.085 0.083 0.06 0.323 0.321 0.322 0.222
0.05 0.399 0.394 0.331 0.732 0.741 0.723 0.627
0.075 0.671 0.65 0.557 0.92 0.935 0.927 0.895
0.1 0.931 0.92 0.851 0.987 0.991 0.991 0.989
0.125 0.976 0.986 0.956 0.999 1 1 1
0.15 0.993 0.999 0.987 1 1 1 1
0.175 0.998 1 0.989 1 1 1 1
0.2 1 1 0.983 1 1 1 1
0.225 1 1 0.98 1 1 0.999 1
0.25 1 1 0.959 1 1 1 1
0.275 1 1 0.964 1 1 1 1
0.3 1 1 0.898 1 1 1 1
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Table A.15: Power: N=1000, δ=0.2

Beta adjEL scp adjET scp adjCUE scp EL scp ET scp CUE scp t scp
-0.3 1 1 0.996 1 1 0.933 1
-0.275 1 1 0.999 1 1 0.952 1
-0.25 1 1 0.997 1 1 0.953 1
-0.225 1 1 0.999 1 1 0.972 1
-0.2 1 1 0.999 1 1 0.964 1
-0.175 1 1 1 0.999 1 0.981 1
-0.15 1 1 1 0.998 0.999 0.969 1
-0.125 1 1 1 0.959 0.966 0.884 1
-0.1 0.992 0.997 0.997 0.757 0.784 0.643 0.996
-0.075 0.934 0.936 0.958 0.331 0.351 0.27 0.948
-0.05 0.697 0.676 0.726 0.069 0.059 0.029 0.722
-0.025 0.239 0.228 0.248 0.008 0.006 0.005 0.236
5.55E-17 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.025 0.016 0.006 0.004 0.266 0.277 0.284 0.17
0.05 0.061 0.026 0.009 0.607 0.651 0.615 0.544
0.075 0.303 0.213 0.067 0.885 0.924 0.905 0.906
0.1 0.529 0.47 0.152 0.964 0.984 0.973 0.982
0.125 0.749 0.714 0.213 0.992 1 0.994 0.998
0.15 0.886 0.87 0.378 0.998 1 0.999 1
0.175 0.936 0.963 0.476 0.997 1 0.999 1
0.2 0.961 0.981 0.375 0.999 1 0.998 1
0.225 0.986 0.993 0.369 1 1 0.999 1
0.25 0.986 0.997 0.302 0.999 1 0.997 1
0.275 0.994 0.999 0.328 1 1 0.991 1
0.3 0.994 1 0.242 0.999 1 0.988 1
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Appendix B

Mis-specification-Robust Bootstrap for Empirical
Likelihood Estimators

The lemmas that establish the consistency of the bootstrap reference are based on the

results in Lee (2014), Schennach (2007), and Allen, Gregory, and Shimotsu (2008). We

hereafter refer them as L2014, S2007, and AGS. The intuition of the proof is that when

moment conditions are correctly specified either equal weights or EL weights are consistent,

and when moment conditions are misspecified equal weights will only be used since the

overidentification test would ultimately reject the null hypothesis with probability equals to

1.

Proof of Lemma 1

First, we note that the EL probabilities p̂i = 1/n(1 − λ̂′g(zi, θ
∗))−1 need to be positive.

If λ̂ does not converge to 0 in probability, maxi≤n λ̂
′g(zi, θ

∗) would be unbounded, which

would make some p̂i negative. To show the consistency we use NS2014 Lemma A3 that

||ĝ(θ̂)|| = Op(n
−1/2). Then by UWL, supθ∈Θ ||ĝ(θ) − g(θ)|| p−→ 0. As g(θ) = 0 has a unique

zero at θ0, ||g(θ)|| must be bounded away from zero outside any neighborhood of θ0 . Hence,

θ̂ must be inside any neighborhood of θ0. This proves the consistency of θ̂.

