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ABSTRACT

State estimation is a fundamental problem when monitoring and controlling

dynamical systems. Engineering systems interconnect sensing and computing

devices over shared bandwidth-limited channels, and therefore, estimation al-

gorithms should strive to use bandwidth optimally. Often, the dynamics of

these systems are affected by external factors. In certain cases, these factors

would lead the system to switch between different modes. In other cases,

they would affect the dynamics of the system continuously in time without

leading to explicit mode transitions. In this thesis, we present two notions

of entropy for state estimation of nonlinear switched and non-autonomous

dynamical systems as lower bounds on the average number of bits needed to

be sent from the sensors to the estimators to estimate the states with de-

terministic (worst case) error bounds. Our approach relies on the notion of

topological entropy and uses techniques from control under limited informa-

tion. Since the computation of these entropies is hard in general, we compute

corresponding upper bounds. Additionally, we design a state estimation algo-

rithm for switched systems when their modes cannot be observed. We show

that the average bit rate used by the algorithm is optimal in the sense that

the efficiency gap is within an additive constant from the gap between the

entropy of the considered system and its computed upper-bound. Finally, we

apply our theory and algorithms to linear and nonlinear models of systems

such as a glycemic index for diabetic patients, a controller of a Harrier jet

and a Pendulum.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Contemporary engineering systems interconnect sensing and computing de-

vices over a shared communication channel for monitoring and control. For

example, more than 70 embedded computing units communicate over a

shared 1 Mbps CAN bus in cars [1]. Many machines, conveyor belts, and

robotic manipulators need to be monitored in warehouses and factory floors—

again over a shared network backbone [2]. Additionally, one of the major

problems in controlling a platoon of underwater vehicles is the limited band-

width channels [3]. Such bandwidth constraints call for optimal allocation of

network resources for estimation and detection.

This thesis deals with monitoring continuous time switched dynamical sys-

tems and continuous time dynamical systems with bounded inputs with op-

timal usage of network resources. The key problem is to estimate the state

of the system from a small number of bits coming from quantized sensor

measurements (see Figure 1.1). This is the state estimation problem. The

related problem of mode detection arises when the plant dynamics itself is

unknown or changing.

In the stochastic setting, Kalman and particle filtering are used for solving

these problems, in some cases using neural networks (see, for example [4, 5,

6]). Our approach relies on the theory of topological entropy for dynamical

systems. The measure-theoretic notion of entropy plays a central role in

information theory, estimation and detection. In the theory of dynamical

systems, the analogous topological notion of entropy plays a fundamental

role in describing the rate of growth of uncertainty about system state ([7,

8, 9, 10, 11, 12]). It also relates to the rate at which information about the

system should be collected for state estimation. Drawing this connection, the
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Figure 1.1: Block diagram showing the flow of information from a dynamical
system to the sensor to the estimator.

notion of estimation entropy has been defined in [13, 14, 15] for nonlinear

systems. For a dynamical system of the form ẋ(t) = f(x(t)), roughly, it is

the minimum bit rate needed by the estimator to construct state estimates

from quantized measurements that converge to the actual state of the system

at a desired exponential rate of α. Estimation entropy is in general hard to

compute exactly, but can be upper-bounded by (C + α)n/ ln 2, where n is

the dimension of system and C is either the Lipschitz constant L of f [13]

or an upper-bound on the matrix measure of the Jacobian of f [14]. In [13],

an algorithm for state estimation is given which uses an average bit rate

of (L + α)n/ ln 2. This is optimal in the sense that the efficiency gap of the

algorithm is no more than the gap between estimation entropy and its upper-

bound. In this thesis, we extend this notion of entropy to the case where the

plant model is a nonlinear switched system (Chapter 3) or a nonlinear system

with bounded inputs (Chapter 4). We solve similar problems to those solved

in [13, 14] for these generalized systems.

In switched and non-autonomous systems, the dynamics of the system

are changing over time because of uncontrollable and probably unobservable

external factors. This results in a larger uncertainty in an estimate of the

system state than that of an autonomous system. In the case of a switched

system, if the sensor and estimator are uncertain about the model, and the

possible models lead to sufficiently different dynamics, the estimator cannot

accurately estimate the state. Hence, in that case, the state estimation and

model detection problems should be solved simultaneously to decrease the

uncertainty in the state estimate. Similarly, for non-autonomous systems, the

dynamics are changing over time; hence, unless the sensor and estimator have

a sufficiently accurate estimate of the input, the estimator cannot decrease

the uncertainty in the state estimate.

Defining entropy for state estimation requires first specifying an upper

bound on the estimation error. For switched systems, we require the error

to be upper bounded by a specific constant for a specific amount of time
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after a mode change (switch) and then decrease exponentially at a specific

rate till the next one. For this to be feasible, one may constrain the switches

to be spaced in time, as we will see later in the thesis. For systems with

bounded inputs, we require the error to be bounded by a constant all the

time. A system with bounded input is more general than a switched one

since the input signal can have discontinuities and can vary between them.

In contrast, in a switched system, the input (switching) signal stays constant

between discontinuities.

1.2 Contributions

In this thesis, our main contributions are as follows:

• We define modified notions of topological entropy for state estimation

of two types of continuous time dynamical systems: switched nonlinear

systems and non-autonomous systems with bounded inputs.

• We prove that these notions lower bound the bit rate needed to estimate

the state of the systems up to the predefined bound on the estimation

error.

• Since computing the actual values of the entropies is hard, we compute

upper bounds in terms of systems’ parameters such as their Lipschtiz

constants and the constants representing the bounds on the estimation

error.

• We present a state estimation algorithm of switched nonlinear systems

with bit rate that is close to the computed upper bound on entropy.

• We show the results of experiments where we applied our algorithm to

estimate the state of two switched linear and nonlinear systems.

1.3 Related Work

There is a significant body of work on computing the bit rates needed for dif-

ferent control tasks for different types of dynamical systems. In this section,

we present a quick overview of several works on the topic.
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The problem ofmth moment stabilization of an infinite dimensional discrete-

time linear time-variant dynamical systems over a noiseless limited-bandwidth

feedback channel was discussed in [16] by Nair and Evans. They considered

coders with infinite memory and did adaptive quantization to avoid the non-

controllability issue that may arise if the quantization map is fixed over time.

After that, they presented a tight lower bound on the data rate of a noise-

less feedback channel for mean square stabilization of a finite-dimensional

stochastic linear system in terms of its unstable eigenvalues. Then, they

showed a necessary and sufficient lower bound on the minimal data rate of

a noiseless limited-bandwidth feedback channel for mth moment exponential

stabilization of a discrete-time linear time-invariant (LTI) system in [17].

In [18], Brocket and Liberzon discussed stabilization of linear dynamical

systems using limited bit rate feedback channel. There, they introduced the

idea of using adaptive quantization and showed its ability to asymptotically

stabilize systems that are stabilizable by linear time-invariant feedback. This

could not have been done using traditional fixed quantization.

In their book [19], Ishii and Francis discussed stabilizing distributed con-

trol systems using limited-bandwidth network from a hybrid systems theory

point of view. They also discussed control of linear systems using limited-

bandwidth feedback channel with time delays.

In [20], Matveev and Savkin tackled the problem of stabilizing discrete-

time partially observed time-invariant linear system using a noisy limited-

bandwidth feedback channel. They showed that the system is stabilizable iff

the sum of the logarithms of the absolute values of the unstable eigenvalues

is smaller than the classic Shannon capacity of the feedback channel. Addi-

tionally, in [21], they discussed the state estimation problem under the same

conditions. They reached a similar result: the state can be estimated with

probability as high as needed iff the logarithm of the absolute value of the

determinant of the unstable part of the dynamics matrix of the system is

smaller than the capacity of the channel. If it is larger, they proved that the

estimation error would diverge with high probability. Moreover, in [22], they

presented necessary and sufficient conditions for stabilizability using multiple

noisy limited-bandwidth channels with different capacities and time delays

corresponding to different sensors.

Tatikonda, in his PhD thesis [23], investigated centralized control of a

distributed system consisting of discrete stochastic systems while using noisy
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limited bandwidth channels with delays.

Metric entropy of dynamical systems was first introduced by Kolmogorov

in 1958 [24, 25] driven by Shannon’s pioneering work in 1948 [26]. After that,

topological entropy of dynamical systems was introduced by Adler, Konheim

and McAndrew in [27].

In [28], Nair et al. presented the notion of topological feedback entropy

(TFE) of discrete topological dynamical systems based on the cardinality of

open covers in the state space and showed that it is the minimum data rate

in the feedback loop needed to keep the state in a compact region. Moreover,

they presented the notion of local TFE (LTFE) at a given point and showed

that it, under some stabilizability conditions, lower bounds the data rate

needed for local uniform asymptotic stability of the system. Finally, they

showed that the LTFE is equal to the sum of the unstable eigenvalues of

the Jacobian at that point. Our case differs in several aspects: (a) we are

tackling the state estimation problem rather than the control one, (b) our

definition of entropy relies on spanning sets of trajectories rather than open

covers, and (c) we consider continuous time dynamical systems rather than

discrete ones.

In [10], Colonius and Kawan defined the notion of invariance entropy of

continuous time control systems and showed that it is equal to the minimum

data rate needed in the feedback channel to keep the state in a compact set

K. Their notion of entropy depends on the cardinality of the set of open

loop control inputs needed to keep the system in K for a finite amount of

time T > 0 starting from any initial state in K. It is equal to the rate

of exponential growth of the cardinality of that set as T goes to infinity.

They provide lower and upper bounds on entropy. Finally, they show that

invariance entropy for linear systems, as in [28], is equal to the sum of the

real values of the unstable eigenvalues of the system matrix. In [29], Colonuis

and Kawan showed that these two entropy definitions are in fact equivalent.

In [30], Colonius presented the notion of exponential stabilization entropy

of continuous control systems. It represents the exponential growth of the

number of control signals needed to exponentially stabilize the system over

a finite interval [0, T ] as T go to infinity. Due the fact that there is no finite

number of control signals that can exponentially stabilize a linear system from

any initial state, he used a relaxed version of exponential stability. Finally,

he showed that the entropy represents an upper bound on the minimal bit
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rate needed to achieve stability.

In [31], Savkin extended the notion of topological entropy of open-loop

discrete time uncertain dynamical systems and discussed its relation to their

observability and optimal control under limited bit rate constraints. He pro-

vided inequalities relating the bit rate needed for optimal control with the

topological entropy of the system. Finally, he computed that entropy for

some classes of linear dynamical systems.

The problem of state estimation of continuous-time time-variant linear

dynamical systems over a noiseless continuous finite-bandwidth channel was

tackled by Savkin and Peterson in [32]. They proposed a recursive coder-

decoder scheme for such systems.

In [13, 14, 15], Liberzon and Mitra defined estimation entropy for con-

tinuous autonomous dynamical systems to lower bound the bit rate needed

to achieve exponentially converging estimates of their states over a limited-

bandwidth channel. Their entropy definition represents the rate of exponen-

tial growth of the size of a representative sample of the system’s trajectories

over a finite interval of time. They computed upper and lower bounds on

entropy in terms of the system’s Lipschitz constant or the matrix measure of

its Jacobian. Finally, they presented state estimation and model detection

algorithms with bit rates equal to the computed upper bound on entropy.

Our work in this thesis is mainly an extension of their work.

Most of the entropy results are for autonomous systems, those that have

no input or disturbance. Non-autonomous systems provide more challenges

for the computation of bounds of topological entropy [33] and [34].

In [35], Rungger and Zamani presented the notion of invariance feedback

entropy for uncertain discrete-time dynamical systems. They showed that

it is a tight lower bound on the bit rate needed in the feedback channel for

the controller to be able to maintain a subset of the state space invariant.

They showed that the entropies of controlled invariant topological systems

with upper semi-continuous transition function and finite systems are finite.

The first attempt to tackle the problem of topological entropy for switched

systems was by J. Schmidt in his master’s thesis [12]. He defined a notion of

topological entropy for linear switched systems while having some solvability

assumptions on the Lie algebra generated by the matrices of the individual

systems. He computed upper and lower bounds on the entropy based on the

eigenvalues of the individual systems and their average times of activation.
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Schmidt’s work differs from ours in several aspects: (a) we consider general

nonlinear modes instead of linear ones, (b) we do not assume solvability of

the Lie algebra of the modes (in case of the linear ones), and (c) we consider

exponential convergence of the error after a while after the switch instead of

constant upper bound on error.

A new definition of estimation entropy of stochastic hybrid systems along

with an upper bound was derived by Awan and Zamani in [36]. They con-

sidered switches that are modeled as Poisson processes while the dynamics

are modeled as stochastic differential equations.

7



CHAPTER 2

PRELIMINARIES

In this chapter, we provide a list of concepts and definitions that we will use

in the following chapters.

2.1 General Mathematical Definitions

Vector norms and covers For a real vector v ∈ Rn, we denote by ‖v‖
the infinity norm of the vector and by vT the transpose of v. B(v, δ) is a

δ-ball—closed hypercube of radius δ—centered at v. For a hyperrectangle

S ⊆ Rn and δ > 0, grid(S, δ) is a collection of 2δ-separated points along

axis parallel planes such that the δ-balls around these points cover S. In

that case, we say that the grid is of size δ. For a compact set S ⊂ Rn,

diam(S) = maxx1,x2∈S ‖x1 − x2‖ denotes the diameter of S. We denote by

[a; b] the set of integers in Z that belong to the interval [a, b]. For a matrix

A, λmax(A) denotes the largest eigenvalue of A. Note that for any positive

definite matrix A, λmax(A) ≤ �A�, where � · � is any matrix norm. For a

finite set S, we denote by |S| the cardinality of S.

Class K and K∞ functions A function f : [0,∞) → [0,∞) is a class K
function if it is continuous, strictly increasing and f(0) = 0. It is a class K∞
function if it is a class K function and goes to infinity at infinity.

2.2 Switched Systems

A switched system is a standard way for describing control systems with

several different modes (see, for example, the book [37]). Suppose we are

given a family fp, p ∈ [N ] of functions from Rn to Rn. Assuming that the
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functions fp are Lipschitz continuous with Lipschitz constant Lp, the above

gives rise to a family of dynamical system modes:

ẋ = fp(x), p ∈ [N ] (2.1)

evolving on Rn. If the mode p ∈ [N ] is known, then the solution of the

differential equation is the function ξp : Rn × R≥0 → Rn. If in addition

the initial state x0 is known, then for any point in time t the state ξp(x0, t)

can be approximated using numerical integration. However, for the state

estimation problem we are interested in, both the initial state and the mode

are unknown.

The time varying mode is modeled as a switching signal. This is a piecewise

constant function σ : [0,∞) → [N ] which specifies at each time instant t,

the index σ(t) ∈ [N ] of the function from the family (2.1) that is currently

being followed. The points of discontinuity in σ are called switching times.

