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ABSTRACT 

 

Several published studies suggest that acute eccentric exercise and exercise 

training can improve vaccination responses in humans. Normal aging and chronic stress 

can lead to immunosenescence and immunosuppression, respectively, and there may 

be a role for exercise in augmenting immune responses under these conditions. 

However, the underlying mechanisms as to how such exercise might promote this effect 

is unclear. In order to understand the potential eccentric exercise-induced beneficial 

effect, verification is needed in an animal model. In the first cohort of experiments, we 

examined the effects of acute eccentric exercise on primary antibody and cell-mediated 

responses to vaccination in young mice and aged mice. First, we examined the effects 

of acute eccentric exercise on primary immune responses to ovalbumin (OVA) 

vaccination in young mice. Young mice were exercised at 17m/min speed at -20% 

grade for 45 minutes on a treadmill (ECC1) or remained sedentary (SED). Both ECC1 

and SED mice were intramuscularly (IM) injected with 100μg of ovalbumin and 200μg of 

alum adjuvant immediately after exercise. At three weeks post-exercise, all mice were 

injected with OVA into the dorsal side of ear to determine the delayed-type 

hypersensitivity (DTH) response as a measure of cell-mediated immunity to the 

vaccination. Ear thickness was measured immediately before and every 24h after 

intradermal treatment. In the second experiment, two bouts of downhill treadmill running 

were performed on consecutive days (ECC2) and all young mice were vaccinated 

immediately after the second bout of exercise. In the third experiment, young mice were 

randomly assigned to an eccentric electrically-stimulated group (ECCstim) or a sham 
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group (Sham). Mice were then vaccinated 6 hours post-exercise. In these three 

experiments, plasma was collected prior to, and at one, two and four weeks post-

vaccination. ELISA was performed to analyze anti-OVA IgG. In all three experiments, 

there was a significant time main effect indicating plasma anti-OVA IgG was significantly 

increased at one, two and four weeks relative to pre-immunization. However, there were 

no significant differences between ECC1, ECC2 or ECCstim and respective control 

groups, demonstrating that acute eccentric exercise does not improve primary antibody 

responses in young mice. Also, we did not find significant differences between ECC1 

and SED in their DTH responses. Then we replicated the study to determine the effects 

of acute eccentric exercise on the immune responses to OVA vaccination in aged mice. 

Aged mice (27 months) in the eccentric exercise group (ECCaged) performed the same 

single bout of treadmill running as mentioned before. Both ECC and SED mice were IM 

vaccinated immediately after exercise. Plasma was collected prior to, and at one, two 

and four weeks post-vaccination. ELISA was performed to analyze anti-OVA IgG. In 

addition, DTH responses were measured at three weeks post-exercise as mentioned 

before. We found a significant difference between ECC and SED groups in ear DTH at 

24h post-injection, indicating that eccentric exercise increased cell-mediated, but not 

antibody, responses in aged mice. In conclusion, we found acute eccentric exercise 

enhanced cell-mediated response in aged mice, but not antibody responses in either 

young or aged mice. It has been shown that chronic restraint stress suppresses immune 

responses to vaccination. Therefore, in the second cohort of experiments, we 

investigated the effects of acute eccentric exercise and voluntary wheel exercise 

training on antibody and cell-mediated immune responses to vaccination in chronically 
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stressed mice. Mice were randomized into four groups: No stress, Stress-ECC, Stress-

VWR and Stress-SED. Mice in the three stressed groups received restraint stress for 

6hours/day, 5 days/week for three weeks. Body weights were measured daily 

immediate after stress session. After one week of stress, Stress-ECC mice performed 

the same single bout of treadmill running as mentioned before. Stress-VWR mice 

voluntarily ran on a telemetered wheel for the entire period of experiment. All groups of 

mice were IM vaccinated immediately after the eccentric exercise. Plasma was 

collected prior to, and at one, two and four weeks post-vaccination. ELISA was 

performed to analyze anti-OVA IgG and anti-OVA IgM. In addition, all mice received ear 

injections after three weeks of stress and DTH responses were measured as mentioned 

before. We found that restraint stress significantly reduced body weight and caused 

adrenal hypertrophy. We also found there was a trend that both Stress- ECC and 

Stress-VWR groups elevated anti-OVA IgM and anti-OVA IgG responses compared to 

Stress-SED group. In conclusion, acute eccentric exercise and voluntary exercise 

training trends to alleviate the chronic stress- induced reductions in vaccination 

responses. 
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CHAPTER 1 

INTRODUCTION 

1.1 Significance 

Vaccination is one of the most successful public health interventions in 

preventing infectious diseases and reducing the mortality and morbidity rates 

associated with these diseases . However, there is a significant variation in 

vaccine efficacy between young and older adults [2]. The Centers for Disease 

Control and Prevention reported that influenza vaccination efficacy in the young 

population is 70-90%, whilst only 17-53% in the aged population [3]. In order to 

promote vaccine responses, we need to either improve vaccines themselves or 

find behavioral interventions that alter host factors to augment immune 

responses to vaccination.  

Exercise has been proposed to be an effective, cost-efficient behavior 

intervention to enhance immune function and has a potential beneficial effect on 

immune responses to vaccination. Several human studies have suggested that 

acute eccentric exercise enhances vaccination responses [4-6]. Eccentric 

exercise causes the exercising muscle to produce continuous force while it 

lengthens, leading to damage of the internal structure of the muscle fibers and 

connective tissue [7]. The substantial increase in plasma creatine kinase 

indicates this damage is greater than that caused by concentric or shortening 

muscle contractions [8]. This muscle damage results in a localized inflammatory 

response and delayed onset muscle soreness when conducted in naive 

participants [9]. It is hypothesized that the influx of immune cells and the release 



2 

of inflammatory mediators caused by this eccentrically-induced muscle damage 

creates a pro-inflammatory environment in a muscle that may activate dendritic 

and other cells to augment the immune response to vaccination when given 

intramuscularly in the damaged muscle [10]. This heightened inflammatory 

environment may be a particularly effective behavioral adjuvant as eccentric 

exercise localizes muscle damage to the specific site of intramuscular vaccine 

administration. This strategy could be easily used to augment IM vaccination 

responses in aging populations. 

Exercise training has also been proved to augment either humoral or cell-

mediated immunity to vaccination, especially in the elderly. Our lab has 

conducted two experiments comparing 10 months of aerobic moderate exercise 

intervention (30-60 min/session, 3 sessions/week) to flexibility/balance training in 

older adults [11, 12]. We found that cardiovascular exercise resulted in a longer 

lasting seroprotection to influenza vaccine when measured 24 weeks post-

vaccination, whereas flexibility/balance training did not [12]. Similarly, aerobic 

exercise training induced higher primary IgG1 and IgM antibody responses 

compared to the sedentary controls [11]. However, not all studies reported 

beneficial effects of exercise training in young and middle-aged adults. Long et 

al. showed a life-style physical activity intervention had an increase in walking 

behavior and quality of life, but not antibody responses to pneumococcal 

vaccination compared to the control group [13]. Therefore, exercise training may 

be favorable to improve vaccine responses in an immunosuppressive setting.   
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Besides aging, chronic stress also suppresses immune function including 

DTH responses and antibody responses to vaccination. Dhabhar et al. has 

reported that chronic restraint stress with 6h/day for three to five weeks 

significantly reduced DTH responses in rats and increasing stress exposure was 

also associated with reduction of peripheral blood lymphocytes redistribution and 

decreased glucocorticoid responsivity [14]. Other stressors, such as social 

stressor, have also been shown to reduce antibody responses to vaccination 

[15]. 

Despite the potential beneficial role of acute eccentric exercise on immune 

responses to vaccination, the underlying mechanisms remain understudied. 

Examination of the mechanisms are needed in order to verify and understand if 

initial findings support the idea of using this strategy to enhance vaccination 

responses. Therefore, we propose to use an animal model to study the 

mechanisms behind the purported acute eccentric exercise-induced 

augmentation of immune responses to vaccination. The purpose of this study 

was to examine the effects of exercise on age- and stress- related 

attenuation in mice. We will use a completely novel benign protein antigen 

ovalbumin (OVA) to investigate primary immune responses in all experiments. 

We hypothesized that eccentric exercise will improve immune responses in 

young and aged mice; exercise will attenuate chronical stress- induced 

reductions in vaccination responses. 

1.2 Specific Aims 

1. Determine the effects of eccentric forced downhill running exercise 
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on the immune response to vaccination in young mice. We 

hypothesize that eccentric exercise will augment both antibody and cell-

mediated immune responses in young mice.  

2. Determine the effects of electrically-stimulated eccentric 

contractions on primary antibody responses to vaccination in young 

mice. While forced downhill running promotes eccentric damaging 

contractions, it also induces a significant stress response that could 

confound or mask the effects of eccentric exercise. The use of electrically-

stimulated eccentric contractions in anesthetized mice (vs. sham control) 

overcomes this limitation allowing us to determine the direct role of 

exercise-induced muscle damage on immune responses to vaccination. 

We hypothesize that electrically-stimulated eccentric contractions will 

result in greater antibody immune responses to vaccination when 

compared to forced downhill running.  

3. Determine the effects of eccentric forced downhill running exercise 

on the immune response to vaccination in aged mice. We hypothesize 

that eccentric exercise will improve both antibody and cell-mediated 

immune responses in immunosenescent aged mice. 

4. Determine the effects of acute eccentric exercise on immune 

response to vaccination in chronically stressed mice. It has been 

reported that chronic restraint stress can suppress immune function in 

mice. We hypothesize that acute eccentric exercise will alleviate the 

chronic stress suppressive antibody and cell-mediated immune response 
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to vaccination in young mice.  

5. Determine the effects of voluntary wheel training on immune 

response to vaccination in chronically stressed mice. We hypothesize 

that voluntary exercise training will alleviate the chronic stress suppressive 

antibody and cell-mediated immune response to vaccination in young 

mice.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Exercise and Vaccination  

Exercise has been proposed to act as an adjuvant to vaccination in some 

settings to enhance vaccine efficacy. Exercise can be categorized into exercise 

training (months to years) and acute exercise (minutes/hours) based on the 

exercise duration. Here I summarize the current literature for effects of both 

chronic and acute exercise on vaccination in young and middle aged adults and 

the hypothesized mechanisms including animal studies. Effects of exercise on 

vaccination in older adults and the potential mechanisms will be reviewed in the 

next section.  

