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Abstract

Students who wish to learn a specific skill have increasing access to a growing number

of online courses and open-source educational repositories of instructional tools, including

videos, slides, and exercises. Navigating these tools is time consuming and the search itself

can hinder the learning of the skill. Educators are hence interested in aiding students by

selecting the optimal content sequence for individual learners, specifically which skill one

should learn next and which material one should use to study. Such adaptive selection

would rely on preknowledge of how the learners’ and the instructional tools’ characteristics

jointly affect the probability of acquiring a certain skill. Building upon previous research on

Latent Transition Analysis and Learning Trajectories, we propose a multilevel logistic hidden

Markov model for learning based on cognitive diagnosis models, where the probability that

a learner acquires the target skill depends not only on the general difficulty of the skill and

the learner’s mastery of other skills in the curriculum, but also on the effectiveness of the

particular learning tool and the its interaction with mastery of other skills, captured by

random slopes and intercepts for each learning tool. A Bayesian modeling framework and an

MCMC algorithm for parameter estimation are proposed and evaluated using a simulation

study.
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Chapter 1

Introduction

With the increasing popularity of online and open source education, such as massive online

open courses (MOOCs), we start to see a plethora of online instructional tools targeting

the learning of the same skill. Platforms such as OpenEd align instructional resources such

as videos, games, and assessments to fine-grained learning objectives, such as the Common

Core State Standards. Intelligent tutoring systems (Vanlehn, 2006) usually provide learners

with a sequence of tasks for learning a target skill, with interactive feedback to aid problem

solving and concept acquisition. A search on OpenEd for instructional tools targeting the

learning of “Grade 7 Mathematics: Expressions and Equations” returned over 50 available

videos, games, assessments, and so on.

With a massive amount of educational resources available online to the broad audience,

people from different regions and backgrounds all receive the opportunity to take the same

courses. However, due to the sheer volume of available materials, it is practically unfeasible

for learners to navigate through all available materials for a course. A lot of MOOCs have

reported having high attrition rate of registered students, usually with less than 10% of stu-

dents who registered and completed the course. Using a survey for students who dropped

out of an online course, Gütl, Rizzardini, Chang, and Morales (2014) analyzed the poten-

tial reasons for the low retention rate of MOOCs. A majority of students suggested that

insufficient time, unchallenging tasks, or overly difficult contents were part of the reasons for

their drop-out. To maximize the students’ interest and the learning efficiency with a limited

amount of time, educators are interested in evaluating the effectiveness of different materials

for a student and tailoring the course content to the student’s level based on his or her needs.
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Such individualized learning is often achieved through an adaptive recommendation strategy

(Chen, Li, Liu, & Ying, 2017), where materials are sequentially selected and recommended

to the student based on currently available information. Chen, Li, et al. (2017) suggested

that a good recommendation strategy should utilize the information about both the learner

and the instructional tool to maximize the gain (e.g., learning efficiency), thus in the present

paper, we aim at developing a learning model that simultaneously estimates the student’s

progress over time and evaluates the efficiency of different learning materials.

At each stage of the learning process, a student’s ability at that time point cannot

be directly observed. Instead, it is often measured by test items following some kind of

item response model, enabling us to measure the student’s latent ability. Compared to item

response theory models assuming one or a few continuous latent traits, cognitive diagnosis

models assume students’ mastery of different skills is discrete (e.g., dichotomous), hence

allowing the computationally efficient simultaneous measurement of more fine-grained skills

in the curriculum. Therefore, in the current paper, we consider assessing the students’

learning progress under the cognitive diagnostic modeling framework.

In the next sections of the paper, we will briefly introduce cognitive diagnosis models

and hidden Markov models based on cognitive diagnosis models, provide an introduction

of our current model, present a Bayesian estimation framework as well as the estimation

algorithms, show the results from a simulation study on the proposed model, and, lastly,

discuss the potential implications of the current model and some future directions.

1.1 Learning Models Based on Cognitive Diagnosis

Cognitive diagnosis models (CDMs), or Diagnostic Classification Models (DCMs; Rupp,

Templin, & Henson, 2010), are restrictive latent class models measuring test takers’ mastery

of various skills based on their responses to test questions/items. These models are designed

to identify students’ strengths and weaknesses in learning, providing guidance for personal-
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ized, targeted remedy and support. Under a CDM, a test takers’ underlying mastery status

on a set of skills is usually denoted by a dichotomous vector α = [α1, . . . , αK ]′, with αk = 1

indicating mastery on skill k and αk = 0 indicating non-mastery. The probability of correct

response on an item j depends on the student’s mastery status on attributes required by the

item, captured by a J×K Q-matrix, with qjk = 1 if successful answering of item j depends on

the student’s mastery of skill k, and 0 otherwise. How the probability of a correct response is

influenced by the mastery of required attributes depends on the specific CDM. Many CDMs

have been previously proposed (e.g., Junker & Sijtsma, 2001; de la Torre, 2011; Henson,

Templin, & Willse, 2009; von Davier, 2008). One of the simplest and most commonly used

CDM is the deterministic input, noisy-“and”-gate (DINA; e.g., Macready & Dayton, 1977;

Junker & Sijtsma, 2001) model, under which, the probability of a correct response is given

by

P (Xij = 1 | αi, sj, gj, qj) = (1− sj)ηijg
1−ηij
j , (1.1)

where ηij =
∏K

k=1 α
qjk
ik is the ideal response, indicating whether subject i possesses all required

skills to answer item j correctly, and sj and gj are the slipping and guessing parameters.