Thus, the switched system with a time-dependent switching signal σ can be

described by:

ẋ = fσ(x). (2.2)

For a fixed switching signal σ the solution of the above switched system is

defined in the standard way and denoted by the function ξσ : Rn × R≥0 →
Rn. Moreover, fσ(t) is Lipschitz continuous with Lipschitz constant L =

maxp∈[N ] Lp.

The switching signal σ models the adversary, the environment, or a con-

troller changing the underlying mode of the system. In general, it may

have arbitrary discontinuities; however, to prove stability, or in our case,

correctness of state estimation, typically one assumes bounds on switching

speed [37, 38, 39].

2.2.1 Dwell-times and reachable sets

A switching signal σ has a minimum dwell time Td > 0 if at least Td time

units elapses between consecutive switches. We denote Σ(Td) the family

of switching signals with minimum dwell-time Td switching between the N

modes. Moreover, we define Reach(Σ, K) to be the set of reachable states
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by System (2.2) with any σ ∈ Σ(Td) from the compact initial set K. More

formally,

Reach(Σ, K) = {x ∈ Rn | ∃ σ ∈ Σ(Td), x0 ∈ K, t ∈ [0,∞) : ξσ(x0, t) = x}.

2.2.2 Separation between modes

Maximum separation Later on, we will need a bound on the error in state

estimates when the system evolves according to two different dynamics, from

the same state. To this end we introduce the function:

d(t) := max
p∈[N ]

sup
σ∈Σ(Td),
x0∈K,
s≥Td

max
u∈[0,t]

‖ξp(ξσ(x0, s), u)− ξσ(x0, s+ u)‖. (2.3)

In addition, σ should not have a switch between s− Td and s+ t.

Minimum separation In order for an algorithm to distinguish two modes

p, r ∈ [N ], p 6= r, it is necessary for the solutions generated by the two modes

to be separable in some sense. The following notion of exponential separation

is proposed in [13]. For Ls, Ts > 0 we say that the two modes p, r ∈ [N ]

are (Ls, Ts)-exponentially separated if there exists a constant εmin > 0 such

that for any ε ≤ εmin, for any two nearby initial states x1, x2 ∈ Rn with

‖x1 − x2‖ ≤ ε,

‖ξp(x1, Ts)− ξr(x2, Ts)‖ > εeLsTs .

That is, trajectories separate out exponentially if they start from a sufficiently

small neighborhood. The exponential separation holds if, for example, (1)

the two vector fields have a positive separation angle, and (2) at least one of

them has a positive velocity. It is believed that this property is generic in the

sense that it holds for almost all pairs of modes. For example, it was proven

in Proposition 8 in [15] that if for all x ∈ D, where D is some compact set

in Rn, fp(x) 6= fr(x), then the two modes are exponentially separated over

D for small enough Ts and arbitrary Ls.
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2.3 Dynamical Systems with Bounded Inputs

We consider in Chapter 4 a dynamical system of the form:

ẋ = f(x, u), (2.4)

where f : Rn × Rm → Rn. The function f is globally Lipschitz with Lips-

chitz constants Lx and Lu with respect to the first and the second argument,

respectively. Furthermore, we assume that f has piecewise-continuous Ja-

cobian matrices Jx = ∂f(x,u)
∂x

and Ju = ∂f(x,u)
∂u

, with respect to the first and

second argument, respectively. Once an initial state x0 and a piecewise-

continuous input function u are fixed, the solution exists and is unique. We

denote it by ξx0,u : R≥0 → Rn.

In the following section, we define the type of input signals that we consider

in Chapter 4.

2.3.1 Bounded input signals

Let U be a compact set in Rm and umax := maxq∈U ‖q‖. We denote by U the

set of all piecewise-right-continuous functions that map R≥0 to U . Let u be

a function in U . Then, for all t ∈ R≥0, define the following:

u(t+) = lim
s→t+

u(s)

u(t−) = lim
s→t−

u(s).

If t is a point of discontinuity, we let u(t) = u(t+). Note that there exists an

η ∈ [0, umax] and µ ≥ 0 s.t. for all u ∈ U , t and τ ≥ 0,

‖u(t+ τ)− u(t)‖ ≤ µτ + η. (2.5)

For example, with η = 2umax, the bound is satisfied for any µ ≥ 0. In

that case, the change in u is only constrained by the bound on its norm.

In other words, it can have frequent points of discontinuity (jumps), in a

short interval, each with a difference between the before and after values

being as large as having a norm of 2umax. However, knowing that u cannot

vary much, i.e. having few points of discontinuity or small gradient, can be
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expressed by setting µ and η to smaller values. η restricts the maximum

norm of a jump and µ restricts the number of large jumps in a short interval.

Geometrically, the constraint means that for any u ∈ U , and any t ∈ R≥0,

and any τ > 0, u(t+ τ) should belong to the truncated m-dimensional cone

with initial radius η and slope µ as shown in Figure 2.1.

Figure 2.1: Constraints on the variation of u.

This constraint is similar to Assumption 1 in [40] which was made on the

variation of the system matrix of a time-varying linear dynamical system to

relate its stability conditions to those of a switched linear dynamical system

with slow switching. Also, it is similar to the slow switching assumption

made by Hesphana and Morse in [41] to prove stability of switched systems

with stable subsystems.

To compute bounds on entropy, we will need to bound the distance be-

tween trajectories in terms of the distance between the input signals and the

distance between the initial states. The following section defines functions

for this purpose.

2.3.2 Input-to-state discrepancy functions

We use a modified version of the definition of local input-to-state discrepancy

introduced in [42] in order to upper bound the distance between two trajecto-

ries. We relax their definition to include systems with piece-wise continuous

Jacobians and piece-wise continuous input signals (rather than continuous

ones).

Definition 1 (Local IS Discrepancy). For System (2.4), a function V :

X 2 → R≥0 is a local input to state discrepancy function over a set X ⊂ Rn

and a time interval [t0, t1] ⊂ R≥0 if:

12



(i) there exist class-K functions ᾱ,
¯
α such that for any x, x′ ∈ K,

¯
α(‖x −

x′‖) ≤ V (x, x′) ≤ ᾱ(‖x− x′‖), and

(ii) there exist a class-K function in the first argument, β : R≥0 × R≥0 →
R≥0 and a class-K function, γ : R≥0 → R≥0, such that for any x0, x

′
0 ∈

X and u, u′ ∈ U , if ξx0,u(t), ξx′0,u′(t) ∈ X for all t ∈ [t0, t1], then for all

t ∈ [t0, t1], V (ξx′0,u′(t), ξx0,u(t)) ≤

β(‖x0 − x′0‖, t− t0) +

∫ t

t0

γ(‖u(s)− u′(s)‖)ds. (2.6)

The local discrepancy function V together with β and γ give the sensi-

tivity of the solutions of the system to changes in the initial state and the

input. The functions ᾱ,
¯
α, β, γ are sometimes called witnesses of the local IS

discrepancy V . Techniques for computing local discrepancy functions have

been presented in [42].
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CHAPTER 3

ESTIMATION ENTROPY AND
ESTIMATION ALGORITHM FOR

SYSTEMS WITH UNKNOWN SWITCHING

3.1 Introduction

In this chapter, we consider the state estimation of switched nonlinear dy-

namical system of the form ẋ = fσ(x), defined formally in Section 2.2, where

the switches between N modes are brought about by a switching signal

σ : R≥0 → [N ] unknown to both the sensor and estimator. The dynam-

ics of each mode ẋ = fp(x), p ∈ [N ], where [N ] is the set of integers from

0 to N − 1, could capture, for example, uncertainties in the plant, different

operating regimes, nominal and failure dynamics, and parameter values.

Since the mode information is not available to the estimator, exponential

convergence of state estimates may be impossible immediately after a mode

switch. Thus, we relax the notion of estimation entropy of [13] by allowing

a period of time τ > 0 following a mode switch, during which the estimation

error is only bounded by a constant ε; and thereafter the error decays expo-

nentially at a rate α as in [13]. On the other hand, we assume a maximal sepa-

ration between the modes to show that for a small enough Te—determined by

the minimum dwell time Td of σ, the error parameters ε and τ , and the maxi-

mal difference in the dynamics of the different modes (see Proposition 1)—the

estimation entropy is upper-bounded by (L+α)n
ln 2

+min{ logN
Te

, 1
Td

(N+log(Td
Te

))}.
Here L is the largest of the Lipschitz constants of all fp’s.

We present an algorithm for state estimation for switched systems. The

interdependence of the uncertainties in the state and the mode requires this

algorithm to simultaneously solve the estimation and mode detection prob-

lems: Unless a mode fp, p ∈ [N ] is detected, it may be impossible to get

exponentially converging estimates, and unless an accurate enough estimate

for the state is known, it may not be possible to distinguish between two

candidate modes.
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Our algorithm starts by keeping track of N̂ possible modes of the switched

system, where N̂ is a parameter between 1 and N , and falsifies the wrong

ones as more information coming from the sampled states. If at a given

iteration the actual mode of the system is the only tracked mode, then,

owing to a shrinking quantized measurement strategy, the state estimate

converges at the desired exponential rate. If the actual mode is not tracked,

then the actual state of the system may escape the constructed state estimate

bounds. In this case, the algorithm expands the estimate and captures the

state. When a mode switch happens, there may be a burst of escapes, but we

prove that if the rate of switches is slow enough and the modes are different

enough, then the correct mode is detected, and thereafter, the state estimate

converges exponentially.

We establish worst case estimation error bounds and time bounds on

mode detection. We also show that the average bit rate used is within
1+log N̂
Tp

−min{ logN
Te

, 1
Td

(N + log(Td
Te

))} from the upper bound on the entropy,

i.e. the upper bound on the optimal bit-rate, where Tp is the sampling time

of the algorithm. We present preliminary experimental results on apply-

ing the algorithm to linear and nonlinear switched systems, and discuss the

implications of the choice of the key parameter N̂ .

3.2 State Estimation, Bit-rate, and Entropy

Let us fix throughout this chapter a compact set K of possible initial states

of System (2.2), the family of all switching signals with minimal dwell time

Td > 0: Σ(Td), two estimation accuracy related constants ε, α > 0 and a

time constant τ (τ ≤ Td). In this chapter, we will assume that d(t) exists

for all t ≤ τ . This condition can be checked, for example, if the reach set

Reach(Σ, K) is compact. Moreover, we assume (without loss of generality)

that the modes are mutually (L, Tp)-exponentially separated (see Remark 1).

Also, εmin (see Section 2.2.2) is assumed to be global for all pairs of the

exponentially separated modes.

Remark 1 (Similar modes) If there are two modes p, r ∈ [N ] such that

for all x ∈ Reach(Σ, K) and for all t ∈ [0, Tp], ‖ξp(x1, t)− ξr(x2, t)‖∞ ≤
‖x1 − x2‖∞eLt, then they will not be exponentially separated. However, al-
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though they will not be distinguished by the algorithm presented in this

chapter, this does not influence the correctness of the state estimation. An

example would be modes that are exponentially stable, with convergence rate

larger than α, to a common equilibrium point.

In our setup, a sensor has access to the actual current state of the system

ξσ(x0, t) and not the switching signal σ, and it needs to send bits across a

bandwidth-constrained channel such that for any initial state x0 ∈ K and

for any (unknown) switching signal σ ∈ Σ(Td), the estimator would be able

to construct a function z : R≥0 → Rn, where for all j ≥ 0 and for all

t ∈ [sj, sj+1),

‖z(t)− ξσ(x0, t)‖ ≤

ε t ∈ [sj, sj + τ),

εe−α(t−(sj+τ)) otherwise,
(3.1)

where s0 = 0, s1, . . . are the switching times in σ. The norm in inequality

(3.1) can be arbitrary. We call such a function z(.) an (ε, α, τ)-approximation

of ξσ(x0, ·). The second bound gives the ideal behavior in which the estimate

converges to the actual trajectory ξσ(x0, ·) exponentially at the rate α as in

[13] and [10]. The first condition allows a “lenient” period of duration τ ,

during which the error is bounded by ε.

A finite set of functions X̂ = {x̂1, . . . , x̂M} from [0, T ] to Rn is (T, ε, α, τ)-

approximating if for every initial state x ∈ K and every switching signal

σ ∈ Σ(Td) there exists some x̂i ∈ X̂ such that for all t ∈ [0, T ], x̂i is an

(ε, α, τ)-approximating function for ξσ(x0, t). Note that X̂ also depends on

K, Td and the dynamics of the N modes, but we are suppressing these

parameters for brevity.

Let sest(T, ε, α, τ) denote the minimal cardinality of such a (T, ε, α, τ)-

approximating set. The estimation entropy of the system is defined as

hest(ε, α, τ) := lim sup
T→∞

1

T
log sest(T, ε, α, τ). (3.2)

Intuitively, since sest corresponds to the minimal number of functions

needed to approximate the state with desired accuracy, hest is the minimum

average number of bits needed to identify these approximating functions.

The lim sup extracts the base-2 exponential growth rate of sest with time.

Then, sest corresponds to the number of different quantization points needed
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to identify the trajectories, and hest gives a measure of the long-term bit rate

needed for communicating sensor measurements to the estimator.

Notice that we do not take the limit as ε goes to zero in the definition

of estimation entropy in contrast to that in [13]. That is because we do

not expect the entropy to stay finite as ε approaches zero because of the

possible significant difference in the dynamics between the modes. In that

case, exponentially increasing the number of bits sent may be needed to keep

the estimation error within ε after a change of dynamics (switch between

modes) as ε goes to zero. The upper bound on entropy we derive in the

following section indeed approaches infinity as ε approaches zero.

3.2.1 Entropy upper bound

In this section, we will establish an upper-bound on the estimation entropy

hest for switched systems. First, we fix a time horizon T > 0 and prove

an upper bound on sest using an inductive construction of approximating

functions. The following proposition will be used in the proof.

Proposition 1 Given the minimum dwell time Td > 0, and the estimation

accuracy constants ε and α > 0, there exists Te ∈ (0, τ ] such that d(Te) ≤
ε(1− e−α(Td−Te)).

Recall that

d(t) := max
p∈[N ]

sup
σ∈Σ(Td),
x0∈K,
s≥Td

max
u∈[0,t]

‖ξp(ξσ(x0, s), u)− ξσ(x0, s+ u)‖.

Then, it is a monotonically increasing continuous function for t ≥ 0 and equal

to zero at t = 0. Moreover, the right-hand side of the inequality increases as

Te decreases. Therefore, we can always find a Te small enough that satisfies

the inequality.

Let us fix a trajectory ξσ(x0, ·) of System (2.2). We define an inductive

procedure that constructs a corresponding approximating function z(·) whose

pseudo code is presented in Algorithm 1. It follows that the set of all functions

that can be computed by this procedure is a (T, ε, α, τ)-approximating set .

