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ABSTRACT

For a compact Riemann surface of genus g ≥ 2, the components of the moduli space of

Sp(4,R)-Higgs bundles, or equivalently the Sp(4,R)-character variety, are partially labeled

by an integer d known as the Toledo invariant. The subspace for which this integer attains a

maximum has been shown to have 3 · 22g + 2g− 4 many components. A gluing construction

between parabolic Higgs bundles over a connected sum of Riemann surfaces provides model

Higgs bundles in a subfamily of particular signi�cance. This construction is formulated in

terms of solutions to the Hitchin equations, using the linearization of a relevant elliptic

operator.
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SYNOPSIS

Let Σ be a closed connected and oriented surface of genus g ≥ 2 and G be a connected

semisimple Lie group. The moduli space of reductive representations of π1 (Σ) into G modulo

conjugation

R (G) = Hom+ (π1 (Σ) , G) /G

has been an object of extensive study and interest. Fixing a complex structure J on the sur-

face Σ transforms this into a Riemann surface X = (Σ, J) and opens the way for holomorphic

techniques using the theory of Higgs bundles. The non-abelian Hodge theory correspondence

provides a real-analytic isomorphism between the character variety R (G) and the moduli

spaceM (G) of polystable G-Higgs bundles. In this dissertation we are primarily interested

in the case when G = Sp(4,R). The precise de�nition of an Sp(4,R)-Higgs bundle over a

compact Riemann surface X reads as follows:

De�nition 1. Let K = T ∗X be the canonical line bundle over X. An Sp(4,R)-Higgs bundle
over X is de�ned as a triple (V, β, γ), where V is a rank 2 holomorphic vector bundle over

X and β, γ are symmetric homomorphisms

β : V ∗ → V ⊗K and γ : V → V ∗ ⊗K

The embedding Sp(4,R) ↪→ SL(4,C) allows one to reinterpret the de�ning Sp(4,R)-Higgs
bundle data as special SL(4,C)-data in the original sense of N. Hitchin [26]. In particular,

an Sp(4,R)-Higgs bundle is alternatively de�ned as a pair (E,Φ), where

1. E = V ⊕ V ∗ is a rank 4 holomorphic vector bundle over X and

2. Φ : E → E ⊗K is a holomorphic K-valued endomorphism of E with Φ =

(
0 β

γ 0

)
A basic topological invariant for the tuples (V, β, γ) is given by the degree of the underlying

rank 2 bundle

d = deg (V )
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This invariant, called the Toledo invariant, ranges between 2 − 2g and 2g − 2 and the

corresponding representations in the character variety are of particular interest for the ex-

tremal cases, that is when |d| = 2g − 2. The subspace of maximal Sp(4,R)-Higgs bundles
Mmax = M2g−2 ' M2−2g has been shown to have 3 · 22g + 2g − 4 connected components

[21].

Among the connected components ofMmax ' Rmax, there are 2g − 3 exceptional compo-

nents of this moduli space. These components are all smooth but topologically non-trivial,

and representations in these do not factor through any proper reductive subgroup of Sp (4,R),

thus have Zariski-dense image in Sp (4,R). On the other hand, for the remaining 3 · 22g − 1

components, model Higgs bundles can be obtained by embedding stable SL(2,R)-Higgs data
into Sp(4,R), using appropriate embeddings φ : SL(2,R) ↪→ Sp(4,R) (see [9]). This method,

however, will obviously not apply for �nding model Higgs bundles in the 2g − 3 exceptional

ones. The construction of Sp(4,R)-Higgs bundles that lie in these exceptional components

is the principal objective of this dissertation.

From the point of view of the character variety Rmax, model representations in a sub-

family of the 2g − 3 special components have been e�ectively constructed by O. Guichard

and A. Wienhard in [22] by means of a certain topological gluing construction, which

we brie�y describe next: Let Σ = Σl∪γΣr be a decomposition of the surface Σ along

a simple, closed, oriented, separating geodesic γ into two subsurfaces Σl and Σr. Pick

ρirr : π1 (Σ) → SL (2,R)
φirr−−→ Sp (4,R) an irreducible Fuchsian representation and ρ∆ :

π1 (Σ)→ SL (2,R)
∆−→ SL(2,R)2 → Sp (4,R) a diagonal Fuchsian representation. One could

amalgamate the restriction of the irreducible Fuchsian representation ρirr to Σl with the re-

striction of the diagonal Fuchsian representation ρ∆ to Σr, however the holonomies of those

along γ a priori do not agree. A deformation of ρ∆ on π1 (Σ) can be considered, such that the

holonomies would agree along γ, thus allowing the amalgamation operation. This introduces

new representations by gluing:

De�nition 2. A hybrid representation is de�ned as the amalgamated representation

ρ := ρl
∣∣
π1(Σl) ∗ ρr

∣∣
π1(Σr) : π1 (Σ) ' π1 (Σl) ∗〈γ〉π1 (Σr)→ Sp (4,R)

O. Guichard and A. Wienhard also introduce appropriate topological invariants for Anosov

representations, a special case of which are the maximal symplectic surface group representa-

tions. An explicit computation of the invariants for the hybrid representations provides that

these serve as models to the odd-indexed exceptional components ofMmax, while the actual

component in which a particular hybrid representation lies, depends entirely on the genus of

the surface Σl appearing in the decomposition of Σ along a closed, separating geodesic.
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Motivated by the topological gluing construction described above, we aim at developing

a gluing construction for (poly)stable G-Higgs bundles over a complex connected sum of

Riemann surfaces. The establishment of such a technique may have a wider applicability in

constructing points in the interior of moduli of G-Higgs bundles.

In this dissertation, we formulate the gluing construction for the case when G = Sp(4,R).
We also point out how one can choose Sp(4,R)-Higgs bundle data over a pair of Riemann

surfaces so that the resulting hybrid Higgs bundle obtained by gluing lies in one of the

2g − 3 exceptional components ofMmax. Even further, we describe how the choices of the

initial gluing data can provide model Higgs bundles in all exceptional components. The

latter completes the description of a speci�c relation between the Higgs bundle topological

invariants and the topological invariants for Anosov representations for maximal symplectic

surface group representations.

The �rst step in this direction is to understand the objects corresponding to Sp(4,R)-
representations over a surface with boundary with �xed arbitrary holonomy around the

boundary. These objects are Higgs bundles de�ned over a Riemann surface with a divisor,

together with a weighted �ag on the �bers over the points in the divisor, namely parabolic

Higgs bundles. Indeed, a non-abelian Hodge correspondence was established by C. Simpson

in the non-compact case [40] and later on, a Hitchin-Kobayashi correspondence was provided

by O. Biquard, O. García-Prada and I. Mundet i Riera for parabolic G-Higgs bundles [5].

We de�ne these appropriate holomorphic objects as follows:

De�nition 3. Let X be a compact Riemann surface of genus g and consider the divisor

D := {x1, . . . , xs} of s-many distinct points on X, assuming that 2g− 2 + s > 0. A parabolic

Sp(4,R)-Higgs bundle over X is de�ned as a triple (V, β, γ), where

• V is a rank 2 bundle on X, equipped with a parabolic structure at each point x ∈ D
given by the �ag

Vx ⊃ Lx ⊃ 0

and weights

0 ≤ α1 (x) < α2 (x) < 1

• β : V ∨ → V ⊗K⊗ ι and γ : V → V ∨⊗K⊗ ι are strongly parabolic morphisms, where

V ∨ denotes the parabolic dual of V , K = T ∗X and ι = OX (D) is a �xed line bundle

over the divisor D.

A notion of parabolic Toledo invariant of a parabolic Sp (4,R)-Higgs bundle is de�ned as
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the rational number

τ = par deg (V ) = deg (V ) +
∑
x∈D

(α1 (x) + α2 (x))

and a Milnor-Wood type inequality for this invariant can still be established:

Proposition 1. [Proposition 2.4.2] Let (E,Φ) be a semistable parabolic Sp (4,R)-Higgs

bundle. Then

|τ | ≤ 2g − 2 + s

where s is the number of points in the divisor D.

As in the non-parabolic case, the parabolic Sp (4,R)-Higgs bundles with parabolic Toledo

invariant τ = 2g − 2 + s will be called maximal and we denote the components containing

such triples (V, β, γ) byMmax
par .

Let X1, X2 be two distinct compact Riemann surfaces with a divisor of s-many distinct

points on each, and consider a pair of parabolic Sp(4,R)-Higgs bundles over X1, X2 respec-

tively. The complex connected sum X# = X1#X2 of the Riemann surfaces is constructed

using a biholomorphism between annuli around pairs of points, one on each of X1 and X2.

It is important that a gluing construction of parabolic Higgs bundles over the connected

sum X# is formulated so that the gluing of stable parabolic pairs is providing a polystable

Higgs bundle over X#. Moreover, in order to construct new models in the components of

M (X#, Sp(4,R)), the parabolic gluing data over X1 and X2 are chosen to be coming from

di�erent embeddings of SL(2,R)-parabolic data into Sp(4,R), and so a priori do not agree

over disks around the points in the divisors. We choose to switch to the language of solu-

tions to Hitchin's equations and make use of the analytic techniques of C. Taubes for gluing

instantons over 4-manifolds in order to control the stability condition. This involves viewing

our stable parabolic Sp(4,R)-Higgs bundles over the punctured Riemann surfaces X1 and X2

as solutions to the Sp(4,R)-Hitchin equations.

The problem now involves perturbing this initial data into model solutions which are iden-

ti�ed locally over the annuli around the points in the divisors, thus allowing the construction

of a pair over X# that combines the initial data over X1 and X2. The existence of these

perturbations in terms of appropriate gauge transformations is initially provided for SL(2,R)-
data, and we next use the embeddings of SL(2,R) into Sp(4,R) to extend this deformation

argument for our initial pairs. This produces an approximate solution to the Sp(4,R)-Hitchin
equations (AappR ,Φapp

R ) over X#, with respect to a parameter R > 0 which describes the size

of the neck region in the construction of X#. The pair (AappR ,Φapp
R ) coincides with the initial

data over each hand side Riemann surface and with the model over the neck region.
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By construction, this pair is complex gauge equivalent to an exact solution of the Hitchin

equations, so the second equation is preserved, while the �rst equation is satis�ed up to an

error which we have good control of:

Lemma. [Lemma 3.4.4] The approximate solution (AappR ,Φapp
R ) to the parameter 0 < R < 1

satis�es ∥∥∥∗FAappR
+ ∗ [Φapp

R ,−τ (Φapp
R )]

∥∥∥
C0
≤ CRδ′′

for some constants δ′′ > 0 and C = C (δ′′) not depending on R.

The next important step is to correct this approximate solution to an exact solution of the

Sp(4,R)-Hitchin equations over the complex connected sum of Riemann surfaces. In other

words, we seek for a complex gauge transformation g such that g∗ (AappR ,Φapp
R ) is an exact

solution of the Sp(4,R)-Hitchin equations. The argument providing the existence of such

a gauge is translated into a Banach �xed point theorem argument and involves the study

of the linearization of a relevant elliptic operator. For Higgs bundles this was �rst studied

by R. Mazzeo, J. Swoboda, H. Weiss and F. Witt in [29], who described solutions to the

SL(2,C)-Hitchin equations near the ends of the moduli space. For the complex connected

sum X# we consider the nonlinear G-Hitchin operator at a pair (A,Φ),

H (A,Φ) =
(
F (A)− [Φ, τ (Φ)] , ∂̄AΦ

)
to work with. A crucial step in this argument is to show that the linearization of this operator

at our approximate solution (AappR ,Φapp
R ) is invertible; this is obtained by showing that an

appropriate self-adjoint Dirac-type operator has no small eigenvalues. This method was also

used by J. Swoboda in [42] to produce a family of smooth solutions of the SL(2,C)-Hitchin
equations, which may be viewed as desingularizing a solution with logarithmic singularities

over a noded Riemann surface. Modifying the analytic techniques from [42], we extend the

main theorem from that article to solutions of the Sp(4,R)-Hitchin equations, and moreover

obtain our main result:

Theorem. [Theorem 3.8.4] Let X1 be a closed Riemann surface of genus g1 and D1 =

{p1, . . . , ps} be a collection of s-many distinct points on X1. Consider respectively a closed

Riemann surface X2 of genus g2 and a collection of also s-many distinct points D2 =

{q1, . . . , qs} on X2. Let (E1,Φ1) → X1 and (E2,Φ2) → X2 be parabolic stable Sp(4,R)-
Higgs bundles with corresponding solutions to the Hitchin equations (A1,Φ1) and (A2,Φ2).

Assume that these solutions agree with model solutions
(
A mod

1,pi
,Φ mod

1,pi

)
and

(
A mod

2,qj
,Φ mod

2,qj

)
near the points pi ∈ D1 and qj ∈ D2, and that the model solutions satisfy

(
A mod

1,pi
,Φ mod

1,pi

)
=

−
(
A mod

2,qj
,Φ mod

2,qj

)
, for s-many possible pairs of points (pi, qj). Then there is a polystable
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Sp(4,R)-Higgs bundle (E#,Φ#)→ X#, constructed over the connected sum of Riemann sur-

faces X# = X1#X2 of genus g1 + g2 + s− 1, which agrees with the initial data over X#\X1

and X#\X2.

De�nition 4. We call an Sp(4,R)-Higgs bundle constructed by the preceding construction

a hybrid Sp(4,R)-Higgs bundle.

Subsequently, the goal is to identify the connected component of the moduli space a hybrid

Higgs bundle lies, given a choice of stable parabolic ingredients to glue. For this purpose, we

need to look at how do the Higgs bundle topological invariants behave under the complex

connected sum operation. We �rst show the following:

Proposition 2. [Proposition 4.1.1] Let X# = X1#X2 be the complex connected sum of two

closed Riemann surfaces X1 and X2 with divisors D1 and D2 of s-many distinct points on

each surface, and let V1, V2 be parabolic principal HC-bundles over X1 and X2 respectively.

For a parabolic subgroup P ⊂ HC, a holomorphic reduction σ of the structure group of E

from HC to P and an antidominant character χ of P , the following identity holds:

deg (V1#V2) (σ, χ) = pardegα1
(V1) (σ, χ) + pardegα2

(V2) (σ, χ)

This proposition implies that the connected sum of maximal parabolic Sp(4,R)-Higgs
bundles is again a maximal (non-parabolic) Sp(4,R)-Higgs bundle. Note that an analogous

additivity property for the Toledo invariant was established by M. Burger, A. Iozzi and A.

Wienhard in [12] from the point of view of fundamental group representations.

In order to obtain model hybrid Higgs bundles inside the exceptional 2g−3 components of

Mmax, we construct appropriate model maximal parabolic Sp(4,R)-Higgs bundles extending
maximal parabolic SL(2,R)-data through the embeddings φirr and ∆ used in the topological

construction of a hybrid representation; let these particular parabolic models be denoted

by (V1, β1, γ1) and (V2, β2, γ2) over the Riemann surfaces X1 and X2 respectively. We can

then keep track of the Higgs bundle topological invariants under this grafting procedure and

deduce the following two propositions:

Proposition 3. [Proposition 4.2.4] Let L0 be a square root of the canonical line bundle K#

over the complex connected sum surface X#. The hybrid Higgs bundle (V#,Φ#) constructed

by gluing the maximal parabolic Higgs bundles (V1, β1, γ1) and (V2, β2, γ2) is maximal with a

corresponding Cayley partnerW# := V ∗#⊗L0 for which it is w1 (W#) = 0 andW# = L#⊕L−1
# ,

for some line bundle L# over X#.
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Proposition 4. [Proposition 4.2.6] Let ι1 = OX1 (D1) be the line bundle over a divisor in

X1. For the line bundle L# appearing in the decomposition W# = L# ⊕ L−1
# of the Cayley

partner, it is

deg (L#) = par degKX1 ⊗ ι1

The last two propositions assert that the hybrid Higgs bundles constructed are modeling

all exceptional components of Mmax. These components are fully distinguished by the

calculation of the degree of the line bundle L#. Moreover, for the case G = Sp(4,R), taking
all the possible decompositions of a surface Σ along a simple, closed, separating geodesic

is su�cient in order to obtain representations in the desired components of Mmax. This

result also allows, for the �rst time, to compare the invariants of maximal Higgs bundles

to the topological invariants for Anosov representations constructed by O. Guichard and A.

Wienhard.
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CHAPTER 1

SP(4,R)-HIGGS BUNDLES

1.1 G-Higgs bundles

Let X be a compact Riemann surface and let G be a real reductive group. The latter

involves considering Cartan data (G,H, θ, B), where H ⊂ G is a maximal compact subgroup,

θ : g → g is a Cartan involution and B is a non-degenerate bilinear form on g, which

is Ad (G)-invariant and θ-invariant. Moreover, the data (G,H, θ, B) have to satisfy the

following:

1. The Lie algebra g of the group G is reductive

2. θ gives a decomposition (called the Cartan decomposition)

g = h⊕m

into its ±1-eigenspaces, where h is the Lie algebra of H

3. h and m are orthogonal under B and B is positive de�nite on m and negative de�nite

on h

4. multiplication as a map from H × expm into G is an onto di�eomorphism.

Let HC be the complexi�cation of H and let gC = hC ⊕mC be the complexi�cation of the

Cartan decomposition. The adjoint action of G on g restricts to give a representation (the

isotropy representation) of H on m. This is independent of the choice of Cartan decomposi-

tion, since any two Cartan decompositions of G are related by a conjugation, using also that

[h,m] ⊆ m, and the same is true for the complexi�ed isotropy representation

ι : HC → GL(mC)

This introduces the following de�nition:

8



De�nition 1.1.1. Let K be the canonical line bundle over X. A G-Higgs bundle is a pair

(E,ϕ) where

• E is a principal holomorphic HC-bundle over X and

• ϕ is a holomorphic section of the vector bundle E
(
mC
)
⊗K =

(
E×ιmC

)
⊗K

The section ϕ is called the Higgs �eld.

Two G-Higgs bundles (E,ϕ) and (E ′, ϕ′) are said to be isomoprhic if there is a vector

bundle isomorphism E ∼= E ′ which takes the induced ϕ to ϕ′ under the induced isomorphism

E
(
mC
) ∼= E ′

(
mC
)
.

When G is a real compact reductive Lie group, the Cartan decomposition of the Lie algebra

is

g = h

thus the Higgs �eld ϕ equals zero. Hence, a G-Higgs bundle in this case is in fact a principal

GC-bundle.

When G is a complex reductive Lie group, with Gr the underlying real Lie group, the

complexi�cation HC of a maximal compact subgroup coincides with G and since

gr = h⊕ ih,

the isotropy representation coincides with the adjoint representation of G on its Lie algebra.

Hence, De�nition 1.1.1 for the underlying real Lie group Gr coincides with the notion of a

G-Higgs bundle for a complex reductive Lie group G.

When G = GL(n,C) in particular, E (gl (n,C)) = End (V ), where V is the rank n vector

bundle associated to the principal GL(n,C)-bundle E via the standard representation of

GL(n,C) in Cn. Hence, a G-Higgs bundle in this case is a Higgs bundle in the original sense

of N. Hitchin [26].

1.1.1 Stability

To de�ne a moduli space of G-Higgs bundles we need to consider a notion of semistability,

stability and polystability. These notions are de�ned in terms of an antidominant character

for a parabolic subgroup PA ⊆ HC and a holomorphic reduction σ of the structure group

of the bundle E from HC to PA. We next summarize the introduction of these notions; for

more details see [18], or [1] in the case when HC is semisimple in particular.
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Let H be a compact and connected Lie group and let HC be its complexi�cation, which is

assumed to be a semisimple complex Lie group. A subgroup P ⊂ HC is said to be parabolic

if the homogeneous space HC/P is a projective variety. Consider a Cartan subalgebra c of

the Lie algebra h. Finally, let ∆ denote a choice of simple roots of hC, with respect to the

Cartan algebra c. We can then write the root space decomposition of hC as:

hC = c⊕

(⊕
δ∈∆

hδ

)

where hδ = hC is the root space corresponding to δ. Let ∆+ be the set of positive roots and

Π = {α1, . . . αn} be the set of simple roots. For any subset A ⊂ Π de�ne

∆A =

{
δ ∈ ∆

∣∣∣∣∣δ =
n∑
i=1

miαi with mi ≥ 0 for all αi ∈ A

}

and let

pA = c⊕

(⊕
δ∈∆A

hδ

)

as a Lie subalgebra of hC. If PA ⊂ HC denotes the connected subgroup with Lie algebra pA,

then PA is a parabolic subgroup of HC.

An antidominant character for the parabolic subgroup PA is an element of the form

χ =
∑
αi∈A

miλi

with all mi ≤ 0 and for {λ1, . . . , λn} ∈ c∗ de�ned by the condition
2〈λi,αj〉
〈αj ,αj〉 = δij, where αi ∈ Π

are simple roots. The character χ is called strictly antidominant if mi < 0 for all αi ∈ A.
Now let (E,ϕ) be a G-Higgs bundle such that HC is a semisimple complex Lie group, and

consider a parabolic subgroup PA ⊆ HC and LA ⊆ PA its Levi subgroup. Moreover, for a

holomorphic section σ of E
(
HC/PA

)
, let Eσ be the corresponding reduction of structure

group of E from HC to PA, i.e. a principal PA-bundle Eσ such that E ∼= Eσ×PAHC.

If χ is an antidominant character for PA, let(
mC)−

χ
=
{
v ∈ mC ∣∣ι (etsχ) v remains bounded as t→∞

}
(
mC)0

χ
=
{
v ∈ mC ∣∣ι (etsχ) v = v for any t

}
⊂
(
mC)−

χ

which are subspaces of mC invariant under the action of PA and LA respectively. We have

that E
(
mC
) ∼= Eσ×PAmC and E

(
mC
) ∼= EσL×LAmC and we can thus identify the vector

10



bundles Eσ×PA
(
mC
)−
χ
and EσL×LA

(
mC
)0

χ
with two holomorphic subbundles

E
(
mC)0

χ
⊆ E

(
mC)−

χ
⊆ E

(
mC)

If χ =
∑
αi∈A

miλi, where {λi} ∈ ζ∗ ⊕ c∗ is the set of fundamental weights associated to

simple roots Π = {αi}, there exists some positive integer n such that for any αi ∈ A, the
morphism of Lie algebras nλi : ζ ⊕ c → C gives a morphism of Lie groups κnαi : PA → C∗.
The degree of the bundle E with respect to a reduction σ and to an antidominant character

χ is de�ned as the real number

deg (E) (σ, χ) =
1

n

∑
deg

(
Eσ×κnαiC

∗)
We are �nally in position to de�ne the stability conditions:

De�nition 1.1.2. A G-Higgs bundle (E,ϕ) is called

• semistable if for any parabolic subgroup P ⊂ HC, any antidominant character χ for P

and any holomorphic section σ ∈ Γ
(
E
(
HC/P

))
such that ϕ ∈ H0

(
E
(
mC
)−
σ,χ
⊗K

)
,

we have

deg (E) (σ, χ) ≥ 0

• stable if it is semistable and furthermore: for any P ,χ and σ as above, such that

ϕ ∈ H0
(
E
(
mC
)−
σ,χ
⊗K

)
and such that P 6= HC, we have

deg (E) (σ, χ) > 0

• polystable if it is semistable and furthermore: for any P ,χ and σ as above, such that

ϕ ∈ H0
(
E
(
mC
)−
σ,χ
⊗K

)
, P 6= HC and χ is strictly antidominant, and such that

deg (E) (σ, χ) = 0,

there is a holomorphic reduction of the structure group σL ∈ Γ (Eσ (P/L )), where

Eσ denotes the principal P -bundle obtained from reduction of structure group σ and

L ⊂ P is the Levi subgroup. Furthermore, under these hypotheses, it is required that

ϕ ∈ H0
(
E
(
mC
)0

σL,χ
⊗K

)
.

These notions can be generalized for the case when the group HC is reductive but not

semisimple. In that case, the notions depend also on an extra parameter α ∈ Z
(
hC
)
which

11



is equal to zero when HC is indeed semisimple (cf. [18] for more details). A more workable

version of these notions is obtained by giving a description of the objects involved in the

de�nition in terms of �ltrations of certain vector bundles:

Let HC be a classical group, and let ρ : HC → GL(n,C) be the standard representation

which associates to E the vector bundle V = E×ρCn. A pair (σ, χ) consisted of a holomorphic

reduction of structure group σ and an antidominant character χ for a parabolic subgroup

PA ⊆ HC can be shown to correspond to a �ltration of vector bundles

V = (0 ⊂ V1 ⊂ . . . ⊂ Vk−1 ⊂ Vk = V )

and an increasing sequence of real numbers (usually called weights)

λ1 < . . . < λk

We de�ne the degree of the bundle E with respect to a weighted �ltration of vector bundles

by

deg (E) = λk deg V +
k−1∑
i=1

(λi − λi+1) deg Vi

De�nition 1.1.3. A G-Higgs bundle (E,ϕ) is called semistable if for any weighted �ltration

V , we have deg (E) ≥ 0; it is called stable if for any V , we have deg (E) > 0 and �nally it is

called polystable if deg (E) = 0.

When the group G is connected, principal HC-bundles E are topologically classi�ed by a

characteristic class c (E) ∈ H2
(
X, π1

(
HC
))

= π1

(
HC
)

= π1 (H) = π1 (G).

De�nition 1.1.4. For a �xed class d ∈ π1 (G), the moduli space of polystable G-Higgs

bundles is de�ned as the set of isomorphism classes of polystable G-Higgs bundles (E,ϕ)

such that c (E) = d. We will denote this byM (G) and when the group G is compact, the

moduli spaceMd (G) coincides withMd

(
GC
)
.

The following theorem can be shown using the general GIT constructions of A. Schmitt

for decorated principal bundles in the case of a real form of a complex reductive algebraic

Lie group; see [36], [37] for details.

Theorem 1.1.5. The moduli spaceMd (G) is a complex analytic variety, which is algebraic

when G is algebraic.

Deformation theory of G-Higgs bundles can be now used to provide a computation of the

expected dimension of this moduli space; for further information we refer to [17] and the

references therein.
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De�nition 1.1.6. Let (E,ϕ) be a G-Higgs bundle. The deformation complex of (E,ϕ) is

the following complex of sheaves

C• (E,ϕ) : E
(
hC
) ad(ϕ)−−−→ E

(
mC)⊗K

The space of in�nitesimal deformations of a G-higgs bundle (E,ϕ) is shown to be naturally

isomorphic to the hypercohomology group H1 (C• (E,ϕ)). For G semisimple and for a G-

Higgs bundle (E,ϕ) stable and simple, the dimension of the component of the moduli space

containing the pair (E,ϕ) equals the dimension of the in�nitesimal deformation space; this

is referred to as the expected dimension of the moduli space. The Riemann-Roch theorem

can be now used to calculate this dimension:

Proposition 1.1.7. Let G be a connected semisimple real Lie group. Then the expected

dimension of the moduli space of G-Higgs bundles is (g − 1) dimGC.

1.1.2 G-Higgs bundles and Hitchin equations

Let (E,ϕ) be a G-Higgs bundle over a compact Riemann surface X. By a slight abuse of

notation we shall denote the underlying smooth objects of E and ϕ by the same symbols.

The Higgs �eld can be thus viewed as a (1, 0)-form ϕ ∈ Ω1,0
(
E
(
mC
))
. Given a reduction

h of structure group to H in the smooth HC-bundle E, we denote by Fh the curvature of

the unique connection compatible with h and the holomorphic structure on E. Let τh :

Ω1,0
(
E
(
gC
))
→ Ω0,1

(
E
(
gC
))

be de�ned by the compact conjugation of gC which is given

�berwise by the reduction h, combined with complex conjugation on complex 1-forms. The

next theorem was proved in [18] for an arbitrary reductive real Lie group G.

Theorem 1.1.8. There exists a reduction h of the structure group of E from HC to H

satisfying the Hitchin equation

Fh − [ϕ, τh (ϕ)] = 0

if and only if (E,ϕ) is polystable.

From the point of view of moduli spaces it is convenient to �x a C∞ principal H-bundle EH

with �xed topological class d ∈ π1 (H) and study the moduli space of solutions to Hitchin's

equations for a pair (A,ϕ) consisting of an H-connection A and ϕ ∈ Ω1,0
(
X,EH

(
mC
))
:

FA − [ϕ, τ (ϕ)] = 0 (1.1)

∂̄Aϕ = 0 (1.2)
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where dA is the covariant derivative associated to A and ∂̄A is the (0, 1)-part of dA, de�ning

the holomorphic structure on EH . Also, τ is de�ned by the �xed reduction of structure group

EH ↪→ EH

(
HC
)
. The gauge group GH of EH acts on the space of solutions by conjugation

and the moduli space of solutions is de�ned by

Mgauge
d (G) := {(A,ϕ) satisfying (1.1) and (1.2)}/GH

Now, Theorem 1.1.8 implies the following

Theorem 1.1.9. There is a homeomorphism

Md (G) ∼=Mgauge
d (G)

Using the one-to-one correspondence between H-connections on EH and ∂̄-operators on

EHC , the homeomorphism in the above theorem can be interpreted by saying that in the

GCH-orbit of a polystable G-Higgs bundle
(
∂̄E0 , ϕ0

)
we can �nd another Higgs bundle

(
∂̄E, ϕ

)
whose corresponding pair (dA, ϕ) satis�es the equation FA− [ϕ, τ (ϕ)] = 0, and this is unique

up to H-gauge transformations.