Intuitively, the DINA model describes the case where a subject needs to have mastered

all requisite skills of an item to be able to answer the item correctly with high probability

(1− sj). Missing any of the item’s requisite skills would result in a probability of a correct

response of gj instead.

Whereas traditional research on CDMs focused on the assessment of the students’ mas-

tery at a single time point, there is increasing interest in assessing the students’ progression

of attribute mastery over time. Li, Cohen, Bottge, and Templin (2015) combined latent tran-

sition analysis (LTA; Langeheine, 1988; Collins & Wugalter, 1992) with the DINA model to

estimate the students’ mastery change in a longitudinal setting. At each wave, a students has

a probability of transitioning from non-mastery to mastery, or from mastery to non-mastery,

on each skill. The transitions on different skills are assumed to be independent. Using the

estimated transition probabilities between mastery and non-mastery on each skill between
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waves, they compared the effectiveness of two different learning interventions.

Chen, Culpepper, Wang, and Douglas (2017) generalized Li et al.’s (2015) model to the

case where attribute transitions are not necessarily independent — that is, instead of mod-

eling the attribute-wise transitions and multiplying them to get the pattern-wise transition

probabilities, they directly modelled the transition probabilities between different skill pat-

terns. Different models for learning, including the most general unrestricted model and the

monotonic model (i.e., where the probability of transitioning from mastery to non-mastery is

0), were introduced, and the cardinalities of the sets of all possible trajectories were derived.

Wang, Yang, Culpepper, and Douglas (2016) proposed the Hidden Markov Diagnostic

Classification Model (HMDCM) with higher-order covariates affecting the learning outcome.

Given the attribute pattern of subject i at time t, αi,t = [αi,1,t, . . . , αi,K,t]
′, the logit of the

probability of transitioning from non-master to master on attribute k is

logit[P (αi,k,t+1 = 1 | αi,k,t = 0,αi,t)] = λ0 + λ1θi + λ2
∑
∀k′ 6=k

αi,k′,t + λ3

t∑
m=1

Jt∑
j=1

qj,m,k. (1.2)

In this model, θi was used to denote the overall, time-invariant learning ability of subject i.

The term
∑
∀k′ 6=k ai,k′,t represents how many attributes subject i has already acquired other

than attribute k, and
∑t

m=1

∑Jt
j=1 qj,m,k denotes the number of items involving skill k that

the student has completed at previous time points, in other words, the amount of practice

so far on attribute k. By using a higher order logistic model for the transition probabilities

in the hidden Markov model, the effect of different factors on the probability of learning a

skill can hence be examined.

1.2 Current Model

The higher-order hidden Markov modeling framework developed by Wang et al. (2016) pro-

vides a flexible tool for modeling the effect of different covariates, both of the learners and of

the instructions, on the outcome of learning. We hence adopt this framework and formulate
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our current model as follows.

Similar to Wang et al. (2016), we assume that the learning process is monotonic, with

the probability of transitioning from mastery to nonmastery equal to 0 for all time points

and all skills. At a certain time point, t ∈ {0, . . . , T}, a student i ∈ {1, . . . , N} is assigned to

learn a skill k ∈ {1, . . . , K}, by receiving an instructional tool l ∈ {1, . . . , Lk} targeting the

learning of skill k. Here, the set {1, . . . , Lk} is used to denote the collection of all instructional

tools, including exercises, slides, videos, or games, that can have an effect on the learning of

skill k. We let the attribute pattern of subject i at time t be αi,t, then the probability that

the subject masters skill k at time t+ 1 is

P (αi,k,t+1 = 1 | αi,t,γk,Uk,l) =


1 αi,k,t = 1,

exp (λ0,k,l+
∑

k′ 6=k λk′,k,l·αi,k′,t)

1+exp (λ0,k,l+
∑

k′ 6=k λk′,k,l·αi,k′,t)
αi,k,t = 0.

(1.3)

where

λ0,k,l = γ0,k,0 + U0,k,l, λk′,k,l = γk′,k,0 + Uk′,k,l, (1.4)

with Uk,l =



U0,k,l

U1,k,l

...

U(k−1),k,l

U(k+1),k,l

...

UK,k,l



∼ M.V.N.