Then, the cardinality of the set of all functions that can be computed by this

procedure gives us an upper bound.
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Let s0 = 0, s1, . . . be the sequence of switching times in the switching

signal σ generating ξσ(x0, ·). The approximating function z(·) is constructed

in time steps of size Te (Te ≤ τ), where Te is a constant that satisfies the

inequality in Proposition 1. As we will see later, the upper bound on entropy

is inversely proportional to Te. Hence, the larger the Te that we fix, the

tighter the upper bound we get. We start by choosing an open cover C0 of

K with balls of radii εe−(L+α)Te (Line 4). Let q0 be the center of a ball that

contains x0. We construct z(t) := ξσ(0)(q0, t) for t ∈ [0, Te]. Since σ(t) = σ(0)

for t ∈ [0, Te) (recall, Td ≥ τ ≥ Te), the estimation error over that interval

would be ‖z(t) − ξσ(x0, t)‖ ≤ eLt‖x0 − q0‖ ≤ eLtεe−(L+α)Te ≤ εe−αt (by

Bellman-Grownall inequality).

Algorithm 1 Construction of (ε, α, τ)-approximating function.

1: input: T ,Te, ε
2: S0 ← K;
3: R0 ← εe−(L+α)Te ;
4: C0 ← grid(S0, R0);
5: i← 0;
6: while i ≤ b T

Te
c do

7: xi ← ξσ(x0, iTe);
8: qi ← quantize(xi, Ci);
9: zi ← ξσ(iTe)(qi, ·);

10: i++; . parameters for next iteration
11: if ∃j ∈ N s.t. sj ∈ ((i− 1)Te, iTe) then
12: Ri ← Ri−1e

−αTe + d(Te);
13: else
14: Ri ← Ri−1e

−αTe ;
15: end if
16: Si ← B(zi−1(T−e ), Ri);
17: Ci ← grid(Si, Rie

−(L+α)Te);
18: wait(Te);
19: end while
20: output: {zi : 0 ≤ i ≤ b T

Te
c}

Next, for each iteration 1 ≤ i ≤ b T
Te
c, we compute an n-dimensional ball

over-approximating the reachable set of states at t = iTe given qi−1, a bound

on ‖xi−1−qi−1‖ (which is Ri−1e
−(L+α)Te) and σ((i−1)Te). Then, we construct

a grid with a predefined resolution over that ball. Next, we quantize the

actual state at t = iTe with respect to the grid to get qi (Line 8). After

that, we compute the trajectory which results from running the actual mode
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at t = iTe over the time interval (iTe, (i + 1)Te] starting from qi (Line 9).

Finally, we bound the difference between the actual trajectory ξσ(x0, ·) and

the constructed one z(·) and we prove that the ball computed at the (i+1)th

iteration does contain the actual state at t = (i+ 1)Te.

Formally, let sj be the time of the last switch before iTe. We construct Ci

to be an open cover of B(z(iTe), Ri), where

Ri =

Ri−1e
−αTe + d(Te) if sj ∈ ((i− 1)Te, iTe),

Ri−1e
−αTe otherwise,

andR0 = ε, with balls of radii equal to ri = Rie
−(L+α)Te (Lines 11 through 17).

Then, we let qi to be any of the centers of the balls in Ci that contain

ξσ(x0, iTe). Note that ξσ(x0, Te) ∈ B(z(Te), R1). Next, we construct z(t) :=

ξσ(iTe)(qi, t− iTe) for t ∈ (iTe, (i+ 1)Te].

Lemma 1 The output z(·) of Algorithm 1 is an (ε, α, τ)-approximating func-

tion of ξσ(x0, ·).

Proof Consider an iteration i ≥ 0 and let sj+1 be the first switch at or after

iTe. Based on where sj+1 falls with respect to the interval [iTe, (i + 1)Te],

there are two cases here: (a) sj+1 = iTe or sj+1 ≥ (i + 1)Te and (b) sj+1 ∈
(iTe, (i+ 1)Te). For (a),

‖ξσ(x0, t)− z(t)‖ = ‖ξσ(x0, t)− ξσ(iTe)(qi, t− iTe)‖

= ‖ξσ(iTe)(ξσ(x0, iTe), t− iTe)− ξσ(iTe)(qi, t− iTe)‖

[since σ(t) = σ(iTe) for t ∈ [iTe, (i+ 1)Te)]

≤ eLσ(iTe)(t−iTe)‖ξσ(x0, iTe)− qi‖

[Bellman-Gronwall inequality]

≤ eL(t−iTe)ri

[Lσ(iTe) ≤ L; by the definition of qi ∈ Ci]

= eL(t−iTe)Rie
−(L+α)Te

[substituting ri]

≤ eL(t−iTe)Rie
−(L+α)(t−iTe)

[since t− iTe ≤ Te]

= Rie
−α(t−iTe).
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For (b), we can repeat the same steps of part (a) for any t ∈ (iTe, sj+1) to

get ‖z(t)− ξσ(x0, t)‖ ≤ Rie
−α(t−iTe). After the switch at sj+1, that is, for any

t ∈ [sj+1, (i+ 1)Te],

‖ξσ(x0, t)− z(t)‖ = ‖ξσ(x0, t)− ξσ(iTe)(qi, t− iTe)‖

= ‖ξσ(ξσ(x0, sj+1), t− sj+1)− ξσ(iTe)(qi, t− iTe)‖

≤ ‖ξσ(ξσ(x0, sj+1), t− sj+1)− ξσ(qi, t− iTe)‖

+ ‖ξσ(qi, t− iTe)− ξσ(iTe)(qi, t− iTe)‖

[by triangular inequality]

≤ eL(t−sj+1)‖ξσ(x0, sj+1)− ξσ(qi, sj+1 − iTe)‖

+ ‖
∫ t−iTe

0

(fσ(ξσ(qi, t
′))− fσ(iTe)(ξσ(iTe)(qi, t

′)))dt′‖

[by Bellman-Gronwall inequality]

≤ eL(t−sj+1)eL(sj+1−iTe)‖ξσ(x0, iTe)− qi‖+ d(t− iTe)

[using the definition of d(·)]

≤ eL(t−iTe)Rie
−(L+α)Te + d(t− iTe) ≤ Rie

−α(t−iTe) + d(Te),

where the last line follows from substituting ‖ξσ(x0, iTe)− qi‖ with ri’s value

and from the fact that d(t) is an increasing function. In both cases, ξσ(x0, (i+

1)Te) ∈ B(z((i+ 1)Te), Ri+1). Now we want to prove that z(·) is an approx-

imation function to ξσ(x0, ·). First, note that Ri = εe−αiTe for all i before

the first switch s1. Hence, ‖z(t)− ξσ(x0, t)‖ ≤ εe−αt for all t ∈ [0, s1] by part

(a) above. Therefore, z(·) satisfies inequality (3.1) between time 0 and s1.

Next, we let i1 = ds1/Tee (the first iteration after the first switch). We know

from the previous argument that Ri1 ≤ εe−αi1Te + d(Te) ≤ εe−αTd + d(Te).

Thus, Ri1 ≤ ε by our choice of Te that satisfies the inequality in Proposi-

tion 1. Then, ‖z(t) − ξσ(x0, t)‖ ≤ εe−αt + d(t − s1) ≤ εe−αTd + d(Te) ≤ ε

for t ∈ [s1, i1Te] by part (b) above. Moreover, since Te ≤ τ , z(·) satisfies

the first part of inequality (3.1) for t ∈ [s1, i1Te]. Now, the same argument

made before for t ∈ [0, s1] can be repeated for the time interval t ∈ [i1Te, s2]

which has a size greater than or equal to Td − Te. Finally, by induction

on all switches, z(·) satisfies the properties in (3.1). Therefore, z(·) is an

approximating function to ξσ(x0, ·).

Lemma 2 sest(T, ε, α, τ) is upper-bounded by #C0N(HN)bT/Tec+1, where H =
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de(L+α)Teen and #C0 is the cardinality of C0.

Proof We count the number of functions that can be computed by the above

procedure. First, note that a function z(.) is defined by the quantization

points and the modes chosen at multiples of Te. Moreover, the cardinality of

C0, #C0, is upper bounded by d diam(K)

2εe−(L+α)Te
en, where diam(K) is the diameter

of K. Moreover, for any i ≥ 1, the cardinality of Ci is upper bounded

by d Ri
Rie−(L+α)Te

en = de(L+α)Teen = H, which is independent of Ri. At each

iteration 0 ≤ i ≤ bT/Tec, Algorithm 1 chooses one from the N modes and a

quantization point in the cover Ci (see Lines 8 and 9). We can conclude that

the number of functions that can be computed using Algorithm 1 is upper

bounded by (#C0)HbT/TecN bT/Tec+1.

The following lemma presents a more accurate method to count the ap-

proximating functions that can be constructed by the procedure in the proof

which leads to a tighter upper bound in general.

Lemma 3 sest(T, ε, α, τ) is upper-bounded by #C0NH
T/Te(Td

Te
eN)T/Td, where

H = de(L+α)Teen and #C0 is the cardinality of C0.

Proof As in the previous lemma, we count the number of approximating

functions that can be computed by Algorithm 1 to upper bound sest. First,

note that all switches between two sampling times would affect the compu-

tations in Algorithm 1 in the same way. Thus, they are indistinguishable

in that sense. Moreover, no two switches can happen within Td time units.

Then, the maximum number of switches that can happen in a time interval

of size T is b T
Td
c+1; remember that we are assuming that the first switch s0 is

at t = 0. At the sampling time following each of these switches, Algorithm 1

should choose one from N possible modes. Also, there are b T
Te
c intervals

when these switches can happen. Then, any switching signal σ ∈ Σ(Td) is

mapped to one of N
∑k1

i=0

(
k2

i

)
N i switching signals by Algorithm 1, where

k1 = b T
Td
c and k2 = b T

Te
c. To compute a simple upper bound on this sum,
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we multiply it first by
(
k1
k2

)k1 to get:

(k1

k2

)k1 k1∑
i=0

(
k2

i

)
N i =

k1∑
i=0

(
k2

i

)(k1

k2

)k1N i ≤
k1∑
i=0

(
k2

i

)(k1

k2

)i
N i

[since k1
k2
≤ 1 (remember Te ≤ Td)]

≤
k2∑
i=0

(
k2

i

)(k1

k2

)i
N i <

∞∑
i=0

(
k2

i

)(k1

k2

)i
N i

[again since k1
k2
≤ 1 and k2 <∞]

=
(
1 +

Nk1

k2

)k2 ≤ eNk1 .

Hence, N
∑k1

i=0

(
k2

i

)
N i ≤ N

(
k2
k1

)k1eNk1 . And assuming without loss of gen-

erality that T
Te

and T
Td

are integers, then k2
k1

= Td
Te

. So, N
∑k1

i=0

(
k2

i

)
N i ≤

N
(
Td
Te

)k1eNk1 . From now on, following the same steps taken in the proof of

Lemma 2 by multiplying this bound on the number of switching signals with

the product of the cardinalities of the grids Ci’s over all the iterations before

T , one can conclude that the number of functions that can be computed by

Algorithm 1 is upper bounded by #C0NH
T/Te(Td

Te
eN)T/Td .

Theorem 1 hest(ε, α, τ) ≤ (L+α)n
ln 2

+ min{ logN
Te

, 1
Td

(N + log(Td
Te

))}, where Te is

as chosen in Section 3.2.1.

Proof This proof is along the lines of the proof of Proposition 2 in [13].

lim sup
T→∞

1

T
log sest(T, ε, α, τ)

≤ lim sup
T→∞

1

T
log

(
(#C0)(HN)b

T
Te
c+1

)
[using Lemma 2]

≤ lim sup
T→∞

1

T
log #C0

+ lim sup
T→∞

1 + Te/T

Te
(logde(L+α)Teen + logN)

≤ (L+ α)n

ln 2
+

logN

Te
.

The last step follows from the fact that lim supT→∞
1
T

log #C0 = lim supT→∞
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1
T

logd diam(K)

2εe−(L+α)Te
en = 0, since the term inside the log is finite. However, if we

use the bound in Lemma 3 in the second step instead of Lemma 2 we get

hest(ε, α, τ) ≤ (L+α)n
ln 2

+ 1
Td

(N + log(Td
Te

)). Hence the theorem.

Corollary 1 If N = 1, we get the previous bound on entropy (L+α)n
ln 2

given

in [13].

Remark 2 (Relationship between parameters) Recall that Te should satisfy

d(Te) ≤ ε(1− e−α(Td−Te)) and Te ≤ τ . Hence, larger values of the parameters

ε or τ allow Te to be larger. This decreases the upper bound on entropy.

However, having a larger α may increase or decrease the upper bound since

while it decreases the second term by allowing a larger Te, it increases the

first term in the entropy bound in Theorem 1.

3.2.2 Relation between entropy and the bit rate of estimation
algorithms

In this section, we show that there is no state estimation algorithm for System

(2.2) that uses bit rates smaller than its estimation entropy. First, let us

define state estimation algorithms given ε, τ, and α > 0:

Definition 2 A state estimation algorithm for System (2.2) with a fixed

bit rate is a pair of functions (S, E), where S : Rn × Qs → Γ × Qs,

E : Γ × Qe → ([0, Tp] → Rn) × Qe), Tp is the sampling time, Γ is an

alphabet with N symbols, for some N ∈ N, and Qs and Qe are the sets of

internal states of the sensor S and estimator E , respectively. S runs at the

sensor side and E on the estimator one. S samples the state of the system

each Tp time units and sends to E a symbol from Γ representing an estimate

of the state at the corresponding sampling time. Finally, E maps the received

symbol to an (ε, τ, α)-approximating function of the trajectory for the next

Tp time units.

Now, let us define the bit rate of the algorithm:

br(ε, τ, α) := lim sup
T→∞

1

T

bT/Tpc∑
i=0

logN = lim sup
j→∞

1

jTp

j∑
i=0

logN =
logN

Tp
. (3.3)

23



Proposition 2 There is no state estimation algorithm for System (2.4) with

a fixed bit rate smaller than its estimation entropy.

Proof The proof is similar to the proof of Proposition 2 in [43]. For the

sake of contradiction, assume that there exists such an algorithm with a bit

rate smaller than hest(ε, α, τ). Then, for a sufficiently large T ′, we should

have (l+1) logN
T ′

< 1
T ′

log sest(T
′, ε, α, τ), where l = bT ′/Tpc. Hence, we get the

inequality N l+1 < sest(T
′, ε, α, τ). However, N l+1 is the number of possible

sequences of symbols of length l+ 1 that can be sent by the sensor over l+ 1

iterations. There are l+1 instead of l iterations over the interval [0, T ′] since

the sensor starts sending the codewords at t = 0 s. Hence, the number of

functions that can be constructed by the estimator is upper bounded by N l+1.

