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ABSTRACT

There is renewed interest in the four-parameter logistic model (4PLM), but the lack
of a user-friendly calibration method constitutes a major barrier to its widespread
application. In the present study, this researcher reformulated the 4PLM from a latent
mixture modeling view and developed the Expectation-Maximization-Maximization-
Maximization (EMMM) method. Combining the EMMM with the Bayesian approach,
allowed the Bayesian Expectation-Maximization-Maximization-Maximization
(BEMMM) algorithm to be proposed. First, the author compared the EMMM with
BEMMM to confirm that the BEMMM method reduced the number of implausible
estimates in EMMM. Next, when comparing the BEMMM with the Markov Chain Monte
Carlo method (Culpepper, 2016) and Bayesian Modal Estimation (Waller & Feuerstahler,
2017), the results from a simulation study and a real-world data calibration indicated that
the BEMMM and the MCMC are more accurate than the BME, while the BEMMM is

much faster than the MCMC.
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CHAPTER 1: INTRODUCTION

The four-parameter logistic item response model (4PLM) was first mentioned by
McDonald (1967) and was formally proposed by Barton and Lord (1981). It received
little attention due to doubts about its utility and technical difficulties related to parameter
calibration. After three decades of neglect, the psychometrics community has developed a
rekindled interest in 4PL due to several applications (Cheng & Liu, 2015; Liao, Ho, Yen,
& Cheng, 2012; Loken & Rulison, 2010; Rulison & Loken, 2009; Waller & Reise, 2010;
Yen, Ho, Liao, Chen, & Kuo, 2012). Currently, however, the calibration method
continues to present challenges to methodologists and practitioners which has hindered
its widespread application. There are two kinds of major approaches to item calibration
for the 4PLM. One type is the MCMC methods, including Metropolis-Hasting (Loken &
Rulison, 2010) and the Gibbs sampler (Culpepper, 2016). The major problem with these
estimation means is that they are computationally intensive and time-consuming. The
other sort of approach is to apply the Bayesian method for the 3PLM to the 4PLM
(Waller & Feuerstahler, 2017). Compared to the MCMC methods, this kind of approach
is faster, but is not as accurate as the first methods.

In this study, an Expectation-Maximization-Maximization-Maximization (EMMM)
algorithm and a Bayesian Expectation-Maximization-Maximization-Maximization
(BEMMM) algorithm based on latent-mixture-modeling reformulation are proposed. In
section 1, the expression and item characteristic curve of the 4PLM, the brief history of
4PLM and several previous algorithms for the 4PLM are introduced. The author then
illustrates the derivatives and algorithms of EMMM and Bayesian EMMM step-by-step.

In section 3, two simulation studies are conducted. One is designed for the purpose of



comparing the EMMM with the BEMMM, the results of which indicate that the Bayesian
method helps reduce implausible estimates in the EMMM. The second simulation study
focuses on the item recovery of the BEMMM, BME, and MCMC. The comparison
indicates the conclusion such that the BEMMM is as accurate as MCMC and is more
precise than BME. Finally, we apply the 4PLM to bullying item responses of 7491
adolescents from the 2005-2006 Health Behavior in School-Aged Children (HBSC) study
(see Culpepper, 2016, section 4). The results support the contention that using the
BEMMM can estimate lower and upper asymptotes in large-scale surveys as MCMC
does and do so much quicker than MCMC.
1.1 The Four-Parameter Logistic Model

The 4PLM extends the three-parameter model by adding an upper asymptote
parameter. The probability of correct response for examinee i on item j is:

d.—c,
P(u; =116,a;,b;,¢5,d;) =¢; + Da( .
1+exp(-Da; (6, —b)))

(1.1

where a, and b, are the discrimination and difficulty parameters, ¢, and d; arethe
lower and upper asymptotes, 6, is the latent trait score, and D is 1.702. In Figure 1.1,
two curves with both a; =1.4 and b; =-0.15 are illustrated. For the darker curve,

¢, =0.2, which means that the probability of lower-ability examinees correctly answering
is0.2; d; =0.8, which indicates that the probability of higher ability examinees

correctly answering is 0.8. For the lighter curve, c; =0.1, d; =0.9. When



0, =b; =-0.15, the probability of answering correctly for both functions is
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Figure 1.1 Item character curve for 4-parameter logistic model

1.2 The history of the four-parameter logistic model

The concept of the 4PLM was firstly mentioned by McDonald in 1967:
“It would be convenient for some applications to relax these restrictions on the
model, by introducing upper and lower asymptotes which can be determined from
the data, and which are free to take values other than zero and unity” (p. 67).

Unlike the lower asymptote, which was popularly used by psychometric researchers, the

upper asymptote suffered 15 years of neglect before being formally proposed by Barton



and Lord (1981). Motivated by the concern that severe penalizations might occur when
high-ability examinees make clerical errors on easy items if using a 3PLM (1981, p. 2),
they introduced “an upper asymptote with a value of slightly less than 1” (1981, p. 2) and
compared the new model with the 3PL model. Without really estimating the parameters,
Barton and Lord considered the effect of the upper asymptote by changing the values of
the upper asymptotes (0.98, 0.99 or 1.00) to determine the changes in log-likelihoods and
ability estimates. However, the use of the four-parameter model did not “consistently
improve the likelihood or significantly change any ability estimates,” so they concluded
that the need for 4PLM is neither compelling nor urgent (1981, p. 6). Similar negative
opinion on the 4PLM was raised by Hambleton and Swaminathan in 1985.

After about two decades of silence, there was renewed interest in the application of
the 4PLM (e.g., Loken & Rulison, 2010; Magis, 2013; Reise &Waller, 2003; Waller &
Reise, 2010; Yen, et al., 2012). Reise and Waller (2003) fitted the 2PLM and 3PLM,
respectively, to 15 unidimensional factor scales (p.164), and in the last part of the article,
they pointed out that a four-parameter model estimation program is needed to
characterize the functioning of psychopathology items completely (p.182). They did not
fit the 4PLM to the Minnesota Multiphasic Personality Inventory (MMPI) scales at that
time because they did not at the time know of there is any software that could estimate
the 4PLM (Waller & Reise, 2010, p.151). In 2010, Waller and Reise found that “it is now
possible to estimate IRT models via a Gibbs sampler.” Using an open-source R package
“BRUGS” (Thomas, 2006), which is based on OpenBUGS
(http://mathstat.helsinki.filopenbugs /) architecture (p.157), researchers fit the 4PLM to

real data. In that same year, Loken and Rulison also estimated the 4PLM with the



Bayesian method where Markov Chain Monte Carlo (MCMC) approach was used to
simulate the posterior full joint distribution and marginal distribution of the parameters
(p.513). Comparing the model fit of the 4PLM, 3PLM, and 2PLM for data generated
using the 4PLM reflected that the results showed that the 4PLM provided the best fit
(p.521). They believed that the probability of correct answers could not reach 1 in
practical measurements even when examinees’ ability level is extremely high, so it is
necessary to use a model with an upper asymptote. Furthermore, they mentioned the
possibility of future work involving applying an ML approach with some constraints to
the 4PLM (p.523). The need of 4PLM also showed in computerized adaptive test (CAT)
as the estimation error was profoundly influenced by some aberrant responses such as
careless errors and lucky guesses (Yen, et al., 2012, p.75). Yen, et al., compared the
accuracy and efficiency of the 3PLM and 4PLM based CAT with items drawn from the
English Ability Test for college entrance in Taiwan (Ho & Yen, 2005), the results
showed that the issues of ability underestimation were decreased and the efficiency of
measurement was increased when the 4PLM was used (p.85). Liao, et al. (2012)
conducted a simulation study to investigate the robustness of the 4PLM compared to the
3PLM in CAT under two conditions (normal and poor-start test) and obtained the same
conclusion as Yen, et al. (2012) in the empirical experiment. Magis (2013) rewrote the
item information function given by Lord (1980, p. 72) and derived the value of the ability
level that maximizes the item information function (p.312).