Exercise training and Vaccination  

There have been three studies that have examined the effects of exercise 

training on vaccination in young and middle aged adults [13, 16, 17]. Long et al. 

conducted a randomized controlled trial (RCT) to investigate whether a life-style 

physical activity intervention improved antibody response to pneumococcal 

vaccination in sedentary middle-aged women [13]. Women in the exercised 

group, who completed a 16-week training program, had an increase in walking 

behavior and quality of life compared to the control group. However, there was 

no differences in antibody responses to pneumococcal vaccination between 

groups. In addition to the RCT study, there were two cross-sectional studies that 

reported the effects of exercise training on vaccination in young adults [16, 17]. 
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Schuler et al. examined the effect of moderate physical activity/fitness on 

immune response to influenza vaccine in college students [16]. Participants were 

classified into groups according to self-reported physical activity and measured 

physical fitness (VO2max). They found neither physical fitness nor physical activity 

were associated with the antibody response to influenza vaccination. Another 

cross-sectional study compared active young adults and sedentary controls and 

found a positive relationship between exercise training and stronger antibody 

responses to influenza vaccination [17]. Participants were assigned to an 

exercise group and completed heavy training for three weeks or to a control 

group that maintained normal activity based on measured aerobic capacity. 

Though there were no differences in the immunoglobulin G (IgG) response to 

influenza vaccine between groups at 14 days after vaccination, there was a 

significant difference in baseline IgG between groups and the heavy training 

group had a higher IgG concentration maintenance at 12 months post-

vaccination. Given the mixed findings in young and middle-aged adults, exercise 

training may not be effective at enhancing immune responses in younger cohorts 

that already exhibit strong responses.  

Kapasi et al. compared different duration of moderate exercise training on 

antibody immune responses in young mice [18]. Female C57BL/6 mice were 

randomized into 2-week exercise training, 8-week exercise training or sedentary 

control group. Mice conducted a 2-week exercise had a significant increase in 

secondary antibody levels, which were similar to the extent of 8-week exercise 
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group. Studies on effects of chronic stress on immune responses to vaccination 

in animals will be reviewed in a later section.  

Acute Exercise and Vaccination 

There have been two studies that have examined the effects of acute 

prolonged, intense exercise on vaccination in young adults [19, 20]. The “Open 

window hypothesis” states that prolonged, intense exercise will temporarily 

suppress immune function at 2-24h after exercise because of an increase in 

plasma cortisol level, a decrease in blood lymphocyte numbers, natural killer cell 

numbers and neutrophil phagocytic function [21]. Bruunsgaard et al. found that a 

half-ironman competition did not elevate antibody responses to diphtheria, 

tetanus toxoid and pneumococcal vaccination compared with either sedentary 

adults or resting athletes [19]. Eskola et al reported that participants (n=4) that 

completed a marathon had a higher antibody responses to tetanus toxoid 

vaccination compared to a sedentary control group, results contrary to the “open 

window hypothesis”[20].  

Contrary to prolonged intense exercise, acute moderate exercise is 

thought to be beneficial to immune functioning [5].There were several studies 

exploring the effects of acute moderate exercise on vaccination in young adults. 

Edwards and colleagues recently conducted a series of experiments using 

eccentrically-biased exercise to examine the effects on vaccination responses [4-

6]. For all three studies, the participants in exercise groups performed the 

eccentric portions of the bicep curl and lateral raise exercise, contracting the 

biceps brachii and deltoid muscles of the non-dominant arm, respectively. 
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Influenza vaccine was administered to the deltoid muscle, where the muscle 

damage and inflammatory response occurred. In the first study, the weight used 

for the exercise group were 85% of each participant’s repetition maximum 

(moderate intensity) and all participants in both the exercise and control group 

received vaccination 6h post-exercise [5]. They found that exercised women had 

an increased antibody response whilst men showed enhanced cell-mediated 

responses compared to the control group [5]. The second study using this 

eccentric exercise task examined the effects of different exercise intensities on 

vaccine efficacy [6]. They found all intensity groups (light, moderate and heavy) 

demonstrated significantly higher antibody responses compared to the control 

group when vaccinated immediately after exercise, with no differences between 

the three intensity groups [6]. The third study using this eccentric exercise model 

compared the effects of vaccine timing on vaccine efficacy [4]. They found all 

exercise groups regardless of their vaccine timing (immediately, 6h or 48h post 

exercise) showed similar antibody and cell-mediated responses when compared 

to the control group [4]. They argued that exercise-induced immunoenhancement 

was only observed when the control group had relatively poor responses, but not 

strong responses [4]. 

Besides these studies using eccentric exercise, Edwards et al reported 

that an acute bout of cycling exercise or mental stress task had an 

immunoenhancing effect only in women in response to influenza vaccine [22] and 

only in men in response to meningococcal vaccine [23]. Another study 

demonstrated that participants that completed a 15-min arm exercise task using 
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elastic bands and that received a half dose of pneumococcal vaccine had 

significantly higher antibody responses compared to the sedentary group, whilst 

the exercise group that received a full dose vaccine did not have an improvement 

in immune responses [24]. These studies further suggest that when control 

responses were weaker (rather than sex differences), exercise could enhance 

the immune responses to vaccination. Based on this evidence, it is importance to 

perform mechanistic experiments in aged mice or use less than full dose 

vaccination in young mice, where there is weaker control response, to determine 

whether eccentric exercise can improve sub-optimal immune responses to 

vaccination. 

Acute stress, such as acute bout of exercise, has been shown to enhance 

both antibody and cell-mediated immune responses in animals. Acute restraint 

stress, which is a commonly used psychological stress model, has been shown 

to improve antibody titers to sheep red blood cell (SRBC) vaccination in rats [25]. 

However, when extending the stress exposure to 6h/day for 4 days, 

immunosuppressive effect was observed. Similarly, acute exposure to foot shock 

stress elevated antibody responses to KLH in rats [26]. Other than 

immunoenhancement in humoral responses, acute stress also improves cell-

mediated responses. Dhabhar has reported acute restraint stress promoted DTH 

responses to various vaccination in rodent models [14, 27-32]. Another group 

also reported acute psychological stress enhanced DTH responses by mediating 

skin dendritic cells [33].   

Hypothesized Mechanisms  
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The mechanisms by which acute or exercise training may alter immune 

responses to vaccination remains to be determined. Based on the studies above, 

it is generally accepted that prolonged intense exercise (e.g. marathon) is 

detrimental, whilst acute moderate exercise is beneficial to immune function. The 

potential mechanisms of high-intensity endurance exercise associated with 

transient immunosuppression are described in the “open window hypothesis” 

[21], these include reduced neutrophil phagocytic function, total lymphocyte and 

natural killer cell numbers [34]. The temporary suppression of immune function 

causes athletes to be more susceptible to infection. However, acute moderate 

exercise would not reach the threshold to arouse these immunosuppressive 

effects, but instead result in immunoenhancing effects. [9]. It is hypothesized that 

the influx of immune cells and the release of inflammatory mediators caused by 

this eccentrically-induced muscle damage creates a pro-inflammatory 

environment in a muscle that may activate dendritic and other cells to augment 

the immune response to vaccination when given intramuscularly in the damaged 

muscle [10]. This heightened inflammatory environment may be a particularly 

effective behavioral adjuvant as eccentric exercise localizes muscle damage to 

the specific site of intramuscular vaccine administration. This strategy could be 

easily used to augment IM vaccination responses in aging populations. 

Though there has been some research describing these immune changes, 

the underlying mechanisms of the immunoenhancing effects of acute exercise 

remain debatable. Dhabhar et al have proposed that acute stress (minutes to 

hours) is immunoenhancing, which is considered adaptive for survival from the 
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evolutionary viewpoint (see Figure 2.1) [27]. He proposed three main 

mechanisms of acute stress-induced immunoenhancement: changes in stress 

hormones and leukocyte redistribution, which are systemic mediators; and 

changes in cytokines and chemokines, which may be local mediators at the site 

of antigen entry [27]. Leukocytes circulate from the blood, to organs (e.g. skin) of 

the body and back to the blood. The first reaction of an organism to a stressor is 

central nervous system detection of the stressor and the release of stress 

hormones to warn and prepare the body. These stress hormones will increase 

the affinity and expression of adhesion molecules (selections/integrins) on 

leukocytes and endothelial cells, which causes the selective margination of 

leukocytes within the vasculature of organs. This response would occur in 

response to an acute stress, regardless of antigen presence. When the stress is 

an acute bout of moderate exercise, another important factor that increases 

hemodynamics is the mechanical force of the exercise-induced increase in 

cardiac output, vascular vasodilation and blood flow [35]. In the absence of 

immune challenge, leukocytes will demarginate and join the circulating leukocyte 

pool when stress stops. However, when there is an immune challenge (wounding 

or infection), it will result in an inflammatory response and release of chemokines 

and cytokines, which recruit and activate the leukocytes into the local tissues. 

Therefore, acute stress may boost immune response by having higher numbers 

of leukocytes available for recruitment (Figure 2.1) [27].  
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Figure 2.1: Hypothesized mechanisms of immunoenhancing effects of 

acute stress. Dhabhar et al 1999. 

The two major classes of stress hormones that affect the kinetics of 

leukocytes in response to stress are glucocorticoids and catecholamines. Stress 

activates the hypothalamic–pituitary–adrenal (HPA) axis which results in stress 

hormone release (corticotrophin releasing hormone, adrenocorticotrophic 

hormone, and cortisol/corticosterone). Dhabhar et al measured the effects of 

acute stress (restraint stress, foot shock) at close temporal proximity to antigen 

administration on cell-mediated responses using the model of delayed type 

hypersensitivity (DTH) [27]. Skin-specific DTH reactions involve two phases: 

sensitization phase of T memory cells formation; challenge phase including 

antigen-presenting cells, T cells, neutrophils and macrophages [14, 28]. Dhabhar 
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and colleagues performed a series of studies implicating glucocorticoids in the 

enhancement of the DTH [30, 31, 36]. They showed that adrenalectomized 

(abolishes the corticosterone and epinephrine stress response) rats [30, 31, 36] 

or cyanoketone treatment (abolishes the corticosterone stress response) [31] 

reduced blood leukocyte redistribution and DTH responses associated with 

stress. On the contrary, catecholamines (epinephrine and norepinephrine) 

released by stress-induced sympathetic nervous system (SNS) activity is thought 

to increase blood leukocyte counts.[35]. Studies reported that adrenaline or 

noradrenaline administration increased neutrophil and natural killer (NK) cell 

numbers, but decreased T cells and B cells [37, 38]. Therefore, stress hormones 

may affect total blood leukocyte numbers and their subtypes. 

Cytokines and chemokines released by stress-induced inflammatory 

responses are another key potential mechanism for immunoenhancement. Those 

cytokines and chemokines are interferon γ (IFNγ), tumor necrosis factor alpha 

(TNF-α), interleukin 2 (IL-2), interleukin 6 (IL-6), interleukin 1β (IL-1β). IFNγ is 

important in both stages of DTH development including the increase of antigen 

presentation efficiency, increase in leukocyte recruitment, and activation of 

macrophages [32]. Dhabhar et al suggested that IFNγ is a local mediator of a 

stress-induced enhancement of skin DTH [32]. Acutely stressed wild-type mice 

had a higher DTH response than non-stressed mice, but IFNγ receptor-deficient 

mice failed to show a stress-induced DTH improvement [32]. IL-6 is another 

important cytokine candidate for stress-induced immunoenhancement. IL-6 is 

believed to be one of the first elevated cytokines after exercise and it has both 
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pro-inflammatory and anti-inflammatory effects [39]. Lee et at implicated that 

mice administered with the IL-6 gene and influenza vaccine were completely 

protected from a lethal dose of virus challenge [40].  