0,Σk =


τ 20 . . . τ0K
...

. . .
...

τ0K . . . τ 2K


 . The γs are used to repre-

sent the fixed effects for a skill, and the Us are used for the random effects of the individual

learning materials. More specifically, γ0,k,0 denotes the overall log-odds that a learner with

no mastered skills switches from nonmastery to mastery on skill k after learning a material

targeting k, and U0,k,l is the incremental “approachabiliy” of material l on learning k, which

either increases (U0,k,l > 0) or decreases (U0,k,l < 0) the log-odds of acquiring skill k. In

addition, because the learning of one skill may depend on the previous mastery of another
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related skill, we also considered the mastery of other skills as a covariate of the learning of

skill k. Thus, fixed and random slopes for each skill other than k, denoted k′, were intro-

duced. We used γk′,k,0 to denote the overall effect of mastery of k′ on the learning of k, and

Uk′,k,l was used to represent material l’s additional “reliance” on skill k′.

Intuitively, the fixed intercepts, γ0,k,0s, tells us the overall probability of learning a skill

k for learners who haven’t mastered any skills, without consideration of the material’s char-

acteristics. Since different learning materials can differ in their approachability (e.g., one

material may be easily understood by students without backgrounds, whereas another does

not), the random intercepts, U0,k,ls were introduced to capture each material’s approach-

ability. The fixed slopes, γk′,k,0s, tells us overall, how much does the mastery of k′ affect

the learning outcome of k. While some skills may be relatively independent, others could

be strongly related. For instance, it is usually perceived that the mastery of addition is a

prerequisite to understanding multiplication. Therefore, the mastery of addition can have

a strong influence on whether a learner could understand multiplication. Lastly, different

learning materials can rely on the mastery of other skills at different degrees. As an exam-

ple, we consider two video lectures on multivariate statistics, with the first one providing

an introduction to linear algebra and the second one jumping directly to the matrix-based

derivations of multivariate distribution means and variances. The first video would require

much less previous background on linear algebra than the second. Another example is the

instruction of the same skill with different approaches: We could have two instructional tools

teaching the students about the “right-hand rule” in electromagnetism, with the first one

teaching the students how to use their right hand to determine the direction of the magnetic

force, and the second one explaining how the rule works based on vector cross products.

The former would barely require any background knowledge, while the latter would require

some background in linear algebra. For this reason, we introduce the random slopes for each

specific learning material, Uk′,k,ls, indicating to what extend would a specific material l rely

on prior mastery of k′ in the process of learning k.
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We treat the slope and intercept of different learning materials as random effects for

several reasons: First, educators are often interested in evaluating different interventions’

effectiveness. Under our model, the random intercepts can directly be used to compare dif-

ferent materials’ overall effectiveness to students in the baseline group (i.e., αi = 0), and

to get the materials’ effectiveness for other groups, the effectiveness could be calculated as

the random intercept plus the random slope for that material. Second, for the multilevel

model, the distribution of the random effects is modelled with a multivariate normal dis-

tribution. In the learning context, we may assume that the approachability of a material

could be related to the degree of its requirement of a specific prerequisite. For example, a

material deemed to be “harder” for students with none of the mastered skills may have a

high requirement on another skill. Therefore, we use the covariance matrix of the learning

material’s random effects to capture potential relationships between different characteristics

of learning materials.

Under the current model, a confirmatory approach is taken — that is, at time t, if the

students were assigned a material targeting a specific skill, k, then we assume that only the

mastery status on skill k can change from time t to time t + 1. Here, we focus on the case

of one target skill only per material. In that case, given the attribute pattern at time t,

αi,t, the probability of transitioning to pattern αi,t+1 after receiving a learning material l

targeting skill k is

P (αi,t+1 | αi,t) =


P (αi,k,t+1 = 1 | ·)αi,k,t+1 [1− P (αi,k,t+1 = 1 | ·)]1−αi,k,t+1 , if αi,[k],t = αi,[k],t+1,

0, otherwise.

(1.5)

In the equation above, P (αi,k,t+1=1|·) = P (αi,k,t+1 = 1 | αi,t,γk,Uk,l) denotes the conditional

probability of mastering a skill after learning, as given in equation (1.3).