Via a recently developed mirt (Chalmers, 2012) package, Feuerstahler and Waller
(2014) estimated the 4PLM using marginal maximum likelihood (MML) method. By

fitting the 4PLM to the MMPI-A factor scale (Butcher, Dahlstrom, Graham, Tellegen, &



Kaemmer, 1992) and comparing the 4PLM with 3PLM and 2PLM, researchers found that
although reasonably accurate estimates were obtained only when the sample size was
large (N=10,000), the 4PLM significantly improved model fit. Following Bé&uin and
Glas (2001), Culpepper (2016) remodeled the 4-parameter normal ogive model (4PNO)
by introducing a discrete augmented variable. Through Monte Carlo simulations and a
real data sample, the results showed that the 4PNO model provided the best model fit
when comparing to the 2PNO and the 3PNO models, and the sample size which is needed
to obtain accurate estimates is 2,500. Waller and Feuerstahler (2017) fitted the 4PLM,
3PLMu (a submodel of the 4PLM where the lower asymptote is equal to 0), 3PLM and
2PLM to MMPI-A factor scales (Butcher, et al., 1992) using Bayesian modal estimation
(BME). The results of the comparison indicated that models with non-constrained upper
asymptotes (4PM and 3PMu) are more suitable for some psychopathology scales (p.18).
They also explored the minimum sample size needed for accurate item parameters
estimation is larger than 5,000.
1.3 Algorithms for 4PLM

The MMLE/EM algorithm. The marginal maximum likelihood estimation with the
Expectation-Maximization algorithm (MMLE/EM) for the 3PLM, proposed by Bock and
Aitkin (1981), can be modified to estimate the 4PLM because the 4PLM is a
generalization of the 3PLM. Zhang (2005, 2012) uses a modified MMLE/EM to estimate
item parameters for multi-dimensional compensatory three-parameter logistic models.
The underlying assumptions of the MMLE are the independence between each item, the
independence between each examinee and the independence between items and

examinees so that researchers can separately estimate the item parameters and ability



parameters. By maximizing the marginal log-likelihood function, the best estimates of the
item parameters can be obtained. During the process, numerical integration and artificial
data are used to simplify the calculation. This method was commonly accepted in the
estimation of the 3PLM, although it often yields infinite or implausible parameter
estimates in small samples (Mislevy, 1986). When applied to 4PLM, the algorithm has
difficulties with convergence due to the complexity of the derivatives. Feuerstahler and
Waller (2014) used the MMLE to estimate 4PLM item parameters. The sample size
which is needed for reasonably accurate estimation is large (N=10,000).

The Bayesian EM algorithm. To eliminate the implausible estimates in MMLE,
researchers introduced a Bayesian method. Mislevy (1986) considered the prior

distribution of item parameters, and proposed a general formula:

_oinMU ¢ +6Ing(w,- In)_
oy, oy, (1.2)

0

where InM (U |&) is the log-likelihood function in the MMLE/EM, and g(y; |7) is

the prior distribution for item parameters. The priors provide more information which
helps avoid the unstable estimation caused by using uninformative data. This is the
reason why the Bayesian method can solve the problem of infinite or implausible
estimates in traditional MMLE/EM. Waller and Feuerstahler (2017) estimated the item
parameters of the MMPI-A scale (Butcher, et al., 1992) using BME (Bayesian model
estimation). The results showed that at least 66% of the items require the upper
asymptotes, which helps them assert that the 4PM is needed when modeling such self-

report data (p.6). However, the defect of this method is that the quality of results is highly



dependent on the properness of priors. If the priors are deflective, the estimates will be
inaccurate.
The MCMC algorithm. Culpepper (2016) presented the Bayesian formulation for

4PNO by defining a binary augmented variable W; . The 4PNO is assumed to be
expressed as:

P(Yij =1 ‘9ia§jv7/j1§j) =7 +(1_§j _7j)q)(77ij)- (1.3)
where P(Y;=1) denotes the probability of correct response for examinee i on item j,

& =(a;, B;) arethe slope and threshold parameters for item j, y, and 1-¢; are the

lower and upper asymptotes, ¢, is the latent trait score, 7, =6, —f; and @() isthe
cumulative distribution function of the standard normal distribution.

Following Beguin and Glas (2001), W; wasrelatedto 6 through a two-parameter
normal ogive model as P(W; =1|7;) = ®(r;) . The relationship between ability and

response can then be modeled through Y; conditional on W

7}(” - VJ)H(H ' Wij =0

P(Yij |Wij) = 1y '
(1—g] )Yu g:JL YI], WIJ :1

(1.4)

The conditional probability P(Y; =1|W,; =0) =y, is the probability that student i
who does not know the answer to item j correctly guesses, P(Y; =1|W, =1)=¢, isthe

probability that student 1 knows the correct answer, but “slips” and provides an incorrect

response (Culpepper, 2016). Through a series of derivations, the probabilities of W;

condition on Y;,7;,7;,; are attained:



(1_gj)q)(77ij)
Vi +(1_§j _7j)(b(77ij)
7](1_(1)(77"‘))
Vit (1_§j _7/1)(1)(77"‘)
gjq)(nij)
1=y =Q=g;=7)®0;)
(1_71)(1_(1)(77”))

P ..:O Y.,:O’ LY, G ) == .
W =01Y; =0.77;.7;.6)) =7 —Q—c, —7)00n) 5

P(Vvij =1|Yij :1177ij17j'§j) ==

P(Wij :OlYij :1177”17]’9']) ==

I:)(\Nij =1|Yij zovnijvyjigj) ==

Given the data and model parameters, W; can be sampled. Albert (1992) derived the full

conditional for 6 :
N J ,
p(@|Z,8)= HH¢(Zij 16,,,)6(6,; 1y, 05),
i=1 j=1 (16)
where Z; a continuous, normally distributed random variable. Fox (2010) showed the

way to sample the item threshold and slope parameters:

pE1Z,0)=T1]14(z; 16,89 1., 2 ) Ue; > 0).
i=1 j=1 (17)

The full conditional distribution for y, and ¢, is:

p(;/j,gj |Yj,Wj) oc p(Yj |Wja7j!gj)p(7jag1')' (1.8)

Let f,_ denote the joint probability function distribution, and assume:

f .ot fI((y,c)eQ). (1.9)
The marginal distribution f,and conditional distribution f_ can then be obtained.

Consequently, y, can be sampled from f through a Gibbs-within-Gibbs sampler, ¢,

can be sampled as ¢, |y, ~ Beta(ég,Bg)I(O <¢; <1-y,).



CHAPTER 2: THE EMMM AND THE BAYESIAN EMMM

ALGORITHM FOR THE 4PLM

Large sample sizes Add an upper asymptote

Implausible Implausible

estimates estimates

Undue influence of priors Add an upper asymptote

Figure 2.1 The development process of the EMMM and the BEMMM

2.1 The EMMM algorithm

The EMM algorithm. Before introducing the Expectation-Maximization-
Maximization-Maximization (EMMM) algorithm, the author reviewed the Expectation-
Maximization-Maximization (EMM) proposed by Zheng, Meng, Guo and Liu (2017).

They rewrote the 3PLM as follows:
P(u; =116,3;,b;,¢;) =¢; x[1]+ A—-c)) x| P[(8) ], (2.1)

1
1+exp(-Da; (6, —b;))

with P/ (6) =
A latent indicator variable is thus defined as:

1 if examinee i does not guess on item j;
i = (2.2)

0 if examinee i does guess on item j.