In conclusion, previous studies suggest that potential mechanisms of 

acute stress- induced immunoenhancement involve leukocyte redistribution, 

increased stress hormones and cytokine gene expression. 

2.2 Aging and Immunity 

Aging is a global problem and will become more and more serious in the 

near future. The World Health Organization (WHO) reports that there are 900 

million adults aged 60 or older in 2015, which constitutes 12% of the world 

population. What is worse, it is predicted to increase to 22% (2 billion people) of 

the population globally in 2050 [33].  

Immunosenescence 

  Aging is associated with a decline in the immune system and its function, 

termed “immunosenescence”. Immunosenescence results in higher susceptibility 

to infection and depressed responses to vaccination. Infectious diseases, such 

as influenza, affect a large number of people every year, especially the aged 

population because of their depressed immunity. Vaccination has been the most 

effective intervention against infectious diseases. However, vaccine efficacy is 

remarkably reduced in the older adults compared to younger people [41]. Thus, 

immunosenescence is a big concern for the public health. It is of great 

significance to understand the mechanisms behind how immunosenescence 
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affects the immune system and, importantly, to find the potential exogenous and 

endogenous adjuvants that increase vaccine efficacy. 

Aging and Innate Immunity 

Aging alters both innate and adaptive immune systems. For the innate 

immune system, immunosenescence affects both numbers of functions of 

neutrophils, macrophages, natural killer cells (NK cells) and dendritic cells (DCs), 

as well as cytokine secretion. 

The first line of defense against pathogen infection to the host is 

phagocytosis by neutrophils and macrophages. It is generally accepted that 

aging is associated with decreased function of neutrophils and macrophages, but 

increased or no change in the absolute numbers of these cells [42]. Reduced 

functional capability of neutrophils are mainly reduced phagocytosis, superoxide 

production, chemotaxis, signal transduction and apoptosis [43]. However, we 

should note that depressed phagocytic capacity of neutrophils is equivocal. 

Butcher et al. reported a decreased expression of CD16 (marker of neutrophil 

phagocytic ability) in the aged, while Plackett et al. reported aged adults had 

similar neutrophil phagocytosis as young adults [42, 44]. Impairment of 

macrophages’ function are mainly reduced phagocytosis, superoxide production, 

chemotaxis, apoptosis, signal transduction, cytokine production and Toll-like 

receptor (TLR) activation [43]. Loss of TLR1/2-induced tumor necrosis factor-

alpha (TNF-α) and Interlukin-6 (IL-6) production in the aged has also been shown 

[45].  
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Natural killer (NK) cells are cytotoxic effectors of the innate immune 

system, with characteristics of adaptive immunity, such as antigen-specific 

receptors and ability to produce memory cells [46]. However, unlike CD8 

cytotoxic cells, NK cells do not require activation, but can respond to cytokines 

(IL-2, IL-12) directly and attack target cells. It is known that aging results in 

decrease rates of NK cell proliferation and production [47]. It is debatable 

whether cytotoxicity, signal transduction and response to cytokines are preserved 

or decreased in the aged [47]. The variability may be because of the health 

status of the studied population [48, 49].  

Dendritic cells (DCs) are antigen presenting cells, which are significant for 

the development of adaptive immune responses. There are mainly two types of 

DCs: myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs). 

Relatively little is known about the effects of aging on DCs. Age-associated 

reductions in the total numbers of DCs and mDCs in peripheral blood, thymic 

DCs, Langerhans’ cells numbers, and DCs-induced IL-12 production have been 

reported [50]. 

Other than the changes in innate immunity cells caused by aging, 

inflammatory mediators are also altered in the aged. “Inflamm-aging” is a term 

that describes the elevated status of pro-inflammatory cytokines, such as TNF-α, 

IL-1β, IL-6, in the aged population, which may result in chronic illnesses, such as 

cardiovascular diseases, Alzheimer’s disease, and cancers [51].  

Aging and Adaptive Immunity 
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Aging is associated with several alterations in T cells, B cells, their 

subsets and cytokine production in the adaptive immune system. 

Thymic involution is the most largely-studied change in the adaptive 

immune system in the aged. Total volume of thymus starts to decrease from the 

beginning of life with only a small amount left at the age of 50 [41]. As a result of 

the thymic involution, the number and function of naïve T cells is impaired in the 

aged population, which leads to a reduced immune response to primary 

vaccination. In the late stage of life, mainly memory T cells and effector T cells 

remain. Aging results in a reduction in naïve (CD45RA+CD28+) CD8+ T cells, T- 

cell receptor (TCR) repertoire, capacity to replicate and respond to novel 

antigens, and effector memory CD4+ T cells; whilst an increase in memory 

(CD45RA-CD28+)CD8+ T cells, effector (CD45RA+CD28-) T cells, end-stage 

differentiated effector T cells, IL-4 producing CD8+ T cells, and central memory 

CD4+ T cells  [50]. 

Like many changes in T cells, aging also results in a decrease in naïve B 

cells, but an increase in effector B cells. As a result, there is an impaired antibody 

responses in the aged [52]. Aging also leads to a reduced class switching and 

somatic recombination TCR repertoire, which contributes to a lower diversity of 

antibody responses and a reduced immunoglobulin G (IgG) antibodies, which 

contributes to a lower affinity of antibody responses [53].  

Cytokine production and signaling processes are also altered in the aged 

population, especially IL-2. It has been reported that aging results in a reduction 
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in synthesis of IL-2 and expression of high affinity IL-2 receptor, which is critical 

for effector-memory T cells formation [54]. 

Taken together, aging result in a series impairments in both innate and 

adaptive immunity, including alterations in numbers and functions of leukocytes, 

and different cytokine secretion. All of these contribute to the reduced immune 

responses to natural pathogens and vaccinations in the aged. 

2.3 Aging and Exercise and Immunity 

Immunosenescence refers to a cascade of dysregulation of the immune 

system associated with aging, which leads to an increase in incidence of 

infectious disease, morbidity and mortality [55]. There is a rapid growth of older 

adults (aged ≥ 65 years) in both industrialized and developing countries and 

infectious diseases are a major cause of death in the older population [56]. 

Vaccination against infectious diseases has been one of the most successful 

public health interventions [1]. Unfortunately, elderly individuals have inadequate 

immune responses to vaccination as compared to younger population. In order to 

augment vaccine responses, we need to either improve vaccines themselves or 

find behavioral interventions that alter host factors to improve vaccine responses. 

Here, I summarize the current literature for effects of both chronic and acute 

exercise on vaccination responses in older adults and the hypothesized 

mechanisms. 

Aging, Exercise Training and Vaccination 

Most of the studies examining the effects of exercise training on the 

immune responses to vaccination were conducted in the aged because of their 
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impaired vaccine efficacy and high risk of infectious disease associated morbidity 

and mortality.  

Three cross-sectional studies reported that exercise training was positively 

correlated with either humoral or cell-mediated immunity to vaccinations in older 

adults [57-59]. Our group recruited older adults (60-76 year) and assigned them 

to high-fit, low-fit and sedentary groups based on maximal oxygen uptake test 

[57]. We showed that high-fit elderly participants had higher antibody responses 

to influenza vaccine, but no differences in cell-mediated responses among three 

groups [57]. Kohut et al. found that adults aged 62 years and older, who 

vigorously exercised three or more times per week, had higher anti-influenza 

IgG, IgM and greater peripheral blood mononuclear cell proliferation compared 

with the elderly adults who exercised with less intensity, frequency, and/or 

duration when compared to sedentary controls [58]. Schuler et al. also reported a 

positive relationship between self-reported physical activity and antibody 

responses to influenza vaccination in older adult [59]. 

In addition, there were four randomized controlled trials evaluating 

exercise training on vaccination responses in the elderly [11, 12, 60, 61]. Our lab 

has conducted two experiments comparing 10 months of aerobic moderate 

exercise intervention (30-60 min/session, 3 sessions/week) to flexibility/balance 

training in older adults [11, 12]. We found that cardiovascular exercise resulted in 

a longer lasting seroprotection to influenza vaccine when measured 24 weeks 

post-vaccination, whereas flexibility/balance training did not [12]. Similarly, 

aerobic exercise training induced higher primary IgG1 and IgM antibody 
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responses compared to the sedentary controls [11]. Kohut et al also reported that 

10 months of aerobic exercise training enhanced the antibody responses and 

granzyme B activity to influenza vaccine [60]. Besides the commonly used 

aerobic exercise intervention, we examined the effects of Taiji and Qigong (a 

fusion of martial arts with meditation and traditional Chinese medicine) training 

on the antibody response to influenza vaccine in older adults [61]. Participants 

who practiced moderate 3 x 60 min Taiji and Qigong for 20 weeks had 

significantly higher antibody responses at 3 and 20 weeks post-vaccine, whereas 

the control group did not [61].  

In conclusion, both cross-sectional studies and randomized controlled 

trials suggest a beneficial effect of exercise training on either antibody responses 

or cell-mediated responses to vaccination in older adults.  

However, results of exercise training on immunity in animals are not 

consistent. Kohut et al. examined the effects of 8-week treadmill running exercise 

on the immune response to herpes simplex virus type 1(HSV-1) vaccination in 

both young and older mice [62]. Exercise training significantly increased IL-2 and 

IFN-gamma production, but not IgM antibody responses in older mice while 

exercise had no effect in young mice. Our lab has previous investigated a four-

month moderate treadmill running on T lymphocyte profiles in young and aged 

mice [63]. We found exercise training improved splenic naïve to memory T cell 

subset ratios in CD4 and CD8 cells in the aged mice, but not young mice. Barnes 

et al. reported a 10-week treadmill exercise training did not alter antibody 
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responses to KLH vaccination in old rates when compared to the sedentary 

animals [64].  

Aging, Acute Exercise and Vaccination 

Fewer studies have examined the effects of acute exercise bouts on 

vaccination in older adults compared to the exercise training intervention. Our lab 

investigated the effect of acute 40-minutes moderate intensity walking on vaccine 

efficacy in adults between 55 and 75 years old [65]. Exercised women had a 

higher antibody response against the H1N1 influenza strain compared to the 

control women, but men did not have such an elevation [65]. These results were 

similar to the ones observed in previous studies regarding acute exercise 

intervention in young adults mentioned above. It was postulated that the sex 

difference was probably because of the lower pre-vaccine titers to the vaccine in 

women. Long et al performed a similar study, using an acute bout of brisk walk at 

moderate intensity for 45 minutes in young and middle-older aged adults [66]. 