1.1.3 Morse theory on the moduli space of G-Higgs bundles

Morse theoretic techniques for the study of moduli of holomorphic vector bundles were �rst

applied by M. Atiyah and R. Bott in [3]. In the context of moduli of Higgs bundles such

techniques were applied by N. Hitchin in [25] and [26]. In order to count the connected

components of the moduli space of G-Higgs bundles, a criterion for �nding the local minima

of a Morse function onM (G) is of particular importance.

The appropriate Morse function is de�ned on the moduli space of G-Higgs bundles, when

viewed in the context of solutions to the Hitchin equations. From this point of view, de�ne

f :Md (G)→ R

(dA, ϕ) 7→ ‖ϕ‖2

where ‖ϕ‖2 =
∫
X

|ϕ|2dvol is the L2-norm of ϕ. This norm is well de�ned because |ϕ|2 is

invariant under H-gauge transformations. An important property of the map f is that away

from the singular locus ofMd (G) it is a moment map for the Hamiltonian S1-action given

by

(dA, ϕ) 7→
(
dA, e

iϑϕ
)

14



WhenMd (G) is smooth, the map f is a perfect Morse-Bott function and the critical points

of f are exactly the �xed points of the circle action; the G-Higgs bundles corresponding

to �xed points are called Hodge-bundles, and for those there is a semisimple element ψ ∈
H0 (E (h)) and decompositions E

(
hC
)

= ⊕
k
E
(
hC
)
k
, E

(
mC
)

= ⊕
k
E
(
mC
)
k
in eigen-bundles

for ψ. However, even whenMd (G) has singularities, the map f can be still used to study

the connected components ofMd (G), due to the next important proposition proved by N.

Hitchin in [26] and its following corollary:

Proposition 1.1.10. The function f :Md (G)→ R is a proper map.

Corollary 1.1.11. Let M ⊆Md (G) be a closed subspace and let N ⊆ M be the subspace

of local minima of f onM. If N is connected, thenM is.

Therefore, in order to study the connected components of Md (G), one has to focus on

the subspace of local minima of the map f , and the following criterion proven in [10] is used

to e�ciently identify these local minima:

Theorem 1.1.12. Let (E,ϕ) be a stable G-Higgs bundle which represents a non-singular

point ofMd (G). Then (E,ϕ) represents a local minimum of f if and only if

ad (ϕ) : E
(
hC
)
k
→ E

(
mC)

k+1
⊗K

is an isomorphism for all k > 0.

1.1.4 Surface group representations and the non-abelian Hodge theorem

Let Σ be a closed oriented (topological) surface of genus g. The fundamental group of Σ is

described by

π1 (Σ) =
〈
a1, b1, . . . , ag, bg

∣∣∣∏ [ai, bi] = 1
〉

where [ai, bi] = aibia
−1
i b−1

i is the commutator. The set of all representations of π1 (Σ) into a

connected reductive real Lie group G, Hom (π1 (Σ) , G), can be naturally identi�ed with the

subset of G2g consisting of 2g-tuples (A1, B1, . . . , Ag, Bg) satisfying the algebraic equation∏
[Ai, Bi] = 1. As such, the set Hom (π1 (Σ) , G) is a real analytic variety which is algebraic

when G is algebraic. The group G acts on Hom (π1 (Σ) , G) by conjugation

(g · ρ) = gρ (γ) g−1

where g ∈ G, ρ ∈ Hom (π1 (Σ) , G) and γ ∈ π1 (Σ), and the restriction of this action to

the subspace Homred (π1 (Σ) , G) of reductive representations provides that the orbit space is
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Hausdor�. Here, by a reductive representation we mean one that composed with the adjoint

representation in the Lie algebra of G decomposes as a sum of irreducible representations.

When G is algebraic, this is equivalent to the Zariski closure of the image of π1 (Σ) in G

being a reductive group. De�ne the moduli space of reductive representations of π1 (Σ) into

G to be the orbit space

R (G) = Homred (π1 (Σ) , G)/G

The following theorem from [20] provides this space is a real analytic variety and so R (G)

is usually called the character variety :

Theorem 1.1.13. The moduli space R (G) has the structure of a real analytic variety, which

is algebraic if G is algebraic and is a complex variety if G is complex.

We can assign a topological invariant to a representation ρ ∈ R (G), by considering its

corresponding �at G-bundle on Σ, de�ned as Eρ = Σ̃×ρG. Here Σ̃→ Σ is the universal cover

and π1 (Σ) acts on G via ρ. A topological invariant is then given by the characteristic class

c (ρ) := c (Eρ) ∈ π1 (G) ' π1 (H), for H ⊆ G a maximal compact subgroup of G. For a �xed

d ∈ π1 (G) the moduli space of reductive representations with �xed topological invariant d

is now de�ned as the subvariety

Rd (G) := {[ρ] ∈ R (G) |c (ρ) = d}

Equipping the surface Σ with a complex structure J , there corresponds to a reductive

fundamental group representation a polystable G-Higgs bundle over the Riemann surface

X = (Σ, J). This is seen using that any solution h to Hitchin's equations de�nes a �at

reductive G-connection

D = Dh + ϕ− τ (ϕ) , (1.3)

where Dh is the unique H-connection on E compatible with its holomorphic structure.

Conversely, given a �at reductive connection D in a G-bundle EG, there exists a harmonic

metric, i.e. a reduction of structure group to H ⊂ G corresponding to a harmonic section of

EG/H → X. This reduction produces a solution to Hitchin's equations such that Equation

(1.3) holds. In summary, we have the following seminal result, the non-abelian Hodge

correspondence; its proof is based on combined work by N. Hitchin [26], C. Simpson [39],

[41], S. Donaldson [15] and K. Corlette [14]:

Theorem 1.1.14. Let G be a connected semisimple real Lie group with maximal compact

subgroup H ⊆ G and let d ∈ π1 (G) ' π1 (H). Then there exists a homeomorphism

Rd (G) ∼=Md (G)
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1.1.5 Reduction of structure group for Higgs bundles

For a real reductive Lie group (G,H, θ, B) we are interested in reformulating in terms of Higgs

bundles, what it means for a fundamental group representation into G to factor through a

subgroup of G. A reductive subgroup of G is a reductive group (G′, H ′, θ′, B′) where the

Cartan data are compatible under the inclusion map G′ ↪→ G.

De�nition 1.1.15. Let G be a real reductive Lie group and let G′ ⊂ G be a reductive

subgroup. Let (E,ϕ) be a G-Higgs bundle. A reduction of (E,ϕ) to a G′-Higgs bundle is a

pair (E ′, ϕ′) given by the following data:

• a holomorphic reduction of the structure group of E to a principal H ′C-bundle E ′ ↪→ E

or, equivalently, a holomorphic section of E×HC

(
HC/H ′C

)
and

• a holomorphic section ϕ′ of E ′
(
m′C
)
⊗ K which maps to ϕ under the embedding

E ′
(
m′C
)
⊗K → E

(
mC
)
⊗K.

The following proposition links the polystability condition for a G-Higgs bundle to the

polystability of its structure group reduction.

Proposition 1.1.16. Let G be a real reductive group and let G′ ⊂ G be a reductive sub-

group. Let (E,ϕ) be a G-Higgs bundle and (E ′, ϕ′) the corresponding G′-Higgs bundle under

reduction of structure group. If (E,ϕ) is polystable as a G-Higgs bundle, then (E ′, ϕ′) is

polystable as a G′-Higgs bundle.

The non-abelian Hodge correspondence now implies that the polystable G′-Higgs bundles

correspond to fundamental group representations into G′ ⊂ G. Therefore, a reductive fun-

damental group representation into G factors through a reductive representation into G′,

if and only if the corresponding polystable G-Higgs bundle admits a reduction of structure

group to G′; cf. [18] for more details.

1.2 Sp(4,R)-Higgs bundles

1.2.1 Sp(2n,R)-Higgs bundles

Let us consider now the special case when the structure group is G = Sp(2n,R) in particular.

Then H = U (n) is a maximal compact subgroup with complexi�cation HC = GL(n,C). If
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V = Cn is the fundamental representation of GL(n,C) then the isotropy representation space

is

mC = S2V⊕ S2V∗

The de�nition of a G-Higgs bundle in this case was specialized in [17] to the following:

De�nition 1.2.1. Let X be a compact Riemann surface and K be the canonical line bundle

over X. An Sp(2n,R)-Higgs bundle is de�ned by a triple (V, β, γ), where V is a rank n holo-

morphic vector bundle and β ∈ H0 (X,S2V ⊗K), γ ∈ H0 (X,S2V ∗ ⊗K) are holomorphic

sections. To be compatible with the general G-Higgs bundle de�nition, we may consider

ϕ = β + γ.

The stability notion for a G-Higgs bundle in terms of �ltrations (De�nition 1.1.3) also

specializes in the case when G = Sp(2n,R) to the following:

De�nition 1.2.2. An Sp(2n,R)-Higgs bundle (V, β, γ) over X will be called

• semistable, if for any �ltration of subbundles

0 ⊂ V1 ⊂ V2 ⊂ V

such that β ∈ H0 (K ⊗ (S2V2 + V1⊗SV )) and γ ∈ H0
(
K ⊗

(
S2V ⊥1 + V ⊥2 ⊗SV ∗

))
it is

deg (V )− deg (V1)− deg (V2) ≥ 0.

Here, V1⊗SV denotes the subbundle of S2V which is the image of V1 ⊗ V ⊂ V ⊗ V
under the symmetrization map V ⊗ V → S2V ; similarly for V ⊥2 ⊗SV ∗.

• stable, if for any �ltration as above, except the �ltration 0 = V1 ⊂ V2 = V , it is

deg (V )− deg (V1)− deg (V2) > 0.

• polystable, if for any �ltration as above, except the �ltration 0 = V1 ⊂ V2 = V , and

with deg (V ) − deg (V1) − deg (V2) = 0, there exists an isomorphism of holomorphic

vector bundles

σ : V → V1 ⊕ V2/V1 ⊕ V/V2

satisfying the following properties:

1. V1 = σ−1 (V1) , V2 = σ−1 (V1 ⊕ V2/V1 )

2. β ∈ H0 (K ⊗ (S2 (σ−1 (V2/V1 ))⊕ σ−1 (V1)⊗Sσ−1 (V/V2 )))

3. γ ∈ H0 (K ⊗ (S2 (σ∗(V2/V1 )∗)⊕ σ∗ (V ∗1 )⊗Sσ∗(V/V2 )∗))
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1.2.2 Sp(4,R)-Higgs bundles

The group G = Sp(4,R) is the semisimple real subgroup of SL(4,R) that preserves a sym-

plectic form on R4:

Sp(4,R) =
{
A ∈ SL(4,R)

∣∣ATJ13A = J13

}
,

where J13 =

(
0 I2

−I2 0

)
de�nes a symplectic form on R4, for I2 the 2 × 2 identity matrix.

The complexi�cation of its Lie algebra

gC = sp (4,C) =

{(
A B

C −AT

)∣∣A,B,C ∈M2 (C) ;BT = B,CT = C

}

has split real form sp (4,R) and compact real form sp (2).

The Cartan involution θ : sp (4,C) → sp (4,C) with θ (X) = −XT determines a Cartan

decomposition for a choice of maximal compact subgroup H ' U (2) ⊂ Sp(4,R) as follows

sp (4,R) = u (2)⊕m

with complexi�cation

sp (4,C) = gl (2,C)⊕mC

Applying the change of basis on C4 e�ected by the mapping T =

(
I iI

I −iI

)
, we can

identify the summands in the Cartan decomposition of sp (4,C) ⊂ sl (4,C) as:

gl (2,C) =

{(
Z 0

0 −ZT

)
|Z ∈M2 (C)

}

mC =

{(
0 β

γ 0

)∣∣ β, γ ∈M2 (C) ; βT = β, γT = γ

}
= Sym2

(
C2
)
⊕ Sym2

((
C2
)∗)

Let V denote the rank 2 vector bundle associated to a holomorphic principal GL(2,C)-bundle
E via the standard representation. Then from the Cartan decomposition for the Lie algebra

sp (4,C) we can identify

E
(
mC) = Sym2 (V )⊕ Sym2 (V ∗)

and so the general de�nition for a G-Higgs bundle specializes to the following:

De�nition 1.2.3. An Sp(4,R)-Higgs bundle over a compact Riemann surface X is de�ned

by a triple (V, β, γ), where V is a rank 2 holomorphic vector bundle over X and β, γ are
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symmetric homomorphisms

β : V ∗ → V ⊗K and γ : V → V ∗ ⊗K

where K is the canonical line bundle over X.

The embedding Sp(4,R) ↪→ SL(4,C) allows one to reinterpret the de�ning Sp(4,R)-data
of a Higgs bundle as special SL(4,C)-data in the original sense of N. Hitchin. We can thus

consider an Sp(4,R)-Higgs bundle to be de�ned as a pair (E,Φ), where

1. E = V ⊕ V ∗ is a rank 4 holomorphic vector bundle over X and

2. Φ : E → E ⊗K is a Higgs �eld with Φ =

(
0 β

γ 0

)

1.2.3 Sp(4,R)-Hitchin equations

Remember that a Cartan decomposition sp (4,R) = u (2)⊕m for a choice of maximal compact

H ' U (2) ⊂ Sp(4,R) is determined by the Cartan involution

θ : sp (4,C)→ sp (4,C) with θ (X) = −XT

Moreover, the involution σ : sp (4,C)→ sp (4,C), σ (X) = X̄ de�nes the split real form:

{X ∈ sp (4,C) |σ (X) = X } =

{(
A B

C −AT

)∣∣A,B,C ∈M2 (R) ; BT = B,CT = C

}
= sp (4,R)

Now, the involution τ : sp (4,C)→ sp (4,C), τ (X) = −X∗ de�nes the compact real form.

Indeed, we have

u (4) = {X ∈ gl (4,C) |X +X∗ = 0} and Sp(2)=Sp(4,C) ∩ U (4) .

Notice that
{X ∈ sp (4,C) |τ (X) = X } = {X ∈ sp (4,C) |−X∗ = X }

= sp (4,C) ∩ u (4) = sp (2)

Since τ and the Cartan involution commute, we have τ
(
mC
)
⊆ mC and then τ preserves

the Cartan decomposition sp (4,C) = gl (2,C) ⊕ mC. Thus, there is an induced real form
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on E
(
mC
)
which we shall call τ as well for simplicity. Now, it makes sense to apply τ on a

section ϕ ∈ Ω1,0
(
E
(
mC
))
.

Moreover, for ϕ =

(
0 β

γ 0

)
notice that

− [ϕ, τ (ϕ)] = [ϕ, ϕ∗] =

(
ββ̄ − γ̄γ 0

0 γγ̄ − β̄β

)

The G-Hitchin equations for G = Sp(4,R) with maximal compact subgroup H ' U (2) ⊂
Sp(4,R) read

FA − [ϕ, τ (ϕ)] = 0

∂̄Aϕ = 0

where:

• A is a U (2)-connection on a �xed smooth principal U (2)-bundle EH → X

• ϕ ∈ Ω1
(
X,EHC

(
mC
))

• τ : Ω1
(
X,EHC

(
mC
))
→ Ω1

(
X,EHC

(
mC
))

is the compact real structure considered

above.

• ∂̄A is the (0, 1)-part of the covariant derivative associated to A.

whereas GH = Aut (EH) = Ω0 (X,EH×AdH) is the gauge group of (EH , h) for H = U (2).

1.2.4 Stability of an Sp(4,R)-Higgs bundle

In order to state explicitly the notions of stability, semistability and polystability for an

Sp(4,R)-Higgs bundle (V, β, γ), consider the short exact sequence

0→ L⊥ → V ∗ → L∗ → 0

for any line subbundle L ⊂ V and for L⊥ the subbundle of V ∗ in the kernel of the projection

of L∗. The following two propositions are proven in [18]:

Proposition 1.2.4. An Sp(4,R)-Higgs bundle (V, β, γ) is semistable if and only if all the

following conditions hold:

1. If β = 0, then deg (V ) ≥ 0.
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2. If γ = 0, then deg (V ) ≤ 0.

3. Let L ⊂ V be a line subbundle.

a If β ∈ H0 (L⊗SV ⊗K) and γ ∈ H0
(
L⊥⊗SV ∗ ⊗K

)
, then deg (L) ≤ deg (V )/2 .

b If γ ∈ H0
((
L⊥
)2 ⊗K

)
, then deg (L) ≤ 0.

c If β ∈ H0 (L2 ⊗K), then deg (L) ≤ deg (V ).

If, in addition, strict inequalities hold in (3), then (V, β, γ) is stable.

Proposition 1.2.5. An Sp(4,R)-Higgs bundle (V, β, γ) is polystable, if it is either stable, or

there is a decomposition V = L1 ⊕ L2 of the bundle V as a direct sum of line bundles, such

that one of the following conditions is satis�ed:

1. The Higgs �elds satisfy β = β1 + β2 and γ = γ1 + γ2, where

βi ∈ H0
(
L2
i ⊗K

)
and γi ∈ H0

(
L−2
i ⊗K

)
, i = 1, 2

and the SL(2,R)-Higgs bundles (Li, βi, γi) are polystable for i = 1, 2.

2. The Higgs �elds satisfy

β ∈ H0 ((L1L2 ⊕ L2L1)⊗K) and γ ∈ H0
((
L−1

1 L−1
2 ⊕ L−1

2 L−1
1

)
⊗K

)
.

Furthermore, deg (L1) = deg (L2) and the rank 2 Higgs bundle

(
L1 ⊕ L−1

2 ,

(
0 β

γ 0

))
is polystable.

Having seen that the de�ning Sp(4,R)-data of a Higgs bundle can be reinterpreted as

special SL(4,C)-data in the original sense of N. Hitchin, it is useful to relate the above

described stability conditions of an Sp(4,R)-Higgs bundle to the ones for an SL(4,C)-Higgs
bundle. Recall that a GL(4,C)-Higgs bundle (E, φ) is stable if any proper non-zero φ-

invariant subbundle F ⊆ E satis�es µ (F ) < µ (E), for µ (F ) = deg (F )/rk (F ) , the slope of

the bundle. The following proposition is proven in [17]:

Proposition 1.2.6. An Sp(4,R)-Higgs bundle (V, β, γ) is polystable if and only if the GL(4,C)-

Higgs bundle

(
V ⊕ V ∗, ϕ =

(
0 β

γ 0

))
is polystable. Moreover, even though the polystability

conditions coincide, the stability condition for an Sp(4,R)-Higgs bundle is in general weaker

than the stability condition for the corresponding GL(4,C)-Higgs bundle.
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1.3 Connected components ofMmax (X, Sp(4,R))

1.3.1 The Toledo invariant and Cayley partner

In this section we consider the basic topological invariant of an Sp (4,R)-Higgs bundle and

describe a sharp bound for it. Let X = (Σ, J) a compact Riemann surface with underlying

topological surface Σ. The locally constant obstruction map

o2 : Hom (π1 (Σ) ,Sp(4,R))→ H2 (Σ, π1 (Sp(4,R)))

is an integer valued function, since H2 (Σ, π1 (Sp(4,R))) ' π1 (Sp(4,R)) ' Z. Now, o2 (ρ) =

c1 (V ), where V is the rank 2 vector bundle appearing in the Higgs bundle data (V, β, γ) cor-

responding to ρ via the non-abelian Hodge correspondence. Thus, we have an integer valued

function d = deg (V ) = 〈c1 (V ) , [Σ]〉, whose �bers are unions of connected components.

De�nition 1.3.1. The Toledo invariant of an Sp (4,R)-Higgs bundle (V, β, γ) is de�ned as

the integer

d = deg (V )

We use the notation Md = Md (Sp(4,R)) to denote the moduli space parameterizing iso-

morphism classes of polystable Sp (4,R)-Higgs bundles with deg (V ) = d.

Remark 1.3.2.

• For representations of π1 (Σ) into SL (2,R) ' Sp (2,R) the Toledo invariant coincides

with the Euler class of the corresponding �at SL (2,R)-bundle. In this case the classical

inequality of J. Milnor [31] provides an appropriate bound for this invariant:

|d| = |e (ρ)| ≤ −χ (Σ) = 2g − 2

Later on, J. Wood [46] gave a similar bound considering SU (1, 1)-bundles, and so this

is usually now called the Milnor-Wood inequality in describing a sharp bound for the

topological invariant, also for representations into more general Lie groups G.

• T. Hartnick and A. Ott describe in [23] how the generalized Milnor-Wood inequality

of M. Burger and A. Iozzi [12] translates under the non-abelian Hodge correspondence

to an inequality for topological invariants of Higgs bundles.

The sharp bound below for the Toledo invariant when G = Sp (4,R) was �rst given by V.

Turaev [44]. We include here however a proof by P. Gothen [21] in the Higgs bundle context,

as this proof will be particularly instructive for the sequel.
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Proposition 1.3.3. (Milnor-Wood inequality) Let (V, β, γ) be a semistable Sp (4,R)-Higgs

bundle. Then |d| ≤ 2g − 2.

Proof. For this proof, it is more convenient to consider the interpretation of the de�ning

data for an Sp (4,R)-Higgs bundle as data for a special SL (4,C)-Higgs bundle. Moreover,

the map (V, β, γ) 7→ (V ∗, γt, βt) provides an isomorphismMd ' M−d, thus we can restrict

our attention to the case d ≥ 0.

Let (E,Φ) with E = V ⊕ V ∗, Φ =

(
0 β

γ 0

)
be a semistable Sp (4,R)-Higgs bundle and

d = deg(V ) ≥ 0. Then γ 6= 0, as otherwise V would be Φ-invariant and so would violate the

stability condition, since

µ (E) =
deg (E)

rk (E)
=

deg (V ⊕ V ∗)
rk (E)

= 0 and µ (V ) =
deg (V )

rk (V )
=
d

2
≥ 0

Consider the bundles N = ker (γ) and I = Im (γ)⊗K−1 ≤ V ∗.

We thus get an exact sequence of bundles

0→ N → V → I ⊗K → 0

and so

deg (V ) = deg (N) + deg (I ⊗K)

= deg (N) + deg (I) + rk (I) (2g − 2)

using that degK = 2g − 2.

Now, the bundles N, V ⊕ I ⊂ E are both Φ-invariant subbundles of E, thus from the

semistability of (E,Φ) we get µ (N) ≤ µ (E) and µ (V ⊕ I) ≤ µ (E). Therefore

deg (N) ≤ 0 and d+ deg (I) ≤ 0

We have also seen that

d = deg (N) + deg (I) + rk (I) (2g − 2)

so from these relations we get

2d ≤ rk (I) (2g − 2)

and since rk (I) = rk (γ) ≤ 2, we imply the desired inequality.

De�nition 1.3.4. We shall call Sp (4,R)-Higgs bundles with Toledo invariant d = 2g − 2
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maximal and denote the components ofM (Sp(4,R)) with maximal positive Toledo invariant

byMmax 'M2g−2.

The Higgs bundle proof of Proposition 1.3.3 opens the way to considering new topological

invariants for our Higgs bundles in order to successfully compute the number of components of

Mmax. Namely, we see from this proof that for a maximal semistable Sp (4,R)-Higgs bundle

(V, β, γ), the map γ : V → V ∗ ⊗K is an isomorphism. Moreover, since γ is symmetric, it

equips V with a K-valued non-degenerate quadratic form.

Remark 1.3.5. Having considered − (2g − 2) ≤ d ≤ 0 in the proof of the proposition, then

β : V ∗ → V ⊗K would be an isomorphism.

Fix a square root of the canonical bundle K, i.e. pick a line bundle L0 such that L2
0 = K

and de�ne

W := V ∗ ⊗ L0

Then the map

qW := γ ⊗ IL−1
0

: W ∗ → W

de�nes a symmetric, non-degenerate form on W ; in other words (W, qW ) de�nes an O (2,C)-

holomorphic bundle. Moreover, the map β in (V, β, γ) de�nes a K2-twisted endomorphism

θ := (γ ⊗ IK⊗L0) ◦ (β ◦ IL0) : W → W ⊗K2

which is qW -symmetric, i.e takes values in the isotropy representation for GL (2,R). We

say that (W, θ) de�nes a K2-twisted Higgs pair with structure group GL (2,R), i.e. θ takes

values in E
(
mC
)
⊗K2.

De�nition 1.3.6. We call (W, qW , θ) the Cayley partner of the Sp (4,R)-Higgs bundle

(V, β, γ).

The original Sp (4,R)-Higgs bundle data can clearly be recovered from the de�ning data

of its Cayley partner, so the previous construction describes a well-de�ned correspondence

(V, β, γ) 7→ (W, qW , θ). A careful comparison of the semistability condition for the maximal

Sp (4,R)-Higgs bundles (V, β, γ) and the one for their Cayley partners provides the following:

Theorem 1.3.7. Let Mmax be the moduli space of polystable Sp (4,R)-Higgs bundles with

degree d = 2g − 2 and let M′ be the moduli space of polystable K2-twisted GL (2,R)-Higgs

pairs. The map (V, β, γ) 7→ (W, qW , θ) de�nes an isomorphism of complex algebraic varieties

Mmax 'M′
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Proof. see [17], Theorem 4.3.

Remark 1.3.8. The theorem holds for polystable Sp (2n,R)-Higgs bundles with n ≥ 2 in

general, and the correspondence discussed is referred to as the Cayley correspondence.

The Cayley correspondence brings in new topological invariants for our triples (V, β, γ),

namely the �rst and second Stiefel-Whitney classes of the orthogonal bundle (W, qW ) under-

lying the Cayley partner:

w1 (W, qW ) ∈ H1 (X,Z/2 ) ' (Z/2 )2g

w2 (W, qW ) ∈ H2 (X,Z/2 ) ' Z/2

Therefore, we may de�ne

wi (V, β, γ) := wi (W, qW ) , i=1,2

and these invariants are well de�ned, because the Stiefel-Whitney classes are independent of

the choice of the square root L0 = K1/2 used in the de�nition of (W, qW ).

1.3.2 The components ofMmax (X, Sp(4,R))

In the previous section we have seen how Sp (4,R)-Higgs bundles can be related to rank 2

orthogonal bundles, and the latter were classi�ed by D. Mumford in [32]. For our purposes

we will be needing the following result from that article:

Proposition 1.3.9. Let (W, qW ) be a rank 2 orthogonal bundle. If w1 (W, qW ) = 0, then

W = L⊕ L−1, where L is a line bundle over X, and qW =

(
0 1

1 0

)
.

Having this result in hand, we now obtain a �rst important description of the maximal

semistable Sp (4,R)-Higgs bundle data (cf. �3.6 in [9]):

Proposition 1.3.10. Let (V, β, γ) be a maximal semistable Sp (4,R)-Higgs bundle with

w1 (V, β, γ) = 0 and let (W, qW ) be its Cayley partner, so W = L⊕ L−1 and qW =

(
0 1

1 0

)
.

Then there is a line bundle N such that

1. V = N ⊕ N−1K and with respect to this decomposition, the Higgs �elds are β =(
β1 β3

β3 β2

)
∈ H0 (S2V ⊗K) and γ =

(
0 1

1 0

)
∈ H0 (S2V ∗ ⊗K)
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2. The degree of N is given by deg (N) = deg (L) + g − 1

3. The degree of L satis�es 0 ≤ deg (L) ≤ 2g − 2 and for deg (L) > 0, it is β2 6= 0.

4. When deg (L) > 0, N is unique.

When deg (L) = 0, N is unique up to multiplication by a square root of the trivial

bundle.

When deg (L) = 2g − 2, N satis�es N2 = K3.

Proof. (1) Consider N := L⊗ L0. Then V = W ⊗ L0 = (L⊕ L−1)⊗ L0 = N ⊕N−1K.

Moreover, γ = q ⊗ IL0 =

(
0 1

1 0

)
: (V ∗ ⊗ L0) ⊗ L0 → (L∗0 ⊗ V ) ⊗ L0 and since θ =

(γ ⊗ IK⊗L0) ◦ β ⊗ IL0 is qW -symmetric, it turns out that β =

(
β1 β3

β3 β2

)
: V ∗ → V ⊗K.