Proof of Lemma 2

To prove Lemma 2 we first modify Lemma 3 of L2014.

lim
n→∞

nαP (P ∗(sup
θ∈Θ
||θ̂∗ − θ̂|| > ε) > n−a) = 0, (B.1)

For a given ε > 0, there exists η > 0 independent of n such that ||θ − θ̂|| > ε implies that

0 < η ≤ n−1
∑

i(ρ(λ̂′gi(θ) − ρ(λ̂′ĝi(θ)) with probability equals to 1. This can be shown by
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using a similar logic in Lemma 3 of L2014. Then, we have

P (P ∗(sup
θ∈Θ
||θ̂∗ − θ̂|| > ε) > n−a)

≤ P (P ∗(sup
θ∈Θ

sup
λ∈Λ(θ)

|n−1
∑
i

(ρ(λ′g∗i (θ)− ρ(λ′gi(θ))| > η/2) > n−a) = o(n−a).

Proof of Theorem 1

We follow the proof of Theorem 1 in Lee (2014). Firstly, we use the same result of Lemma

8 in L2014 as follows:

lim
n→∞

nα sup
z∈R
|P (T ≤ z)− [1 +

2a∑
i=1

n−i/2πi ]Φ(z)| = 0

,

Then by the triangle inequality,

P (sup
z∈R
|P (T ≤ z)− P ∗(T ∗ ≤ z)| > n−1/2+ηε) ≤

P (sup
z∈R
|P (T ≤ z)− (1 +

2∑
i=1

n−i/2πi(δ, v1))Φ(z)| > n−1/2+ηε/4)+

P (sup
z∈R
|P (T ≤ z)− (1 +

2∑
i=1

n−i/2πi(δ, v
∗
n,1))Φ(z)| > n−1/2+ηε/4)+

P (sup
z∈R

n−1/2|π1(δ.v1)− π1(δ, v∗n,1)|Φ(z) > n−1/2+ηε/4)+

P (sup
z∈R

n−1|π2(δ.v1)− π2(δ, v∗n,1)|Φ(z) > n−1/2+ηε/4) = o(n−1).

The last equality holds by lemma 8(a)-(b) in L2014.

Q.E.D.
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Table B.1: Correct Model: ρ0 = 0.4, α=0.05

n 100 200
Asymp 0.361 0.267
Boot-equal 0.0622 0.0512
Boot-EL 0.093 0.0954
Boot-Adapted 0.09 0.0904
J-test 0.0624 0.0484

Table B.2: Correct Model: ρ0 = 0.4, α=0.1

n 100 200
Asymp 0.361 0.267
Boot-equal 0.0622 0.0512
Boot-EL 0.093 0.0954
Boot-Adapted 0.089 0.0864
J-test 0.125 0.0967

Table B.3: Correct Model: ρ0 = 0.4, α=0.2

n 100 200
Asymp 0.361 0.267
Boot-equal 0.0622 0.0512
Boot-EL 0.093 0.0954
Boot-Adapted 0.07 0.0616
J-test 0.224 0.186

Table B.4: Correct Model: ρ0 = 0.9, α=0.05

n 100 200
Asymp 0.724 0.6602
Boot-equal 0.0478 0.05
Boot-EL 0.0712 0.0908
Boot-Adapted 0.0662 0.0806
J-test 0.0786 0.0684
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Table B.5: Correct Model: ρ0 = 0.9, α=0.1

n 100 200
Asymp 0.724 0.6602
Boot-equal 0.0478 0.05
Boot-EL 0.0712 0.0908
Boot-Adapted 0.0652 0.0786
J-test 0.1168 0.0854

Table B.6: Correct Model: ρ0 = 0.9, α=0.2

n 100 200
Asymp 0.724 0.6602
Boot-equal 0.0478 0.05
Boot-EL 0.0712 0.0908
Boot-Adapted 0.0502 0.0686
J-test 0.246 0.228

Table B.7: Misspecified Model: ρ1 = 0.6, ρ2 = 0.2, ρ0 = 0.3961, α=0.05

n 100 200 500
Asymp 0.5682 0.4726 0.3798
Boot-equal 0.0588 0.0644 0.0766
Boot-EL 0.106 0.159 0.202
Boot-Adapted 0.0606 0.0822 0.0807
J-test 0.202 0.2212 0.508