The transition model in equation (1.3) is used to describe the changes of the students’ attribute

patterns across time. However, the students’ latent mastery status cannot be directly observed and

needs to be measured using assessment items. In our design, we assume that for each student at
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each time point, a set of Jt items are administered to them to assess their mastery of skills in the

curriculum. For simplicity, in the current study we used the DINA model in equation (1.1) for the

responses. However, the modeling framework can be extended to other CDMs by swapping the

DINA measurement model with other CDMs, such as the reduced Reparameterized Unified Model

(rRUM; Hartz, 2002) or the generalized-DINA (G-DINA; de la Torre, 2011) model.
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Chapter 2

Model Estimation

2.1 Bayesian Formulation

Similar to Wang et al. (2016), a Bayesian modeling framework is used to estimate the parameters

of the proposed model. Let p(π), where π = [π1, . . . , π2K ] denotes the prior distribution of the

population membership probabilities of each attribute pattern at the initial stage, t = 1, let p(γ) be

the prior distribution for the fixed effects, and let p(Σ) be the prior distribution for the covariance

of the random effects, denoted as Σ = [Σ1, . . . ,ΣK ], where Σk represents the covariance matrix

of the random effects of materials for skill k. We further use kit and lit to denote the skill and

material given to student i at time t, respectively, and let X = [X1, . . . , XT ] represent the observed

response data across all time points, where Xt is the N × Jt response matrix of all the N learners

at time t. Then the joint likelihood of the observed responses, learning materials’ random effects,

latent attribute patterns, population membership probabilities, the DINA model item parameters,

the learning model’s fixed effects, and the covariance matrices of the random effects is

L(X,α,U,π,Σ,γ, s,g) =
N∏
i=1

{
πcP (Xi1 | αi,1 = αc, s,g)

×
T−1∏
t=1

[
P (αi,t+1 | αi,t,γkit , Ukit,lit)P (Xi,t+1 | αi,t+1, s,g)

]}
×

K∏
k=1

Lk∏
l=1

[
P (Uk,l | Σk)

]
p(π)p(γ)p(Σ). (2.1)
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Based on this formulation, a learner i’s attribute pattern at the initial time point, αi,1, follows a

multinomial distribution, i.e.,

P (αi,1 = αc) =
2K∏
c

π
I(αi,1=αc)
c , (2.2)

where the prior for the population membership probabilities at the initial time point is

π = [π1, . . . , π2K ] ∼ Dirichlet(δ0). (2.3)

We further assign the following priors to the fixed effects,

γ0,k,0 ∼ N(0, 1) (2.4)

γk′,k,0 ∼ log-normal(−.5, .5) (2.5)

for ∀k and ∀k′ 6= k.

For the random effects Uk,l ∼ M.V.N.(0,Σk), we assume for all k, the prior for the covariance

is given by the Inverse-Wishart distribution, where

Σ−1k ∼Wishart(S, ν), (2.6)

with S being the scale matrix and ν the degrees of freedom.

Lastly, adopting the methods in Culpepper (2015), we assign a truncated Beta prior distribu-

tion to the DINA model item parameters, i.e.

p(sj , gj) ∝ sas−1j (1− sj)bs−1g
ag−1
j (1− gj)bg−1I(0 ≤ gj < 1− sj ≤ 1). (2.7)

Then, the full conditional distributions of the parameters, given the observed responses at all time

points, are as follows:

• For αi,t : Similar to Wang et al. (2016) and Chen, Culpepper, et al. (2017), we use a forward-

backward algorithm to sequentially update the attribute patterns of each subject at each
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time point. Specifically,

P (αi,t = αc) ∝


πcP (Xi1 | αi,1 = αc)P (αi,2 | αi,1 = αc, ·), t = 1;

P (αi = αc | αi,t−1, ·)P (Xit | αi,t = αc)P (αi,t+1 | αi,t = αc, ·), 1 < t < T ;

P (XiT | αi,T = αc)P (αi,T = αc | αi,T−1, ·), t = T,

(2.8)

where P (αi,t+1 = αc | αi,t, ·) represents P (αi,t+1 = αc | αi,t,γki,t ,Uki,t,li,t) and is given in

equations (3) and (4).

• For population proportions of the attribute patterns at time 1, the full conditional distribution

of π is still a Dirichlet distribution, with

π | α1,1 . . . ,αN,1 ∼ Dirichlet(δ0 + Ñ), (2.9)

where Ñ = [
∑N

i=1 I(αi1 = α1), . . . ,
∑N

i=1 I(αi1 = α2K )]

• For fixed effect γk, we have

P (γk | α,Uk,·) ∝ p(γk)
K∏
t=1

∏
i:ki,t=k

P (αi,t+1 | αi,t,γk,Uk,li,t). (2.10)

• For random effects Uk,l, we have

P (Uk,l | Σk,α,γk) ∝
K∏
t=1

∏
i:ki,t=k & li,t=l

P (αi,t+1 | αi,t,γk,Uk,l)P (Uk,l | Σk). (2.11)

• For the covariance matrices of random effects, Σk, conditioning on the random effects of

materials targeting skill k, Σk follows an Inverse-Wishart distribution, i.e.,

Σ−1k | U1,k, . . . ,ULk,k ∼Wishart(S∗, ν∗), (2.12)

where S∗ = UTU + S, and ν∗ = Lk + ν, and U represents the matrix of the random effects

corresponding to skill k, with Uk,l as the lth row.