(2) Since N = L⊗ L0, then deg (N) = deg (L0) + deg (L) = deg (L) + g − 1.

(3) Interchanging L with its dual if necessary we may assume that deg (L) ≥ 0. Now,

whenever deg (L) > 0, the Higgs �eld θ must induce a non-zero holomorphic map L→ L−1K2

otherwise L ⊂ W would violate the stability condition, since θ : L⊕L−1 → (L⊕ L−1)⊗K2 =

LK2 ⊕ L−1K2 and θ should not preserve L. Hence global sections exist for the line bundle

L−2K2, therefore deg (L−2K2) ≥ 0, i.e. deg (L) ≤ 2g − 2. The fact that for deg (L) > 0, β2

is non-zero, follows also from the semistability condition.

(4) When deg (L) = 2g − 2, the Higgs �eld θ induces a non-zero section of the degree 0 line

bundle L−2K2, thus L2 = K2 and so N2 = (LL0)2 = K3.

Provoked by this proposition, we distinguish the Higgs bundles inMmax in the following

subfamilies:

(i) (V, β, γ) for which w1 6= 0.

(ii) (V, β, γ) for which w1 = 0, and therefore V = N⊕N−1K with N := L⊗L0 for L0 = K1/2

and 0 ≤ deg (L) ≤ 2g − 2.

(iii) As a special case of (ii), (V, β, γ) with deg (L) = 2g−2, in which case N2 = K3; thus such

Higgs bundles are parameterized by spin structures L0 = K1/2 on the surface Σ underlying

the Riemann surface X.

This motivates considering the following subspaces of the moduli spaceMmax and we shall

see next that these are actually connected components inMmax.

De�nition 1.3.11. Let (V, β, γ) be a maximal Sp (4,R)-Higgs bundle with topological in-

variants w1 (W, qW ) ∈ H1 (X,Z/2 ) ' (Z/2 )2g and w2 (W, qW ) ∈ H2 (X,Z/2 ) ' Z/2 .

De�ne the following subspaces ofMmax:

1. Mw1,w2 = {(V, β, γ) |w1 = w1 (V, β, γ) 6= 0, w2 = w2 (V, β, γ)}/'
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2. M0
c = {(V, β, γ) |w1 (V, β, γ) = 0, 0 ≤ c < 2g − 2, for c:= deg (L)}/'

3. MT
K1/2 =

{
(V, β, γ)

∣∣V = N ⊕N−1K with N = K3/2
}
/'

where ' indicates isomorphism classes of Sp (4,R)-Higgs bundles.

Theorem 1.3.12 (P. Gothen [21]). The subspaces Mw1,w2, M0
c, MT

K1/2 are connected.

Hence,Mmax decomposes in its connected components as

Mmax =

( ⋃
w1,w2

Mw1,w2

)⋃( ⋃
0≤c<2g−2

M0
c

)⋃( ⋃
K1/2

MT
K1/2

)

and so the total number of connected components of this moduli space is 2 · (22g − 1) + 2g −
2 + 22g = 3 · 22g + 2g − 4.

Remark 1.3.13. From N. Hitchin's fundamental article [25], we knew already that there exists

a distinguished component ofM (Sp(4,R)), the Hitchin component, isomorphic to a vector

space and containing naturally the Teichmüller space. This actually shows that there are

exactly 22g such components, which are precisely the componentsMT
K1/2 parameterized by

the spin structures on the surface Σ.

Proof. We treat each case separately:

(i) MT
K1/2 is connected. The Cayley partner (W, qW ) of a Higgs bundle (V, β, γ) ∈ MT

K1/2

is completely determined by the line bundle L in the decomposition W = L⊕L−1. But here

L = K1/2 and every (W, qW ) is stable. Hence,

MT
K1/2 ' H0

(
Σ,End (W )⊗K2

)
and the Higgs �eld is qW -symmetric, i.e. Φ =

(
Φ11 Φ12

Φ12 Φ22

)
. ThereforeMT

K1/2 is isomorphic

to the vector space H0 (Σ, K2)⊕H0 (Σ, K2)⊕H0 (Σ, K4).

(ii) M0
c is connected. The proof is based on the study of the local minima of the proper

Hitchin map onM0
c .

For c > 0, the Higgs �eld Φ must be non-zero, otherwise the subbundle L ⊂ W for the Cayley

partner (W, qW ) would violate the stability condition. Moreover, for the critical points in

M0
c , Φ =

(
0 0

Φ̃ 0

)
with Φ̃ ∈ H0 (Σ, L−2K2). Now, the subspace of local minima N 0

c ⊂ M0
c

�ts into the pullback diagram

28



N 0
c −−−−−→ Jacc (Σ)yπ

yL→L−2K2

S4g−4−2cΣ
D→[D]−−−−→ Jac4g−4−2c (Σ)

where π (W, qW ,Φ) = (Φ).

Thus, N 0
c is connected, so from the properness of the Hitchin map f : M0

c → R, it follows
thatM0

c is connected, for c > 0.

For c = 0, every local minimum of f onM0
c has Φ = 0, so the subspace of local minima is

isomorphic to the moduli space of polystable (W, qW ), whereW = L⊕L−1 with deg (L) = 0.

It follows that there is a surjective continuous map Jac0 (Σ)→ N 0
0 , with L 7→ (W, qW ), and

so N 0
0 is connected.

(iii) Mw1,w2 is connected. We shall include here just a sketch; for the complete proof see

Theorem 5.8 in [21].

Similarly to the previous part, we are trying to show that the subspace of local minima of

the Hitchin map Nw1,w2 ⊂ Mw1,w2 is connected. These subspaces consist of critical points

(V, β, γ) with β = 0 and γ 6= 0. There is a connected double cover Σ̃ → Σ given by

w1 ∈ H1 (Σ,Z/2 ). Then it turns out that Nw1,0 ∪ Nw1,1 = ker (1 + τ ∗), where τ : Σ̃→ Σ̃ is

the involution interchanging the sheets of the covering.

Now, ker (1 + τ ∗) = P+∪P− where the two components P+ and P− are the abelian varieties

associated to the double cover of Σ given by w1, each of them a translate of the Prym variety

of the covering. Then Nw1,0 ∪Nw1,1 = P+ ∪ P−, hence Nw1,w2 is connected.

The description of a maximal Sp (4,R)-Higgs bundle from the data of its Cayley partner,

as well as Proposition 1.3.10 and Theorem 1.3.12, provide a description of the Sp (4,R)-Higgs

bundle data in each connected component ofMmax. This information is summarized in the

following table:

Table 1.1: Sp (4,R)-Higgs bundle data in the connected components ofMmax

Component V β γ

MT
K1/2 K3/2 ⊕K−1/2

(
β1 β3

β3 1

)
,

{
β3 ∈ H0 (K2)

β1 = const.(β3)2

(
0 1
1 0

)
M0

c V = N ⊕N−1K, with g − 1 < deg (N) < 3g − 3

(
β1 β3

β3 β2

)
,with β2 6= 0

(
0 1
1 0

)
M0

0 V = N ⊕N−1K, with deg (N) = g − 1

(
β1 β3

β3 β2

) (
0 1
1 0

)
Mw1,w2 V = W ⊗ L0, with L

2
0 = K β ∈ H0 (S2V ⊗K) γ = qW ⊗ IL0
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So far we have been interested in identifying particular polystable Sp (4,R)-Higgs bun-

dles in the connected components of Mmax. The non-abelian Hodge theorem provides a

homeomorphism

Rmax 'Mmax

to a moduli space of representations Rmax, which we brie�y introduce next:

Let G be a Hermitian Lie group of non-compact type, that is, the symmetric space associ-

ated to G is an irreducible Hermitian symmetric space of non-compact type. Using the identi-

�cation H2 (π1 (Σ) ,R) ' H2 (Σ,R), the Toledo invariant of a representation ρ : π1 (Σ)→ G

is de�ned as the integer

Tρ := 〈ρ∗ (κG) , [Σ]〉 ,

where ρ∗ (κG) is the pullback of the Kähler class κG ∈ H2
c (G,R) of G and [Σ] ∈ H2 (Σ,R) is

the orientation class. The Toledo invariant is bounded in absolute value:

|Tρ| ≤ −C (G)χ (Σ) ,

where C (G) is an explicit constant depending only on G; we refer the reader to [12] for more

details.

De�nition 1.3.14. A representation ρ : π1 (Σ) → G is called maximal whenever Tρ =

−C (G)χ (Σ).

The moduli space of maximal representations into Sp(4,R) is now denoted here by Rmax,

and analogously to the spaceMmax we consider its following subspaces

Rw1,w2 'Mw1,w2 , R0
c 'M0

c , RT
K1/2 'MT

K1/2 ,

which are furthermore connected components in Rmax.

Now, the possible subgroups of Sp (4,R) through which a maximal representation ρ :

π1 (Σ)→ Sp(4,R) can factor, can be explicitly described:

Proposition 1.3.15. Let ρ : π1 (Σ) → Sp(4,R) be maximal and assume that ρ factors

through a proper reductive subgroup G̃ ⊂ Sp(4,R). Then, up to conjugation, the group G̃ is

contained in one of the subgroups Gi, G∆ and Gp, where

1. Gi, the normalizer of the irreducible four-dimensional representation of SL (2,R) into

Sp (4,R).

2. Gp, the normalizer of the product representation ρp : SL (2,R)× SL (2,R)→ Sp (4,R)
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3. G∆, the normalizer of the composition of ρp with the diagonal embedding of SL (2,R)

into SL (2,R)× SL (2,R).

Proof. See �4 in [9] and the references therein.

De�ning the group Sp (4,R) with respect to the symplectic form J12 =

(
J 0

0 J

)
, where

J =

(
0 1

−1 0

)
, explicit calculations show:

1. Gi = SL (2,R)

2. Gp =

{(
X Y

Z T

)
∈ Sp (4,R) | either Y = Z = 0 or X = T = 0

}

3. G∆ =

{(
xA yA

zA tA

)∣∣∣∣∣X =

(
x y

z t

)
∈ O (2) and A ∈ SL (2,R)

}
= O (2)⊗ SL (2,R)

We would like to identify in which connected components of Rmax we can �nd representa-

tions that can factor through one of the subgroups Gi, G∆ or Gp described above. According

to the non-abelian Hodge correspondence, a reductive representation ρ : π1 (Σ) → Sp(4,R)

that factors through a proper reductive subgroup G∗ ⊂ Sp(4,R) corresponds to a polystable

Sp (4,R)-Higgs bundle (V, β, γ) for which the structure group reduces to G∗ (cf. �1.1.5).

Therefore, for each of the possible reductive subgroups G∗ ⊂ Sp(4,R), we �rst need to

describe the de�ning data for the G∗-Higgs bundles, then describe the semistable Sp (4,R)-

Higgs bundles for which the structure group reduces to G∗ and lastly, using the information

from Table 1.1 we can see in which connected component these Higgs bundles lie.

Eventually, we get the following picture for the 3 ·22g+2g−4 many connected components

ofMmax, regarding particular fundamental group representations in these components:

• 22g Hitchin components MT
K1/2{

Sp (4,R)− Higgs bundles

str.gp. reduces to SL (2,R)

}
←→

{
ρ : π1 (Σ)→ Sp (4,R)

factors through SL (2,R)

}
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• 2 · 22g − 1 components Mw1,w2 ,M0
0

Sp (4,R)− Higgs bundles

str. gp. reduces to Gp

and

Sp (4,R)− Higgs bundles

str. gp. reduces to G∆


←→



ρ : π1 (Σ)→ Sp (4,R)

factors through Gp

and

ρ : π1 (Σ)→ Sp (4,R)

factors through G∆


• 2g − 3 components M0

c
Sp (4,R)− Higgs bundles

str.gp. does not reduce

to any G∗ ⊂ Sp (4,R)

←→


ρ : π1 (Σ)→ Sp (4,R)

does not factor

through any G∗ ⊂ Sp (4,R)


From the investigation summarized in this section we conclude to the following result (cf.

[9]):

Theorem 1.3.16. Among the 3 · 22g + 2g− 4 connected components ofMmax ' Rmax, there

are 2g − 3 components where the corresponding Higgs bundles do not admit a reduction of

structure group to any proper reductive subgroup of Sp (4,R). Equivalently, the corresponding

representations do not factor through any proper reductive subgroup of Sp (4,R), thus they

have Zariski-dense image in Sp (4,R).

Remark 1.3.17. Quite di�erently than the Sp (4,R)-case, the moduli space of maximal

polystable Sp (2n,R)-Higgs bundles has 3 · 22g many connected components for every n ≥ 3,

and any Sp (2n,R)-Higgs bundle in those can be deformed to a G∗-Higgs bundle for some

proper reductive Zariski closed subgroup G∗ ⊂ Sp(2n,R). This distinction arises from

the structure group of the Cayley partner. In general, the Cayley partner of a maximal

Sp (2n,R)-Higgs bundle is described by an O (n,C)-bundle and for vanishing �rst Stiefel-

Whitney class, it admits a reduction of structure group to SO (n,C). For n = 2, however,

this indicates special cases in the classi�cation of those bundles, leading to extra components

in the maximal Sp (4,R)-Higgs bundle moduli space (cf. �9 in [9] and �8 in [17]).

Let (V, β, γ) be a maximal semistable Sp (4,R)-Higgs bundle in the exceptional 2g − 3

components described above. Next we collect some results concerning these Higgs bundles,

the �rst three of which we have already seen.

1. For the Cayley partner (W = L ⊕ L−1, qW =

(
0 1

1 0

)
) the �rst Stiefel-Whitney class

vanishes: w1 (V, β, γ) = w1 (W, qW ) = 0, where L is a line bundle on X.
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2. The bundle V decomposes as V = N ⊕ N−1K, for a line bundle N with deg (N) =

deg (L) + g − 1 and g − 1 < deg (N) < 3g − 3, in other words 0 < deg (L) < 2g − 2.

3. The Higgs �elds with respect to this decomposition for V are β =

(
β1 β3

β3 β2

)
∈

H0 (S2V ⊗K), with β2 6= 0 and γ =

(
0 1

1 0

)
∈ H0 (S2V ∗ ⊗K).

4. Furthermore, since 0 < deg (L) < 2g − 2 = deg (V ), all points in the exceptional

components are represented by stable Sp (4,R)-Higgs bundles. From this fact, it follows

that these Higgs bundles are smooth points in the moduli space. This is proven using

the standard slice method construction used to prove that the moduli space Md (G)

has the structure of a complex analytic variety (see Proposition 3.18 in [18] and the

discussion preceding this). Hence, the exceptional 2g − 3 components are smooth.

Remark 1.3.18. Using these same arguments, one shows that all Sp (4,R)-Higgs bundles

in the 22g-many Hitchin components MT
K1/2 are stable with β2 6= 0, and smooth as

well.

5. Isomorphism classes of Sp (4,R)-Higgs bundles in the exceptional components can be

also described. Considering a representative of such an isomorphism class to be deter-

mined by a triple (N, β1, β2, β3), the following holds (see Proposition 3.28 in [9]):

Proposition 1.3.19. Fix c = deg (L) with 0 < c < 2g − 2. Tuples (N, β1, β2, β3) and

(N ′, β′1, β
′
2, β

′
3) de�ne the same isomorphism class inM0

c if and only if N = N ′ and

(β′1, β
′
2, β

′
3) = (t2β1, t

−2β2, β3), for some t ∈ C∗.

6. Lastly, there is a �bration of a certain subfamily of the exceptional components over

the Jacobian Jacd of degree d line bundles on X (see Proposition 3.30 in [9]):

Proposition 1.3.20. For 0 < c < g−1, the spaceM0
c �bers over Jac

d with d = c+g−1,

and the �bers are given by

Fd =
[(
Cr ⊕ (C∗)s+1)/C∗ ]× C3g−3

where r = 2c + 3g − 3, s = 3g − 4 − 2c and the C∗-action is given by the relation

t (~z, ~w) = (t2~z, t−2 ~w).
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1.4 Maximal fundamental group representations into Sp (4,R)
and topological gluing constructions

In [22], O. Guichard and A. Wienhard describe model maximal fundamental representations

ρ : π1 (Σ) → Sp(4,R) in the components of Rmax. These models are distinguished into two

subcategories, standard representations and hybrid representations.

As standard representations are considered the ones which come from homomorphisms of

SL (2,R) into Sp (4,R), possibly twisted by a representation of π1 (Σ) into the centralizer of

the image of SL (2,R) in Sp (4,R). In this case, ρ (π1 (Σ)) is contained by construction into

a proper closed Lie subgroup of Sp (4,R). On the other hand, considering Σ = Σl∪γΣr a

decomposition of Σ along a simple closed oriented separating geodesic γ into two subsurfaces

Σl and Σr, a hybrid representation is de�ned to be a representation ρ = ρl ∗ ρr constructed
by amalgamation of two speci�c representations ρl, ρr on π1 (Σl), π1 (Σr) respectively, with

ρl (γ) = ρr (γ).

We now describe these model representations in further detail with particular notice to-

wards the construction of these hybrid representations. Let us �rst �x a discrete embedding

i : π1 (Σ)→ SL (2,R).

i) Irreducible Fuchsian representations

Choose the symplectic identi�cation (R3 [X, Y ] ,−ω2) ∼= (R4, ω) given by X3 = e1, X
2Y =

−e2, Y
3 = −e3, XY

2 = −e4√
3
, where ω is the symplectic form given by the antisymmetric

matrix J =

(
0 Idn

−Idn 0

)
. With respect to this identi�cation the irreducible representation

φirr : SL (2,R)→ Sp (4,R) is given by

φirr

(
a b

c d

)
=


a3 −

√
3a2b −b3 −

√
3ab2

−
√

3a2c 2abc+ a2d
√

3b2d 2abd+ b2c

−c3
√

3c2d d3
√

3cd2

−
√

3ac2 2acd+ bc2
√

3bd2 2bcd+ ad2


Note that this choice has been made so that (φirr)∗ : π1 (SL (2,R)) → π1 (Sp (4,R)) is the

multiplication by 2. Precomposition with i : π1 (Σ) → SL (2,R) gives rise to an irreducible

Fuchsian representation

ρirr : π1 (Σ)
i−→ SL (2,R)

φirr−−→ Sp (4,R)

ii) Diagonal Fuchsian representations

Let R4 = W1 ⊕W2, with Wi = span (ei, e2+i) be a symplectic splitting of R4 with respect
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to the symplectic basis (ei)i=1,...,4. This splitting gives rise to an embedding ψ : SL(2,R)2 →
Sp (W1)× Sp (W2) ⊂ Sp (4,R) given by

ψ

((
a b

c d

)
,

(
α β

γ δ

))
=


a 0 b 0

0 α 0 β

c 0 d 0

0 γ 0 δ


Precomposition with the diagonal embedding of SL (2,R) → SL(2,R)2 gives rise to the

diagonal embedding φ∆ : SL (2,R)→ Sp (4,R).

Note that the choice of ψ has been made so that (φ∆)∗ is the multiplication by 2.

Precomposition with i : π1 (Σ) → SL (2,R) gives now rise to a diagonal Fuchsian represen-

tation

ρ∆ : π1 (Σ)
i−→ SL (2,R)

φ∆−→ Sp (4,R)

iii) Twisted diagonal representations

For any maximal representation ρ : π1 (Σ) → Sp (4,R) the centralizer ρ (π1 (Σ)) is a

subgroup of O (2). Considering now a representation Θ : π1 (Σ)→ O (2), set

ρΘ = i⊗Θ : π1 (Σ)→ Sp (4,R)

γ 7→ φ∆ (i (γ) ,Θ (γ))

Such representations will be called twisted diagonal representation.

Remark 1.4.1. The representations in the families (i)-(iii) above are the so-called standard

representations.

iv) Hybrid representations

The de�nition of hybrid representations involves a gluing construction for fundamental

group representations over a connected sum of surfaces and this will provide the motivation

for an analogous construction in the language of Higgs bundles. The following lemma from

classical Fricke-Klein theory is crucial in the construction:

Lemma 1.4.2. Let γ ∈ π1(Σ) be a closed separating geodesic on Σ and i0 : π1(Σ) →

SL(2,R) a discrete embedding with i0 (γ) =

(
eλ0 0

0 e−λ0

)
and for λ0 ∈ R\ {0}. Let (λt)t∈[0,1]

a continuous path in R\ {0}. Then there exists a continuous path of discrete embeddings

(it)t∈[0,1] such that for any t ∈ [0, 1], it (γ) =

(
eλt 0

0 e−λt

)
.
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Let Σ = Σl∪γΣr be a decomposition of Σ along a simple closed oriented separating geodesic

γ into two subsurfaces Σl and Σr. Consider ρirr : π1 (Σ)
i−→ SL (2,R)

φirr−−→ Sp (4,R) an

irreducible Fuchsian representation and ρ∆ : π1 (Σ)
i−→ SL (2,R)

∆−→ SL(2,R)2 ψ−→ Sp (4,R) a

diagonal Fuchsian representation.

We would like to amalgamate the restriction of the irreducible Fuchsian representation to

Σl with the restriction of the diagonal Fuchsian representation to Σr, however the holonomies

of those along γ do not agree. Thus, we are going to consider a deformation of ρ∆ on π1 (Σ)

such that the holonomies agree along γ and then we will amalgamate the restrictions of those

to the left and the right hand side subsurfaces accordingly.

Assume i (γ) =

(
em 0

0 e−m

)
with m > 0. There exist continuous paths (τ1,t)t∈[0,1] and

(τ2,t)t∈[0,1] of discrete embeddings π1 (Σ) → SL (2,R) with initial point τ1,0 = τ2,0 = i and,

for all t ∈ [0, 1],

τ1,t (γ) =

(
el1,t 0

0 e−l1,t

)
and τ2,t (γ) =

(
el2,t 0

0 e−l2,t

)

where l1,t > 0 and l2,t > 0, l1,0 = l2,0 = m, l1,1 = 3m and l2,1 = m. In other words we are

considering a continuous path (τ1,t, τ2,t)t∈[0,1] of pairs of discrete embeddings starting from

(i, i) and terminating at a pair (τ1,1, τ2,1) having speci�c behaviour on γ.

Now set

ρl := ρirr : π1 (Σ)→ Sp (4,R)

and

ρr := ψ ◦ (τ1,1, τ2,1) : π1 (Σ)→ Sp (4,R)

Thus ρl and ρr are de�ned over the whole surface Σ, with ρr a continuous deformation of ρ∆

satisfying ρl (γ) = ρr (γ).

De�nition 1.4.3. A hybrid representation is de�ned as the amalgamated representation

ρ := ρl
∣∣
π1(Σl) ∗ ρr

∣∣
π1(Σr) : π1 (Σ) ' π1 (Σl) ∗〈γ〉π1 (Σr)→ Sp (4,R)

If χ (Σl) = k, then we call ρ a k-hybrid representation.

The following important result was established in [22]:

Theorem 1.4.4. Every maximal representation ρ : π1 (Σ)→ Sp (4,R) can be deformed to a

standard representation or a hybrid representation.
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The subsurfaces Σl and Σr that we are considering here are surfaces with boundary. The

Toledo invariant can be also de�ned for representations over such surfaces and it thus makes

sense to talk about maximal representations over surfaces with boundary as well; see [12] for a

detailed de�nition. Moreover, the authors in [12] have established an additivity property for

the Toledo invariant over a connected sum of surfaces, which provides that the amalgamated

product of two maximal representations is again a maximal representation de�ned over the

compact surface Σ. In particular:

Proposition 1.4.5 ([12], Proposition 3.2). If Σ = Σ1∪CΣ2 is the connected sum of two

subsurfaces Σi along a separating loop C, then

Tκ (Σ, ρ) = Tκ (Σ1, ρ1)+Tκ (Σ2, ρ2)

where ρi = ρ
∣∣
π1(Σi) , i = 1, 2.

1.5 Topological invariants for maximal symplectic

representations

In [22] the authors introduce topological invariants for Anosov representations, a special

case of which are the maximal representations ρ : π1 (Σ) → Sp(2n,R) we are interested

in. We review the de�nition of these invariants and describe their values for the hybrid

representations in particular; we refer to [22] for more details on the material covered in this

section.

Let (M,φt) a compact manifold with an Anosov �ow and G a connected semisimple Lie

group. Consider (P s, P u) a pair of opposite parabolic subgroups of G, H := P s ∩ P u and

F s := G/P s , Fu := G/P u the �ag varieties associated to P s, P u respectively. Let X :=

G/H ⊂ F s ×Fu an open G-orbit inherited by two foliations Es and Eu with corresponding

distributions Es and Eu, that is, (Es)(fs,fu)
∼= TfsF s and (Eu)(fs,fu)

∼= TfuFu.

De�nition 1.5.1. The �at G-bundle PG →M is said to be a (G,H)-Anosov bundle, if:

1. PG admits an H-reduction that is �at along �ow lines, i.e.

i. there exists a section σ : M → PG×GX

ii. the restriction of σ to every orbit of φt is locally constant with respect to the induced

�at structure on PG×GX .
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2. The �ows φt on σ∗Es and σ∗Eu are contracting and dilating respectively, that is,

there exist continuous families of norms (‖·‖m)m∈M on σ∗Es and σ∗Eu, and constants

A, a > 0, such that for any e in (σ∗Es)m or (σ∗Eu)m and for any t > 0 it holds

respectively that

‖φte‖φtm ≤ A exp (−at) ‖e‖m or ‖φ−te‖φ−tm ≤ A exp (−at) ‖e‖m.

De�nition 1.5.2. A representation ρ : π1 (M) → G is said to be (G,H)-Anosov, if the

corresponding �at G-bundle PG is (G,H)-Anosov.

Specializing to the case when M = T 1Σ, the unit tangent bundle of a closed oriented

connected surface Σ with g ≥ 2 and φt the geodesic �ow on T 1Σ with respect to a hyperbolic

metric on Σ, we call a �at G-bundle PG over Σ to be Anosov if its pullback π∗PG → T 1Σ

is Anosov. A fundamental group representation ρ : π1 (Σ)→ G is now called Anosov, if the

composite map

π1

(
T 1Σ

)
→ π1 (Σ)

ρ−→ G

is an Anosov representation.

The following theorem provides that the maximal symplectic group representations we are

interested in admit an Anosov structure; see [11], [12] for more details:

Theorem 1.5.3 (M. Burger, A. Iozzi, F. Labourie and A. Wienhard). A maximal repre-

sentation ρ : π1 (Σ) → Sp(4,R) is an Anosov representation. More precisely, for P the

corresponding �at principal Sp(4,R)-bundle over T 1Σ and E the corresponding �at symplec-

tic R2n-bundle over T 1Σ, ρ is an (Sp(2n,R),GL(n,R))-Anosov representation. The canonical
GL(n,R)-reduction of P is equivalent to a continuous splitting of E into two �ow-invariant

transverse Lagrangian subbundles

E = Ls (ρ)⊕ Lu (ρ)

The next result opens the way for introducing obstruction theory for Anosov representa-

tions:

Proposition 1.5.4 ([22], Proposition 4.1). Let HomH−Anosov (π1 (M) , G) denote the set

of (G,H)-Anosov representations and BH (M) the set of gauge isomorphism classes of H-

bundles over M . For any pair (G,H), there is a well-de�ned locally constant map

HomH−Anosov (π1 (M) , G)→ BH (M)

associating to an Anosov representation its Anosov H-reduction.
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This proposition allows one to associate to a maximal representation into Sp(2n,R), the
�rst and second Stiefel-Whitney classes of the corresponding GL (n,R)-bundle over T 1Σ:

sw1 : Hommax (π1 (Σ) , Sp(2n,R))→ H1
(
T 1Σ;Z2

)
sw2 : Hommax (π1 (Σ) , Sp(2n,R))→ H2

(
T 1Σ;Z2

)
The values of these Stiefel-Whitney classes for the model symplectic representations of the

previous section, were explicitly computed by O. Guichard and A. Wienhard in [22]. A

relation between these invariants and the Higgs bundle invariants w1, w2 discussed in �1.3

can be deduced from case-by-case considerations for model representations, although these

invariants live naturally in di�erent cohomology groups:

Proposition 1.5.5 ([22], Proposition 19). Let ρ : π1 (Σ)→ Sp(2n,R) be a maximal represen-
tation. Then, for any choice of spin structure v, the following equality holds in H i (T 1Σ;Z2):

sw1 (ρ) = w1 (ρ, v) + nv

sw2 (ρ) = w2 (ρ, v) + sw1 (ρ) ∪ v + (g − 1) mod 2

Even though the �rst and second Stiefel-Whitney class are enough to distinguish the 3·22g-

many connected components of maximal representations ρ : π1 (Σ)→ Sp(2n,R) for n ≥ 3, for

the case n = 2 an extra topological invariant needs to be considered in order to distinguish

the extra components of Rmax (X, Sp(4,R)).