Moreover, for any given trajectory of the system, the output of the estimator

is a corresponding (ε, α, τ)-approximating function over the interval [0, T ′].

This is true since the estimator should be able to construct an (ε, α, τ)-

approximating function for the corresponding trajectory of the system over

the interval [0, (l + 1)Tp) given the codewords sent by the sensor in the first

l + 1 iterations. Hence, the set of functions that can be constructed by the

estimator defines a (T ′, ε, α, τ)-approximating set. But, sest(T
′, ε, α, τ) is the

minimal cardinality of such a set. Therefore, the set of functions that can be

constructed by the algorithm defines a (T ′, ε, α, τ)-approximating set which

has a cardinality smaller than sest, the supposed minimal one.

3.3 State Estimation Algorithm

We consider a setup where a sensor is sampling the state of the switched

system each Tp time units without being able to sense the mode. It sends

a quantized version of the state along with other few bits over a communi-

cation channel to the estimator. In turn, the estimator needs to compute

(ε, α, τ)-approximating function of the trajectory of the system using the

measurements received from the sensor (see Figure 3.1).

24



Figure 3.1: Block diagram showing the flow of information from the switched
system to the sensor to the estimator.

3.3.1 Estimation algorithm overview

First, we briefly discuss the basic principle of constant bit-rate state esti-

mation for a single dynamical system (see for example [13]). In this case,

the system evolves as ẋ = fp(x), for a given p ∈ [N ], x0 ∈ K, and there

is no uncertainty about the mode. Suppose at a given time t the estima-

tor has somehow computed a certain estimate for the state of the system,

say represented by a hypercube S. In the absence of any new measurement

information, the uncertainty in a state estimate or the size of S blows up

exponentially with time as eLpt, where Lp is the Lipschitz constant of fp. In

order to obtain the required exponentially shrinking state estimates, i.e., S

shrinking as e−αt, the sensor has to send new measurements to the estimator.

One strategy is for the sensor to send information every Tp > 0 time

units as follows: it partitions S, which has a radius r, into a grid with

cells of radii re−(Lp+α)Tp , makes a quantized measurement of the state of the

system ξ(x0, t) according to this grid and sends a few bits to the estimator

so that the algorithm running at the estimator can identify the correct cell

in which the state resides (see Figure 3.1). At this point, the uncertainty in

the state reduces by a factor of e(Lp+α)Tp so that after Tp time units when

the uncertainty grows by a multiple of eLpTp there is still a net reduction in

uncertainty by a factor of eαTp . It can also be seen that the number of bits

the sensor needs to send (for identifying one grid cell out of e(Lp+α)Tpn) is

O(n(Lp + α)Tp) and this gives the average bit rate of n(Lp+α)/ln 2.

Algorithm 2 which runs on the sensor side extends this strategy to work

with switched systems. The basic idea is to track a number (1 ≤ N̂ ≤ N) of

possible modes that the system could be in, and run the above algorithm of

quantization-based estimation, for each of these N̂ modes. The set of tracked

modes is stored in the vectorm. A modemi[r], r ∈ [N̂ ], is valid (validi [r] = 1)

if the current state ξσ(x0, iTp) is contained in the corresponding state estimate

Si[r] at Line 9 and mi[r] 6= −1. However, it is possible that none of the N̂
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tracked modes are valid. In particular, the mode may switch and the state

may evolve to fall outside of the estimates of the tracked modes or it may be

that none of the N̂ tracked modes in mi is the actual mode of the system over

[(i− 1)Tp, iTp]. In this scenario where none of the modes are valid, the state

is said to have escaped (Line 15). In the case of an escape, the algorithm

replaces all modes from the vector m and considers a new set of modes from

[N ]. If the rate of actual mode switches is slow enough (Lemma 5) then

it is guaranteed to include the actual mode of the system in m before the

next switch. And once the actual mode is tracked in m, the estimation error

converges exponentially.

In the above description of the algorithm, we suggested that each tracked

mode mi[r] maintains its own corresponding state estimate Si[r] and quan-

tization grid Ci[r]. This not only uses excessive memory, but also implies

that N̂ different quantized measurements of the state has to be sent by the

sensor. In Algorithm 2, at any iteration i ≥ 1, only a single state estimate

Si is maintained, a single grid Ci is computed according to which a single

measurement is sent by the sensor. That is Si and Ci are actually Si[modei−1]

and Ci[modei−1], where modei−1 is some r ∈ [N̂ ] agreed on between the sen-

sor and the estimator. In our case we consider it the valid mode with the

minimum index in mi (Line 11). In order to check the validity of the other

tracked modes in mi, the actual state is shifted with vectors which are com-

puted according to the dynamics of these modes. That is, vi[r] represents

the center of hypercube Si[r] which is the state estimate of the system cor-

responding to the dynamics ẋ = fmi[r](x). To check if xi ∈ Si[r], xi is shifted

with the vector vi[modei−1]− vi[r] and then checked if it belongs to Si.

If there is an escape at a certain iteration, Si is constructed as a hyper-

rectangle centered at vi[modei−1] with radius δi plus d(Tp). Recall that δi is

the radius used for computing Si assuming that there is no escape (Line 34)

and d(Tp) is the additional factor that capture maximum deviation between

two trajectories of two different modes in [N ] starting from the same state

in Reach(Σ, K), the reachable states by (2.2), and running for Tp seconds.

Next, qi will be the quantization of xi with respect to the new Ci computed

in Line 19.

The NextMode() function cycles through all the [N ] modes in the following

two-phase fashion. For a sequence of N calls in phase I, it returns the modes

in [N ] in some arbitrary order. Then, it returns −1 for the next N̂ − 1 calls
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in Phase II and then goes back to Phase I. Phase I is used by the estimation

algorithm to cycle through all the modes fairly in discovering the actual mode

after a switch. Phase II is used to keep the actual mode as the only mode

tracked in mi while the rest of mi is equal to −1.

Estimator side algorithm On the estimator side, an algorithm similar

to Algorithm 2 is executed with small changes: instead of taking xi as input

(Line 7), qi, a quantized version of xi, and the validi vector are taken. Hence,

the estimator knows if xi ∈ Si[r] or not for a certain r ∈ [N ] by examining

the validi vector sent from the sensor. In addition, Line 8 is replaced by

“true”. Finally, Lines 8 to 10, Line 20 and Line 22 are omitted. These lines

only compute values which are sent by the sensor.

Reading the pseudo-code B(xc, rc) defines an over approximation of the

initial set K as a hypercube of radius rc centered at xc. The input xi (Line 7)

executed at time t reads the current state of the system ξσ(x0, iTp) into the

program variable xi. In the next line xi ∈ Si[r] is assumed to be computed by

checking if xi + (vi[modei−1]− vi[r]) ∈ Si if i ≥ 1 and xi + (vi[0]− vi[r]) ∈ Si
if i = 0. In Line 11, the minimum index of a valid mode is assigned to modei

but this could be any arbitrary choice. It is set to ⊥ if there is no valid mode.

Comparison with upper bound construction Algorithm 2 is similar to

Algorithm 1 which was used for the construction of an approximating func-

tion in the proof of the upper bound in Section 3.2.1. However, the mode

is known to the sensor at the sampling times in Algorithm 1 while it is not

assumed to be known in Algorithm 2. Thus, the construction used in the

upper bound knows the iterations where the switch happens, which enables

Algorithm 1 to increase the size of the ball representing the state estimate

in the iteration following a switch. However, because it is assumed that the

mode is not known, the algorithm needs to wait till the state xi leaves the

state estimate Si to know that a switch happened or that a mode considered

in mi is different from the actual mode. That fact requires the additional as-

sumption that the modes are exponentially separated to bound the number of

iterations needed for the state to leave a state estimate constructed based on

a wrong mode, which in turn requires Algorithm 2 to sample faster (Tp ≤ Te)
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and track several modes in parallel to figure out the actual mode and upper-

bound the error by ε between a switch and its following τ time units.

3.4 Analysis of Estimation Algorithm

In this section, we prove a sequence of error bounds on the state estimate for

different cases that arise from considering a mode which is different from the

actual mode over a time interval of size Tp. Then, in Section 3.4.2 we estab-

lish bounds on the maximum number of possible escapes between switches.

Theorem 2 in Section 3.4.3 uses these results together with an upper bound

on the speed of mode switches to give detailed bounds on the state estimation

error. Finally, in Section 3.4.4 we analyze the average bit rate and compare

it to the upper bound on hest defined in Theorem 1.

Notations We fix all the parameters of the algorithm including the sam-

pling period Tp and the mode window size N̂ . We also fix a particular

(unknown) initial state x0 ∈ K and a particular (unknown) switching sig-

nal σ for the system described by Equation (2.2). This defines a partic-

ular solution ξσ(x0, ·) of the switched system and the sequence of states

ξσ(x0, Tp), ξ(x0, 2Tp), . . . , sampled by Algorithm 2 which runs on the sen-

sor side. We abbreviate ξσ(x0, iTp) as xi and the quantized measurement

of xi that is sent by the sensor as qi. Moreover, δi, Si, Ci, etc., denote

the valuations of the variables δ, S, C, etc., at Line 22 in the ith iteration

of the algorithm. However, the modes in mi+1 are the modes considered

over the interval (iTp, (i + 1)Tp]. The switching times in σ are denoted by

s0 = 0, s1, . . . For a given switching time sj, we define last(j) := bsj/Tpc and

next(j) := dsj/Tpe as the last iterations of the algorithm before the jth switch

and the first iteration after the jth switch respectively.

Recall that an escape occurs when the state of the system ξ(x0, iTp) is not

in any of the state estimates Si[r]’s at Line 9, i.e., it occurs when the else

branch in Line 15 is taken.
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Algorithm 2 Procedure for estimating the state of a switched system (sensor
side).

1: input: Tp, α, δ0, K ⊂ B(xc, rc), N̂

2: m0 ← 〈0, 1, . . . N̂ − 1〉;
3: S0 ← B(xc, rc);
4: C0 ← grid(S0, δ0e

−(L+α)Tp);
5: mode0 ← 0; i← 0;
6: while true do . ith iteration
7: input xi;
8: for r ∈ [N̂ ] do
9: validi [r]← [xi ∈ Si[r] and mi[r] 6= −1];

10: end for
11: modei ← min{r | validi [r]};
12: escape← modei 6= ⊥;
13: if not escape then . no escape
14: qi ← quantize(xi, Ci[modei ]);
15: else . escape
16: modei ← modei−1;
17: δi ← d(Tp) + δi;
18: Si ← B(zi(Tp), δi);
19: Ci ← grid(Si, δie

−(L+α)Tp);
20: qi ← quantize(xi, Ci[modei]);
21: end if
22: send 〈qi, validi〉;
23: i++; . parameters for next iteration
24: mi ← mi−1;
25: for r ∈ [N̂ ] do
26: if escape or (not validi−1[r] and mi[r] 6= −1) then
27: mi[r]← NextMode();
28: end if
29: if mi[r] 6= −1 then
30: vi[r]← ξmi[r](qi−1, Tp);
31: end if
32: end for
33: δi ← e−αTpδi−1;
34: Si ← B(vi[modei−1], δi);
35: Ci ← grid(Si, δie

−(L+α)Tp);
36: zi(.)← ξmi [modei−1 ](qi−1, ·);
37: wait(Tp);
38: end while
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3.4.1 Error bounds across a single iteration

In this section, we establish how the error in state estimation, ‖ξσ(x0, t)− z(t)‖∞,

evolves over a single iteration of the algorithm, that is, over t ∈ [iTp, (i+1)Tp].

The estimate z(t) over [iTp, (i+1)Tp] is ξmi+1
[r](qi, ·) for some r, and therefore,

we track the error by bounding ‖ξσ(x0, t)− ξmi+1[r](qi, t)‖∞, for all r ∈ [N̂ ]

with mi+1[r] 6= −1.

There are several sub-cases to consider based on (a) whether there is a

switch, and (b) whether the tracked mode mi+1[r] matches the actual mode

at a given time, over the considered interval between the iterations. For

each of these cases, we establish a bound on ‖ξσ(x0, t)− z(t)‖∞ using (a)

Bellman-Gronwall inequality to bound ‖ξu(x, t)− ξu(x′, t)‖∞, and (b) trian-

gular inequality to bound ‖ξu(x, t)− ξp(x′, t)‖∞, where u 6= p ∈ [N̂ ] and

x 6= x′ ∈ Rn. Recall that Tp ≤ τ ≤ Td, so no more than one switch can occur

between iTp and (i+1)Tp.

Each of the following propositions covers one of the above cases. Proposi-

tion 3 considers the case when there is a switch between iTp and (i+1)Tp, the

considered mode mi+1[r] is the same as the actual mode σ(iTp) at t = iTp, and

there exists a state estimate Si[p] that contains the actual state ξσ(x0, iTp) at

t = iTp. It shows that the estimate converges exponentially until the switch,

and after that it accumulates an additive factor of d(Tp).

Proposition 3 Fix an iteration i, a switching time sj ∈ (iTp, (i+1)Tp), and

an index r ∈ [N̂ ]. If mi+1[r] = σ(iTp) and xi ∈ Si[p] for some p ∈ [N̂ ], then

for all t ∈ [iTp, (i+ 1)Tp], ‖ξσ(x0, t)− ξmi+1[r](qi, t− iTp)‖∞ ≤{
δie
−α(t−iTp) if t < sj (3.4)

d(Tp) + δie
−α(t−iTp) otherwise. (3.5)

Proof For (3.4), ‖xi − qi‖∞ ≤ δie
−(L+α)Tp since xi ∈ Si[p] for some p ∈ [N̂ ]
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and the boxes in Ci[p] are of radii δie
−(L+α)Tp . Then,

‖ξσ(x0, t)− ξmi+1[r](qi, t− iTp)‖∞
= ‖ξσ(xi, t− iTp)− ξmi+1[r](qi, t− iTp)‖∞

[since ξσ(x0, t) = ξσ(ξσ(x0, iTp), t− iTp)]

= ‖ξmi+1[r](xi, t− iTp)− ξmi+1[r](qi, t− iTp)‖∞
[σ(iTp) = mi+1[r]]

≤ eLmi+1[r]
(t−iTp)‖xi − qi‖∞

[Bellman-Gronwall inequality]

≤ δie
Lmi+1[r]

(t−iTp)e−(L+α)Tp

[qi is quantization of xi]

≤ δie
−α(t−iTp).