• For the DINA model parameters, s and g, the posterior distribution, given the responses and
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attribute patterns, is a truncated Beta distribution, with

p(sj , gj | α,X) ∝ sasj−1j (1− sj)bsj−1g
(agj−1)
j (1− gj)bgj−1I(0 ≤ gj < (1− sj) ≤ 1), (2.13)

where

asj =
∑

i:Xij=0

ηij + as, bsj =
∑

i:Xij=1

ηij + bs,

agj =
∑

i:Xij=1

(1− ηij) + ag, bgj =
∑

i:Xij=0

(1− ηij) + bg.

2.2 Parameter Estimation

A Metropolis-Hastings within Gibbs algorithm is used to estimate the parameters of the proposed

model. Let α0
i,t,U

0,γ0,π0, s0,g0, and Σ0 denote the initial values of our parameters of interest,

the following procedures could be used to sample from the posterior distribution of the parameters.

At each iteration of the MCMC chain:

(1) For each i = 1, 2, . . . , N, t = 1, 2, . . . , T , sample αri,t, given Ur−1,γr−1,πr−1, and sr−1,gr−1;

(2) Sample πr based on αr1,1, . . . ,α
r
N,1;

(3) For each γk′,k,0, where k, k′ = 0, 1, . . . ,K, sample γrk′,k,0 from the Uniform distribution in an

interval around γr−1k′,k,0, and accept with probability
P (γr

k′,k,0|α
r
t+1,α

r
t ,U

r−1
k,· )

P (γr−1
k′,k,0|α

r
t+1,α

r
t ,U

r−1
k,· )

;

(4) For each k = 1, 2, . . . ,K, l = 1, 2, . . . , Lk, sample Ur
k,l from the Uniform distribution of a small

interval around Ur−1
k,l , and accept with probability

P (Ur
k,l|Σ

r−1
k ,αr

t+1,α
r
t ,γ

r
k)

P (Ur−1
k,l |Σ

r−1
k ,αr

t+1,α
r
t ,γ

r
k)

.

(5) For each k = 1, 2, . . . ,K, sample Σr
k from the inverse-Wishart distribution updated based on

Ur
k,1, . . . ,U

r
k,Lk

.

(6) For each item j, sample sj , gj from the truncated Beta distribution, given αr and X.
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2.3 Model Identification

We note that for the logistic transition model given in equation (1.3), for each of the slopes and

intercepts, λk′,k,l and λ0,k,l remain the same if we add a constant to the corresponding fixed effect

and subtract the constant from each of the corresponding random effects. In other words,

λ0,k,l = (γ0,k,0 + c) + (U0,k,l − c), λk′,k,l = (γk′,k,0 + c) + (Uk′,k,l − c).

Although we are unable to exactly fix the location of the fixed and random effects, they can be

softly centered by imposing a mean of 0 to the multivariate normal distribution of the random

effects (e.g., Gelman et al., 2014).
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Chapter 3

Simulation Study

3.1 True Parameter Generation

We conduct a series of simulation studies to evaluate the recovery of model parameters using the

proposed algorithm. The design of the learning process is as folows: The curriculum is assumed to

contain K = 4 skills. At the initial time point, t = 1, all students are administered Jt = 15 items.

Following the assessment, each student is administered a random learning material targeting a

random skill. Following the learning of the material, students are assessed again with 15 items, and

this process iterates up to the final time point, T = 5. Because our main interest is the recovery

of the parameters in the learning model, two factors are considered, including the the number

of students who receive each specific training material (Nl,k = 50 and 100), and the number of

materials available for each skill (Lk = 10, 30, and 50). The Lks under each condition are chosen

to mimic the number of available online resources for each Common Core Math standard on the

OpenEd repository. Based on these two factors, we can calculate the total number of subjects in

each condition. For example, in the case of 50 students per material and 10 materials per skill,

the total sample size would be N = 50 × 10 × K = 50 × 10 × 4 = 2000. Such large samples are

very difficult to collect in a classroom learning environment. However, they are achievable in online

learning environments, where students from different backgrounds can access the learning materials

anytime and anywhere. 10 repetitions of the simulation was performed under each condition.

The initial attribute patterns of the students, α·,1, are generated following similar methods

as in Chiu and Köhn (2016). Specifically, for each learner i, we first generate a K-dimensional

multivariate normal variable Zi ∼ M.V.N.(0,ΣZ), where the diagonal entries of ΣZ are 1, and

the off-diagonal entries are .2. That is, we assume that at the initial time point, the higher-order
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continuous traits behind each skill are correlated at ρ = .2. Next, αi,k,1 = I(Zik ≥ Φ−1( k
K+1)) was

obtained for each k, giving the true attribute pattern of subject i at the initial time point, αi,t.