-10-



Here, z; ~ Bernoulli (1—cj ) The probability of an examinee using a guessing strategy is

P(zij = 0) = C;. The conditional possibilities of responses to items conditional on
z;, 0, &;are:

P(uij =1| Z; :1"9i’§j) = Pj*(ei)
P(uij =1| Z; zo’ei’éj) =1

) (2.3)
P(uij =0| Z; :1’9i’§j) =1- Pj (‘9.)
P(uij =0] Z; =O’0i7§j) =0.
Since the joint distribution of u; and z; can be expressedas P(u;,z;|6,.§;) =
P(u; z;,6.8,)P(z;):
P(uij =1z, :1|9i'§j) =(1_Cj)Pj*(0i)
P(uijzl’zij:()'gi’gj)zcj 2.4)

P(u; =0,7; =116,§;) = (1-¢;,)L- P/ ()

1 Gj
P(uij =0’Zij =0|0i’§j):0-

Let u, and Zz; denote the response and the latent indicator vector, T is the vector

containing the parameters of the examinee population ability distribution, so that the joint

distribution for complete data is:
P(;,z;,6 & t)=P(u;,z;16,8)9(6, | 1), (2.9)

where

P(u,,z,|60,&) = f[[(l- C)P (O] x e W x[(L-¢;) (1= P (E))I*™%, (2.6)

9(9, \T) is a density function of @ . By integrating to &, the marginal distribution

becomes

-11-



P(U;2,18) =, P(u,21&6)9(6 | 7)d8. 27)

For all examinees, the likelihood function is:

L(U,Z|§)=HP(UnZi |§)

=[], Pw.z186)9(4 1 7)d0 (2.8)

The difference between the EMM algorithm and the EM algorithm is such that the

maximization step for c; is separated from that for a; and b, so the estimations of
¢; and (a;,b; ) are independent. Zheng, et al. (2017) compared the EMM with Bayesian

EM in BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996). The results verified the
feasibility of the new algorithm with a small sample size (N=1000).

The EMMM algorithm. Continuing with the introduction of a latent variable which
was inspired by Culpepper (2016), the author introduces a discrete augmented variable

W, to the 4PLM and proposes the Expectation-Maximization-Maximization-
Maximization (EMMM) algorithm. The expression of 4PLM is:

(1_gj)_7j

P(Y. =1|6,a.,b.,7v..c.)=7. + : 2.9
(Y; =116,a;.0;,7;.6)) =7, I~ exp(-Da (4 ) (2.9)

which can be rewritten as:
P(Yijzlleiyaj;bjaj/jigj):yj(l_Pj*(ei))-i_(l_Gj)Pj*(ei)l (210)

* 1
here P (0)= |
where P (6)) 1+exp(-Da, (6, b))

-12 -



Let P(Y; =1) denotes the probability of response for examinee i on item j. The a; and
b, are the discrimination and difficulty parameters, y; and 1-¢; are the lower and
upper asymptotes, 8. is the latent trait score, and D is 1.702.

Using the definition of W, given by Culpepper (2016),

|1 if examinee i knows the correct answer to item (2.11)
10 if examinee i does not know the answer to item j’ '
the distribution of W, is
P(W, =1)=P (6)
(W =1)=P 01

P(W,; =0)=1-P (),
thatis, W, ~ Bernoulli(P; (6,)). The probability of an examinee’s response Y;

ij

condition on W; are then (let y ;denote the item parameters vector {aj,bj,yj,gj}):

P( .j—1|Wi':1‘9i"//J>:1 o

P(Y; =1|W; =0,6,y, )=

(v, =1l )= (2.13)
P( IJ_O|W 10|’lr//]):gl

P(Y, =0[W, =0,6,,)=1-7,

The interpretation of the probabilities is comprehensible. When W, =1, the
examinee who knows the correct answer still have a probability of ¢, making mistakes.
When an examinee does not know the correct answer, the probability of correctly
guessing is ;. By multiplying the conditional probability P(YIJ |W. i Oy j) by
P(W;), the joint distribution is

P(Yij =1W, =1|¢9i,¢//j)= P(Yij =1|W, :1,61,%)P(W“. :1):(1—gj)Pj*(9i)

-13-



P(Yijzl’Wii:Owi"/’J):P(Yii:“Wu:O ) (W” ) (1 P (‘9))
P(Y, =0W, =1]6,y,)=P(Y, =0|W, =16y, )P(W, =1)=¢,P (6, (2.14)
(1,0, ~016,1,) = P(t, 01, ~0.0,1, (W, ~0)~(1- 7)o /(@)

Using the Bayesian rule, the probability of the W, conditionon Y, is

1

POY, =LY, =1/6.)) _A-¢)P(6)
P(Yijzllgi’vlj) ) P@)

PW, =LY, =0[6,v;) ¢,P ()
P(Yij=0|9i’l//j) _1_P(6’i).

P(Wij :1|Yij :1’9“‘//1') =
(2.15)

P(Wij :1|Yij =O7Hi1!//j):

In the previous section, for the 4PNO model, gave the conditional probability, that is

(1-¢,)®(m;) 1-¢,)®(m;)
P(Wij:1|Yij:1'77ij’7/jlgj):: J ; = J .
7i+t@=¢;—7,)®(n;) P(Y; =1) (15)
¢;0(m;) ;0 (m;)
P(V\/|:1|Y|:0’77|77/7g):: J ] — ] ] ,
: : e 1_7j_(1_§j_7j)q)(77ij) 1_P(Yij:1)
note the similar format for the conditional probability in the BEMMM.
The expectation is:
(1-5)P (4) 5P (4)
E Y., 6, Vo —=21 I @y ) 222 2.16
(\Nljl ij? ) Ij|: P(@) +( u) 1—P(9|) ( )

The joint distribution of ( | | y/j) has been obtained, but the ability parameters

Ij 4
are latent. As in the case of MMLE/EM, for examinee i, the researcher calculates the joint

distribution by using:
P(Y, W, 6 [w,7) = P(Y, W, 16,1)9(6, | ), (2.17)
where
P00 10,0 = TT{[ 469 (0] <[, - )"
Lo @) < [(1-7,) (P (0))}(”")(1%)},

(2.18)

-14-



and g(é |7) isadensity functionof @ and z containing the parameters of the

examinee population ability distribution. Following Bock and Lieberman (1970), the

marginal distribution for a single examinee i by integrating over the ability parameters is

POYLW, L) = [, POYW Ly, 6)9 (6 | 7)d6, (2.19)
The likelihood function for all of the examinees is
N
LYW w)=TTP(Y..Wi ly)
i=1

~T1J, POuW w0000 7)o

(2.20)

Plugging equation (2.17) into (2.19), the likelihood function of EMMM becomes:

L(Y w |1// {J‘ H[(l 3 )P } [7,— (1_ P,-*(ai))]Yij (1w )
X[gjpj*(ei ):| ¥ W XI:(l—}/j)(l— Pj*(ei ))](1—Y|j)(1—W|j) 9(49, |T)dl9}.

(2.21)

2.2 The Bayesian EMMM algorithm

Mislevy (1986) used Bayesian method to the MMLE/EM algorithm and proposed
the BME approach, which estimated the 3PL model accurately and solved the
implausible issue in EM. Shaoyang Guo (2017) applied the Bayesian method to EMM
algorithm (Zheng et al., 2017) and proposed the BEMM. The current study combines the
Bayesian method with the EMMM and proposes the BEMMM algorithm.