Remark 1.5.6. Note that in the Higgs bundle viewpoint, the degree deg (L) of the underlying

line bundle L in the decomposition of the Cayley partnerW = L⊕L−1 whenever w1 (W ) = 0,

was used in order to distinguish the extra connected components ofMmax (X, Sp(4,R)).

For n = 2, when sw1 (ρ) = 0, the Lagrangian bundle Ls (ρ) is orientable, however, a priori

this bundle has no canonical orientation. It is shown in [22] that for every pair (ρ, Ls (ρ)) with

ρ maximal and with sw1 (ρ) = 0, there is a natural associated oriented Lagrangian bundle

L+ over T 1Σ, and the associated �at GL+ (2,R)-bundle E associated to ρ decomposes to

two oriented Lagrangian subbundles

E = Ls+ (ρ)⊕ Lu+ (ρ)

An Euler class e (ρ, L+) whose image lies in H2 (T 1Σ,Z) is now well-de�ned for the canon-

ical GL+ (2,R)-reduction of the GL (2,R)-Anosov reduction associated to ρ. For any repre-

sentation ρ : π1 (Σ) → Sp(4,R) de�ne a representation ε ⊗ ρ : π̂1 (Σ) → Sp(4,R) by setting

ε ⊗ ρ (x, γ) = ε (x) ρ (γ), where ε : π̂1 (Σ) := {±1} × π1 (Σ) → {±1} is the projection onto

39



the �rst factor. Now, for the hybrid representations ρ : π1 (Σ) → Sp(4,R) described in �1.4

it holds that sw1 (ρ) = 0, whereas

e (ε⊗ ρ, L+) = −χ (Σl) [Σ] ∈ H2
(
T 1Σ,Z

)
Remember that Σl is considered here to be a surface with genus 1 ≤ gl ≤ g − 1 and one

boundary component, thus its Euler characteristic χ (Σl) = 2 − 2gl − 1 = 1 − 2gl is odd.

Now, 1 ≤ gl ≤ g − 1 implies

−2g + 3 ≤ χ (Σl) ≤ −1.

Moreover, any representation in Hommax,sw1=0 (π1 (Σ) , Sp (4,R)) with Euler class not equal

to (g − 1) [Σ] has Zariski dense image. Therefore, we obtain a model k-hybrid representation

for each possible value of the Euler characteristic, and these representations thus distinguish

the odd-indexed 2g− 3 exceptional components of Rmax (Sp (4,R)) (see Theorem 5.8 as well

as �5.6 in [22]).

1.6 Statement of the problem

Motivated by the topological gluing construction described above, we aim at developing a

gluing construction for (poly)stable Sp(4,R)-Higgs bundles over a complex connected sum

of Riemann surfaces. Moreover, we seek for a way to choose the Sp(4,R)-Higgs data on the

left and right hand side Riemann surfaces, so that the resulting hybrid Higgs bundle will lie

in one of the 2g − 3 exceptional components ofMmax (X, Sp(4,R)). Even further, we would

like to obtain models in all these components, thus extending the result of O. Guichard

and A. Wienhard to the even-indexed ones. The latter would provide a speci�c relation

between the Higgs bundle topological invariants and the topological invariants for Anosov

representations, as de�ned in [22].

In the following chapters we develop the necessary machinery for the above mentioned

purpose. The appropriate analog to a surface group representation into a reductive Lie

group G for a surface with boundary is a parabolic G-Higgs bundle over a Riemann surface

with a divisor. We need to describe the de�ning data for these holomorphic objects and

especially what it would mean to have a maximal parabolic stable Sp(4,R)-Higgs bundle;
this is the content of Chapter 2. From this point on, the problem of establishing a gluing

construction using such objects (stable but not necessarily maximal) over a complex con-

nected sum of Riemann surfaces is a more complicated procedure compared to its topological

counterpart. We choose to switch to the language of solutions to the Hitchin equations and
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develop a gluing construction in the gauge-theoretic language, adapting into our setting the

very e�ective techniques of C. Taubes for gluing instantons over 4-manifolds. This adap-

tation involves a good understanding of the linearization of the Hitchin operator when we

perform the gluing over a complex connected sum of Riemann surfaces. This is the content

of Chapter 3, and we show that by gluing parabolic stable Sp(4,R)-Higgs bundles we may

get a polystable Sp(4,R)-Higgs bundle de�ned over the compact connected sum surface X#.

In Chapter 4, we show how to construct model hybrid Higgs bundles in all the exceptional

components of Mmax (X#, Sp(4,R)). For this purpose, two results need to be established:

First, we need to have an additivity property for the Toledo invariant, analogous to the

one described in Proposition 1.4.5 for maximal representations; this will provide that gluing

maximal parabolic G-Higgs bundles gives a maximal (non-parabolic) G-Higgs bundle. The

second is a description of the Higgs bundle invariants under the complex connected sum

operation. This will predict the choices that need to be made for gluing parabolic Sp(4,R)-
Higgs bundles, in order to end up with a model inside a desired component of the maximal

Sp(4,R)-Higgs bundle moduli space.
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CHAPTER 2

PARABOLIC SP(4,R)-HIGGS BUNDLES

Parabolic vector bundles over Riemann surfaces with marked points were introduced by

C. Seshadri in [38] and similar to the Narasimhan-Seshadri correspondence, there is an

analogous correspondence between stable parabolic bundles and unitary representations of

the fundamental group of the punctured surface with �xed holonomy class around each

puncture [30]. Later on, C. Simpson in [40] proved a non-abelian Hodge correspondence

in the non-compact case: Parabolic Higgs bundles are in bijection with meromorphic �at

connections, whose holonomy around each puncture de�nes a conjugacy class of an element

in the unitary group described by the weights in the parabolic structure of the bundle.

These connections correspond to representations of the fundamental group of the punctured

surface in the general linear group, which send a small loop around each parabolic point to

an element conjugate to a unitary element. More recently, O. Biquard, O. García-Prada and

I. Mundet i Riera provided in [5] a Hitchin-Kobayashi correspondence for parabolic G-Higgs

bundles.

In this chapter we include the main de�nitions for parabolic G-Higgs bundles. We are

primarily interested in the case G = Sp(4,R) and in describing the moduli space of maximal

parabolic Sp(4,R)-Higgs bundles. For the latter, a Milnor-Wood bound for an appropriate

notion of Toledo invariant is necessary.

2.1 Parabolic GL (n,C)-Higgs bundles

For further reference on the material covered in this section see [8] or [19].

De�nition 2.1.1. Let X be a closed, connected, smooth Riemann surface of genus g ≥ 2

with s-many marked points x1, . . . , xs and let a divisor D = {x1, . . . , xs}. We de�ne a

parabolic vector bundle E over X to be a holomorphic vector bundle E → X with parabolic

structure at each x ∈ D (weighted �ag on each �ber Ex ):

Ex = Ex,1 ⊃ Ex,2 ⊃ . . . ⊃ Ex,r(x)+1 = {0}
0 ≤ α1 (x) < . . . < αr(x) (x) < 1

42



We usually write (E,α) to denote a vector bundle equipped with a parabolic structure

determined by a system of weights α (x) = (α1 (x) , . . . , αn (x)) at each x ∈ D. Moreover,

set ki (x) = dim (Ex,i/Ex,i+1 ) be the multiplicity of the weight αi (x). We can also write the

weights repeated according to their multiplicity as

0 ≤ α̃1 (x) ≤ . . . ≤ α̃n (x) < 1

where now n = rkE. A weighted �ag shall be called full, if ki (x) = 1 for every i and x ∈ D.

De�nition 2.1.2. A holomorphic map f : E → E ′ of parabolic vector bundles (E,α) , (E ′, α′)

is called parabolic if αi (x) > α′j (x) implies f (Ex,i) ⊂ E ′x,j+1, for every x ∈ D.

Furthermore, we call such a map strongly parabolic if αi (x) ≥ α′j (x) implies f (Ex,i) ⊂
E ′x,j+1 for every x ∈ D.

We denote by ParHom (E,E ′) and SParHom (E,E ′) the sheaves of parabolic and strongly

parabolic morphisms respectively.

De�nition 2.1.3. We de�ne the parabolic degree and parabolic slope of a vector bundle

equipped with a parabolic structure as follows

par deg (E) = degE +
∑
x∈D

r(x)∑
i=1

ki (x)αi (x)

parµ (E) =
pardeg (E)

rk (E)

We now describe the basic constructions for parabolic vector bundles that we are going to

be considering:

1. Subbundle and quotient

If (E,α) is a parabolic vector bundle then a vector subbundle F ≤ E inherits a

parabolic structure from E (induced parabolic structure) by setting Fx,i = Fx ∩ Ex,i
and discarding the weights of multiplicitly zero. Quite similarly, the quotient E/F

can be equipped with a parabolic structure inherited from the structure on E.

2. Direct Sum

Let (V, α) , (W,α′) be parabolic vector bundles. We de�ne the parabolic direct sum

(E, α̃) of parabolic bundles as the direct sum E = V ⊕ W of holomorphic bundles

with weight type α̃ consisted of the ordered collection of the weights in α and α′,

and �ltration Ex,k = Vx,i ⊕ Wx,j where i (resp. j) is the smallest integer such that
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α̃k (x) ≤ αi (x) (resp. α̃k (x) ≤ α′j (x)). Under this de�nition we can now check that

par deg (V ⊕W ) = par deg (V ) + par deg (W )

3. Dual

Let (E,α) be a parabolic vector bundle. There is a well de�ned notion of a dual E∨ by

considering the bundle Hom (E,O (−D)) equipped with a parabolic structure de�ned

by the �ltration

E∨x = E∨x,1 ⊃ . . . ⊃ E∨x,r(x) ⊃ {0}

where E∨x,i = Hom
(
Ex/Ex,r(x)+2−i,O(−D)x

)
and weights

1− αr(x) (x) < . . . < 1− α1 (x) .

Under this de�nition we can now check that E∨∨ = E, as well as that

par deg (E∨) = −par degE

4. Tensor product

A notion of parabolic tensor product was de�ned in [48] in the language of parabolic

sheaves. Let E and M be two parabolic vector bundles on X with the same parabolic

divisor D and let τ : X\D → X be the natural inclusion. De�ne

E := τ∗τ
∗ (E ⊗M)

which is a quasi-coherent sheaf over X and now for any t ∈ R denote by Et the subsheaf
of E generated by all Ek ⊗Ml with k+ l ≥ t. The �ltration (Et)t∈R de�nes a parabolic

structure on the coherent sheaf E0, which is locally free. The parabolic tensor product

E ⊗M is de�ned as the parabolic bundle E constructed previously; cf. [6] or [48] for

more details. We now have

par deg (E ⊗M) = rk (M) par deg (E) + rk (E) par deg (M)

De�nition 2.1.4. A parabolic vector bundle will be called stable (resp. semistable) if for

every non-trivial proper parabolic subbundle F ≤ E, it is parµ (F ) < parµ (E), (resp. ≤).

De�nition 2.1.5. Let K be the canonical bundle over X and E a parabolic vector bundle.

The bundle morphism Φ : E → E⊗K (D) will be called a parabolic Higgs �eld, if it preserves
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the parabolic structure at each point x ∈ D:

Φ |x (Ex,i) ⊂ Ex,i ⊗K (D) |x

In particular, we call Φ strongly parabolic, if

Φ |x (Ex,i) ⊂ Ex,i+1 ⊗K (D) |x

in other words, Φ is a meromorphic endomorphism valued 1-form with simple poles along

the divisor D, whose residue at x ∈ D is nilpotent with respect to the �ltration.

After these considerations we are in position to de�ne parabolic Higgs bundles.

De�nition 2.1.6. Let K be the canonical bundle over X and E a parabolic vector bundle

over X. Consider on E ⊗ K (D) the parabolic structure induced by the tensor product

construction.

• A parabolic K (D)-pair is a pair (E,Φ), where E is a parabolic vector bundle and

Φ : E → E ⊗K (D) is a parabolic Higgs �eld.

• A parabolic Higgs bundle is a parabolic K (D)-pair (E,Φ), where Φ is additionally a

strongly parabolic Higgs �eld.

Analogously to the non-parabolic case, we may de�ne stability as follows:

De�nition 2.1.7. A parabolic K (D)-pair will be called stable (resp. semistable) if for every

Φ-invariant parabolic subbundle F ≤ E it is parµ (F ) < parµ (E) (resp. ≤). Furthermore,

it will be called polystable if it is the direct sum of stable parabolic K (D)-pairs of the same

parabolic slope.

For �xed n = rkE, d = degE and weight type α, two moduli spaces can be now obtained

given the preceding de�nitions. In [47] and [48], K. Yokogawa has constructed the moduli

space of K (D)-pairs Pα using geometric invariant theory and has shown that it is a normal,

quasi-projective variety of dimension

dimPα = (2g − 2 + s)n2 + 1

which is smooth at the stable points. Moreover, in [28] H. Konno constructed the moduli

space of parabolic Higgs bundles Nα as a hyperkähler quotient. It is contained in Pα as a

closed subvariety of dimension

dimNα = 2 (g − 1)n2 + 2 + 2
∑
x∈D

fx
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where fx = 1
2

(
n2 −

r(x)∑
i=1

(ki (x))2

)
is the dimension of the associated �ag variety.

Remark 2.1.8. In the literature, a parabolic Higgs bundle is sometimes de�ned by requiring

the Higgs �eld to be just preserving the parabolic structure at each point x ∈ D. For us, a

parabolic Higgs bundle will always involve a strongly parabolic Higgs �eld.

Lastly, we say that the weights of a parabolic Higgs bundle are generic, when stability and

semistability are equivalent. In this case, there are no properly semistable parabolic Higgs

bundles and the moduli space Nα is smooth.

2.2 Parabolic G-Higgs bundles

In [5] the authors introduce parabolic G-Higgs bundles over a punctured Riemann surface

for a non-compact real reductive Lie group G. This de�nition involves a choice for each

puncture of an element in the Weyl alcove of a maximal compact subgroup H ⊂ G, handling

both cases as if this element lies in the interior of the alcove or if it lies in a `bad' wall of the

alcove. Below we summarize the basic steps towards this de�nition.

Let X be a compact, connected Riemann surface and let {x1, . . . , xs} be a �nite set of

di�erent points on X with D = x1 + . . . xs be the corresponding e�ective divisor. Let

now HC be a reductive, complex Lie group. Fix a maximal compact subgroup H ⊂ HC,

and a maximal torus T ⊂ H with Lie algebra t. Denote E
(
HC
)

= E×HCHC → X, the

HC-�bration associated to E via the adjoint representation of HC on itself. Then

E
(
HC)

x
=
{
φ : Ex → HC ∣∣φ (eh) = h−1φ (e)h , ∀e ∈ Ex, h ∈ HC}

i.e. the �ber can be identi�ed with the set of antiequivariant maps φ.

Fix an alcove A ⊂ t of H containing 0 ∈ t and for αi ∈
√
−1Ā let Pαi ⊂ HC be the

parabolic subgroup de�ned by the αi.

De�nition 2.2.1. We de�ne a parabolic structure of weight αi on E over a point xi as

the choice of a subgroup Qi ⊂ E
(
HC
)
xi
with the property that there exists a trivialization

e ∈ Exi for which Pαi = {φ (e) |φ ∈ Qi}.

Given this, we now set the following:

De�nition 2.2.2. Let α = (α1, . . . , αn) be a collection of elements in
√
−1Ā. A parabolic

bundle over (X,D) of weight α is a holomorphic principal bundle with a choice for any i of

a parabolic structure of weight αi over xi.
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Consider that the parabolic bundle E comes equipped with a holomorphic structure ∂̄ and

consider a metric h ∈ Γ (X\D;E/H) de�ned away from the divisor D.

De�nition 2.2.3. The metric h is called an α-adapted metric if for any parabolic point xi

the following holds: Let ei ∈ Exi be an element belonging to the Pαi orbit speci�ed by the

parabolic structure. Choose local holomorphic coordinate z and extend the trivialization ei

into a holomorphic trivialization of E near xi. Then we can write near xi

h =
(
|z|−αiec

)2

with Ad
(
|z|−αi

)
c = o (log |z|), Ad

(
|z|−αi

)
dc ∈ L2 and Ad

(
|z|−αi

)
Fh ∈ L1.

For a real reductive Lie group G with a maximal compact subgroup H, let g = h⊕m the

Cartan decomposition of its Lie algebra into its ±1-eigenspaces, where h = Lie (H) and let

E
(
mC
)
be the bundle associated to E via the isotropy representation. Choose a trivialization

e ∈ E near the point xi, such that near xi the parabolic weight lies in αi ∈
√
−1Ā. In the

trivialization e, we can decompose the bundle E
(
mC
)
under the eigenvalues of ad (αi) acting

on mC as

E
(
mC) = ⊕

µ
mC
µ

Decompose accordingly a section ϕ of E
(
mC
)
as ϕ =

∑
ϕµ. After these preliminaries we

set the following:

De�nition 2.2.4. The sheaf PE
(
mC
)
of parabolic sections (resp. the sheaf NE

(
mC
)
of

strictly parabolic sections) of E
(
mC
)
is consisted of meromorphic sections ϕ of the bundle

E
(
mC
)
with singularities at the points xi, with ϕµ having order

v (ϕµ) ≥ −b−µc (resp. v (ϕµ) > −b−µc )

This means that if a−1 < µ ≤ a (resp. a− 1 ≤ µ < a) for some integer a, then ϕµ = O (za).

We �nally have the de�nition of a parabolic G-Higgs bundle as follows:

De�nition 2.2.5. We de�ne a parabolic G-Higgs bundle over a Riemann surface with a

divisor (X,D) to be a pair (E,ϕ), where:

1. E is a parabolic principal HC-bundle over (X,D), and

2. ϕ is a holomorphic section of PE
(
mC
)
⊗K (D).

The pair (E,ϕ) will be called a strictly parabolic G-Higgs bundle if in addition the Higgs

�eld ϕ is a section of NE
(
mC
)
⊗K (D).
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For a parabolic principal bundle E over (X,D) with weights α, a notion of parabolic degree

was de�ned in [5] as the sum of two terms, one global and independent of the parabolic

structure, and one local and depending on the parabolic structure. Before we state this

de�nition, recall that the degree of a (non-parabolic) bundle can be de�ned using Chern-

Weil theory as follows:

Fix a standard parabolic subgroup P ⊂ HC, an antidominant character χ : p → C and a

holomorphic reduction σ of the structure group of E from HC to P , with Eσ denoting the

P -principal bundle corresponding to this reduction σ. Then, the degree of E is given by

deg (E) (σ, χ) :=

√
−1

2π

∫
X

χ∗ (FA)

where FA is the curvature of any P -connection A on Eσ.

Now, let Qi ⊂ E
(
HC
)
xi
the parabolic subgroups in the de�nition of the parabolic struc-

ture. At each point in the divisor D, there are two parabolic subgroups equipped with an

antidominant character, one coming from the parabolic structure (Qi, αi) and one coming

from the reduction
(
Eσ(P )xi , χ

)
. A relative degree for such a pair of parabolic subgroups

(Q,P) is then de�ned:

deg ((Q, σ) , (P , s)) = cos∠T its (η (σ) , η (s))

where ∠T its is the Tits distance on ∂∞X for X = H\G a symmetric space of non-compact

type, and η (s) = lim
t→∞

∗ ets ∈ ∂∞Σ for s in an H-orbit OH ⊂ m. The parabolic degree is now

given by the sum of the two terms described previously:

pardegα (E) (σ, χ) := deg (E) (σ, χ)−
∑
i

deg
(
(Qi, αi) ,

(
Eσ(P )xi , χ

))
The de�nition of polystability is next given with respect to an element c ∈

√
−1l for

l = Lie (Z (H)):

De�nition 2.2.6. Let (E,Φ) be a parabolic G-Higgs bundle over (X,D). Then (E,Φ) will

be called polystable if for every s ∈
√
−1h and any holomorphic reduction σ of the structure

group of E to Ps, such that Φ
∣∣
X\D ∈ H0 (X\D,Eσ (ms)⊗K) it is

par deg (E) (σ, χs)− 〈c, s〉 ≥ 0

The following theorem proven in [5] establishes a Hitchin-Kobayashi correspondence for

parabolic G-Higgs bundles.
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Theorem 2.2.7. Let (E,Φ) be a parabolic G-Higgs bundle equipped with an adapted initial

metric h0. Suppose that par deg (E) = χ (c) for all characters of g. Then (E,Φ) admits an

Hermite-Einstein metric h, quasi-isometric to h0, if and only if (E,Φ) is polystable.

2.2.1 Deformation theory

The deformation theory of parabolic K (D)-pairs was studied by K. Yokogawa in [48]. We

now adapt results from that article to the case of parabolicG-Higgs bundles forG semisimple,

analogously to the non-parabolic case treated in �3.3 of [18]. For a semisimple Lie group G,

with H ⊂ G a maximal compact subgroup, let g = h⊕m be a Cartan decomposition so that

the Lie algebra structure of g satis�es:

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h

Let gC = hC ⊕ mC be the complexi�cation of the Cartan decomposition. The group H

acts linearly on m through the adjoint representation and this action extends to a linear

holomorphic action of HC on mC = m⊗ C:

ι : HC → Aut
(
mC)

We consider the deformation complex of a parabolic G-Higgs bundle as follows:

De�nition 2.2.8. Let (E,ϕ) be a parabolic G-Higgs bundle. The deformation complex of

(E,ϕ) is the following complex of sheaves

C• (E,ϕ) : NE
(
hC
) dι(ϕ)−−−→ NE

(
mC)⊗K (D) .

The de�nition makes sense because ϕ is a meromorphic section of NE
(
mC
)
⊗K (D) and[

mC, hC
]
⊆ mC.

The results of K. Yokogawa now readily adapt to provide the following:

Proposition 2.2.9. The space of in�nitesimal deformations of a G-Higgs bundle (E,ϕ) is

naturally isomorphic to the hypercohomology group H1 (C• (E,ϕ)).

For any G-Higgs bundle there is a natural long exact sequence:

0→ H0 (C• (E,ϕ))→ H0
(
NE

(
hC
)) dι(ϕ)−−−→ H0

(
NE

(
mC)⊗K (D)

)
→ H1 (C• (E,ϕ))→ H1

(
NE

(
hC
)) dι(ϕ)−−−→ H1

(
NE

(
mC)⊗K (D)

)
→ H2 (C• (E,ϕ))→ 0,
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where dι : hC → End
(
mC
)
is the derivative at the identity of the complexi�ed isotropy

representation ι = Ad |HC : HC → Aut
(
mC
)
.

The Serre duality theorem for parabolic sheaves (Proposition 3.7 in [48]) provides that

there are natural isomorphisms:

Hi (C• (E,ϕ)) ∼= H2−i(C•(E,ϕ)∨ ⊗K (D)
)∨
,

where the dual of the deformation complex C• (E,ϕ) is de�ned as

C•(E,ϕ)∨ : NE
(
mC)⊗ (K (D))∨

−dι(ϕ)−−−−→ NE
(
hC
)
.

An important special case of this is when G is a complex group:

Proposition 2.2.10. Assume that G is a complex semisimple group. Then there is a natural

isomorphism:

H2 (C• (E,ϕ)) ∼= H0(C• (E,ϕ))∨

Proof. When G is complex, dι = ad: g → g and the Cartan decomposition of g is g =

u + iu, where u = Lie (U) for U ⊂ G a maximal compact subgroup. Thus, in this case

ϕ ∈ NE (g)⊗K (D). Moreover, for a complex group G the deformation complex is dual to

itself, except for a sign in the map, which does not a�ect the cohomology:

C•(E,ϕ)∨ ⊗K (D) : NE (g)
−ad(ϕ)−−−−→ NE (g)⊗K (D)

The result now follows from Serre duality.

The proof of the next proposition is immediate, since NE
(
hC
)
⊕ NE

(
mC
)

= NE
(
gC
)
,

given the Cartan decomposition gC = hC ⊕ mC. The corollary is also immediate from Serre

duality:

Proposition 2.2.11. Let G be a real semisimple group and let GC be its complexi�cation.

Let (E,ϕ) be a G-Higgs bundle. Then there is an isomorphism of complexes:

C•GC (E,ϕ) ∼= C•G (E,ϕ)⊕ C•G(E,ϕ)∨ ⊗K (D) ,

where C•GC (E,ϕ) denotes the deformation complex of (E,ϕ) viewed as a GC-Higgs bundle,

while C•G (E,ϕ) denotes the deformation complex of (E,ϕ) viewed as a G-Higgs bundle.

Corollary 2.2.12. With the same hypotheses as in the previous proposition, there is an

isomorphism

H0 (C•GC (E,ϕ)) ∼= H0 (C•G (E,ϕ))⊕H2(C•G (E,ϕ))∨.
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Under the genericity assumption we made, every parabolic polystable G-pair is stable, thus

simple and de�nes a smooth point in the moduli space. This gives that H0
(
C•GC (E,ϕ)

)
= 0

and so

H0 (C•G (E,ϕ)) = 0 = H2 (C•G (E,ϕ))

The long exact sequence then provides that

dimH1 (C• (E,ϕ)) = −χ (C• (E,ϕ))

Note that given the genericity assumption this will be the actual dimension of the moduli

space of parabolic polystable G-Higgs bundles. This dimension can be computed using the

Riemann-Roch formula and is independent of the choice of (E,ϕ):

Proposition 2.2.13. Under the genericity assumption, the moduli spaceMpar (G) of stable

parabolic G-Higgs bundles is a smooth complex variety of dimension

(g − 1) dimGC + s · rk
(
NE

(
mC)) ,

where g is the genus of the Riemann surface X and s is the number of marked points on X.

Proof. Let (E,ϕ) be any stable parabolic G-Higgs bundle. The long exact sequence for the

deformation complex C• (E,ϕ) of (E,ϕ) provides that

χ (C• (E,ϕ))− χ
(
NE

(
hC
))

+ χ
(
NE

(
mC)⊗K (D)

)
= 0.

The Riemann-Roch formula now gives:

χ
(
NE

(
hC
))

= deg
(
NE

(
hC
))

+ rk
(
NE

(
hC
))
· (1− g)

as well as

χ
(
NE

(
mC)⊗K (D)

)
= deg

(
NE

(
mC)⊗K (D)

)
+ rk

(
NE

(
mC)⊗K (D)

)
· (1− g)

= deg
(
NE

(
mC))+ rk

(
NE

(
mC)) · (2g − 2 + s) + rk

(
NE

(
mC)) · (1− g)

= deg
(
NE

(
mC))+ rk

(
NE

(
mC)) · (g − 1 + s) ,

where we used that degK (D) = 2g − 2 + s.
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Thus, the dimension of the moduli space is: −χ (C• (E,ϕ)) =

deg
(
NE

(
mC))+ rk

(
NE

(
mC)) · (g − 1 + s)− deg

(
NE

(
hC
))
− rk

(
NE

(
hC
))
· (1− g)

Moreover, any invariant pairing on gC (i.e. the Killing form) induces isomorphismsNE
(
hC
)
'

NE
(
hC
)∗

and NE
(
mC
)
' NE

(
mC
)∗
. Hence,

deg
(
NE

(
hC
))

= deg
(
NE

(
mC)) = 0

and lastly: rk
(
NE

(
hC
))

+ rk
(
NE

(
mC
))

= dimGC. The computation now follows.

Remark 2.2.14. Notice that when the number of punctures s is zero, this dimension count

coincides with the count in Proposition 3.19 of [18] in the non-parabolic case.

2.3 Parabolic Sp(4,R)-Higgs bundles

In this section, we restrict the general parabolic G-Higgs bundle de�nitions of �2.2 to the

case when G = Sp(4,R) that we are primarily interested in. A maximal compact subgroup

of G = Sp(4,R) is H = U (2) and HC = GL(2,C), thus the parabolic structure on a GL(2,C)-
principal bundle is in this case de�ned by a weighted �ltration. We will �rst �x some notation

before giving the precise de�nitions.

Let X be a compact Riemann surface of genus g and let the divisor D := {x1, . . . , xs} of
s-many distinct points on X. Let X× := X −D denote the punctured Riemann surface.

Let K denote the canonical line bundle on X of degree 2g − 2. De�ne ι := OX (D) to be

the line bundle on X given by the divisor D. The degree of the line bundle K⊗ι is 2g−2+s,

where s is the number of punctures considered, and let us further assume that 2g−2+s > 0,

in other words, the punctured Riemann surface X× is equipped with a hyperbolic metric.

