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ABSTRACT

For a compact Riemann surface of genus g > 2, the components of the moduli space of
Sp(4,R)-Higgs bundles, or equivalently the Sp(4,R)-character variety, are partially labeled
by an integer d known as the Toledo invariant. The subspace for which this integer attains a
maximum has been shown to have 3-2% + 2¢g — 4 many components. A gluing construction
between parabolic Higgs bundles over a connected sum of Riemann surfaces provides model
Higgs bundles in a subfamily of particular significance. This construction is formulated in
terms of solutions to the Hitchin equations, using the linearization of a relevant elliptic

operator.
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SYNOPSIS

Let X be a closed connected and oriented surface of genus ¢ > 2 and G be a connected
semisimple Lie group. The moduli space of reductive representations of 7; () into G modulo
conjugation

R (G) = Hom™ (7 (%), G) /G

has been an object of extensive study and interest. Fixing a complex structure J on the sur-
face ¥ transforms this into a Riemann surface X = (X, J) and opens the way for holomorphic
techniques using the theory of Higgs bundles. The non-abelian Hodge theory correspondence
provides a real-analytic isomorphism between the character variety R (G) and the moduli
space M (G) of polystable G-Higgs bundles. In this dissertation we are primarily interested
in the case when G = Sp(4,R). The precise definition of an Sp(4,R)-Higgs bundle over a

compact Riemann surface X reads as follows:

Definition 1. Let K = T*X be the canonical line bundle over X. An Sp(4,R)-Higgs bundle
over X is defined as a triple (V, 3,7), where V' is a rank 2 holomorphic vector bundle over

X and (3, are symmetric homomorphisms
B: V' =>VeKandvy:V >V K

The embedding Sp(4,R) < SL(4,C) allows one to reinterpret the defining Sp(4,R)-Higgs
bundle data as special SL(4,C)-data in the original sense of N. Hitchin [26]. In particular,
an Sp(4,R)-Higgs bundle is alternatively defined as a pair (E, ®), where

1. E=V & V*is a rank 4 holomorphic vector bundle over X and

0
2. &: F - F® K is a holomorphic K-valued endomorphism of F with ¢ = < g)
g
A basic topological invariant for the tuples (V, 5,~) is given by the degree of the underlying
rank 2 bundle
d = deg (V)



This invariant, called the Toledo invariant, ranges between 2 — 2g and 29 — 2 and the
corresponding representations in the character variety are of particular interest for the ex-
tremal cases, that is when |d| = 2¢g — 2. The subspace of maximal Sp(4,R)-Higgs bundles
MPE = My, 9 >~ Mjy_9, has been shown to have 3 - 229 4 29 — 4 connected components
[21].

Among the connected components of M™** ~ R™ there are 29 — 3 exceptional compo-
nents of this moduli space. These components are all smooth but topologically non-trivial,
and representations in these do not factor through any proper reductive subgroup of Sp (4, R),
thus have Zariski-dense image in Sp (4, R). On the other hand, for the remaining 3 - 229 — 1
components, model Higgs bundles can be obtained by embedding stable SL(2,R)-Higgs data
into Sp(4,R), using appropriate embeddings ¢ : SL(2,R) < Sp(4,R) (see [9]). This method,
however, will obviously not apply for finding model Higgs bundles in the 2g — 3 exceptional
ones. The construction of Sp(4,R)-Higgs bundles that lie in these exceptional components
is the principal objective of this dissertation.

From the point of view of the character variety R™**, model representations in a sub-
family of the 2g — 3 special components have been effectively constructed by O. Guichard
and A. Wienhard in [22] by means of a certain topological gluing construction, which
we briefly describe next: Let X = 3;U,Y, be a decomposition of the surface X along
a simple, closed, oriented, separating geodesic v into two subsurfaces ; and ¥,. Pick
pirr T (X) — SL(2,R) Gurr, Sp (4,R) an irreducible Fuchsian representation and pa :
m (2) — SL(2,R) EN SL(2,R)*> = Sp(4,R) a diagonal Fuchsian representation. One could
amalgamate the restriction of the irreducible Fuchsian representation p;.,. to ¥; with the re-
striction of the diagonal Fuchsian representation pa to Y., however the holonomies of those
along v a priori do not agree. A deformation of pa on 7 (X) can be considered, such that the
holonomies would agree along ~, thus allowing the amalgamation operation. This introduces

new representations by gluing:

Definition 2. A hybrid representation is defined as the amalgamated representation

P = p |7r1(21) * Pr ‘771(27‘) oy (2) = (3) *(y)T1 (3;) = Sp(4,R)

O. Guichard and A. Wienhard also introduce appropriate topological invariants for Anosov
representations, a special case of which are the maximal symplectic surface group representa-
tions. An explicit computation of the invariants for the hybrid representations provides that
these serve as models to the odd-indexred exceptional components of M™®* while the actual
component in which a particular hybrid representation lies, depends entirely on the genus of

the surface X; appearing in the decomposition of X along a closed, separating geodesic.



Motivated by the topological gluing construction described above, we aim at developing
a gluing construction for (poly)stable G-Higgs bundles over a complex connected sum of
Riemann surfaces. The establishment of such a technique may have a wider applicability in
constructing points in the interior of moduli of G-Higgs bundles.

In this dissertation, we formulate the gluing construction for the case when G' = Sp(4,R).
We also point out how one can choose Sp(4,R)-Higgs bundle data over a pair of Riemann
surfaces so that the resulting hybrid Higgs bundle obtained by gluing lies in one of the
2g — 3 exceptional components of M™**. Even further, we describe how the choices of the
initial gluing data can provide model Higgs bundles in all exceptional components. The
latter completes the description of a specific relation between the Higgs bundle topological
invariants and the topological invariants for Anosov representations for maximal symplectic
surface group representations.

The first step in this direction is to understand the objects corresponding to Sp(4,R)-
representations over a surface with boundary with fixed arbitrary holonomy around the
boundary. These objects are Higgs bundles defined over a Riemann surface with a divisor,
together with a weighted flag on the fibers over the points in the divisor, namely parabolic
Higgs bundles. Indeed, a non-abelian Hodge correspondence was established by C. Simpson
in the non-compact case [40] and later on, a Hitchin-Kobayashi correspondence was provided
by O. Biquard, O. Garcia-Prada and I. Mundet i Riera for parabolic G-Higgs bundles [5].

We define these appropriate holomorphic objects as follows:

Definition 3. Let X be a compact Riemann surface of genus g and consider the divisor
D :={xy,...,zs} of s-many distinct points on X, assuming that 29 —2+s > 0. A parabolic
Sp(4,R)-Higgs bundle over X is defined as a triple (V, 3,v), where

e IV is a rank 2 bundle on X, equipped with a parabolic structure at each point x € D
given by the flag
VDL, D0

and weights
0<o(z)<ay(z)<1

e 3:VV s V@®K®rand v:V — VV® K ®: are strongly parabolic morphisms, where
VY denotes the parabolic dual of V, K = T*X and ¢ = Ox (D) is a fixed line bundle

over the divisor D.

A notion of parabolic Toledo invariant of a parabolic Sp (4, R)-Higgs bundle is defined as



the rational number

7 = pardeg (V) = deg (V) + Z (o1 (7) + g (7))

zeD

and a Milnor-Wood type inequality for this invariant can still be established:

Proposition 1. [Proposition 2.4.2] Let (E,®) be a semistable parabolic Sp (4, R)-Higgs
bundle. Then
7| <29g—2+s

where s is the number of points in the divisor D.

As in the non-parabolic case, the parabolic Sp (4, R)-Higgs bundles with parabolic Toledo
invariant 7 = 2g — 2 + s will be called mazimal and we denote the components containing
such triples (V, 3,v) by Mpax.

Let X7, X5 be two distinct compact Riemann surfaces with a divisor of s-many distinct
points on each, and consider a pair of parabolic Sp(4,R)-Higgs bundles over X;, X5 respec-
tively. The complex connected sum Xy = X;#X, of the Riemann surfaces is constructed
using a biholomorphism between annuli around pairs of points, one on each of X; and X.
It is important that a gluing construction of parabolic Higgs bundles over the connected
sum Xy is formulated so that the gluing of stable parabolic pairs is providing a polystable
Higgs bundle over Xx. Moreover, in order to construct new models in the components of
M (X4, Sp(4,R)), the parabolic gluing data over X; and X, are chosen to be coming from
different embeddings of SL(2,R)-parabolic data into Sp(4,R), and so a priori do not agree
over disks around the points in the divisors. We choose to switch to the language of solu-
tions to Hitchin’s equations and make use of the analytic techniques of C. Taubes for gluing
instantons over 4-manifolds in order to control the stability condition. This involves viewing
our stable parabolic Sp(4,R)-Higgs bundles over the punctured Riemann surfaces X; and X,
as solutions to the Sp(4,R)-Hitchin equations.

The problem now involves perturbing this initial data into model solutions which are iden-
tified locally over the annuli around the points in the divisors, thus allowing the construction
of a pair over X4 that combines the initial data over X; and X,. The existence of these
perturbations in terms of appropriate gauge transformations is initially provided for STL.(2,R)-
data, and we next use the embeddings of SL(2,R) into Sp(4,R) to extend this deformation
argument for our initial pairs. This produces an approximate solution to the Sp(4,R)-Hitchin
equations (AR", ®R*) over X, with respect to a parameter R > 0 which describes the size
of the neck region in the construction of X,. The pair (A%”, ®%”) coincides with the initial

data over each hand side Riemann surface and with the model over the neck region.



By construction, this pair is complex gauge equivalent to an exact solution of the Hitchin
equations, so the second equation is preserved, while the first equation is satisfied up to an

error which we have good control of:

Lemma. [Lemma 3.4.4] The approximate solution (A%”, ®%*) to the parameter 0 < R < 1

satisfies

P + %[0, —7 (257")]|

S CR(SN
ol
for some constants 0” > 0 and C' = C' (§”) not depending on R.

The next important step is to correct this approximate solution to an exact solution of the
Sp(4,R)-Hitchin equations over the complex connected sum of Riemann surfaces. In other
words, we seek for a complex gauge transformation g such that ¢* (AR”, ®%”) is an exact
solution of the Sp(4,R)-Hitchin equations. The argument providing the existence of such
a gauge is translated into a Banach fixed point theorem argument and involves the study
of the linearization of a relevant elliptic operator. For Higgs bundles this was first studied
by R. Mazzeo, J. Swoboda, H. Weiss and F. Witt in [29], who described solutions to the
SL(2, C)-Hitchin equations near the ends of the moduli space. For the complex connected

sum Xz we consider the nonlinear G'-Hitchin operator at a pair (A, @),

H (A, ®) = (F(A) — [®,7(P)],0,0)

to work with. A crucial step in this argument is to show that the linearization of this operator
at our approximate solution (AR”, ®E") is invertible; this is obtained by showing that an
appropriate self-adjoint Dirac-type operator has no small eigenvalues. This method was also
used by J. Swoboda in [42] to produce a family of smooth solutions of the SL(2,C)-Hitchin
equations, which may be viewed as desingularizing a solution with logarithmic singularities
over a noded Riemann surface. Modifying the analytic techniques from [42|, we extend the
main theorem from that article to solutions of the Sp(4,R)-Hitchin equations, and moreover

obtain our main result:

Theorem. |[Theorem 3.8.4] Let X; be a closed Riemann surface of genus ¢; and D; =
{p1,...,ps} be a collection of s-many distinct points on X;. Consider respectively a closed
Riemann surface X, of genus g and a collection of also s-many distinct points Dy =
{q1,...,qs} on Xs. Let (Ey,®1) — X, and (Fs, ®3) — X, be parabolic stable Sp(4,R)-
Higgs bundles with corresponding solutions to the Hitchin equations (A;, ®1) and (Asg, ®5).
Assume that these solutions agree with model solutions (A/°¢, @24 ) and (A;";‘;d , By )
mod ) _

near the points p; € Dy and ¢; € D,, and that the model solutions satisfy (Aff;zd , O

— (A;f}]‘;d , Q)ﬂ‘;d), for s-many possible pairs of points (p;, ;). Then there is a polystable



Sp(4,R)-Higgs bundle (Ey, ) — X4, constructed over the connected sum of Riemann sur-
faces X4 = X 1#X, of genus g1 + g + s — 1, which agrees with the initial data over X\ X,
and X4\ Xo.

Definition 4. We call an Sp(4,R)-Higgs bundle constructed by the preceding construction
a hybrid Sp(4,R )-Higgs bundle.

Subsequently, the goal is to identify the connected component of the moduli space a hybrid
Higgs bundle lies, given a choice of stable parabolic ingredients to glue. For this purpose, we
need to look at how do the Higgs bundle topological invariants behave under the complex

connected sum operation. We first show the following:

Proposition 2. [Proposition 4.1.1] Let X = X #X, be the complex connected sum of two
closed Riemann surfaces X; and Xy with divisors D; and D, of s-many distinct points on
each surface, and let V;, V4 be parabolic principal H®-bundles over X; and X, respectively.
For a parabolic subgroup P C H®, a holomorphic reduction o of the structure group of E

from H® to P and an antidominant character y of P, the following identity holds:

deg (Vi#V2) (0, x) = pardeg,, (V1) (0, x) + pardeg,,, (V2) (o, x)

This proposition implies that the connected sum of maximal parabolic Sp(4,R)-Higgs
bundles is again a maximal (non-parabolic) Sp(4,R)-Higgs bundle. Note that an analogous
additivity property for the Toledo invariant was established by M. Burger, A. Tozzi and A.
Wienhard in [12] from the point of view of fundamental group representations.

In order to obtain model hybrid Higgs bundles inside the exceptional 2g — 3 components of
M™ we construct appropriate model maximal parabolic Sp(4,R)-Higgs bundles extending
maximal parabolic SL(2,R)-data through the embeddings ¢;,. and A used in the topological
construction of a hybrid representation; let these particular parabolic models be denoted
by (V4,P1,7) and (Va, B2,72) over the Riemann surfaces X; and X5 respectively. We can
then keep track of the Higgs bundle topological invariants under this grafting procedure and

deduce the following two propositions:

Proposition 3. |Proposition 4.2.4] Let Ly be a square root of the canonical line bundle K
over the complex connected sum surface X,. The hybrid Higgs bundle (V, ®4) constructed
by gluing the maximal parabolic Higgs bundles (Vi, 51, 71) and (Va, 2, 72) is maximal with a
corresponding Cayley partner Wy := Vi®Lg for which it is w; (W) = 0 and Wy = Ly®L,",

for some line bundle Ly over X.



Proposition 4. [Proposition 4.2.6] Let ¢; = Ox, (D;) be the line bundle over a divisor in
X,. For the line bundle L4 appearing in the decomposition Wy = L, © L;#I of the Cayley
partner, it is

deg (Ly) = pardeg Kx, ® (1

The last two propositions assert that the hybrid Higgs bundles constructed are modeling
all exceptional components of M™**. These components are fully distinguished by the
calculation of the degree of the line bundle L. Moreover, for the case G = Sp(4,R), taking
all the possible decompositions of a surface ¥ along a simple, closed, separating geodesic
is sufficient in order to obtain representations in the desired components of M™#*,  This
result also allows, for the first time, to compare the invariants of maximal Higgs bundles
to the topological invariants for Anosov representations constructed by O. Guichard and A.
Wienhard.



CHAPTER 1

SP(4,R)-HIGGS BUNDLES

1.1 G-Higgs bundles

Let X be a compact Riemann surface and let G be a real reductive group. The latter
involves considering Cartan data (G, H,0, B), where H C G is a maximal compact subgroup,
6 : g — g is a Cartan involution and B is a non-degenerate bilinear form on g, which
is Ad (G)-invariant and f-invariant. Moreover, the data (G, H,0, B) have to satisfy the

following:
1. The Lie algebra g of the group G is reductive

2. 0 gives a decomposition (called the Cartan decomposition)
g=hom

into its +1-eigenspaces, where § is the Lie algebra of H

3. b and m are orthogonal under B and B is positive definite on m and negative definite

on b
4. multiplication as a map from H X expm into GG is an onto diffeomorphism.

Let H® be the complexification of H and let g© = h® @ m® be the complexification of the
Cartan decomposition. The adjoint action of G on g restricts to give a representation (the
isotropy representation) of H on m. This is independent of the choice of Cartan decomposi-
tion, since any two Cartan decompositions of GG are related by a conjugation, using also that

[h, m] € m, and the same is true for the complexified isotropy representation
v H® = GL(m")

This introduces the following definition:



Definition 1.1.1. Let K be the canonical line bundle over X. A G-Higgs bundle is a pair
(E, ) where

e E is a principal holomorphic H®-bundle over X and
e ¢ is a holomorphic section of the vector bundle £ (m(c) @K = (Eme(C) ® K

The section ¢ is called the Higgs field.
Two G-Higgs bundles (F, ) and (E',¢') are said to be isomoprhic if there is a vector

bundle isomorphism F = E’ which takes the induced ¢ to ¢’ under the induced isomorphism
E (m®) = ' (m®).

When G is a real compact reductive Lie group, the Cartan decomposition of the Lie algebra
is
g=b
thus the Higgs field ¢ equals zero. Hence, a G-Higgs bundle in this case is in fact a principal
G®-bundle.
When G is a complex reductive Lie group, with G the underlying real Lie group, the

complexification H® of a maximal compact subgroup coincides with G' and since
g’ =bh b,

the isotropy representation coincides with the adjoint representation of GG on its Lie algebra.
Hence, Definition 1.1.1 for the underlying real Lie group G" coincides with the notion of a
G-Higgs bundle for a complex reductive Lie group G.

When G = GL(n,C) in particular, E (gl (n,C)) = End (V'), where V is the rank n vector
bundle associated to the principal GL(n,C)-bundle E via the standard representation of
GL(n,C) in C™. Hence, a G-Higgs bundle in this case is a Higgs bundle in the original sense
of N. Hitchin [26].

1.1.1  Stability

To define a moduli space of G-Higgs bundles we need to consider a notion of semistability,
stability and polystability. These notions are defined in terms of an antidominant character
for a parabolic subgroup P4 € H® and a holomorphic reduction o of the structure group
of the bundle E from H® to P4. We next summarize the introduction of these notions; for

more details see [18], or [1] in the case when HC is semisimple in particular.



Let H be a compact and connected Lie group and let H® be its complexification, which is
assumed to be a semisimple complex Lie group. A subgroup P C H€ is said to be parabolic
if the homogeneous space H®/P is a projective variety. Consider a Cartan subalgebra ¢ of
the Lie algebra bh. Finally, let A denote a choice of simple roots of h®, with respect to the

Cartan algebra ¢. We can then write the root space decomposition of h€ as:

bczc@<@ba>

dEA

where hs = h* is the root space corresponding to 6. Let AT be the set of positive roots and
IT = {ay,...a,} be the set of simple roots. For any subset A C II define

AA:{éeA

5:Zmiai with m; > 0 for all ¢; GA}

i=1

and let

as a Lie subalgebra of hC. If P4 C H® denotes the connected subgroup with Lie algebra p 4,
then P, is a parabolic subgroup of HC.
An antidominant character for the parabolic subgroup P4 is an element of the form
X = Z miA;
a; EA
with all m; < 0 and for {\,...,\,} € ¢* defined by the condition 2&5:;

are simple roots. The character x is called strictly antidominant if m; < 0 for all a; € A.

= 0,5, where a; € Il

Now let (E, ¢) be a G-Higgs bundle such that H® is a semisimple complex Lie group, and
consider a parabolic subgroup P4 C H® and L, C Py its Levi subgroup. Moreover, for a
holomorphic section o of F (H /P, ), let E, be the corresponding reduction of structure
group of E from H® to P4, i.e. a principal Ps-bundle E, such that F = E,xp, HC.

If x is an antidominant character for Py, let

(m(c); ={ve m® ‘L (¢"x) v remains bounded as t — oo }

(m(c)i ={vem®|.(e")v=nforanyt} C (m(c);

which are subspaces of m® invariant under the action of P, and L, respectively. We have
that £ (m®) = E,xp,m® and E (m%) = E,, x;,m" and we can thus identify the vector

10



bundles £, p, (m€) and E,, x, (m€)] with two holomorphic subbundles

If x = > myA;, where {\;} € (* @ ¢* is the set of fundamental weights associated to
a; EA
simple roots IT = {a;}, there exists some positive integer n such that for any a; € A, the

morphism of Lie algebras n); : ( & ¢ — C gives a morphism of Lie groups k,q, : P4 — C*.
The degree of the bundle E with respect to a reduction o and to an antidominant character

X is defined as the real number
1
deg (E = — deg (Fy X4, C*

We are finally in position to define the stability conditions:
Definition 1.1.2. A G-Higgs bundle (E, p) is called

e semistable if for any parabolic subgroup P C H®, any antidominant character y for P
and any holomorphic section o € I' (E (H®/P)) such that ¢ € H° (E (mc);x ® K>7
we have

deg (E) (0, x) 2 0

e stable if it is semistable and furthermore: for any P,y and o as above, such that
peH° <E (mc);x ® K> and such that P # H®, we have

deg (E) (o,x) >0

e polystable if it is semistable and furthermore: for any P,y and o as above, such that
pec H° (E (mC);X ® K), P # HC and y is strictly antidominant, and such that

deg (E) (0, x) = 0,

there is a holomorphic reduction of the structure group o € I' (E, (P/L)), where
E, denotes the principal P-bundle obtained from reduction of structure group ¢ and
L C P is the Levi subgroup. Furthermore, under these hypotheses, it is required that
pe H° <E (mC)gL’X ® K).

These notions can be generalized for the case when the group H® is reductive but not

semisimple. In that case, the notions depend also on an extra parameter a € Z (f)c) which

11



is equal to zero when HT is indeed semisimple (cf. [18] for more details). A more workable
version of these notions is obtained by giving a description of the objects involved in the
definition in terms of filtrations of certain vector bundles:

Let H be a classical group, and let p : H® — GL(n,C) be the standard representation
which associates to E the vector bundle V = E'x,C". A pair (o, x) consisted of a holomorphic
reduction of structure group ¢ and an antidominant character x for a parabolic subgroup

P, C H® can be shown to correspond to a filtration of vector bundles
V=0cWVc...cVy1CV,=V)
and an increasing sequence of real numbers (usually called weights)
A< ... < Mg

We define the degree of the bundle E with respect to a weighted filtration of vector bundles
by

k—1
deg (E) = Apdeg V + Y (A — A1) deg V;

i=1
Definition 1.1.3. A G-Higgs bundle (F, ¢) is called semistable if for any weighted filtration
V, we have deg (E) > 0; it is called stable if for any V, we have deg (E) > 0 and finally it is
called polystable if deg (E) = 0.

When the group G is connected, principal H®bundles E are topologically classified by a
characteristic class ¢ (F) € H? (X, m (HC)) =m (HC) =m (H) =m (G).

Definition 1.1.4. For a fixed class d € m (G), the moduli space of polystable G-Higgs
bundles is defined as the set of isomorphism classes of polystable G-Higgs bundles (E, ¢)
such that ¢ (F) = d. We will denote this by M (G) and when the group G is compact, the
moduli space Mg (G) coincides with Mg (G©).

The following theorem can be shown using the general GIT constructions of A. Schmitt
for decorated principal bundles in the case of a real form of a complex reductive algebraic
Lie group; see [36], [37| for details.

Theorem 1.1.5. The moduli space My (G) is a complex analytic variety, which is algebraic

when G s algebraic.

Deformation theory of GG-Higgs bundles can be now used to provide a computation of the
expected dimension of this moduli space; for further information we refer to [17] and the

references therein.

12



Definition 1.1.6. Let (E, ) be a G-Higgs bundle. The deformation complex of (E,p) is

the following complex of sheaves

C* (E,¢): E(b°) 22 B (w®) © K
The space of infinitesimal deformations of a G-higgs bundle (E, ¢) is shown to be naturally
isomorphic to the hypercohomology group H! (C* (E,¢)). For G semisimple and for a G-
Higgs bundle (E, ) stable and simple, the dimension of the component of the moduli space
containing the pair (E, ¢) equals the dimension of the infinitesimal deformation space; this
is referred to as the expected dimension of the moduli space. The Riemann-Roch theorem

can be now used to calculate this dimension:

Proposition 1.1.7. Let G be a connected semisimple real Lie group. Then the expected

dimension of the moduli space of G-Higgs bundles is (g — 1) dim G,

1.1.2 G-Higgs bundles and Hitchin equations

Let (E, ) be a G-Higgs bundle over a compact Riemann surface X. By a slight abuse of
notation we shall denote the underlying smooth objects of £ and ¢ by the same symbols.
The Higgs field can be thus viewed as a (1,0)-form ¢ € Q' (E (m®)). Given a reduction
h of structure group to H in the smooth H®-bundle E, we denote by F}, the curvature of
the unique connection compatible with h and the holomorphic structure on E. Let 7, :
QY (E (g°)) — Q% (E (g%)) be defined by the compact conjugation of g© which is given
fiberwise by the reduction h, combined with complex conjugation on complex 1-forms. The

next theorem was proved in [18] for an arbitrary reductive real Lie group G.