The true values of the fixed intercepts, γ0,k,0s, were generated from N(−1, 1), and the fixed

slopes, γk′,k,0s were sampled from Uniform(0, 2). The covariance matrices of the random effects of

each skill, Σk, k ∈ {1, . . . ,K}, were assumed to have diagonal entries of .3 and off diagonal entries

of .1. Based on the covariance matrices, the true random intercepts and slopes were generated from

the multivariate normal distribution, with Uk,l ∼ M.V.N.(0,Σk). Based on the random and fixed

effects of the learning model, the learners’ subsequent αs can be generated based on transition

probabilities as defined in equations (3) and (4).

Five blocks of DINA model items, with Jt = 15 items per block, were simulated. The true

slipping and guessing parameters were generated from U(.15, .3). Xu and Zhang (2016) have shown

that in the static case, under the DINA model, the item parameters s,g and the population mem-

bership probabilities π are identifiable if the Q-matrix contains 3 identity matrices. Thus, for each

block of items, the Q-matrices were generated to include at least 3 items that exclusively measures

the kth skill for all k. In addition, because we assumed the learning process to be monotonic, the

proportion of students mastering a large number of skills are expected to increase as the learning

process continues. In that case, the proportion of students mastering few skills may be small at later

time points. To ensure sufficient sample size for the estimation of both s and g of the items from all

blocks, we followed the practice in Wang et al. (2016) by using a block design for item assignment

to subjects. Specifically, the N examinees were randomly assigned to 5 test design groups. For

students in group 1, they were administered items in blocks 1, 2, 3, 4, and 5 at times t = 1, 2, 3, 4, 5,

respectively. For students in group 2, they were administered item blocks 2, 3, 4, 5, 1 at times 1

to 5. And students in group 3 were administered the item blocks in the order of 3, 4, 5, 1, 2, and

so on. Based on the students’ attribute patterns at each time point, the block of items they are

administered at time t, and the Q-matrix and parameters of the items in each block, the subjects’

responses can be randomly generated based on the DINA model item response function.
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3.2 Parameter Estimation

We assigned random initial values to the model parameters to start the MCMC algorithm. Specif-

ically, the initial population membership probabilities, π, were generated from the Dirichlet distri-

bution with δ = 1; the covariance matrices of the random effects, Σks, were set to be the identity

matrix; initial values for U,γ, s,g were respectively randomly sampled from the multivariate nor-

mal and the uniform distributions, similar to how we generated the true values; lastly, the initial

attribute patterns of the subjects were randomly sampled based on the initial value of π, and the

subsequent αs were generated based on the learning model and the initial learning model parame-

ters. Then, we implemented the MH within Gibbs algorithm to iteratively update the parameters.

For the Metropolis-Hastings sampling of the fixed and random effects, window sizes of the uniform

distributions around the old values were selected so that the average acceptance rate for γ and for

U were both between 20%− 40%. A chain length of 20, 000 iterations was used for each condition,

with burn-in of 10, 000 iterations.

3.3 Evaluation Criteria

Based on the parameter samples from the MCMC, we can calculate the expected a posteriori (EAP)

estimates of the U,γ, s,g,Σ, and α using

θ̂EAP =

∑Ttot
r=Tburn+1 θ

r

Ttot − Tburn
, (3.1)

where θr denotes the parameter sample from the rth iteration, and Ttot and Tburn are the total

length and burn-in length of the MCMC chains, respectively. For the αs, because for each αi,k,t,

the EAP will give a value between 0 and 1, we further dichotomize each αi,k,t and set it to 1 if the

corresponding EAP is greater than .5, and 0 otherwise.

The estimation accuracy of the attribute patterns at each time point is evaluated by the

attribute-wise agreement rate (AAR), where

AAR(α̂t) =

∑N
i=1

∑K
k=1 I(αi,k,t = α̂i,k,t)

N ×K
, (3.2)
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and the estimation accuracy of π and Σ is evaluated based on their bias and RMSE, given by

Bias(θ̂) = θ̂EAP − θ, RMSE(θ̂) =

√∑Ttot
r=Tburn+1(θ

r − θ)2

Ttot − Tburn
, (3.3)

where θ denotes the true value of the parameter.

Because we used soft centering for the fixed and random effects, the estimated values of

both might be slightly shifted from the true values. However, if the algorithm could recover the

parameters accurately, the composite of the estimated fixed and random effects, λs, should be close

to true values. We hence cannot use bias as a criteria for the recovery of the fixed and random

effects. Instead, the Pearson correlations between the estimated and the true fixed and random

effects are computed.
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Chapter 4

Results

Table 1 presents the accuracy of attribute estimates at different time points in the learning process,

averaged across 10 repetitions under each simulation condition. Across all conditions and all time

points, the attribute-wise agreement rate between the true and estimated αs remained above .8,

indicating relatively accurate estimates of the learners’ patterns at all time points. We observed

that across all conditions, the AAR in the initial time point, t = 1, was higher than that of the

later time points. In addition, the AARs seemed to be higher for conditions with more learners per

material. This suggests that part of the estimation error in the attribute patterns can be attributed

to the errors in the random effect estimates for the transition model. For the initial time point,

where the transition model takes a smaller weight in the estimation algorithm and for conditions

with more data for the estimation of the transition model parameters, the attribute patterns were

estimated slightly better.