The last inequality follows because Lmi+1[r] ≤ L and t− iTp ≤ Tp. For (3.5),

we assume without loss of generality that mi+1[r] = σ(t) = 1 for t ∈ [iTp, sj),

σ(t) = 2 for t ∈ [sj, (i+ 1)Tp]. Then, ‖ξσ(x0, t)− ξmi+1[r](qi, t− iTp)‖∞

= ‖ξ2(ξ1(x0, sj), t− sj)− ξ1(ξ1(qi, sj − iTp), t− sj)‖∞
≤ ‖ξ2(ξ1(x0, sj), t− sj)− ξ1(ξ1(x0, sj), t− sj)‖∞

+ ‖ξ1(ξ1(x0, sj), t− sj)− ξ1(ξ1(qi, sj − iTp), t− sj)‖∞
[by triangle inequality]

≤ ‖
∫ t−sj

0

(f2(ξ2(ξ1(x0, sj), t
′))− f1(ξ1(ξ1(x0, sj), t

′)))dt′‖

+ ‖ξ1(ξ1(x0, sj), t− sj)− ξ1(ξ1(qi, sj − iTp), t− sj)‖∞

≤ d(t− sj) + eL1(t−iTp)‖xi − qi‖∞
[by Bellman-Gronwall inequality]

≤ d(Tp) + δie
−α(t−iTp).

The next proposition holds under the same conditions as Proposition 3

except that the considered mode mi+1[r] matches the mode of the switched

system σ((i+1)Tp) at t = (i+1)Tp iteration, but it is not the same as σ(iTp).

The proof of (3.6) is analogous to the proof of (3.5).
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Proposition 4 Fix an iteration i, a switching time sj ∈ (iTp, (i+1)Tp), and

an index r ∈ [N̂ ]. If mi+1[r] 6= σ(iTp), mi+1[r] = σ((i + 1)Tp) and xi ∈ Si[p]
for some p ∈ [N̂ ], then, for all t ∈ [iTp, (i+ 1)Tp],

‖ξσ(x0, t)− ξmi+1[r](qi, t− iTp)‖∞ ≤{
d(Tp) + δie

−α(t−iTp) if t < sj (3.6)

2d(Tp) + δie
−α(t−iTp) otherwise. (3.7)

Proof For (3.7), ‖ξσ(x0, t)− ξmi+1[r](qi, t− iTp)‖∞

≤ ‖ξσ(x0, t)− ξσ(iTp)(xi, t− iTp)‖∞
+ ‖ξσ(iTp)(xi, t− iTp)− ξmi+1[r](qi, t− iTp)‖∞

[by triangle inequality]

≤ ‖ξσ(ξσ(x0, sj), t− sj)− ξσ(iTp)(ξσ(x0, sj), t− sj)‖∞
+ ‖ξσ(iTp)(xi, t− iTp)− ξmi+1[r](qi, t− iTp)‖∞

≤ d(t− sj) + d(Tp) + δie
−α(t−iTp)

[by similar argument to (3.5)]

≤ 2d(Tp) + δie
−α(t−iTp).

Proposition 5 also holds under the same conditions as Proposition 3 except

that the considered mode mi+1[r], the actual mode σ(iTp) at the ith iteration

and σ((i+ 1)Tp) at the (i+ 1)st iteration are all distinct. Inequality (3.8) is

the same as (3.6). Also, the proof of (3.9) is analogous to the proof of (3.7).

Proposition 5 Fix an iteration i, a switching time sj ∈ (iTp, (i+1)Tp), and

an index r ∈ [N̂ ]. If mi+1[r] 6= σ(iTp), mi+1[r] 6= σ((i + 1)Tp), mi+1 6= −1

and xi ∈ Si[p] for some p ∈ [N̂ ], then, for all t ∈ [iTp, (i+ 1)Tp],

‖ξσ(x0, t)− ξmi+1[r](qi, t− iTp)‖∞ ≤{
d(Tp) + δie

−α(t−iTp) if t < sj (3.8)

2d(Tp) + δie
−α(t−iTp) otherwise. (3.9)

From the above propositions, it follows immediately that if there is no

switch between the ith and the (i + 1)st iteration, then the bounds given by

inequalities (3.4), (3.6) and (3.8) will continue to hold for the entire period
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between the iterations.

The following assumption will be used to prove several intermediate results

about the estimation algorithm detecting the right mode and estimation

bounds. Then, in Lemma 5 in Section 3.4.2, we will establish a lower bound

on the dwell-time Td which guarantees this assumption.

Assumption 1 For each switching time sj other than s0 = 0, let i = last(j).

Then, there exists r ∈ [N̂ ] where mi+1[r] is the actual mode of the system

σ(iTp) and mi+1[p] = −1 for all p 6= r and δi ≤ min{δ0, εmin}.

Proposition 6 Under Assumption 1, for each i there exists r ∈ [N̂ ] with

xi ∈ Si[r].

Proof If there is an escape at iteration i, then the state xi is not in any of

the Si[r]’s at Line 9; however, it is still guaranteed to be in all the expanded

(corrected) estimates Si[r]’s computed at Line 18 based on δi and d(Tp). That

is because, under Assumption 1, inequalities (3.7) and (3.9) in Propositions 4

an 5 are not relevant (they are useful for analyzing the error bounds for faster

switching signals). Therefore, Line 17 takes care of the worst case scenario

in the estimation error over a single iteration.

3.4.2 Bounding escapes between switches

Proposition 7 upper bounds the number of escapes that can happen between

two consecutive switches to dN/N̂e.

Proposition 7 Under Assumption 1, the maximum number of escapes be-

tween two consecutive switches is dN/N̂e.

Proof First, note that at an escape, all the N̂ invalid modes are dropped

from the vectormi and new candidate modes are added fairly by the NextMode()

function. Hence, all the N modes would have been considered after dN/N̂e
escapes. Thus, the correct mode σ(t) would have been in m at some iter-

ation i. Then, let mi+1[r] = σ(iTp). Second, we know that xi ∈ Si[p] for

some p ∈ [N̂ ] by Proposition 6. Therefore, we can apply the estimation error

bound given by (3.4) in Proposition 3 to conclude that in the next iteration

validi[r] will be set to 1 until a new switch occurs. Thus, there will be no

more escapes till the next switch.
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Because of the exponential separation property, we can show that if the

dwell time of the switching signal is large enough, then after some maximum

number of iterations after a switch, the actual mode σ(t) still remains un-

changed and the size of the state estimate Si will be small enough to the

point that all incorrect modes in mi will be invalidated. We define iinv(δ) to

be an upper bound on the number of iterations needed to invalidate a mode

when the current radius of the ball representing the state estimate S is δ.

Let us define: for any δ > 0,

iinv(δ) := max{d 1

αTp
ln(

δ

εmin
)− L

α
e, 1}.

Proposition 8 Under Assumption 1, if at a given iteration i ≥ 0, −1 6=
mi+1[r] 6= σ(t), then mi+1[r] will be replaced with a different mode after a

maximum of iinv(δi) iterations.

Proof Let c = d 1
αTp

ln( δi
εmin

)−L+α
α
e. First, note that untilmi+1[r] is replaced,

δi will be decreasing by a eαTp factor in each iteration (because there is no

escape if it is not replaced). Then, δi+ce
−(L+α)Tp = δie

−((i+c)−i)αTpe−(L+α)Tp <

εmin. Thus, by the exponential separation property:

‖ξσ(xi, (c+ 1)Tp)− ξmi+c+1[r](qi+c, Tp)‖∞
= ‖ξσ(xi+c, Tp)− ξmi+c+1[r](qi+c, Tp)‖∞ > δi+ce

−(L+α)TpeLTp

= δi+c+1. [computed at Line 33]

Thus, the actual state will not belong to Si+c+1[r] computed at Line 34 and

mi+c+2[r] 6= mi+c+1[r]. We upper bound the radius δi of the state estimate

Si at iteration i with

δmax := max
i∈[1,dN/N̂e]

{δ0e
−iαTp + d(Tp)

1− e−iαTp
1− e−αTp

}.

Note that the first term decays geometrically with i and the second term

increases, and the max value could be attained somewhere in the middle.

Proposition 9 Under Assumption 1, δi ≤ δmax for all i.

Proof The radius δi of Si decreases between two escapes and possibly in-

crease at an escape. Therefore, the maximum of δi would be achieved if some
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number of escapes (less than or equal to dN/N̂e) happened in consecutive it-

erations immediately after a switch. Assumption 1 is used to make sure that

δi ≤ δ0 at i = last(j). The following definitions and two lemmas are used to

compute the minimum dwell-time that suffices for Assumption 1 to be true.

The following idet represents the maximum number of iterations needed after

a switch for the actual mode to be detected, all other modes to be invalidated

and δi ≤ εmin.

idet :=

dN/N̂e∑
i=1

iinv
(
δ0e
−iαTp + d(Tp)

i−1∑
j=0

e−jαTp
)

+ 2

≤ dN
N̂
eiinv(δmax) + 2.

Lemma 4 Under Assumption 1, after a maximum of idet iterations of any

switch sj, mi+1[r] = σ(t), for some r ∈ [N̂ ], mi+1[u] = −1 for all u 6= r and

δi ≤ εmin.

Proof (sketch) After a switch, the only mode considered in mi will no longer

be the correct mode. In the worst case, σ(t) will be considered in the last

set of modes mi+1. Each set of modes mi+1 needs a maximum of iinv(δi)

iterations to be invalidated. Moreover, there is a maximum of dN/N̂e escapes.

The first escape will happen after a maximum of 2 iterations after the switch

to invalidatemi+1[r] by the exponential separation assumption since δi ≤ εmin

before the switch. Since iinv is monotonically increasing w.r.t δ, we summed

the values of iinv when evaluated on the dN/N̂e maximum possible values of

δi. The last iinv(δmax) in idet is to invalidate all wrong modes (and replace

them with -1) and keep the actual one in mi. It will also make δi ≤ εmin by

the definition of iinv(δmax). Finally, we define the following to upper bound

the number of iterations, with no escapes, needed to decrease δi from εmin to

less than δ0:

iest := max(d 1

αTp
ln(

εmin
δ0

)e, 0).

Lemma 5 If the minimum dwell-time of σ is greater than (idet + iest + 1)Tp,

then Assumption 1 is true.

Proof Lemma 4 holds between s0 = 0 and s1 given the minimum dwell

time and the fact that εmin e
−αTp(iest) ≤ δ0 without Assumption 1. Then, the

argument holds inductively for the rest of the intervals.

35



3.4.3 Estimation error

Combining the above, we derive bounds on the estimation error in Theorem 2.

It shows that after a switch, the algorithm will be in four possible “phases”.

The estimation error will increase in the first few iterations after a switch

where escapes occur, until the correct mode is found in m, and thereafter, the

estimate converges exponentially, provided the dwell time is large enough.

Let the iterations of the algorithm when escapes occur between two con-

secutive switches sj and sj+1 be numbered w1, . . . wk. Fixing j we avoid

indexing the w’s and k with j.

Theorem 2 If σ has dwell time Td ≥ (idet + iest + 1)Tp, then for any t ∈
[sj, sj+1), the estimation error

‖ξσ(x0, t)− z(t)‖∞ ≤

d(Tp) + δ0e
−α(t−last(j)Tp) if t ∈ [sj, w1Tp] (3.10)

d(Tp) + δwhe
−α(t−whTp) if ∃ h ∈ {1, . . . , k}, t ∈ [whTp, wh+1Tp](3.11)

d(Tp) + δwke
−α(t−wkTp) if t ∈ [wkTp, (wk + iinv(δwk))Tp] (3.12)

δwke
−α(t−wkTp) otherwise. (3.13)

Proof We start by proving (3.10): By Lemma 5, δlast(j) ≤ εmin, δlast(j) ≤ δ0

and z(t) = ξσ(qlast(j), t−last(j)Tp) for t ∈ [last(j)Tp, sj). Then, by inequality

(3.5) in Proposition 3 , the inequality is satisfied for t ∈ [sj, next(j)Tp].

Moreover, if w1, the first escape after sj, was not at next(j) then it will be at

next(j)+1, since, by the exponential separation property, ‖z(t)−ξσ(x0, t)‖ ≥
δ0e

LTp , so w1 = next(j) + 1. If that is the case, then the inequality holds for

t ∈ [next(j)Tp, (next(j)+1)Tp] as a result of inequality (3.6) in Proposition 4

and the fact that δnext(j) ≤ δ0e
−αTp ≤ δ0.

Inequalities (3.11) and (3.12) have similar proofs as (3.10) but instead of

δ0 we have δwh . Inequality (3.13) follows from the fact that at t = (wk +

iinv(δwk)Tp) there is r ∈ [N̂ ] with m[r] = σ(sj) and m[p] = −1 for p 6= r, and

the repeated application of inequality (3.4) in proposition 3.

Corollary 2 summarizes the error bounds in Theorem 2.

Corollary 2 Under the assumptions of Lemma 5, consider the time between

the two consecutive switches sj and sj+1. Then, for all t ∈ [sj, sj+1),

‖ξσ(x0, t)− z(t)‖∞ ≤
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{
δmax + d(Tp) t ∈ [sj, wkTp] (3.14)

δwke
−α(t−wkTp) otherwise. (3.15)

Thus, for a given ε, τ and α defined as for Theorem 1, we can choose δ0,

Tp and N̂ to control the variables idet, d(Tp) and δmax so as to achieve the

inequalities in (3.1).

3.4.4 Optimal network usage

We show that the estimation algorithm uses network bandwidth optimally in

the following sense: An analysis similar to that of Proposition 4 of [13] shows

that the average bit rate used by our algorithm is (L+α)n/ln 2+N̂/Tp. The sensor

needs to send (a) qi: the quantization of xi with respect to one of the N̂ Si[r]’s

and (b) the validi bit vector: for each r ∈ [N̂ ] one bit indicating whether or

not xi belongs to Si[r]. The quantized state q0 requires #C0 = d diam(K)

2δ0e
−(L+α)Tp

en

bits to be sent. For i ≥ 1, the number of bits required to represent qi is

#Ci = d δi
δie
−(L+α)Tp

en = de(L+α)Tpen. Hence, the average bit rate used by the

algorithm is br(ε, α, Tp) = limi→∞ 1/Tp log(#CiN̂) = (L+α)n
ln 2

+ N̂
Tp

.

Theorem 3 Average bit rate of Algorithm 2 is (L+α)
ln 2

+ N̂
Tp

.

Hence, it follows that the bit-rate used by the estimation algorithm is larger

than the upper bound on the estimation entropy by at most N̂
Tp
−min{ logN

Te
, 1
Td

(N + log(Td
Te

))} bits. Therefore, the efficiency gap between the bit-rate used

by our algorithm and the bit rate (hest) used by the best possible algorithm

is at most N̂
Tp
−min{ logN

Te
, 1
Td

(N + log(Td
Te

))} bits more than the gap between

hest and its upper-bound. The unobservability of the switching signal and

the switching times contributes to the gap.