Using the general Bayesian formulation (Mislevy, 1986), the author obtains the best

estimates of the item parameters when the following equation holds:

aInLU &) olng(y;|n)
oy oy,

0= (2.22)

-15-



The LU |¢&) issimilar to the likelihood function for EMMM in the previous section but
using the logarithmic form of a;, g(y,|7) are the prior distributions for item

parameters. Their first and second derivations are:

8|ng(|naj |,U|naj,o-|iaj) Inaj_,umaj azlng(lnaj |lulnaj’o-liaj) 1

dlna, Ona dlna;dIna, ina,
ong(b |08 ) b-p, ing(b, 144,00 ) 1

ab, o ob;db, o, (2.23)
ong(ylal.B]) -1 -1 &hg(ylal.B]) a-1 p-1

oy, oy 1oy 07,07, 1y
ong(s1ai.f;) ai-1 pi-1 &hng(glai.ff)  ai-1 pi-1

o, g l-g 0¢,0g, g @-g)

In general, the BEMMM algorithm is illustrated in the flow chart below:

Set the starting values for_ In a, =bn Y0:Go the priors;

the nmumerical integration and the convergence value

|

Compute the log-likelihood In/Z(Ing,,4),%,.5,)*
‘| and posterior probability h(X.|Y. W .&1)-

Transfer Ing,b.7.¢ to Ina,b,.7.c-

Iy

No.
| E-step: compute the E(, |Y,.6,.y,) and-
. the artificial data JT,TJT’T and 7}"“«
Ml-step: estimate o from the first derivative I Yes.
M2-step: estimate » from the first derivative Final estimates:
. i | [exp(ing;).b,.7,.¢;]+

+
i M3-step: estimate Ing. b. from fisher-scoring iteration.
“ !

Compute A =|lnL(lna,b.x.5)—nLIna,.b,. 7.5,

Figure 2.2 The Flow Chart of the Bayesian EMMM
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Expectation step and artificial data. Following the E-step in the EM algorithm (Bock & Aitkin, 1981), the best estimates are

attained when the first derivation of the logarithmic likelihood function of the Bayesian EMMM is equal to 0.

0:8'”L:aln(HP(Y“WiW)j Z”:'”P( LW |y ) ZN: oP (YW, |y)
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=if aInP(Y, W, [w.0) |[ PY.W, |1,0)0(6, | 7)
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OB @)y, [(a-r)a-Pran)] BCD]} PG, 1%, W,y 7)o,
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N oU-g)P (8) YW, AP (o)

:Z;Iﬂ{Ri( 21//,— (1—g,-)P,-*(6’i)[(1 A
67j(1_Pj*(0i)) Y (1-w,) (1_

' ov, 7’1(1_Pj*(9i))[71(1

9 Pj*(Hi) (1_Yii )Wii

" ow; <P (8)
o(1-7;)(1-P(8)) (1-Y)(1-w;)
oy, (1-7,)(2-F/(@)

[g Py (6 )](HH " ABD

+

la-r)a-Fita )] BCD} P 1Y, Wy, 7)d4

YiW, * Yij (1-W N 1-Y; Wy o (1Y) (1w ) _ |
Where Ry =[@-¢,)P (6)]"" x| 7;(L-P/(6))] ( )X[gjpj (‘2)]( <[ (1-7,)(1-P(8))] ABCD

N 1
RHS = jg_ = ABCD x
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]

ol-g)P(6) YW, +871(1_P1*(9i)) Y (1-w;) +angj*(9i)(1—Y*ij)Wij
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)R ) v )w,)
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)J} P& Y, Wy, 7)d6,

-20-



-3,

i=1

ol-g)P(6) YW, +671(1_PJ*(9i)) Y (1-w,) +angj*(¢9i)(1—Yij)Wij
al//j (1_gj)Pj*(0i) al//j 7](1_Pj*(9i)) al//i gin*(ei)

a(-n)1-Ri(8) (1% )i

]P(G Y., W, 1)d 6.

al//j (1 71)(1 P (9 ))
. o a( gj) 0P (6,) YW, X oy, o(1-P7(8)) |  Yy(1-w,)
_ZJ{ BT }@gl)F’f(@u){(”’ ;1™ 2, }71(1"1*(9.))

(o, oPr()] (1-v)w
7, }X 5Py (4)

e e e 15}”@””””‘“a
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+(1_Yii)WiJ' 0g +(1_Yii)WiJ' an*(é?) (1 Y)( )87 (1 Yij)(l‘Wij)ﬁpj*(@)
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=1

}P(Q Y. W, 7)dé

3 H Y (1-W) (Y)W, _(1—Yu)(1—Wu)]6P,~*(9i)

oy ;

PJ*(ei) (1_ Pj*(ei )) PJ*(ei) (1_ Pi*(gi ))
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Vi

[ W, (2-w,) ]a{@”+[@—nyml_nMgJaﬁ_{nJ14%) @-nﬁ@—wﬁjam

; - - P& |Y,W.,p,7)d6
Pi(6) (1-Pi(8))) ov, °i (1-¢;) Jow; } il v

Vi (1_71)

P(Yilv.6)9(6 1)

PG Y, W,,p,7) = P(6) |wa>=j P(Y, [w,6)9(6, | 7)d4

(2.24)

m : 1-Y;

P(Y 1. 6) =[P @)" x(1-P@)) ",

j=1
Where P(é|Y;,W.,i, 1) is the posterior probability of 6 conditionon Y;,W.,y, 1.
The expectation of W, was obtained in the last part as
@-5)P () 5P (8)

EW, |Y,,0,w)=Y, | —2—-1"2 |+(@1-Y,) 21—~ 2.25
(\Nljl ij Il//j) |J|: P(l9|) +( u) 1—P(9|) ( )

Then the Hermite-Gauss quadrature method is used to approximate the integral, the expectation of the first derivative of the log-

likelihood function is:
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JNE(L) _ ii{ EW,) (L-EW,)) ]apj*(ei) +[(1—Yij)E(\Nij) . YijE(wij)} oc,

Pi*(xk)_(l_Pi*(Xk)) o, Sj 1-¢)) |9y,

+[Yii(1‘E(Wii)) (1—%)(1—%%))}6%

}P(X”Y,,W,,l//,‘r)

4 (1_71) oy,
(2.26)
with
P(X, Y, ,\W,w,1) = P(X, |Y,,w,T) = qP(Yi | Xkr‘//)A(Xk)
kZ:;P(Yi | Xk’W)A(Xk) 2.27)

1-Y,

PO X, ) =T TROG) (1= R (X)) ™
where X, (k=12,...,q) are nodes on the ability scale with an associated weight
A(Xy). P(X 1Y, W,,i,7) is the posterior probability of 6 at X, which is equal to
P(X,|Y;,w,t) giventhat X, isindependentwith W,.In MMLE/EM, two artificial

data are defined as (Bock & Aitkin, 1981):

f_jkzzp(xk AN72%) :ZP(Xk | Y. Wi w,7)
i-1 i-1

) ) (2.28)
My = ZYij xP(X, |Y,p,7)= ZYij x P(X, |Y;, W,y 7),
i=1 i=1
where f_Jk stands for the expected number of examinees with ability X, , rj_k is the

expected number of examinees with ability X, who will answer item j correctly. So the

sum of f_Jk is equal to the total number of examinees.
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Table 2.1 The expected frequencies among examinees with ability X, for item j

Item j W, =1 W, =0 Marginal of W,
—(W) — —W) -
Yi =1 rjk rjk - I’jk rjk
— W) —w) — W — =W — —
_ — W) — W —
Marginal of Y, f fi— Ti fi

Similarly, according to table 2.1, the newly defined artificial data are:

) :iE(Wi |Yi1
i=1

= Zn:Yij xEW; ]Y;, X
i1

W)
where f;

W)
anSwer, rjk

answer and response correctly. Thus, f, —f,

examinees with ability X, who do not know the answer, and er— M

oW )X POX YW,

—w)
—f

XoW)P(X, Y W, 7)

(2.29)
LWLT),

is the expected number of examinees with ability X, who know the
is the expected number of examinees with ability X, who know the

stands for the expected number of

P is the

expected number of examinees with ability X, who do not know the answer but

respond correctly. These definitions will be interpreted again after the following

maximization steps of ¢, and ¢;.