Theorem 1.1.8. There exists a reduction h of the structure group of E from H® to H
satisfying the Hitchin equation
Fh_ [@,Th(@)] =0

if and only if (E, ) is polystable.

From the point of view of moduli spaces it is convenient to fix a C* principal H-bundle Ey
with fixed topological class d € m; (H) and study the moduli space of solutions to Hitchin’s
equations for a pair (A, ¢) consisting of an H-connection 4 and ¢ € Q' (X,Ey (m®)):

Fa—[p.7 ()] =0 (1.1)
8A<p =0 (1.2)
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where d4 is the covariant derivative associated to A and dy is the (0, 1)-part of d4, defining
the holomorphic structure on Eg. Also, 7 is defined by the fixed reduction of structure group
Ey — Ey (HC). The gauge group Gy of Ex acts on the space of solutions by conjugation

and the moduli space of solutions is defined by
MEE(G) == {(A, ¢) satisfying (1.1) and (1.2)}/Gn

Now, Theorem 1.1.8 implies the following

Theorem 1.1.9. There is a homeomorphism
M (G) = MG™*(G)

Using the one-to-one correspondence between H-connections on Ey and d-operators on
Eyc, the homeomorphism in the above theorem can be interpreted by saying that in the
G%-orbit of a polystable G-Higgs bundle (5E0, cpo) we can find another Higgs bundle (5E, go)
whose corresponding pair (da, ) satisfies the equation Fiy — [, 7 (¢)] = 0, and this is unique

up to H-gauge transformations.

1.1.3 Morse theory on the moduli space of G-Higgs bundles

Morse theoretic techniques for the study of moduli of holomorphic vector bundles were first
applied by M. Atiyah and R. Bott in [3]. In the context of moduli of Higgs bundles such
techniques were applied by N. Hitchin in [25] and [26]. In order to count the connected
components of the moduli space of G-Higgs bundles, a criterion for finding the local minima
of a Morse function on M (G) is of particular importance.

The appropriate Morse function is defined on the moduli space of G-Higgs bundles, when

viewed in the context of solutions to the Hitchin equations. From this point of view, define

f s My (G) — R
(da, ) = Nl

where [o||> = [|e[*dvol is the L2-norm of ¢. This norm is well defined because |¢|” is
X

invariant under H-gauge transformations. An important property of the map f is that away
from the singular locus of M, (G) it is a moment map for the Hamiltonian S'-action given
by

(da, @) > (da,e”p)
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When M, (G) is smooth, the map f is a perfect Morse-Bott function and the critical points
of f are exactly the fixed points of the circle action; the G-Higgs bundles corresponding
to fixed points are called Hodge-bundles, and for those there is a semisimple element ) €
H°(E (h)) and decompositions E (h%) = %E(hc)k, E (m®) = %E(mc)k

for ¢. However, even when M, (G) has singularities, the map f can be still used to study

in eigen-bundles

the connected components of M, (G), due to the next important proposition proved by N.

Hitchin in [26] and its following corollary:
Proposition 1.1.10. The function f: My (G) — R is a proper map.

Corollary 1.1.11. Let M C M, (G) be a closed subspace and let N C M be the subspace
of local minima of f on M. If N is connected, then M is.

Therefore, in order to study the connected components of M, (G), one has to focus on
the subspace of local minima of the map f, and the following criterion proven in [10] is used

to efficiently identify these local minima:

Theorem 1.1.12. Let (E,p) be a stable G-Higgs bundle which represents a non-singular
point of My (G). Then (E,p) represents a local minimum of f if and only if

ad () :E(bc)k%E(mc) ® K

k+1

s an isomorphism for all k > 0.

1.1.4 Surface group representations and the non-abelian Hodge theorem

Let X be a closed oriented (topological) surface of genus g. The fundamental group of ¥ is

described by
H [ai, bl] = 1>

where [a;, b;] = a;b;a; 'b; ! is the commutator. The set of all representations of 7 () into a

1 (Z) = <a1,b1,...,ag,bg

connected reductive real Lie group G, Hom (7 (X), G), can be naturally identified with the
subset of G* consisting of 2g-tuples (A1, By, ..., 4,, B,) satisfying the algebraic equation
[1[A:, B:] = 1. As such, the set Hom (7 (¥), G) is a real analytic variety which is algebraic
when G is algebraic. The group G acts on Hom (7 (£), G) by conjugation

(9-p)=gp(v) g7

where g € G, p € Hom (m; (£),G) and v € m (), and the restriction of this action to

the subspace Hom™ (7, (¥), G) of reductive representations provides that the orbit space is
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Hausdorff. Here, by a reductive representation we mean one that composed with the adjoint
representation in the Lie algebra of G decomposes as a sum of irreducible representations.
When G is algebraic, this is equivalent to the Zariski closure of the image of m (¥) in G
being a reductive group. Define the moduli space of reductive representations of m (X) into
G to be the orbit space

R (G) = Hom™ (7, (%), G) /G

The following theorem from [20] provides this space is a real analytic variety and so R (G)

is usually called the character variety:

Theorem 1.1.13. The moduli space R (G) has the structure of a real analytic variety, which

s algebraic if G is algebraic and is a complex variety if G is complexz.

We can assign a topological invariant to a representation p € R (G), by considering its
corresponding flat G-bundle on X, defined as F, = f]xpG. Here > — ¥ is the universal cover
and 7 (X) acts on G via p. A topological invariant is then given by the characteristic class
c(p):=c(E,) € m (G) ~m (H), for HC G a maximal compact subgroup of G. For a fixed
d € m (G) the moduli space of reductive representations with fixed topological invariant d

is now defined as the subvariety
Ra(G) :=A{lp] € R(G)|c(p) = d}

Equipping the surface > with a complex structure .J, there corresponds to a reductive
fundamental group representation a polystable G-Higgs bundle over the Riemann surface
X = (X,J). This is seen using that any solution h to Hitchin’s equations defines a flat
reductive G-connection

D=Dy+o—71(p), (1.3)

where D) is the unique H-connection on E compatible with its holomorphic structure.
Conversely, given a flat reductive connection D in a G-bundle Eg, there exists a harmonic
metric, i.e. a reduction of structure group to H C G corresponding to a harmonic section of
Eq/H — X. This reduction produces a solution to Hitchin’s equations such that Equation
(1.3) holds. In summary, we have the following seminal result, the non-abelian Hodge
correspondence; its proof is based on combined work by N. Hitchin [26], C. Simpson [39],
[41], S. Donaldson [15] and K. Corlette [14]:

Theorem 1.1.14. Let G be a connected semisimple real Lie group with mazximal compact

subgroup H C G and let d € m (G) ~ 7 (H). Then there exists a homeomorphism
Rai(G) = M,y (G)
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1.1.5 Reduction of structure group for Higgs bundles

For a real reductive Lie group (G, H, 0, B) we are interested in reformulating in terms of Higgs
bundles, what it means for a fundamental group representation into G to factor through a
subgroup of G. A reductive subgroup of G is a reductive group (G, H',0', B") where the

Cartan data are compatible under the inclusion map G' — G.

Definition 1.1.15. Let G be a real reductive Lie group and let G’ C G be a reductive
subgroup. Let (F, ) be a G-Higgs bundle. A reduction of (E, ¢) to a G'-Higgs bundle is a
pair (E’,¢') given by the following data:

e a holomorphic reduction of the structure group of E to a principal H'“-bundle E' — E
or, equivalently, a holomorphic section of E'X yc (H C/H c ) and

e a holomorphic section ¢’ of E’ (m’c) ® K which maps to ¢ under the embedding
B (w) @ K+ E (%) @ K.

The following proposition links the polystability condition for a G-Higgs bundle to the

polystability of its structure group reduction.

Proposition 1.1.16. Let G be a real reductive group and let G' C G be a reductive sub-
group. Let (E, ) be a G-Higgs bundle and (E',¢") the corresponding G'-Higgs bundle under
reduction of structure group. If (E,p) is polystable as a G-Higgs bundle, then (E',¢') is
polystable as a G'-Higgs bundle.

The non-abelian Hodge correspondence now implies that the polystable G’-Higgs bundles
correspond to fundamental group representations into G’ C G. Therefore, a reductive fun-
damental group representation into G factors through a reductive representation into G’,
if and only if the corresponding polystable G-Higgs bundle admits a reduction of structure
group to G'; cf. [18] for more details.

1.2 Sp(4,R)-Higgs bundles
1.2.1 Sp(2n,R)-Higgs bundles

Let us consider now the special case when the structure group is G = Sp(2n,R) in particular.

Then H = U (n) is a maximal compact subgroup with complexification H® = GL(n,C). If
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V = C™ is the fundamental representation of GL(n,C) then the isotropy representation space
is

m® = S?V @ S*V*
The definition of a G-Higgs bundle in this case was specialized in [17] to the following:
Definition 1.2.1. Let X be a compact Riemann surface and K be the canonical line bundle
over X. An Sp(2n,R)-Higgs bundle is defined by a triple (V, 3,), where V is a rank n holo-
morphic vector bundle and 8 € H° (X,S?V ® K), v € H°(X,S*V* ® K) are holomorphic

sections. To be compatible with the general G-Higgs bundle definition, we may consider
p=p5+7.

The stability notion for a G-Higgs bundle in terms of filtrations (Definition 1.1.3) also
specializes in the case when G = Sp(2n,R) to the following:

Definition 1.2.2. An Sp(2n,R)-Higgs bundle (V, 3,~) over X will be called

e semustable, if for any filtration of subbundles
ocviclV,CcV

such that 8 € H* (K ® (S*Va + Vi®sV)) and v € H® (K @ (S?ViH + Vih@sV™)) it is
deg (V) — deg (V1) — deg (V2) = 0.

Here, V;®5V denotes the subbundle of S?V which is the image of Vi @ V. C V@V
under the symmetrization map V ® V — S?V; similarly for Vit@gV*.

e stable, if for any filtration as above, except the filtration 0 = V; C Vo = V, it is
deg (V) — deg (V1) — deg (V3) > 0.

e polystable, if for any filtration as above, except the filtration 0 = V; C V5, =V, and
with deg (V) — deg (V1) — deg (V2) = 0, there exists an isomorphism of holomorphic
vector bundles

o:VoaVieW/Vi eV/iV,

satisfying the following properties:

LVi=0'(W),Va=0"'(Vi®V/Vi)
2. e HY (K@ (S? (0 (Va/V1 )@ ot (Vi) ®so ! (V/T3)))
3. ye HY (K ® (S* (o (Vo/Vi)") @ o™ (V") @g0*(V/V2 )"))
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1.2.2  Sp(4,R)-Higgs bundles

The group G = Sp(4,R) is the semisimple real subgroup of SL(4,R) that preserves a sym-
plectic form on R*:
Sp(4,R) = {A € SL(4,]R) |ATJ13A = Jm} ,

0 I

—13
The complexification of its Lie algebra

where Jij3 = defines a symplectic form on R%, for I, the 2 x 2 identity matrix.

A B
C—sp(4,C) = A, B,C e M, (C);BT =B,CcT=C
g =s5p(4,C) {(O —AT>‘ 2 (C)

has split real form sp (4, R) and compact real form sp (2).
The Cartan involution 6 : sp (4,C) — sp (4,C) with 6 (X) = —X7T determines a Cartan

decomposition for a choice of maximal compact subgroup H ~ U (2) C Sp(4,R) as follows
sp(4,R)=u(2)dm

with complexification
sp (4,C) = gl(2,C) dm"

I il
Applying the change of basis on C* effected by the mapping T = / ZJ), we can
—i

identify the summands in the Cartan decomposition of sp (4,C) C sl (4, C) as:

sro-{(Z 1 )izemo)

"o {@ ﬁ) 6,7 € M (©) 87 = B, :v} = Sym? (€2) @ Sym? ((C2))

Let V denote the rank 2 vector bundle associated to a holomorphic principal GL(2,C)-bundle
FE via the standard representation. Then from the Cartan decomposition for the Lie algebra
sp (4,C) we can identify

E (m®) = Sym® (V) @ Sym” (V*)

and so the general definition for a G-Higgs bundle specializes to the following:

Definition 1.2.3. An Sp(4,R)-Higgs bundle over a compact Riemann surface X is defined
by a triple (V,3,v), where V is a rank 2 holomorphic vector bundle over X and (3~ are
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symmetric homomorphisms
B: VI > VeKandy:V >V QK

where K is the canonical line bundle over X.

The embedding Sp(4,R) — SL(4,C) allows one to reinterpret the defining Sp(4,R)-data
of a Higgs bundle as special SL(4,C)-data in the original sense of N. Hitchin. We can thus
consider an Sp(4,R)-Higgs bundle to be defined as a pair (E, ®), where

1. E=V & V*is a rank 4 holomorphic vector bundle over X and

0
2. <I>:E—>E®KisaHiggsﬁeldWith®:( ﬁ)
~

1.2.3  Sp(4,R)-Hitchin equations

Remember that a Cartan decomposition sp (4, R) = u (2)@®m for a choice of maximal compact
H ~ U (2) C Sp(4,R) is determined by the Cartan involution

0:5p(4,C) — sp (4,C) with §(X) = -X"
Moreover, the involution o : sp (4,C) — sp (4,C), o (X) = X defines the split real form:

(X €sp(4,C)lo(X) =X} = {(g _iT

=sp (4,R)

)|A,B,CGM2(R); BT:B,CT:C}

Now, the involution 7 : sp (4,C) — sp (4,C), 7 (X) = —X* defines the compact real form.

Indeed, we have
u(4)={X egl(4,C)|X+X"=0} and Sp(2)=Sp(4,C)NU(4).

Notice that
[X €5p(4,0) |7 (X) = X} = {X €5p (4,C) |-X" = X}
=sp (4,C)Nu(4) =sp(2)
Since 7 and the Cartan involution commute, we have 7 (m(c) C m® and then 7 preserves

the Cartan decomposition sp (4,C) = gl(2,C) @ m®. Thus, there is an induced real form
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on F (m(c) which we shall call 7 as well for simplicity. Now, it makes sense to apply 7 on a
section ¢ € QM0 (E (m©)).

0
Moreover, for ¢ = g notice that
g

o (ol — o [P0
[o, 7 (@)l = @, 7] ( 0 W—Bﬁ)

The G-Hitchin equations for G = Sp(4,R) with maximal compact subgroup H ~ U (2) C
Sp(4,R) read

FA - [9077—(90)] =0
aA(,O =0
where:
e Ais a U(2)-connection on a fixed smooth principal U (2)-bundle Ey — X
o o€ (X, Eye (m©))

o 7: O (X,Eyc (m%)) — Q' (X, Eye (m®)) is the compact real structure considered

above.

e 0, is the (0, 1)-part of the covariant derivative associated to A.

whereas Gy = Aut (Eg) = Q° (X, Egx a4H) is the gauge group of (Eg, k) for H = U (2).

1.2.4 Stability of an Sp(4,R)-Higgs bundle

In order to state explicitly the notions of stability, semistability and polystability for an
Sp(4,R)-Higgs bundle (V, 3,7), consider the short exact sequence

0LtV S L"=0

for any line subbundle L C V and for L* the subbundle of V* in the kernel of the projection

of L*. The following two propositions are proven in [18|:

Proposition 1.2.4. An Sp(4,R)-Higgs bundle (V,3,~) is semistable if and only if all the

following conditions hold:

1. If =0, then deg (V) > 0.
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2. If v =0, then deg (V') < 0.
3. Let L CV be a line subbundle.
alffe H (LesV ®K) and vy € H® (L*®@4V* @ K), then deg (L) < deg(V)/2 .
b If~v e HO ((LL)2 ® K), then deg (L) < 0.
c IfBe H' (L ® K), then deg (L) < deg (V).
If, in addition, strict inequalities hold in (3), then (V,3,7) is stable.

Proposition 1.2.5. An Sp(4,R)-Higgs bundle (V,3,7) is polystable, if it is either stable, or
there is a decomposition V = L1 @ Lo of the bundle V' as a direct sum of line bundles, such

that one of the following conditions is satisfied:

1. The Higgs fields satisfy 8 = (1 + P2 and v = 1 + 72, where
EiEHO(L?QbK) cmd%6[—]0([,2._2@)]{)7 i=1,2

and the SL(2,R)-Higgs bundles (L;, B;,vi) are polystable for i =1, 2.

2. The Higgs fields satisfy

BeH(Lily® LoLy) ® K) and vy € H ((L7'Ly' & L' LY @ K)

0
Furthermore, deg (L1) = deg (Ls) and the rank 2 Higgs bundle <L1 ® Ly*, ( g))
i
15 polystable.

Having seen that the defining Sp(4,R)-data of a Higgs bundle can be reinterpreted as
special SL(4,C)-data in the original sense of N. Hitchin, it is useful to relate the above
described stability conditions of an Sp(4,R)-Higgs bundle to the ones for an SL(4,C)-Higgs
bundle. Recall that a GL(4,C)-Higgs bundle (F,¢) is stable if any proper non-zero ¢-
invariant subbundle F' C E satisfies u (F') < p(E), for u(F) = deg (F')/rk (F) , the slope of
the bundle. The following proposition is proven in [17]:

Proposition 1.2.6. An Sp(4,R )-Higgs bundle (V, 5,) is polystable if and only if the GL(4,C)-
0

Higgs bundle | V & V™, o = g 15 polystable. Moreover, even though the polystability
Y

conditions coincide, the stability condition for an Sp(4,R)-Higgs bundle is in general weaker

than the stability condition for the corresponding GL(4,C)-Higgs bundle.
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1.3  Connected components of M™* (X, Sp(4,R))

1.3.1 The Toledo invariant and Cayley partner

In this section we consider the basic topological invariant of an Sp (4, R)-Higgs bundle and
describe a sharp bound for it. Let X = (X, J) a compact Riemann surface with underlying

topological surface 3. The locally constant obstruction map
0y : Hom (71 (3),Sp(4,R)) — H? (X, m (Sp(4,R)))

is an integer valued function, since H? (3, m; (Sp(4,R))) ~ m (Sp(4,R)) ~ Z. Now, 0, (p) =
c1 (V), where V' is the rank 2 vector bundle appearing in the Higgs bundle data (V, 5,~) cor-
responding to p via the non-abelian Hodge correspondence. Thus, we have an integer valued

function d = deg (V') = (¢; (V') ,[X]), whose fibers are unions of connected components.

Definition 1.3.1. The Toledo invariant of an Sp (4,R)-Higgs bundle (V, 5,~) is defined as
the integer
d = deg (V)

We use the notation My = M, (Sp(4,R)) to denote the moduli space parameterizing iso-
morphism classes of polystable Sp (4, R)-Higgs bundles with deg (V') = d.

Remark 1.3.2.

e For representations of 7 (X) into SL (2, R) ~ Sp (2,R) the Toledo invariant coincides
with the Euler class of the corresponding flat SL (2, R)-bundle. In this case the classical

inequality of J. Milnor [31]| provides an appropriate bound for this invariant:

d| =le(p)| < —x(X) =29 —2

Later on, J. Wood [46] gave a similar bound considering SU (1, 1)-bundles, and so this
is usually now called the Milnor- Wood inequality in describing a sharp bound for the

topological invariant, also for representations into more general Lie groups G.

e T. Hartnick and A. Ott describe in [23] how the generalized Milnor-Wood inequality
of M. Burger and A. Tozzi [12] translates under the non-abelian Hodge correspondence

to an inequality for topological invariants of Higgs bundles.

The sharp bound below for the Toledo invariant when G = Sp (4, R) was first given by V.
Turaev [44]. We include here however a proof by P. Gothen [21] in the Higgs bundle context,

as this proof will be particularly instructive for the sequel.
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Proposition 1.3.3. (Milnor-Wood inequality) Let (V,[,v) be a semistable Sp (4,R)-Higgs
bundle. Then |d| < 2g — 2.

Proof. For this proof, it is more convenient to consider the interpretation of the defining
data for an Sp (4, R)-Higgs bundle as data for a special SL (4, C)-Higgs bundle. Moreover,
the map (V, 8,7) — (V*,4%, 8") provides an isomorphism My ~ M_,, thus we can restrict

our attention to the case d > 0.

Let (E,®) with E = Vo V*, & = b

~
d = deg(V) > 0. Then 7 # 0, as otherwise V' would be ®-invariant and so would violate the

stability condition, since

be a semistable Sp (4,R)-Higgs bundle and

_ deg (V)
rk (V)

>0

d
2

Consider the bundles N =ker (y) and [ =Im () @ K~ < V*.

We thus get an exact sequence of bundles
0=>N-=>V-I®K—=0
and so

deg (V) = deg (N) +deg (I ® K)
= deg (N)+deg () +rk (1) (29 — 2)

using that deg K = 2g — 2.
Now, the bundles N,V & I C E are both ®-invariant subbundles of E, thus from the
semistability of (E, ®) we get (N) < p(F) and p(V & 1) < p(F). Therefore

deg (N) <0 and d+deg(l) <0
We have also seen that
d=deg(N)+deg(I)+1k(I) (29 —2)

so from these relations we get
2d <tk (I)(29 —2)

and since rk (I) = rk (y) < 2, we imply the desired inequality. ]
Definition 1.3.4. We shall call Sp (4, R)-Higgs bundles with Toledo invariant d = 2g — 2
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mazimal and denote the components of M (Sp(4, R)) with maximal positive Toledo invariant

by M max 2M2g—2-

The Higgs bundle proof of Proposition 1.3.3 opens the way to considering new topological
invariants for our Higgs bundles in order to successfully compute the number of components of
M™% Namely, we see from this proof that for a maximal semistable Sp (4, R)-Higgs bundle
(V,5,7), the map v : V — V*® K is an isomorphism. Moreover, since ~ is symmetric, it

equips V with a K-valued non-degenerate quadratic form.

Remark 1.3.5. Having considered — (29 — 2) < d < 0 in the proof of the proposition, then
B:V* =V ® K would be an isomorphism.

Fix a square root of the canonical bundle K, i.e. pick a line bundle Ly such that L2 = K
and define
W :=V*"® Ly

Then the map
qw ::'y®161 W =W

defines a symmetric, non-degenerate form on W; in other words (W, gy) defines an O (2, C)-

holomorphic bundle. Moreover, the map 3 in (V, 3,v) defines a K*-twisted endomorphism
0:=(y®Iggr,) o (Boly,): W =W K?

which is gy -symmetric, i.e takes values in the isotropy representation for GL (2,R). We
say that (W,0) defines a K?-twisted Higgs pair with structure group GL (2,R), i.e. 0 takes
values in E (m%) @ K2.

Definition 1.3.6. We call (W, qw,0) the Cayley partner of the Sp (4,R)-Higgs bundle
(V. 8,7)-

The original Sp (4, R)-Higgs bundle data can clearly be recovered from the defining data
of its Cayley partner, so the previous construction describes a well-defined correspondence
(V,B,7) — (W, qw,0). A careful comparison of the semistability condition for the maximal
Sp (4, R)-Higgs bundles (V, 3,~) and the one for their Cayley partners provides the following:

Theorem 1.3.7. Let M™* be the moduli space of polystable Sp (4, R)-Higgs bundles with
degree d = 2g — 2 and let M’ be the moduli space of polystable K?-twisted GL (2, R)-Higgs
pairs. The map (V,B,7v) — (W, qw, 0) defines an isomorphism of complex algebraic varieties

Mmax ~ M/
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Proof. see [17]|, Theorem 4.3. O

Remark 1.3.8. The theorem holds for polystable Sp (2n, R)-Higgs bundles with n > 2 in

general, and the correspondence discussed is referred to as the Cayley correspondence.

The Cayley correspondence brings in new topological invariants for our triples (V, 3, 7),
namely the first and second Stiefel-Whitney classes of the orthogonal bundle (W, gy ) under-
lying the Cayley partner:

w (Waw) € H' (X, Z/2) ~ (2/2)*

wo (W, qw) € H* (X,Z)2) ~ 7./2

Therefore, we may define
% (V7 57 ’7) =Wy (VVa QW) ’ Z:172

and these invariants are well defined, because the Stiefel-Whitney classes are independent of
the choice of the square root Ly = K'/? used in the definition of (W, qy).