Let V be a rank 2 bundle over X. Equip this with a parabolic structure at each x ∈ D

Vx ⊃ Lx ⊃ 0

0 ≤ α1 (x) < α2 (x) < 1

and denote this parabolic bundle by Vpar := (V, α). We will be omitting the subscript par,

when there is no risk of confusion. De�ne the parabolic degree of the parabolic bundle Vpar
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to be given by the rational number

par deg Vpar = deg (V ) +
∑
x∈D

(α1 (x) + α2 (x))

Let ξ = OX (−D). We may de�ne a notion of parabolic dual of the parabolic bundle Vpar

by (Vpar)
∨ := V ∗ ⊗ ξ with weights 1− α, under which it now holds that

(
(Vpar)

∨)∨ = Vpar

as well as that

par deg (Vpar)
∨ = −par deg (Vpar)

Note however that the underlying vector bundle of (Vpar)
∨ does not coincide with the usual

bundle dual V ∗ when there is at least one nonzero weight.

For a parabolic principal HC = GL(2,C)-bundle E, let E
(
mC
)
denote the (parabolic)

bundle associated to E via the isotropy representation and, as a bundle,

E
(
mC) = Sym2 (V )⊕ Sym2 (V ∗)

for V the rank 2 bundle associated to E by the standard representation. In order to describe

the parabolic symmetric power of a parabolic bundle V , we note the following:

Let V → X be a rank 2 bundle de�ned over the compact surface and let it be equipped

with a parabolic structure de�ned by a trivial �ag Vx ⊃ {0} and weight 1
2
for each Vx and

x ∈ D. Then the parabolic symmetric power V ⊗par2 is equipped with the trivial �ag and

weight 1. In order to have a parabolic structure with the weight in the correct interval [0, 1),

we de�ne the parabolic symmetric square V ⊗par2, as the bundle V 2 ⊗ ι equipped with a

parabolic structure given by the trivial �ag and weight 0. Similarly, the parabolic symmetric

power for the parabolic dual (V ∨)⊗par2 is de�ned as the bundle (V ∗)2 ⊗ ξ equipped with a

parabolic structure given by the trivial �ag and weight 0.

Now, the parabolic tensor product E
(
mC
)
⊗K (D) is expressed as

[
Sym2 (V )⊗ ι⊗K ⊗ ι

]
⊕
[
Sym2 (V ∗)⊗ ξ ⊗K ⊗ ι

]
equipped with a parabolic structure given by the trivial �ag and weight 0.

In other words, the Higgs �eld according to the de�nition of a parabolic G-Higgs bundle

described in �2.2 will be given by a pair (β, γ), where

β ∈ H0
(
Sym2 (V )⊗ ι⊗K ⊗ ι

)
or β : V ∗ ⊗ ξ → V ⊗K ⊗ ι
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and

γ ∈ H0
(
Sym2 (V ∗)⊗ ξ ⊗K ⊗ ι

)
or γ : V → V ∗ ⊗ ξ ⊗K ⊗ ι

Thus, the de�nition of a parabolic Sp(4,R)-Higgs bundle according to �2.2 specializes to the
following:

De�nition 2.3.1. Let X be a compact Riemann surface of genus g and let the divisor

D := {x1, . . . , xs} of s-many distinct points on X, assuming that 2g− 2 + s > 0. A parabolic

Sp(4,R)-Higgs bundle is de�ned as a triple (V, β, γ), where

• V is a rank 2 bundle on X, equipped with a parabolic structure given by a �ag Vx ⊃
Lx ⊃ 0 and weights 0 ≤ α1 (x) < α2 (x) < 1 for every x ∈ D, and

• β : V ∨ → V ⊗K ⊗ ι and γ : V → V ∨ ⊗K ⊗ ι are strongly parabolic morphisms.

Remark 2.3.2. The parabolic structures on V and (V )∨ now induce a parabolic structure on

the parabolic sum E = V ⊕ (V )∨; Moreover, par degE = 0. We will prefer to think of a

parabolic Sp (4,R)-Higgs bundle as a pair (E,Φ), where Φ =

(
0 β

γ 0

)
rather than as a triple

(V, β, γ), because it is preferred to use the more workable notion for a stable parabolic Higgs

bundle of C. Simpson in order to introduce a notion of maximality for these objects.

2.4 Milnor-Wood type inequality

De�nition 2.4.1. The parabolic Toledo invariant of a parabolic Sp (4,R)-Higgs bundle is

de�ned as the rational number

τ = par deg (V )

Moreover, we get a Milnor-Wood type inequality for this topological invariant:

Proposition 2.4.2. Let (E,Φ) be a semistable parabolic Sp (4,R)-Higgs bundle. Then

|τ | ≤ 2g − 2 + s

where s is the number of punctures on the surface X.

Proof. Consider parabolic bundles N = ker (γ) and I = Im (γ)⊗ (K ⊗ ι)−1 ≤ (V )∨.

We thus get an exact sequence of parabolic bundles

0→ N → V → I ⊗K ⊗ ι→ 0
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and so

par deg (V ) = par deg (N) + par deg (I ⊗K ⊗ ι) (2.1)

= par deg (N) + par deg (I) + rk (I) (2g − 2 + s) (2.2)

using the formula that gives the parabolic degree for the tensor product and the fact that

par deg (K ⊗ ι) = 2g − 2 + s.

I is a subsheaf of (V )∨ and I ↪→ (V )∨ is a parabolic map. Let Ĩ ⊂ (V )∨ be its saturation,

which is a subbundle of (V )∨ and endow it with the induced parabolic structure. So N, V ⊕
Ĩ ⊂ E are Φ-invariant parabolic subbundles of E. The semistability of (E,Φ) now implies

parµ (N) ≤ parµ (E) and parµ (V ⊕ I) ≤ parµ
(
V ⊕ Ĩ

)
≤ parµ (E). However,

parµ (E) =
par deg (E)

rk (E)
= 0

thus we have

par deg (N) ≤ 0

and

par deg (V ) + par deg (I) ≤ 0

From the last two inequalities, as well as Equation (2.2) we get:

par deg (V ) ≤ −par deg (V ) + rk (I) (2g − 2 + s)

In other words, τ ≤ 2g − 2 + s, since rk (I) ≤ 2.

Lastly, the map (V, β, γ) 7→
(
(V )∨ ⊗ ι, γ, β

)
de�nes an isomorphismM−τ ∼= Mτ providing

also the minimal bound −τ ≤ 2g − 2 + s.

De�nition 2.4.3. The parabolic Sp (4,R)-Higgs bundles with parabolic Toledo invariant

τ = 2g − 2 + s will be called maximal and we will denote the components containing such

triples by

Mmax
par :=M2g−2+s

par

2.5 Non-abelian Hodge correspondence on the punctured disk

In this section we review the non-abelian Hodge correspondence for non-compact surfaces

established by C. Simpson in [40] and describe the relation between the parabolic weights

for a �xed SL(2,C)-Higgs bundle on the punctured unit disk D0 := D\ {0} with varying
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weights, and the parallel transport along a loop around the puncture for the associated �at

connection on the bundle. In order to describe this relation, we will need the de�nition of

a parabolic Higgs bundle as a �ltered regular Higgs bundle. Moreover, for the construction

of the correspondence in this case it is necessary that the harmonic metric on the bundle

has at most polynomial growth at the punctures in order to extend the holomorphic Higgs

bundles across those points; these notions were introduced in [40] and the necessary growth

condition of the hermitian metric, called tameness, is related to the algebraic stability of the

�ltered regular Higgs bundle.

An algebraic vector bundle over a surface X is a bundle given by regular algebraic transi-

tion functions over Zariski open sets, in other words, a locally free sheaf of OX-modules. For

a compact Riemann surface X of genus g ≥ 2 with s-many marked points D = {x1, . . . , xs},
a �ltered vector bundle is de�ned as follows:

De�nition 2.5.1. A �ltered vector bundle (E, {Eα,xi}) is an algebraic vector bundle E →
X\D together with a collection of vector bundles Eα,xi indexed by α ∈ R and extending E

across the punctures xi, such that

• the extensions form a decreasing left continuous �ltration Eα,xi ⊂ Eβ,xi for α ≥ β,

• for every α, Eα−ε,xi = Eα,xi for small ε, and

• if z is a local coordinate vanishing to order one at xi, then Eα+1 = Eα ⊕O (−xi).

Let Ē denote the bundle over the compact surface X obtained from E using the extensions

E0,xi at all punctures. Then the �ber Ēxi is a vector space with a �ltration
(
Ēα
)
xi
, indexed

by 0 ≤ α < 1. The weights of the �ltration {Eα} are precisely the values where the �ltration

jumps, so there is a proper �ltration

Ēαn ⊃ Ēαn−1 ⊃ . . . ⊃ Ēα1 ⊃ 0

For Grαi
(
Ēxi
)

:=
(
Ēαi
)
xi
/
(
Ēαi−1

)
xi
, the algebraic degree of a �ltered bundle is de�ned as

the rational number

deg (E) = deg
(
Ē
)

+
∑
xi∈D

∑
0≤α<1

α dim
(
Grα

(
Ēxi
))

A �ltered regular Higgs bundle ((E, {Eα,xi}) ,Φ) is now a �ltered vector bundle (E, {Eα,xi})
together with a map Φ : E → E ⊗KX satisfying a regularity condition with respect to the

�ltrations:

Φ : Eα,xi → Eα,xi ⊗KX (D)
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De�nition 2.5.2. We say that a �ltered regular Higgs bundle ((E, {Eα,xi}) ,Φ) is alge-

braically stable (resp. algebraically semistable), if for any �ltered subbundle F ⊂ E with

induced �ltration preserved by Φ, it holds that

deg (F)

rk (F )
<

deg (E)

rk (E)
, ( resp ≤)

Remark 2.5.3. Note that the de�nition of a �ltered regular Higgs bundle is equivalent to

the de�nition by V. Mehta and C. Seshadri described in �2.1. Indeed, for a �ltered vector

bundle (E, {Eα}) and Ex,0 the �ber of E0 → X over x ∈ X, the vector space Ex,0 has an

induced �ltration {Ex,α} indexed by 0 ≤ α < 1. For each α, let Grα (Ex,0) be the direct

limit of the system Ex,α/Ex,β over all β > α. The weights of the parabolic structure are the

values of α ∈ [0, 1) such that dimCGrα (Ex,0) > 0. Now, in a neighborhood U of the point x

with coordinate z around x, such that z (x) = 0, the Higgs �eld Φ locally has the form

ϕ (z)
dz

z

where ϕ is a holomorphic endomorphism of E0 |U . The residue of Φ at the point x is de�ned

to be ResxΦ := ϕ (0). The condition that Φ preserves the parabolic structure at each point

x ∈ D, as in De�nition 2.1.5, means that the residue of Φ respects the �ltration {Ex,α}
de�ned above.

A �ltered regular Higgs bundle together with the notion of algebraic stability is a purely

algebraic object. The topological objects corresponding to those were called by C. Simpson

�ltered local systems and are de�ned below:

De�nition 2.5.4. For a �xed base point y ∈ X and a puncture xi ∈ D, a �ltered local system

is a representation ρ : π1 (X) → GL (Ly) with �ltrations Lβ,xi of the �ber Ly, indexed by

β ∈ R, such that

• the �ltrations are decreasing and left continuous in β, and

• Lβ,xi is ρ (γxi)-invariant for a loop γxi around xi.

The degree of a �ltered local system is de�ned as the rational number

deg (L) =
∑
xi∈D

∑
β

β dim (Grβ (Lxi))

and a �ltered local system is called stable (resp. semistable) if for any subsystem M ⊂ L
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with an induced �ltration it holds that

deg (M)

rk (M)
<

deg (L)

rk (L)
(resp. ≤) .

In order to show a correspondence between these algebraic and topological objects, we need

to use a hermitian metric on the bundle with a speci�c growth condition at the punctures

imposed:

De�nition 2.5.5. Let E → X be a holomorphic bundle with a smooth hermitian metric

h and let Fh denote the curvature of the associated Chern connection. Let U ⊂ X be a

neighborhood of a puncture xi on X with coordinate r around the puncture. The metric h

on E is called acceptable, if |Fh| ≤ f + 1
r2(log r)2 for some f ∈ Lp with p > 1.

The main theorem from [40] is now the following:

Theorem 2.5.6. There is a one-to-one correspondence between polystable �ltered regular

Higgs bundles of degree zero and polystable �ltered local systems of degree zero.

In [27] S. Kim and G. Wilkin show that for a stable parabolic Higgs bundle, the metric

solving the self-duality equations depends analytically on the choice of weights and stable

Higgs bundle in a neighborhood of the initial weight and Higgs bundle. A local version of

this theorem provides an explicit description of the relation between the parabolic weights of

a stable parabolic Higgs bundle and the holonomy of the associated �at connection around

each puncture for the case G = SL(2,C).

From this point on, we restrict attention to one particular point p ∈ D. Let D0 := D\ {0}
denote the punctured unit disk and choose a branch of log

U =
{
z = reiγ ∈ D0 : γ ∈ (−π, π)

}
.

Let E → D0 a rank 2 complex vector bundle trivialized over U and de�ne a Higgs structure on

E taking the trivial holomorphic structure, and de�ning the Higgs �eld on the trivialization

over U by

Φ (z) =

(
0 0
1
2

0

)
dz

z

Let w1,0 and w0,1 be a basis for the holomorphic sections of E in the trivialization over U

such that

Φ (z)w1,0 =
1

2
w0,1dz

z
and Φ (z)w0,1 = 0 (2.3)
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With respect to these sections, let the decomposition E ∼= E1,0 ⊕ E0,1 and consider the

hermitian metric on E

kθ (r) =

(
1
2θ

(
r−θ − rθ

)
0

0 2θ
r−θ−rθ

)
=

(
−1
θ

sinh (θ log r) 0

0 − 1
1
θ

sinh(θ log r)

)

With respect to this metric,

∣∣w1,0
∣∣
kθ

=
r−

1
2
θ

√
2θ

(
1− r2θ

) 1
2 = O

(
r−

1
2
θ
)
,
∣∣w0,1

∣∣
kθ

=

√
2θr

1
2
θ

(1− r2θ)
1
2

= O
(
r

1
2
θ
)

thus the weights in the interval [0, 1) are

1

2
θ and 1− 1

2
θ

The curvature of kθ is calculated to be

Fkθ = − θ2

4r2sinh2 (θ log r)

(
1 0

0 −1

)
dz̄dz

and so |Fkθ | ≤ 1
r2(log r)2 in a neighborhood of r = 0, that is, the metric is acceptable. Moreover,

one sees that Fkθ + [Φ,Φ∗] = 0, thus the metric is Hermitian-Einstein for all θ and the

associated connection Dθ = ∂̄ + ∂θ + Φ + Φ∗ is �at.

For the basis w1,0, w0,1 of the holomorphic section of the bundle E considered in Equation

(2.3), the holomorphic structure d′′θ := ∂̄ + Φ∗ has holomorphic sections given by w1,0 and

v0,1
θ := w0,1 + θ coth (θ log r)w1,0. A calculation from [27,p.11] shows that

d′θw
1,0 =

1

2
v0,1
θ

dz

z
and d′θv

0,1 =
1

2
θ2w1,0dz

z

It turns out that the sections

s1 = z−
θ
2

(
θw1,0 + v0,1

θ

)
and s2 = z

θ
2

(
θw1,0 − v0,1

θ

)
are �at with respect to the connection Dθ = d′′θ + d′θ. Therefore, the parallel transport

along a loop around the puncture with respect to this basis is given by

(s1, s2) 7→
(
e−iπθs1, e

iπθs2

)
.

In other words, the corresponding representation ρθ : Z→ SL(2,C) maps a generator of the
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integers to the element

(
e−iπθ 0

0 eiπθ

)
∈ SL(2,C). S. Kim and G. Wilkin also show that

kθ (r) depends analytically on 1
2
θ and the representations ρθ converge to the representation

ρ0 : Z→ SL(2,C), which maps a generator of Z to the element

(
1 π

0 1

)
∈ SL(2,C); cf. [27],

�3 for more details.
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CHAPTER 3

GLUING CONSTRUCTIONS OVER A COMPLEX
CONNECTED SUM OF RIEMANN SURFACES

In this chapter we develop our gluing construction for stable parabolic Sp(4,R)-Higgs bundles
to produce a polystable non-parabolic Sp(4,R)-Higgs bundle over the complex connected sum

of Riemann surfaces. The necessary condition in order to combine the initial parabolic data

over the connected sum operation is that this data is identi�ed over annuli around the points

in the divisors of the Riemann surfaces. Aiming to provide new model Higgs bundles in the

exceptional components of Mmax, we consider parabolic data which around the punctures

are a priori not identi�ed, but we then look for deformations of those into model solutions of

the Hitchin equations which will allow us to combine data over the complex connected sum.

This deformation argument uses deformations of SL(2,R)-solutions to the Hitchin equations

over a punctured surface and subsequently we extend this for Sp(4,R)-pairs using appropriate
embeddings φ : SL(2,R) ↪→ Sp(4,R). Therefore, our gluing construction involves parabolic

Sp(4,R)-pairs which arise from SL(2,R)-pairs via extensions by such embeddings, producing

an approximate solution of the Sp(4,R)-equations. We then apply a contraction mapping

argument to correct this approximate solution to an exact solution of the equations. The

analytic machinery we use to achieve this is based on work by R. Mazzeo, J. Swoboda, H.

Weiss and F. Witt [29] and J. Swoboda [42], whereas the analysis worked out in this chapter

also provides an extension of the main theorem in [42]. By analogy with the terminology

introduced by O. Guichard and A. Wienhard in their construction of hybrid representations,

we call the polystable Higgs bundles corresponding to such exact solutions hybrid. In the

next chapter we deal with the problem of identifying the components such glued objects may

lie and see that they do indeed correspond to the Guichard-Wienhard hybrid representations.

3.1 The local model

In this section, we describe the local SL(2,R)-model solutions to the Hitchin equations which

are going to serve as a guide for the gluing construction of the parabolic stable Sp(4,R)-
Higgs bundles. The description of these models is obtained by studying the behavior of the

harmonic map between a surface X with a given complex structure and the surface X with
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the corresponding Riemannian metric of constant curvature -4, under degeneration of the

domain Riemann surface X to a noded surface; cf. [42], [45] for further details.

Let C = (S1)x × [1,∞)y denote the half-in�nite cylinder, endowed with the complex

coordinate z = x + iy and �at Riemannian metric gC = |dz|2 = dx2 + dy2. For parameter

s > 0 let

Ns =
[
s−1csc−1

(
s−1
)
,
π

s
− s−1csc−1

(
s−1
)]

u
×
(
S1
)
v

be the �nite cylinder with complex coordinate w = u+iv, and carrying the hyperbolic metric

gs = s2csc2 (su) |dw|2. It is shown in [45] that the one parameter family ws :
(
C, |dz|2

)
→

(Ns, gs) with ws = us + ivs and where vs (x, y) = x, us (x, y) = 1
s
sin−1

(
1−Bs(y)
1+Bs(y)

)
, for Bs (y) =

1−s
1+s

e2s(1−y), serves as a model for harmonic maps with domain a noded Riemann surface and

target a smooth Riemann surface containing a long hyperbolic neck with central geodesic of

length 2πs.

For a stable SL(2,R)-Higgs bundle (E,Φ) on X with E = L ⊕ L−1 for L a holomorphic

square root of the canonical line bundle over X, endowed with an auxiliary hermitian metric

h0, and Φ =

(
0 q

1 0

)
∈ H0 (X, sl (E)) for q a holomorphic quadratic di�erential, there

is an induced hermitian metric H0 = h0 ⊕ h−1
0 on E and A = AL ⊕ A−1

L the associated

Chern connection with respect to h. The stability condition implies that there exists a

complex gauge transformation g unique up to unitary gauge transformations, such that

(A1,s,Φ1,s) := g∗ (A,Φ) is a solution to the Hitchin equations. Choosing a local holomorphic

trivialization on E and assuming that with respect to it the auxiliary hermitian metric

h0 is the standard hermitian metric on C2, the corresponding hermitian metric for this

solution on the bundle E = L⊕L−1 is globally well-de�ned with respect to the holomorphic

splitting of E into line bundles. Calculations worked out in [42] imply that in particular

H1,s =

(
h1,s 0

0 h−1
1,s

)
, for

h1,s =
2

s

(
1−B1/2

s

1 +B
1/2
s

)
the hermitian metric on L and gs with g

2
s = H−1

1,s is the complex gauge transformation giving

rise to an exact solution (A1,s,Φ1,s) of the self-duality equations.

Moreover, after the change in coordinates

ζ = eiz, idz =
dζ

ζ

which describes the conformal mapping of the cylinder C to the punctured unit disk, one
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sees that

A1,s = O (|ζ|s)

(
1 0

0 −1

)(
dζ

ζ
− dζ̄

ζ̄

)
, Φ1,s = (1 +O (|ζ|s))

(
0 s

2
s
2

0

)
dζ

iζ
.

Therefore, after a unitary change of frame, the Higgs �eld Φ1,s is asymptotic to the model

Higgs �eld Φ mod
s =

(
s
2

0

0 − s
2

)
dζ
iζ
, while the connection A1,s is asymptotic to the trivial �at

connection.

In conclusion, the model solution to the SL(2,R)-Hitchin equations we will be considering

is described by

A mod = 0, Φ mod =

(
C 0

0 −C

)
dz

z

over a punctured disk with z-coordinates around the puncture with the condition that C ∈ R
with C 6= 0, and that the meromorphic quadratic di�erential q := det Φ mod has at least one

simple zero. That this is indeed the generic case, is discussed in [29].

3.2 Weighted Sobolev spaces

In order to develop the necessary analytic arguments for the gluing construction later on, we

need to de�ne Sobolev spaces. LetX be a compact Riemann surface andD := {p1, . . . , ps} be
a collection of s-many distinct points onX. Moreover, let (E, h) be a hermitian vector bundle

on E. Choose an initial pair
(
A mod ,Φ mod

)
on E, such that in some unitary trivialization

of E around each point p ∈ D, the pair coincides with the local model from �3.1. Of course,

on the interior of each region X\ {p} the pair
(
A mod ,Φ mod

)
need not satisfy the Hitchin

equations.

For �xed local coordinates z around each point p ∈ D, such that z (p) = 0, de�ne r to be a

positive function which coincides with |z| around the puncture. Using the singular measure

r−1drdθ and a �xed weight δ > 0 de�ne weighted L2-Sobolev spaces :

L2
δ =

{
f ∈ L2 (rdrdθ)

∣∣∣∣ f

rδ+1
∈ L2

}
and

Hk
δ =

{
u,∇ju ∈ L2

δ (rdr) , 0 ≤ j ≤ k
}
.
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The Sobolev space with k-derivatives in L2 is de�ned as:

Lk,2δ =

{
f,
∇jf

rk−j
∈ L2

δ (rdrdθ) , 0 ≤ j ≤ k

}
where ∇ is the covariant derivative associated to a �xed background unitary connection on

E. We are interested in deformations of A and Φ such that the curvature of the connection

D = A + Φ + Φ∗ remains O
(
r−2+δ

)
, that is, slightly better than L1. We can then de�ne

global Sobolev spaces on X as the spaces of admissible deformations of the model unitary

connection and the model Higgs �eld
(
A mod ,Φ mod

)
as:

A =
{
A mod + α

∣∣α ∈ H1,2
−2+δ

(
Ω1 ⊗ su (E)

)}
and

B =
{

Φ mod + ϕ
∣∣ϕ ∈ H1,2

−2+δ

(
Ω1,0 ⊗ End (E)

)}
The space of unitary gauge transformations

G =
{
g ∈ U (E) , g−1dg ∈ L1,2

−2+δ

}
acts on A and B as follows

g∗ (A,Φ) =
(
g−1Ag + g−1dg, g−1Φg

)
for a pair (A,Φ) ∈ A× B.
These considerations allow us to introduce the moduli space of solutions which are close to

the model solution over a punctured Riemann surface X× := X−D for some �xed parameter

C ∈ R:

M
(
X×
)

=
{(A,Φ) ∈ A× B |(A,Φ) satis�es the Hitchin equations}

G

This moduli space was explicitly constructed by H. Konno in [28] as a hyperkähler quotient.

3.3 Approximate solutions of the SL(2,R)-Hitchin equations

In �3.2 we have seen that a point in the moduli space M (X×) di�ers from a model pair(
A mod ,Φ mod

)
by some element in H1

−2+δ. The following result by O. Biquard and P. Boalch

shows that (A,Φ) is asymptotically close to the model in a much stronger sense:
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Lemma 3.3.1. Lemma 5.3 in [4]. For each point p ∈ D let
(
A mod
p ,Φ mod

p

)
be a model pair

as was de�ned in �3.1. If (A,Φ) ∈M (X×), then there exists a unitary gauge transformation

g ∈ G such that in a neighborhood of each point p ∈ D it is

g∗ (A,Φ) =
(
A mod
p ,Φ mod

p

)
+O

(
r−1+δ

)
for a positive constant δ.

The decay described in this lemma can be further improved by showing that in a suitable

complex gauge transformation the point (A,Φ) coincides precisely with the model near each

puncture in D. With respect to the singular measure r−1drdϑ on C, we �rst introduce the
Hilbert spaces

L2
−1+δ

(
r−1drdϑ

)
=
{
u ∈ L2 (D)

∣∣r−δu ∈ L2
(
r−1drdϑ

)}
Hk
−1+δ

(
r−1drdϑ

)
=
{
u ∈ L2 (D)

∣∣∣(r∂r)j∂lϑu ∈ L2
−1+δ

(
r−1drdϑ

)
, 0 ≤ j + l ≤ k

}
for D = {z ∈ C |0 < |z| < 1} the punctured unit disk. We then have the following result by

J. Swoboda:

Lemma 3.3.2. Lemma 3.2 in [42]. Let (A,Φ) ∈M (X×) and let δ be the constant provided

by Lemma 3.3.1. Fix another constant 0 < δ′ < min
{

1
2
, δ
}
. Then there is a complex gauge

transformation g = exp (γ) ∈ Gc with γ ∈ H2
−1+δ′ (r

−1drdϑ), such that g∗ (A,Φ) coincides

with
(
A mod
p ,Φ mod

p

)
in a su�ciently small neighborhood of the point p, for each p ∈ D.

We shall now use this complex gauge transformation as well as a smooth cut-o� function

to obtain an approximate solution to the SL(2,R)-Hitchin equations. For the �xed local

coordinates z around each puncture p and the positive function r coinciding with |z| around
the puncture, �x a constant 0 < R < 1 and choose a smooth cut-o� function χR : [0,∞)→
[0, 1] with suppχ ⊆ [0, R] and χR (r) = 1 for r ≤ 3R

4
. We impose the further requirement on

the growth rate of this cut-o� function:

|r∂rχR|+
∣∣(r∂r)2χR

∣∣ ≤ C (3.1)

for some constant C not depending on R.

The map x 7→ χR (r (x)) : X× → R gives rise to a smooth cut-o� function on the punctured

surface X× which by a slight abuse of notation we shall still denote by χR. We may use this

function χR to glue the two pairs (A,Φ) and
(
A mod
p ,Φ mod

p

)
into an approximate solution

(AappR ,Φapp
R ) := exp (χRγ)∗ (A,Φ) .

65



The pair (AappR ,Φapp
R ) is a smooth pair and is by construction an exact solution of the Hitchin

equations away from each punctured neighborhood Up, while it coincides with the model

pair
(
A mod
p ,Φ mod

p

)
near each puncture. More precisely, we have:

(AappR ,Φapp
R ) =

 (A,Φ) , over X\
⋃
p∈D

{
z ∈ Up

∣∣3R
4
≤ |z| ≤ R

}
(
A mod
p ,Φ mod

p

)
, over

{
z ∈ Up

∣∣0 < |z| ≤ 3R
4

}
, for each p ∈ D

Figure 3.1: Constructing an approximate solution over the punctured surface X×.

Since (AappR ,Φapp
R ) is complex gauge equivalent to an exact solution (A,Φ) of the Hitchin

equations, it does still satisfy the second equation, in other words it holds that ∂̄AappR
Φapp
R = 0.

Indeed, for g̃ := exp (χRγ), we de�ned (AappR ,Φapp
R ) = g̃∗ (A,Φ) = (g̃−1Ag̃ + g̃−1dg̃, g̃−1Φg̃)

and (A,Φ) is an exact solution, thus in particular

0 = ∂̄AΦ = ∂̄Φ +
[
A0,1 ∧ Φ

]
We may now check

∂̄AappR
Φapp
R = ∂̄Φapp

R +
[
(AappR )0,1 ∧ Φapp

R

]
= ∂̄

(
g̃−1Φg̃

)
+
[(
g̃−1A0,1g̃ + g̃−1∂̄g̃

)
∧ g̃−1Φg̃

]
= ∂̄

(
g̃−1Φg̃

)
+ g̃−1

[
A0,1 ∧ Φ

]
g̃ + g̃−1

(
∂̄g̃
)
g̃−1Φg̃ − g̃−1Φ∂̄g̃

= ∂̄
(
g̃−1Φg̃

)
+ g̃−1

(
−∂̄Φ

)
g̃ + g̃−1

(
∂̄g̃
)
g̃−1Φg̃ − g̃−1Φ∂̄g̃

= ∂̄
(
g̃−1
)

Φg̃ + g̃−1
(
∂̄g̃
)
g̃−1Φg̃ = 0,

using the identity
(
∂̄g̃
)
g̃−1 + g̃∂̄ (g̃−1) = 0.