3.5 Experiments

We implemented Algorithm 2 and experimented on two switched systems.1

We used Python 2.7 and ODEint package to generate the trajectories. The

running time of each iteration of the algorithm is O(n+N), assuming O(1)

1Code available at: https://github.com/HusseinSibai/

SwitchedSystemsStateEstimation
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time computation of trajectories. In practice, it took milliseconds on a laptop

with 2 GHz Intel Core i7 processor, which suggests that the algorithm can

be used in real-time.

Switched linear systems In a switched linear system, the dynamics of

all the modes are of the form: ẋ = Apx + Bpu. We present estimation of a

five dimensional switched linear system with five modes. For each p ∈ [5] =

{0, . . . 4} the matrix Ap and the column vector Bp are generated randomly,

and the input u is also a random constant. In the presented results, the

settling time for the first mode is 11.89 and the others are unstable. The

maximum Lipschitz constant was L = 28.28. We worked with switching

signals that satisfy Assumption 1. We chose the following parameters α = 1,

Tp = 0.1 s, ε = 2 and N̂ = 2. Two state components of the system are

shown in Figure 3.2 (a). Observe that the state estimates (yellow and blue)

enlarge after escapes and that the state and the mode eventually converge to

the correct values. d(Tp) was approximated at each escape by computing the

distance between all possible pairs of modes starting from the actual state

of the system (can be replaced with the estimated state) at the time of that

escape. It was around 2. The bit rate used here is (L+α)n/ ln 2+N̂/Tp = 231

bps. The maximum time needed to detect the correct mode is 2.2 s and the

maximum radius of a bounding box δ was around 3. So, if τ ≥ 2.2 s and ε ≥ 5,

the parameters of the algorithm in this experiment satisfy the properties in

(3.1).

Nonlinear glycemic index model Estimating the blood glucose level is

an important problem for administering controlling insulin for diabetes pa-

tients given [44]. We consider a polynomial switched system model of plasma

glucose concentration.2 The model has nine modes representing different con-

trol inputs. The state consists of three variables: G, I and X. In this model,

the switching between different modes is brought about by certain threshold

based rules depending on the state variables. In the span of 150 s of each

execution, 6 switches happened. Although Assumption 1 was not always

satisfied, it was still able to do state estimation. The Lipschitz constant of

each of the modes is estimated through sampling. The parameters of the

2Switched system benchmark available from: https://ths.rwth-aachen.de/

research/projects/hypro/glycemic-control/
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(a) (b)

(c)

Figure 3.2: Execution of estimation algorithm. Actual mode (black), mode
estimate (red), the values of the other variables are shown by the continuous
plots. The vertical cut lines show the error estimates (δ) on those variables. (a)
Linear five-dimensional system, Glycemic nonlinear control system, (b) N̂ = 1
and (c) N̂ = 9. Figure with N̂ = 9 has much less escapes than that with N̂ = 1.

algorithm are chosen as α = 1 and Tp = 1 s. For each value of N̂ ∈ [1, 9], 100

initial states x0 are drawn randomly and the algorithm is executed on the

resulting solutions ξσ(x0, ·). Two sample executions are shown in Figure 3.2

and the average results are shown in Table 3.1.

As the number of modes tracked N̂ increases, as expected, the number of

escapes decreases. In fact, beyond N̂ = 5, the marginal benefit to sending

more bits is small as far as the worst case error estimate (δmax) is concerned.

In practice, the choice for d0, N̂ and Tp should be chosen to satisfy the

convergence parameters specified.
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Table 3.1: Average results of Glycemic index model experiments

N̂ δmax Escapes

1 14.17 25

2 12.97 12.92

3 12.3 8.95

4 10.16 6.95

5 9.67 6.38

6 10.12 6.5

7 9.67 6.06

8 9.66 6.0

9 9.59 5.81

3.6 Conclusion

We have presented an algorithm for state estimation of switched nonlinear

systems with finite number of modes and unobservable switching signal us-

ing quantized measurements with optimality guarantees on the number of

bits needed to be sent from the sensor to the estimator. These results sug-

gest several future research directions including extensions to hybrid models

with partially known switching structure and developing lower-bounds on

estimation entropy.
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CHAPTER 4

STATE ESTIMATION OF NONLINEAR
SYSTEMS WITH BOUNDED INPUTS:

ENTROPY AND BIT RATES

4.1 Introduction

In this chapter, we study the problem of estimating the state of nonlinear

dynamical systems with unknown, possibly discontinuous, inputs. This is

a much more challenging problem than that of autonomous dynamical sys-

tems studied in [13], because even if the uncertainty about the state can

be made to decrease over time using sensor measurements, the uncertainty

about the input may not decrease. The input can change arbitrarily with

few constraints and the continuous effect of the uncertain input prevents the

uncertainty about the state from going to zero. We contend this using a

weaker notion of estimation, akin to that in [32], that only requires the error

to be bounded by a constant ε > 0 instead of exponentially decaying to zero.

We show that there is no state estimation algorithm with a bit rate smaller

than the entropy. For the purpose of computing an upper bound, we use a

corrected version of a previous result in [42] to upper bound the sensitivity

of a trajectory of a nonlinear system to changes in the initial state and in

the input signal. Then, we present a procedure that, given sampled states of

a trajectory and corresponding sampled values of an input signal, constructs

a function that estimates the trajectory. This procedure is of independent

interest, as it can be used as an estimation algorithm if the unknown input

signal can be sampled. We count the number of trajectories that can be

constructed by this procedure for different initial states and input signals,

up to a time bound T . The rate of growth of this number gives an upper

bound on entropy.

The upper bound is presented in terms of the state and the input dimen-

sions n and m, global bounds on the norm of the Jacobian matrices of the

vector field with respect to the state and the input, Mx and Mu, the up-
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per bound on the norm of the input umax, and two constants µ and η that

represent how much the input signal is allowed to vary over time. Roughly,

η upper bounds the size of the jumps in the input signal and µ constrains

the number of large jumps in a short amount of time. We show that if the

upper bound on the input norm goes to zero, we recover the upper bound

on estimation entropy nLx
ln 2

computed in [13] for α equal to zero. The entropy

upper bound increases logarithmically with umax, quadratically with η, and

as µ2/3 with µ, when ε is small. The bound also increases as O(ε−2) as the

allowed estimation error ε decreases.

Finally, we compute an upper bound on entropy of systems with linear

inputs. We present a better way to compute the sensitivity of the system

with respect to changes in the initial state and in the input signal. We show

how our results can be used to get sufficient estimation bit rates for two

examples.

The chapter is organized as follows: we start by defining the entropy for

systems with inputs, which were described in Section 2.3.1, in Section 4.2.

Then, we compute the upper bound on entropy for general nonlinear systems

in Section 4.3. After that, we compute a new upper bound on entropy for

systems where the input affects the dynamics linearly in Section 4.4. Finally,

we discuss the results and suggest future directions in Section 4.5.

4.2 Entropy Definition

Let us fix throughout this chapter a compact set K of possible initial states of

System (2.4), a bound on the input norm umax and two constants bounding

the variation of the input signal µ and η as in Section 2.3.1. This will in turn

lead to a specific corresponding set of possible input signals U . We fix the

constant ε > 0, which will bound the norm of the estimation error, too.

Given a time bound T > 0, initial state x0 ∈ K and an input signal u ∈ U ,

we say that a function z : [0, T ] → Rn is ε-approximating for the trajectory

ξx0,u over the interval [0, T ], if

‖z(t)− ξx0,u(t)‖ ≤ ε, (4.1)

for all t ∈ [0, T ]. We say that a set of functions Z := {zi | zi : [0, T ] → Rn}
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is (T, ε,K)-approximating for system (2.4), if for every x0 ∈ K and u ∈ U ,

there exists an ε-approximating function zi ∈ Z for the trajectory ξx0,u over

[0, T ]. The minimal cardinality of such a set is denoted by sest(T, ε,K).

The entropy of System (2.4) is defined as follows:

hest(ε,K) = lim sup
T→∞

1

T
log sest(T, ε,K). (4.2)

The entropy hest(ε,K) represents the exponential growth in the number of

distinguishable trajectories of the system. Hence, it also represents the bit

rate need to be sent by the sensor so that the estimator can construct a

“good” estimate of the state.

Notice that we do not take the limit as ε goes to zero in the definition of

entropy in contrast to the majority of the literature where the limsup as ε goes

to zero is taken after taking the limsup as T goes to infinity [31, 10, 13, 14, 7].

That is because we do not expect the entropy to stay finite as ε approaches

zero because of the unknown and possibly fast varying input. The upper

bounds on entropy we derive in the following sections actually approach

infinity as ε approaches zero.

4.2.1 Relation between entropy and the bit rate of estimation
algorithms

In this section, we show that there is no state estimation algorithm for System

(2.4) that uses bit rate smaller than its entropy as we did in Section 3.2.2

where we showed a similar result for switched system. First, let us define

state estimation algorithms given an estimation error bound ε > 0. It is

the same as Definition 2 with the only difference being that the estimator E
should output an ε-approximating function for the system trajectory instead

of an (ε, τ, α)-approximating one as there is no switching signal in this case.

Definition 3 A state estimation algorithm for System (2.4) with a fixed

bit rate is a pair of functions (S, E), where S : Rn × Qs → Γ × Qs,

E : Γ × Qe → ([0, Tp] → Rn) × Qe), Tp is the sampling time, Γ is an

alphabet with N symbols, for some N ∈ N, and Qs and Qe are the sets of

internal states of the sensor S and estimator E , respectively. S runs at the

sensor side and E on the estimator one. S samples the state of the system
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each Tp time units and sends to E a symbol from Γ representing an estimate

of the state at the corresponding sampling time. Finally, E maps the received

symbol to an ε-approximating function of the trajectory for the next Tp time

units.

Now, let us define the bit rate of the algorithm. It is the same as that in

equation (3.3) with the only difference being that it is parameterized with ε

only (in addition to K) instead of being also parametrized with α and τ .

br(ε,K) := lim sup
T→∞

1

T

bT/Tpc∑
i=0

logN = lim sup
j→∞

1

jTp

j∑
i=0

logN =
logN

Tp
. (4.3)

Proposition 10 There is no state estimation algorithm for System (2.4)

with a fixed bit rate smaller than its entropy.

Proof The proof is similar to the proof of Proposition 2 in [43] and Propo-

sition 2 in Chapter 3. For the sake of contradiction, assume that there

exists such an algorithm with a bit rate smaller than hest(ε,K). Recall that

hest(ε,K) = lim supT→∞ 1/T log sest(T, ε,K). Then, for a sufficiently large T ′,

we should have (l+1) logN
T ′

< 1
T ′

log sest(T
′, ε,K), where l = bT ′/Tpc. Hence,

we get the inequality N l+1 < sest(T
′, ε,K). However, N l+1 is the number of

possible sequences of symbols of length l + 1 that can be sent by the sensor

over l + 1 iterations. There are l + 1 instead of l iterations over the inter-

val [0, T ′] since the sensor starts sending the codewords at t = 0 s. Hence,

the number of functions that can be constructed by the estimator is upper

bounded by N l+1. Moreover, for any given trajectory of the system, the out-

put of the estimator is a corresponding ε-approximating function over the

interval [0, T ′]. This is true since the estimator should be able to construct

an ε-approximating function for the corresponding trajectory of the system

over the interval [0, (l + 1)Tp) given the codewords sent by the sensor in the

first l + 1 iterations. Hence, the set of functions that can be constructed by

the estimator defines a (K, ε, T ′)-approximating set. But, sest(T
′, ε,K) is the

minimal cardinality of such a set. Therefore, the set of functions that can

be constructed by the algorithm defines a (T ′, ε,K)-approximating set which

has a cardinality smaller than sest, the supposed minimal one.
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4.3 Entropy Upper Bound and Algorithm

In this section, we derive an upper bound on the entropy of System (2.4) in

terms of its parameters and the required bound on the estimation error, ε.

To do that, we will need to first upper bound the distance between any two

trajectories of System (2.4) in terms of the distance between the initial states

and the distance between the input signals. This will be done in Section 4.3.1.

Then, in Section 4.3.2, we will describe a procedure that, given ε > 0, a time

bound T > 0, an initial state x0 ∈ K and an input u ∈ U , constructs an

ε-approximating function for the trajectory ξx0,u over the interval [0, T ]. We

will count the number of functions that can be produced by this procedure

for any fixed ε and T (and varying x0 ∈ K and u ∈ U) to upper bound the

cardinality of the minimal approximating set. This will be used to derive the

upper bound on entropy in Section 4.3.3.

4.3.1 Input-to-State Discrepancy Function Construction

Here we correct and use a method for construction of local input-to-state dis-

crepancy function (with proof in the Appendix). This is a straight-forward

generalization of Lemma 15 of [42] to handle systems with piece-wise contin-

uous inputs and Jacobian matrices of f (instead of continuous ones).

Lemma 6 The function V (x, x′) := ‖x − x′‖2 is a local IS discrepancy for

System (2.4) over any compact set X ⊂ Rn and interval [t0, t1] ⊆ R≥0, with

β(y, t− t0) := e2a(t−t0)y2 and γ(y) := b2e2a(t1−t0)y2,

where

t ∈ [t0, t1], a := sup
t∈[t0,t1]

u∈U ,x∈X

λmax
(Jx + JTx

2

)
+

1

2
and b := sup

t∈[t0,t1]

u∈U ,x∈X

�Ju�.

(4.4)

Since f is globally Lipschitz continuous in both arguments, one can infer

that a and b are finite over all the input and state spaces. We will denote

a global upper bound on a by Mx and on b by Mu. An example of such
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bounds is presented in the following proposition, with the proof being in the

Appendix.

Proposition 11 For any time interval [t0, t1] ⊂ R≥0 and compact set X ⊂
Rn, a ≤ nL′x + 1

2
and b ≤ m

√
mL′u, where L′x and L′u are the Lipschitz

constants of f with respect to each coordinate of the state and the input

respectively.

Therefore, for any τ > 0, t ∈ [0, τ ], x0, x
′
0 ∈ Rn, and u, u′ ∈ U , the distance

between the trajectories of ξx0,u and ξx′0,u′ , ‖ξx0,u(t) − ξx′0,u′(t)‖
2, is upper

bounded by:

e2Mxt‖x0 − x′0‖2 +M2
ue

2Mxτ

∫ τ

0

‖u(s)− u′(s)‖2ds. (4.5)

Further if f has a continuous Jacobian, one can get tighter local bounds

on a and b that depend on the set of input functions U , the compact set X ,

and the interval [t0, t1].

4.3.2 Approximating set construction

Let us fix ε > 0 throughout this section. We will describe a procedure

(Algorithm 3) that, given a time bound T > 0, an initial state x0 ∈ K

and an input signal u ∈ U , constructs an ε-approximating function for the

trajectory ξx,u over the time interval [0, T ]. It follows that the set of functions

that can possibly be constructed by that procedure for different x0 ∈ K and

u ∈ U is a (T, ε,K)-approximating set for System (2.4). An upper bound on

its cardinality will give an upper bound on entropy in the next section.