They did not find an exercise effect to influenza or pneumonia vaccination in 

either age cohort. But they showed higher antibody responses to influenza 

vaccine in younger participants [66].  

Similar to human studies, not many experiments have been investigated 

acute exercise on immunity in aged animals. Kapasi et al examined the effects of 

intense exercise on secondary antibody response to HAS in young and old mice 

[67]. A single bout of exercise enhanced antibody response to the extent similar 

to the young mice, while no effect on the young animals. 

2.4 Stress and Vaccination Response 
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Stress consists a cascade of proceedings: starting with a stimulus 

(stressor), eliciting stress perception in the brain, causing physiologic stress 

responses in the body [68]. Several studies have shown that chronic stress is 

immunosuppressive and decreases both antibody and cell-mediated immune 

responses to vaccination; whilst acute stress can be immunoenhancing [32, 69].  

Previous studies have demonstrated different forms of chronic stress 

suppress immune function including DTH responses and antibody responses to 

vaccination [70-75]. Dhabhar’s group conducted a series of studies and 

compared the effects of different intensities and durations of restraint stress on 

cell-mediated immunity in animals [14, 27-32]. Acute stress ranging from 2h to 5h 

prior to antigenic challenge was shown to improve DTH responses. Increasing 

intensity of the acute stress was associated with enhancing DTH and leukocyte 

redeployment. On the contrary, DTH responses were reduced when increasing 

the stress to 6h/day for 3 weeks (before sensitization) to 5 weeks (after antigenic 

challenge). Increasing stress exposure was also associated with reduction of 

peripheral blood lymphocyte redistribution and decreased glucocorticoid 

responsivity [14]. Another study examined the effects of a social stressor, a 

colony intruder paradigm, on antibody responses to KLH in rats. Stressed rats 

had a significant lower serum anti-KLH IgG responses compared to the controls 

at 2 and 3 weeks post-vaccination [15]. 

Human studies have also demonstrated chronic stress dysregulates 

vaccine immune responses. Smith et al. examined the relationship between 

distress and primary immune response to KLH [76]. The more distressed 
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subjects had a lower DTH skin responses to KLH, while anti-KLH IgG responses 

were not affected by stress. In another study, suppressed cell-mediated immunity 

was observed in the participants with more depressive symptoms in metastatic 

breast cancer [77].      

2.5 Exercise and Stress and Immunity 

Few studies have investigated the effects of exercise on immune 

responses to vaccination in stressful situations, more have focused on effects of 

stress and disease-related immune regulation. Luo et al. examined the 

moderating impact of moderate exercise on chronic stress- induced intestinal 

barrier dysfunction [78]. Mice were subjected to repeated restraint stress for 6h 

per day for 7 days (or no stress), receiving 30min swimming prior to each stress 

session (or sedentary). Swimming before stress attenuated bacterial 

translocation, maintained intestinal permeability and significantly increased four 

antimicrobial peptides gene expression. In conclusion, they proved that brief 

moderate exercise attenuated chronic stress-induced intestinal barrier 

dysfunction and enhanced innate mucosal defenses. Some human studies also 

reported beneficial effect of physical activity or structured exercise on disease-

related immune regulation [79, 80]. Bote et al. showed an 8-month aquatic 

exercise training resulted in an anti-inflammatory effect, including decreased 

systemic levels of IL-8 and tempered neutrophil activation (chemotaxis) in 

fibromyalgia syndrome patients [79]. 

Early evidence has suggested that moderate exercise training have the 

potential to alleviate stress-induced immunosuppression. Brown and Siegel 
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investigated the ability of physical exercise to buffer stress-induced disease 

incidence in adolescence [81]. The findings suggest that girls who were 

moderately physically active were more protected against the immunologically 

deleterious consequences of stress compared to the sedentary girls under high 

stress. In an animal study, Moraska and Fleshner reported that a four-week 

voluntary wheel running reduced tail shock stress-induced behavioral depression 

and prevented stress-induced suppression of anti-KLH IgM and IgG(2a) 

antibodies in rats [82].  

2.6 Summary 

In conclusion, acute bouts of eccentric exercise may have a potential 

beneficial effects on vaccination responses. However, the favorable effect was 

only observed in the low-immunogenic vaccine strain, or only in the population 

that have poor responses based on previous studies. Thus, a definitive animal 

study is needed to test effect of acute eccentric exercise on a primary vaccination 

response.  

Due to the inconsistencies of the current literature regarding the efficacy of 

a single bout of eccentric exercise to improve vaccination responses in people, 

the purpose of our study was to determine if eccentric exercise could improve the 

primary immune response to a suboptimal vaccination dose in both young and 

aged mice. Examination of the effects of exercise on a primary response is 

important because data interpretation is not confounded by prior exposure history 

as is the case with influenza vaccine studies in people. The novelty of this study 

lies in the use of a primary vaccine and in the use of an animal model to control 
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for confounds affecting immune responses. If a benefit is seen using this 

paradigm in mice, future studies could focus on the mechanism of the beneficial 

effect. 
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CHAPTER 3 

EFFECTS OF ECCENTRIC EXERCISE ON IMMUNE RESPONSES TO 

VACCINATION 

 

3.1 INTRODUCTION 

Vaccination against infectious diseases has been one of the most 

successful public health interventions. Unfortunately, some at-risk populations 

(e.g. aged, immunosuppressed) have inadequate immune responses to 

vaccination which increases their susceptibility to infectious disease. In order to 

augment vaccine responses, we need to either improve vaccines themselves or 

find behavioral interventions that alter host factors to improve vaccine responses. 

Prior work in our lab has demonstrated that 10 months of cardiovascular 

exercise training can extend the protective antibody response to influenza 

vaccination in older adults [12]. While beneficial, further studies are necessary to 

determine whether less time consuming, equally efficacious exercise strategies 

can be used to augment the immune response to vaccination. Along these lines, 

a study has shown that a single acute bout of eccentric exercise augments the 

antibody response to influenza vaccination in humans [5]. Eccentric exercise 

causes the exercising muscle to produce continuous force while it lengthens, 

leading to damage of the internal structure of the muscle fibers and connective 

tissue [7]. The substantial increase in plasma creatine kinase indicates this 

damage is greater than that caused by concentric or shortening muscle 

contractions [8]. Muscle damage can result in a localized inflammatory response 
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and delayed onset muscle soreness when conducted in naive participants [9]. It 

is hypothesized that the influx of immune cells and the release of inflammatory 

mediators caused by this eccentrically-induced muscle damage creates a pro-

inflammatory environment in a muscle that may activate dendritic and other cells 

to augment the immune response to vaccination when given intramuscularly in 

the damaged muscle [10]. This heightened inflammatory environment may be a 

particularly effective behavioral adjuvant as eccentric exercise localizes muscle 

damage to the specific site of intramuscular vaccine administration.  

Due to the inconsistencies of the current literature regarding the efficacy of 

a single bout of eccentric exercise to improve vaccination responses in people, 

the purpose of our study was to determine if eccentric exercise could improve the 

primary immune response to a suboptimal vaccination dose in both young and 

aged mice. Examination of the effects of exercise on a primary response is 

important because data interpretation is not confounded by prior exposure history 

as is the case with influenza vaccine studies in people. Based upon prior human 

literature [5, 6], we hypothesized that eccentric exercise would improve both the 

antibody and cell-mediated immune response (i.e. delayed-type hypersensitivity 

response) to ovalbumin vaccination in aged mice exhibiting immunosenescence, 

but not in young mice. The novelty of this study lies in the use of a primary 

vaccine and in the use of an animal model to control for confounds affecting 

immune responses. If a benefit is seen using this paradigm in mice, future 

studies could focus on the mechanism of the beneficial effect. 
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3.2 METHODS 

Animals 

Young Mice 

Six to eight-week-old male C57BL/6J (n=30) and Balb/cJ (n=13) were 

purchased from Jackson Laboratory (Bar Harbor, ME) and were individually 

housed in an AAALAC-accredited animal facility for at least 2 weeks of 

acclimation before experimentation. C57BL/6 and Balb/c mouse strains were 

both utilized in this study for the purposes of examining mice with heterogeneous 

immune responses (e.g. TH1 , C57BL/6 and TH2, Balb/c) [83]. 

Aged Mice 

C57BL/6J male mice, aged 27 months (n=16), purchased from Jackson 

Laboratory (Bar Harbor, ME) were individually housed in an AAALAC-accredited 

animal facility. Retired breeder mice were purchased from Jackson Laboratory at 

7 or 8 months of age and individually housed in an AAALAC-accredited animal 

facility till 27 months of age for experiment.  

Housing and Feeding Protocols 

Mice were allowed ad libitum access to water and food (Teklad 8640, 

Harlan Laboratories, Indianapolis, IN). All animals were maintained on a 12-hour 

light-dark cycle. All experiments were approved by the University of Illinois at 

Urbana-Champaign IACUC. Cages were changed weekly by animal care staff. 

Mice were allowed ad libitum access to water and food (Teklad 8640, Harlan 

Laboratories, Indianapolis, IN). All animals were maintained on a 12-hour light-

dark cycle. All experiments were approved by the University of Illinois at Urbana-
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Champaign Institutional Animal Care and Use Committee (IACUC) prior to the 

onset of the studies. Procedures for these studies were performed on IACUC 

protocols 13410, 14157 and 17026.  

Eccentric Exercise Protocol in Young Mice 

Eccentrically-Biased Treadmill Exercise 

Young C57BL/6J mice were randomly assigned to a single bout of 

eccentric running (ECC1, n=5) or remained sedentary (SED, n=5). Mice were 

placed on a non-moving treadmill at -20º for 10 minutes for 5 consecutive days 

for acclimation. After acclimation period, ECC1 mice were exercised at 17 m/min 

speed at -20% grade for 45 minutes on a treadmill. No electrical shock was used. 

Lopez et al. have shown this exercise protocol elicited muscle inflammation by 

significantly increasing intracellular Tumor necrosis factor alpha (TNF-α), 

Monocyte chemotactic protein 1 (MCP-1), Interleukin-6 (IL-6), and Interleukin-10 

(IL-10) [84]. Mice were vaccinated in the gastrocnemius of their right hindlimbs 

with ovalbumin (OVA, Sigma-Aldrich, St. Louis, MO) immediately exercise based 

on the study design of Edwards et al. [5] who demonstrated an eccentric-

exercise induced benefit in influenza vaccine response. The SED mice remained 

in their home cages during the experimental period.  