66



Moreover, Lemma 3.3.2 as well as the Assumption (3.1) we made on the growth rate of

the bump function χR provide us with a good estimate of the error up to which (AappR ,Φapp
R )

satis�es the �rst equation:

Lemma 3.3.3. Let δ′ > 0 be as in Lemma 3.3.2 and �x some further constant 0 < δ′′ < δ′.

The approximate solution (AappR ,Φapp
R ) to the parameter 0 < R < 1 satis�es∥∥∥∗F⊥AappR

+ ∗
[
Φapp
R ∧ (Φapp

R )∗
]∥∥∥

C0(X×)
≤ CRδ′′

for some constant C = C (δ′, δ′′) which does not depend on R.

Proof. See [42] Lemma 3.5.

3.4 Gluing over a complex connected sum

3.4.1 Set up

We will now use the approximate solutions from �3.3 in order to obtain an approximate

solution by gluing parabolic Higgs bundles. Let X1 be a closed Riemann surface of genus

g1 and D1 = {p1, . . . , ps} a collection of distinct points on X1. Let (E1,Φ1) → X1 be a

parabolic stable SL(2,R)-Higgs bundle. Then there exists an adapted Hermitian metric h1,

such that (Dh1 ,Φ1) is a solution to the equations, with Dh1 = ∇
(
∂̄1, h1

)
the associated

Chern connection.

As we have seen in �3.3, there exists a complex gauge transformation g1 = exp (γ1),

such that g∗1 (Dh1 ,Φ1) is asymptotically close to a model solution
(
A mod

1,p ,Φ mod
1,p

)
near the

puncture p, for each p ∈ D1. Choose a trivialization τ over a neighborhood Up ⊂ X1 so that

(Dh1)τ denotes the connection matrix and let χ1 be a smooth bump function on Up with the

assumptions made in �3.3, so that we may de�ne g̃1 = exp (χ1γ1) and take the approximate

solution over X1

(Aapp1 ,Φapp
1 ) = g̃∗1 (Dh1 ,Φ1) =

{
(Dh1 ,Φ1) , away from the points in the divisor D1(
A mod

1,p ,Φ mod
1,p

)
, near the point p, for each p ∈ D1

The connection Aapp1 is given, in that same trivialization, by the connection matrix χ1(Dh1)τ .

The fact that g̃1 is a complex gauge transformation may cause the holonomy over the bump

region not to be real, so a priori we are considering this pair as SL(2,C)-data.
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We wish to obtain an approximate Sp(4,C)-pair by extending the SL(2,C)-data via an

embedding

φ : SL(2,R) ↪→ Sp(4,R)

and its extension φ : SL(2,C) ↪→ Sp(4,C). For the Cartan decompositions

sl (2,R) = so (2)⊕m (SL(2,R))

sp (4,R) = u (2)⊕m (Sp(4,R))

their complexi�cations respectively read

sl (2,C) = so (2,C)⊕mC (SL(2,R))

sp (4,C) = gl (2,C)⊕mC (Sp(4,R))

Assume now that copies of a maximal compact subgroup of SL(2,R) are mapped via φ into

copies of a maximal compact subgroup of Sp(4,R). Then, since SO(2)C = SO(2,C) and

U(2)C = GL (2,C), the embedding φ describes an embedding SO(2,C) ↪→ GL (2,C) and so

we may use its in�nitesimal deformation φ∗ : sl(2,C) → sp(4,C) to extend SL(2,C)-data to

Sp(4,C)-data as follows:

We have constructed a pair (Aapp1 ,Φapp
1 ), where Aapp1 is a unitary connection on a principal

HC = SO(2,C)-bundle PSO(2,C) over X1. Consider the principal GL (2,C)-bundle QGL(2,C) by

extension of structure group through the homomorphism φ:

QGL(2,C) := PSO(2,C)×φ|SO(2,C)
GL (2,C)

This principal bundle QGL(2,C) can be equipped with a connection form obtained by extension

of structure group through this same homomorphism. Now, since φ∗ respects the adjoint

action of SL(2,C) on sl (2,C), we have an induced homomorphism of vector bundles from

the adjoint bundle ad
(
PSO(2,C)

)
to ad

(
QGL(2,C)

)
. We may obtain now a curvature 2-form

with values in ad
(
QGL(2,C)

)
by composing the curvature form for Aapp1 with this induced

homomorphism on the adjoint bundles. This is the curvature form for the extended GL (2,C)-

connection on QGL(2,C) (see [35], �5.4, 5.5 for further details).

We shall denote the Sp(4,C)-pair obtained by extension through φ by (Al,Φl), with the

curvature of the connection denoted by

FAl ∈ Ω2
(
R2; ad

(
QGL(2,C)

))
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and with the Higgs �eld Φl given by

Φl = φ∗
∣∣
mC(SL(2,C)) (Φapp

1 )

Assume, moreover, that the norm of the in�nitesimal deformation φ∗ satis�es a Lipschitz

condition, in other words it holds that

‖φ∗ (M)‖sp(4,C) ≤ C‖M‖sl(2,C)

for M ∈ sl (2,C). In fact, the norms considered above are equivalent to the C0-norm, since

gl (n) is �nite dimensional, hence all norms are equivalent and induce the same topology.

Restricting these norms to so (2,C) and mC (SL(2,R)) respectively, we may deduce that the

error in curvature is still described by the inequality∥∥∥∗F⊥Aappl
+ ∗

[
Φapp
l ∧ (Φapp

l )∗
]∥∥∥

C0
≤ klR

δ′′

for a (di�erent) real constant kl, which still does not depend on the parameter R > 0.

In summary, using an embedding φ : SL(2,R) ↪→ Sp(4,R) with the properties described

above, we may extend the approximate solution (Aapp1 ,Φapp
1 ) to take an approximate Sp(4,C)-

pair (Al,Φl) over X1, which agrees with a model solution
(
A mod
l,p ,Φ mod

l,p

)
over an annulus Ωp

1

around each puncture p ∈ D1; the model solution
(
A mod
l,p ,Φ mod

l,p

)
is the extension via φ of

the model
(
A mod

1,p ,Φ mod
1,p

)
in SL(2,R). The pair (Al,Φl) lives in the holomorphic principal

GL(2,C)-bundle obtained by extension of structure group via φ, which we shall keep denoting
as
(
E1 =

(
E1, ∂̄1

)
, h1

)
to ease notation.

Repeating the above considerations for another closed Riemann surface X2 of genus g2 and

D2 = {q1, . . . , qs} a collection of s-many distinct points of X2, we obtain an approximate

Sp(4,C)-pair (Ar,Φr) over X2, which agrees with a model solution
(
A mod
r,q ,Φ mod

r,q

)
over an

annulus Ωq
2 around each puncture q ∈ D2. This pair lives on the holomorphic principal

GL(2,C)-bundle obtained by extension of structure group via another appropriate embedding
SL(2,R) ↪→ Sp(4,R); let this hermitian bundle be denoted by

(
E2 =

(
E2, ∂̄2

)
, h2

)
.

3.4.2 Gluing of the Riemann surfaces

We begin with a classical result from complex analysis and conformal geometry:

Theorem 3.4.1 (Schottky's Theorem on Conformal Mappings between Annuli). An an-

nulus A1 = {z ∈ C |r1 < |z| < R1} can be mapped conformally onto the annulus A2 =
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{z ∈ C |r2 < |z| < R2} if and only if R1

r1
= R2

r2
. Moreover, every conformal map f : A1 → A2

takes the form f (z) = λz or f (z) = λ
z
, where λ ∈ C with |λ| = r2

r1
or |λ| = r2R1 respectively.

Proof. See p. 35 in [2].

Let us consider the Möbius transformation fλ : A1 → A2 with fλ (z) = λ
z
, where λ ∈

C with |λ| = r2R1 = r1R2. This is a conformal biholomorphism (equivalently bijective,

angle-preserving and orientation-preserving) between the two annuli and the continuous

extension of the function z 7→ |fλ (z)| to the closure of A1 reverses the order of the boundary

components. Indeed

• for |z| = r1: |fλ (z)| = |λ|
|z| = r2R1

r1
= r1R2

r1
= R2.

• for |z| = R1: |fλ (z)| = |λ|
|z| = r2R1

R1
= r2.

Let two compact Riemann surfaces X1, X2 of respective genera g1, g2. Choose points

p ∈ X1, q ∈ X2 and local charts around these points ψi : Ui → ∆ (0, εi) on Xi, for i = 1, 2.

Now �x positive real numbers ri < Ri < εi such that the following two conditions are

satis�ed:

• ψ−1
i

(
∆ (0, Ri)

)
∩ Uj 6= ∅, for every Uj 6= Ui from the complex atlas of Xi. In other

words, we are considering an annulus around each of the p and q contained entirely in

the neighborhood of a single chart.

• R2

r2
= R1

r1

Now set

X∗i = Xi\ψ−1
i

(
∆ (0, ri)

)
Finally, choose the biholomorphism fλ : A1 → A2 described in the previous subsection.

This biholomorphism is used to glue the two Riemann surfaces X1, X2 along the inverse

image of the annuli A1,A2 on the surfaces, using the biholomorphism

gλ : Ω1 = ψ−1
1 (A1)→ Ω2 = ψ−1

2 (A2)

with gλ = ψ−1
2 ◦ fλ ◦ ψ1.

De�ne Xλ = X1#λX2 = X∗1
∐
X∗2/ ∼, where the gluing of Ω1 and Ω2 is performed through

the equivalence relation which identi�es y ∈ Ω1 with w ∈ Ω2 i� w = gλ (y). For collections

of s-many distinct points D1 on X1 and D2 on X2, this procedure is assumed to be taking

place for annuli around each pair of points (p, q) for p ∈ D1 and q ∈ D2.
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The manifold Xλ is endowed with a complex structure inherited from the complex struc-

tures of X1 and X2: Indeed, if A1,A2 are complex atlases for X1, X2, then A1

∣∣
X∗1

⋃
A2

∣∣
X∗2

is

an atlas for Xλ, since we have chosen the gluing region not to overlap between two di�erent

charts on each side. On the glued region Ω, there are two charts (Ω1, ψ1 |Ω1 ) , (Ω2, ψ2 |Ω2 ),

whereas ϕ12 = ψ1 ◦ ψ−1
2 : ψ2 (Ω1 ∩ Ω2)→ ψ1 (Ω1 ∩ Ω2) is actually ϕ12 ≡ fλ : A1 → A2.

If X1, X2 are orientable and orientations are chosen for both, since fλ is orientation pre-

serving we obtain a natural orientation on the connected sum X1#X2 which coincides with

the given ones on X∗1 and X∗2 .

Therefore, X# = X1#X2 is a Riemann surface of genus g1 + g2 + s − 1, the complex

connected sum, where gi is the genus of the Xi and s is the number of points in D1 and D2.

Its complex structure however is heavily dependent on the parameters pi, qi, λ.

Gluing of hermitian metrics. Suppose further that the Riemann surfaces considered

are equipped with a hermitian metric on their tangent bundle (X1, h1), (X2, h2) which are

�at over neighborhoods around the points pi containing the annuli Ω1 and Ω2. Consider an

equivalent complex atlas A = ({(Uα, ψα)}) and let {ρβ} be a partition of unity subordinate

to a covering {Vβ} of the complex connected sum Xλ, such that Vβ ⊂ Uα.

We have a hermitian inner product on each Vβ:

• hx1 , over each x ∈ X1\Ω1.

• hx2 , over each x ∈ X2\Ω2.

• hxΩ, over each x ∈ Ω := Ω1 ∼ Ω2 considering the cylinder equipped with a �at metric.

We may now use the partition of unity to glue all those together to a global hermitian metric

over the complex connected sum:

hx (u, v) =
∑
β

ρβ (x) · hxβ (u, v)

since any positive linear combination of positive de�nite hermitian products of C is again

positive de�nite and hermitian.

3.4.3 Gluing of the bundles

For the Riemann surfaces X1, X2 as considered in �3.4.1, their connected sum X# = X1#X2

is constructed by gluing annuli around the points pi of D1, with annuli around the points qi
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of D2, as described in �3.4.2. Moreover, for the pairs (Al,Φl) and (Ar,Φr) de�ned in �3.4.1

we make the following important assumption:

Assumption 3.4.2. The model solutions satisfy
(
A mod
l,p ,Φ mod

l,p

)
= −

(
A mod
r,q ,Φ mod

r,q

)
for

each pair of points (p, q).

Given this assumption, now notice that for the bundles (E1,∇l := Al + Φl + Φ∗l ) and

(E2,∇r := Ar + Φr + Φ∗r), the model �at connections will coincide. Let ∇ := ∇l = −∇r

denote this �at connection over the annuli; we can then �x an identi�cation of these �at

bundles over the annuli to get a new bundle E# as follows:

Let Ω1 be the annulus on X1 for any point p ∈ D1 and pick coordinates z around p with

z (p) = 0. Let V1∪V2 an open covering of Ω1, with V1∩V2 having two connected components,

say (V1 ∩ V2)+ and (V1 ∩ V2)−. For a loop γ in Ω1 around p take transition functions

gz1 (x) =

{
1, z ∈ (V1 ∩ V2)−

hol (γ,∇l) , z ∈ (V1 ∩ V2)+

Similarly, let Ω2 be the annulus on X2 for any point q ∈ D2 and pick coordinates w around

q with w (q) = 0. For a loop δ in Ω2 around q take transition functions

gw2 (x) =

{
hol(δ,∇r), w ∈ (V1 ∩ V2)−

1, w ∈ (V1 ∩ V2)+

Using an orientation reversing isometry to glue the annuli Ω1 and Ω2 in constructing the

connected sum, the region (V1 ∩ V2)+ of Ω1 is glued together with the region (V1 ∩ V2)− of

Ω2. The gluing of the Riemann surfaces is realized along the curve zw = λ, thus we have

dz

z
= −dw

w

on the annuli. Now from Assumption 3.4.2, ∇l = −∇r, and so there is de�ned a 1-cocycle on

Ω := Ω1 ∼ Ω2 by g (s) := g1 (z) = g2

(
λ
z

)
, since w = λ

z
for a point s ∈ Ω. This is repeated for

each pair of points (p, q). We may use this identi�cation of the cocycles to de�ne a bundle

isomorphism E1 |Ω1

'−→ E2 |Ω2 and use this isomorphism to glue the bundles over Ω for every

pair (p, q) to de�ne the connected sum bundle E1#E2.

Remark 3.4.3. We can alternatively glue the bundles by picking a globally trivial frame on

each side, �at with respect to the unitary connection A but not for ∇. Indeed for such a

frame for Al and Ar glue (Ω1 × C2)
∐

(Ω2 × C2) under the identi�cation map (z, u) 7→ (w, v)

with w = λ
z
and u = v.
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3.4.4 Gluing the connections and hermitian metrics

The pairs (Al,Φl) , (Ar,Φr) agree over neighborhoods around the points in the divisors D1

and D2, with Al = Ar = 0 and with Φl (z) = −Φr (w), thus there is a suitable frame for

∇ over which the hermitian metrics are both described by the identity matrix and so they

are constant in particular. Set
(
A mod
p,q ,Φ mod

p,q

)
:=
(
A mod
l,p ,Φ mod

l,p

)
= −

(
A mod
r,q ,Φ mod

r,q

)
. We

can glue the pairs (Al,Φl) , (Ar,Φr) together to get an approximate solution of the Sp(4,R)-
Hitchin equations:

(AappR ,Φapp
R ) :=


(Al,Φl) , over X1\X2(

A mod
p,q ,Φ mod

p,q

)
, over Ω around each pair of points (p, q)

(Ar,Φr) over X2\X1

,

considered on the bundle (E1#E2, h#) over the complex connected sum X# := X1#X2.

Figure 3.2: Constructing approximate solutions over X×1 and X×2 .
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Figure 3.3:
(
AappR ,Φapp

R

)
over the complex connected sum X#.

By construction, (AappR ,Φapp
R ) is a smooth pair on X#, complex gauge equivalent to an exact

solution of the Hitchin equations by a smooth gauge transformation de�ned over all of X#.

It satis�es the second equation, while the �rst equation is satis�ed up to an error which we

have good control of:

Lemma 3.4.4. The approximate solution (AappR ,Φapp
R ) to the parameter 0 < R < 1 satis�es∥∥∥∗FAappR

+ ∗ [Φapp
R ,−τ (Φapp

R )]
∥∥∥
C0(X×)

≤ CRδ′′

for some constants δ′′ > 0 and C = C (δ′′), which do not depend on R.

Proof. Follows from Lemma 3.3.3; take C := max {Cl, Cr}, for Cl, Cr the constants appearing
in the bound of the error for the approximate solutions constructed over each of the Riemann

surfaces X1 and X2.

3.4.5 The representations φirr and ψ

In this subsection, we see that the Assumption 3.4.2 we made for the model pairs can be

achieved by taking particular representations from SL(2,R) into Sp(4,R).

The irreducible representation φirr : SL(2,R) ↪→ Sp(4,R). Let (Aapp1 ,Φapp
1 ) over X1

be the approximate SL(2,C)-pair in parameter R > 0, as was constructed in �3.3, which

agrees with the model pair

A mod
1 = 0, Φ mod

1 =

(
C 0

0 −C

)
dz

z
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for C ∈ R, over an annulus in z-coordinates around a point p ∈ D1.

The embedding φirr considered in �1.4 extends to give an embedding φirr : SL(2,C) ↪→

Sp(4,C). For the Lie algebra of SL(2,C), sl (2,C) =

{(
a b

c −a

)
| a, b, c ∈ C

}
, we may use a

Cartan basis for the Lie algebra to determine the in�nitesimal deformation, φirr∗ : sl (2,C)→
sp (4,C) with

φirr∗

((
a b

c −a

))
=


3a −

√
3b 0 0

−
√

3c a 0 2b

0 0 −3a
√

3c

0 2c
√

3b −a


We now notice that φirr (SO(2)) lies in a copy of U(2) ↪→ Sp(4,R), that is

U(2) ∼=

{(
A B

−B A

)∣∣ATA+BTB = I2, A
TB −BTA = 0

}
.

In other words, copies of a maximal compact subgroup of SL(2,R) are mapped into copies of

a maximal compact subgroup of Sp(4,R). Furthermore, one can check that for A ∈ sl (2,C):

‖φirr∗ (A)‖sp(4,C) = 10‖A‖sl(2,C)

As was described in �3.4.1, φirr can be used to extend SL(2,C)-data to Sp(4,C)-data (Al,Φl),

where in this case, it is Al = 0 and

Φl = φirr∗
∣∣
mC(SL(2,C)) (Φapp

1 ) =


3C 0 0 0

0 C 0 0

0 0 −3C 0

0 0 0 −C

 dz

z

over the annulus on X1 in z-coordinates around the point p.

The representation ψ : SL(2,R)×SL(2,R) ↪→ Sp(4,R). Let
(
Aapp2,1 ,Φ

app
2,1

)
,
(
Aapp2,2 ,Φ

app
2,2

)
over X2 be two approximate SL(2,C)-pairs in parameter R > 0, as constructed in �3.3 which

agree respectively with the model pairs

A mod
2,1 = 0, Φ mod

2,1 =

(
−3C 0

0 3C

)
dz

z
and A mod

2,2 = 0, Φ mod
2,2 =

(
−C 0

0 C

)
dz

z
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for the same real parameter C ∈ R considered in de�ning the pair (Aapp1 ,Φapp
1 ) over X1 above,

over an annulus in w-coordinates around a point q ∈ D2.

We extend SL(2,C) × SL(2,C)-data into Sp(4,C) using the homomorphism ψ from �1.4.

Take the extension of the embedding ψ into SL(2,C) × SL(2,C), and now the in�nitesimal

deformation of this homomorphism is given by ψ∗ : sl (2,C)× sl (2,C) ↪→ sp (4,C) with

ψ∗

((
a b

c −a

)
,

(
e f

g −e

))
=


a 0 b 0

0 e 0 f

c 0 −a 0

0 g 0 −e


We may still check that ψ (SO(2)× SO(2)) is a copy of U(2). On the other hand, a norm on

the space sl (2,C)× sl (2,C) is given by

ψ (A,B) = ‖A‖+ ‖B‖

and again since this is a �nite dimensional space, all norms are equivalent to this one. Thus,

we compute

‖ψ∗ (A,B)‖sp(4,C) = ‖(A,B)‖sl(2,C)×sl(2,C) = ‖A‖sl(2,C) + ‖B‖sl(2,C)

and so the map ψ∗ at the level of Lie algebras is an isometry. Therefore, ψ extends to give

an embedding ψ : SO(2,C) × SO(2,C) ↪→ GL (2,C), and so we may use the in�nitesimal

deformation ψ∗ to extend the SL(2,C) × SL(2,C)-data
((
Aapp2,1 ,Φ

app
2,1

)
,
(
Aapp2,2 ,Φ

app
2,2

))
to an

Sp(4,C)-pair (Ar,Φr), with Ar = 0 and Higgs �eld Φr given by

Φr = ψ∗
∣∣
mC(SL(2,R))×mC(SL(2,R))

(
Φapp

2,1 ,Φ
app
2,2

)
=


−3C 0 0 0

0 −C 0 0

0 0 3C 0

0 0 0 C

 dz

z

over the annulus on X2 in w-coordinates around the point q.
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3.5 Perturbing an approximate solution to an exact solution

3.5.1 The contraction mapping argument

A standard method for correcting an approximate solution to an exact solution of gauge-

theoretic equations is by using the linearization of a relevant elliptic operator. This set of

ideas was �rst developed by C. Taubes in [43] in the case of instantons over 4-manifolds (see

also �7.2 of [16] for a gluing construction of instantons over a connected sum of 4-manifolds).

These techniques have been adapted to develop grafting procedures for several other cases of

solutions of gauge-theoretic equations; see for instance [24] for a gluing construction for the

Nahm pole solutions to the Kapustin-Witten equations over R3 × (0,+∞). Describing the

linearization of a relevant elliptic operator is critical in these techniques. In the Higgs bundle

setting, the linearization of the Hitchin operator was described in [29] and furthermore in

[42] for solutions to the SL(2,C)-self-duality equations over a noded surface. We are going

to use this analytic machinery to correct our approximate solution to an exact solution over

the complex connected sum of Riemann surfaces. We begin by summarizing the strategy to

be followed; further details can be found in the above mentioned references.

For the complex connected sum X# consider the nonlinear G-Hitchin operator at a pair

(A,Φ) ∈ Ω1
(
X#, EH

(
hC
))
⊕ Ω1,0

(
X#, EH

(
gC
))
:

H (A,Φ) =
(
F (A)− [Φ, τ (Φ)] , ∂̄AΦ

)
Moreover, consider the orbit map

γ 7→ O(A,Φ) (γ) = g∗ (A,Φ) =
(
g∗A, g−1Φg

)
for g = exp (γ) and γ ∈ Ω0 (X#, EH (h)), where H ⊂ G is a maximal compact subgroup.

Therefore, correcting the approximate solution (AappR ,Φapp
R ) to an exact solution of the

G-Hitchin equations accounts to �nding a point γ in the complex gauge orbit of (AappR ,Φapp
R ),

for which H (g∗ (AappR ,Φapp
R )) = 0. However, since we have seen that the second equation is

satis�ed by the pair (AappR ,Φapp
R ) and since the condition ∂̄AΦ = 0 is preserved under the

action of GH , we actually seek for a solution γ to the following equation

FR (γ) := pr1 ◦ H ◦ O(AappR ,ΦappR ) (exp(γ)) = 0
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For a Taylor series expansion of this operator

FR (γ) = pr1H (AappR ,Φapp
R ) + L(AappR ,ΦappR ) (γ) +QR (γ)

where QR includes the quadratic and higher order terms in γ, we can then see that FR (γ) = 0

if and only if γ is a �xed point of the map:

T : H2
B (X#)→ H2

B (X#)

γ 7→ −GR (H (AappR ,Φapp
R ) +QR(γ))

where we denoted GR := L−1

(AappR ,ΦappR )
.

The problem then reduces to showing that the mapping T is a contraction of the open

ball BρR of radius ρR in H2
R (X#), since then from Banach's �xed point theorem there will

exist a unique γ such that T (γ) = γ, i.e. such that FR (γ) = 0. In particular, one needs to

show that:

1. T is a contraction de�ned on BρR for some ρR, and

2. T maps BρR to BρR

In order to perform the above described contraction mapping argument, we need to show

the following:

i The linearized operator at the approximate solution L(AappR ,ΦappR ) is invertible.

ii There is an upper bound for the inverse operator GR = L−1

(AappR ,ΦappR )
as an operator

L2 (r−1drdθ)→ L2 (r−1drdθ).

iii There is an upper bound for the inverse operator GR = L−1

(AappR ,ΦappR )
also when viewed as

an operator L2 (r−1drdθ)→ H2
B (X#, r

−1drdθ).

iv We can control a Lipschitz constant for QR, i.e. there exists a constant C > 0 such that

‖QR (γ1)−QR (γ0)‖L2 ≤ Cρ‖γ1 − γ0‖H2
B

for all 0 < ρ ≤ 1 and γ0, γ1 ∈ Bρ, the closed ball of radius ρ around 0 in H2
B (X#).

3.5.2 The Linearization operator L(A,Φ)

We �rst need to characterize the linearization operator L(A,Φ) in general, before considering

this for the particular approximate pair (AappR ,Φapp
R ) that we have constructed. The di�eren-
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tial of the G-Hitchin operator at a pair (A,Φ) ∈ Ω1
(
X#, EH

(
hC
))
⊕ Ω1,0

(
X#, EH

(
gC
))

is

described by

DH

(
Ȧ

Φ̇

)
=

(
dA [Φ,−τ (·)] + [·,−τ (Φ)]

[·,Φ] ∂̄A

)(
Ȧ

Φ̇

)
Moreover, the di�erential at g = Id of the orbit map O(A,Φ) is

Λ(A,Φ)γ =
(
∂̄Aγ − ∂Aγ∗, [Φ, γ]

)
and so when γ ∈ Ω0 (X#, EH (h)):

Λ(A,Φ)γ =
(
∂̄Aγ − ∂Aγ, [Φ, γ]

)
Therefore,

(
DH ◦ Λ(A,Φ)

)
(γ) =

((
∂A∂̄A − ∂̄A∂A

)
γ + [Φ,−τ ([Φ, γ]) + [[Φ, γ] ,−τ (Φ)]][

∂̄Aγ − ∂Aγ,Φ
]

+ ∂̄A [Φ, γ]

)

Now, take

DF (γ) : = D
(
pr1 ◦ H ◦ O(A,Φ)

)
(γ) = DH ◦ Λ(A,Φ) (γ)

=
(
∂A∂̄A − ∂̄A∂A

)
γ + [Φ,−τ ([Φ, γ]) + [[Φ, γ] ,−τ (Φ)]]

and consider the operator MΦ : Ω0 (X#, EH (h))→ Ω0 (X#, EH (h)) de�ned by

MΦγ := − [Φ, [τ (Φ) , γ]] + [τ (Φ) , [Φ, γ]]

for Φ ∈ Ω1
(
X#, EHC

(
mC
))
. Then from the identities

2∂̄A∂A = F (A)− i ∗∆A

2∂A∂̄A = F (A) + i ∗∆A

[Φ, τ ([Φ, γ])] = − [Φ, [τ (Φ) , γ]]

we may deduce that (i ∗∆A +MΦ) (γ) = DF (γ). (For the �rst two identities see [33],

Propositions 1.421, 1.422; the third identity is derived by direct calculations). Now de�ne

L(A,Φ) := ∆A − i ∗MΦ : Ω0 (X#, iEH (h))→ Ω0 (X#, iEH (h))

The following lemma �rst observed by C. Simpson in [39] provides that the linearization
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operator L(A,Φ) is nonnegative. The proof given here is a modi�cation of the proof of the

analogous statement for the case of SL(2,C) given in [29].