Maximization step for upper asymptote. Specifying the y; tobe ¢, the

Bayesian formulation becomes

ﬂ.=a|nE(L)+8lng(g,-|f7)
i 0¢; 0¢;
v & [ (1-Y) EW,) Y EMW,)
= 2 IP(X, YW,
ZZ‘ S 1-g)) el
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i(— —(vv)) : W
_id = S (230)
S (1_gj) Sj 1_§j

When 4_ =0, the estimation of ¢, is

& (—w) —w) —(W)
(10" rag -1 B 1+Z
k=1

- - gj)
W)
B -1+
1—gj= z
c. L (——w)  —w)
j kl(fjk -, )+a§—1
: — : W W
. —1+Z +Z( - )+al?—1
- _ k=1
, : —wW)  —w)
i Z(fjk T, )+a§—1
k=1
9q /1 N
Z( Jk(w)—r )+a -1
g = . (2.31)

Taking out the priors, the above shows an intuitive interpretation for the “slipping”
parameter. Namely, the proportion of examinees who know the answer but respond
wrong among all examinees who know the answer. Once the artificial data are obtained,
the estimated upper asymptote parameter can be calculated.

Recall that

_ (1_gJ)PJ*(0l) _ gJPJ*(en) 295
E(VvijlYij’eﬂl//j)_Yij|:—P(9i) }L(l Y”){—l—P(ei) : (2.25)

and Y, ~ Bernoulli(Pj (0)) , SO

_25-



E[E(\NijlYij’ei’l//j)lYij:l:'
(1-5)P(8)]
L ICI
_(1_§1)Pj*(6’i)_
@)
=(1-¢))P(6)+¢;P ()
=Pj(5i)

:P(\/vij:l)'

=E(Y;) +(1- E(Yij))|:_gj P (6)

1-P;(6) |

= Pj(ei)

+1-P (a»{% (2.32)

So

E[f_jkwij :1]: E{Zp(xk Y, Wy, 1) Y, :1}:f_jk

i=1

—w . T
E[ f, 1Y, :1} = E[ZE(W". 1Y X)) PX Y WL, 1) Y, =1} =P, (6) fi
i=1

E[ jle —1] |:Z_1:Yijp(xk|Yi’Wi’l//’T)|Yij:1:|:Pj(9i)f_jk

[—w) s .
E Fix IYij :1}: E{E ,YijE(Wij |Yian1‘//)P(Xk |Yi1Wi’l//aT)|Yij :1} :(1_§1)Pj (‘9.) fjk'
i=1

(2.33)

The second derivative, which is necessary for estimating the standard error, is

e azlnEz(L)lY } c’izlns_:;z(gz,-ln)
- L i 0]
I Zq:( (W)) d 0
- E k=1 =i Y. = _ajg_l_ B -
8g,— 5 C-¢) | si  (Q-g)’
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(P (8) T, - 6P (6)T,) ga—gj)P;(a)f_,-k w1 g

_ k=1 _ _
¢ (1-¢,)’ ¢ (-g)’
q - q —
:_;Pj (6) f _;Pj (&) i Cai-1 gl
Si (1_§j) gjz (1_gj)2

q
k=1

2P (6)f, R
¢,l-5) ¢ (Q-g)

(2.34)

Maximization step for lower asymptote. By specifying the y; tobe y;, then the

Bayesian formulation becomes

_olmEQ) | olng(y;In)

A,
' 7 7,

Na Y (1-EW, 1-Y, )(1-EW, r—1 pr-1
:ZZ J( (Wl))_( J)( (WJ)) P(Xk|Yi’Wi'l//!T)+—aJ _IBJ

i=1 k=L Vi (1_71) Vi 1=y,

Li— —w)\ & —W — —w

Vi (1_7/1') Vi 1_71'
(2.35)

When /171_ =0, the estimation of y, is

q q
w) w) w)
_ Vo _ _ v _
Z(rjk i )+0(j 1 kZ(fjk fi My + T )+,BJ. 1
=1

k=1

Vi ) (1_7/j)
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(T T ™)+ pr -1
1_7,:; T S e PP
9/

Vi Z(rjk rlk(w))+ajy—l
k=1
9/
(T T v 1y 1
i:kzl
Vi (T
j Z(rJk o )+af—l
k=1
L(— —w ,
Z(rjk—rjk )+aj—1
y = . (2.36)
(T W 7 7
Z(fik—fjk )+6¥j—1+ﬂj -1

: . — —W) = W), . :
Ignoring the priors, r, —r, '/ f, —f,  isthe proportion of examinees who do not

know the answer but respond correctly among all examinees who do not know the
answer. This interpretation matches the meaning of “guessing.”

The expectation of the second derivative is:

O’ InE(L o*Ing(y;1n)
"% =E 2 2( )|Y":l}+ 2 2J
L 97 7
I S W) ToTW_ W
P Z(r,k—rjk ) Z( o T Tt T ) a -1 pr-1
=E k=1 _ k=1 |YIJ = J2 _ J -
0y 7 -7 /4 1-7)
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Z(l—Pj*(ei))f_jk -1 f-1

k=1 J

=g ¢ (-g)

(2.37)

Maximization step for discrimination and difficulty parameters. The first

derivatives for Inaj and bj are:

_OInE(L) olng(a; n)

A,
) 0a, oa,
N3 [ EW,; 1-EW;)) |oP (X Ina, — 4,
:Zz *(W”) - ( *(WJ)) J( k) P(Xk|Yi’Wi">//a'l7)_Jz—lulJ
i=1 k=1 Pj (Xk) (1_ Pj (xk)) aaj Ina;
I - W)
B i fjkM) GPJ*(Xk) Zq:(fjk fie )an*(Xk) Ina; — w4,
P Pj*(Xk) Gaj o 1- Pj*(Xk) Gaj O',ia]
- W)
- W) fo—f _
a f. q ( ik ik ) Ina H
_ *Jk De"% (X —pb® \w. — _ De"™ (X —b™ w j na
kz—;‘Pj(xk) ( o ) g kZ:ll 1-PI(X) ( C ) g quaj
_ _ Ina
na W) * Hina
=De" 3 (X, bfk’)[f,»k —f,-kPJ(xk)}— — (2.38)
k=1 Inaj
A :8InE(L)+6Ing(bj|77)

: ob. ob.

J J

N g E(W. 1-E ; an* Xk bj— .
=ZZ[[ (W) | (\N))J ( )]P(Xle,,W,,l//,r) t

Pr(X) (1-P/(X,))) ob, :

i Oy,

—w) . (f_,_f_(w) . b
- Zq: f — oP (9.)_2[’: K JOPI(X) | by a4,
P (X)) b, T 1-P(X,) b o
—W) f—_f—(W)) ~
a f. d ( kT ik A b, — 1,
— jk D Ina; _ D Ina; _ Ui i
kz_;pl*(xk)( € ij) kZ:;' 1_|:>J_*(Xk) ( € Wlk) th
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q I _ .
—-De"™ Y (X, ~b{)| T, - TP (%) |- (2.39)

k=1
where W, = P,-*(Xk)x(l_ Pj*(Xk))

The corresponding expectation for the second derivatives are:

q
2Ina; 2 —-— W) 1
%, =D JZ[(xk —b® Y w, T, }—T
k=1 O-Inaj
q
2Ina; - W) 1
ﬂbjbj =-Dfe™" [ij fik :|__2 (2.40)
k=1 Gb

]

Aoy =D Zq:[(xk _bgk))wjkf_m(m}

it
k=1

Using Fisher-scoring iteration, the estimates for Ina; and b; can be obtained:

Inaly | al [ A 2, 2.
b |6 | [ ] 4] |

Compare (2.41) to the 4-by-4 matrix in traditional 4PL, which includes all of the

parameters,
(t+1) ] o1 r IBER
In a] Ina /Iaa ﬂba 17"" ﬂga ﬂa
b§t+l) B bj(t) ﬂ’ab Z’bb ﬂ’yb ﬂ“gb ﬂb 2.42
| e || g A, 4, 4 A\ o
Vi Vi & o '
gJ(H_l) | ngl) _j’ag ﬂbg ﬂ“yg igg B —/1§ -

the proposed method separates the iteration of y, and ¢, from the discrimination and

difficulty parameters. That might be the reason why the BEMMM algorithm is fast and

stable.
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CHAPTER 3: SIMULATION STUDIES

Two simulation studies were conducted. The first compares the BEMMM with
EMMM to determine the power of the Bayesian method. The second examines the
accuracy of BEMMM, BME, and MCMC for 4PNO. The estimates for EMMM and
BEMMM were programmed in MATLAB while the BME used the mirt package
(Chalmers, 2012). To compare the BEMMM and the MCMC, the following
parameterization which is same as in Culpepper’s paper (2016) is used:

a;=a,;, B;=ab;. (3.1)
where ¢« isitem threshold, £, is the intercept.
3.1 Simulation study 1: BEMMM VS EMMM

To verify that the Bayesian method does reduce the number of implausible estimates
in EMMM, both the EMMM and Bayesian EMMM method were used in this study.
Item parameter generation: The starting values of the item parameters are generated as

follows (See Culpepper, 2016):«; ~ N(2, 0.5)I(«; >0), B, ~N(0,0.5), y, ~Beta(2,8),
and ¢, |y, ~ Beta(2,8)I(¢; <1-7,).

Simulation design: Two sample sizes of examinees (2500 and 5000) were generated
from the standard normal distribution. Twenty items were generated. It should be noticed

that “o; has a normal distribution truncated at zero” (Culpepper, 2016), the expectation
of o, is 2//z instead of 0. Thus, &, ~N(0,2)I(a>0), B; ~ N(0,2). The priors
for y, and ¢; are beta (1, 10). Overall, 50 replications for each condition in the fully

crossed 2 (EMMM vs. BEMMM) %<2 (2500 vs. 5000) design were generated.
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Evaluation criteria: Bias and root mean squared error (RMSE) for item parameter

recovery; that are:

bias =

$=50 , ~ §=50  ~  \2
2 <;” i) RMSE:JZsl (‘g 28 (32)

Item parameter recovery: The bias and RMSE results for cognitive testing with a
sample size of 2500 are presented in Figure 3.1 and Table 3.1. The results for the 5000
examinees condition shows a similar pattern and are summarized in Appendix A.

RMSE for Item Difficulty Parameter Estimate{N=2500,ITEM=20) RMSE for Item Difficulty Parameter Estimate(N=2500,ITEM=20)
T T T T T T T T T T T T T T
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03

T T T T
4 —m
A | A 1 —— BEMMM

oz}

(R)

RMSE for em Parameter ITEM=20) i HMSEI for Ilum‘ Sllpp'n'g Faraﬂl:hr Esli:l\ll.(N-IZSDG,I'I'EIIhE]

T T
p—— 7
ENAN
SEMMM BEMMM

008 |

0.04 |

o0z |

Figure 3.1 RMSEs for 2500 Examinees and 20 Items in Simulation Study 1

First, the values of bias and RMSEs for EMMM are acceptable, these results support
the contention that EMMM is a feasible model. Next, it is obvious that the results for

BEMMM are generally smaller than EMMM, especially for “blow-up” items, thus the
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conclusion is that the EMMM can be considerably improved by adding appropriate priors
for item parameters.

This does not mean that EMMM is useless, because the accuracy of results is
profoundly influenced by priors when using the Bayesian method. If researchers are

unable to obtain appropriate priors, EMMM may be better than BEMMM.

Table 3.1 Bias for 2500 Examinees and 20 Items in Simulation Study 1

a B b3 S

EMMM BEMMM EMMM BEMMM EMMM BEMMM EMMM BEMMM

-0.19 -0.10 -0.05 -0.05 -0.06 -0.02 -0.02 0.00
-0.07 0.21 0.10 -0.01 -0.01 0.00 -0.04 0.02
-0.28 -0.20 -0.07 0.00 -0.02 -0.01 -0.01 0.00
-0.24 -0.06 -0.03 0.00 -0.02 -0.01 -0.02 0.00
0.15 0.00 0.01 -0.01 -0.02 -0.01 0.00 0.00
-0.33 -0.17 0.00 0.03 -0.02 0.00 -0.03 -0.01
0.06 0.12 0.02 0.03 -0.01 0.01 -0.02 0.01
0.27 0.08 0.05 0.00 -0.01 0.00 0.00 0.01
0.00 -0.37 0.01 -0.03 -0.02 -0.02 -0.01 -0.01
-0.24 0.06 0.05 0.02 -0.02 0.00 -0.04 0.00
-0.52 -0.06 0.00 0.02 -0.02 0.00 -0.05 0.01
-0.01 -0.18 0.15 -0.01 -0.01 0.00 0.00 0.00
0.22 0.03 0.03 0.01 0.00 0.00 0.00 0.00
-0.07 0.10 0.03 0.00 -0.02 0.01 0.00 0.01
-0.46 -0.04 0.10 0.04 -0.02 0.00 -0.08 0.00
-0.48 0.00 -0.08 0.01 -0.01 0.00 -0.02 0.02
-0.52 -0.06 -0.03 0.03 -0.02 0.00 -0.05 0.01
-0.03 0.21 0.04 0.05 0.00 0.05 -0.02 0.02
0.02 0.18 0.01 0.01 -0.02 0.01 -0.02 0.01
0.10 0.07 -0.03 -0.02 -0.03 0.00 -0.01 0.01
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3.2 Simulation study 2: BEMMM VS BME VS MCMC

This study seeks to compare the accuracy of Bayesian EMMM, BME and MCMC
under the same conditions.
Item parameter generation: The starting values of the item parameters are generated as

a;~N(2, 05)I(a; >0), B, ~N(0,05), 7, ~Beta(2,8) and ¢, |y, ~

Beta(2,8)I(s; <1-y;), which are also used by Culpepper (2016).

Simulation design: Sample sizes are 2500 and 5000. &, ~ N(0,1), and the number of
items are 20. The priors are «; ~ N(0,2)1(a >0), B; ~ N(0,2). Overall, 50 replications

were generated for each condition in the fully crossed 3 (BEMMM vs MCMC vs BME) x
2 (2500 vs 5000) design.
Evaluation criteria: Bias and root mean squared error (RMSE) for item parameter
recovery.
Item parameter recovery: The bias and RMSEs results for cognitive testing with the
sample size 2500 are presented in Figure 3.2 and Table 3.2. The results for the 5000
examinees condition shows a similar pattern to the 2500 examinees condition, and are
summarized in Appendix B.

Figure 3.2 shows that the RMSE values for BEMMM and MCMC are close, which

supports that the BEMMM is as accurate as MCMC.
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Figure 3.2 RMSEs for 2500 Examinees and 20 Items in Simulation Study 2

Table 3.1 presented the biases for Bayesian EMMM, Bayesian Modal Estimation,
and MCMC. The values of BEMMM and MCMC are similar and small, while the BME
has considerably larger biases. In these models, the estimates of lower and upper
asymptotes parameters perform better than that of discrimination and difficulty
parameters. When comparing the RMSE and bias of the 2500 condition with the results
of 5000 examinees (in Appendix B), the 5000 condition shows smaller RMSEs and

biases due to the increase in the sample size.