In another experiment, two bouts of eccentrically-biased downhill treadmill 

running (ECC2) were performed on consecutive days. Peak inflammation 

following eccentric exercise occurs 24 h post-exercise [85]. In addition, Edwards 

et al. vaccinated humans with influenza vaccine immediately after eccentric 

exercise [6]. We rationalized that injecting immediately following a second bout of 
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eccentric exercise at 24 h would maximize an exercise-induced increase in 

vaccine response. Thus, young Balb/cJ mice were randomly assigned to 

eccentric running (ECC2, n=6) or remained sedentary (SED, n=7) followed by 

vaccination immediately after the second exercise bout. The running protocol 

was the same as the previous experiment except that 2 bouts of exercise were 

administered on consecutive days. We and others have shown that these 

eccentric exercise protocols induce muscle damage and local inflammation in the 

gastrocnemius-soleus complex of mice [86-89]. 

Eccentrically-Biased Electrical Stimulation Exercise 

In a third experiment, young C57BL/6J mice were randomly assigned to 

an eccentric electrically-stimulated group (ECCstim, n=10) or a sham operation 

group (Sham, n=10). All mice were anesthetized with isoflurane (2-3% isoflurane, 

0.9 L/min oxygen). The right hindlimb was shaved and aseptically prepared. The 

foot was placed in a miniature metal foot plate attached to the shaft of a 

servomotor (model 300 B-LR, Aurora Scientific, Aurora, ON, Canada) 

perpendicular to the tibia. Two platinum electrodes were inserted through the 

skin on either side of the sciatic nerve. A stimulator and stimulus unit stimulated 

the sciatic nerve via platinum electrodes to induce a contraction of the hindlimb 

crural muscles. The optimal voltage was determined by delivering 100 Hz pulses 

of 0.1 ms duration and measuring peak twitch force. The posterior crural muscles 

were injured by performing 100 eccentric contractions using the optimal voltage 

at 150 Hz. During stimulation, the posterior crural muscles were stretched from 

19° of ankle plantarflexion to 19° of ankle dorsiflexion. Every 5 contractions were 
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separated by 10 second rest periods and the entire protocol lasted 10-20 

minutes. Corona et al. have demonstrated that this electrical stimulation protocol 

causes muscle inflammation in mice [90, 91]. Sedentary sham control mice were 

anesthetized and subjected to electrode insertion but the muscles were not 

stimulated. All mice were vaccinated with OVA plus alum 6 hours post-exercise. 

Eccentric Exercise in Aged Mice 

Aged C57BL/6J mice were randomly assigned to a single bout of eccentric 

running (ECCaged, n=8) or remained sedentary (SED, n=8). ECCaged mice 

followed the same acute one bout of eccentric treadmill exercise protocol as 

ECC1 mice described above. Mice were vaccinated in the gastrocnemius of their 

right hindlimbs with ovalbumin (OVA, Sigma-Aldrich, St. Louis, MO) immediately 

after exercise based on the study design of Edwards et al [6] who demonstrated 

an eccentric-exercise induced benefit in influenza vaccine response. The SED 

mice remained in their home cages during the experimental period.  

Vaccination Protocol 

In order to maximize the chance of finding an effect of eccentric exercise 

and because Pascoe et al. found that eccentric exercise augmented vaccine 

responses only when a sub-optimal dose of vaccine was used [92], we titrated 

our vaccine dosage in preliminary experiments across a wide range of doses (10, 

50, 100, 200μg) of OVA (Sigma-Aldrich, St. Louis, MO) with 200μg of aluminum 

hydroxide (Sigma-Aldrich, St. Louis, MO) as adjuvant. We found that 

100μg/mouse of OVA with alum yielded significantly elevated but suboptimal 

antibody levels when measured at four week post vaccination (data not shown). 
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Thus, in our experiments, all mice were intramuscularly inoculated in the 

gastrocnemius of their right hindlimbs with 100μg of OVA and 200μg of alum in 

50μl sterile saline using a 25g needle. 

Delayed-type hypersensitivity (DTH) 

  The DTH response is to measure the in vivo inflammatory reaction to a 

specific antigen. It has been shown that there is a positive relationship between 

the ear swelling increase and the ongoing immune response [93, 94]. Mice were 

injected with 100μg OVA dissolved in 10μl PBS into the dorsal side of the right 

ear using a Hamilton syringed fitted with a 30-gauge needle on 21 day post 

eccentric exercise. The left ear received 10μl PBS alone as a control for non-

specific ear swelling. Both ears’ thicknesses were measured immediately before, 

and every 24h after intradermal injection using a digital microcaliper (Tresna). 

The measurements were performed in triplicate by an assistant who was blinded 

to the treatments. Results were expressed in two ways: Both right and left ear 

thickness with 6 time points and the difference between two ears’ swelling at 1d 

post intradermal injection. Maximum ear swelling occurred on day 1 post ear 

inoculation.  

Blood Collection 

All mice were bled approximately 200μl from the retro-orbital vein using a 

Pasteur pipette prior to vaccination and at one, two and four weeks post-

vaccination. Prior to blood collection, mice were administered isoflurane with 

oxygen at a flow rate of 2-3 L/min until unresponsive. Blood was dispensed into 

heparinized tubes and centrifuged at 1100 x g at 4°C for 15 min. Plasma was 



34 

harvested and frozen at -20°C until analysis. At four week post-inoculation, blood 

was drawn after euthanasia from the inferior vena cava and processed as 

described before. In each experiment, mice were euthanized by CO2 

asphyxiation followed by cervical dislocation at four weeks post-vaccination.  

Plasma Antibody Measures 

Plasma total anti-OVA IgG was determined using ELISA procedures. 

Ninety-six-well microtiter plates were coated with 50μl of 20μg/ml OVA in 

carbonate coating buffer and incubated overnight at 4°C. Nonspecific binding 

was blocked with PBS supplemented with 10% fetal bovine serum (FBS) and 

incubated for 1h at 37°C. After washing three times with phosphate buffered 

saline (PBS)-Tween 20, 50μl of plasma samples were added at a dilution of 1:20 

in a diluting buffer of PBS/1% FBS and incubated for 1h at 37°C. Plates were 

washed again, and 50μl of horseradish peroxidase (HRP)-rabbit anti-mouse IgG 

(Life Technologies, Frederick, MD) diluted 1:800 in diluting buffer was added. 

Plates were incubated again and then washed. Plates were incubated for 20 

minutes in 50μl of a 1:1 mixture of 3, 3’, 5,5’ tetramethylbenzidine (TMB) and 

hydrogen peroxide (TMB Substrate Reagent Set, BD Biosciences, San Jose, CA) 

and read at 405 nm on a spectrophotometric plate reader (Labsystems 

Multiskan, Fisher Scientific, Pittsburgh, PA). Plasma anti-OVA IgG was quantified 

as the difference in optical density (OD) at 405 nm from the pre-injection time 

point.  

Statistical Analysis 
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Results were analyzed using SPSS 22.0 (SPSS Inc., Chicago, IL). Plasma 

anti-OVA IgG was assessed by repeated-measures analysis of variance 

(ANOVA). All analyses were followed by post-hoc Bonferroni tests in the event of 

a significant main effect or interaction. Ear swelling on day 1 post ear injection 

was assessed by independent T test. Statistical significance was set at P≤0.05 

for all tests. Results are reported as mean ± SEM. 

 
 
3.3 RESULTS 

Effects of eccentric exercise on primary antibody responses to OVA 

vaccination in young mice. 

We examined the effects of acute eccentric exercise on primary antibody 

responses to vaccination in young mice using one bout of eccentrically-biased 

downhill running, two bouts of downhill treadmill running, and eccentrically-

biased electrical stimulation. 

Effects of one bout of eccentric exercise on the immune responses to OVA 

vaccination in young mice. 

We first addressed whether one bout of eccentric downhill running 

immediately prior to suboptimal OVA vaccination altered the antibody response 

in young mice.  As we expected, we found a significant time main effect (F2,34 = 

226, P ≤ 0.001), demonstrating plasma anti-OVA IgG increased significantly at 

one, two and four weeks relative to pre-immunization levels (Figure 3.1). 

However, there was no significant time x treatment effect (F2, 34 = 0.64, P = 0.54) 

or treatment main effect (F1, 17 = 4.0, P = 0.06). Our results indicated that, in this 
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animal model, one bout of eccentric treadmill exercise immediately prior to 

vaccination did not improve the antibody response in young mice.  

 

Figure 3.1: Plasma anti-OVA IgG responses to vaccination immediately after 

one bout of eccentric exercise in young mice. There was significant time main 

effect (F2, 34=226, P < 0.001), but no significant time x treatment effect (F2, 

34=0.64, P=0.54) or treatment main effect (F1, 17=4.0, P=0.06). 

 

We also examined the effect of one bout of eccentric downhill running on 

the DTH immune response to OVA in young mice. We found there was a 

significant time main effect (F5, 85 = 25.9, P < 0.001) (Figure 3.2), demonstrating 

that ear swelling increased significantly in both groups. However, we did not find 

a significant time x treatment interaction (F5, 85 = 0.41, P = 0.89) or treatment 

main effect (F1, 17 = 1.44, P = 0.25). Acute eccentric exercise did not enhance 

cell-mediated immune responses in young mice. 
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Figure 3.2: DTH responses to vaccination post one bout of eccentric exercise in 

young mice. There was significant time main effect (F5, 85=25.9, P < 0.001), but 

no significant time x treatment effect (F5, 85=0.41, P=0.89) or treatment main 

effect (F1, 17=1.44, P=0.25). 

 

Effects of two bouts of eccentric exercise on the antibody responses to 

OVA vaccination in young mice. 

Based on our negative finding in response to a single bout of exercise, we 

performed an experiment where we exercised mice on two consecutive days 

using our downhill running protocol. Donnelly et al. have shown that muscle 

inflammatory response peaks at 24 hours post-exercise (5). Therefore, in this 

experiment, another bout of exercise was repeated 24 hours after the first bout of 

downhill running. As in our first experiment, we found there was a significant time 

main effect (F2, 10=31.05, P<0.001), demonstrating plasma anti-OVA IgG 

increased significantly at one, two and four weeks relative to pre-immunization 

(Figure 3.3). However, there was no significant time x treatment effect (F2, 

10=0.54, P=0.52) or treatment main effect (F1, 11=0.002, P=0.97). Thus, in 

contrary to published work in humans where vaccination took place immediately 
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after exercise (8), our results indicated that in this animal model, two bouts of 

eccentric treadmill exercise with vaccination immediately after the second bout 

did not improve the antibody response.  

 

 

 

Figure 3.3: Plasma anti-OVA IgG responses to vaccination immediately the 

second of two bouts of eccentric exercise. There was significant time main 

effect (F2, 10 =31.05, P<0.001), but no significant time x treatment effect (F2, 

10=0.54, P=0.52) or treatment main effect (F1, 11=0.002, P=0.97). *signifies 

statistical significance vs. pre-vaccination time point (p < 0.05). 

 

Effects of electrical stimulation on the antibody responses to OVA 

vaccination in young mice. 