Lemma 3.5.1. For γ ∈ Ω0 (X#, EH (h))

〈−i ∗MΦγ, γ〉 = 4|[Φ, γ]|2 ≥ 0

Proof. Fixing a local holomorphic coordinate z, write Φ = ϕdz and τ (Φ) = −ϕ∗dz̄. Then

[τ (Φ) , [Φ, γ]] = [ϕ∗, [ϕ, γ]] dz ∧ dz̄ and − [Φ, [τ (Φ) , γ]] = [ϕ, [ϕ∗, γ]] dz ∧ dz̄. Altogether, we
may write

MΦγ = ([ϕ∗, [ϕ, γ]] + [ϕ, [ϕ∗, γ]]) dz ∧ dz̄

The compact real form τ : gC → gC induces an ad-invariant inner product on gC, thus we

get 〈[ϕ∗, [ϕ, γ]] , γ〉 = |[ϕ, γ]|2 as well as 〈[ϕ, [ϕ∗, γ]] , γ〉 = |[ϕ∗, γ]|2 = |[ϕ, γ]|2. Finally, since
2i ∗ 1 = −dz ∧ dz̄, we get 〈MΦγ, i ∗ γ〉 = |[ϕ, γ]|2|dz ∧ dz̄|2 = 4|[ϕ, γ]|2.

The following corollary is now immediate:

Corollary 3.5.2. If γ ∈ Ω0 (X#, EH (h)), then

〈
L(A,Φ)γ, γ

〉
L2 = ‖dAγ‖2

L2 + 4 ‖[Φ, γ]‖2
L2 ≥ 0

In particular, L(A,Φ)γ = 0 if and only if dAγ = [Φ, γ] = 0.

3.6 Cylindrical Dirac-type operators and the Cappell-Lee-Miller

gluing theorem

A very useful method when dealing with surgery problems in gauge theory over manifolds

with very long necks involves the study of the space of eigenfunctions corresponding to small

eigenvalues (low eigensolutions) of a self-adjoint Dirac type operator on such a manifold (see

[13], [34], [49]). For our purposes we will make use of the Cappell-Lee-Miller gluing theorem

from [13] and its generalization to small perturbations of constant coe�cient operators due

to L. Nicolaescu in [34]. In the latter article, a family of manifolds MT for T0 ≤ T ≤ ∞
is considered, each containing a long cylindrical neck of length ∼ T = |logR|, obtained
by gluing of two disjoint manifolds M±

T along the boundaries of a pair of cylindrical ends.

A self-adjoint �rst-order Dirac-type operator DT is then considered on a hermitian vector

bundle over each manifold MT .
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The Cappell-Lee-Miller gluing theorem asserts that under suitable assumptions, the op-

erator DT admits two types of eigenvalues, namely those of order of decay O (T−1) (large

eigenvalues) and those of order of decay o (T−1) (small eigenvalues). For T → ∞, the sub-

space of L2 spanned by the eigenvectors to small eigenvalues is "parameterized" by the kernel

of the limiting operator D∞. This way, the Dirac operator DT has no small eigenvalues, if

the limiting operator D∞ is invertible.

We may obtain the invertibility of L(AappR ,ΦappR ) by showing that an appropriate self-adjoint

Dirac-type operator has no small eigenvalues. Note that a punctured neighborhood on a

Riemann surface can be also thought of, using a cylindrical coordinate transformation, as

a half cylinder attached to the surface, and also an annulus in the real parameter R can

be thought of as a �nite tube of length ∼ T = |logR|. Thus, the gluing of two punctured

Riemann surfaces as we described it in �3.4.2 can be thought of as the gluing of two Riemann

surfaces with cylindrical ends to get a smooth surface with a �nite number of long Euclidean

cylinders of length 2 |logR|, one for each p ∈ p. This is the set-up also considered in [42].

3.6.1 Cylindrical structures over cylindrical manifolds

In this section we include the necessary background for applying the Cappell-Lee-Miller

theorem for Z2-graded Dirac-type operators on cylindrical vector bundles, following largely

[42] and [34]; further details can be found in these articles.

De�nition 3.6.1. A cylindrical (n+ 1)-manifold is an oriented Riemannian (n+ 1)-manifold(
N̂ , ĝ

)
with a cylindrical end modeled by R+×N , where (N, g) is an oriented compact Rie-

mannian n-manifold. In other words, the complement of an open precompact subset of N̂ is

isometric in an orientation preserving fashion to the cylinder R+ ×N .

De�nition 3.6.2. Let π : R+×N → N denote the canonical projection and τ the outgoing

longitudinal coordinate along the neck. A cylindrical structure on a vector bundle Ê → N̂

consists of a vector bundle E → N and a bundle isomorphism

ϑ̂ : Ê
∣∣R+×N → π∗E

We will use the notation E := ∂∞Ê. A cylindrical vector bundle will be a vector bundle

together with a cylindrical structure
(
ϑ̂, E

)
. Moreover, the metric ĝ is described by ĝ =

dτ 2 ⊕ g along the cylindrical end.

The cotangent bundle T ∗N̂ has a natural cylindrical structure such that

∂∞T
∗N̂ ∼= R 〈dτ〉 ⊕ T ∗N
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De�nition 3.6.3. A section û of a cylindrical vector bundle
(
Ê, ϑ̂, E

)
will be called cylin-

drical if there exists a section u of ∂∞Ê such that along the neck

ϑ̂û = π∗u

We shall simply write û = π∗u and u := ∂∞û.

For any cylindrical vector bundle
(
Ê, ϑ̂, E

)
there exists a canonical �rst order partial

di�erential operator ∂τ acting on sections over the cylindrical end Ê
∣∣R+×N . It is uniquely

determined by the conditions

1. ∂τ

(
f̂ û
)

= df̂
dτ
û+ f̂∂τ û, for every f̂ ∈ C∞ (R+ ×N) and û ∈ Ê

∣∣R+×N

2. ∂τ v̂ = 0 for any cylindrical section v̂ of Ê
∣∣R+×N .

Thus, the family of cylindrical vector bundles over a given cylindrical manifold de�nes

a category. The vector bundles we will be considering are of the particular type described

below:

De�nition 3.6.4. A cylindrical hermitian vector bundle
(
Ê, Ĥ

)
will be called Z2-graded if

1. The cylindrical vector bundle Ê splits into the orthogonal sum Ê = Ê+ ⊕ Ê− of

cylindrical vector bundles, and

2. The hermitian metric Ĥ on Ê is along the cylindrical end of the form Ĥ = π∗H for

some hermitian metric H on E.

Moreover, Ê carries a Cli�ord structure and letG : E+ → E− denote the bundle isomorphism

given by the Cli�ord multiplication by dτ .

De�nition 3.6.5. A cylindrical partial di�erential operator L̂ : Ê → F̂ between cylindrical

bundles is called a �rst order partial di�erential operator if along the neck [T,∞)×N with

T � 0 it can be written as

L̂ = G∂τ + L

where L : C∞ (E)→ C∞ (E) is a �rst order partial di�erential operator, E = Ê |N , F = F̂ |N
and G : E → F is a bundle morphism. We also denote L := ∂∞L̂.

We lastly de�ne the family of di�erential operators we will be considering:
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De�nition 3.6.6. Let Ê → N̂ be a Z2-graded cylindrical hermitian vector bundle. A �rst

order partial di�erential operator D : C∞
(
Ê
)
→ C∞

(
Ê
)
is called a Z2-graded cylindrical

Dirac-type operator if with respect to the Z2-grading of Ê, it takes the form

D =

(
0 D∗

D 0

)

such that along the cylindrical end D = G (dτ −D) for a self-adjoint Dirac-type operator

D : C∞ (E+)→ C∞ (E+).

Recall that the Dirac-type condition asserts that the square D2 has the same principal

symbols as a Laplacian. D is independent of the longitudinal coordinate τ along the necks.

For our purposes, we will need to use the perturbed operatorD+B =

(
0 D +B

D∗ +B∗ 0

)
,

where B is an exponentially decaying operator of order 0; that means there exists a pair of

constants C, λ > 0 for which

sup {|B (x)| |x ∈ [τ, τ + 1]×N } ≤ Ce−λ|τ |

for all τ ∈ R+.

3.6.2 The Cappell-Lee-Miller gluing theorem for Z2-graded cylindrical
Dirac-type operators

We now describe the version of the Cappell-Lee-Miller theorem that we are going to use.

Let
(
N̂i, ĝi

)
for i = 1, 2 be two oriented Riemannian manifolds with cylindrical ends, where

if τ denotes the outgoing longitudinal coordinate on the cylinder (0,∞)×N1, then −τ < 0

denotes the longitudinal coordinate on (−∞, 0) × N2. Let also Êi → N̂i be a pair of Z2-

graded cylindrical hermitian vector bundles over the manifolds N̂i, and let Di be Z2-graded

cylindrical Dirac-type operators for self-adjoint Dirac-type operators Di, i = 1, 2. We further

impose the following assumptions:

1. There exists an orientation reversing isometry ϕ : (N1, g1) → (N2, g2) between the

manifolds, as well as an isometry γ : E1 → E2 of the hermitian vector bundles covering

ϕ and respecting the gradings.

2. The operators Di are of the form Di = Gi (∂τ −Di) along the cylindrical ends, and

G1 +G2 = L1 − L2 = 0.

83



We can then use the orientation preserving di�eomorphism ϕ to obtain for each T > 0 the

manifold NT by attaching the region N̂1\ (T + 1,∞)×N1 to the region N̂2\ (−∞,−T − 1)×
N2 using the orientation preserving identi�cation

[T + 1, T + 2]×N1 → [−T − 2,−T − 1]×N2

(τ, x) 7→ (τ − 2T − 3, ϕ (x))

The Z2-graded cylindrical hermitian vector bundles Êi can be similarly glued together

providing a Z2-graded hermitian vector bundle ET = E+
T ⊕E

−
T over the manifold NT . More-

over, the cylindrical operators Di combine to give a Z2-graded Dirac-type operator DT on

the bundle ET . For a pair of perturbed operators, we can also obtain a perturbed Dirac-type

operator de�ned on the bundle ET ; let us still denote this by DT and write such an operator

as

DT =

(
0 D∗T
DT 0

)
Consider also Di,∞ := Di + Bi for i = 1, 2 and write

Di,∞ =

(
0 D∗i,∞
Di,∞ 0

)

We are going to need one last piece of notation to introduce:

De�nition 3.6.7. Let ê a cylindrical vector bundle over the cylindrical manifold N̂ . We

de�ne the extended L2 space L2
ext

(
N̂ , Ê

)
as the space of all sections û of Ê, such that there

exists an L2 section u∞ of E satisfying

û− π∗u∞ ∈ L2 (N,E)

The section u∞ is uniquely determined by û, thus the so-called asymptotic trace map is

well-de�ned

∂∞ : L2
ext

(
N̂ , Ê

)
→ L2 (N,E)

û 7→ u∞

The following theorem is the version of the Cappell-Lee-Miller gluing theorem, which we

are going to apply. For a proof see [34], �5.B:

Theorem 3.6.8. Let Di,∞ be a pair of Z2-graded Dirac-type operators on the cylindrical

vector bundles Êi → N̂i for i = 1, 2 as was de�ned above. Suppose that the kernel K+
i ⊆
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L2
ext

(
N̂i, Êi

)
of the operator Di,∞ is trivial for i = 1, 2. Then there exist a T0 > 0 and a

constant C > 0 such that the operator D∗TDT is bijective for all T > T0 and admits a bounded

inverse (D∗TDT )−1 : L2
(
NT , E

+
T

)
→ L2

(
NT , E

+
T

)
with

∥∥(D∗TDT )−1
∥∥
L(L2,L2)

≤ CT 2.

3.7 The linearization operator for an approximate solution

3.7.1 The elliptic complex over the complex connected sum

Into our setting, we have already noted that the complex connected sum Riemann surfaceX#

can be thought of as a closed surface with a �nite number of long Euclidean cylinders of length

2 |logR|. The connected sum bundle can be also thought of as a cylindrical vector bundle

over X#. For our approximate solution (AappR ,Φapp
R ) constructed over X# with 0 < R < 1

and T = − logR, consider the elliptic complex:

0 −→ Ω0
(
X#, EH

(
hC
)) L1,T−−→ Ω1

(
X#, EH

(
hC
))
⊕ Ω1,0

(
X#, EH

(
gC
))

L2,T−−→ Ω2
(
X#, EH

(
hC
))
⊕ Ω2

(
X#, EH

(
gC
))
−→ 0

where

L1,Tγ =
(
dAappR

γ, [Φapp
R , γ]

)
is the linearization of the complex gauge group action and

L2,T (α, ϕ) = DH (α, ϕ) =

(
dAappR

α + [Φapp
R ,−τ (ϕ)] + [ϕ,−τ (Φapp

R )]

∂̄AappR
ϕ+ [ϕ,Φapp

R ]

)

is the di�erential of the Hitchin operator considered in �3.5.2.

Note that in general it does not hold that L2,TL1,T =
[
FAappR

, γ
]
+[[Φapp

R ,−τ (Φapp
R )] , γ] = 0,

since (AappR ,Φapp
R ) need not be an exact solution. Decomposing Ω∗

(
X#, EH

(
gC
))

into forms

of even, respectively odd total degree, we may introduce the Z2-graded Dirac-type operator

DT :=

(
0 L∗1,T + L2,T

L1,T + L∗2,T 0

)

on the closed surface X#.

As R↘ 0, the curve X# degenerates to a noded surface X×# (equivalently the cylindrical
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neck of X# extends in�nitely). For the cut-o� functions χR that we considered in obtaining

the approximate pair (AappR ,Φapp
R ), their support will tend to be empty as R ↘ 0, i.e. the

�error regions� disappear along with the neck N , thus (AappR ,Φapp
R )→ (A0,Φ0) uniformly on

compact subsets with

(Aapp0 ,Φapp
0 ) =

{
(Al,Φl) , Xl\N
(Ar,Φr) , Xr\N

an exact solution with the holonomy of the associated �at connection in G.

For T =∞ the elliptic complex for the exact solution (Aapp0 ,Φapp
0 ) gives rise to the Dirac-

type operator

D∞ =

(
0 L∗1 + L2

L1 + L∗2 0

)
We now describe the map L1 +L∗2 more closely. Using the Hodge ∗-operator we can identify

Ω2
(
X×#, EH

(
hC
)) ∼= Ω0

(
X×#, EH

(
hC
))

and Ω2
(
X×#, EH

(
gC
)) ∼= Ω0

(
X×#, EH

(
gC
))

as well as Ω1
(
X×#, EH

(
hC
)) ∼= Ω0,1

(
X#, EH

(
gC
))

via the projection A 7→ π0,1A. We further

identify

(γ1, γ2) ∈ Ω0
(
X×#, EH

(
hC
))
⊕ Ω0

(
X×#, EH

(
hC
))

with ψ1 = γ1 + iγ2 ∈ Ω0
(
X×#, EH

(
gC
))
. The operator L1 + L∗2 can be now expressed as the

map

L1 + L∗2 : Ω0
(
X×#, EH

(
gC
))
⊕ Ω0

(
X×#, EH

(
gC
))
→ Ω0,1

(
X×#, EH

(
gC
))
⊕ Ω1,0

(
X×#, EH

(
gC
))

(ψ1, ψ2) 7→

(
∂̄Aapp0

ψ1 + [ψ2,−τ (Φapp
0 )]

∂Aapp0 ψ2
+ [ψ1,Φ

app
0 ]

)

3.7.2 D∞ is an exponentially small perturbation of a cylindrical operator

Consider the operator D̂∞ :=

(
0 L̂∗1 + L̂2

L̂1 + L̂∗2 0

)
arising similarly from the elliptic com-

plex for some model solution
(
A mod ,Φ mod

)
replacing (Aapp0 ,Φapp

0 ), and for which

(
A mod ,Φ mod

)
=

(
0, ϕ

dz

z

)
along each cylindrical neck. The operator D̂∞ is in fact cylindrical. Indeed, introducing the

complex coordinate ζ = τ + iθ, we have the identities dτ = −dr
r
, dθ = −dθ, dz

z
= −dζ, and

86



dz̄
z̄

= −dζ̄. Hence the operator L̂1 + L̂∗2 (as well as the operator L̂∗1 + L̂2 similarly) can be

written as a cylindrical di�erential operator L̂1 + L̂∗2 :
√

2
2
G (∂τ −D) with

(ψ1, ψ2) 7→ 1

2

(
∂τψ1dζ̄

∂τψ2dζ

)
−

((
i
2
∂θψ1 + [ψ2, τ (ϕ)]

)
dζ̄(

− i
2
∂θψ2 − [ψ2, ϕ]

)
dζ

)

where

D (ψ1, ψ2) := 2

(
i
2
∂θψ1 + [ψ2, τ (ϕ)]

− i
2
∂θψ2 − [ψ2, ϕ]

)

and G = (ψ1, ψ2) =
√

2
2

(
ψ1dζ̄, ψ2dζ

)
denotes Cli�ord multiplication by dτ .

The following proposition asserts that the operator D∞ is an exponentially small pertur-

bation of D̂∞:

Proposition 3.7.1. The operator L1 + L∗2 can be written as L1 + L∗2 = L̂1 + L̂∗2 +B, where

B is an exponentially decaying operator of order 0, in the sense made precise in �3.6.1.

Proof. By construction of the approximate solution, Lemma 3.3.1 provides that we can

express

(AappR ,Φapp
R ) =

(
A mod ,Φ mod

)
+

(
0, ϕ1

dz

z

)
for ϕ1 ∈ C0

δ for some δ > 0. Therefore, for the operator

B (ψ1, ψ2) =

(
− [ψ2, τ (ϕ1)] dζ̄

[ψ2, ϕ1] dζ

)

it holds precisely that sup {|B|} ≤ Ce−λ|t|, for every t ∈ R+.

3.7.3 The space ker (L1 + L∗2) ∩ L2
ext

(
X×#

)
is trivial

We now restrict to the case G = Sp(4,R) in order to study the space ker (L1 + L∗2)∩L2
ext

(
X×#
)

for the operator D∞ more closely. We are also taking here into consideration the particu-

lar model Higgs �eld we picked for the G = Sp(4,R)-Hitchin equations coming from the

embeddings φirr and ψ from �3.4.5. In other words, we �x

ϕ ≡ ϕ mod =


3C 0 0 0

0 C 0 0

0 0 −3C 0

0 0 0 −C


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Moreover, the compact real form on ϕ in this case is τ (ϕ) = −ϕ∗. We have the following:

Proposition 3.7.2. Let (ψ1, ψ2) ∈ ker (L1 + L∗2) ∩ L2
ext

(
X×#
)
. Then its asymptotic trace is

described by

∂∞ (ψ1, ψ2) =



a1 0 0 0

0 d1 0 0

0 0 −a1 0

0 0 0 −d1

 ,


a2 0 0 0

0 d2 0 0

0 0 −a2 0

0 0 0 −d2




for constants ai, di ∈ C, for i = 1, 2.

Proof. By [34], p. 169, the space of asymptotic traces of ker (L1 + L∗2) is a subspace of kerD

with D as de�ned in �3.7.2. We will check that the elements of the latter have the asserted

form. Consider the Fourier decomposition (ψ1, ψ2) =
(∑

j∈Z ψ1,je
ijϑ,
∑

j∈Z ψ2,je
ijϑ
)
where

ψi,j ∈ sp (4,C) =

{(
A B

C −AT

)∣∣A,B,C ∈M2×2 (C) ; BT = B,CT = C

}
,

Then the equation D (ψ1, ψ2) = 0 is equivalent to the system of linear equations(
− j

2
ψ1,j − [ϕ∗, ψ2,j]

j
2
ψ2,j − [ϕ, ψ1,j]

)
= 0 (3.2)

for j ∈ Z. Since the Higgs �eld ϕ is diagonal, the operator D acts invariantly on diagonal,

respectively o�-diagonal endomorphisms. It therefore su�ces to consider these two cases

separately.

Case 1. Let (ψ1,j, ψ2,j) =



a1,j 0 0 0

0 d1,j 0 0

0 0 −a1,j 0

0 0 0 −d1,j

 ,


a2,j 0 0 0

0 d2,j 0 0

0 0 −a2,j 0

0 0 0 −d2,j


, with

ai,j, di,j ∈ C for i = 1, 2. Then Equation (3.2) is equivalent to the pair of equations

j

2


a1,j 0 0 0

0 d1,j 0 0

0 0 −a1,j 0

0 0 0 −d1,j

 = O, for i = 1, 2

thus the system has a non-trivial solution if and only if j = 0. In other words, ψ1 = ψ1,0 and

ψ2 = ψ2,0 are of the asserted form.
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Case 2. Let now (ψ1,j, ψ2,j) =




0 b1,j e1,j f1,j

c1,j 0 f1,j g1,j

k1,j l1,j 0 −c1,j

l1,j m1,j −b1,j 0

 ,


0 b2,j e2,j f2,j

c2,j 0 f2,j g2,j

k2,j l2,j 0 −c2,j

l2,j m2,j −b2,j 0




with all entries in C. Then Equation (3.2) reads as the pair of equations

j

2


0 b1,j e1,j f1,j

c1,j 0 f1,j g1,j

k1,j l1,j 0 −c1,j

l1,j m1,j −b1,j 0

 =


0 −2b2,jC̄ −6e2,jC̄ −4f2,jC̄

2c2,jC̄ 0 −4f2,jC̄ −2g2,jC̄

6k2,jC̄ 4l2,jC̄ 0 −2c2,jC̄

4l2,jC̄ 2m2,jC̄ 2b2,jC̄ 0


and

−j
2


0 b2,j e2,j f2,j

c2,j 0 f2,j g2,j

k2,j l2,j 0 −c2,j

l2,j m2,j −b2,j 0

 =


0 −2b1,jC −6e1,jC −4f1,jC

2c1,jC 0 −4f1,jC −2g1,jC

6k1,jC 4l1,jC 0 −2c1,jC

4l1,jC 2m1,jC 2b1,jC 0


This pair of equations is then equivalent to the equation(

j
2

2C̄

−2C j
2

)(
b1,j

b2,j

)
=

(
0

0

)
(3.3)

and seven more similar equations for the ci,j, ei,j, fi,j, gi,j, ki,j, li,j,mi,j, i = 1, 2. Since C 6= 0,

we have that the determinant of the 2× 2 matrix in Equation (3.3) is
(
j
2

)2
+ 4CC̄ > 0, and

so this system has no non-trivial solution for (b1,j, b2,j); the same is true for the rest seven

equations. Therefore, there are no non-trivial o�-diagonal elements in kerD and so the only

non-trivial elements are of the asserted form in the proposition.

Lemma 3.7.3. Suppose (ψ1, ψ2) ∈ ker (L1 + L∗2) ∩ L2
ext

(
X×#
)
. Then

dAapp0
ψi = [ψi,Φ

app
0 ] =

[
ψi, (Φ

app
0 )∗

]
= 0

for i = 1, 2.

Proof. The proof is similar to the one for the case when G = SL(2,C). We adapt these steps

here to the case G = Sp(4,R) for the reader's convenience. For a more detailed description,

see [42], Lemma 3.11, Step 1.

By de�nition of the operator (L1 + L∗2), an element (ψ1, ψ2) lies in the kernel of this operator
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if and only if it is a solution to the system{
0 = ∂̄Aapp0

ψ1 +
[
ψ2, (Φ

app
0 )∗

]
0 = ∂Aapp0

ψ2 + [ψ1,Φ
app
0 ]

(3.4)

Di�erentiate the �rst equation and use that ∂Aapp0
(Φapp

0 )∗ = 0 to imply that

0 = ∂Aapp0
∂̄Aapp0

ψ1 −
[
∂Aapp0

ψ2, (Φ
app
0 )∗

]
= ∂Aapp0

∂̄Aapp0
ψ1 +

[
[ψ1,Φ

app
0 ] , (Φapp

0 )∗
]

From this it follows that

∂
〈
∂̄Aapp0

ψ1, ψ1

〉
=
〈
∂Aapp0

∂̄Aapp0
ψ1, ψ1

〉
−
〈
∂̄Aapp0

ψ1, ∂̄Aapp0
ψ1

〉
= −|[ψ1,Φ

app
0 ]|2 −

∣∣∂̄Aapp0
ψ1

∣∣2
and similarly

∂̄
〈
∂Aapp0

ψ1, ψ1

〉
= −

∣∣[ψ1, (Φ
app
0 )∗

]∣∣2 − ∣∣∂Aapp0
ψ1

∣∣2
Now let XS := X×#\

⋃
p∈p

Cp (S), where for S > 0 we denote by Cp (S) the subcylinders of

points (τ, ϑ) ∈ Cp (0) with τ ≥ S. From Stokes' theorem it follows that∫
XS

∂
〈
∂̄Aapp0

ψ1, ψ1

〉
+ ∂̄

〈
∂Aapp0

ψ1, ψ1

〉
=

∫
∂XS

〈
dAapp0

ψ1, ψ1

〉
Letting S → ∞, ψ1 |τ=S L2-converges to its asymptotic trace ∂∞ψ1 ∈ Ω0 (S1, sp (4,C)),

which by the previous lemma is of the form

ψ1 (∞) =


a1 0 0 0

0 d1 0 0

0 0 −a1 0

0 0 0 −d1


for a1, d1 ∈ C. Therefore, dAapp0

(∂∞ψ1 (∞)) = 0 and so∫
X×#

∂
〈
∂̄Aapp0

ψ1, ψ1

〉
+ ∂̄

〈
∂Aapp0

ψ1, ψ1

〉
= lim

S→∞

∫
∂XS

〈
dAapp0

ψ1, ψ1

〉
= 0

This implies that ∂̄Aapp0
ψ1 = ∂Aapp0

ψ1 = [ψ1,Φ
app
0 ] =

[
ψ1, (Φ

app
0 )∗

]
= 0.
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We may as well derive that ∂̄Aapp0
ψ2 = ∂Aapp0

ψ2 = [ψ2,Φ
app
0 ] =

[
ψ2, (Φ

app
0 )∗

]
= 0 by taking

the hermitian adjoint of Equation (3.4) and repeating the same arguments for the solution

(Aapp0 ,−Φapp
0 ).

Proposition 3.7.4. The operator L1 + L∗2 considered as a densely de�ned operator on

L2
ext

(
X×#
)
has trivial kernel.

Proof. Let (ψ1, ψ2) ∈ ker (L1 + L∗2) ∩ L2
ext

(
X×#
)
. From Lemma 3.7.3 we have:

dAapp0
ψi = [ψi,Φ

app
0 ] =

[
ψi, (Φ

app
0 )∗

]
= 0

for i = 1, 2. We show that ψ1 = 0 by showing that γ := ψ1 + ψ∗1 ∈ Ω0
(
X×#, u (2)

)
and

δ := i (ψ1 − ψ∗1) ∈ Ω0
(
X×#, u (2)

)
both vanish. Choosing a holomorphic coordinate z centered

at the node of X×#, the Higgs �eld Φapp
0 in our exact solution is written

Φapp
0 = ϕ

dz

z

with ϕ ∈ mC (Sp(4,R)) =

{(
A B

B −A

)∣∣A,B ∈M2 (C) with AT = A, BT = B

}
. We get

that d|γ|2 = 2
〈
dAapp0

γ, γ
〉

= 0, i.e. |γ| is constant on X×#, as well as that γ (x) ∈ kerMϕ(x)

for all x ∈ X×#, since it is in general MΦγ = [Φ, τ ([Φ, γ])] + [τ (Φ) , [Φ, γ]].

Now, this γ (x) ∈ u (2) is hermitian. It has orthogonal eigenvectors for distinct eigenvalues,

but even if there are degenerate eigenvalues, it is still possible to �nd an orthonormal basis

of C4 consisting of four eigenvectors of γ (x), thus C4 = Eλ1 ⊕ . . . ⊕ Eλ4 , where λi the

eigenvalues of γ (x). Assuming that γ (x) is non-zero, since [ϕ (x) , γ (x)] = 0 it follows that

ϕ (x) preserves the eigenspaces of γ (x) for all x ∈ X×# and so 〈ϕ (x) v, ϕ (x)w〉 = 〈v, w〉 for
v, w ∈ C4. In other words, ϕ (x) ought to be an isometry with respect to the usual norm in C4.

Equivalently, ϕ (x) is unitary for all x ∈ X×#. However, for a zero x0 of det Φ = det ϕ̃ (x0) dz2

z2

chosen on the left hand side surface Xl of X
×
# we see that

ϕ (x0) = φirr∗

(
0 1

z 0

)
=


0 −

√
3 0 0

−
√

3z 0 0 2

0 0 0
√

3z

0 2z
√

3 0


which is not unitary. Therefore, γ = 0.

That δ vanishes, as well as ψ2 = 0, is proven similarly.
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3.7.4 Upper bound for L(Aapp
R ,Φapp

R ) in H
2
(
X×#

)
De�ne the operator

DT := L1,T + L∗2,T

The following proposition is an immediate consequence of the Cappell-Lee-Miller theorem

(Theorem 3.6.8) for this operator DT using the fact that the kernel of the limiting operator

L1 + L∗2 is trivial on L2
ext

(
X×#
)
, as was shown in �3.7.3.