To sum up the results of RMSE and bias, it is sufficient to say that BEMMM is as

accurate as MCMC, and BME is less accurate than the other.
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Table 3.2 Bias for 2500 Examinees and 20 Items in Simulation Study 2

a B 4 S

MCcMC BEMMM BME MCMC BEMMM BME MCMC BEMMM BME MCMC BEMMM BME

0.19 0.02 -0.02 0.05 0.02 0.66 -0.01 -0.01 -0.05 0.00 0.01 0.21
0.07 0.04 0.43 0.01 -0.03 0.14 0.01 0.02 -0.01 0.01 0.03 0.05
-0.02 0.34 0.35 0.01 0.04 0.14 0.00 0.00 -0.01 0.00 0.04 0.04
-0.07 0.48 0.20 0.04 0.07 0.09 0.00 0.02 -0.01 0.01 0.02 0.02
-0.02 -0.15 111 0.02 -0.02 0.09 0.00 0.00 0.00 0.00 0.00 0.00
0.21 -0.14 0.41 0.01 0.07 -0.39 0.01 0.02 -0.02  -0.01 -0.01 -0.01
-0.06 -0.01 0.53 0.02 0.01 0.17 0.00 0.00 0.00 -0.01 0.03 0.05
0.16 -0.17 0.30 0.03 0.00 0.22 0.01 0.00 -0.02 0.03 0.01 0.05
0.04 -0.14 0.84 0.02 -0.01 0.04 0.00 0.01 0.02 0.00 0.01 -0.02
0.19 0.04 1.15 0.05 0.02 0.15 0.00 0.01 0.02 0.02 0.06 0.00
0.05 0.07 0.80 0.01 -0.17 0.02 0.01 0.03 -0.01 0.00 0.02 0.00
0.05 0.23 0.34 0.00 -0.03 -0.03 0.00 0.04 -0.04 0.01 0.05 0.02
-0.45 -0.58 -0.70 0.09 0.25 -0.17  -0.04 -0.02 -0.09 -0.01 -0.02 0.06
0.06 0.18 0.54 -0.01 -0.06 0.01 0.01 0.03 -0.03 0.01 0.02 0.01
0.15 0.07 0.88 0.01 -0.03 0.15 0.00 0.01 0.01 0.05 0.08 -0.01
-0.15 0.01 0.61 0.01 0.01 0.13 0.00 0.01 0.00 0.00 0.02 0.02
0.03 -0.11 0.99 0.00 -0.03 -0.06 0.01 0.04 -0.05 0.00 0.01 -0.01
0.07 -0.12 1.02 -0.01 0.08 -0.04 0.01 0.03 -0.02 0.00 0.00 0.00
-0.02 0.41 -0.55  -0.02 0.00 0.30 -0.03 0.03 -0.16  -0.01 0.01 0.24
0.00 0.27 0.46 0.02 0.05 0.12 0.00 0.01 -0.02 0.00 0.03 0.01
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CHAPTER 4: EXAMPLE USING BULLY DATA

This section reports results of an application of the 4PLM to bullying items collected
as part of the 2005-2006 Health Behavior in School-Aged Children (lannotti, 2005)
study, which has been used before (i e., Culpepper, 2016). This study seeks to confirm
the practicability of BEMMM and compare the accuracy and speed of BEMMM with
MCMC.

The response matrix consists of 7491 adolescents, ages 11, 13 and 15, and ten

bullying items. The original polytomous items were dichotomized as:

(4.1)

ij

_ |1 Student i bullied another student as asked in item j
~ |0 Student i did not bully another student as asked in item j

Some students who did not bully may not report bullying behaviors so the y; might be

close to 0. The priors for both «; and g, are N(0,2), y, ~Beta(2,8), and

gjly; ~ Beta(2,8)I(g; <1-y;).

Table 4.1 contains the point estimates and standard deviations for BEMMM and
MCMC. The estimates of item parameters are very similar between the two methods, and
the standard deviations for the item thresholds and intercepts for BEMMM are smaller

than for MCMC. The values of y, are close to 0, which confirmed the meaning of y, as

mentioned above. The point estimates of the upper asymptote for item 1 and 2 are quite
larger than 0, which means students bullied another student but answered no to these
items. The results support that 4PLM is useful when treating socially desirable
responding.

Compared with the time Culpepper (2016) reported “The Gibbs sampler required

approximately 47 min to complete 100,000 iterations with N = 7491 using a 2.4GHz
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processor and 6GB of RAM,” the time for the BEMMM is only about 60 seconds.

BEMMM might be useful in practice as a time-saving method.

Table 4.1 Estimated Item Parameters for bullying data from the HBSC study

a B

ftem MCMC(SE) BEMMM(SE) MCMC(SE) BEMMM(SE)
1 4.44 (0.44) 3.93 (0.41) 0.67 (0.10) 0.63 (0.03)

2 3.54 (0.33) 3.15 (0.00) 0.74 (0.09) 0.77 0.00
3 1.21 (0.07) 1.18 (0.03) 1.10 (0.06) 1.14 (0.02)
4 1.41 (0.06) 1.40 (0.02) 1.83 (0.06) 1.94 (0.03)
5 1.63 (0.09) 1.48 (0.02) 2.32 (0.11) 2.27 (0.03)
6 1.93 (0.10) 1.79 (0.03) 2.93 (0.13) 2.94 (0.04)
7 2.44 (0.15) 2.29 (0.03) 4.05 (0.22) 4.14 (0.05)
8 1.58 (0.08) 1.45 (0.02) 2.13 (0.09) 2.09 (0.03)
9 2.23 (0.15) 2.06 (0.03) 3.75 0.22) 3.76 (0.05)
10 2.29 (0.16) 2.09 (0.03) 3.89 (0.24) 3.87 (0.05)

Item i i

MCMC(SE) BEMMM(SE) MCMC(SE) BEMMM(SE)
1 0.00 (0.00) 0.00 (0.00) 0.17 (0.01) 0.16 (0.01)

2 0.00 (0.00) 0.00 (0.00) 0.18 (0.01) 0.16 0.00
3 0.01 (0.01) 0.00 (0.00) 0.03 (0.02) 0.03 (0.01)
4 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.01 (0.01)
5 0.01 (0.00) 0.01 (0.00) 0.01 (0.01) 0.01 (0.01)
6 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.01 (0.01)
7 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.01 (0.01)
8 0.01 (0.00) 0.00 (0.00) 0.01 (0.01) 0.01 (0.01)
9 0.01 (0.00) 0.01 (0.00) 0.01 (0.01) 0.01 (0.01)
10 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.01 (0.01)
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CHAPTER 5: DISCUSSION

Following the renewed interest in 4PL, a reformulated 4PL algorithm was proposed.
This section summarizes the study, comes to conclusions, discusses certain issues and
possible directions for future research.
5.1 Conclusion

In section 2, the mathematical derivation of the new algorithm was presented. The

method of adding a latent variable separates the estimation of lower and upper
asymptotes parameters from the estimation of discrimination and difficulty parameters,
and makes the algorithm fast and stable. The combination with the Bayesian method
provides extra information through the priors, which solves the issue of implausible
estimates.

Based on the results of simulation studies in Section 3 and the bully data in Section
4, the author can conclude that the Bayesian EMMM yields comparable estimates with
MCMC and performs better than the BME with respect to accuracy. Furthermore, the
speed of BEMMM is significantly faster than the MCMC (60 seconds vs. 47 minutes.)