Table 4.1: Attribute-wise agreement rates (AARs) at different time points under different
simulation conditions. Lk stands for the number of available materials targeting skill k,
and Nl,k stands for the number of learners who are administered each material. Results are
aggregated across 10 repetitions.

Lk Nl,k t = 1 t = 2 t = 3 t = 4 t = 5
10 50 .884 .835 .836 .844 .839
10 100 .891 .839 .841 .844 .834
30 50 .887 .847 .844 .839 .829
30 100 .882 .838 .836 .839 .841
50 50 .892 .839 .840 .837 .830
50 100 .891 .835 .837 .838 .836

We further investigated the parameter recovery of the fixed effects, γ, and the random effects

U for the learning materials. Figures 1 and 2 present the scatter plots of the true and estimated

fixed and random effects under different simulation conditions. We combined the parameters from
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different repetitions into one plot for each condition. Across all conditions, the fixed effects seemed

to be accurately recovered with the estimation algorithm, with the points on the scatterplot nearly

forming a straight line. With increasing Nl,k (number of students using each learning material) and

Lk (number of materials available for each skill), we see slight improvements in estimation accuracy

for the fixed effects. The random effects corresponding to the learning materials demonstrated larger

error. From Figure 2, we can see that although there is strong correlation between the true and

estimated random parameters, there are more deviations of the points from a straight line compared

to the plot of γ. Similar to the fixed effects, for conditions with larger Nl,k and larger Lk , the

correlation between true and estimated Us appeared stronger.

19



-3 -2 -1 0 1 2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

True fixed effects

E
st

im
at

ed
fi
x
ed

eff
ec

ts

Nlk = 50

L
k

=
1
0

-2 -1 0 1 2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

True fixed effects

E
st

im
at

ed
fi
x
ed

eff
ec

ts

Nlk = 100

-3 -2 -1 0 1 2

-1

0

1

2

True fixed effects

E
st

im
a
te

d
fi
x
ed

eff
ec

ts

L
k

=
30

-3 -2 -1 0 1 2

-1

0

1

2

True fixed effects

E
st

im
at

ed
fi
x
ed

eff
ec

ts

-3 -2 -1 0 1 2

-1

0

1

2

True fixed effects

E
st

im
a
te

d
fi
x
ed

eff
ec

ts

L
k

=
50

-3 -2 -1 0 1 2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

True fixed effects

E
st

im
at

ed
fi
x
ed

eff
ec

ts

Figure 4.1: Scatterplot for the true and estimated fixed effects (γ) under different simulation

conditions.
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Figure 4.2: Scatterplot for the true ad estimated random effects (U) under different simula-

tion conditions.

Table 2 provides the Pearson correlations between true and estimated random (U) and fixed

(γ) effects, as well as the bias and/or RMSE of the initial population membership probabilities (π)

and the covariance matrices of learning materials’ random effects (Σ) under different conditions.
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We omitted the bias of π here, because the total probability of different classes sums to 1, so the

bias would always be 0. In addition, we separately calculated the bias and RMSE of the diagonal

entries (τ2k s) and the off-diagonal entries (τk′k) of the covariance matrix of random effects, because

the interpretations of the diagonal and off diagonal elements are different. Taking a coarse look at

Table 2, we observe that the correlation between true and estimated fixed effects, γs, were above

.94 across all conditions and increased slightly with larger Nl,k and Lk, which is consistent with

Figure 1. The correlations for the random slopes and intercepts, Us, were in the .59 to .70 range

across conditions and were higher when the number of learning materials available for each skill

increased, or when the number of subjects using each material increased. One explanation is that,

by increasing the number of available training materials, the distribution of the random effects

could be estimated better, hence improving the random effect estimates. And when the number of

subjects using a particular material is large, we have more data on the transitions of the subjects on

this skill using this particular material, hence improving the random effect estimates corresponding

to the material. Across all conditions, the RMSE for π was low, but conditions with more learning

materials or larger sample size per material had slightly better π estimates. We think this is mainly

due to larger overall sample sizes in those conditions. For the covariance matrices of random effects,

we observe that both the variances on the diagonal and the covariances on the off-diagonal were

estimated much better for 30 or 50 materials per skill than with only 10 available materials per skill,

as indicated by the smaller bias and RMSE values. This suggests that with 10 observations, the

distribution of the random effects cannot be recovered very well. However, with 30 or 50 random

observations, the true covariance matrix can be accurately recovered. Although the number of

learners per material did not seem to have too large an effect on the bias of the covariance matrix

entry estimates, the RMSE of the covariance matrix estimates were consistently lower when Nl,k

was large, indicating that the estimates were more stable when sample size for each material was

larger.
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Table 4.2: Parameter recovery of fixed (γs) and random (Us) effects, initial population
membership probabilities (π), and covariance matrix for random effects (Σ).