1.3.2  The components of M™* (X Sp(4,R))

In the previous section we have seen how Sp (4, R)-Higgs bundles can be related to rank 2
orthogonal bundles, and the latter were classified by D. Mumford in [32]. For our purposes

we will be needing the following result from that article:

Proposition 1.3.9. Let (W, qw) be a rank 2 orthogonal bundle. If wy (W, qw) = 0, then
01

W = L& L™, where L is a line bundle over X, and qw = L o)

Having this result in hand, we now obtain a first important description of the maximal
semistable Sp (4, R)-Higgs bundle data (cf. §3.6 in |9]):

Proposition 1.3.10. Let (V,3,7) be a mazimal semistable Sp(4,R)-Higgs bundle with

01
wy (V, B,7) =0 and let (W, qw) be its Cayley partner, so W = L@ L™" and qw = <1 O>'
Then there is a line bundle N such that

1.V = N ® N 'K and with respect to this decomposition, the Higgs fields are B =

<51 53) € HY(S2V ® K) and v — (0 1) € HY(S2V* @ K)
Bs B Lo
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2. The degree of N is given by deg (N) =deg (L) +g—1
3. The degree of L satisfies 0 < deg (L) < 2g — 2 and for deg (L) > 0, it is Sy # 0.

4. When deg (L) > 0, N is unique.
When deg (L) = 0, N is unique up to multiplication by a square oot of the trivial
bundle.
When deg (L) = 2g — 2, N satisfies N* = K3.

Proof. (1) Consider N :=L® Ly. Then V=W R Ly=(LO®L )@ Ly=N& N 'K.

01

Moreover, v = ¢ ® I, = (1 O) : (VF*® L)) @ Ly — (LE®V) ® Ly and since 0 =

(v ® Iker,) © B ® Ir, is qw-symmetric, it turns out that = b B VP> VRK.

3 D2
(2) Since N = L ® Ly, then deg (N) = deg (Lo) + deg (L) = deg (L) + g — 1.

(3) Interchanging L with its dual if necessary we may assume that deg (L) > 0. Now,
whenever deg (L) > 0, the Higgs field § must induce a non-zero holomorphic map L — L™'K?
otherwise L C T would violate the stability condition, since § : L&L™! — (L& L)@ K? =
LK? @ L1 K? and 0 should not preserve L. Hence global sections exist for the line bundle
L72K?, therefore deg (L™2K?) > 0, i.e. deg (L) < 2g — 2. The fact that for deg (L) > 0, £,
is non-zero, follows also from the semistability condition.

(4) When deg (L) = 2g — 2, the Higgs field 6 induces a non-zero section of the degree 0 line
bundle L=2K?, thus L?> = K? and so N2 = (LL)* = K*. O

Provoked by this proposition, we distinguish the Higgs bundles in M™?* in the following
subfamilies:
(i) (V,,~) for which w; # 0.
(ii) (V;, B,7) for which w; = 0, and therefore V.= NN 'K with N := L® Ly for Ly = K'/?
and 0 < deg (L) < 2g — 2.
(iii) As a special case of (ii), (V, 3,7) with deg (L) = 2g—2, in which case N? = K?; thus such
Higgs bundles are parameterized by spin structures Ly = K'/? on the surface ¥ underlying
the Riemann surface X.
This motivates considering the following subspaces of the moduli space M™** and we shall

see next that these are actually connected components in M™a,

Definition 1.3.11. Let (V, 3,7) be a maximal Sp (4, R)-Higgs bundle with topological in-
variants wy (W, qw) € H' (X, Z/2) ~ (Z/2)* and wy, (W, qw) € H?(X,Z/2) ~ Z/2 .
Define the following subspaces of M™a*;

1. Mwl,wz = {(‘/76’7) |w1 = W1 (Vvﬁa’y) 7& 07 Wo = Wsy (‘/;677)}/2
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2. Mg ={(V.8,7) |wi (V. B,7) =0,0 < c <29 —2, for c:=deg(L)}/~

3. ME,,, ={(V,8,7)|V=N&N'K with N = K*? } /~

K1/2

where ~ indicates isomorphism classes of Sp (4, R)-Higgs bundles.

Theorem 1.3.12 (P. Gothen [21]). The subspaces My, 1wy, M2, ML, are connected.

K1/2
Hence, M™** decomposes in its connected components as

Mmaxz(u M)U( U MS)U<U M)

wi,w2 0<c<2g—-2 K1/2

and so the total number of connected components of this moduli space is 2 - (229 — 1) + 29 —
2+2% =3.2% 429 —4.

Remark 1.3.13. From N. Hitchin’s fundamental article [25], we knew already that there exists
a distinguished component of M (Sp(4,R)), the Hitchin component, isomorphic to a vector
space and containing naturally the Teichmiiller space. This actually shows that there are
exactly 229 such components, which are precisely the components Mﬂl /2 parameterized by

the spin structures on the surface X.

Proof. We treat each case separately:
(i) /\/17[;1/2 is connected. The Cayley partner (W, qw ) of a Higgs bundle (V,3,v) € M:'[;m
is completely determined by the line bundle L in the decomposition W = L@ L~!. But here

L = K'Y? and every (W, qw) is stable. Hence,
ML, ~ H° (S, End (W) ® K?)

o,
and the Higgs field is gy -symmetric, i.e. & = <I>H @12 . Therefore Mﬁl/
12 P

to the vector space H° (3, K?) @ H® (X, K?) ® H° (%, K*).

(ii) M° is connected. The proof is based on the study of the local minima of the proper
Hitchin map on M0,

For ¢ > 0, the Higgs field ® must be non-zero, otherwise the subbundle L C W for the Cayley

, 18 isomorphic

partner (W, gy ) would violate the stability condition. Moreover, for the critical points in
0 0 ~
M2 D = b 0 with ® € HY (3, L72K?). Now, the subspace of local minima N C M?

fits into the pullback diagram
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NP ——— Jact (%)

C

lw lLHL‘ZKQ

Glg—4—2cx D—[D] Jaclo—i-2e (2)

where © (W, qw, @) = ().

Thus, N? is connected, so from the properness of the Hitchin map f : M? — R, it follows
that M? is connected, for ¢ > 0.

For ¢ = 0, every local minimum of f on M2 has ® = 0, so the subspace of local minima is
isomorphic to the moduli space of polystable (W, qiy), where W = L@ L~ with deg (L) = 0.
It follows that there is a surjective continuous map Jac® (X) — Ny, with L — (W, gw ), and
so Ny is connected.

(111) My, w, s connected. We shall include here just a sketch; for the complete proof see
Theorem 5.8 in [21].

Similarly to the previous part, we are trying to show that the subspace of local minima of
the Hitchin map Ny, w, C Moy, w, 18 connected. These subspaces consist of critical points
(V,5,7) with 8 = 0 and 7 # 0. There is a connected double cover ¥ — X given by
wy, € H' (X,7/2 ). Then it turns out that N, o U Ny, 1 = ker (1 +7%), where 7: ¥ — ¥ is
the involution interchanging the sheets of the covering.

Now, ker (1 + 7*) = PTUP~ where the two components Pt and P~ are the abelian varieties
associated to the double cover of X given by w;y, each of them a translate of the Prym variety
of the covering. Then N, 0 UN,, 1 = P U P~, hence Ny, 4, is connected. O

The description of a maximal Sp (4, R)-Higgs bundle from the data of its Cayley partner,
as well as Proposition 1.3.10 and Theorem 1.3.12, provide a description of the Sp (4, R)-Higgs
bundle data in each connected component of M™#*, This information is summarized in the

following table:

Table 1.1: Sp (4, R)-Higgs bundle data in the connected components of M™&*

| Component || V ‘ 8 ‘ 7]
072

T 3/2 ~1/2 B B3 Bs € H” (K*) 0 1
Mz Ko K <ﬂ3 1 > ’ {61 = cons’c.(ﬁg)2 10
M? V=N&N 'K, with g —1 < deg (N) < 3¢9 — 3 (gl %) ,with £, # 0 ((1) é)

3 Do

0 _ 1 . o B Bs 01
Mg V=N&N 'K, with deg(N)=9g—1 </33 ﬁz) <1 0
Moy s V=W ® Ly, with L3 = K B e HY(S?V @ K) v =qw ® I,
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So far we have been interested in identifying particular polystable Sp (4, R)-Higgs bun-
dles in the connected components of M™**, The non-abelian Hodge theorem provides a
homeomorphism

Rmax ~ M max

to a moduli space of representations R™**, which we briefly introduce next:

Let G be a Hermitian Lie group of non-compact type, that is, the symmetric space associ-
ated to G is an irreducible Hermitian symmetric space of non-compact type. Using the identi-
fication H? (m; () ,R) ~ H? (X, R), the Toledo invariant of a representation p : m; (X) — G

is defined as the integer
T, == (p" (rc).[2])

where p* (kg) is the pullback of the Kihler class kg € H? (G,R) of G and [3] € Hy (X, R) is

the orientation class. The Toledo invariant is bounded in absolute value:
IT,| < -C(G)x (%),

where C' (@) is an explicit constant depending only on G; we refer the reader to [12] for more
details.

Definition 1.3.14. A representation p : m (¥) — G is called mazimal whenever T, =
—C(G) x (%)

The moduli space of maximal representations into Sp(4,R) is now denoted here by R™**,

and analogously to the space M™** we consider its following subspaces
Rwth = Mwl,w27 R(c] =~ M(c]a Rj;(lm =~ Mj;(lﬂ )

which are furthermore connected components in R™*.
Now, the possible subgroups of Sp (4,R) through which a maximal representation p :
7 (X) — Sp(4,R) can factor, can be explicitly described:

Proposition 1.3.15. Let p : m (X) — Sp(4,R) be mazimal and assume that p factors
through a proper reductive subgroup G C Sp(4,R). Then, up to conjugation, the group G is

contained in one of the subgroups G;, Ga and G,, where

1. G;, the normalizer of the irreducible four-dimensional representation of SL(2,R) into
Sp (4, R).

2. G,, the normalizer of the product representation p, : SL(2,R) x SL(2,R) — Sp (4,R)
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3. G, the normalizer of the composition of p, with the diagonal embedding of SL(2,R)
into SL(2,R) x SL(2,R).

Proof. See §4 in [9] and the references therein. O

J 0
Defining the group Sp (4, R) with respect to the symplectic form Ji5 = (O J)’ where

0 1
J = ( ) O)’ explicit calculations show:
1. G; =SL(2,R)

XY
2. G, = €Sp(4,R) |either Y =Z=00r X =T =0
: Z T

B TA yA [Ty B
3. GA_{(ZA tA) ‘X— (2 t> € 0(2) and AGSL(Q,]R)}— O (2) ® SL(2,R)

We would like to identify in which connected components of R™** we can find representa-
tions that can factor through one of the subgroups G;, Ga or G}, described above. According
to the non-abelian Hodge correspondence, a reductive representation p : 7 (X) — Sp(4,R)
that factors through a proper reductive subgroup G. C Sp(4,R) corresponds to a polystable
Sp (4, R)-Higgs bundle (V, 3,~) for which the structure group reduces to G, (cf. §1.1.5).

Therefore, for each of the possible reductive subgroups G, C Sp(4,R), we first need to
describe the defining data for the G,-Higgs bundles, then describe the semistable Sp (4, R)-
Higgs bundles for which the structure group reduces to G, and lastly, using the information
from Table 1.1 we can see in which connected component these Higgs bundles lie.

Eventually, we get the following picture for the 3-2%9+2g —4 many connected components
of M™** regarding particular fundamental group representations in these components:

T

o 229 Hitchin components M)

Sp (4, R) — Higgs bundles L) (3) — Sp (4,R)
str.gp. reduces to SL (2, R) factors through SL (2, R)
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° 2 . 229 — 1 components MwlngyMg

(Sp (4,R) — Higgs bundles ) (p:m (Z) = Sp(4,R))
str. gp.reducesto G, factors through G,
and — and
Sp (4,R) — Higgs bundles p:m (2) — Sp(4,R)
| str.gp.reducesto Ga | factors through G |

e 2g — 3 components M

Sp (4,R) — Higgs bundles p:m (2) = Sp(4,R)
str.gp. does not reduce p <— does not factor
to any G, C Sp (4,R) through any G, C Sp (4,R)

From the investigation summarized in this section we conclude to the following result (cf.
19]):
Theorem 1.3.16. Among the 3-2%9 +2g — 4 connected components of MM ~ R there
are 2g — 3 components where the corresponding Higgs bundles do not admit a reduction of
structure group to any proper reductive subgroup of Sp (4, R). Equivalently, the corresponding
representations do not factor through any proper reductive subgroup of Sp(4,R), thus they
have Zariski-dense image in Sp (4,R).

Remark 1.3.17. Quite differently than the Sp (4,R)-case, the moduli space of maximal
polystable Sp (2n, R)-Higgs bundles has 3 - 229 many connected components for every n > 3,
and any Sp (2n,R)-Higgs bundle in those can be deformed to a G,-Higgs bundle for some
proper reductive Zariski closed subgroup G, C Sp(2n,R). This distinction arises from
the structure group of the Cayley partner. In general, the Cayley partner of a maximal
Sp (2n,R)-Higgs bundle is described by an O (n,C)-bundle and for vanishing first Stiefel-
Whitney class, it admits a reduction of structure group to SO (n,C). For n = 2, however,
this indicates special cases in the classification of those bundles, leading to extra components
in the maximal Sp (4, R)-Higgs bundle moduli space (cf. §9 in [9] and §8 in [17]).

Let (V,f,v) be a maximal semistable Sp (4, R)-Higgs bundle in the exceptional 2g — 3
components described above. Next we collect some results concerning these Higgs bundles,

the first three of which we have already seen.

0 1
1. For the Cayley partner (W = L® L™, qw = (1 0 ) the first Stiefel-Whitney class

vanishes: wy (V, 38,7) = wi (W, qw) = 0, where L is a line bundle on X.
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. The bundle V' decomposes as V = N @& N7 'K, for a line bundle N with deg (N) =
deg(L)+g—1and g —1<deg(N) < 3g— 3, in other words 0 < deg (L) < 2g — 2.

. The Higgs fields with respect to this decomposition for V are [ = (gl §3> €
3 D2

01
H°(S*V ® K), with 85 # 0 and v = (1 O) € H*(S?’V* @ K).

. Furthermore, since 0 < deg (L) < 2g — 2 = deg(V), all points in the exceptional
components are represented by stable Sp (4, R)-Higgs bundles. From this fact, it follows
that these Higgs bundles are smooth points in the moduli space. This is proven using
the standard slice method construction used to prove that the moduli space M, (G)
has the structure of a complex analytic variety (see Proposition 3.18 in [18] and the

discussion preceding this). Hence, the exceptional 2g — 3 components are smooth.

Remark 1.3.18. Using these same arguments, one shows that all Sp (4, R)-Higgs bundles
in the 2%9-many Hitchin components Mﬁl/z are stable with 8, # 0, and smooth as

well.

. Isomorphism classes of Sp (4, R)-Higgs bundles in the exceptional components can be
also described. Considering a representative of such an isomorphism class to be deter-
mined by a triple (N, £1, B2, 83), the following holds (see Proposition 3.28 in [9]):

Proposition 1.3.19. Fiz ¢ = deg (L) with 0 < ¢ < 29 — 2. Tuples (N, p1, 52, P3) and
(N, By, B, B8'3) define the same isomorphism class in MO if and only if N = N’ and
(ﬁlla 6,27ﬁ/3> = <t2517 t_2627 53)7 fO?" some t € C-.

. Lastly, there is a fibration of a certain subfamily of the exceptional components over

the Jacobian Jac? of degree d line bundles on X (see Proposition 3.30 in [9]):

Proposition 1.3.20. For0 < ¢ < g—1, the space M? fibers over Jac® with d = c+g—1,
and the fibers are given by

Fi=[(Ce®(C)™t)/Cr] xC¥®

where r = 2c¢ + 39 — 3, s = 3g — 4 — 2c¢ and the C*-action is given by the relation

t(Z,W) = (22, t7%0).
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1.4 Maximal fundamental group representations into Sp (4, R)
and topological gluing constructions

In [22], O. Guichard and A. Wienhard describe model maximal fundamental representations
p:m (X) = Sp(4,R) in the components of R™**. These models are distinguished into two
subcategories, standard representations and hybrid representations.

As standard representations are considered the ones which come from homomorphisms of
SL (2,R) into Sp (4,R), possibly twisted by a representation of m; (X) into the centralizer of
the image of SL (2,R) in Sp (4,R). In this case, p (m (X)) is contained by construction into
a proper closed Lie subgroup of Sp (4,R). On the other hand, considering ¥ = »;,U,%, a
decomposition of ¥ along a simple closed oriented separating geodesic v into two subsurfaces
> and Y., a hybrid representation is defined to be a representation p = p; * p, constructed
by amalgamation of two specific representations p;, p, on m (%), m (X,) respectively, with
o (v) = pr (7)-

We now describe these model representations in further detail with particular notice to-
wards the construction of these hybrid representations. Let us first fix a discrete embedding
i:m () — SL(2,R).

i) Irreducible Fuchsian representations

Choose the symplectic identification (R [X, Y], —ws) = (R*, w) given by X3 = ¢;, X?Y =

—e9, Y3 = —e3, XY? = _—64, where w is the symplectic form given by the antisymmetric

matrix J = ) With respect to this identification the irreducible representation
Girr 2 SL(2,R) — Sp ,R) is given by
a’ —/3a?b —b? —/3ab?
5 (a b) B —V/3a%¢c 2abc + a?d /3b*d  2abd + b3c

d - V3c2d d? V3ed?
—V3ac® 2acd +bc? /3bd? 2bed + ad?

Note that this choice has been made so that (¢;), : m1 (SL(2,R)) — 7 (Sp (4,R)) is the
multiplication by 2. Precomposition with i : m; (X) — SL(2,R) gives rise to an irreducible

Fuchsian representation
pire - 71 (2) % SL (2, R) 27 Sp (4, R)

ii) Diagonal Fuchsian representations

Let R* = W, @ Wy, with W; = span (e;, e2,;) be a symplectic splitting of R* with respect
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77777

Sp (W1) x Sp (W3) C Sp (4,R) given by

(6

Precomposition with the diagonal embedding of SL (2, R) — SL(2,R)® gives rise to the
diagonal embedding ¢a : SL (2,R) — Sp (4, R).
Note that the choice of ¢ has been made so that (¢a), is the multiplication by 2.

Precomposition with i : m (X) — SL (2, R) gives now rise to a diagonal Fuchsian represen-

o 2
O QO o
oS, O o O

S O
2 O O o

tation
pa 7 (2) 5 SL(2,R) 22 Sp (4,R)

iii) Twisted diagonal representations
For any maximal representation p : m () — Sp(4,R) the centralizer p(m (X)) is a
subgroup of O (2). Considering now a representation © : m; (X) — O (2), set

po =1® 0O :m (X) — Sp (4,R)
7 0 (i(7),0 (7))

Such representations will be called twisted diagonal representation.

Remark 1.4.1. The representations in the families (i)-(iii) above are the so-called standard

representations.

iv) Hybrid representations

The definition of hybrid representations involves a gluing construction for fundamental
group representations over a connected sum of surfaces and this will provide the motivation
for an analogous construction in the language of Higgs bundles. The following lemma from

classical Fricke-Klein theory is crucial in the construction:

Lemma 1.4.2. Let v € m(X) be a closed separating geodesic on ¥ and ig : m(3) —
Ao 0
e

0 e
a continuous path in R\ {0}. Then there exists a continuous path of discrete embeddings

At 0
(it)te[o 1) such that for any t € [0,1], 3 (7) = (60 A
9 e_ t

SL(2,R) a discrete embedding with i (y) = and for Ao € R\{0}. Let ()
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Let > = »;U, 3, be a decomposition of ¥ along a simple closed oriented separating geodesic
7 into two subsurfaces ¥; and X,. Consider p;, : m () % SL (2,R) Gy S (4,R) an
irreducible Fuchsian representation and pa : m (X) 2 SL (2,R) EN SL(2,R)? SN Sp (4,R) a
diagonal Fuchsian representation.

We would like to amalgamate the restriction of the irreducible Fuchsian representation to
3} with the restriction of the diagonal Fuchsian representation to >.,., however the holonomies
of those along v do not agree. Thus, we are going to consider a deformation of pa on 7 (X)
such that the holonomies agree along v and then we will amalgamate the restrictions of those

to the left and the right hand side subsurfaces accordingly.

e™ 0
Assume i () = 0 om with m > 0. There exist continuous paths (7y;)
e

(Tgyt)te[ojl} of discrete embeddings m; (X) — SL (2, R) with initial point 79 = 750 = ¢ and,

for all t € [0, 1],
et 0 elzt 0
T (V) = ( 0 e‘llﬁt> and 7o () = < 0 e—l2¢>

where l;; >0 and ly; >0, l19g =10 =m, [1; =3m and ly; = m. In other words we are

t€[0,1] and

considering a continuous path (714, 72,) of pairs of discrete embeddings starting from

tel0,1]
(i,7) and terminating at a pair (71, 72,1) having specific behaviour on +.

Now set
o= pirr 2T (X) = Sp(4,R)

and
Pr = ’(/) e} (7’171,7'271) LT (Z) — SP (47R)

Thus p; and p, are defined over the whole surface 3, with p, a continuous deformation of pa

satisfying p1 () = pr (7).
Definition 1.4.3. A hybrid representation is defined as the amalgamated representation
P =P () * Pr |msn) ™ (B) 2w () s (Br) — Sp (4, R)

If x (X;) = k, then we call p a k-hybrid representation.
The following important result was established in [22]:

Theorem 1.4.4. FEvery maximal representation p : m (3) — Sp (4,R) can be deformed to a

standard representation or a hybrid representation.

36



The subsurfaces ¥; and X, that we are considering here are surfaces with boundary. The
Toledo invariant can be also defined for representations over such surfaces and it thus makes
sense to talk about maximal representations over surfaces with boundary as well; see [12] for a
detailed definition. Moreover, the authors in [12] have established an additivity property for
the Toledo invariant over a connected sum of surfaces, which provides that the amalgamated
product of two maximal representations is again a maximal representation defined over the

compact surface . In particular:

Proposition 1.4.5 ([12], Proposition 3.2). If ¥ = 31Uc3sy is the connected sum of two

subsurfaces ¥; along a separating loop C', then

T. (2,p) = Ts (21, p1) + T (32, pa)

where p; = p ‘m(&)r 1=1,2.

1.5 Topological invariants for maximal symplectic
representations

In [22] the authors introduce topological invariants for Anosov representations, a special
case of which are the maximal representations p : m (X) — Sp(2n,R) we are interested
in. We review the definition of these invariants and describe their values for the hybrid
representations in particular; we refer to [22| for more details on the material covered in this
section.

Let (M, ¢;) a compact manifold with an Anosov flow and G a connected semisimple Lie
group. Consider (P, P*) a pair of opposite parabolic subgroups of G, H := P* N P* and
Fs = G/P |, F* := G/P" the flag varieties associated to P* P" respectively. Let X :=
G/H C F* x F* an open G-orbit inherited by two foliations £ and £ with corresponding
distributions E* and E", that is, (E°) o puy = T F* and (E") yo puy = TpuF".

Definition 1.5.1. The flat G-bundle P; — M is said to be a (G, H)-Anosov bundle, if:
1. Pg admits an H-reduction that is flat along flow lines, i.e.

i. there exists a section 0 : M — PgxagX

ii. the restriction of o to every orbit of ¢, is locally constant with respect to the induced

flat structure on PgxgX.
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2. The flows ¢; on o*E° and o*FE" are contracting and dilating respectively, that is,
there exist continuous families of norms (||-[],,),,c,, on 0*E£° and ¢*E", and constants
A,a > 0, such that for any e in (¢*E®), or (c*E"), and for any ¢ > 0 it holds
respectively that

[peellgm < Aexp(=at) e, or [|pell,_,,, < Aexp (=at) ],

Definition 1.5.2. A representation p : m (M) — G is said to be (G, H)-Anosov, if the
corresponding flat G-bundle Py is (G, H)-Anosov.