Table B.8: Misspecified Model: ρ1 = 0.6, ρ2 = 0.2, ρ0 = 0.3961, α=0.1

n 100 200 500
Asymp 0.5682 0.4726 0.3798
Boot-equal 0.0588 0.0644 0.0766
Boot-EL 0.106 0.159 0.202
Boot-Adapted 0.0806 0.0992 0.087
J-test 0.2224 0.2942 0.5608
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Table B.9: Misspecified Model: ρ1 = 0.6, ρ2 = 0.2, ρ0 = 0.3961, α=0.2

n 100 200 500
Asymp 0.5682 0.4726 0.3798
Boot-equal 0.0588 0.0644 0.0766
Boot-EL 0.106 0.159 0.202
Boot-Adapted 0.0846 0.108 0.0908
J-test 0.348 0.402 0.6608

Table B.10: Misspecified Model: ρ1 = 0.3, ρ2 = 0.4, ρ0 = −0.09765, α=0.05

n 100 200 500
Asymp 0.5218 0.4842 0.4496
Boot-equal 0.0686 0.0946 0.1094
Boot-EL 0.1624 0.2578 0.33
Boot-Adapted 0.0844 0.1288 0.1106
J-test 0.368 0.524 0.845

Table B.11: Misspecified Model: ρ1 = 0.3, ρ2 = 0.4, ρ0 = −0.09765, α=0.1

n 100 200 500
Asymp 0.5218 0.4842 0.4496
Boot-equal 0.0686 0.0946 0.1094
Boot-EL 0.1624 0.2578 0.33
Boot-Adapted 0.0944 0.1078 0.1086
J-test 0.4586 0.6624 0.955

Table B.12: Misspecified Model: ρ1 = 0.3, ρ2 = 0.4, ρ0 = −0.09765, α=0.2

n 100 200 500
Asymp 0.5218 0.4842 0.4496
Boot-equal 0.0686 0.0946 0.1094
Boot-EL 0.1624 0.2578 0.33
Boot-Adapted 0.0954 0.1088 0.1026
J-test 0.6808 0.7624 0.988
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Appendix C

Higher Order MSE Comparisons of Generalized
Empirical Likelihood Estimators

We follow Newey and Smith (2004) Lemma A.4 as below to get the higher order expansion

equation for our model.

Assumption C.0.1 (a) µ0 ∈ U is the unique solution to E(g(z, µ0] = 0;(b) U is compact;

(c) E[supµ∈U‖g(z, µ)‖α] < ∞;(d)ρ(v) is twice continuously differentiable in a neighbor-

hood of zero.

Assumption 1 is adapted from Assumption 1 of Newey and Smith(2004) with our bivariate

mean model.

Assumption C.0.2 There is b(z) with E[b(zi)
6] < ∞ such that for 0 ≤ j ≥ 4 and all

z,∇jg(z, µ) exists on a neighborhood N ofµ0,supµ∈N ‖∇jg(z, µ)‖ ≤ b(z)‖µ − µ0‖, and for

each µ ∈ N , ‖∇4g(z, µ) − ∇4g(z, µ0)‖ ≤ b(z)‖µ − µ0‖,ρ(v) os four times continuously

differentiable with Lipschitz fourth derivative in a neighborhood of zero.

This assumption is the same as the Assumption (3) in Newey and Smith(2004) which is

needed for the stochastic expansions.

Theorem C.0.1 Suppose that the estimator θ̂ and vector of functionsm(z, θ)satisfies a)θ̂ =

θ0 + Op(n
−1/2);b)

∑n
i=1m(zi, θ̂ = 0,w.p.a.1;c)For some ζ > 2, d(z)withE(d(z) < ∞,and

Tn = θ :‖ θ − θ0 ‖≤ n−1/θ, w.p.a.a for i = 1, 2..., n, m(zi, θ) is three times continuously

differentiable on Tn and for θ ∈ Tn,

‖ ∂3(m(zi, θ))/∂θj∂θk∂θl − ∂3(m(z0), θ)/∂θj∂θk∂θl ‖≤ d(zi) ‖ θ − θ0 ‖ (C.1)

d)E(m(z, θ0) = 0 and M = E(∂m(z, θ0)/∂θ)exists and is nonsingular. Let Mj =

59



E[∂2m(z, θ0)/∂θj∂θ],Mjk = E[∂3m(z, θ0)/∂θj∂θk∂θ],

A(z) = ∂m(z, θ0)/∂θ −M , Bj(z) = ∂2m(z, θ0)/∂θj∂θ −Mj,

ψ(z) = −M−1m(z, θ0), a(z) = vecA(z), b(z) = vec[B1(z), ..., Bq(z)].