Corona et al. have shown this protocol results in muscle damage and 

localized inflammation (4). First, we found there was a significant time main effect 

(F2, 17=55.6, P<0.001), demonstrating plasma anti-OVA IgG increased 

significantly at one, two and four weeks relative to pre-immunization (Figure 3.4). 
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However, there was no significant time x treatment effect (F2, 17=0.54, P=0.59) or 

treatment main effect (F1, 18=0.05, P=0.83) indicating that electrical stimulation of 

eccentric contraction six hours prior to vaccination did not improve the antibody 

response.  

 

Figure 3.4: Plasma anti-OVA IgG responses to vaccination 6 h after 

electrically-stimulated eccentric contraction. There was a significant time 

main effect (F2, 10=55.67, P<0.001), but no significant time x treatment effect (F2, 

10=0.54, P=0.59) or treatment main effect (F1, 18=0.05, P=0.83). *signifies 

statistical significance vs. pre-vaccination time point (p < 0.05). 

 

Effects of eccentric exercise on immune responses to OVA vaccination in 

aged mice. 

Eccentric exercise has been previously established to be an adjuvant 

improving antibody responses to influenza vaccination in humans [6]. In order to 

replicate this finding in an animal model and understand the potential 

mechanisms, we first addressed whether one bout of eccentric downhill running 
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immediately prior to suboptimal OVA vaccination altered the antibody response. 

As expected, we found a significant time main effect (F2, 28=77.045, P<0.001), 

demonstrating plasma anti-OVA IgG increased significantly at one, two and four 

weeks relative to pre-immunization levels (Figure 3.5). However, there was no 

significant time x treatment effect (F2, 28=0.386, P=0.683) or treatment main effect 

(F1, 14=0.094, P=0.764). Thus, in contrary to published work in humans [5], our 

results indicated that in this animal model one bout of eccentric treadmill exercise 

immediately prior to vaccination did not improve the antibody response.  
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Figure 3.5: Effect of eccentric exercise on antibody response to vaccination 

in aged mice. * Plasma anti-OVA IgG increased significantly at one, two and 

four weeks relative to pre-immunization levels. No significant differences 

between eccentric exercise and sedentary group. 

 

We also investigated the effect of acute eccentric exercise on the cell-

mediated immune response to OVA vaccination. We inoculated OVA at three 

weeks post the eccentric exercise and measured the ear thickness prior to, 1d, 
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2d and 3d post ear injection to determine DTH responses. We found a significant 

time main effect (F2, 30 = 33.2, P < 0.001) as expected. Interestingly, there was a 

significant treatment main effect (F1, 15 = 18.9, P = 0.001), but not significant time 

x treatment interaction (F2, 30 = 0.23, P = 0.797), indicating that prior eccentric 

exercise had significantly increased the DTH responses in aged mice compared 

to aged sedentary controls, especially at 1 day post intradermal challenge 

(Figure 3.6). Thus, acute eccentric exercise improved the cell-mediated immune 

response to OVA vaccination in aged, but not in young, mice and failed to affect 

the anti-OVA antibody response in young or aged mice. 

 

Figure 3.6: Effect of eccentric exercise on DTH responses to vaccination at 

3 weeks post exercise in aged mice. There was significant time main effect (F2, 

30=33.2, P 0.001) and significant treatment main effect (F1, 15=18.9, P=0.001), 

but no significant time x treatment effect (F2, 30=0.23, P=0.797). *signifies 

statistical significance between A-ECC and A-SED group at day 1. (P < 0.05). 
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Comparison of immune responses to OVA vaccination in young v.s. aged 

mice. 

Aging is associated with a decline in the immune system and its function, 

termed “immunosenescence”. We compared both antibody responses and cell-

mediated immune responses to OVA vaccination in young sedentary mice with 

the immune responses in aged sedentary mice. 

First, we compared the anti-OVA IgG responses in young sedentary mice 

and aged sedentary mice (Figure 3.7). We found a significant time main effect 

(F3,45=109, p<0.001) as we expected, demonstrating plasma anti-OVA IgG 

increased significantly at one, two and four weeks relative to pre-immunization 

levels in both groups. We also found a significant time x age interaction (F3, 

45=17, p<0.001) and a significant age main effect (F1, 15=26, p<0.001), 

demonstrating that anti-OVA IgG levels in young sedentary group were 

significantly higher than aged sedentary group. 

         

 

Figure 3.7: Comparison of anti-OVA IgG responses to OVA vaccination in 

young v.s. aged mice. There was significant time main effect (F3.45=109, 

p<0.001), significant time x age interaction (F3.45=17, p<0.001) and significant 

age main effect (F1.15=26, p<0.001) *signifies statistical significance between 

AGED SED and YOUNG-SED group at week 2 and week 4 post vaccination (P < 

0.05). 
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Then we compared the DTH responses in young sedentary mice and 

aged sedentary mice (Figure 3.8). We found a significant time main effect (F2, 

30=22, p<0.001) as we expected, demonstrating DTH responses increased 

significantly relative to pre-immunization levels in both groups. However, we did 

not find a significant time x age interaction (F2, 30=0.292, p=0.749) or a significant 

age main effect (F1, 15=0.058, p=0.813), demonstrating that DTH responses in 

young sedentary group were not significantly different than aged sedentary 

group. 

 

 

 

Figure 3.8: Comparison of DTH responses to OVA vaccination in young vs. 

aged mice. There was significant time main effect (F2, 30=22, p<0.001), but no 

significant time x age interaction (F2, 30=0.292, p=0.749) or significant age main 

effect (F1, 15=0.058, p=0.813)  

 

3.4 DISCUSSION 

 
  We investigated the effects of acute eccentric exercise on immune 

responses to a suboptimal dosage of ovalbumin vaccination in young and aged 

mice. As expected, we found that the vaccination elevated anti-IgG antibody 

responses at 1, 2 and 4 week post-exercise in all experiments. However, 
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eccentrically-biased downhill running or electrical stimulation did not further 

enhance these responses in young or aged mice when compared to the 

respective control groups. Despite the negative results of eccentric exercise on 

antibody responses, we found that there was beneficial effect of acute eccentric 

exercise on the cell-mediated immune response to vaccination in aged, but not 

young, mice. In conclusion, we found acute eccentric exercise enhanced cell-

mediated response in aged mice, but not antibody responses in either young or 

aged mice. 

There are several studies demonstrating acute eccentric exercise can act 

as an adjuvant to improve vaccination responses in humans. In the first study 

investigated by Edwards and colleagues, young healthy adults performed 

eccentric contractions of the deltoid and biceps brachii muscles and were 

administered influenza vaccination six hours post-exercise [5]. They found that 

eccentric exercise augmented antibody responses in women and interferon-γ 

(IFN-γ) levels in men compared to sedentary group. Similar effects were shown 

in another study by Edwards’ group. Participants performed the same exercise 

task- 50 repetitions of the eccentric portion of both bicep curl and lateral raise 

movements, but at different intensities (light, moderate and heavy), and then 

received influenza vaccination immediately after exercise [6]. Eccentric exercise 

enhanced antibody responses specifically in men to the poorly immunogenic 

A/Uruguay strain compared to sedentary controls in all three intensity groups. 

These studies indicate that acute eccentric exercise of the muscle at the site of 

vaccine inoculation improves antibody responses in humans.  
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Based upon these findings in humans, we wanted to further explore the 

underlying mechanism using an animal model. Unfortunately, our null findings in 

antibody responses did not support the hypothesis that acute eccentric exercise 

prior to vaccination would enhance antibody responses in mice. However, it is 

consistent with some other research in humans. Campbell et al. explored the 

same bicep curl and lateral raise acute eccentric exercise protocol and 

investigated the effects of vaccine timing (immediately, 6hrs, and 48hrs post 

exercise) on immune response in young adults [4]. They found that eccentric 

exercise did not enhance antibody responses or IFN-γ production compared to 

the control group. However, they argued that this null finding may have been due 

to the fact that the influenza vaccination was strongly immunogenic in these 

subjects. In addition, participants completed a brisk walk at 55％ heart rate 

maximum for 45 minutes and were injected with a full-dose pneumococcal 

vaccination and a half-dose influenza vaccination [66]. Four weeks post exercise, 

there were no significant differences in overall antibody titers between the 

exercise group and rest group, meaning a brisk walk prior to vaccination did not 

affect antibody response. Our laboratory similarly found no effect of an acute 

bout of walking on anti-influenza antibody responses in older adults who exhibit 

suboptimal responses to vaccination [65]. In another observational study, 

triathletes completed a half-ironman competition (3km swim, 130km cycle and 

21km run) prior to tetanus toxoid, diphtheria and pneumococcal vaccination [19]. 

No significant differences were observed in antibody responses between 

exercised athletes, resting athletes and untrained sedentary controls. These 
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studies show either acute eccentric exercise or acute exercise in general did not 

improve antibody responses to vaccination in humans.      

As the effects of acute exercise on vaccination responses is equivocal, 

chronic exercise training may be an alternative intervention method to augment 

antibody responses to vaccination. A previous study by our group demonstrated 

that cardiovascular exercise training extended influenza vaccine seroprotection in 

sedentary older adults [12]. Participants performing 10 months of moderate 

(60%-70% maximal oxygen uptake) cardiovascular exercise were compared with 

subjects doing flexibility and balance training. Cardiovascular exercise elicited a 

significant increase in the seroprotective response 24 weeks post vaccination 

compared to the flexibility controls. Two additional studies conducted similar 

moderate exercise training interventions in elderly and found that compared to 

sedentary group, exercise training enhanced antibody responses to influenza 

and KLH immunization, respectively [11, 60]. These studies above demonstrate 

that chronic exercise training can improve antibody responses to vaccination 

older adults. However, Long et al. studied a life-style physical activity intervention 

and the antibody response to pneumococcal vaccination in middle-aged women 

and found that the intervention did not increase the antibody response [13].  

Our data has shown a reduction in anti-OVA IgG responses to vaccination 

in young sedentary mice compared to aged sedentary mice, which is consistent 

with previous literature [105]. Aging is associated with a decrease in naïve B cells, 

but an increase in effector B cells. As a result, there is an impaired antibody 

responses in the aged [52]. Aging also leads to a reduced class switching and 
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somatic recombination TCR repertoire, which contributes to a lower diversity of 

antibody responses and a reduced immunoglobulin G (IgG) antibodies, which 

contributes to a lower affinity of antibody responses [53]. Aging is also associated 

with a decrease in both number and function of naïve T cells. However, we did 

not demonstrate an aging effect in DTH responses to vaccination in our 

experiments. This may due to the different experiment models or different strains 

of mice. 