Specializing to the case when M = T'Y, the unit tangent bundle of a closed oriented
connected surface ¥ with g > 2 and ¢, the geodesic flow on 7' with respect to a hyperbolic
metric on Y, we call a flat G-bundle Py over ¥ to be Anosov if its pullback 7*Pg — T'%
is Anosov. A fundamental group representation p : m (X) — G is now called Anosov, if the
composite map

m (T'S) - m (2) 5 G

is an Anosov representation.
The following theorem provides that the maximal symplectic group representations we are

interested in admit an Anosov structure; see [11], [12] for more details:

Theorem 1.5.3 (M. Burger, A. Iozzi, F. Labourie and A. Wienhard). A mazimal repre-
sentation p : m (X) — Sp(4,R) is an Anosov representation. More precisely, for P the
corresponding flat principal Sp(4,R )-bundle over T'S and E the corresponding flat symplec-
tic R*™-bundle over T'Y, p is an (Sp(2n,R),GL(n,R))-Anosov representation. The canonical
GL(n,R)-reduction of P is equivalent to a continuous splitting of E into two flow-invariant

transverse Lagrangian subbundles
E=1°(p)®L"(p)

The next result opens the way for introducing obstruction theory for Anosov representa-

tions:

Proposition 1.5.4 (|22|, Proposition 4.1). Let Hompg_ anoson (m1 (M), G) denote the set
of (G, H)-Anosov representations and By (M) the set of gauge isomorphism classes of H -
bundles over M. For any pair (G, H), there is a well-defined locally constant map

HomeAnosov <7T1 (M) ) G) — BH (M)

associating to an Anosov representation its Anosov H-reduction.
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This proposition allows one to associate to a maximal representation into Sp(2n,R), the
first and second Stiefel-Whitney classes of the corresponding GL (n, R)-bundle over T73:

swi : Hompax (11 (), Sp(2n,R)) — H' (T'S; Zo)

swy : Hompay (m1 (2), Sp(2n,R)) — H? (le;Zg)

The values of these Stiefel-Whitney classes for the model symplectic representations of the
previous section, were explicitly computed by O. Guichard and A. Wienhard in [22]. A
relation between these invariants and the Higgs bundle invariants w;, ws discussed in §1.3
can be deduced from case-by-case considerations for model representations, although these

invariants live naturally in different cohomology groups:

Proposition 1.5.5 ([22], Proposition 19). Let p : w1 () — Sp(2n,R) be a mazimal represen-
tation. Then, for any choice of spin structure v, the following equality holds in H' (T'Y; Zs):

sun ()

w (p,v) + nv
swy (p) = woy

(p,v) + swy (p) Uv + (9 — 1) mod 2

Even though the first and second Stiefel-Whitney class are enough to distinguish the 3-2%-
many connected components of maximal representations p : m (X) — Sp(2n,R) for n > 3, for
the case n = 2 an extra topological invariant needs to be considered in order to distinguish
the extra components of R™* (X, Sp(4,R)).

Remark 1.5.6. Note that in the Higgs bundle viewpoint, the degree deg (L) of the underlying
line bundle L in the decomposition of the Cayley partner W = L& L~! whenever w, (W) = 0,

was used in order to distinguish the extra connected components of M™* (X Sp(4,R)).

For n = 2, when swy (p) = 0, the Lagrangian bundle L* (p) is orientable, however, a priori
this bundle has no canonical orientation. It is shown in [22] that for every pair (p, L* (p)) with
p maximal and with swy (p) = 0, there is a natural associated oriented Lagrangian bundle
Ly over T'Y, and the associated flat GL." (2, R)-bundle E associated to p decomposes to

two oriented Lagrangian subbundles
E =L (o) & L% (p)

An Euler class e (p, L, ) whose image lies in H? (T'Y, Z) is now well-defined for the canon-
ical GL™ (2, R)-reduction of the GL (2,R)-Anosov reduction associated to p. For any repre-
sentation p : m (X) — Sp(4,R) define a representation ¢ ® p : 7?(5) — Sp(4,R) by setting
e®p(x,y) =¢e(x)p(y), where € : 7?(5) = {41} x 7 (X) — {£1} is the projection onto
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the first factor. Now, for the hybrid representations p : m (X) — Sp(4,R) described in §1.4
it holds that sw; (p) = 0, whereas

e(e®p, Ly)=—x () [X] € H* (T'S, Z)

Remember that ¥; is considered here to be a surface with genus 1 < g, < g — 1 and one
boundary component, thus its Euler characteristic x (X;) = 2 —2¢g, — 1 = 1 — 2g; is odd.
Now, 1 < g; < g — 1 implies

—29+3<x(¥%) < -1

Moreover, any representation in Hompayx sw,—0 (71 (2), Sp (4,R)) with Euler class not equal
to (g — 1) [X] has Zariski dense image. Therefore, we obtain a model k-hybrid representation
for each possible value of the Euler characteristic, and these representations thus distinguish
the odd-indexed 2g — 3 exceptional components of R™** (Sp (4,R)) (see Theorem 5.8 as well
as §5.6 in [22]).

1.6 Statement of the problem

Motivated by the topological gluing construction described above, we aim at developing a
gluing construction for (poly)stable Sp(4,R)-Higgs bundles over a complex connected sum
of Riemann surfaces. Moreover, we seek for a way to choose the Sp(4,R)-Higgs data on the
left and right hand side Riemann surfaces, so that the resulting hybrid Higgs bundle will lie
in one of the 2g — 3 exceptional components of M™* (X Sp(4,R)). Even further, we would
like to obtain models in all these components, thus extending the result of O. Guichard
and A. Wienhard to the even-indexed ones. The latter would provide a specific relation
between the Higgs bundle topological invariants and the topological invariants for Anosov
representations, as defined in [22].

In the following chapters we develop the necessary machinery for the above mentioned
purpose. The appropriate analog to a surface group representation into a reductive Lie
group G for a surface with boundary is a parabolic G-Higgs bundle over a Riemann surface
with a divisor. We need to describe the defining data for these holomorphic objects and
especially what it would mean to have a maximal parabolic stable Sp(4,R)-Higgs bundle;
this is the content of Chapter 2. From this point on, the problem of establishing a gluing
construction using such objects (stable but not necessarily maximal) over a complex con-
nected sum of Riemann surfaces is a more complicated procedure compared to its topological

counterpart. We choose to switch to the language of solutions to the Hitchin equations and
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develop a gluing construction in the gauge-theoretic language, adapting into our setting the
very effective techniques of C. Taubes for gluing instantons over 4-manifolds. This adap-
tation involves a good understanding of the linearization of the Hitchin operator when we
perform the gluing over a complex connected sum of Riemann surfaces. This is the content
of Chapter 3, and we show that by gluing parabolic stable Sp(4,R)-Higgs bundles we may
get a polystable Sp(4,R)-Higgs bundle defined over the compact connected sum surface X .
In Chapter 4, we show how to construct model hybrid Higgs bundles in all the exceptional
components of M™ (X, Sp(4,R)). For this purpose, two results need to be established:
First, we need to have an additivity property for the Toledo invariant, analogous to the
one described in Proposition 1.4.5 for maximal representations; this will provide that gluing
maximal parabolic G-Higgs bundles gives a maximal (non-parabolic) G-Higgs bundle. The
second is a description of the Higgs bundle invariants under the complex connected sum
operation. This will predict the choices that need to be made for gluing parabolic Sp(4,R)-
Higgs bundles, in order to end up with a model inside a desired component of the maximal

Sp(4,R)-Higgs bundle moduli space.
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CHAPTER 2

PARABOLIC SP(4,R)-HIGGS BUNDLES

Parabolic vector bundles over Riemann surfaces with marked points were introduced by
C. Seshadri in [38] and similar to the Narasimhan-Seshadri correspondence, there is an
analogous correspondence between stable parabolic bundles and unitary representations of
the fundamental group of the punctured surface with fixed holonomy class around each
puncture [30]. Later on, C. Simpson in [40] proved a non-abelian Hodge correspondence
in the non-compact case: Parabolic Higgs bundles are in bijection with meromorphic flat
connections, whose holonomy around each puncture defines a conjugacy class of an element
in the unitary group described by the weights in the parabolic structure of the bundle.
These connections correspond to representations of the fundamental group of the punctured
surface in the general linear group, which send a small loop around each parabolic point to
an element conjugate to a unitary element. More recently, O. Biquard, O. Garcia-Prada and
[. Mundet i Riera provided in [5] a Hitchin-Kobayashi correspondence for parabolic G-Higgs
bundles.

In this chapter we include the main definitions for parabolic G-Higgs bundles. We are
primarily interested in the case G = Sp(4,R) and in describing the moduli space of maximal
parabolic Sp(4,R)-Higgs bundles. For the latter, a Milnor-Wood bound for an appropriate

notion of Toledo invariant is necessary.

2.1 Parabolic GL (n, C)-Higgs bundles

For further reference on the material covered in this section see [8] or [19].

Definition 2.1.1. Let X be a closed, connected, smooth Riemann surface of genus g > 2
with s-many marked points z1,...,z, and let a divisor D = {z1,...,z,}. We define a
parabolic vector bundle E over X to be a holomorphic vector bundle £ — X with parabolic
structure at each x € D (weighted flag on each fiber E, ):

Ex - E,Z’71 D Eg;yQ D e D Ex,r(x)—i—l — {0}
0<o(z) <...<ape(z) <1
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We usually write (F,«) to denote a vector bundle equipped with a parabolic structure
determined by a system of weights « (z) = (a1 (z),...,a, (z)) at each z € D. Moreover,
set k; () = dim (E,;/E;i+1 ) be the multiplicity of the weight «; (x). We can also write the
weights repeated according to their multiplicity as

0<dn ()< ... <an(z) <1

where now n = rkE. A weighted flag shall be called full, if k; (x) = 1 for every i and = € D.

Definition 2.1.2. A holomorphic map f : E — E’ of parabolic vector bundles (F, «) , (E', &)
is called parabolic if o; (x) > o', (v) implies f (E,;) C E'; j11, for every z € D.
Furthermore, we call such a map strongly parabolic if o; (x) > o'; (x) implies f (E,;) C
E', ji1 for every x € D.

We denote by ParHom (F, E’) and SParHom (E, E’) the sheaves of parabolic and strongly

parabolic morphisms respectively.

Definition 2.1.3. We define the parabolic degree and parabolic slope of a vector bundle

equipped with a parabolic structure as follows

r(x)
pardeg (E) = deg E + Z Z ki (x) o (x)
zeD i=1
_ pardeg (E)

pary (E) ok (E)

We now describe the basic constructions for parabolic vector bundles that we are going to

be considering:

1. Subbundle and quotient
If (E,«a) is a parabolic vector bundle then a vector subbundle F' < F inherits a
parabolic structure from E (induced parabolic structure) by setting F,, = F, N E,;
and discarding the weights of multiplicitly zero. Quite similarly, the quotient E/F

can be equipped with a parabolic structure inherited from the structure on E.

2. Direct Sum
Let (V,a),(W,a’) be parabolic vector bundles. We define the parabolic direct sum
(E, &) of parabolic bundles as the direct sum E = V @ W of holomorphic bundles
with weight type & consisted of the ordered collection of the weights in a and o/,

and filtration E,, = V., & W, ; where ¢ (resp. j) is the smallest integer such that
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ay (z) < oy (z) (resp. ay (z) < o/j(z)). Under this definition we can now check that

pardeg (V & W) = pardeg (V) + par deg (W)

. Dual
Let (E, ) be a parabolic vector bundle. There is a well defined notion of a dual EV by
considering the bundle Hom (E, O (—D)) equipped with a parabolic structure defined
by the filtration

E}=FE/,D>...DE],,>{0}

where EY; = Hom (E,/Ey y(2)42-i» O(—D),) and weights
1—aT(x)(a:) < ... < 1—&1(33).
Under this definition we can now check that EVY = FE, as well as that

pardeg (EY) = —pardeg F

. Tensor product

A notion of parabolic tensor product was defined in [48] in the language of parabolic
sheaves. Let E and M be two parabolic vector bundles on X with the same parabolic
divisor D and let 7 : X\ D — X be the natural inclusion. Define

E=nmT"(E®M)

which is a quasi-coherent sheaf over X and now for any ¢t € R denote by &; the subsheaf
of £ generated by all Ej ® M; with k+1 > t. The filtration (&), defines a parabolic
structure on the coherent sheaf &, which is locally free. The parabolic tensor product
E ® M is defined as the parabolic bundle & constructed previously; cf. [6] or [48] for

more details. We now have

par deg (E @ M) = rk (M) par deg (E) + rk (E) par deg (M)

Definition 2.1.4. A parabolic vector bundle will be called stable (resp. semistable) if for

every non-trivial proper parabolic subbundle F' < E| it is parp (F) < paru (E), (resp. <).

Definition 2.1.5. Let K be the canonical bundle over X and E a parabolic vector bundle.
The bundle morphism ® : F — F® K (D) will be called a parabolic Higgs field, if it preserves

44



the parabolic structure at each point z € D:
P, (Ewi) C Euy ® K (D)o
In particular, we call ® strongly parabolic, if
Q| (Eyi) CEpiv1 @ K(D) |y

in other words, ® is a meromorphic endomorphism valued 1-form with simple poles along

the divisor D, whose residue at x € D is nilpotent with respect to the filtration.
After these considerations we are in position to define parabolic Higgs bundles.

Definition 2.1.6. Let K be the canonical bundle over X and E a parabolic vector bundle
over X. Consider on F ® K (D) the parabolic structure induced by the tensor product

construction.

e A parabolic K (D)-pair is a pair (F,®), where F is a parabolic vector bundle and
¢: F— F® K (D) is a parabolic Higgs field.

e A parabolic Higgs bundle is a parabolic K (D)-pair (E, ®), where ® is additionally a
strongly parabolic Higgs field.

Analogously to the non-parabolic case, we may define stability as follows:

Definition 2.1.7. A parabolic K (D)-pair will be called stable (resp. semistable) if for every
d-invariant parabolic subbundle F' < E' it is paru (F') < parp (F) (resp. <). Furthermore,
it will be called polystable if it is the direct sum of stable parabolic K (D)-pairs of the same

parabolic slope.

For fixed n = rkF, d = deg E' and weight type «, two moduli spaces can be now obtained
given the preceding definitions. In [47| and [48], K. Yokogawa has constructed the moduli
space of K (D)-pairs P, using geometric invariant theory and has shown that it is a normal,

quasi-projective variety of dimension
dim P, = (29 — 2+ s)n* + 1

which is smooth at the stable points. Moreover, in [28] H. Konno constructed the moduli
space of parabolic Higgs bundles N, as a hyperkidhler quotient. It is contained in P, as a

closed subvariety of dimension

dimN, =2(g— )n*+2+2> f,

zeD
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r(z)
where f, =% <n2 — > (ks (m))2> is the dimension of the associated flag variety.
i=1

Remark 2.1.8. In the literature, a parabolic Higgs bundle is sometimes defined by requiring
the Higgs field to be just preserving the parabolic structure at each point x € D. For us, a
parabolic Higgs bundle will always involve a strongly parabolic Higgs field.

Lastly, we say that the weights of a parabolic Higgs bundle are generic, when stability and
semistability are equivalent. In this case, there are no properly semistable parabolic Higgs

bundles and the moduli space N, is smooth.

2.2 Parabolic G-Higgs bundles

In [5] the authors introduce parabolic G-Higgs bundles over a punctured Riemann surface
for a non-compact real reductive Lie group G. This definition involves a choice for each
puncture of an element in the Weyl alcove of a maximal compact subgroup H C G, handling
both cases as if this element lies in the interior of the alcove or if it lies in a ‘bad’ wall of the
alcove. Below we summarize the basic steps towards this definition.

Let X be a compact, connected Riemann surface and let {z1,...,z,} be a finite set of
different points on X with D = x; + ...z, be the corresponding effective divisor. Let
now H® be a reductive, complex Lie group. Fix a maximal compact subgroup H C HC,
and a maximal torus 7' C H with Lie algebra t. Denote E (H(C) = ExpcH® — X, the

HC-fibration associated to F via the adjoint representation of H® on itself. Then
E(H®) ={¢:E,— H"|¢(ch)=h""¢(e)h, Ve € E,,h € H"}

i.e. the fiber can be identified with the set of antiequivariant maps ¢.
Fix an alcove A C t of H containing 0 € t and for «; € V—1A let P, C HC€ be the
parabolic subgroup defined by the «;.

Definition 2.2.1. We define a parabolic structure of weight o; on E over a point z; as
the choice of a subgroup Q; C E(H(C)x‘ with the property that there exists a trivialization
e € E,, for which P,, = {¢(e)|d € Q; }.

Given this, we now set the following:

Definition 2.2.2. Let a = (ay,...,a,) be a collection of elements in /—1A. A parabolic
bundle over (X, D) of weight « is a holomorphic principal bundle with a choice for any i of

a parabolic structure of weight «; over x;.
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Consider that the parabolic bundle E comes equipped with a holomorphic structure 0 and
consider a metric h € I' (X\D; E/H) defined away from the divisor D.

Definition 2.2.3. The metric h is called an a-adapted metric if for any parabolic point x;
the following holds: Let e; € E,, be an element belonging to the P, orbit specified by the
parabolic structure. Choose local holomorphic coordinate z and extend the trivialization e;

into a holomorphic trivialization of E near x;. Then we can write near x;
s 2
h= (|z]""€)

with Ad (]z|™*) ¢ = o (log|z]), Ad (]z| ™) dc € L? and Ad (|z|™) F}, € L.

For a real reductive Lie group G with a maximal compact subgroup H, let g = h @& m the
Cartan decomposition of its Lie algebra into its +1-eigenspaces, where h = Lie (H) and let
E (mc) be the bundle associated to E via the isotropy representation. Choose a trivialization
e € F near the point z;, such that near z; the parabolic weight lies in a; € v/—1.A. In the

trivialization e, we can decompose the bundle £ (m®) under the eigenvalues of ad («;) acting

on m‘c as

B (m®) = e
“w
Decompose accordingly a section ¢ of F (mc) as ¢ = »_ p,. After these preliminaries we
set the following:

Definition 2.2.4. The sheaf PE (mc) of parabolic sections (resp. the sheaf NE (mc) of
strictly parabolic sections) of E (m(c) is consisted of meromorphic sections ¢ of the bundle

E (m(c) with singularities at the points z;, with ¢, having order

v (o) > —[—p) (resp. v (pu) > —|—ul)

This means that ifa—1 < u < a (resp. a —1 < p < a) for some integer a, then ¢, = O (2%).
We finally have the definition of a parabolic G-Higgs bundle as follows:

Definition 2.2.5. We define a parabolic G-Higgs bundle over a Riemann surface with a
divisor (X, D) to be a pair (E, ¢), where:

1. E is a parabolic principal H®-bundle over (X, D), and

2. ¢ is a holomorphic section of PE (m®) ® K (D).

The pair (E,¢) will be called a strictly parabolic G-Higgs bundle if in addition the Higgs
field ¢ is a section of NE (m®) @ K (D).
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For a parabolic principal bundle E over (X, D) with weights a, a notion of parabolic degree
was defined in [5] as the sum of two terms, one global and independent of the parabolic
structure, and one local and depending on the parabolic structure. Before we state this
definition, recall that the degree of a (non-parabolic) bundle can be defined using Chern-
Weil theory as follows:

Fix a standard parabolic subgroup P C H®, an antidominant character y : p — C and a
holomorphic reduction o of the structure group of E from H® to P, with E, denoting the
P-principal bundle corresponding to this reduction o. Then, the degree of E is given by

v

X

deg (E) (0, x) == X+ (Fa)

where Fy is the curvature of any P-connection A on F,.

Now, let @; C E(H®)_ the parabolic subgroups in the definition of the parabolic struc-
ture. At each point in th; divisor D, there are two parabolic subgroups equipped with an
antidominant character, one coming from the parabolic structure (Q;, ;) and one coming
from the reduction (EU(P)xi, X)- A relative degree for such a pair of parabolic subgroups
(Q,P) is then defined:

deg ((Q,0),(P,s)) = cos Lris (11(0) ;7 (5))

where /75 is the Tits distance on X for XY = H\G a symmetric space of non-compact
type, and 7 (s) = tlim x e’ € 0% for s in an H-orbit Oy C m. The parabolic degree is now
—00

given by the sum of the two terms described previously:

pardeg, (E) (o, ) := deg (E Zdeg (@i, i), (Eq(P),, x))
The definition of polystability is next given with respect to an element ¢ € /—1I for
[=TLie(Z(H)):

Definition 2.2.6. Let (E, ®) be a parabolic G-Higgs bundle over (X, D). Then (£, ®) will
be called polystable if for every s € v/—1h and any holomorphic reduction o of the structure
group of E to P;, such that ® |x\p € H* (X\D, E, (m,) ® K) it is

par deg (E) (0, Xs) — (¢, s) =20

The following theorem proven in [5] establishes a Hitchin-Kobayashi correspondence for

parabolic G-Higgs bundles.
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Theorem 2.2.7. Let (E,®) be a parabolic G-Higgs bundle equipped with an adapted initial
metric hy. Suppose that par deg (E) = x (¢) for all characters of g. Then (E,®) admits an

Hermite-FEinstein metric h, quasi-isometric to ho, if and only if (E, ®) is polystable.

2.2.1 Deformation theory

The deformation theory of parabolic K (D)-pairs was studied by K. Yokogawa in [48]. We
now adapt results from that article to the case of parabolic G-Higgs bundles for G semisimple,
analogously to the non-parabolic case treated in §3.3 of [18]. For a semisimple Lie group G,
with H C G a maximal compact subgroup, let g = h @ m be a Cartan decomposition so that

the Lie algebra structure of g satisfies:

h,b]Ch, [hmCm, [mm|Ch

Let g© = h® @ m® be the complexification of the Cartan decomposition. The group H
acts linearly on m through the adjoint representation and this action extends to a linear

holomorphic action of H® on m® = m ® C:
v H® — Aut (mC)

We consider the deformation complex of a parabolic G-Higgs bundle as follows:

Definition 2.2.8. Let (E, ) be a parabolic G-Higgs bundle. The deformation complezx of

(E, ¢) is the following complex of sheaves

C*(E,¢): NE (b°) 2% NE (m€) @ K (D).

The definition makes sense because ¢ is a meromorphic section of NE (m(c) ® K (D) and
[m®,H°] € m®.

The results of K. Yokogawa now readily adapt to provide the following:

Proposition 2.2.9. The space of infinitesimal deformations of a G-Higgs bundle (E, ) is
naturally isomorphic to the hypercohomology group H' (C* (E, ¢)).

For any G-Higgs bundle there is a natural long exact sequence:
0 = H*(C* (E,¢)) = H* (NE (%)) 22 0O (NE (m®) ® K (D))

du(y)

— H' (C* (B, ¢)) = H' (NE (h%)) H' (NE (m%) ® K (D)) — H?(C* (E,¢)) — 0,
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where dv : h® — End (m‘c) is the derivative at the identity of the complexified isotropy
representation ¢ = Ad |yc : H® — Aut (mC).
The Serre duality theorem for parabolic sheaves (Proposition 3.7 in [48]) provides that

there are natural isomorphisms:

\

H' (C* (B, ¢)) 2 H*(C*(E, ¢)" ® K (D))",

where the dual of the deformation complex C* (E, ¢) is defined as

—du
(¥)

C*(E,p)" : NE (m%) ® (K (D))" NE (h%).

An important special case of this is when G is a complex group:

Proposition 2.2.10. Assume that G is a complex semisimple group. Then there is a natural
1somorphism:

H* (C* (B, ) = H(C* (E,¢))’
Proof. When G is complex, di = ad:g — g and the Cartan decomposition of g is g =
u + u, where u = Lie (U) for U C G a maximal compact subgroup. Thus, in this case

v € NE(g) ® K (D). Moreover, for a complex group G the deformation complex is dual to

itself, except for a sign in the map, which does not affect the cohomology:

)

C*(E, )" © K (D): NE (5) =% NE () ® K (D)

The result now follows from Serre duality. [

The proof of the next proposition is immediate, since NE (hc) & NE (m‘c) = NE (gc),
given the Cartan decomposition g© = h® @ m®. The corollary is also immediate from Serre

duality:

Proposition 2.2.11. Let G be a real semisimple group and let G© be its complexification.

Let (E, ) be a G-Higgs bundle. Then there is an isomorphism of complezes:
Ge (B,0) = CE (B, ¢) ® C(B,9)" ® K (D),

where Coc (E, ) denotes the deformation complez of (E, ) viewed as a G©-Higgs bundle,
while Cg (E, @) denotes the deformation complex of (E, @) viewed as a G-Higgs bundle.