Proposition 3.7.5. There exist constants T0 > 0 and C > 0 such that the operator D∗TDT
is bijective for all T > T0 and its inverse (D∗TDT )−1 : L2 (X#)→ L2 (X#) satis�es

∥∥(D∗TDT )−1
∥∥
L(L2,L2)

≤ CT 2.

We are �nally in position to imply the existence of the inverse operator GR = L−1

(AappR ,ΦappR )
:

L2 (X#) → L2 (X#) and provide an upper bound for its norm, by adapting the analogous

proof from [42] into our case. We �rst need the following:

Corollary 3.7.6. There exist constants T0 > 0 and C > 0 such that for all T > T0 and

γ ∈ Ω0 (X#, EH (h)) it holds that

∥∥L∗1,TL1,Tγ
∥∥
L2(X#)

≥ CT−2‖γ‖L2(X#)

Proof. The previous proposition provides the existence of constants T0 > 0 and C > 0 such

that for all T > T0 and γ ∈ Ω0 (X#, EH (h)):

∥∥(D∗TDT )−1γ
∥∥
L2(X#) ≤ CT 2‖γ‖L2(X#)

and thus

‖D∗TDTγ‖L2(X#) ≥ CT−2‖γ‖L2(X#)

According to the de�nition of DT we have

D∗TDT =
(
L1,T + L∗2,T

)∗ (
L1,T + L∗2,T

)
= L∗1,TL1,T + L2,TL1,T + L∗1,TL

∗
2,T + L2,TL

∗
2,T

as well as L2,TL1,Tγ =
[
FAappR

, γ
]

+ [[Φapp
R ,−τ (Φapp

R )] , γ], for sections γ ∈ Ω0 (X#, EH (h)).
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For parameter T = − logR, Lemma 3.4.4 provides the estimate

‖L2,TL1,Tγ‖L2(X#) ≤ C1R
δ′′‖γ‖L2(X#)

= C1e
−δ′′T‖γ‖L2(X#)

for T -independent constants C1, δ
′′ > 0.

Remember that the operator D∗TDT acts on forms of even total degree. Now, decomposing

forms of even total degree into forms of degree zero and degree two, for a 0-form γ we may

write γ = γ + 0 and thus is

L∗1,TL1,Tγ = D∗TDTγ − L2,TL1,Tγ

The triangle inequality now provides that

∥∥L∗1,TL1,Tγ
∥∥
L2(X#)

≥ ‖D∗TDTγ‖L2(X#) − ‖L2,TL1,Tγ‖L2(X#)

≥ CT−2‖γ‖L2(X#) − C1e
−δ′′T‖γ‖L2(X#),

which in turn for su�ciently large T implies the desired inequality.

Proposition 3.7.7. There exist constants R0 > 0 and C > 0, such that for all su�ciently

small 0 < R < R0 the operator L(AappR ,ΦappR ) is invertible and satis�es the estimate

‖GRγ‖L2(X#) ≤ C|logR|2‖γ‖L2(X#)

Proof. It su�ces to show the statement for the unitarily equivalent operator (which we shall

still denote by L(AappR ,ΦappR )) acting on the space Ω0 (X#, EH (h)) de�ned after conjugation by

the map γ 7→ iγ. From Corollary 3.5.2 it follows for all γ ∈ Ω0 (X#, EH (h)) that〈(
L(AappR ,ΦappR ) − L

∗
1,TL1,T

)
γ, γ
〉

= 3‖[Φapp
R , γ]‖2 ≥ 0

Consequently, L(AappR ,ΦappR ) − L∗1,TL1,T is a nonnegative operator. Furthermore, from the

previous Corollary we obtain the estimate:∥∥∥L(AappR ,ΦappR )γ
∥∥∥
L2(X#)

≥
∥∥L∗1,TL1,Tγ

∥∥
L2(X#)

≥ CT−2‖γ‖L2(X#)

Therefore, the operator L(AappR ,ΦappR ) is strictly positive, and so invertible, and the norm of

its inverse is bounded above by the inverse of the smallest eigenvalue of L(AappR ,ΦappR ), thus

providing the statement of the proposition.
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This upper bound for the inverse operator GR is valid also when GR is viewed as an

operator L2 (X#, r
−1drdθ)→ H2

B (X#, r
−1drdθ), where H2

B (X#) is the Banach space de�ned

by:

H2
B (X#) :=

{
γ ∈ L2 (X#)

∣∣∇Bγ,∇2
Bγ ∈ L2 (X#)

}
The proof of this statement readily adapts from the proof of Proposition 3.14 and Corollary

3.15 in [42]; we refer the interested reader to this article for the details.

3.7.5 Lipschitz constants for QR

The last step before being able to apply the contraction mapping argument described in

�3.5.1 is to control the quadratic and higher order terms QR in the Taylor series expansion

of FR.
The orbit map for any Higgs pair (A,Φ) and any g = exp (γ) with γ ∈ Ω0

(
X#, EH

(
hC
))

is given by

O(A,Φ) (γ) = g∗ (A,Φ) =
(
A+ g−1

(
∂̄Ag

)
− (∂Ag) g−1, g−1Φg

)
thus

exp (γ)∗A = A+
(
∂̄A − ∂A

)
γ +RA (γ)

exp (−γ) Φ exp (γ) = Φ + [Φ, γ] +RΦ (γ)

where these reminder terms are

RA (γ) = exp (−γ)
(
∂̄A exp (γ)

)
− (∂A exp (γ)) exp (−γ)−

(
∂̄A − ∂A

)
γ

RΦ (γ) = exp (−γ) Φ exp (γ)− [Φ, γ]− Φ

The Taylor series expansion of the operator FR is then

FR (exp (γ)) = pr1 (HR (A,Φ)) + LRγ +QRγ

with

QR (γ) := dA (RA (γ)) + [Φ∗, RΦ (γ)] + [Φ, RΦ(γ)∗]

+
1

2

[((
∂̄A − ∂A

)
γ +RA (γ)

)
,
((
∂̄A − ∂A

)
γ +RA (γ)

)]
+ [([Φ, γ] +RΦ (γ)) , ([Φ, γ] +RΦ (γ))∗]
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Lemma 3.7.8. In the above, let (A,Φ) ≡ (AappR ,Φapp
R ). Then there exists a constant C > 0

such that

‖QR (γ1)−QR (γ0)‖L2(X#) ≤ Cr‖γ1 − γ0‖H2
B(X#)

for all 0 < r ≤ 1 and γ0, γ1 ∈ Br, the closed ball of radius r around 0 in H2
B (X#).

Proof. see [42], Lemma 4.1.

3.8 Gluing theorems

The necessary prerequisites are now in place in order to apply the contraction mapping

argument described in �3.5.1 and correct the approximate solution constructed into an exact

solution of the Sp(4,R)-Hitchin equations.

Theorem 3.8.1. There exists a constant 0 < R0 < 1, and for every 0 < R < R0 there exist

a constant σR > 0 and a unique section γ ∈ H2
B (X#, u (2)) satisfying ‖γ‖H2

B(X#) ≤ σR, so

that for g = exp (γ):

(A#,Φ#) = g∗ (AappR ,Φapp
R )

is an exact solution of the Sp(4,R)-Hitchin equations over the closed surface X#.

Proof. We show that for σR > 0 su�ciently small, the operator T from �3.5.1 de�ned by

T (γ) = −GR (H ((AappR ,Φapp
R )) +QR (γ)) is a contraction of BσR , the open ball of radius σR.

From Proposition 3.7.7 and Lemma 3.7.8 we get

‖T (γ1 − γ0)‖H2
B(X#) = ‖GR (QR (γ1)−QR (γ0))‖H2

B(X#)

≤ C(logR)2‖QR (γ1)−QR (γ0)‖L2(X#)

≤ C(logR)2σR‖γ1 − γ0‖H2
B(X#)

Let ε > 0 and set σR := C−1|logR|−2−ε. Then for all 0 < R < e−1 it follows that

C(logR)2σR < 1 and therefore T is a contraction on the ball of radius σR.

Furthermore, since QR (0) = 0, using again Proposition 3.7.7 and Lemma 3.7.8 we have

‖T (0)‖H2
B(X#) = ‖GR (pr1 (HR (AappR ,Φapp

R )))‖H2
B(X#)

≤ C(logR)2‖pr1 (HR (AappR ,Φapp
R ))‖L2(X#)

≤ C(logR)2Rδ′′
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Thus, when R0 is chosen to be su�ciently small, then ‖T (0)‖H2
B(X#) <

1
10
σR, for all 0 <

R < R0 and for the above choice of σR; thus the ball BσR is mapped to itself by T .

Remark 3.8.2. The analytic arguments developed in the preceding sections provide also that

the Main Theorem 1.1 in [42] also holds for solutions to the Sp(4,R)-Hitchin equations. In

particular, we have the following:

Corollary 3.8.3. Let (Σ, J0) be a Riemann surface with nodes at a �nite collection of points

p ⊂ Σ. Let (A0,Φ0) be a solution to the Sp(4,R)-Hitchin equations with logarithmic sin-

gularities at p, which is obtained from a solution to the SL(2,R)-Hitchin equations via an

embedding ρ : SL(2,R) ↪→ Sp(4,R) that maps a copy of a maximal compact subgroup of

SL(2,R) into a maximal compact subgroup of Sp(4,R). Suppose that there is a model solu-

tion near those nodes which is of the form described in �3.1. Let (Σ, Ji) be a sequence of

smooth Riemann surfaces converging uniformly to (Σ, J0). Then, for every su�ciently large

i ∈ N, there exists a smooth solution (Ai,Φi) on (Σ, Ji), such that (Ai,Φi) → (A0,Φ0) as

i→∞, uniformly on compact subsets of Σ\p.

Theorem 3.8.1 now implies that for ∂̄ := A0,1
# , the Higgs bundle

(
E# :=

(
E#, ∂̄

)
,Φ#

)
is a

polystable Sp(4,R)-Higgs bundle over the complex connected sum X#. Collecting the steps

from all sections in this chapter, we now have our main result:

Theorem 3.8.4. Let X1 be a closed Riemann surface of genus g1 and D1 = {p1, . . . , ps}
be a collection of s-many distinct points on X1. Consider respectively a closed Riemann

surface X2 of genus g2 and a collection of also s-many distinct points D2 = {q1, . . . , qs} on
X2. Let (E1,Φ1) → X1 and (E2,Φ2) → X2 be parabolic stable Sp(4,R)-Higgs bundles with
corresponding solutions to the Hitchin equations (A1,Φ1) and (A2,Φ2). Assume that these

solutions agree with model solutions
(
A mod

1,pi
,Φ mod

1,pi

)
and

(
A mod

2,qj
,Φ mod

2,qj

)
near the points pi ∈

D1 and qj ∈ D2, and that the model solutions satisfy
(
A mod

1,pi
,Φ mod

1,pi

)
= −

(
A mod

2,qj
,Φ mod

2,qj

)
,

for s-many possible pairs of points (pi, qj). Then there is a polystable Sp(4,R)-Higgs bundle
(E#,Φ#) → X#, constructed over the complex connected sum of Riemann surfaces X# =

X1#X2, which agrees with the initial data over X#\X1 and X#\X2.

Remark 3.8.5. In �3.4.5 we checked that for the particular parabolic Sp(4,R)-Higgs bundles
arising from representations φirr and ψ, the main assumption in the theorem does apply.

De�nition 3.8.6. We call an Sp(4,R)-Higgs bundle constructed by the procedure developed

in this chapter, a hybrid Sp(4,R)-Higgs bundle.
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CHAPTER 4

TOPOLOGICAL INVARIANTS

So far we were able to construct a polystable Higgs bundle over a complex connected sum

of Riemann surfaces by gluing stable parabolic Higgs bundles over Riemann surfaces with

a divisor. We are now dealing with the problem of identifying the connected component of

the moduli space a hybrid Higgs bundle lies, given a choice of stable parabolic ingredients

to glue. For this, we need to look at how do the Higgs bundle topological invariants behave

under the complex connected sum operation. As an application, we see that under the

right initial choices for the gluing data, we can �nd model Higgs bundles in the exceptional

components of the maximal Sp(4,R)-Higgs bundle moduli space; these models are described

by the hybrid Higgs bundles of Chapter 3. More importantly, this allows for the �rst time a

comparison between the Higgs bundle invariants and the topological invariants for Anosov

representations established by O. Guichard and A. Wienhard in [22].

4.1 Degree of a connected sum bundle

Let X1 and X2 be closed Riemann surfaces with divisors D1 and D2 of s-many distinct points

on each, and let V1, V2 be two parabolic principal HC-bundles over X1, X2 respectively.

Assume that the underlying smooth bundles V1,V2 come equipped with adapted hermitian

metrics h1, h2. In Chapter 3 we described the construction of the smooth hermitian bundle

(V1#V2, h#) over the complex connected sum X# of X1 and X2. The hermitian metric h#

coincides with h1 and h2 in a neighborhood of X1\Ω and X2\Ω respectively, where Ω is the

neck region in the connected sum construction. Next, we equipped this hermitian bundle

with a holomorphic structure obtained through the arguments in �3.5-3.8. We have the

following:

Proposition 4.1.1. Let X# = X1#X2 be the complex connected sum of two closed Riemann

surfaces X1 and X2 with divisors D1 and D2 of s-many distinct points on each surface, and

let V1, V2 be parabolic principal HC-bundles over X1 and X2 respectively. For a parabolic

subgroup P ⊂ HC, a holomorphic reduction σ of the structure group of E from HC to P and
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an antidominant character χ of P , the following identity holds:

deg (V1#V2) (σ, χ) = pardegα1
(V1) (σ, χ) + pardegα2

(V2) (σ, χ)

Proof. Consider smooth metrics ~1, ~2 on the principal HC-bundles V1, V2 de�ned over X1

and X2, which coincide with the adapted metrics h1, h2 on X1\D1, X2\D2 respectively.

For v > 0, let Xi,v := {x ∈ Xi |d (x,D) ≥ e−v } and Bi,v := Xi\Xi,v, for i = 1, 2. For a

holomorphic reduction σ and an antidominant character χ, the metrics ~i, hi induce metrics

~i,L, hi,L on (Vi)σ,L with curvature Fhi,L and F~i,L respectively. Similarly, the smooth metric

h# on V1#V2 induces a metric h#,L on (V1#V2)σ,L with curvature Fh#,L. We now have:

deg (V1#V2) (σ, χ) =

√
−1

2π

∫
X#

〈
Fh#,L, sσ

〉
=

√
−1

2π

∫
X1,v

〈Fh1,L, sσ〉+

√
−1

2π

∫
X2,v

〈Fh2,L, sσ〉+

√
−1

2π

∫
X#\(X1,v∪X2,v)

〈
Fh#,L, sσ

〉

Now notice:

√
−1

2π

∫
X1,v

〈Fh1,L, sσ〉 =

√
−1

2π

∫
X1

〈F~1,L, sσ〉 −
√
−1

2π

∫
B1,v

〈Fh1,L, sσ〉

and √
−1

2π

∫
X1

〈F~1,L, sσ〉 = deg (V1) (σ, χ) ;

similarly for the integral over X2,v. Therefore, for every v > 0:

deg (V1#V2) (σ, χ) = deg (V1) (σ, χ)−
√
−1

2π

∫
B1,v

〈Fh1,L, sσ〉+ deg (V2) (σ, χ)

−
√
−1

2π

∫
B2,v

〈Fh2,L, sσ〉+

√
−1

2π

∫
X#\(X1,v∪X2,v)

〈
Fh#,L, sσ

〉

Passing to the limit as v → +∞, the last integral vanishes, while each integral over Bi,v for

i = 1, 2 converges to the local term measuring the contribution of the parabolic structure

in the de�nition of the parabolic degree (see Lemma 2.10 in [5]). The desired identity now

follows.

Proposition 4.1.1 implies in particular that the complex connected sum ofmaximal parabolic
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Sp(4,R)-Higgs bundles is a maximal (non-parabolic) Sp(4,R)-Higgs bundle. This is the ana-
logue in the language of Higgs bundles of the additivity property for the Toledo invariant

from the point of view of fundamental group representations (Proposition 1.4.5).

4.2 Model Higgs bundles in the exceptional components of

Mmax (X, Sp(4,R))

4.2.1 Model maximal parabolic Sp (4,R)-Higgs bundles.

Let X be a compact Riemann surface of genus g and let the divisor D := {x1, . . . , xs} of
s-many distinct points on X, assuming that 2g − 2 + 2s > 0. Fix a square root of the

canonical bundle, that is, a line bundle L→ X, such that L2 = K and consider

E = (L⊗ ι)∗ ⊕ L

where ι = OX (D) is the line bundle over the divisor D. Assign a parabolic structure on

E given by a trivial �ag Exi ⊃ {0} and weight 1
2
for every xi ∈ D. Moreover, for any

q ∈ H0 (X,K2 ⊗ ι), let

θ (q) =

(
0 1

q 0

)
∈ H0 (X,End (E)⊗K ⊗ ι)

be the parabolic Higgs �eld on the parabolic bundle E. The authors in [7] show that the pair

(E, θ (q)) is a parabolic stable Higgs bundle of parabolic degree zero. Under the non-abelian

Hodge correspondence for non-compact curves, there is a tame harmonic metric on the bundle

E. Moreover, it is shown in [7] that parabolic Higgs bundles of the type (E, θ (q)) de�ned

above, are in 1-1 correspondence with Fuchsian representations of n-punctured Riemann

surfaces. This also implies that the holonomy of the �at connection on X corresponding to

(E, θ (q)) is contained (after conjugation) in SL(2,R).
As was done in the non-parabolic case [9], we shall use embeddings of SL(2,R) into Sp(4,R),

in order to obtain model parabolic Sp(4,R)-Higgs bundles:

Example 4.2.1. Consider the parabolic Sp(4,R)-Higgs bundle (V1, β1, γ1) which is induced by

the embedding through φirr from �1.4 of the model parabolic SL(2,R)-Higgs bundle (E, θ (q)).

Under the preceding terminology, the bundle V1 → X1 is then described as:

V1 =
(
L3 ⊗ ι

)
⊕ (L⊗ ι)∗
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and it comes equipped with a parabolic structure de�ned by a trivial �ag (V1)xi ⊃ {0} and
weight 1

2
for every xi ∈ D.

Moreover, V1 can be expressed as V1 = N1 ⊕N∗1K. Indeed, for N1 = L3 ⊗ ι we see that:

N∗1K =
(
L3 ⊗ ι

)∗ ⊗K = L−3 ⊗ ξ ⊗ L2 = (L⊗ ι)∗

It can be checked that this is a parabolic stable Sp(4,R)-Higgs bundle. Also notice that

par deg V1 = par deg
(
L3 ⊗ ι

)
+ par deg (L⊗ ι)∗

= 3g − 3 + s+
s

2
+ 1− g − s+

s

2
= 2g − 2 + s.

Therefore, (V1, β1, γ1) ∈ Mmax
par (X, Sp(4,R)) is a model maximal parabolic Sp(4,R)-Higgs

bundle.

Example 4.2.2. Consider the parabolic Sp(4,R)-Higgs bundle (V2, β2, γ2) which is induced by

the embedding through φ∆ from �1.4 of the model parabolic SL(2,R)-Higgs bundle (E, θ (q)).

Under the preceding terminology, the bundle V2 → X is then described as:

V2 = L⊕ L

and it comes equipped with a parabolic structure de�ned by a trivial �ag (V2)xi ⊃ {0} and
weight 1

2
for every xi ∈ D.

Moreover, V2 can be expressed as V2 = N2 ⊕N∗2K. Indeed, for N2 = L we see that:

N∗2K = L−1 ⊗K = L

It can be checked that this is a parabolic stable Sp(4,R)-Higgs bundle. Also notice that

par deg V2 = 2par degL = 2
(
g − 1 +

s

2

)
= 2g − 2 + s

Therefore, (V2, β2, γ2) ∈ Mmax
par (X, Sp(4,R)) is a model maximal parabolic Sp(4,R)-Higgs

bundle.

In light of Proposition 4.1.1 we now derive that the polystable hybrid Sp(4,R)-Higgs bundle
constructed,

(
V#,Φ#, h#, ∂̄

)
, is maximal :

Proposition 4.2.3. The hybrid Higgs bundle
(
V#,Φ#, h#, ∂̄

)
constructed by gluing the max-

imal parabolic Higgs bundles (V1, β1, γ1) and (V2, β2, γ2) described above is maximal, i.e.

deg (V#) = 2 (g1 + g2 + s− 1) − 2 = 2g − 2, where g is the genus of the Riemann surface

X#, the connected sum of the s-punctured Riemann surfaces X1 and X2.
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4.2.2 Gluing the Cayley partners.

Let X1 =
{
φ1
ij

}
(resp. X2 =

{
φ2
ij

}
) the holomorphic transition functions de�ning the

Riemann surface X1 (resp. X2), with respect to an atlas A1 (resp. A2). Then
(
φ1
ij

)′
is

nowhere zero. Set

t1ij :=
(
φ1
ij

)′ ◦ φ1
i

∣∣
Ui∩Uj

and now these de�ne the tangent bundle TX1 =
{
t1ij
}
. Since 1

t1ij
is well-de�ned, we now get:

KX1 = T ∗X1
=
{
l1ij :=

(
t1ij
)−1
}

and similarly for the Riemann surface X2

KX2 = T ∗X2
=
{
l2ij :=

(
t2ij
)−1
}

The transition functions φ1
ij, φ

2
ij from the atlas A = A1

∣∣
X∗1
∪ A2

∣∣
X∗2

of X# must agree on

the gluing region, the annulus Ω. Thus, l1ij (x) = l2ij (x) over x ∈ Ω. Considering a cover

V1∪V2 of Ω, we can de�ne a line bundle isomorphism l̃ : V1∩V2 → C∗ and now the 1-cocycles

l1ij, l
2
ij, l̃ de�ne the connected sum canonical bundle

KX#
:= KX1#KX2

Now, take the maximal parabolic model (V1, β1, γ1) described in the previous section. Fix

another square root M1 of the canonical line bundle KX1 . Now, de�ne:

W1 = V ∗1 ⊗M1 =
[(
L3

1 ⊗ ι
)
⊕ (L1 ⊗ ι)∗

]∗ ⊗M1

=
[
(L1 ⊗ ι)⊕

(
L−3

1 ⊗ ξ
)]
⊗M1 = (KX1 ⊗ ι)⊕

(
K∗X1

⊗ ξ
)

i.e. W1 is of the form L⊕ L∗ for L := KX1 ⊗ ι and also the map γ1 ⊗ IM∗1 : W ∗
1 → W1 is an

isomorphism, which comes from the fact that γ1 is, as follows of the proof of the Milnor-Wood

inequality in the parabolic case.

Therefore, the bundle W1 → X1 is determined by an O (2)-cocycle
{
w1
αβ

}
with

det
{
w1
αβ

}
= 1.

Similarly, for the maximal parabolic model (V2, β2, γ2) we �x another square root M2 of
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the canonical line bundle KX2 and de�ne:

W2 = V ∗2 ⊗M2 = (L2 ⊕ L2)∗ ⊗M2 = L∗2M2 ⊕ L∗2M2

i.e. W2 is of the form L ⊕ L∗ for L := O.
Therefore, the bundle W2 → X2 is determined by an O (2)-cocycle

{
w2
αβ

}
with

det
{
w2
αβ

}
= 1.

As was done in �3.4.3, let 1-cocycles around each puncture xi ∈ D for the bundles W1,W2

over the annulus Ω ≡ Ω1 ∼ Ω2

wi : U1 ∩ U2 → GL (4,C)

x 7→ g−1
i (x) ·mi (x)

while {mi (x)} = Mi. At this point, we are using the 1-cocycles that de�ne the connected

sum canonical bundle KX#
.

For an induced hermitian metric on W1, using the Gram-Schmidt process one can obtain

an orthonormal local frame over Ω1, such that the associated 1-cocycle w̃1 is SO (2)-valued.

We may use the isomorphism W1 |Ω1

'−→ W2 |Ω2 induced by the two isomorphisms between

the Vi and Mi described before, to glue the bundles over Ω subordinate to the covering

U1 ∪ U2. For the 1-cocycle over the connected sum bundle W1#W2 we also have:

det
{
w#
αβ

}
= 1

Thus, the �rst Stiefel-Whitney class w1 (W#) vanishes, and so V# = N# ⊕ N∗#KX#
with

N# = N1#N2. Moreover, this provides that the Cayley partner W# of V# decomposes as

W# = L# ⊕ L−1
# for some line bundle L#. We thus have established the following:

Proposition 4.2.4. The hybrid Higgs bundle (V#,Φ#) constructed by gluing the maximal

parabolic Higgs bundles (V1, β1, γ1) and (V2, β2, γ2) of �4.2.1 is maximal with a corresponding

Cayley partner W# for which w1 (W#) = 0 and W# = L# ⊕ L−1
# , for some line bundle L#

over X#.

Remark 4.2.5. Compare this result to Proposition 5.9 in [22], where an analogous property

for the Stiefel-Whitney classes of a hybrid representation was established.

The degree of this line bundle L# fully determines the connected component a hybrid

Higgs bundle will lie:
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Proposition 4.2.6. For the line bundle L# appearing in the decomposition W# = L#⊕L−1
#

of the Cayley partner, it is

deg (L#) = par degKX1 ⊗ ι1

where ι1 = OX1 (D1).

Proof. The identity of Proposition 4.1.1 now applies to provide the computation of the degree

for the bundle N# appearing in the decomposition V# = N# ⊕N∗#KX#
:

deg (N#) = par deg
(
L3

1 ⊗ ι1
)

+ par deg (L2)

= 3 (g1 − 1) + s+
s

2
+ g2 − 1 +

s

2

= g + 2g1 − 3 + s

where g := g1 + g2 + s− 1 is the genus of X#.

Considering N# ⊗ L
− 1

2
0 for some L0 = K

1
2
# now gives

deg
(
N# ⊗ L

− 1
2

0

)
= g + 2g1 − 3 + s+ 1− g

= 2g1 + s− 2

= −χ (Σ1) = par degKX1 ⊗ ι1

where ι1 = OX1 (D1).

Therefore, we have constructed a holomorphic vector bundle V# → X# with deg (V#) =

2g − 2 and V# = N# ⊕ N∗#KX#
with deg

(
N# ⊗ L

− 1
2

0

)
= 2g1 − 2 + s, which is odd (resp.

even) whenever s is odd (resp. even). The contraction mapping argument of �3.5-3.8 will

provide a holomorphic structure ∂̄ with respect to which
(
V#, ∂̄

)
is a polystable Sp(4,R)-

Higgs bundle. The numerical information we already have for the topological invariants of

V# is preserved and it identi�es the connected component of the maximal moduli space the

tuple
(
V#,Φ, h#, ∂̄

)
will lie.

Remarks 4.2.7. 1. The component a hybrid Higgs bundle lies depends on the genera and

the number of points in the divisors of the initial Riemann surfaces X1 and X2 in

the construction; there are no extra parameters arising from the deformation of stable

parabolic data to model data near these points, or the perturbation argument to correct

the approximate solution to an exact solution.

2. The gluing of two parabolic Higgs bundles of the same type as the model (V1, β1, γ1)

from Example 4.2.1 implies that deg (N#) = 3g − 3. On the other hand, the gluing of
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two parabolic Higgs bundles of the same type as (V2, β2, γ2) from Example 4.2.2 implies

that deg (N#) = g − 1, as expected.

3. As was described in �1.5, for a hybrid representation ρ : π1 (Σ) → Sp(4,R) there is

a well de�ned Euler class with values e (ε⊗ ρ, L+) = −χ (Σl) [Σ] ∈ H2 (T 1Σ,Z). In

addition to Proposition 1.5.5, which describes a relation between the Stiefel-Whitney

classes for maximal Sp(4,R)-Higgs bundles and the Stiefel-Whitney classes for Sp(4,R)-
representations, we deduce that in the case of Riemann surfaces with s = 1 point in

the divisors, the degree deg (L#) of the underlying bundle L# in the decomposition

of the Cayley partner W# = L# ⊕ L−1
# of a hybrid Sp(4,R)-Higgs bundle equals the

Euler class e (ε⊗ ρ, L+) for the hybrid representation, although these invariants live

naturally in di�erent cohomology groups.

In conclusion, since 1 ≤ g1 ≤ g1 + g2 − 1, it follows that

s ≤ deg
(
N# ⊗ L

− 1
2

0

)
≤ 2g − s− 2

with s an integer between 1 and g − 1. Therefore, the hybrid Higgs bundles constructed

are modeling all exceptional 2g − 3 connected components of Mmax (X, Sp(4,R)). These

components are fully distinguished by the degree of the line bundle L# for the hybrid Higgs

bundle constructed by gluing.
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