The procedure (Algorithm 3) is parameterized by a time horizon T > 0,

a sampling period Tp > 0, two quantization constants δx and δu > 0. The

procedure also uses the initial set K, the input set U , and particular initial

state x0 ∈ K and input u ∈ U for system (2.4). The output is a piece-wise

continuous function z : [0, T ] → Rn that is constructed over each [iTp, (i +

1)Tp) interval for i ∈ [0; b T
Tp
c]. Later we will infer several constraints on the

parameters such that the output z is indeed an ε-approximating function for

the given trajectory ξx0,u.

Initially, S0 is set to be the initial set K. Cx,0 is a grid of size δx over K and

Cu is a grid of size δu over U . At the ith iteration, i ∈ [0; b T
Tp
c], xi stores the
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Algorithm 3 Construction of ε-approximating function.

1: input: T ,Tp, δx, δu
2: S0 ← K;
3: Cx,0 ← grid(S0, δx);
4: Cu ← grid(U, δu);
5: i← 0;
6: while i ≤ b T

Tp
c do

7: xi ← ξx0,u(iTp);
8: qx,i ← quantize(xi, Cx,i);
9: qu,i ← quantize(u(iTp), Cu);

10: zi ← ξqx,i,qu,i ;
11: i++; . parameters for next iteration
12: Si ← B(zi−1(Tp

−), ε);
13: Cx,i ← grid(Si, δx);
14: wait(Tp);
15: end while
16: output: {zi : 0 ≤ i ≤ b T

Tp
c}

value ξx0,u(iTp). Then, qx,i is set to be the quantization of xi with respect to

Cx,i. Similarly, qu,i is set to be the quantization of u(iTp) with respect to Cu.

With slight abuse of notation, we will also denote the function of time that

maps the interval [0, Tp) to qu,i by qu,i, as in line 10, for example. The variable

zi stores the trajectory that results from running System (2.4) starting from

initial state qx,i, with input signal qu,i, and running for Tp time units. After

that, i is incremented by 1 and the next iteration variables Si and Cx,i are

initialized. Finally, the procedure outputs the concatenation of the zi’s, for

all i ∈ [0; b T
Tp
c] that is denoted later by the function z : [0, T ]→ Rn.

In the following lemma, we show that if the parameters of the procedure Tp,

δx and δu, are small enough, then the output is an ε-approximating function

for ξx0,u.

Lemma 7 Fix ε > 0 and a constant k ∈ (0, 1). Then, choose the parameters

Tp, δx, and δu, such that:

1. ε
√
k ≥ δxe

MxTp, and

2. ε
√

(1− k) ≥Mue
MxTp

√
1
3
µ2Tp

3 + (δu + η)µTp
2 + (δu + η)2Tp .

Then, for any x0 ∈ K and u ∈ U , for all i ∈ [0; b T
Tp
c], and for all t ∈

[iTp, (i+ 1)Tp),
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(i) xi ∈ Si,

(ii) ‖zi(t− iTp)− ξxi,ui(t− iTp)‖ ≤ ε,

where ui(t) := u(iTp + t), the ith piece of the input signal of size Tp.

Proof

First, fix t ∈ [0, T ] and let i = b t
Tp
c. Then,

‖ξxi,ui(t− iTp)− ξqx,i,qu,i(t− iTp)‖2

≤ ‖xi − qx,i‖2e2Mx(t−iTp) +M2
ue

2MxTp

∫ t

iTp

‖u(s)− qu,i‖2ds

[by (4.5)]

≤ ‖xi − qx,i‖2e2Mx(t−iTp)

+M2
ue

2MxTp

∫ t

iTp

(
‖ui(0)− qu,i‖+ ‖u(s)− ui(0)‖

)2
ds

[by triangular inequality]

≤ δ2
xe

2Mx(t−iTp)

+M2
ue

2MxTp

∫ t

iTp

(
δ2
u + 2δu‖u(s)− ui(0)‖+ ‖u(s)− ui(0)‖2

)
ds, (4.6)

where the last inequality follows from the fact that ‖u(iTp)−qu,i‖ ≤ δu, ‖xi−
qx,i‖ ≤ δx. But, we know from (2.5) that there exist µ and η such that for

all u ∈ U , ‖u(s)− u(iTp)‖ ≤ µ(s− iTp) + η. Hence,
∫ t
iTp
‖u(s)− ui(0)‖ds ≤∫ t

iTp
(µ(s−iTp)+η)ds = µ

2
(t−iTp)2+η(t−iTp) ≤ µ

2
Tp

2+ηTp, since t−iTp ≤ Tp.

Similarly,
∫ t
iTp
‖u(s)− ui(0)‖2ds ≤

∫ t
iTp

(µ2(s− iTp)2 + 2µη(s− iTp) + η2)ds ≤
1
3
µ2Tp

3 + µηTp
2 + η2Tp. Substituting this in (4.6) leads to:

‖ξxi,ui(t− iTp)− ξqx,i,qu,i(t− iTp)‖2

≤ δ2
xe

2MxTp +M2
ue

2MxTp
(1

3
µ2Tp

3 + (δu + η)µTp
2 + (δu + η)2Tp

)
≤ kε2 + (1− k)ε2 = ε2,

where the last inequality follows by substituting δx, δu and Tp by their upper

bounds stated in the statement of the lemma. Hence, for any t ∈ [0, T ], for

i = b t
Tp
c, ‖zi(t − iTp) − ξxi,ui(t)‖ ≤ ε. Therefore, for all i ∈ [1; b T

Tp
c] and

t ∈ [0, T ], xi ∈ B(zi−1(Tp), ε) = Si.
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Corollary 3 Under the same conditions of Lemma 7, for all t ∈ [0, T ],

‖z(t)− ξx0,u(t)‖ ≤ ε. (4.7)

Now that we proved that, for a given trajectory ξx0,u, the output of Algo-

rithm 3 is an ε-approximating function, one can conclude that the set of all

functions that can be constructed by Algorithm 3 for any input trajectory

ξx0,u, where x0 ∈ K and u ∈ U , is a (T, ε,K)-approximating set. Therefore,

in the following lemma, we will compute an upper bound on the number of

these functions to obtain upper bound on sest(T, ε,K).

Before stating the lemma, note that whenever we choose k, we let δx =

ε
√
ke−MxTp from now on, in order to simplify the presentation.

Lemma 8 For fixed T ≥ 0, k ∈ (0, 1), and δu and Tp that satisfy the condi-

tions of Lemma 7, the number of functions that can be constructed by Algo-

rithm 3 for all possible x0 ∈ K and u ∈ U , is upper bounded by:

|Cx,0|(|Cx,1||Cu|)
b T
Tp
c+1

≤ d diam(K)

2ε
√
ke−MxTp

en
(
d 1√

k
eMxTpendumax

δu
em
)(b T

Tp
c+1
)
.

Proof To construct an ε-approximating function for a given trajectory ξx,u,

at an iteration i ∈ [0; b t
Tp
c], Algorithm 3 picks one point in Cx,i and picks

one point in Cu for each of the bT/Tpc + 1 iterations. Hence, the number of

different outputs that it can produce is upper bounded by:

|Cu|bT/Tpc+1

bT/Tpc∏
i=0

|Cx,i|. (4.8)

Now, note that K ⊆ B(vc, diam(K)), for some vc ∈ Rn. Hence, in each

of the n dimensions in the state space, we should partition a segment of

length diam(K) to smaller segments of size 2δx = 2kεe−MxTp to construct

the grid Cx,0. Then, |Cx,0| ≤ d diam(K)

2
√
kεe−MxTp

en. Similarly, for all i > 0,

Si = B(zi−1(Tp
−), ε). Hence, |Cx,i| ≤ d 2ε

2
√
kεe−MxTp

en = d 1√
k
eMxTpen, since

diam(Si) = 2ε. In each of the m dimensions, u(t) is bounded between −umax
and umax. Hence, diam(U) = 2umax and |Cu| ≤ dumaxδu

em. Substituting these

values in (4.8) leads to the upper bound in the lemma.
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4.3.3 Entropy upper bound

The following proposition gives an upper bound on the entropy of system

(2.4) in terms of k, Tp and δu. This form provides an an intermediate level

bound where the parameters of Algorithm 3 directly appear in its expression,

before providing the more complex upper bound that depends directly on

the system parameters. It shows the effect of our choice of the parameters of

Algorithm 3. It will also help us recover the bound on estimation entropy of

systems with no inputs in [13] in Corollary 4. Moreover, it provides insights

about the choice of parameters that simplify the expression of the bound.

Proposition 12 Fix k ∈ (0, 1). If Tp, δx and δu satisfy the conditions in

Lemma 7, then the entropy hest(ε,K) of system (2.4) is upper bounded by:

nMx√
k ln 2

+
n

Tp
log(1 +

√
ke−MxTp) +

m

Tp
logdumax

δu
e.

Proof We substitute the upper bound on the cardinality of the minimal

approximating set obtained in the previous section in Definition (4.2) to get:

hest(ε,K) = lim sup
T→∞

1

T
log sest(T, ε)

≤ lim sup
T→∞

1

T
log |Cx,0|(|Cx,1||Cu|)

b T
Tp
c+1

[by Lemma 8]

≤ lim sup
T→∞

1

T
log(d 1√

k
eMxTpendumax

δu
em)

(b T
Tp
c+1)

[|Cx,0| is constant]

= lim sup
T→∞

1 + Tp/T

Tp
n logd 1√

k
eMxTpe

+ lim sup
T→∞

1 + Tp/T

Tp
m logdumax

δu
e

≤ n

Tp
logd 1√

k
eMxTpe+

m

Tp
logdumax

δu
e

≤ nMx√
k ln 2

+
n

Tp
log(1 +

√
ke−MxTp) +

m

Tp
logdumax

δu
e.

We show that if the bound on the input norm is negligible, we recover

the upper bound on estimation entropy of nLx
ln 2

derived in [13] with the only

difference being the replacement of Lx by Mx (which is upper bounded by

50



nLx + 1/2).

Corollary 4 Given any ε > 0, lim
umax→0

h(ε,K) ≤ nMx

ln 2
.

Proof (Sketch) First, recall that setting η to 2umax and µ to zero satisfies

(2.5). We will fix them to these values in this proof. Let k be approximately

equal to 1. Moreover, fix δu to be equal to umax. Doing this will set the last

term (logdumax
δu
e) in the bound in Proposition 12 to zero. Recall that we also

fixed δx to be equal to kεe−MxTp . Now, observe that there exists a Tp > 0

that would satisfy the conditions in Lemma 7. Hence, by Proposition 12,

hest(ε,K) ≤ nMx√
k ln 2

+ n
Tp

log(1 +
√
ke−MxTp). Moreover, as umax decreases to

zero, η and δu go to zero. Hence, the conditions of Lemma 7 become satisfied

with larger values of Tp. This would result in a negligible second term in

the bound which in turn results in an upper bound of nMx√
k ln 2

which is almost
nMx

ln 2
.

The following proposition presents an upper bound on the entropy of Sys-

tem (2.4). We assume, without loss of generality, that µ and η > 0. That

is not a restrictive choice since, for a given µ and η that satisfy (2.5), any

larger values would still satisfy it.

Proposition 13 Fix ε > 0 and let

ρ(k, δu) =
(δu + η

µ

)(
− 1 + 3

√
1 +

( ε

Mue

)2 3µ(1− k)

(δu + η)3

)
. (4.9)

Then, the entropy of system (2.4) is upper bounded by:

nMx√
k ln 2

+
1

min{ρ(k, δu), 1/Mx}
(
n log(1 +

√
k) +m logdumax

δu
e
)
.

For example, k and δu can be 1/2 and η, respectively.

Proof To prove this result, it is sufficient to show that assigning Tp to

ρ(k, δu) if it is smaller than 1/Mx, and to 1/Mx otherwise, satisfies condition

(2) in Lemma 7. Then, the result will follow from plugging in this value in

Proposition 12. First, assume that Tp is less than or equal to 1/Mx. Then,

eMxTp in condition (2) in Lemma 7 can be upper bounded by e. Thus, the

truth value of condition (2) is equal to that of the following 3rd order poly-
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nomial inequality:

Tp
3 + 3

(δu + η

µ

)
Tp

2 + 3
(δu + η

µ

)2
Tp − 3(1− k)

( ε

µMue

)2 ≤ 0. (4.10)

The only real root of the polynomial on the LHS is:

(δu + η

µ

)(
− 1 + 3

√
1 +

( ε

Mue

)2 3µ(1− k)

(δu + η)3

)
= ρ(k, δu). (4.11)

Thus, we set Tp to ρ(k, δu), as it is the largest value that satisfies the needed

condition. If ρ(k, δu) >
1
Mx

, assigning Tp to 1
Mx

would still satisfy the condi-

tions of Lemma 7, hence the bound.

The following corollary gives a more concise upper bound if ε is small enough

with respect to the other parameters.

Corollary 5 Let ν1 :=
(

ε
Mue

)2 3µ(1−k)
(δu+η)3

. If ν1 ≤ 1, then the entropy of sys-

tem (2.4) is upper bounded by:

nMx√
k ln 2

+
1

min
{(

δu+η
µ

)
ν1
3

(1− ν1
3

), 1
Mx

}(n log(1 +
√
k) +m logdumax

δu
e
)
.

(4.12)

Proof Since ν1 ≤ 1, 3
√

1 + ν1 > 1 + ν1
3
− ν21

9
. Then, ρ(k, δu) is lower bounded

by:

(δu + η

µ

)(
− 1 + 1 +

ν1

3
− ν2

1

9

)
≥
(δu + η

µ

)ν1

3
(1− ν1

3
). (4.13)

Thus, if we set Tp to min{4ν1
3

(1 − ν1
3

), 1
Mx
}, we get eMxTp ≤ e. Moreover,

one can easily check that this assignment satisfies the conditions of Lemma 7.

If we substitute this value in Proposition 12, we get the corollary.

If the input signal is Lipschitz continuous with Lipschitz constant Lv, then

for all t ≥ 0 and τ > 0, ‖u(t+ τ)− u(t)‖ ≤ Lvτ . This leads to the following

corollary.