Corollary 2.2.12. With the same hypotheses as in the previous proposition, there is an
1somorphism
H (Cee (B, 9)) 2 H° (Cg (B, 9)) @ HY(Cg (E, 9))".
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Under the genericity assumption we made, every parabolic polystable G-pair is stable, thus

simple and defines a smooth point in the moduli space. This gives that H° ( e (B, np)) =0

and so
H (C¢ (B, ¢)) = 0 =H? (Cg (E, p))

The long exact sequence then provides that

dimH* (C* (E, ) = —x (C* (E, ¢))

Note that given the genericity assumption this will be the actual dimension of the moduli
space of parabolic polystable G-Higgs bundles. This dimension can be computed using the

Riemann-Roch formula and is independent of the choice of (£, ¢):

Proposition 2.2.13. Under the genericity assumption, the moduli space My, (G) of stable

parabolic G-Higgs bundles is a smooth complex variety of dimension
(9—1)dimG® +s-rk(NE (m®)),

where g is the genus of the Riemann surface X and s is the number of marked points on X.

Proof. Let (E, ) be any stable parabolic G-Higgs bundle. The long exact sequence for the
deformation complex C* (E, ¢) of (E, ¢) provides that

X (C*(E,¢)) —x (NE (h%)) + x (NE (m®) ® K (D)) = 0.
The Riemann-Roch formula now gives:

X (NE (57)) = deg (NE (b°)) + 1k (NE (5%)) - (1 - g)
as well as

X (NE (m%) ® K (D)) = deg (NE (m“) ® K (D)) +1k (NE (m®) ® K (D)) - (1—g)

— deg (NE (m®)) + 1k (NE (m®)) - (29 — 2+ 5) + 1k (NE (m%)) - (1 — g)
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Thus, the dimension of the moduli space is: —x (C* (F,p)) =
deg (NE (m%)) + 1k (NE (m%)) - (g — 1+ s) — deg (NE (h%)) — 1k (NE (h)) - (1 — g)

Moreover, any invariant pairing on g© (i.e. the Killing form) induces isomorphisms NE (h¢) ~
NE(h®)" and NE (m®) ~ NE(m®)". Hence,

deg (NE (§%)) = deg (NE (m%)) =0

and lastly: rk (NE (h‘c)) +rk (NE (m(c)) = dim G®. The computation now follows. O

Remark 2.2.14. Notice that when the number of punctures s is zero, this dimension count

coincides with the count in Proposition 3.19 of [18] in the non-parabolic case.

2.3 Parabolic Sp(4,R)-Higgs bundles

In this section, we restrict the general parabolic G-Higgs bundle definitions of §2.2 to the
case when G = Sp(4,R) that we are primarily interested in. A maximal compact subgroup
of G = Sp(4,R) is H = U (2) and H® = GL(2,C), thus the parabolic structure on a GL(2,C)-
principal bundle is in this case defined by a weighted filtration. We will first fix some notation
before giving the precise definitions.

Let X be a compact Riemann surface of genus ¢ and let the divisor D := {z1,...,x,} of
s-many distinct points on X. Let X* := X — D denote the punctured Riemann surface.

Let K denote the canonical line bundle on X of degree 2g — 2. Define + :== Ox (D) to be
the line bundle on X given by the divisor D. The degree of the line bundle K ®¢ is 29 —2+s,
where s is the number of punctures considered, and let us further assume that 2g—2+s > 0,
in other words, the punctured Riemann surface X* is equipped with a hyperbolic metric.

Let V be a rank 2 bundle over X. Equip this with a parabolic structure at each x € D
V.DL,D0

0<ai(r)<ay(z)<1

and denote this parabolic bundle by V., := (V,a). We will be omitting the subscript par,

when there is no risk of confusion. Define the parabolic degree of the parabolic bundle V,,
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to be given by the rational number

par deg Vi, = deg (V) + Z (g (z) + ag (2))
€D
Let £ = Ox (—D). We may define a notion of parabolic dual of the parabolic bundle V,,,
by (Vpar)" := V* @ € with weights 1 — a, under which it now holds that

(Vo))" = Vyar

as well as that

par deg (Vpo,)” = —par deg (Vpar)

Note however that the underlying vector bundle of (V)" does not coincide with the usual
bundle dual V* when there is at least one nonzero weight.
For a parabolic principal H® = GL(2,C)-bundle E, let E (m®) denote the (parabolic)

bundle associated to F via the isotropy representation and, as a bundle,
E (m®) = Sym® (V) @ Sym?* (V*)

for V' the rank 2 bundle associated to E by the standard representation. In order to describe
the parabolic symmetric power of a parabolic bundle V', we note the following:

Let V — X be a rank 2 bundle defined over the compact surface and let it be equipped
with a parabolic structure defined by a trivial flag V, D {0} and weight % for each V, and
x € D. Then the parabolic symmetric power V®rr? is equipped with the trivial flag and
weight 1. In order to have a parabolic structure with the weight in the correct interval [0, 1),
we define the parabolic symmetric square V®r«r2 as the bundle V? ® ¢ equipped with a
parabolic structure given by the trivial flag and weight 0. Similarly, the parabolic symmetric
power for the parabolic dual (VY)®7r? is defined as the bundle (V*)* @ ¢ equipped with a
parabolic structure given by the trivial flag and weight 0.

Now, the parabolic tensor product F (m(c) ® K (D) is expressed as
[Sym* (V)@@ K ® ] & [Sym® (V) @@ K ® (]

equipped with a parabolic structure given by the trivial flag and weight 0.
In other words, the Higgs field according to the definition of a parabolic G-Higgs bundle
described in §2.2 will be given by a pair (5,7), where

BeH(Sym* (V)@@ K®t) or f: V' QE—-VROK @1
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and
e H (Sym® (V)QEQK®1) ory: VoV @ERK @1

Thus, the definition of a parabolic Sp(4,R)-Higgs bundle according to §2.2 specializes to the

following:

Definition 2.3.1. Let X be a compact Riemann surface of genus ¢g and let the divisor
D :={x1,...,zs} of s-many distinct points on X, assuming that 2g —2+s > 0. A parabolic
Sp(4,R )-Higgs bundle is defined as a triple (V, 3,7), where

e V is a rank 2 bundle on X, equipped with a parabolic structure given by a flag V, D
L, D 0 and weights 0 < a; (z) < ay (x) < 1 for every z € D, and

e J:VV 3 V@K®irand v:V — VY ® K ® ¢ are strongly parabolic morphisms.

Remark 2.3.2. The parabolic structures on V and (V)" now induce a parabolic structure on
the parabolic sum E = V @ (V)"; Moreover, par deg E = 0. We will prefer to think of a

0

parabolic Sp (4, R)-Higgs bundle as a pair (F, ®), where & = § rather than as a triple
y

(V, B,7), because it is preferred to use the more workable notion for a stable parabolic Higgs

bundle of C. Simpson in order to introduce a notion of maximality for these objects.

2.4 Milnor-Wood type inequality

Definition 2.4.1. The parabolic Toledo invariant of a parabolic Sp (4, R)-Higgs bundle is
defined as the rational number

7 = par deg (V)
Moreover, we get a Milnor-Wood type inequality for this topological invariant:

Proposition 2.4.2. Let (E,®) be a semistable parabolic Sp (4,R)-Higgs bundle. Then
7| <29—2+s

where s 1s the number of punctures on the surface X.

Proof. Consider parabolic bundles N = ker (y) and I = Im (7) ® (K ® )" < (V).

We thus get an exact sequence of parabolic bundles
0O N=>V2IQK®:—0
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and so

pardeg (V') = pardeg (N) + pardeg (I ® K ® ) (2.1)
= pardeg (N) + pardeg (I) +rk (I) (29 — 2+ s) (2.2)

using the formula that gives the parabolic degree for the tensor product and the fact that
pardeg (K ® t) =29 — 2+ s.

I is a subsheaf of (V)" and I < (V)" is a parabolic map. Let I C (V)" be its saturation,
which is a subbundle of (V)" and endow it with the induced parabolic structure. So N,V @
I C E are ®-invariant parabolic subbundles of E. The semistability of (E, ®) now implies
parp (N) < parp (E) and parp (V @ 1) < parp <V ) f) < parp (E). However,

_ pardeg (E)

x(E)

parp (E)
thus we have

pardeg (N) <0

and
pardeg (V') + pardeg (I) <0

From the last two inequalities, as well as Equation (2.2) we get:
pardeg (V) < —pardeg (V) +rk (I) (29 — 2 + s)

In other words, 7 < 2g — 2 + s, since rk (I) < 2.
Lastly, the map (V,3,v) — ((V)V ®t,7, ﬁ) defines an isomorphism M_, & M. providing
also the minimal bound —7 < 29 — 2 + s. O]

Definition 2.4.3. The parabolic Sp (4, R)-Higgs bundles with parabolic Toledo invariant
T = 29 — 2+ s will be called mazimal and we will denote the components containing such
triples by

Mmax = M29—2+s

par par

2.5 Non-abelian Hodge correspondence on the punctured disk

In this section we review the non-abelian Hodge correspondence for non-compact surfaces
established by C. Simpson in [40] and describe the relation between the parabolic weights
for a fixed SL(2,C)-Higgs bundle on the punctured unit disk Dy := D\ {0} with varying
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weights, and the parallel transport along a loop around the puncture for the associated flat
connection on the bundle. In order to describe this relation, we will need the definition of
a parabolic Higgs bundle as a filtered regular Higgs bundle. Moreover, for the construction
of the correspondence in this case it is necessary that the harmonic metric on the bundle
has at most polynomial growth at the punctures in order to extend the holomorphic Higgs
bundles across those points; these notions were introduced in [40] and the necessary growth
condition of the hermitian metric, called tameness, is related to the algebraic stability of the
filtered regular Higgs bundle.

An algebraic vector bundle over a surface X is a bundle given by regular algebraic transi-
tion functions over Zariski open sets, in other words, a locally free sheaf of Ox-modules. For
a compact Riemann surface X of genus g > 2 with s-many marked points D = {z1,...,x},

a filtered vector bundle is defined as follows:

Definition 2.5.1. A filtered vector bundle (E,{E,,}) is an algebraic vector bundle £ —
X\D together with a collection of vector bundles E, ,, indexed by o € R and extending £

across the punctures z;, such that
o the extensions form a decreasing left continuous filtration E, ,, C Eg,, for a > j3,
e for every o, £, _.,, = E,,, for small ¢, and
e if 2 is a local coordinate vanishing to order one at x;, then E,,1 = E, & O (—x;).

Let £ denote the bundle over the compact surface X obtained from E using the extensions
FEjo ., at all punctures. Then the fiber E,, is a vector space with a filtration (Ea)m, indexed
by 0 < v < 1. The weights of the filtration { £, } are precisely the values where the filtration
jumps, so there is a proper filtration

Ey DE, D...DFE4, D0

n—1

For Gr,, (E,,) == (Ea)x/(Ea_l)x , the algebraic degree of a filtered bundle is defined as

the rational number

deg (F) = deg (E) + Z Z a dim (Gra (Ex))

z;€D 0<a<1

A filtered regular Higgs bundle ((E,{Eqs4,}) , ®) is now a filtered vector bundle (E,{E, 4, })
together with a map ¢ : F — F ® K satisfying a regularity condition with respect to the
filtrations:

Q:Eyy = Eow, @ Kx (D)
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Definition 2.5.2. We say that a filtered regular Higgs bundle ((E,{E,.,}),®) is alge-
braically stable (resp. algebraically semistable), if for any filtered subbundle F' C E with
induced filtration preserved by @, it holds that

deg (F)  deg(F)
rk (F) tk (E)’

(resp <)

Remark 2.5.3. Note that the definition of a filtered regular Higgs bundle is equivalent to
the definition by V. Mehta and C. Seshadri described in §2.1. Indeed, for a filtered vector
bundle (E,{E,}) and E,, the fiber of Ey — X over x € X, the vector space E, has an
induced filtration {E, ,} indexed by 0 < o < 1. For each «, let Gr, (E,) be the direct
limit of the system E, ,/E, s over all 5 > a. The weights of the parabolic structure are the
values of a € [0, 1) such that dimcGr, (E.o) > 0. Now, in a neighborhood U of the point x
with coordinate z around z, such that z (z) = 0, the Higgs field ® locally has the form

dz

v (2) —

where ¢ is a holomorphic endomorphism of Ey |7. The residue of ® at the point z is defined
to be Res,® := ¢ (0). The condition that ® preserves the parabolic structure at each point
x € D, as in Definition 2.1.5, means that the residue of ® respects the filtration {E, .}
defined above.

A filtered regular Higgs bundle together with the notion of algebraic stability is a purely
algebraic object. The topological objects corresponding to those were called by C. Simpson

filtered local systems and are defined below:

Definition 2.5.4. For a fixed base point y € X and a puncture x; € D, a filtered local system
is a representation p : m (X) — GL(L,) with filtrations Lg,, of the fiber L,, indexed by
B € R, such that

e the filtrations are decreasing and left continuous in 3, and
o Lg,. is p(v,,)-invariant for a loop 7,, around x;.

The degree of a filtered local system is defined as the rational number

deg (L) =Y > Bdim(Grg (La,))

z, €D S

and a filtered local system is called stable (resp. semistable) if for any subsystem M C L
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with an induced filtration it holds that

deg (M) _ deg (L)
rk (M) rk (L)

(resp. <).

In order to show a correspondence between these algebraic and topological objects, we need
to use a hermitian metric on the bundle with a specific growth condition at the punctures

imposed:

Definition 2.5.5. Let £ — X be a holomorphic bundle with a smooth hermitian metric
h and let F}, denote the curvature of the associated Chern connection. Let U C X be a
neighborhood of a puncture x; on X with coordinate r around the puncture. The metric h

on E is called acceptable, if |F},| < f + T for some f € LP with p > 1.

1
r2(logr

The main theorem from [40] is now the following:

Theorem 2.5.6. There is a one-to-one correspondence between polystable filtered regular

Higgs bundles of degree zero and polystable filtered local systems of degree zero.

In [27] S. Kim and G. Wilkin show that for a stable parabolic Higgs bundle, the metric
solving the self-duality equations depends analytically on the choice of weights and stable
Higgs bundle in a neighborhood of the initial weight and Higgs bundle. A local version of
this theorem provides an explicit description of the relation between the parabolic weights of
a stable parabolic Higgs bundle and the holonomy of the associated flat connection around
each puncture for the case G = SL(2,C).

From this point on, we restrict attention to one particular point p € D. Let Dy := D\ {0}

denote the punctured unit disk and choose a branch of log
U={z=re"€Dy:v€ (-mm)}.

Let £ — Dy a rank 2 complex vector bundle trivialized over U and define a Higgs structure on

FE taking the trivial holomorphic structure, and defining the Higgs field on the trivialization

ve- (] 0)%

Let w™? and w®! be a basis for the holomorphic sections of E in the trivialization over U
such that

over U by

1 d
P (2)w'? = Ewo’lf and @ (2) w”! =0 (2.3)
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With respect to these sections, let the decomposition £ = E'9 @ E%! and consider the

hermitian metric on F

s (r0 =10 0 —Zsinh (flogr) 0
ka(?‘)=<9(0 )i>:< 0 ° _+>

7—0_,0 % sinh(6log )
With respect to this metric,

1,0 r=3° 20\ 3 _lg
whl, = 5 (1=r)F =0 (7).

V20r3° 9>
V20

(1— 7“29)%

0,1‘ _
w, =

thus the weights in the interval [0, 1) are
1
—f0and 1 — 16’
2 2

The curvature of kg is calculated to be

2 1 0
er = — - g dzdz
4r2sinh” (Alogr) \0 —1

and so |Fj,| < W in a neighborhood of r = 0, that is, the metric is acceptable. Moreover,

one sees that Fy, + [®,P*] = 0, thus the metric is Hermitian-Einstein for all § and the

associated connection Dy = 0 + 0y + ® + ®* is flat.
1,0

For the basis w!?, w®! of the holomorphic section of the bundle E considered in Equation

(2.3), the holomorphic structure d”y := 0 + ®* has holomorphic sections given by w'® and
vy = w"! + O coth (flogr) w'. A calculation from [27,p.11] shows that

1 g1dz 1 dz
d gt = 52}2’ — and d'pv" = Z0%wH" =
z z

It turns out that the sections
s1 = P (le’o + vg’l) and s, = 23 (le’o - vg’l)

are flat with respect to the connection Dy = d”y + d’y. Therefore, the parallel transport

along a loop around the puncture with respect to this basis is given by

(s1,82) — (e*i’resl,emesﬂ )

In other words, the corresponding representation py : Z — SL(2,C) maps a generator of the
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—im6

imh

integers to the element (
e

) € SL(2,C). S. Kim and G. Wilkin also show that
kg (r) depends analytically on %9 and the representations pg converge to the representation

1
po : Z — SL(2,C), which maps a generator of Z to the element (O 71T> € SL(2,C); cf. [27],

§3 for more details.
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CHAPTER 3

GLUING CONSTRUCTIONS OVER A COMPLEX
CONNECTED SUM OF RIEMANN SURFACES

In this chapter we develop our gluing construction for stable parabolic Sp(4,R)-Higgs bundles
to produce a polystable non-parabolic Sp(4,R)-Higgs bundle over the complex connected sum
of Riemann surfaces. The necessary condition in order to combine the initial parabolic data
over the connected sum operation is that this data is identified over annuli around the points
in the divisors of the Riemann surfaces. Aiming to provide new model Higgs bundles in the
exceptional components of M™** we consider parabolic data which around the punctures
are a priori not identified, but we then look for deformations of those into model solutions of
the Hitchin equations which will allow us to combine data over the complex connected sum.
This deformation argument uses deformations of SL(2,R)-solutions to the Hitchin equations
over a punctured surface and subsequently we extend this for Sp(4,R)-pairs using appropriate
embeddings ¢ : SL(2,R) < Sp(4,R). Therefore, our gluing construction involves parabolic
Sp(4,R)-pairs which arise from SL(2,R)-pairs via extensions by such embeddings, producing
an approximate solution of the Sp(4,R)-equations. We then apply a contraction mapping
argument to correct this approximate solution to an exact solution of the equations. The
analytic machinery we use to achieve this is based on work by R. Mazzeo, J. Swoboda, H.
Weiss and F. Witt [29] and J. Swoboda [42], whereas the analysis worked out in this chapter
also provides an extension of the main theorem in [42]. By analogy with the terminology
introduced by O. Guichard and A. Wienhard in their construction of hybrid representations,
we call the polystable Higgs bundles corresponding to such exact solutions hybrid. In the
next chapter we deal with the problem of identifying the components such glued objects may

lie and see that they do indeed correspond to the Guichard-Wienhard hybrid representations.

3.1 The local model

In this section, we describe the local SL(2,R)-model solutions to the Hitchin equations which
are going to serve as a guide for the gluing construction of the parabolic stable Sp(4,R)-
Higgs bundles. The description of these models is obtained by studying the behavior of the

harmonic map between a surface X with a given complex structure and the surface X with
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the corresponding Riemannian metric of constant curvature -4, under degeneration of the
domain Riemann surface X to a noded surface; cf. [42], [45] for further details.

Let C = (S'), x [1,00), denote the half-infinite cylinder, endowed with the complex
coordinate z = z + iy and flat Riemannian metric go = |dz|* = da® + dy?. For parameter

s >0 let
Ny = [s’lcsc’1 (s’l) , g — s tese™! (s’l)} X (Sl)v

be the finite cylinder with complex coordinate w = u-+1iv, and carrying the hyperbolic metric
gs = s%csc? (su) |dw|®. Tt is shown in [45] that the one parameter family w, : (c, \dz\2) —
(Ny, gs) with wy = u, +iv, and where v, (2,y) = 2, uy (z,y) = Lsin™! <;§EZ;>, for B; (y) =
e?(0-Y) serves as a model for harmonic maps with domain a noded Riemann surface and

1—s
1+s

target a smooth Riemann surface containing a long hyperbolic neck with central geodesic of
length 27s.
For a stable SL(2,R)-Higgs bundle (E,®) on X with F = L & L~! for L a holomorphic

square root of the canonical line bundle over X, endowed with an auxiliary hermitian metric

0
ho, and ® = <1 g) € H°(X,sl(E)) for ¢ a holomorphic quadratic differential, there

is an induced hermitian metric Hy = ho ©® hy' on E and A = A, @ A;' the associated
Chern connection with respect to h. The stability condition implies that there exists a
complex gauge transformation g unique up to unitary gauge transformations, such that
(A1 s, P15) :==g* (A, ®) is a solution to the Hitchin equations. Choosing a local holomorphic
trivialization on F and assuming that with respect to it the auxiliary hermitian metric
ho is the standard hermitian metric on C?, the corresponding hermitian metric for this
solution on the bundle £ = L & L~! is globally well-defined with respect to the holomorphic
splitting of E into line bundles. Calculations worked out in [42] imply that in particular

his O
H = L ], for
0 hl,s
2 (1— BY?
hl,s = - —1/2
S 1+Bs

the hermitian metric on L and g, with ¢> = H 1. !is the complex gauge transformation giving
rise to an exact solution (A; s, @y 5) of the self-duality equations.

Moreover, after the change in coordinates

(=e" idz ==

¢

which describes the conformal mapping of the cylinder C to the punctured unit disk, one

62



sees that

B w1 0 (d d _ {0
A1,5—0<|<|><0 _1)(< 2). o, <1+0<|<|>><9

N———
e

O Nlw

2
Therefore, after a unitary change of frame, the Higgs field ®, ; is asymptotic to the model

=0
Higgs field ® mod = ((2) s) ‘Z—é, while the connection A; s is asymptotic to the trivial flat
T2

connection.

In conclusion, the model solution to the SL(2,R)-Hitchin equations we will be considering

Amod =0 (I)mod — ¢ 0 %
’ 0 -C) =

is described by

over a punctured disk with z-coordinates around the puncture with the condition that C' € R
with C' # 0, and that the meromorphic quadratic differential ¢ := det ® ™°? has at least one

simple zero. That this is indeed the generic case, is discussed in [29].

3.2 Weighted Sobolev spaces

In order to develop the necessary analytic arguments for the gluing construction later on, we
need to define Sobolev spaces. Let X be a compact Riemann surface and D := {py,...,ps} be
a collection of s-many distinct points on X. Moreover, let (E, h) be a hermitian vector bundle
on E. Choose an initial pair (A™, ®™4) on F, such that in some unitary trivialization
of E around each point p € D, the pair coincides with the local model from §3.1. Of course,
on the interior of each region X\ {p} the pair (A™d & ™m°d) need not satisfy the Hitchin
equations.

For fixed local coordinates z around each point p € D, such that z (p) = 0, define r to be a
positive function which coincides with |z| around the puncture. Using the singular measure
r~ldrdf and a fixed weight 6 > 0 define weighted L?-Sobolev spaces:

I € LQ}

2 2
L; = {f € L* (rdrdf) v

and
H§ = {u,Vju € L3(rdr),0<j < k}
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The Sobolev space with k-derivatives in L? is defined as:

—J

J
Ly* = {f, Z%c € L (rdrdf), 0 < j < k}

where V is the covariant derivative associated to a fixed background unitary connection on
E. We are interested in deformations of A and ® such that the curvature of the connection
D = A+ &+ & remains O (7’_“5), that is, slightly better than L'. We can then define
global Sobolev spaces on X as the spaces of admissible deformations of the model unitary
connection and the model Higgs field (A mod mOd) as:

A= {A™ Lol 1, (0 @ ou(B))

and
B={o"" +plpe H (2" ©End (E))}

The space of unitary gauge transformations
G={geU(B), g 'dge L,
acts on A and B as follows

g (A, @) = (g 'Ag+ g 'dg, g ' ®g)

for a pair (A, ) € A x B.

These considerations allow us to introduce the moduli space of solutions which are close to
the model solution over a punctured Riemann surface X * := X — D for some fixed parameter
CeR:

{(A,®) € Ax B|(A,®) satisfies the Hitchin equations }

M (X)) = G

This moduli space was explicitly constructed by H. Konno in [28] as a hyperkéhler quotient.

3.3 Approximate solutions of the SL(2,R)-Hitchin equations

In §3.2 we have seen that a point in the moduli space M (X*) differs from a model pair
(Amed @ med) by some element in A2, ;. The following result by O. Biquard and P. Boalch

shows that (A, ®) is asymptotically close to the model in a much stronger sense:
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Lemma 3.3.1. Lemma 5.8 in [4]. For each point p € D let (Amed ,CmeOd) be a model pair
as was defined in §3.1. If (A, ®) € M (X*), then there exists a unitary gauge transformation
g € G such that in a neighborhood of each point p € D it is

g* (A, CD) _ (Amed 7 q)med) + 9] (T_1+6)

for a positive constant §.