Then,

θ̂ − θ0 =
ψ̃

n1/2
+
Q̃1

n
+

Q̃2

n3/2
+Op(n

−2) (C.2)

Where, Q̃1 = −M−1[Ãψ̃ +
∑q

j=1 ψ̃jMjψ̃/2],

Q̃2 = −M−1[ÃQ̃1 +
∑q

j=1 ψ̃jMjQ̃1 + Q̃1jMjψ̃ + ψ̃jB̃jψ̃/2 +
∑q

j,k=1 ψ̃jψ̃kMjkψ̃/6]

Now we apply this theorem to this simple two dimension model. To simplify the cal-

culation we assume z1 and z2 are independent, ,var(x1) = var(x2) = 1, and E(z1 − µ)3 =

E(z2 − µ)3 = µ3 . These are some mild assumptions,and could be easily generalized. Ac-

cording to the first order conditions we could easily get m(zi, θ) as a 3× 1 matrix


ρ1(λ1(z1i − µ) + λ2(z2i − µ))(−λ1 − λ2)

ρ1(λ1(z1i − µ) + λ2(z2i − µ))(z1i − µ)

ρ1(λ1(z1i − µ) + λ2(z2i − µ))(z2i − µ)


We could then easily get

M = E[∂m(z, θ0)/∂θ] =


0 1 1

1 −1 0

1 0 −1

 .

We could then get the first component in our expansion equation,

ψ̃ =
√
n


1/2(a1n + a2n)

1/2(a2n − a1n)

1/2(a1n − a2n)

 .

Where a1n =
∑n

i=1(z1i−µ)

n
, a2n =

∑n
i=1(z2i−µ)

n

Similarly the second component in the expansion equation,
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Q̃1 = −M−1[Ãψ̃ +
∑3

j=1 ψ̃1M1ψ̃/2] as

n/4


(c1n − c2n)(a2n − a1n)− 1/2ρ3µ3(a2n − a1n)2

(c1n + c2n − 2bn)(a1n − a2n)

(c1n + c2n − 2bn)(a2n − a1n)


Where c1n =

∑n
i=1(z1i − µ)2/n − 1, c2n =

∑n
i=1(z2i − µ)2/n − 1, and bn =

∑n
i=1(z1i −

µ)(z2i − µ)/n.

Here we start to derive the last part in the expansion equation, which is the most com-

plicated one.

Q̃2 = −M−1[ÃQ̃1 +
3∑
j=1

(ψ̃jMjQ̃1 + Q̃1jMjψ̃ + ψ̃jB̃jψ̃)/2 +
3∑

j,k=1

ψ̃jψ̃kMjkψ̃/6] (C.3)

With some further calculations we could get

−M−1ÃQ̃1 = 1/4n2/3


1/2(c1n − c2n)(c1n + c2n − 2bn)(a1n − a2n)

1/2(c2n − c1n)(c1n + c2n − 2bn)(a2n − a1n)

1/2(c1n − c2n)(c1n + c2n − 2bn)(a1n − a2n)

 .

and,

−M−1

3∑
j=1

ψ̃jMjQ̃1 = 1/16n2/3


ρ3µ3(c1n + c2n − 2bn)(a1n − a2n)2

0

0

 .