In conclusion, compared to the sedentary or sham control groups, neither 

one bout nor two bouts of eccentric downhill treadmill exercise, nor electrical 

stimulation of eccentric contraction, improved the primary antibody responses to 

OVA vaccination in young or aged animals in our study. Despite the negative 

results of eccentric exercise on antibody responses, we found that there was 

beneficial effect of acute eccentric exercise on the cell-mediated immune 

response to vaccination in aged, but not young, mice. This study was the first to 

demonstrate the effect of acute eccentric exercise on immune responses to 

vaccination in an animal model. As the literature suggests that the effect of acute 

eccentric exercise is best found when a suboptimal dosage or poorly 

immunogenic strain of vaccine is utilized, in our study, we used a suboptimal 

dosage of OVA and yet still found no effect on the antibody response, but only 

beneficial effect on cell-mediated immune responses in aged animals. We also 

found no effect despite the fact that we utilized two different mouse strains and 

applied the vaccination at various times post-exercise (e.g. immediately, 6h and 

24h). Future studies could utilize different forms of exercise (i.e. exercise 
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training) and different models of immunosuppression (for example, chronic 

stress).  
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CHAPTER 4 

EXERCISE AS A MEANS TO ATTENUATE STRESS-INDUCED REDUCTIONS 

IN VACCINATION RESPONSES 

 

4.1 INTRODUCTION 

Chronic stress has been shown to suppress immune responses, leading 

to morbidity and mortality due to infectious diseases. Vaccines have been one of 

the most successful interventions to protect against infectious diseases and 

improve human health. Unfortunately, people undergoing chronic stress have 

impaired vaccine efficacy and a weakened capacity to protect against infectious 

disease. If our hypotheses are verified, that acute eccentric exercise or exercise 

training enhances immune response to vaccination in chronically stressed mice, 

results from our study would be potentially useful clinically to prescribe acute 

exercise or exercise training as a behavioral adjuvant to augment vaccine 

efficacy in people undergoing chronic stress. We hypothesized that chronic 

restraint stress would suppress both antibody and DTH responses to OVA 

vaccination compared to unstressed control mice. Moreover, chronic restraint 

stress would also decrease body weight and spleen weight, but would cause 

adrenal hypertrophy compared to controls. Importantly, we hypothesized that 

both acute eccentrically-biased downhill running exercise and voluntary wheel 

exercise training would attenuate chronic restraint stress-induced reductions in 

antibody and cell-mediated immune response to vaccination. 
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4.2 METHODS 

Animals 

C57BL/6J male mice aged 6-8 week (n=35) were purchased from Jackson 

Laboratory (Bar Harbor, ME) and individually housed in our AAALAC-accredited 

animal facility. Mice were allowed ad libitum access to water and food (Teklad 

8640, Harlan Laboratories, Indianapolis, IN). All animals were maintained on a 

12-hour light-dark cycle. All experiments were approved by the University of 

Illinois at Urbana-Champaign IACUC. 

Restraint Stress 

Restraint stress was applied by placing mice in adequately ventilated 60-

ml syringes, while ensuring that they were capable of moving laterally, but not 

vertically. It has been shown that restraint stress is widely used as a 

psychological stressor including activation of the autonomic nervous system, 

hypothalamic-pituitary-adrenal axis and adrenal steroid receptors [95]. Mice in 

the three stress groups were exposed to the stressor 5 days/week for six hours 

per day for 3 weeks. The stress sessions were conducted from 9am to 3pm 

Monday through Fridayd during the dark cycle (dark cycle: 3am to 3pm).  

Study design 

Mice were randomized into four groups: mice that did not receive restraint 

stress and were sedentary (No stress, n=9), mice that received chronic restraint 

stress and performed a single acute eccentric exercise bout (Stress + ECC, n=9), 

mice that received chronic restraint stress and performed voluntary wheel 

running (Stress + VWR, n=10), and mice received chronic restraint stress and 
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remained sedentary (Stress-SED, n=7). All three stressed groups received 

chronic restraint stress for 3 weeks. Mice in the ECC group performed a single 

acute bout of eccentrically-biased downhill running (as described before) 42h 

after the last stress session (Figure 4.1). Mice in the VWR group were housed in 

cages with free access to telemetered running wheels (manufacturer?) starting 

from the first day of restraint stress, continuing throughout the entire experiment 

(Figure 4.2). Mice in the SED group were handled similarly and housed in the 

same room with the treadmill and wheel cages to control for incidental stress 

(Figure 4.3). Mice in the “No stress” group stayed in their home cage for the 

entire experiment. All mice received 100μg/mouse of OVA with 200μg alum 

intramuscularly at 43h after the first week’s stress session (immediately after 

eccentric exercise for ECC group). Two weeks after the sensitization, all mice 

were challenged with 100μg OVA to assess DTH responses. Body weight was 

measured immediate after stress daily. Mice were euthanizeded for tissue 

collection at 4wk post initial OVA sensitization.  

 

 

 

Figure 4.1: Study design: effects of acute eccentric exercise on immune 

response to vaccination in chronically stressed mice. 
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Figure 4.2: Study design: effects of voluntary wheel exercise training on immune 

response to vaccination in chronically stressed mice. 

 

 

Figure 4.3: Study design: effects of chronic restraint stress on immune response 

to vaccination. 

Eccentric Exercise 

Eccentrically-biased downhill running protocol was the same as described 

before. Briefly, Stress+ ECC mice were exercised at 17 m/min speed at -20% 

grade for 45 minutes on a treadmill. No electrical shock was used. 

Voluntary Wheel Running 

 Stress-VWR mice were given constant access to a telemetered running 

wheel (Respironics, Bend, OR) during the entire experiment (other than restraint 

stress period). Mice in the other groups were housed in similar cages lacking the 

running wheel and were subjected to similar handling throughout the experiment.  

Vaccination Protocol 
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Intramuscular injections were the same as described before. Briefly, at 43h 

after the first weeks stress session (immediately after eccentric exercise for ECC 

group) all mice were intramuscularly inoculated in the gastrocnemius of their right 

hind limb with 100μg of OVA and 200μg of alum in 50μl sterile saline using a 25-

gauge needle. 

Delayed-type hypersensitivity (DTH) 

     The DTH response protocol was the same as described above. Briefly, 

two weeks after the sensitization, all mice were injected with 100μg OVA 

dissolved in 10μl PBS into the dorsal side of the right ear using a Hamilton 

syringed fitted with a 30-gauge needle. The left ear received 10μl PBS as a 

control for non-specific ear swelling due to injection. Both ears’ thicknesses were 

measured immediately before, and every 24h after intradermal injection using a 

digital microcaliper (Tresna). The measurements were performed in triplicate by 

a single assistant who was blinded to the treatments.  

Blood Collection 

All mice were bled approximately 200μl from the retro-orbital vein using a 

Pasteur pipette prior to vaccination and at one, two and four weeks post-

vaccination. Prior to blood collection, mice were administered isoflurane with 

oxygen at a flow rate of 2-3 L/min until unresponsive. Blood was dispensed into 

heparinized tubes and centrifuged at 1100 x g at 4°C for 15 min. Plasma was 

harvested and frozen at -20°C until analysis. At four week post-inoculation, blood 

was drawn after euthanasia from the inferior vena cava and processed as 
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described before. In each experiment, mice were euthanized by CO2 

asphyxiation followed by cervical dislocation at four weeks post-vaccination.  

Plasma Antibody Measures 

Plasma total anti-OVA IgG and anti-OVA IgM were determined using ELISA 

procedures. Ninety-six-well microtiter plates were coated with 50μl of 20μg/ml 

OVA in carbonate coating buffer and incubated overnight at 4°C. Nonspecific 

binding was blocked with PBS supplemented with 10% fetal bovine serum (FBS) 

and incubated for 1h at 37°C. After washing three times with phosphate buffered 

saline (PBS)-Tween 20, 50μl of plasma was added at a dilution of 1:20 (IgG) or 

1:200 (IgM) in a diluting buffer of PBS/1% FBS and incubated for 1h at 37°C. 

Plates were washed again, and 50μl of horseradish peroxidase (HRP)-rabbit anti-

mouse IgG or HRP-goat anti-mouse IgM (Life Technologies, Frederick, MD), 

diluted 1:800 or 1:400 respectively in diluting buffer, was added. Plates were 

incubated again and then washed. Plates were incubated for 20 minutes in 50μl 

of a 1:1 mixture of 3, 3’, 5,5’ tetramethylbenzidine (TMB) and hydrogen peroxide 

(TMB Substrate Reagent Set, BD Biosciences, San Jose, CA). Lastly, 25μl of 

stop solution (sulfuric acid) was added and read at 450 nm on a 

spectrophotometric plate reader (Labsystems Multiskan, Fisher Scientific, 

Pittsburgh, PA). Plasma anti-OVA IgG or IgM was quantified as the difference in 

optical density (OD) at 450 nm from the pre-injection time point.  

Statistical Analysis 

Results were analyzed using SPSS 22.0 (SPSS Inc., Chicago, IL). Plasma 

anti-OVA IgG was assessed by repeated-measures analysis of variance 
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(ANOVA). All analyses were followed by post-hoc Bonferroni tests in the event of 

a significant main effect or interaction. Ear swelling on day 1 post ear injection 

was assessed by independent T test. Statistical significance was set at P ≤ 0.05 

for all tests. Results are reported as mean ± SEM. 

 

4.3 RESULTS 

Chronic restraint stress reduced body weights and induced adrenal 

hypertrophy. 

 First, we examined the effects of three weeks of chronic restraint stress on 

body weight. Data were presented as percentage change compared to baseline. 

As expected, we found there was a significant time main effect, (F33, 1023 = 261, 

p<0.001), significant time x treatment interaction (F99, 1023 = 21, p<0.001), and a 

significant treatment main effect (F3, 31 = 13, p<0.001) demonstrating that chronic 

restraint stress significantly reduced body weight relative to non-stressed controls 

(Figure 4.4). We also found a significant treatment effect (F3, 31 = 4.34, p=0.011) 

for adrenal, (Figure 4.5) but not spleen, weight (F3, 31 = 0.530, p=0.665) (Figure 

4.6) indicating that chronic restraint stress resulted in significant adrenal 

hypertrophy compared to non-stress controls.  
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Figure 4.4: Chronic restraint stress reduces body weight. There was a 

significant time main effect, (F33, 1023 = 261, p<0.001), significant time x treatment 

interaction (F99, 1023 = 21, p<0.001), and a significant treatment main effect (F3, 31 

= 13, p<0.001). *signifies “No stress” group statistical significant higher than 

three stress groups from day 1 to day 21 (p < 0.05). 
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Figure 4.5: Chronic restraint stress induced adrenal hypertrophy. There was 

a significant treatment effect (F3, 31 = 4.34, p=0.011). *signifies “No stress” group 

statistical significant lower than stress groups (p < 0.05). 
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Figure 4.6: Chronic restraint stress did not affect spleen weight. There was 

no significant treatment effect (F3, 31 = 0.530, p=0.665). 
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Effects of exercise on antibody responses to vaccination in chronically-

stressed mice.  