The decay described in this lemma can be further improved by showing that in a suitable
complex gauge transformation the point (A, ®) coincides precisely with the model near each
puncture in D. With respect to the singular measure r—1drdy on C, we first introduce the

Hilbert spaces
L?, s (rtdrd9) = {u € L*(D) |r*u e L* (r'drdv) }

H, 5 (rdrdd) = {u c L2 (D) ‘(rar)jafgu €12, (rtdrdd) ,0<j+1< k:}

for D = {z € C|0 < |z] < 1} the punctured unit disk. We then have the following result by
J. Swoboda:

Lemma 3.3.2. Lemma 3.2 in [42]. Let (A, ®) € M (X*) and let § be the constant provided
by Lemma 3.5.1. Fir another constant 0 < ¢’ < min {%, (5}. Then there is a complexr gauge
transformation g = exp (y) € G° with v € H2, _ (r~'drd?d), such that g* (A, ®) coincides
with (Apm‘)d , <Ppm°d) wmn a sufficiently small neighborhood of the point p, for each p € D.

We shall now use this complex gauge transformation as well as a smooth cut-off function
to obtain an approximate solution to the SL(2,R)-Hitchin equations. For the fixed local
coordinates z around each puncture p and the positive function r coinciding with |z| around
the puncture, fix a constant 0 < R < 1 and choose a smooth cut-off function yg : [0,00) —
[0, 1] with suppx C [0, R] and xg () = 1 for r < 2E. We impose the further requirement on

the growth rate of this cut-off function:
|70, X Rr| + ‘(T@T)2XR| <C (3.1)

for some constant C' not depending on R.
The map x — xg (7 (z)) : X* — R gives rise to a smooth cut-off function on the punctured
surface X* which by a slight abuse of notation we shall still denote by xz. We may use this

function yg to glue the two pairs (A, ) and (Apm"d , <I>pm°d) into an approzimate solution
(AR", @) == exp (xr7)" (4, ).
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The pair (AR”, ®7") is a smooth pair and is by construction an exact solution of the Hitchin
equations away from each punctured neighborhood U, while it coincides with the model

pair (A4, ®mod) near each puncture. More precisely, we have:

3R
(e, ) (4,2), over X4 U 1= €2 [ <1+l < A1)
Amed omod) “over 1z €U, |0 < |z| <2}, foreach p e D
SR b o

Xr

XX

= Y0

Figure 3.1: Constructing an approximate solution over the punctured surface X *.

Since (AR?, ®R*) is complex gauge equivalent to an exact solution (A, ®) of the Hitchin
equations, it does still satisfy the second equation, in other words it holds that 5A%pp<b?{pp =0.
Indeed, for g := exp (xr7), we defined (AZ?, ®5F) = §* (A, ®) = (g7 'Ag+ g 'dg, g ' ®g)

and (A, ®) is an exact solution, thus in particular
0=04® =00+ A% A D]
We may now check

D ®F = DY + | (A7) /\CIDGPP}

[
=0 (g'®g) + [(g7"A g+ g7'0g) A g~ ' ®g]
:5( )+§]_ [AOl/\CI)} +4g 1(55})9 g — g POg
=0(57'®g) +9 ' (-0®)g+g ' (9g) g '®g— g '®Ig
=9(g")®g+g " (09) g '®g =0,

using the identity (9g) g~ + go (g7*) = 0.
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Moreover, Lemma 3.3.2 as well as the Assumption (3.1) we made on the growth rate of
the bump function y g provide us with a good estimate of the error up to which (A%?, ®3*)

satisfies the first equation:

Lemma 3.3.3. Let &' > 0 be as in Lemma 3.3.2 and fiz some further constant 0 < §" < ¢'.

The approzimate solution (AR", ®RY) to the parameter 0 < R < 1 satisfies

S CR(SH
CO(X %)

*Fj—%pp —+ x [@(}%pp A (@aépp)*]

for some constant C = C (§',0") which does not depend on R.

Proof. See [42] Lemma 3.5. O

3.4 Gluing over a complex connected sum

3.4.1 Set up

We will now use the approximate solutions from §3.3 in order to obtain an approximate
solution by gluing parabolic Higgs bundles. Let X; be a closed Riemann surface of genus
g1 and Dy = {p1,...,ps} a collection of distinct points on X;. Let (F1,®;) — X; be a
parabolic stable SL(2,R)-Higgs bundle. Then there exists an adapted Hermitian metric hq,
such that (Dy,,®1) is a solution to the equations, with Dy, = V (51,h1) the associated
Chern connection.

As we have seen in §3.3, there exists a complex gauge transformation ¢ = exp (),
such that gi (Dp,, ®1) is asymptotically close to a model solution (Af;f’d , CIDf;,Od) near the
puncture p, for each p € D;. Choose a trivialization 7 over a neighborhood U, C X; so that
(Dp,)" denotes the connection matrix and let x; be a smooth bump function on U, with the
assumptions made in §3.3, so that we may define g; = exp (x171) and take the approximate

solution over X

Dy, ,®1), away from the points in the divisor D
(AP QP = G (Dy,, D) = (Dh,, 1) y 1% . 1
(Aped @ med) | near the point p, for each p € Dy
The connection A is given, in that same trivialization, by the connection matrix x1(Dy,)".
The fact that g, is a complex gauge transformation may cause the holonomy over the bump

region not to be real, so a priori we are considering this pair as SL(2,C)-data.
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We wish to obtain an approximate Sp(4,C)-pair by extending the SL(2,C)-data via an
embedding
¢ : SL(2,R) < Sp(4,R)

and its extension ¢ : SL(2,C) < Sp(4,C). For the Cartan decompositions

s[(2,R) =s0(2) @ m (SL(2,R))
5p (4, R) = u(2) @ m (Sp(4,R))

their complexifications respectively read

=50 (2,C) ® m® (SL(2,R))

= gl(2,C) ® m® (Sp(4,R))

Assume now that copies of a maximal compact subgroup of SL(2,R) are mapped via ¢ into
copies of a maximal compact subgroup of Sp(4,R). Then, since SO(Q)(C = SO(2,C) and
U(2)° = GL(2,C), the embedding ¢ describes an embedding SO(2,C) < GL (2,C) and so
we may use its infinitesimal deformation ¢, : s[(2,C) — sp(4,C) to extend SL(2,C)-data to
Sp(4,C)-data as follows:

We have constructed a pair (A7, 1), where A" is a unitary connection on a principal
HC = 80(2,C)-bundle Pso(2,c) over X;. Consider the principal GL (2, C)-bundle Qgr2,c) by
extension of structure group through the homomorphism ¢:

GL(2,C)

Qarec) = Psoe,c) X olsot0

This principal bundle Qqr2,c) can be equipped with a connection form obtained by extension
of structure group through this same homomorphism. Now, since ¢, respects the adjoint
action of SL(2,C) on sl(2,C), we have an induced homomorphism of vector bundles from
the adjoint bundle ad (Pso(m)) to ad (QGL(Z@)). We may obtain now a curvature 2-form
with values in ad (Qcrc)) by composing the curvature form for Aj* with this induced
homomorphism on the adjoint bundles. This is the curvature form for the extended GL (2, C)-
connection on Qgr2,c) (see [35], §5.4, 5.5 for further details).

We shall denote the Sp(4,C)-pair obtained by extension through ¢ by (A;, ®;), with the

curvature of the connection denoted by

Fa, € @ (R*ad (Qareo))
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and with the Higgs field ®; given by

P = du |mesiiz (P17F)

Assume, moreover, that the norm of the infinitesimal deformation ¢, satisfies a Lipschitz

condition, in other words it holds that

||¢* (M)||5p(47(C) < O||M||5[(2,(C)

for M € sl(2,C). In fact, the norms considered above are equivalent to the Cy-norm, since
gl(n) is finite dimensional, hence all norms are equivalent and induce the same topology.
Restricting these norms to so (2,C) and m® (SL(2,R)) respectively, we may deduce that the

error in curvature is still described by the inequality

K o + % [ A (57)']

‘ S k’l Rau
Co

for a (different) real constant k;, which still does not depend on the parameter R > 0.

In summary, using an embedding ¢ : SL(2,R) < Sp(4,R) with the properties described
above, we may extend the approximate solution (A", ®*") to take an approximate Sp(4,C)-
pair (A;, ®;) over X;, which agrees with a model solution (A4/2°¢, ®2°1) over an annulus Qf
around each puncture p € Dy; the model solution (Alfg(’d , @f;"d) is the extension via ¢ of
the model (Afg,‘)d , (IDf;Od) in SL(2,R). The pair (A;, ®;) lives in the holomorphic principal
GL(2,C)-bundle obtained by extension of structure group via ¢, which we shall keep denoting
as (E1 = (El, 51) ,hl) to ease notation.

Repeating the above considerations for another closed Riemann surface X, of genus g, and
Dy = {qi,...,qs} a collection of s-many distinct points of X,, we obtain an approximate
Sp(4,C)-pair (A,,®,) over X,, which agrees with a model solution (A4 @) over an
annulus Q4 around each puncture ¢ € Dy. This pair lives on the holomorphic principal
GL(2,C)-bundle obtained by extension of structure group via another appropriate embedding
SL(2,R) < Sp(4,R); let this hermitian bundle be denoted by (EQ = (Eg, 52) ,hz).

3.4.2  Gluing of the Riemann surfaces

We begin with a classical result from complex analysis and conformal geometry:

Theorem 3.4.1 (Schottky’s Theorem on Conformal Mappings between Annuli). An an-
nulus Ay = {z€ Clry <|z| <Ry} can be mapped conformally onto the annulus Ay =
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{z € Clry < |z| < Ro} if and only if If—ll = & Moreover, every conformal map f: Ay — Ay

T2

takes the form f (z) = Az or f (z) = 2, where A € C with |\| = 2 or [A| = raRy respectively.
Proof. See p. 35 in [2]. O

Let us consider the Mbius transformation fy : A — Ay with f)(z) = 2, where )\ €
C with |A\| = reR; = r1Ry. This is a conformal biholomorphism (equivalently bijective,
angle-preserving and orientation-preserving) between the two annuli and the continuous
extension of the function z — |fy (z)] to the closure of A; reverses the order of the boundary

components. Indeed

o for |z| = Ry: |fa(2)] :H = mRIfl =T

Let two compact Riemann surfaces X, X, of respective genera ¢;,gs. Choose points
p € X1, ¢ € X, and local charts around these points ¢; : U; — A (0,¢;) on X;, for ¢ = 1, 2.
Now fix positive real numbers r; < R; < ¢; such that the following two conditions are
satisfied:

o ! <A (O,RZ-)) NU; # @, for every U; # U; from the complex atlas of X;. In other
words, we are considering an annulus around each of the p and ¢ contained entirely in

the neighborhood of a single chart.

o 2 — 1
T2 T1
Now set

X: = X0 (K0.m)

Finally, choose the biholomorphism f, : A; — A, described in the previous subsection.
This biholomorphism is used to glue the two Riemann surfaces X;, X, along the inverse

image of the annuli A, A, on the surfaces, using the biholomorphism
g = (Ar) = Qy =yt (Ay)

with gy =45 ' o fx 0 ¢y

Define X, = X #,Xo = X7 [[ X5/ ~, where the gluing of €, and 2, is performed through
the equivalence relation which identifies y € €y with w € Qs iff w = g, (y). For collections
of s-many distinct points D; on X; and Dy on X, this procedure is assumed to be taking

place for annuli around each pair of points (p, q) for p € Dy and ¢ € Ds.
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The manifold X, is endowed with a complex structure inherited from the complex struc-
tures of X7 and X5: Indeed, if A;, A are complex atlases for X7, X5, then A; ‘Xf U A2 ‘X; is
an atlas for X, since we have chosen the gluing region not to overlap between two different
charts on each side. On the glued region (2, there are two charts (21,11 |q, ), (2, %2 |a, ).
whereas oo = Y1 015 " 1 Py (1 N Q) — 1 (21 N Q) is actually p1o = fr : Ap — Ay,

If X7, X5 are orientable and orientations are chosen for both, since f) is orientation pre-
serving we obtain a natural orientation on the connected sum X;# X, which coincides with
the given ones on X7 and X;.

Therefore, X, = X #X5 is a Riemann surface of genus g; + ¢g» + s — 1, the complex
connected sum, where g; is the genus of the X; and s is the number of points in D; and Ds.

Its complex structure however is heavily dependent on the parameters p;, ¢;, A.

Gluing of hermitian metrics. Suppose further that the Riemann surfaces considered
are equipped with a hermitian metric on their tangent bundle (X, h;), (X2, he) which are
flat over neighborhoods around the points p; containing the annuli €2; and €2,. Consider an
equivalent complex atlas A = ({(Ua, %) }) and let {pg} be a partition of unity subordinate
to a covering {Vj3} of the complex connected sum X, such that Vg C U,.

We have a hermitian inner product on each Vj:
e hi, over each x € X1\(.
e hi, over each x € X5\ (2.
o h§, over each x € € := {2y ~ (), considering the cylinder equipped with a flat metric.

We may now use the partition of unity to glue all those together to a global hermitian metric

over the complex connected sum:
h* (u,v) = Z pp () - b5 (u,v)
B

since any positive linear combination of positive definite hermitian products of C is again

positive definite and hermitian.

3.4.3 Gluing of the bundles

For the Riemann surfaces X, X5 as considered in §3.4.1, their connected sum Xy = X;#X,

is constructed by gluing annuli around the points p; of Dy, with annuli around the points g;
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of Dy, as described in §3.4.2. Moreover, for the pairs (A;, ®;) and (A,, ®,) defined in §3.4.1

we make the following important assumption:

Assumption 3.4.2. The model solutions satisfy (A0, ®m01) = — (A2ed drmed) for
each pair of points (p,q).

Given this assumption, now notice that for the bundles (E,,V;:= A, + &, + ®}) and
(Eo, V, := A, + @, + ®F), the model flat connections will coincide. Let V := V, = =V,
denote this flat connection over the annuli; we can then fix an identification of these flat
bundles over the annuli to get a new bundle E, as follows:

Let 1 be the annulus on X; for any point p € D; and pick coordinates z around p with
z (p) = 0. Let V1UV4 an open covering of 2y, with V;NV; having two connected components,

say (V1N VQ)Jr and (V3 NV,)". For a loop v in y around p take transition functions

. 1, ze (VinVy)™
g1 (x) = +
hol (4, V), z€ (Vi1 NV,)

Similarly, let €25 be the annulus on X5 for any point ¢ € Dy and pick coordinates w around

q with w (¢) = 0. For a loop ¢ in 2y around ¢ take transition functions

y hol(6,V,), we (VinVa)~
9o ([E) = +
1, w e (Viny)

Using an orientation reversing isometry to glue the annuli €2; and €2, in constructing the
connected sum, the region (V4 N VQ)Jr of € is glued together with the region (V3 N V3)~ of

5. The gluing of the Riemann surfaces is realized along the curve zw = A, thus we have

dz  dw
2w
on the annuli. Now from Assumption 3.4.2, V; = —V,,, and so there is defined a 1-cocycle on

Q:=Q; ~Q by g(s) :==g1(2) = g2 (2), since w = 2 for a point s € Q. This is repeated for
each pair of points (p,q). We may use this identification of the cocycles to define a bundle
isomorphism E; |, — Ej |, and use this isomorphism to glue the bundles over € for every

pair (p, q) to define the connected sum bundle E;#E,.

Remark 3.4.3. We can alternatively glue the bundles by picking a globally trivial frame on
each side, flat with respect to the unitary connection A but not for V. Indeed for such a
frame for A; and A, glue (2; x C*)]] (€2 x C?) under the identification map (z,u) — (w,v)

Withw:%andu:v.

72



3.4.4 Gluing the connections and hermitian metrics

The pairs (A;, ®;), (A, ,) agree over neighborhoods around the points in the divisors Dy
and D, with A4, = A, = 0 and with ®;(2) = —®, (w), thus there is a suitable frame for
V over which the hermitian metrics are both described by the identity matrix and so they
are constant in particular. Set (Ayed @ med) .= (Amed med) = — (Amed pmod ) We
can glue the pairs (A;, ®;), (A, ;) together to get an approximate solution of the Sp(4,R)-

Hitchin equations:

(A, @), over X1\ X,
(A", @RP) = ¢ (Agned  Pmed ) over  around each pair of points (p,q) ,
(A, ®,) over X\ X,

considered on the bundle (E;#E,, hy) over the complex connected sum Xy 1= X 1#X5.

Xry

=

U0

Figure 3.2: Constructing approximate solutions over X;* and X
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(A, , ) (A, )

10¢ mod
Apg  Ppy)

error error /O\

=~ U000

Xy

Figure 3.3: (AY?, ®77) over the complex connected sum Xy.

By construction, (AR, ®77) is a smooth pair on X, complex gauge equivalent to an exact
solution of the Hitchin equations by a smooth gauge transformation defined over all of X.
It satisfies the second equation, while the first equation is satisfied up to an error which we

have good control of:

Lemma 3.4.4. The approzimate solution (AR”, PE") to the parameter 0 < R < 1 satisfies

< CR6II

CO(X %)

*FA?{PP + * [(I)(Il%pp, —T ((I)%pp)]‘

for some constants 8" > 0 and C' = C (8"”), which do not depend on R.

Proof. Follows from Lemma 3.3.3; take C' := max {C}, C..}, for C}, C, the constants appearing
in the bound of the error for the approximate solutions constructed over each of the Riemann
surfaces X; and Xs. O

3.4.5 The representations ¢;,, and

In this subsection, we see that the Assumption 3.4.2 we made for the model pairs can be

achieved by taking particular representations from SL(2,R) into Sp(4,R).

The irreducible representation ¢;,.. : SL(2,R) — Sp(4,R). Let (A", &) over X;
be the approximate SL(2,C)-pair in parameter R > 0, as was constructed in §3.3, which
agrees with the model pair

¢ 0
Almod — 07 (Dlmod — (O C> %
— z
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for C' € R, over an annulus in z-coordinates around a point p € D;.

The embedding ¢y, considered in §1.4 extends to give an embedding ¢;,. : SL(2,C) —

b
Sp(4,C). For the Lie algebra of SL(2,C), sl (2,C) = “ | a,b,c e C }, we may use a
c —a
Cartan basis for the Lie algebra to determine the infinitesimal deformation, ¢y, : s[(2,C) —
sp (4,C) with

3a. —v3b 0 0
5 a b B —V/3¢ a 0 2b
o c —a B 0 0 —3a \/§c

0 2c V3b —a
We now notice that ¢;.. (SO(2)) lies in a copy of U(2) < Sp(4,R), that is

A B
U(2)%{< 5 A)\ATA+BTB=12, ATB—BTA:(J}.

In other words, copies of a maximal compact subgroup of SL(2,R) are mapped into copies of

a maximal compact subgroup of Sp(4,R). Furthermore, one can check that for A € s((2,C):

| Dirrs (A)||5p(4,(c) - 10||A||5[(2,<c)

As was described in §3.4.1, ¢, can be used to extend SL(2,C)-data to Sp(4,C)-data (A;, ®,),

where in this case, it is A; = 0 and

3C 0 0 0

0o C 0 0 dz

D) = Pirry |m PIP) = —
1= ¢ csiee) (P77) 0 0 —3C 0
0 0 -C

over the annulus on X in z-coordinates around the point p.

The representation 1 : SL(2,R) x SL(2,R) — Sp(4,R). Let (A5, ®57), (A3, @57
over X, be two approximate SL(2,C)-pairs in parameter R > 0, as constructed in §3.3 which

agree respectively with the model pairs

o o -3C 0\ dz o o —C 0\ dz
A2,1d:O7 @2,1d:< 0 30)? and Az,zdzoa @2,2(1:(0 C>?
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for the same real parameter C' € R considered in defining the pair (A", &) over X above,
over an annulus in w-coordinates around a point g € Ds.

We extend SL(2,C) x SL(2,C)-data into Sp(4,C) using the homomorphism ¢ from §1.4.
Take the extension of the embedding ¢ into SL(2,C) x SL(2,C), and now the infinitesimal
deformation of this homomorphism is given by 1, : s[(2,C) x s[(2,C) < sp (4, C) with

a 0 b O

a b e f {0 e O f
1/’*((0 —a)’(g —e)>_ c 0 —a 0
0 g 0 —e

We may still check that ¢ (SO(2) x SO(2)) is a copy of U(2). On the other hand, a norm on
the space s[(2,C) x sl(2,C) is given by

¥ (A, B) = [|A] + [|B]

and again since this is a finite dimensional space, all norms are equivalent to this one. Thus,

we compute

1% (A, B)lp(a.0) = 1A B)llsia,0pxstize) = 1 Allsia,0) + 1 Bllaia)

and so the map 1), at the level of Lie algebras is an isometry. Therefore, ¢ extends to give
an embedding ¢ : SO(2,C) x SO(2,C) — GL(2,C), and so we may use the infinitesimal
deformation 1, to extend the SL(2,C) x SL(2,C)-data ((A3Y,®57), (A3, ®5%)) to an
Sp(4,C)-pair (A, ®,), with A, = 0 and Higgs field ®, given by

-3C 0 0 O
0 —-C 0 0]dz
®7“ — * |lm m ®app7®app = 2
P C(SL(2,R)) x C(SL(2,1R))( 2,1 272) 0 0 3C 0] =

0 0 0 C

over the annulus on X5 in w-coordinates around the point q.
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3.5 Perturbing an approximate solution to an exact solution

3.5.1 The contraction mapping argument

A standard method for correcting an approximate solution to an exact solution of gauge-
theoretic equations is by using the linearization of a relevant elliptic operator. This set of
ideas was first developed by C. Taubes in [43] in the case of instantons over 4-manifolds (see
also §7.2 of [16] for a gluing construction of instantons over a connected sum of 4-manifolds).
These techniques have been adapted to develop grafting procedures for several other cases of
solutions of gauge-theoretic equations; see for instance [24] for a gluing construction for the
Nahm pole solutions to the Kapustin-Witten equations over R® x (0, 4+00). Describing the
linearization of a relevant elliptic operator is critical in these techniques. In the Higgs bundle
setting, the linearization of the Hitchin operator was described in [29] and furthermore in
[42] for solutions to the SL(2,C)-self-duality equations over a noded surface. We are going
to use this analytic machinery to correct our approximate solution to an exact solution over
the complex connected sum of Riemann surfaces. We begin by summarizing the strategy to
be followed; further details can be found in the above mentioned references.

For the complex connected sum X, consider the nonlinear G-Hitchin operator at a pair
(A, ®) € Q' (X4, By (%)) @ Q"0 (X4, Ey (9%)):

Moreover, consider the orbit map

v Oue) (1) =g" (4, @) = (¢°A, g~ ' ®g)

for g = exp (7) and v € Q° (X, Ex (h)), where H C G is a maximal compact subgroup.
Therefore, correcting the approximate solution (A%”, ®%”) to an exact solution of the
G-Hitchin equations accounts to finding a point «y in the complex gauge orbit of (AZ”, ®E*),
for which # (¢* (A7", ®%”)) = 0. However, since we have seen that the second equation is
satisfied by the pair (AZ?, ®PF) and since the condition 94® = 0 is preserved under the

action of Gy, we actually seek for a solution v to the following equation

Fr (7) =prioHo O<A;PP,<1>;PP> (eXp(V)) =0
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For a Taylor series expansion of this operator
Fr(7) = priH (AF”, OF7) + L gom apey (1) + Qr ()

where () g includes the quadratic and higher order terms in v, we can then see that Fr () =0

if and only if 7y is a fixed point of the map:

T:Hp(Xy) = Hpp (Xy)
v = —Gr(H (AR, %) + Qr(v))
1

app §app -’
(AR ’(I>R

The problem then reduces to showing that the mapping 7' is a contraction of the open

where we denoted G := L

ball B,,, of radius pp in Hj (Xy), since then from Banach’s fixed point theorem there will
exist a unique 7y such that 7' () = v, i.e. such that Fg(y) = 0. In particular, one needs to
show that:

1. T is a contraction defined on B, for some pr, and

2. T'maps B,, to B,,

In order to perform the above described contraction mapping argument, we need to show

the following:
i The linearized operator at the approximate solution L( Az gorr) is invertible.
R "R

ii There is an upper bound for the inverse operator G = L;! ) as an operator

(AF” 25"
L2 (r~Ydrdf) — L? (r—tdrdf).

iii There is an upper bound for the inverse operator Gy = L, ) also when viewed as

(A%pp7¢%pp
an operator L? (r~'drdf) — Hz (Xy,rtdrdd).
iv. We can control a Lipschitz constant for (D, i.e. there exists a constant C' > 0 such that
1Qr (1) = Qr (W0)ll2 < Cpllvs =0l

for all 0 < p <1 and 9,71 € B,, the closed ball of radius p around 0 in HE (Xy).