Lk Nl,k ργ ρU RMSE(π) Bias(τ 2k ) RMSE(τ 2k ) Bias(τk′k) RMSE(τk′k)
10 50 .947 .597 .011 .019 .221 .073 .159
10 100 .965 .671 .008 .018 .201 .069 .143
30 50 .977 .612 .008 .016 .184 .064 .122
30 100 .974 .675 .007 .018 .164 .075 .106
50 50 .978 .612 .007 .015 .178 .057 .113
50 100 .975 .700 .005 .016 .151 .064 .095
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Chapter 5

Discussion

In the present study, we proposed a hidden Markov model with both learner characteristics (i.e.,previous

skill pattern) and learning material characteristics (i.e., approachability and reliance on other skills)

as covariates affecting the outcome of learning. By modeling the learning materials’ characteris-

tics as random effects, we could capture the underlying distribution structure of the materials’

approachability and dependency on other skills, and the random slope and intercept estimates ob-

tained for each learning material could also be used to assess their effectiveness on students with

various attribute profiles. Under the proposed Bayesian estimation algorithm, model parameters

of the multilevel logistic HMM were relatively accurately recovered, especially when there is a

sufficient number of learning materials per skill and when there is sufficient learners using each

material.

There are a few potential implications of the current model. First of all, a long term interest of

educational practitioners is understanding the structural relationship between different attributes.

By knowing which skills are prerequisites to others, educators can design the courses so that basic

contents precede the advanced skills. In addition, if a student is assigned to learn a complex skill

and fails to learn it after many trials, one possible explanation of the difficulty in learning the skill

is missing prerequisites. Knowing which skills are prerequisites to an advanced, hard to learn skill

may help educators identify why a student cannot learn effectively, and the student can be routed

back to learn the basic prerequisite. Previous research on the hierarchical structure of attributes

(e.g., Leighton, Gierl, & Hunka, 2004) usually require the attribute hierarchies to be pre-specified

by content experts. Under the current model, the dependencies between skills can potentially be

inferred from the fixed slope estimates in the transition model. In other words, if the fixed slope

of skill k′ is large in the logistic transition model for learning skill k, we can infer that whether a
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student can learn skill k successfully strongly depends on the previous mastery of skill k′.

A second potential application of the proposed model is the adaptive recommendation of

contents to students. In adaptive learning systems, students are sequentially assigned contents

to learn. To help learners achieve their learning goals (e.g., mastering all skills) as efficiently as

possible, content at each time point can be adaptively selected based on previous knowledge about

the student’s characteristics, such as his or her previous mastery on the skills in the curriculum,

level of engagement in the content, or learning style (Oxman, Wong, & Innovations, 2014). The

current modeling framework could help us determine which materials could be deemed as “optimal”

for a student: Under the current model, based on a learner’s current attribute pattern estimate

and the parameters of different learning materials, the proposed model can answer simple questions

such as “What’s the probability of mastering skill k if we decide to let the student learn k next and

administer material l to him/her?” or “Among all materials targeting skill k, which one will be

most effective to the student right now?”. It can also be used to answer more complex questions,

such as “Among all possible trajectories of instructions, which one can give us the highest expected

attribute pattern after t stages?”

The present study has some limitations. First of all, we only considered one target skill

per instructional material. We could, however, imagine materials that can simultaneously teach

students multiple skills. If we assume conditional independence between the transitions on each

skill, then the current model can be straightforwardly extended to the situation of multiple target

skills, where the probability of a pattern-wise transition is simply the product of the probabilities of

the attribute-wise transitions. However, if the assumption of conditional independence of attribute-

wise transitions is relaxed, the learning model will be much more complex. In that case, the

probability of a pattern-wise transition will no longer be the product of the attribute-wise transition

probabilities, and a learning model will need to look at covariates contributing to the change from

one pattern to another for each pair of attribute patterns. Future research can look into models

for pattern-wise transitions, with learning materials’ characteristics as covariates.

Another limitation of the current study is the small number of total skills we assumed in the

simulation studies. A typical course usually involves a large number of skills, ranging from 10 to

more than a hundred. However, fitting the current model, or even any simple cognitive diagnosis
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model under the Bayesian framework with more than 10 skills will be computationally intensive.

By converting the estimation algorithm of the fixed and random effects from a Metropolis-Hastings

sampler to a Gibbs sampler could slightly alleviate the computational burden. Another potential

direction is to look into methods of partitioning the skills into small sets, as we often tend to

observe that skills in one cluster (e.g., basic arithmetic operations) are relatively independent from

those in another cluster (e.g., reading figures). If the parameters can be estimated within each

cluster of skills, the computational intensity of fitting a model with a large number of skills might

be significantly reduced.
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