 Additionally, we investigated whether acute eccentrically-biased downhill 

running and voluntary wheel exercise training could attenuate stress-induced 

reductions in antibody responses to vaccination. We examined both anti-OVA 

IgM and anti-OVA IgG responses to vaccination. When we examined the anti-

OVA IgM responses, we found that there was a significant time main effect (F3, 93 

= 16, p<0.001) as expected, demonstrating plasma anti-OVA IgM increased 

significantly at one, two and four weeks relative to pre-immunization levels. We 

did not find significant time x treatment (F9, 93 = 1.1, p=0.375), but there was a 

trend towards significance in treatment main effect (F3, 31 = 2.4, p=0.085), 

especially at two week post vaccination (F3, 31 = 4.3, p=0.012, when analyzed 

separately) (Figure 4.7). When we examined the anti-OVA IgG responses, we 

found a significant time main effect (F3, 93 = 257, p<0.001), demonstrating plasma 

anti-OVA IgG increased significantly at one, two and four weeks relative to pre-

immunization levels. We did not find significant time x treatment (F9, 93 = 0.87, 

p=0.555), but there was a trend towards significance in treatment main effect (F3, 

31 = 1.8, p=0.16). (Figure 4.8). In summary, we report that both acute eccentric 

exercise and voluntary wheel exercise training tend to attenuated chronic 

restraint stress-induced suppressions in anti-OVA IgM and anti-OVA IgG 

responses to vaccination.  
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Figure 4.7: Effects of exercise on anti-OVA IgM responses in chronically-

stressed mice. There was a significant time main effect (F3, 93 = 16, p<0.001), no 

significant time x treatment (F9, 93 = 1.1, p=0.375), a trend towards significance in 

treatment main effect (F3, 31 = 2.4, p=0.085). Univariate analysis revealed a 

significant treatment effect at two week post vaccination (F3, 31 = 4.3, p=0.012). 

*signifies “Stress-SED” groups statistical significant lower than other groups (p < 

0.05). 
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Figure 4.8: Effects of exercise on anti-OVA IgG responses in chronically-

stressed mice. There was a significant time main effect (F3, 93 = 257, p<0.001), 

no significant time x treatment (F9, 93 = 0.87, p=0.555), but a trend towards 

significance in treatment main effect (F3, 31 = 1.8, p=0.16). 

 

Effects of exercise on cell-mediated responses to vaccination on 

chronically-stressed mice.  

 In addition, we examined whether acute eccentrically-biased downhill 

running and voluntary wheel exercise training could attenuate stress-induced 

reductions in cell-mediated immune response to vaccination. We found there was 

significant time main effect (F6, 186 = 9.1, p<0.001), demonstrating that ear 

swelling increased significantly in all groups (Figure 4.9). However we did not find 

a significant time x treatment interaction (F18, 186 = 0.559, p=0.925). Mice in “No 

stress” group had significant higher DTH responses than all three stressed 

groups (F3, 31 = 4.11, p=0.014), but Bonferroni analysis revealed that there were 

no significant differences among the three stressed groups. So, chronic restraint 

stressed reduced DTH responses compared to non-stressed groups, but neither 
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acute eccentrically-biased downhill running nor voluntary wheel exercise training 

affected the CMI reductions to vaccination.  
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Figure 4.9: Effects of exercise on DTH responses in chronically-stressed 

mice. There was a significant time main effect (F6, 186 = 9.1, p<0.001), no 

significant time x treatment (F18, 186 = 0.559, p=0.925), significant treatment main 

effect (F3, 31 = 4.11, p=0.014). *signifies “No Stress” group statistical significant 

higher than other groups (p < 0.05). 

 

4.4 Discussion 

 This study examined the effects of acute eccentrically-biased downhill 

running and voluntary wheel exercise training on immune responses to 

vaccination in chronically stressed mice. We conclude that both acute eccentric 

exercise and voluntary wheel running tends to attenuate chronic restraint stress-

induced reductions in antibody, but not cell-mediated immune, responses to 

vaccination.  
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The mechanisms responsible for the beneficial effect of exercise on 

antibody responses in chronically stressed mice remain unclear. However, there 

may be several potential mechanisms. It has been well established that one of 

the main characteristics of the stress response is activation of hypothalamic 

pituitary adrenal (HPA) axis. After the perception of a stress, the hypothalamus is 

activated to release corticotrophin-releasing hormone (CRH). CRH will activate 

the anterior pituitary gland to release adrenocorticotropic hormone (ACTH). 

ACTH will then activate adrenal cortex to release glucocorticoids (GC) into the 

general circulation. After acute stimulation of the HPA axis, GC will have a 

negative feedback to the pituitary and hypothalamus and inhibit the further 

secretion of ACTH and CRH. This will prevent excessive release of these 

hormones and terminate the stress- induced HPA axis activation [96]. Chronic 

stressors enhance HPA axis responses, but the sympathetic-adrenomedullary 

system remains unchanged, which leads to adrenal hypertrophy; consistent with 

our data above. Chronically elevated GC levels reduce the sensitivity of HPA 

negative feedback and altered plasma GC concentrations. So, one mechanism 

for chronic stress to suppress vaccination response is through elevated GC 

levels [97]. Acute exercise modulates the HPA axis by an increase in GC [98], 

while exercise training leads to reduced GC by an increase of GC metabolism 

and a decrease in adrenal responsiveness to ACTH [99]. 

It has been suggested that physical exercise facilitates habituation of 

HPA-axis activation under stress conditions [100]. Sasse et al. examined the 

effects of chronic voluntary wheel running on stress hormone habituation to 
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repeated audiogenic stress exposure in rats [100]. Rats were given access to 

running wheel for 6 weeks or remained sedentary. Then, all rats were exposed to 

11 days of noise stress for 30 min/day. They reported that exercised animals had 

significant lower corticosterone, but not ACTH, levels compared to sedentary 

animals after repeated stress. They conclude that voluntary physical exercise 

facilitates habituation of HPA-axis activation to repeated stress, a phenomena 

known as cross-stress resistance [101]. Similarly, exercise has also been shown 

to modulate the HPA-axis responses to stress in humans. Wittert et al. reported 

that ultramarathon athletes have adaptive changes in basal HPA function in 

response to stress, including a phase shift and increased pituitary ACTH 

secretion, but a blunted adrenal cortisol response [102]. However, previous 

literature regarding the effect of exercise on HPA axis responses to stress are 

inconsistent. Moraska et al. reported four-week of voluntary wheel running did 

not affect corticosterone responses to inescapable tail-shock stress compared to 

sedentary group [82]. 

Another potential mechanism responsible for the beneficial effect of 

exercise on antibody responses in chronically stressful situations may involve the 

sympathetic nervous system (SNS) and norepinephrine (NE). Sympathetic nerve 

terminals release the neurotransmitter NE in the proximity of immune cells that 

express the β2 adrenergic receptor (β2AR), helping to maintain immune 

homeostasis [103]. For example, sympathetic nerve fibers penetrate into primary 

and secondary lymphoid organs. The neurotransmitter NE is released from nerve 

terminals located within the direct vicinity of CD4 T cells and B cells, which 
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express the β2AR. Th1 cells that develop from naïve CD4 T cells, which are 

activated by NE, produce more INF-γ per cell. NE stimulates the β2AR on B cells 

to increase the rate of antibody production [103]. Wang et al. investigated 

exercise-induced NE in counteracting stress-induced hippocampal damage [104]. 

They compared voluntary wheel running, three weeks of restraint stress, exercise 

and stress, and control groups. They reported that the exercise-alone group had 

the highest NE levels, while the exercise-stressed group had significant higher 

NE levels than the stressed-alone group. So catecholamine, specifically NE, 

released by the SNS may play a role in exercise attenuating stress-induced 

reductions in antibody responses.  

Acute exercise acting as an adjuvant in increasing muscle inflammation 

may also play an important role in augmenting the vaccine responses. Eccentric 

exercise causes the exercising muscle to produce continuous force while it 

lengthens, leading to damage of the internal structure of the muscle fibers and 

connective tissue [7]. The substantial increase in plasma creatine kinase 

indicates this damage is greater than that caused by concentric or shortening 

muscle contractions [8]. Muscle damage can result in a localized inflammatory 

response and delayed onset muscle soreness when conducted in naive 

participants [9]. It is hypothesized that the influx of immune cells and the release 

of inflammatory mediators caused by this eccentrically-induced muscle damage 

creates a pro-inflammatory environment in a muscle that may activate dendritic 

and other cells to augment the immune response to vaccination when given 

intramuscularly in the damaged muscle [10]. This heightened inflammatory 
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environment may be a particularly effective behavioral adjuvant as eccentric 

exercise localizes muscle damage to the specific site of intramuscular vaccine 

administration.  

 

In conclusion, our data suggested that both eccentrically-biased downhill 

running and voluntary wheel exercise training tends to attenuate chronically 

restraint stress-induced suppression in antibody, but not cell-mediated responses 

in mice.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 We examined the effects of exercise on age- and stress-related 

attenuation of vaccination responses in mice. Firstly, we investigated the effects 

of acute eccentric exercise on immune responses to a suboptimal dosage of 

ovalbumin vaccination in young and aged mice. Secondly, we examined the 

effects of acute eccentrically-biased downhill running and voluntary wheel 

exercise training on immune responses to vaccination in chronically stressed 

mice. We conclude that acute eccentric exercise enhanced cell-mediated 

response in aged mice, but not antibody responses in either young or aged mice 

and that both acute eccentric exercise and voluntary wheel running tends to 

attenuate chronic restraint stress-induced reductions in antibody, but not cell-

mediated immune responses to vaccination.  

There are some potential limitations to this study. First, we had a relative 

small sample size and only male mice were used in our experiments. Use of 

males only is consistent with previous rodent studies, which investigate the 

effects of exercise or stress in general, on immune responses to vaccination [14, 

27, 28], most likely to minimize the confound of female reproductive cycle on 

study outcomes. However, human studies have reported different antibody or 

cell-mediated responses to vaccination in men and women [5]. Pascoe et al. 

proposed that exercise beneficial effect only observed in men or women was 

because of their differences in the control responses [92]. Beneficial effects were 
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only observed in the weaker control responses group. That being said, we used 

aged mice and chronically-stressed model to further investigate the mechanisms. 

In addition, our sample size may be smaller than other animal studies [67].   

In our second set of experiments, we can only conclude that there was a 

tendency for acute eccentric exercise and voluntary wheel running to attenuate 

the stress-induced reduction in antibody responses. We did not have enough 

statistic power to draw a definitive conclusion because of our small sample size 

and relative large variability. In future studies, we would add more animals to this 

study in order to increase the statistical power to detect an effect and to draw a 

definitive conclusion. If upon finding a definitive conclusion, future experiments 

will need to be performed to determine the effect of exercise on stress hormones 

(i.e. ACTH, corticosterone, norepinephrine) in stressed conditions to further 

understand the mechanism underlying the beneficial effect of exercise on 

immune response to vaccination in chronically restraint stressed mice.  
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