3.5.2  The Linearization operator L4 g)

We first need to characterize the linearization operator L4 ) in general, before considering

this for the particular approximate pair (A%”, ®%2”) that we have constructed. The differen-
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tial of the G-Hitchin operator at a pair (4, ®) € Q' (Xy, Ey (h%)) @ QY0 (Xy, By (g9)) is

described by ‘ |
DHC?I<@ @rﬂﬂqu@w<ﬂ
® ['7 (I)] on P

Moreover, the differential at g = Id of the orbit map O 4 ¢) is
Aae)y = (5AV — 047", [(I)W])
and so when v € Q° (X4, Ey (h)):
Aaayy = (047 — 047, [®,9])
Therefore,

] (044 = 3a8a) 7 + (B, —7 ([B,7]) + [[8,], —7 (®)]
(DHoAae) () = ( (047 — D4, @] + 35 [,7] )

Now, take

DF (y):=D (prioHoOwae)) (v) = DH o Aae (7)
= (0404 — 0404) v + [®, =7 ([2,7]) + [[®,7], =7 (D)]]

and consider the operator Mg : Q° (X4, Ey () = Q° (X4, Eg (b)) defined by
Moy := = [@,[7 () , ] + [T (D), [, 7]
for ® € Q' (X4, Egye (m®)). Then from the identities

25A8A == F(A) —i*AA
28A5A:F(A)+i*AA
(@, 7 ([®:A))] = = [®,[7 () ,7]]

we may deduce that (i * Ay + Mg) (v) = DF (7). (For the first two identities see [33],
Propositions 1.421, 1.422; the third identity is derived by direct calculations). Now define

L(A,(I)) = AA — 1% Mg : o (X#, 1By (f))) — Qo (X#, 1By (b))

The following lemma first observed by C. Simpson in [39] provides that the linearization
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operator L4 ¢) is nonnegative. The proof given here is a modification of the proof of the

analogous statement for the case of SL(2,C) given in [29].

Lemma 3.5.1. For v € Q°(Xy, Ey (h))
(=i My,7) = 4/[@,9]]° > 0

Proof. Fixing a local holomorphic coordinate z, write ® = @dz and 7 (®) = —¢*dz. Then
[7(®),[®,7]] = [¢", [p,7]] dz A dz and — [, [7 (D) ,7]] = [p, [¢",7]] dz A dZ. Altogether, we

may write
My = ([0, [0, 7] + [0, [¢"7]]) dz A dz

The compact real form 7 : g© — g© induces an ad-invariant inner product on g%, thus we

get (0%, [0,7]],7) = |lp, ]| as well as ([, [©*,91],7) = [[¢*,7]° = |[p,~]]*. Finally, since
2ix 1= —dz Adz, we get (May,i%7) = |[p,7]|dz A dz]” = 4][p,7]]*. O

The following corollary is now immediate:

Corollary 3.5.2. If v € QY (Xy, En (b)), then

2 2
(Lawyy, )2 = lldayllz> + 412,77 > 0

In particular, Liaeyy = 0 if and only if day = [®,~] = 0.

3.6 Cylindrical Dirac-type operators and the Cappell-Lee-Miller
gluing theorem

A very useful method when dealing with surgery problems in gauge theory over manifolds
with very long necks involves the study of the space of eigenfunctions corresponding to small
eigenvalues (low eigensolutions) of a self-adjoint Dirac type operator on such a manifold (see
[13], [34], [49]). For our purposes we will make use of the Cappell-Lee-Miller gluing theorem
from [13]| and its generalization to small perturbations of constant coeflicient operators due
to L. Nicolaescu in [34]. In the latter article, a family of manifolds My for T, < T < oo
is considered, each containing a long cylindrical neck of length ~ T = [log R|, obtained
by gluing of two disjoint manifolds M3 along the boundaries of a pair of cylindrical ends.
A self-adjoint first-order Dirac-type operator 1 is then considered on a hermitian vector

bundle over each manifold M.
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The Cappell-Lee-Miller gluing theorem asserts that under suitable assumptions, the op-
erator D7 admits two types of eigenvalues, namely those of order of decay O (T!) (large
eigenvalues) and those of order of decay o (T~!) (small eigenvalues). For T — oo, the sub-
space of L? spanned by the eigenvectors to small eigenvalues is "parameterized" by the kernel
of the limiting operator ®.,. This way, the Dirac operator ®, has no small eigenvalues, if
the limiting operator ®, is invertible.

We may obtain the invertibility of L (Acrr @orr) by showing that an appropriate self-adjoint
Dirac-type operator has no small eigenvalues. Note that a punctured neighborhood on a
Riemann surface can be also thought of, using a cylindrical coordinate transformation, as
a half cylinder attached to the surface, and also an annulus in the real parameter R can
be thought of as a finite tube of length ~ T" = |log R|. Thus, the gluing of two punctured
Riemann surfaces as we described it in §3.4.2 can be thought of as the gluing of two Riemann
surfaces with cylindrical ends to get a smooth surface with a finite number of long Euclidean

cylinders of length 2 [log R|, one for each p € p. This is the set-up also considered in [42].

3.6.1 Cylindrical structures over cylindrical manifolds

In this section we include the necessary background for applying the Cappell-Lee-Miller
theorem for Zs-graded Dirac-type operators on cylindrical vector bundles, following largely
[42] and [34]; further details can be found in these articles.

Definition 3.6.1. A cylindrical (n + 1)-manifold is an oriented Riemannian (n + 1)-manifold

<N , §]> with a cylindrical end modeled by Ry x N, where (N, g) is an oriented compact Rie-

mannian n-manifold. In other words, the complement of an open precompact subset of N is

isometric in an orientation preserving fashion to the cylinder R, x N.

Definition 3.6.2. Let 7 : R, x N — N denote the canonical projection and 7 the outgoing
longitudinal coordinate along the neck. A cylindrical structure on a vector bundle E—> N

consists of a vector bundle £ — N and a bundle isomorphism

~

B

Ry xN —7F

We will use the notation E := dF. A cylindrical vector bundle will be a vector bundle
together with a cylindrical structure (19, E) Moreover, the metric g is described by g =
dr? @ g along the cylindrical end.

The cotangent bundle T*N has a natural cylindrical structure such that
OT*N =R (d7) & T*N
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Definition 3.6.3. A section 4 of a cylindrical vector bundle (E, 1§, E) will be called cylin-

drical if there exists a section u of 9. F such that along the neck
D = 7*u
We shall simply write & = 7*u and u := J,.u.

For any cylindrical vector bundle (E,@,E) there exists a canonical first order partial

differential operator J, acting on sections over the cylindrical end E ‘R xn- It is uniquely

determined by the conditions

1. 0, (fﬂ) = Z—fﬁ—kf&ﬂ, for every f € C™ (Ry x N) and u € E‘R+XN

2. 0.0 = 0 for any cylindrical section v of E ‘R+XN.

Thus, the family of cylindrical vector bundles over a given cylindrical manifold defines
a category. The vector bundles we will be considering are of the particular type described

below:

Definition 3.6.4. A cylindrical hermitian vector bundle <E H) will be called Z,-graded if

A ~ A

1. The cylindrical vector bundle E splits into the orthogonal sum E = E* @ E~ of

cylindrical vector bundles, and

2. The hermitian metric H on E is along the cylindrical end of the form H = 7 H for

some hermitian metric H on F.

Moreover, E carries a Clifford structure and let G : E* — E~ denote the bundle isomorphism

given by the Clifford multiplication by dr.

Definition 3.6.5. A cylindrical partial differential operator L: E — F between cylindrical
bundles is called a first order partial differential operator if along the neck [T, 00) x N with
T > 0 it can be written as

L=Go, +L

where L : C® (E) — C* (F) is a first order partial differential operator, £ = E v, F' = F |V
and G : E — F is a bundle morphism. We also denote L := O L.

We lastly define the family of differential operators we will be considering:
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Definition 3.6.6. Let £ — N be a Zo-graded cylindrical hermitian vector bundle. A first
order partial differential operator ® : C'*° (E) — C> <E’) is called a Zs-graded cylindrical

Dirac-type operator if with respect to the Zs-grading of E, it takes the form

D*
@:0
D 0

such that along the cylindrical end D = G (dt — D) for a self-adjoint Dirac-type operator
D:C>®(E")—= C>(E").

Recall that the Dirac-type condition asserts that the square D? has the same principal

symbols as a Laplacian. D is independent of the longitudinal coordinate 7 along the necks.
0 D+ B

D*+DB* 0 )

where B is an ezxponentially decaying operator of order 0; that means there exists a pair of

For our purposes, we will need to use the perturbed operator O+8 =

constants C, A > 0 for which
sup {|B (z)||z € [r,7+ 1] x N} < Ce "]

for all 7 € RT.

3.6.2 The Cappell-Lee-Miller gluing theorem for Zs-graded cylindrical
Dirac-type operators

We now describe the version of the Cappell-Lee-Miller theorem that we are going to use.
Let (]\71, g,») for + = 1,2 be two oriented Riemannian manifolds with cylindrical ends, where
if 7 denotes the outgoing longitudinal coordinate on the cylinder (0,00) x Ny, then —7 < 0
denotes the longitudinal coordinate on (—o00,0) X Ny. Let also E; — N; be a pair of Z,-
graded cylindrical hermitian vector bundles over the manifolds N;, and let ®; be Zo-graded
cylindrical Dirac-type operators for self-adjoint Dirac-type operators D;, ¢ = 1,2. We further

impose the following assumptions:

1. There exists an orientation reversing isometry ¢ : (N1,91) — (N2, g2) between the
manifolds, as well as an isometry v : £y — F5 of the hermitian vector bundles covering

© and respecting the gradings.

2. The operators D; are of the form D; = G; (0, — D;) along the cylindrical ends, and
G1+G2:L1—L2:O.
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We can then use the orientation preserving diffeomorphism ¢ to obtain for each 7" > 0 the
manifold Ny by attaching the region N;\ (T + 1,00) x Ny to the region N\ (—oo, =T — 1) x

N, using the orientation preserving identification
T+ 1,T+2]x Ny = [-T—2,—-T —1] x Ny
(7'71’) = (T —2T — 3790 (‘T))
The Zs-graded cylindrical hermitian vector bundles E; can be similarly glued together
providing a Zs-graded hermitian vector bundle Er = Ef & EL over the manifold Nz. More-
over, the cylindrical operators ©; combine to give a Z,-graded Dirac-type operator ® on

the bundle Er. For a pair of perturbed operators, we can also obtain a perturbed Dirac-type

operator defined on the bundle Er; let us still denote this by ®+ and write such an operator

0 D
Dy = T
Dy 0

Consider also ©; o, :=9; + ‘B, for : = 1,2 and write

0 7Dr
CDz',oo - e

We are going to need one last piece of notation to introduce:

as

Definition 3.6.7. Let € a cylindrical vector bundle over the cylindrical manifold N. We
define the extended L? space L? (N, E) as the space of all sections 4 of E, such that there

ert

exists an L? section u., of E satisfying
i — mus € L? (N, E)

The section us, is uniquely determined by u, thus the so-called asymptotic trace map is
well-defined

L* (N, E)

ext

Oso : L2 (N,E) —
H

>

Uoo

The following theorem is the version of the Cappell-Lee-Miller gluing theorem, which we

are going to apply. For a proof see [34], §5.B:

Theorem 3.6.8. Let D, be a pair of Zy-graded Dirac-type operators on the cylindrical
vector bundles E; — N; for i = 1,2 as was defined above. Suppose that the kernel K;" C
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L2, (NZ,EZ> of the operator D, « is trivial for i = 1,2. Then there exist a Ty > 0 and a
constant C > 0 such that the operator D} Dy is bijective for all' T > Ty and admits a bounded
inverse (DyDr) "« L? (Ny, Ef) — L? (Nr, Ef) with

(D7 Dr , < CT™

) e e

3.7 The linearization operator for an approximate solution

3.7.1 The elliptic complex over the complex connected sum

Into our setting, we have already noted that the complex connected sum Riemann surface Xy
can be thought of as a closed surface with a finite number of long Euclidean cylinders of length
2 |log R|. The connected sum bundle can be also thought of as a cylindrical vector bundle
over X4. For our approximate solution (A%”, ®%”) constructed over X with 0 < R < 1

and T' = —log R, consider the elliptic complex:

Ly

=5 Q' (Xy, B (5°)) © Q" (X g, By (%))

Lot

—= O (X4, Eg (h°)) & 0 (Xy, Ey (8%)) = 0

0— Q° (Xg, En (%))

where
Ll,Tﬁ)/ = <dA‘;zpp77 [(I)(Il%ppa PY])

is the linearization of the complex gauge group action and

Loz (o, ) = DH (o, ) = (dA;ppa + [®FF, =7 ()] + [, —T (q)?%pp)]>

D parrp + [, OF”

is the differential of the Hitchin operator considered in §3.5.2.
Note that in general it does not hold that Lo 7Ly = [FA%@, 7} +[[@RF, —7 (PE")] . 7] =0,
since (AR”, %) need not be an exact solution. Decomposing Q* (X4, Ey (g%)) into forms

of even, respectively odd total degree, we may introduce the Zy-graded Dirac-type operator
QT = 0 LT’T * L27T
LLT + stT 0

As R N\, 0, the curve X degenerates to a noded surface X; (equivalently the cylindrical

on the closed surface X.
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neck of X4 extends infinitely). For the cut-off functions y that we considered in obtaining
the approximate pair (A%7, ®%7), their support will tend to be empty as R \, 0, i.e. the
“error regions” disappear along with the neck N, thus (A%”, ®%*") — (Ao, ®o) uniformly on
compact subsets with

(A, @), X)\N

AP pOPPY —
(4™ %0™) {(Ar,@), XA\N

an exact solution with the holonomy of the associated flat connection in G.

For T' = oo the elliptic complex for the exact solution (Ag™, ¢™) gives rise to the Dirac-

o 0 Litls
Li+L; 0

We now describe the map L, + L more closely. Using the Hodge *-operator we can identify

type operator

@ (X5 En (07)) = Q° (X5, By (07)) and @* (X, By (67)) = Q° (X5, Ex (a7))

as well as Q! (X;, Eyn (%)) =2 Q% (X4, Ey (g°)) via the projection A — 71 A. We further
identify
(71772) € QO (X;éa EH (h@)) ) QO (X;;?EH (IJC))

with ¢, = v, + iy, € Q° (X;, Ey (gc)). The operator L; + L3 can be now expressed as the

map

Lu+ Ly O (X5, Bu (67)) © Q7 (X5, B (67)) = O (X5, B (7)) @ Q7 (X5, B (97))

Dparripy + [, —T <<1>3pp>})

Sak ( Osgovs, + [, L

3.7.2 B is an exponentially small perturbation of a cylindrical operator
0  Li+ L,

Liy+Ls 0
plex for some model solution (A™¢ & ™4 replacing (Ag™, ®5™), and for which

Consider the operator Do 1= ( ) arising similarly from the elliptic com-

dz

mod mod \ __ haied
(Amed @ )_(sz)

along each cylindrical neck. The operator D is in fact cylindrical. Indeed, introducing the

complex coordinate ( = 7 + 16, we have the identities dr = —%, df = —db, % = —d(, and
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% —= —d(. Hence the operator Ly + L (as well as the operator L} + L, similarly) can be
written as a cylindrical differential operator Ly + L% : */75(; (0- — D) with

(41, 10) % (8”/’1654) _ <(%%¢1 + [, 7 (9))]) d¢>

OrhadC (—L0p102 — (2, ¢]) dC

where

D (61, ) = 2 <%39¢1 + [ (90)])

—%a(ﬂ/& — (12, ¢
and G = (¢q,19) = \/75 (@bld&, wgdC) denotes Clifford multiplication by dr.

The following proposition asserts that the operator ®., is an exponentially small pertur-
bation of D

Proposition 3.7.1. The operator Ly + L5 can be written as Ly + L3 = L+ ﬁ; + B, where

B is an exponentially decaying operator of order 0, in the sense made precise in §3.6.1.

Proof. By construction of the approximate solution, Lemma 3.3.1 provides that we can

express

Q, Qa mo mo dz
(ARppjéRpp):(A d7q> d)+(0,4p1?>

for o, € C for some § > 0. Therefore, for the operator

_ —[¢2,T(¢1)]d5
B (¢1,12) = ( [, 1] dC )

it holds precisely that sup {|B|} < Ce . for every t € R*. O

ext

3.7.3 The space ker (L1 + L) N L? (X;) is trivial

We now restrict to the case G = Sp(4,R) in order to study the space ker (L; + L3)NLZ, (X;)
for the operator ©,, more closely. We are also taking here into consideration the particu-
lar model Higgs field we picked for the G = Sp(4,R)-Hitchin equations coming from the
embeddings ¢;.- and ¥ from §3.4.5. In other words, we fix

3C 0 0 0

— ,mod _ ¢ 0 0
e T 0 —3C 0
0o 0 -C
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Moreover, the compact real form on ¢ in this case is 7 (¢) = —¢*. We have the following:

Proposition 3.7.2. Let (¢1,19) € ker (Ly + L3) N L?

ext

(X;;) Then its asymptotic trace is
described by

a; 0 0 0 a 0 0 0
0 d 0 0 0 d 0 0

aoo y == )
(V1 02) 0 0 —a O 0 —ay 0
0 —d, 0 —dy

for constants a;,d; € C, fori=1,2.

Proof. By [34], p. 169, the space of asymptotic traces of ker (L; + L3) is a subspace of ker D
with D as defined in §3.7.2. We will check that the elements of the latter have the asserted
form. Consider the Fourier decomposition (11, y) = (Z]EZ U1;€7°, 3 e ¢2,jeijﬁ> where

A B
wi,j 65]3(4,((:) = {(C _AT> ‘A,B,O€M2xz<c>; BT:B,CT:C}7

Then the equation D (1)1, 12) = 0 is equivalent to the system of linear equations

(_%wl»j - [w*vwlj]) -0 (32)
$aj — [, Y1)

for j € Z. Since the Higgs field ¢ is diagonal, the operator D acts invariantly on diagonal,

respectively off-diagonal endomorphisms. It therefore suffices to consider these two cases

separately.
ay 0 0 0 Az j 0 0 0
0 di; O 0 0 doy O 0
Case 1. Let (¢1,j7d}2,j) = Ly , 23 , with
0 0 —ayj 0 0 0 —dag; 0
0 0 0 —dy 0 0 0 —dy

a;;,d;j € Cfori=1,2. Then Equation (3.2) is equivalent to the pair of equations

a; 0 0 0
ilo d, o 0
20 0 -—ay o0

0 0 0 —dy

=0, fori=1,2

thus the system has a non-trivial solution if and only if 7 = 0. In other words, ¥, = 91 and

g = 1y are of the asserted form.
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0 by ey Jfi 0 bay €25 fay

C1,5 0 i ; Co ;i 0 . .
Case 2. Let now (@/Jl’j,gsz) = Lj flvﬂ 91,5 : 2,5 f273 92,j

kij hy 0 —cy ko oy 0 —Caj

by mu; —b; 0 loj ma; —by; 0

with all entries in C. Then Equation (3.2) reads as the pair of equations

0 b, ey fij 0  —2by;,C —6ey;C —4fy;C
jlea; O fij 91 B 2027]‘6’ 0 —4f27jC_' —2927]-6_'
2k Ly 0 —ey | | 6keyC 41, C 0 —2¢,C

Ly mi; —bi; 0 4;,C 2my;C 2by,;C 0

and

0 by, eoj fo 0 —2b,C —6e,,C —4f,;C
Jjlec; O Jog o 925 || 20150 0 —4f;C —2g,,;C
2| ke by 0 —ey | | 6RO 4l,C 0 —2¢,C

lo; ma; —byj 0 41, ;,C 2my;C  2b,;C 0

This pair of equations is then equivalent to the equation

20 (b (0
e D)) )

and seven more similar equations for the ¢; j, e;;, fij, i, kij, lij, mij, © = 1,2. Since C' # 0,

we have that the determinant of the 2 x 2 matrix in Equation (3.3) is (%)2 +4CC > 0, and

so this system has no non-trivial solution for (b ;, by ;); the same is true for the rest seven

DO N~

equations. Therefore, there are no non-trivial off-diagonal elements in ker D and so the only

non-trivial elements are of the asserted form in the proposition. O

Lemma 3.7.3. Suppose (11,1) € ker (Ly + L3) N L2, (X}). Then

d garrip; = [, @7] = [0, (P57)"] =0
fori=1,2.

Proof. The proof is similar to the one for the case when G = SL(2,C). We adapt these steps
here to the case G = Sp(4,R) for the reader’s convenience. For a more detailed description,
see [42|, Lemma 3.11, Step 1.

By definition of the operator (L; + L%), an element (1)1, 1) lies in the kernel of this operator
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if and only if it is a solution to the system

{O = 5Agpp¢l + W}?? (cbgpp)*} (34)

0 = Oaemtha + [th1, g™

Differentiate the first equation and use that 0 arr (@) = 0 to imply that

0 — aAgppgAgpp¢1 - [aAgppwg, ((I)gpp)*]
= aAgppgAgpp¢1 + [[¢17 q)gpp] , (‘ngp)*]

From this it follows that

0 <5A8pp¢1a 77Z}1> - <8A8ppgAgpp¢1, 77/}1> — <5Agpp77/)17 5A8pp¢1>
= —|[1, 25”1 = [Dagrrin|”

and similarly
_ — 5
8 (Dpuripr, 1) = —| [, (B7)]|* — B aarwttn

Now let Xg := X\ U C, (5), where for S > 0 we denote by C,(S) the subcylinders of

pEp
points (7,9) € C, (0) with 7 > S. From Stokes’ theorem it follows that

/3 <5Agm’¢17¢1> +0 <3Ag“’1/11, ¢1> = / <dAgPP¢17¢1>
Xs

X

Letting S — oo, 91 |,—s L?-converges to its asymptotic trace 91, € Q° (St sp(4,C)),

which by the previous lemma is of the form

for a;,dy € C. Therefore, darr (0091 (00)) = 0 and so

/3<5Ag””¢17¢1> + 0 (Dpwrrihy, Y1) = 511_{120 / (dgarei)y, th1) = 0

X 0X
Xy s

This lmphes that 5A8PP’¢1 = aAgppwl = [wl, (I)gpp] = [wla <q)8pp>*] = 0.
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We may as well derive that éAgpp% = Doy = [thy, D] = [¢2, (P5™)"] = 0 by taking
the hermitian adjoint of Equation (3.4) and repeating the same arguments for the solution
(A7, — ). =

Proposition 3.7.4. The operator L, + L} considered as a densely defined operator on
L2, (X) has trivial kernel.

ext

Proof. Let (11,%5) € ker (Ly + L3) N L2

ext

(X;) From Lemma 3.7.3 we have:
d garrip; = (1, @™ = (¢, (P57)°] =0

for i = 1,2. We show that ¢); = 0 by showing that v := ¢; + ¢} € Q° (X;,u(Q)) and
§ =1 —f) € QY (X;U 1 (2)) both vanish. Choosing a holomorphic coordinate z centered

at the node of X, the Higgs field 3" in our exact solution is written

with ¢ € m®©(Sp(4,R)) = {(2 _BA

that d|y|* = 2 <dAgW%7> =0, i.e. |y] is constant on X, as well as that v (z) € ker M)
for all x € X, since it is in general Myy = [@, 7 ([®,7])] + [T (D), [®,7]]-

) |A, B € M5 (C) with A" = A4, BT:B}. We get

Now, this v () € u(2) is hermitian. It has orthogonal eigenvectors for distinct eigenvalues,
but even if there are degenerate eigenvalues, it is still possible to find an orthonormal basis
of C* consisting of four eigenvectors of v (z), thus C* = Ey, @ ... @ E,,, where ); the
eigenvalues of v (x). Assuming that v (x) is non-zero, since [p (x),~ (z)] = 0 it follows that
¢ () preserves the eigenspaces of v (z) for all z € X and so (¢ (z) v, ¢ (z)w) = (v,w) for
v,w € C% In other words, ¢ (x) ought to be an isometry with respect to the usual norm in C*,
Equivalently, o () is unitary for all x € X ;. However, for a zero xq of det ® = det p (o) dzi;
chosen on the left hand side surface X; of X; we see that

0 -3 0 0
)

(o) = & 0 1 V32 0 0

o) = Qirrx —

P 20 0 0 0 3z
0 22 V3 0

which is not unitary. Therefore, v = 0.

That 0 vanishes, as well as ¥y = 0, is proven similarly. O]
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3.74 Upper bound for L(AaRpp@%pp) n H2 (X;;)

Define the operator
DT = Ll,T + L;,T

The following proposition is an immediate consequence of the Cappell-Lee-Miller theorem
(Theorem 3.6.8) for this operator Dr using the fact that the kernel of the limiting operator
Ly + L is trivial on L2, (X} ), as was shown in §3.7.3.