−M−1

3∑
j=1

Q̃1jMjψ̃ = 1/16n2/3


ρ3µ3(c1n + c2n − 2bn)(a1n − a2n)2

0

0

 .
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−M−1

3∑
j=1

ψ̃jB̃jψ̃ = 1/8n2/3


(a1n − a2n)2(a1n + a2n) + 1/2ρ3fn(a1n − a2n)2

ρ3(d1n + d2n − e1n − e2n)(a1n − a2n)2

−ρ3(d1n + d2n − e1n − e2n)(a1n − a2n)2

 .

where, d1n = 1/n
∑n

i=1(z1i − µ)2(z2i − µ) d2n = 1/n
∑n

i=1(z2i − µ)2(z1i − µ), e1n =

1/n
∑n

i=1(z1i − µ)3 − µ3, fn = (d1n + d2n − c1n − c2n). and e2n = 1/n
∑n

i=1(z2i − µ)3 − µ3

Finally, the last part in Q̃2.

So lastly,

−M−1

3∑
j,k=1

ψ̃jψ̃kMjkψ̃/6 = 3/4n3/2


ρ3(a1n + a2n)(a1n − a2n)2

ρ4µ4(a2n − a1n)

ρ4µ4(a2n − a1n)

 .

So, we derive the expansion equation:

µ̂− µ0 = 1/2(a1n + a2n) + 1/4(c1n − c2n)(a2n − a1n)− 1/8ρ3µ3(a2n − a1n)2 (C.4)

+1/8(c1n − c2n)(c1n + c2n − 2bn)(a1n − a2n) + 1/8ρ3µ3(a2n − a1n)2(c1n + c2n − 2bn) (C.5)

+1/8(a2n − a1n)2(a1n + a2n) + 1/16ρ3(d1n + d2n − e1n − e2n)(a1n − a2n)2 (C.6)

+1/8ρ3(a1n − a2n)2(a1n + a2n) +Op(n
−2) (C.7)

Meanwhile,

1/2(a1n + a2n) = Op(n
−1/2) (C.8)

1/4(c1n − c2n)(a2n − a1n)− 1/8ρ3µ3(a2n − a1n)2 = Op(n
−1) (C.9)
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1/8c1n − c2n(c1n + c2n − 2bn)(a1n − a2n) + 1/8ρ3µ3(a2n − a1n)2(c1n + c2n − 2bn)

+ 1/8(a2n − a1n)2(a1n + a2n) + 1/16ρ3(d1n + d2n − e1n − e2n))(a1n − a2n)2

+ 1/8ρ3(a1n − a2n)2(a1n + a2n) = Op(n
−3/2) (C.10)

So collecting those terms with ρ we would get

E(µ̂− µ0)2 = C + 1/64ρ2
3µ

2
3E(a2n − a1n)4 − 1/8ρ3µ3E((a2n − a1n)2(a2n + a1n))

− 1/16ρ3µ3E((a2n − a1n)3(c1n − c2n)) + 1/8ρ3µ3E((c1n + c2n − 2bn)(a1n − a2n)2(a1n + a2n))

+1/16ρ3E((d1n+d2n−e1n−e2n)(a1n−a2n)2(a1n+a2n))+1/8ρ3E((a1n−a2n)2(a1n+a2n)2+op(n
−2)

(C.11)

where C is a constant term(not relevant with ρ),and we could easily compute these expec-

tations:

E(a2n − a1n)4 = 12/n2 + op(n
−2)

E((a2n − a1n)2(a2n + a1n)) = 2µ3/n
2 + op(n

−2)

E((a2n − a1n)3(c1n − c2n)) = −12µ3/n
2 + op(n

−2)

E((c1n + c2n − 2bn)(a1n − a2n)2(a1n + a2n)) = 4µ3/n
2 + op(n

−2)

E((d1n + d2n − e1n − e2n)(a1n − a2n)2(a1n + a2n)) = 4/n2 − 4µ4/n
2 + op(n

−2)

E((a1n − a2n)2(a1n + a2n)2 = 4/n2 + op(n
−2)

Finally,

E(µ̂− µ0)2 = C + 3/16
ρ2

3µ
2
3

n2
+
ρ3µ

2
3

n2
+ 3/4

ρ3

n2
− 1/4

ρ3µ4

n2
+ op(n

−2) (C.12)

Minimizing this quadratic function to get the optimal ρ̂ as (suppose µ3 6= 0)

ρ̂3 = −3/8 +
2µ4 − 6

3µ2
3

(C.13)
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and, we could get the γ̂ by ρ3 = −(1− γ).

Q.E.D.
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