Overall, BEMMM and MCMC are more accurate than BME. While the BEMMM is
much faster than the MCMC, the BEMMM should be regarded as a suitable algorithm for
4PLM.
5.2 Discussion

There are two main interpretations of , and o parameters. One regards » as

the probability of producing a correct response by random guessing (Waller, 1974;

Hambleton & Cook, 1977) and o is the possibility of slipping (Culpepper, 2016). The
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other thinks of 5 as the possibility of success by low-proficiency students and  is the
possibility of failure by high-proficiency students.
In section 2, the formulation of estimated ;, and o parameters was expressed

using artificial data:

=3 y= . (5.1)

According to the definition of artificial data, there are the third meaning of 5 and ¢
from a mixture-modeling perspective: , is the proportion of examinees who do not

know the answer but respond correctly within the group of examinees who do not know

the answer, < is the proportion of examinees who know the answer but respond

incorrectly among examinees know the answer. The interpretation is intuitive and meets

with the meaning of “guessing” and “slipping.” For the bully data, , is interpreted as

the proportion of students who did not bully but answered that he bullied others among

all students who did not bully, o is the proportion of students who bullied others but

answered no among all students who bullied others.

The simulation studies and the real data example may be oversampled so
researchers should be cautious when applying the BEMMM in practice. At the least, it
can be used to get the starting values for the MCMC in order to save time, and can be
used to check with the BME. In practice, the best way is to use different algorithms to

check upon each other and combine the advantages of every method.
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5.3 Possible Directions for Future Research

First, Zheng, et al. (2017) proposed a similar latent mixture-modeling-based
algorithm for the 3PLM which they called the EMM. Researchers could compare the
model-fit of EMM and EMMM when applied to cognitive data, if the results of EMMM
are better, 4PLM may be a more appropriate model in practice.

Second, by carrying on the latent mixture model perspective, researchers can
introduce two latent variables to represent the lower and upper asymptotes parameters
separately.

Third, as regards the accuracy of predictions, the estimated standard error (SE) is
different for each different model or algorithm, so it is necessary to calculate the SE for
BEMMM in order to judge the stability of estimation. Cai and Lee (2009) proposed the
supplemented EM, which can be applied to 4PLM in future.

Finally, due to the increasing number of applications of the 4PLM in several areas
of research, the BEMMM can be applied in such areas of practical testing such as

computerized adaptive testing.
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APPENDIX A: DEFINITION OF SYMBOLS IN EMMM AND BEMMM

Y -- Responses

W -- Newly defined discrete augmented variable
0 -- Ability parameter

a -- Discrimination parameter

b -- Difficulty parameter

y -- Lower asymptote parameter

¢ -- Upper asymptote parameter

P”-- Two-parameter logistic model

w -- Iltem parameter vector which contains four item parameters

7 -- Hyper-parameter, contains the parameters of examinee population ability distribution

n -- Mean and variance of the prior distributions for item parameters
a, 3-- Parameters for Beta distribution

X, -- Nodes on the ability scale

f, -- Expected number of examinees with ability X,

rj_k Expected number of examinees with ability X, who response correctly

w) : : o
fi -- Expected number of examinees with ability X, who know the answer

W) : : -
I,  -- Expected number of examinees with ability X, who know the answer and
response correctly

w-- P x(1-P")
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APPENDIX B: FIGURES AND TABLES IN SIMULATION STUDIES
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Figure B.1 RMSEs for 5000 Examinees and 20 Items in Simulation Study 1
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Table B.1 Bias for 5000 Examinees and 20 Items in Simulation Study 1

a B % S

EMMM BEMMM EMMM BEMMM EMMM BEMMM EMMM BEMMM

0.02 -0.11 0.00 -0.02 -0.04 -0.01 -0.01 0.00
-0.26 0.15 0.17 -0.01 -0.01 0.01 -0.06 0.04
-0.63 -0.18 -0.06 0.03 -0.01 0.01 -0.01 0.01
-0.11 0.01 -0.03 0.04 0.00 0.00 -0.01 0.01
0.01 -0.06 0.01 0.00 -0.01 0.00 0.00 0.01
-0.28 0.15 -0.06 0.03 -0.01 0.00 -0.01 0.00
-0.22 -0.06 -0.14 -0.01 -0.08 -0.01 -0.03 0.01
-0.51 -0.02 0.06 0.04 -0.02 0.02 -0.01 0.00
0.10 -0.79 0.05 -0.01 0.00 -0.02 -0.01 -0.02
-0.27 -0.09 0.02 0.02 -0.02 0.00 -0.03 0.00
-0.64 -0.19 0.07 0.06 -0.02 0.00 -0.09 -0.01
-0.04 -0.03 0.18 0.00 0.00 0.00 0.00 0.00
0.47 0.06 0.04 0.02 0.01 0.01 0.00 0.00
-0.09 0.13 0.06 0.02 0.00 0.03 0.00 0.01
-0.49 -0.11 0.07 0.03 -0.02 0.00 -0.07 0.01
-0.45 0.03 -0.08 0.02 -0.01 0.01 -0.02 0.02
-0.55 -0.18 -0.01 0.04 -0.01 0.00 -0.04 0.02
-0.18 0.07 0.00 0.04 -0.03 0.04 -0.03 0.02
-0.25 -0.06 0.06 0.05 -0.01 0.01 -0.03 0.00
-0.23 0.05 -0.04 -0.01 -0.04 0.00 -0.02 0.01
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Figure B.2 RMSEs for 5000 Examinees and 20 Items in Simulation Study 2
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Table B.2 Bias for 5000 Examinees and 20 Items in Simulation Study 2

a Jij e S

MCMC BEMMM BME MCMC BEMMM BME MCMC BEMMM BME MCMC BEMMM BME

0.13 0.11 0.11 0.05 -0.05 0.74 -0.00 0.00 0.00 -0.01 0.05 0.21
0.03 0.05 0.47 0.04 0.01 0.11 0.00 0.02 -0.01 -0.00 0.04 0.05
-0.01 0.13 0.27 0.02 0.02 0.05 -0.00 0.02 -0.05 -0.00 0.03 0.04
-0.04 0.16 0.66 0.03 0.02 0.08 -0.00 0.01 0.00 -0.01 0.03 0.00
0.00 0.09 0.72 0.04 0.01 0.01 0.00 0.01 -0.02 0.00 0.01 0.00
0.18 -0.14 0.14 -0.00 0.14 -0.28 0.01 0.01 -0.07 -0.00 -0.01 0.01
-0.06 0.17 0.37 0.03 0.01 0.09 -0.00 0.01 -0.02 -0.00 0.03 0.04
0.11 0.16 0.34 0.04 0.02 0.18 0.01 0.02 -0.01 0.01 0.06 0.05
-0.04 0.13 0.36 0.04 0.00 0.06 0.00 0.02 -0.01 -0.00 0.02 0.02
0.18 0.16 0.62 0.08 0.02 0.08 0.00 0.01 -0.02 0.01 0.06 0.00
0.04 0.05 0.81 0.02 0.02 -0.06 0.00 0.04 -0.01 0.00 0.01 0.00
0.03 0.08 0.48 0.02 0.00 0.06 0.00 0.03 -0.01 0.00 0.04 0.03
-0.28 -0.37 -0.53 0.03 0.07 -0.53 -0.03 0.00 -0.18 -0.00 -0.01 0.02
0.01 0.05 0.39 0.01 0.01 -0.03 0.00 0.04 -0.01 0.00 0.02 0.01
0.14 0.11 0.96 0.03 -0.01 0.16 0.00 0.01 0.01 0.04 0.09 0.01
-0.09 0.02 0.99 0.04 -0.01 0.06 -0.00 0.01 -0.01 -0.00 0.01 0.00
0-.03 0.08 0.70 0.02 0.00 -0.12 -0.01 0.07 -0.05 0.00 0.01 0.00
0.04 0.08 0.83 0.02 0.01 -0.09 0.01 0.06 -0.02 0.00 0.01 0.00
-0.01 0.09 0.43 0.02 0.00 -0.13 -0.02 0.02 -0.06 -0.01 0.01 0.00
-0.02 0.11 0.80 0.04 0.01 0.12 0.00 0.01 0.00 -0.00 0.04 0.01
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