Proposition 3.7.5. There exist constants Ty > 0 and C > 0 such that the operator D} Dy
is bijective for all T > Ty and its inverse (D3Dr) 1 L? (Xu) — L? (Xy) satisfies

| (D7 Dr , < CT™

)_1 Hc(L2,L2

We are finally in position to imply the existence of the inverse operator G = L(_japp ) :
R "R

L*(Xy) — L*(X4) and provide an upper bound for its norm, by adapting the analogous

proof from [42] into our case. We first need the following:

Corollary 3.7.6. There exist constants Ty > 0 and C' > 0 such that for oll T > Ty and
v € Q% (Xy, Ex (b)) it holds that

||L>{,TL17T7||L2(X#) > CT_QH’YHB(X#)

Proof. The previous proposition provides the existence of constants 7y > 0 and C' > 0 such
that for all T > Tp and v € Q° (X4, Ex (h)):

|00 ) < CT (i,

and thus
||D;DT7HL2(X#) > CT_2||7||L2(X#)

According to the definition of Dy we have

DyDr = (Lir+ Ly y) (Lir + Ly )
= L’LTLLT + LorLyr+ LiTL;,T + Lz,TL;T

as well as LopLyry = [FA“R””/Y} + [[@FP, —7 (®FP)] , 7], for sections v € Q° (X4, Ex (h)).
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For parameter T' = — log R, Lemma 3.4.4 provides the estimate
L2 Lyl ax,y < CrRT I ()
= Cre™ T||7||L2(X#)

for T-independent constants C;, 8" > 0.
Remember that the operator D} Dy acts on forms of even total degree. Now, decomposing
forms of even total degree into forms of degree zero and degree two, for a O0-form v we may

write v = 7+ 0 and thus is
LirLyry = DrDry — Lar Ly
The triangle inequality now provides that
1B Daa || o,y 2 PPz () = L2 Lyl
> CT | la(xy) = Cre™ Tl liaga, ),

which in turn for sufficiently large 7" implies the desired inequality. O

Proposition 3.7.7. There exist constants Ry > 0 and C' > 0, such that for all sufficiently

small 0 < R < Ry the operator L(A%pp @27) is invertible and satisfies the estimate

||GR7HL2(X#) < C|log R|2||7||L2(X#)

Proof. Tt suffices to show the statement for the unitarily equivalent operator (which we shall
still denote by L(A%pp@%pp)) acting on the space QY (Xy, Ey (h)) defined after conjugation by
the map v — #7. From Corollary 3.5.2 it follows for all v € QY (X4, Ey (b)) that

* a 2
(L asery — LirTar) 1,7) = 1@ A > 0

Consequently, L(A[;%pp@%pp) — L 7L 7 is a nonnegative operator. Furthermore, from the

previous Corollary we obtain the estimate:

N —2
HL<A;W’(D%7P)'Y‘ ) Z ||L17TL1,T’7||L2(X#) 2 cT ||7||L2(X#)

L?(Xy

Therefore, the operator L< A gorr) is strictly positive, and so invertible, and the norm of
R "R
its inverse is bounded above by the inverse of the smallest eigenvalue of L( Az @) thus
R "R

providing the statement of the proposition. O
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This upper bound for the inverse operator G is valid also when Gg is viewed as an
operator L? (Xy,r 'drdf) — H% (X4, r~'drdf), where H% (Xy) is the Banach space defined
by:

HE (Xy) = {7 € L*(Xy) |V, Vi € L* (Xy) }

The proof of this statement readily adapts from the proof of Proposition 3.14 and Corollary

3.15 in [42]; we refer the interested reader to this article for the details.

3.7.5 Lipschitz constants for Qg

The last step before being able to apply the contraction mapping argument described in
§3.5.1 is to control the quadratic and higher order terms ()i in the Taylor series expansion
of Fg.
The orbit map for any Higgs pair (A, ®) and any g = exp (y) with v € Q° (X#, Ex ([)(C))
is given by
Oaa) (1) =g (A, @) = (A+ g7 (0ag) — (0ag9) g1, 9" ' ®g)

thus

exp ()" A=A+ (04— 04)7+ Ra(7)
exp (=) Pexp (7) = @ + [®,7] + Rs (7)

where these reminder terms are
Ra(y) = exp (=) (Daexp (7)) — (Daexp (7)) exp (=) — (9a — Da) ¥

R (7) = exp (=) ®exp () — [®,7] — @
The Taylor series expansion of the operator Fg is then
Fr(exp (7)) = pr1 (Hr (4, ®)) + Lry + QrY

with

Qr () :=da(Ra (7)) +[®, Ra (7)] + [P, Ra(7)"]
1

5 [((04=02) v+ Ra (), (94— 04) 7+ Ra ()]

+[([®,7] + Ra (7)), ([2,7] + Ra (7))"]
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Lemma 3.7.8. In the above, let (A, ®) = (AR", ®E"). Then there ezists a constant C > 0
such that

1Qr (1) = Qr (W)l 2(x,) < CTlIM =00z (x,)
Jor all 0 < r <1 and vo,v1 € B, the closed ball of radius v around 0 in Hz (Xy).

Proof. see [42]|, Lemma 4.1. O

3.8 Gluing theorems

The necessary prerequisites are now in place in order to apply the contraction mapping
argument described in §3.5.1 and correct the approximate solution constructed into an exact
solution of the Sp(4,R)-Hitchin equations.

Theorem 3.8.1. There exists a constant 0 < Ry < 1, and for every 0 < R < Ry there exist
a constant op > 0 and a unique section v € Hy (Xy,u(2)) satisfying ny||H%<

that for g = exp (v):

Xy) < OoR, 80

(A, Py) = g" (AR”, OF")
is an exact solution of the Sp(4,R)-Hitchin equations over the closed surface X.

Proof. We show that for op > 0 sufficiently small, the operator T' from §3.5.1 defined by
T (y) = —Gr (H (AR, ®3")) + Qr (7)) is a contraction of B,,, the open ball of radius ox.
From Proposition 3.7.7 and Lemma 3.7.8 we get

1T (7 — ’YO)HH%(X#) = [|Gr(Qr () — Qr (’YO))HH%(X#)
< C(log R)*|Qn (1) = @r (1)l 2(x,.)
< C(log R)’og|v — ”YOHH%(X#)
Let ¢ > 0 and set oz := C '[logR|™>°. Then for all 0 < R < e ' it follows that

C(log R)’0r < 1 and therefore T is a contraction on the ball of radius .

Furthermore, since Qg (0) = 0, using again Proposition 3.7.7 and Lemma 3.7.8 we have

17 ()l (x,) = G (or1 (M (AR, ®5°) )
< C(log R)*[lpry (Hr (A", @5")) 12 x,)
< C(log R)*R*
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Thus, when Ry is chosen to be sufficiently small, then ||T(0)||H%(X#) < 150g, for all 0 <
R < Ry and for the above choice of og; thus the ball B,, is mapped to itself by 7. n

Remark 3.8.2. The analytic arguments developed in the preceding sections provide also that
the Main Theorem 1.1 in [42] also holds for solutions to the Sp(4,R)-Hitchin equations. In

particular, we have the following:

Corollary 3.8.3. Let (X, .Jy) be a Riemann surface with nodes at a finite collection of points
p C 3. Let (Ag, o) be a solution to the Sp(4,R)-Hitchin equations with logarithmic sin-
gularities at p, which is obtained from a solution to the SL(2,R)-Hitchin equations via an
embedding p : SL(2,R) — Sp(4,R) that maps a copy of a maximal compact subgroup of
SL(2,R) into a mazimal compact subgroup of Sp(4,R). Suppose that there is a model solu-
tion near those nodes which is of the form described in §3.1. Let (2, J;) be a sequence of
smooth Riemann surfaces converging uniformly to (X, Jy). Then, for every sufficiently large
i € N, there exists a smooth solution (A;, ®;) on (X, J;), such that (A;, ®;) — (Ao, Pg) as

i — 00, uniformly on compact subsets of Y\p.

Theorem 3.8.1 now implies that for 0 := Ai;l, the Higgs bundle (E# = (E#, 5) ,<I>#) is a
polystable Sp(4,R)-Higgs bundle over the complex connected sum X4. Collecting the steps

from all sections in this chapter, we now have our main result:

Theorem 3.8.4. Let Xy be a closed Riemann surface of genus g1 and Dy = {p1,...,ps}
be a collection of s-many distinct points on X;. Consider respectively a closed Riemann
surface Xy of genus go and a collection of also s-many distinct points Dy = {q1,...,qs} on
Xy. Let (B, ®1) — X1 and (Ey, ®3) — Xy be parabolic stable Sp(4,R)-Higgs bundles with
corresponding solutions to the Hitchin equations (Ay, ®1) and (Ay, ®3). Assume that these
solutions agree with model solutions (Af;‘zd ,@f;‘)‘zd ) and <A§fgj’_d , (IJQIT;?d) near the points p; €
D, and q; € D, and that the model solutions satisfy (Aff;:d : <I>ff;‘;d) = — (A;;jd ,CDQIZ‘;d >,
for s-many possible pairs of points (pi,q;). Then there is a polystable Sp(4,R)-Higgs bundle
(Ey, ®y) — Xy, constructed over the complex connected sum of Riemann surfaces Xy =

Xi#Xs, which agrees with the initial data over X4\ X, and Xu\Xs.

Remark 3.8.5. In §3.4.5 we checked that for the particular parabolic Sp(4,R)-Higgs bundles

arising from representations ¢;,., and v, the main assumption in the theorem does apply.

Definition 3.8.6. We call an Sp(4,R)-Higgs bundle constructed by the procedure developed
in this chapter, a hybrid Sp(4,R)-Higgs bundle.
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CHAPTER 4

TOPOLOGICAL INVARIANTS

So far we were able to construct a polystable Higgs bundle over a complex connected sum
of Riemann surfaces by gluing stable parabolic Higgs bundles over Riemann surfaces with
a divisor. We are now dealing with the problem of identifying the connected component of
the moduli space a hybrid Higgs bundle lies, given a choice of stable parabolic ingredients
to glue. For this, we need to look at how do the Higgs bundle topological invariants behave
under the complex connected sum operation. As an application, we see that under the
right initial choices for the gluing data, we can find model Higgs bundles in the exceptional
components of the maximal Sp(4,R)-Higgs bundle moduli space; these models are described
by the hybrid Higgs bundles of Chapter 3. More importantly, this allows for the first time a
comparison between the Higgs bundle invariants and the topological invariants for Anosov
representations established by O. Guichard and A. Wienhard in [22].

4.1 Degree of a connected sum bundle

Let X; and X5 be closed Riemann surfaces with divisors D; and D5 of s-many distinct points
on each, and let V4, V5 be two parabolic principal H®-bundles over X;, X, respectively.
Assume that the underlying smooth bundles V;,V, come equipped with adapted hermitian
metrics hy, hy. In Chapter 3 we described the construction of the smooth hermitian bundle
(V1#Vy, hy) over the complex connected sum Xz of X; and X,. The hermitian metric hy
coincides with hy and hs in a neighborhood of X;\Q and X5\ respectively, where 2 is the
neck region in the connected sum construction. Next, we equipped this hermitian bundle
with a holomorphic structure obtained through the arguments in §3.5-3.8. We have the

following;:

Proposition 4.1.1. Let Xy = X # X5 be the complex connected sum of two closed Riemann
surfaces X1 and Xo with diwvisors Dy and Dy of s-many distinct points on each surface, and
let Vi,V be parabolic principal HC-bundles over X, and X, respectively. For a parabolic

subgroup P C HC, a holomorphic reduction o of the structure group of E from H® to P and
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an antidominant character x of P, the following identity holds:

deg (Vi#V%) (0, x) = pardeg,, (V1) (o, x) + pardeg,, (V2) (o, x)

Proof. Consider smooth metrics A, hy on the principal H®-bundles Vi, Vs defined over X,
and Xs, which coincide with the adapted metrics hy, ho on X7\ D;, X5\ Do respectively.

For v > 0, let X;, = {zx € X;|d(x,D) >e "} and B;, = X;\X,,, for i = 1,2. For a
holomorphic reduction ¢ and an antidominant character x, the metrics h;, h; induce metrics
hir, hir on (Vi)o,L with curvature Fj,, 1 and Fj, 1, respectively. Similarly, the smooth metric

hy on Vi#V, induces a metric hy 1, on (Vi#V3), ; with curvature Fp,.p- We now have:

deg (Vi3 (0.1) = Y / (o)

V=1 V-1
=5 | Fhrso) +—/ (Fha,s8a) + =5 — / (Fhyos 80)
X1,0 X#\ (X1 UUXQU)
Now notice:
-1 -1 -1
S [ B = B =52 [ ()
m T T
Xlu X1 Blv
and
-1
S [ Brnesa) = des (V1) (00
X3

similarly for the integral over X, ,. Therefore, for every v > 0:

deg (Vi#V2) (0, x) = deg (V1) (0, x) — \/2—__1 (Fhy.L, 56) + deg (V) (7, X)

B,y
v—1 v—1
T o (Fho,Ls o) + Tor / <Fh#,L7 Sa>
BQ,'L) X#\ Xl UUXQ'U

Passing to the limit as v — 400, the last integral vanishes, while each integral over B; , for
1 = 1,2 converges to the local term measuring the contribution of the parabolic structure
in the definition of the parabolic degree (see Lemma 2.10 in [5]). The desired identity now
follows. O

Proposition 4.1.1 implies in particular that the complex connected sum of mazimal parabolic
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Sp(4,R)-Higgs bundles is a mazimal (non-parabolic) Sp(4,R)-Higgs bundle. This is the ana-
logue in the language of Higgs bundles of the additivity property for the Toledo invariant

from the point of view of fundamental group representations (Proposition 1.4.5).

4.2 Model Higgs bundles in the exceptional components of
MM (X Sp(4,R))

4.2.1 Model maximal parabolic Sp (4, R)-Higgs bundles.

Let X be a compact Riemann surface of genus ¢ and let the divisor D := {xy,...,z4} of
s-many distinct points on X, assuming that 2g — 2 + 2s > 0. Fix a square root of the
canonical bundle, that is, a line bundle L — X, such that L? = K and consider

E=(Le)"®L

where « = Ox (D) is the line bundle over the divisor D. Assign a parabolic structure on
E given by a trivial flag E,, D {0} and weight % for every x; € D. Moreover, for any
qge H* (X, K?®1), let

0(q) = (2 ;) € H(X,End(E) ® K ® 1)
be the parabolic Higgs field on the parabolic bundle E. The authors in 7] show that the pair
(E,6(q)) is a parabolic stable Higgs bundle of parabolic degree zero. Under the non-abelian
Hodge correspondence for non-compact curves, there is a tame harmonic metric on the bundle
E. Moreover, it is shown in [7] that parabolic Higgs bundles of the type (E, 6 (q)) defined
above, are in 1-1 correspondence with Fuchsian representations of n-punctured Riemann
surfaces. This also implies that the holonomy of the flat connection on X corresponding to
(E,0(q)) is contained (after conjugation) in SL(2,R).

As was done in the non-parabolic case |9], we shall use embeddings of SL(2,R) into Sp(4,R),
in order to obtain model parabolic Sp(4,R)-Higgs bundles:

FEzample 4.2.1. Consider the parabolic Sp(4,R)-Higgs bundle (Vi, 1, 71) which is induced by
the embedding through ¢;,, from §1.4 of the model parabolic SL(2,R)-Higgs bundle (E, 6 (q)).
Under the preceding terminology, the bundle V; — Xj is then described as:

Vi=(LP@) @ (Lo
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and it comes equipped with a parabolic structure defined by a trivial flag (V1), D {0} and
weight % for every z; € D.
Moreover, V; can be expressed as V; = Ny @& Ni K. Indeed, for Ny = L? ® + we see that:

NiK=(L*®) @K=L"R¢(@ L= (L@
It can be checked that this is a parabolic stable Sp(4,R)-Higgs bundle. Also notice that

par deg Vi = par deg (L3 ® L) + par deg (L ® )"

:39—3+s+§+1—g—s+§:2g—2+s.

Therefore, (V1,01,71) € Mpix(X,Sp(4,R)) is a model mazimal parabolic Sp(4,R)-Higgs
bundle.

Ezample 4.2.2. Consider the parabolic Sp(4,R)-Higgs bundle (V3, 85, 72) which is induced by
the embedding through ¢ from §1.4 of the model parabolic SL(2,R)-Higgs bundle (E, 6 (q)).
Under the preceding terminology, the bundle V5, — X is then described as:

Vo=L®L

and it comes equipped with a parabolic structure defined by a trivial flag (V2), D {0} and
weight % for every z; € D.
Moreover, V5 can be expressed as Vo = Ny @ N3 K. Indeed, for Ny = L we see that:

NK=L"'"9K=1L
It can be checked that this is a parabolic stable Sp(4,R)-Higgs bundle. Also notice that

par deg Vo = 2par deg L = 2 (g— 1—}—%) =29—2+s

Therefore, (V, 82,72) € Mpex(X,Sp(4,R)) is a model mazimal parabolic Sp(4,R)-Higgs
bundle.

In light of Proposition 4.1.1 we now derive that the polystable hybrid Sp(4,R)-Higgs bundle
constructed, (V#, Dy, hy, 5), is mazrimal:

Proposition 4.2.3. The hybrid Higgs bundle (V#, Dy, hy, 5) constructed by gluing the maz-
imal parabolic Higgs bundles (Vi, B1,71) and (Va, fa,v2) described above is mazimal, i.e.
deg(Vy) =2(g1+92+s—1) —2 = 29 — 2, where g is the genus of the Riemann surface

Xy, the connected sum of the s-punctured Riemann surfaces X, and Xs.
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4.2.2  Gluing the Cayley partners.

Let Xy = {¢}} (resp. X, = {¢%}) the holomorphic transition functions defining the
Riemann surface X; (resp. X), with respect to an atlas A; (resp. Ap). Then ( }j)/ is
nowhere zero. Set

th = (¢1,) o &}

and now these define the tangent bundle Ty, = {t}]} Since t% is well-defined, we now get:
ij

U;NU;

« -1
Ky, =Ty, = {1 = (th) '}
and similarly for the Riemann surface X,
« -1
Ky, =T, = {18 = (&)}

The transition functions ¢;;, ¢7; from the atlas A = A,

the gluing region, the annulus 2. Thus

x:U Ay
1 o 2 . .

, Ly () = li];(x) over x € ). Considering a cover
ViUV, of €0, we can define a line bundle isomorphism [ : VNV, — C* and now the 1-cocycles

x; of Xy must agree on

11,121 define the connected sum canonical bundle

Kx, = Kx,#Kx,

Now, take the maximal parabolic model (Vi, 51, 71) described in the previous section. Fix

another square root M, of the canonical line bundle Kx,. Now, define:

Wi=VioM =[(Li®) & (Li®)] @M
=[(Li®)e (L?®)] @M = (Kx, @) ® (Kx, ®@¢)

i.e. Wy is of the form £ @& L* for £ := Kx, ® ¢ and also the map 13 ® Iy : Wi — Wy is an
isomorphism, which comes from the fact that v, is, as follows of the proof of the Milnor-Wood

inequality in the parabolic case.
Therefore, the bundle Wy — X is determined by an O (2)-cocycle {wl;} with

det {wéﬁ} =1.

Similarly, for the maximal parabolic model (V3, 82,72) we fix another square root M, of
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the canonical line bundle Ky, and define:
W2 - ‘/2*®M2 = (LQ@LQ)*®M2 = L;MQ@L;M2

i.e. Wy is of the form £ & L£* for £ := O.
Therefore, the bundle W, — X, is determined by an O (2)-cocycle {w?2;} with

det {w?xﬁ} =1.

As was done in §3.4.3, let 1-cocycles around each puncture x; € D for the bundles W, W,

over the annulus €2 = Q; ~

w; - U10U2—>GL(4,C)

v gt (x) - m ()

while {m; ()} = M,. At this point, we are using the 1-cocycles that define the connected
sum canonical bundle Kx,.

For an induced hermitian metric on Wy, using the Gram-Schmidt process one can obtain
an orthonormal local frame over €2y, such that the associated 1-cocycle w; is SO (2)-valued.
We may use the isomorphism W, |q, = W, lo, induced by the two isomorphisms between
the V; and M; described before, to glue the bundles over ) subordinate to the covering
U, U Us,. For the 1-cocycle over the connected sum bundle W;#W, we also have:

det {wfﬁ} =1

Thus, the first Stiefel-Whitney class w; (W) vanishes, and so Vy = Ny © N Kx, with
Ny = N1#N,. Moreover, this provides that the Cayley partner W, of V. decomposes as
Wy =Ly ® L;l for some line bundle L,. We thus have established the following:

Proposition 4.2.4. The hybrid Higgs bundle (Vy, ®y) constructed by gluing the mazimal
parabolic Higgs bundles (V1, B1,71) and (Va, Po,ve) of §4.2.1 is mazimal with a corresponding
Cayley partner Wy for which wy (Wy) =0 and Wy = Ly @ L;, for some line bundle Ly
over Xy.

Remark 4.2.5. Compare this result to Proposition 5.9 in [22], where an analogous property

for the Stiefel-Whitney classes of a hybrid representation was established.

The degree of this line bundle Ly fully determines the connected component a hybrid
Higgs bundle will lie:
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Proposition 4.2.6. For the line bundle Ly appearing in the decomposition Wy = Ly @L;l
of the Cayley partner, it is
deg (Ly) = pardeg Kx, ® 11

where 11 = Ox, (D1).

Proof. The identity of Proposition 4.1.1 now applies to provide the computation of the degree
for the bundle Ny appearing in the decomposition Vy = Ny @ Nj Kx,,:

deg (Ng) = par deg (L} ® t1) + par deg (L»)

S s
=3 —DHs+otem-1+7

=g+20 —3+s

where g := g1 + g2 + 5 — 1 is the genus of X4.
1 1
Considering Ny ® L * for some Lo = K now gives

1
deg(N#®L02)=g+2gl—3+s+1—g
=201 +s—2
=—x(21) =pardeg Kx, ®

where ¢; = Ox, (D1). O

Therefore, we have constructed a holomorphic vector bundle V. — X with deg (V) =
2g —2 and Vy = Ny & N4Ky, with deg <N# ® Ly %> — 291 — 2+ s, which is odd (resp.
even) whenever s is odd (resp. even). The contraction mapping argument of §3.5-3.8 will
provide a holomorphic structure 0 with respect to which (V#, 5) is a polystable Sp(4,R)-
Higgs bundle. The numerical information we already have for the topological invariants of

Vy is preserved and it identifies the connected component of the maximal moduli space the
tuple (V#,q),h#,é) will lie.

Remarks 4.2.7. 1. The component a hybrid Higgs bundle lies depends on the genera and
the number of points in the divisors of the initial Riemann surfaces X; and X5 in
the construction; there are no extra parameters arising from the deformation of stable
parabolic data to model data near these points, or the perturbation argument to correct

the approximate solution to an exact solution.

2. The gluing of two parabolic Higgs bundles of the same type as the model (V3, 51,71)
from Example 4.2.1 implies that deg (Ng) = 3g — 3. On the other hand, the gluing of
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two parabolic Higgs bundles of the same type as (Va, 52, 72) from Example 4.2.2 implies
that deg (Ny) = g — 1, as expected.

3. As was described in §1.5, for a hybrid representation p : m (X) — Sp(4,R) there is
a well defined Euler class with values e (e @ p, Ly) = —x (%)) [X] € H*(T'%,Z). In
addition to Proposition 1.5.5, which describes a relation between the Stiefel-Whitney
classes for maximal Sp(4,R)-Higgs bundles and the Stiefel-Whitney classes for Sp(4,R)-
representations, we deduce that in the case of Riemann surfaces with s = 1 point in
the divisors, the degree deg (L) of the underlying bundle Ly in the decomposition
of the Cayley partner W, = Ly @ L; of a hybrid Sp(4,R)-Higgs bundle equals the
Euler class e (¢ ® p, L) for the hybrid representation, although these invariants live

naturally in different cohomology groups.

In conclusion, since 1 < ¢; < g1 + g2 — 1, it follows that
_1
3§deg<N#®L02) <29g—s5—2

with s an integer between 1 and g — 1. Therefore, the hybrid Higgs bundles constructed
are modeling all exceptional 2g — 3 connected components of M™* (X Sp(4,R)). These
components are fully distinguished by the degree of the line bundle Ly for the hybrid Higgs
bundle constructed by gluing.
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