Corollary 6 If f is Lipschitz continuous in both arguments with Lipschitz

constants Lx and Lu > 0 respectively, and the input signal u is Lipschitz con-

tinuous with Lipschitz constant Lv, its entropy have the same upper bounds

as in Proposition 13 and corollary 5 with µ replaced by Lv and η by zero.
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An example: Harrier jet

We study the Harrier “jump jet” model from [45]. The dynamics of the

system is given by:

ẋ1 = x2; ẋ2 = −g sin θ1 −
c

m′
x2 +

u1

m′
cos θ1 −

u2

m′
sin θ1

ẏ1 = y2; ẏ2 = g(cos θ1 − 1)− c

m′
y2 +

u1

m′
sin θ1 +

u2

m′
cos θ1

θ̇1 = θ2; θ̇2 =
r

J
u1,

where (x1, y1, θ1) are the position and the orientation of the center of mass of

the aircraft in the vertical plane, and (x2, y2, θ2) are the corresponding time

derivatives. The mass of the aircraft is m′, the moment of inertia is J , the

gravitational constant is g, and the damping coefficient is c. The Harrier

uses maneuvering thrusters for vertical take-off and landing. The inputs u1

and u2 are the force vectors generated by the main downward thruster and

the maneuvering thrusters.

To compute the upper bound on entropy, we need to find the parameters

Mx,Mu, umax, µ, and η for the system. To compute Mx, we compute the

Lipschitz constant of f with respect to each of the coordinates in the state

vector. Then, we use Proposition 11, to get Mx = nL′x + 1
2
. To compute the

Lipschitz constant, we compute the partial derivative of f with respect to

each coordinate and use an upper bound on the infinity norm of each of the

resulting vectors. We get L′x = g+2umax
m′

to be the maximum of these norms,

and thus Mx = 6g + 12umax
m′

+ 1
2
. We get Mu = 2

√
2L′u in a similar manner.

Fixing umax = 50, m′ = 100, g = 9.81, r = 5, and J = 50, we get

Mx = 83.36 and Mu = 0.2828. Moreover, we choose µ = 10 and η = 20

and the estimate accuracy ε = 0.5. Therefore, if we choose k to be equal to
1
2

and δu to be equal to η (i.e. 20), then ν1 = 9.915 × 10−5,
(
δu+η
µ

)
ν1
3

(1 −
ν1
3

) = 1.32 × 10−4 ≤ 1
Mx

= 0.012 ≤ 1. Then, using Corollary 5, we get

hest(0.5, K) ≤ 60017 bps. We get the same upper bound if we instead use

Proposition 13.

4.3.4 Entropy upper bound discussion

In this section we discuss how the bounds in Proposition 13 and Corollary 5

vary as different system parameters vary.
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1. The upper bounds in Proposition 13 and Corollary 5 increase quadrati-

cally with η. That is expected as larger jumps in the input signal would

lead to a higher uncertainty in the system’s state.

2. As µ increases, the bound in Corollary 5 will increase in the order of
1

1−O(µ)
while the bound in Proposition 13 will increase as O(µ2/3). That

is, if all the parameters are treated as constants.

3. The bounds in both the proposition and the corollary increase loga-

rithmically in umax. This means that the growth in the uncertainty in

the state estimate because of the increase in the bound on the input

is at least exponentially slower than the growth caused by its faster

variation.

4. Finally, as ε goes to zero, the upper bound in Proposition 13 grows as

Ω(ε−2/3) and that of Corollary 5 as Ω(ε−2).

4.4 Systems with Linear Inputs

In this section, we provide better bounds on entropy than that of Propo-

sition 13 for systems where the input signal affects the dynamics linearly.

Formally, we consider dynamical systems of the form:

ẋ = f(x) + u, (4.14)

where the initial state x0 ∈ K and u ∈ U , as before.

We will show in the next section a new IS discrepancy function designed

to utilize the linear relation between the input and the state dynamics of the

system. Then, in the following section, we will use Algorithm 3 to construct

ε-approximating functions for the trajectories of this system while utilizing

the new IS discrepancy function. After that, we will show that the number

of functions that can be constructed by the modified algorithm is the same

as that of Lemma 8 in terms of its parameters δx, δu and Tp. However, larger

values of these parameters would suffice to get ε-approximating function.

Finally, we will compute the new upper bound on entropy and present an

example to show the difference between the two bounds.
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4.4.1 Input-to-state discrepancy function construction for
systems with linear inputs

We will show that we can get a tighter upper bound on the distance between

two different trajectories than that of (4.5). Basically, for any two initial

states x0, x
′
0 ∈ K, two input signals u, u′ ∈ U , and for all t ∈ R≥0,

‖ξx0,u(t)− ξx′0,u′(t)‖

= ‖x0 +

∫ t

0

(
f(ξx0,u(s)) + u(s)

)
ds

− x′0 −
∫ t

0

(
f(ξx′0,u′(s)) + u′(s)

)
ds‖

≤ ‖x0 − x′0‖+

∫ t

0

‖f(ξx0,u(s))− f(ξx′0,u′(s))‖ds

+ ‖
∫ t

0

(
u(s)− u′(s)

)
ds‖

[by triangular inequality]

≤ ‖x0 − x′0‖+

∫ t

0

Lx‖ξx0,u(s)− ξx′0,u′(s)‖ds

+ ‖
∫ t

0

(
u(s)− u′(s)

)
ds‖

[by the Lipschitz continuity of f ]

≤ ‖x0 − x′0‖+

∫ t

0

Lx‖ξx0,u(s)− ξx′0,u′(s)‖ds

+

∫ t

0

‖u(s)− u′(s)‖ds

≤
(
‖x0 − x′0‖+

∫ t

0

‖u(s)− u′(s)‖ds
)
eLxt, (4.15)

where the last inequality follows from the Bellman-Gronwall inequality. No-

tice that we have a linear discrepancy function instead of the quadratic one

we got in (4.5). This means that the sensitivity of this system with respect

to changes in the input is smaller than that of nonlinear systems in general.

4.4.2 Approximating set construction

Let us fix ε > 0 throughout this section. To construct an ε-approximating

function for a given trajectory, we use Algorithm 3 again. The following
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lemma is similar to Lemma 7 as it specifies the conditions that the values of

δx, δu, and Tp should satisfy in order for the output of Algorithm 3 to be an

ε-approximating for the input trajectory.

Lemma 9 If δxe
LxTp ≤ kε and Tp(

µTp
2

+ η + δu)e
LxTp ≤ (1 − k)ε, then, for

any x0 ∈ K and u ∈ U , for all i ∈ [0; b T
Tp
c], and for all t ∈ [iTp, (i+ 1)Tp),

(i) xi ∈ Si,

(ii) ‖zi(t− iTp)− ξxi,ui(t− iTp)‖ ≤ ε,

where z is the output of Algorithm 3.

Proof Fix x0 ∈ K and u ∈ U and let t′ = t− iTp. Then, by (4.15),

‖zi(t)− ξxi,ui(t)‖

≤
(
‖xi − qx,i‖+

∫ t′

0

‖ui(s)− qu,i‖ds
)
eLxt

′

[by (4.15)]

≤
(
‖xi − qx,i‖+

∫ t′

0

(
‖ui(s)− ui(0)‖+ ‖ui(0)− qu,i‖

)
ds
)
eLxt

′

[by triangular inequality]

≤
(
‖x0 − qx,i‖+

∫ t′

0

‖ui(s)− ui(0)‖ds+ t′δu
)
eLxt

′
,

[since ‖x0 − qx,i‖ ≤ δx, ‖ui(0)− qu,i‖ ≤ δu]

≤
(
‖x0 − qx,i‖+

∫ t′

0

(µs+ η)ds+ t′δu
)
eLxt

′

[by (2.5)]

≤
(
δx + Tpδu + Tp(

µTp
2

+ η)
)
eLxTp

[since t′ ≤ Tp]

≤ kε+ (1− k)ε = ε, (4.16)

where the last inequality follows from the assumption in the Lemma on Tp,

δx and δu. Hence, for all i ∈ [0, b T
Tp
c] and t ∈ [iTp, (i + 1)Tp], xi ∈ Si and

‖ξxi,ui(t)− ξqx,i,qu,i(t)‖ ≤ ε.

Corollary 7 Under the same conditions of Lemma 9, the output z of Al-

gorithm 3 is an ε-approximating function of the corresponding trajectory of
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system (4.14). Moreover, since we are still using Algorithm 3 to construct

the approximating function, we have the same upper bound on entropy of

system (4.14) as in Proposition 12 in terms of the new values k, δu and Tp

that satisfy the new constraints.

4.4.3 Entropy upper bound on systems with linear inputs

It follows from the last corollary in the previous sections that we can substi-

tute the upper bounds on the parameters δu, δx and Tp assumed in Lemma 9

to get the new upper bound. This is shown in the following proposition.

Proposition 14 Fix ε > 0 and let

ρ(k, δu) =
(η + δu

µ

)(
− 1 +

√
1 +

2µ(1− k)ε

(η + δu)2

)
. (4.17)

Then, the entropy of system (2.4) is upper bounded by:

nMx

k ln 2
+

1

min{ρ(k, δu), 1/Lx}
(
n log(1 + k) +m logdumax

δu
e
)
. (4.18)

For example, k and δu can be 1/2 and η, respectively.

Proof This proof is almost the same as that of that of Proposition 13. Let

us assume first that Tp ≤ 1/Lx, then eLxTp is upper bounded by e. In that

case, to get a value of Tp that satisfies the condition of Lemma 9, we solve

the following polynomial inequality:

µTp
2

2
+ Tp(η + δu)− (1− k)ε ≤ 0, (4.19)

which has the following roots:

(η + δu
µ

)(
− 1±

√
1 +

2µ(1− k)ε

(η + δu)2

)
. (4.20)

First, note that the smaller root is negative. Thus, assigning Tp to any value

between zero and the larger root, ρ(k, δu) would satisfy the conditions of

Lemma 9. Hence, if ρ(k, δu) ≤ 1/Lx, and we assign Tp to it, we get the first

bound in the proposition. If ρ(k, δu) > 1/Lx, assigning Tp to 1/Lx would still
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satisfy the conditions of Lemma 9. Hence, we get the second part of the

bound.

As before, we can get a more concise bound if ε is small enough with

respect to the other parameters. This is shown in the following corollary.

Corollary 8 Let ν2 = 2µ(1−k)ε
(η+δu)2

. If ν2 ≤ 1, then the entropy of system (4.14)

is upper bounded by:

nMx

k ln 2
+

1

min
{(

δu+η
µ

)
ν2
2

(1− ν2
4

), 1
Lx

}(n log(1 + k) +m logdumax
δu
e
)
. (4.21)

Proof Since
√

1 + ν2 ≥ 1+ ν2
2
− ν22

8
if ν ≤ 1, the larger root is lower bounded

by:

(η + δu
µ

)(
− 1 + 1 +

ν2

2
− ν2

2

8

)
=
(η + δu

µ

ν2

2

)(
1− ν2

4

)
. (4.22)

Setting Tp to this value in the conditions of Lemma 9 shows that they are

satisfied. Moreover, substituting these values instead of ρ(k, δu) in the bound

of Proposition 14 results in the bound.

In the following, we show how to compute the derived upper bound for

a standard example in the dynamical systems literature and compare the

values of the two upper bounds that we can get for the same example.

A second example: Pendulum

Consider a pendulum system:

ẋ1 = x2; ẋ2 = −Mgl

I
sinx1 +

u

I
,

where I is the moment of inertia of the pendulum around the pivot point,

u is its input from a DC motor, x1 is the angular position (with respect to

y-axis), x2 is the angular speed, and l is the length, and M is the mass.

Consider the case when Mgl
I

= 0.98, I = 1, umax = 2, µ = 0.1 and η = 1.
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Jacobians of f are:

Jx =

[
0 1

−Mgl
I

cosx1 0

]
Ju =

[
0 0

0 1/I

]
.

Hence, �Jx�∞ = 1 and thus Mx = 3
2
, �Ju� = λmax(J

T
u Ju) = I2 = 0.96, and

Mu = 0.96. We shall compute the entropy bounds for estimation accuracy

ε = 0.01.

Hence, if we choose k and δu to be equal to 1/2 and η respectively and use

the bound of Proposition 13 or Corollary 5, we get ν1 = 2.75 × 10−7 and(
δu+η
µ

)
ν1
3

(1− ν1
3

) = 1.836× 10−6 ≤ 1
Mx

= 0.667, which means hest(0.01, K) ≤
1385442 bps. Since the input linearly affects the dynamics, we can also use

Proposition 14, which gives ν2 = 2.5× 10−4 and
(
δu+η
µ

)
ν2
2

(1− ν2
4

) = 5× 10−3

and hence hest(0.01, K) ≤ 515 bps. As we can see from this example, the

linear bound can be much tighter than that of the nonlinear one.

4.5 Conclusion

We presented a modified notion of topological entropy as a lower bound on

the needed bit rate of a communication channel between a sensor and an

estimator to construct an estimate of the state of a nonlinear dynamical

system with inputs. We computed an upper bound on entropy that is split

into two cases based on how large the estimation error is allowed to be and

discussed how the different systems parameters affect it. We showed that

we recover the upper bound on estimation entropy of autonomous systems

in [13] as the bound on the input decreases to zero. We showed an example

of computing the upper bound for a Harrier jet. Then, we presented a new

upper bound for systems with linear inputs. We showed the difference with

the previous upper bound in a pendulum example. In the future, we plan

to apply this theory to get bounds on the entropy of switched systems with

bounded and average dwell times and to apply it to a network of dynamical

systems. Moreover, we plan to extend this theory to switched systems with

inputs.

59



CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, in Chapter 3, we presented first a new notion of estimation

entropy for switched nonlinear systems with finite number of modes and

unknown switching signals with known minimal dwell time which represents

a lower bound on the number of bits needed to describe the behavior of

the system on finite intervals, in the limit as the size of the interval goes to

infinity. Additionally, we presented an upper bound on the entropy. Then,

we presented a state estimation algorithm for switched nonlinear systems

using quantized measurements with optimality guarantees on the number of

bits needed to be sent from the sensor to the estimator. Finally, we showed

the result of applying the algorithm to a few example linear and nonlinear

switched systems. In Chapter 4, we first presented a modified notion of

topological entropy of dynamical systems with bounded input which lower

bounds the number of bits needed to estimate its state up to a specified

constant error. Then, we presented an upper bound on the entropy. Finally,

we presented an upper bound on the entropy when the input linearly affects

the system dynamics.

These results suggest several future research directions. First, we plan to

compute lower bounds on the estimation entropy for both kinds of systems.

Second, we plan to design state estimation algorithms for systems with inputs

with optimality guarantees on the data rate used. Third, we want to extend

the work to switched systems with inputs and hybrid systems with resets and

guards. Finally, we plan to investigate more the necessity of our finiteness

assumption on d(t).

60



APPENDIX A

PROOF OF LEMMAS

This generalization of the mean-value theorem is used in the construction of

the local IS discrepancy functions in [42] restricted to time-invariant systems

rather than general time variant ones.

Proposition 15 For any differentiable f : Rn × Rm → Rn, for any x, x′ ∈
Rn, any u, u′ ∈ Rm:

f(x′, u′)− f(x, u) =

(∫ 1

0

Jx(x+ (x′ − x)s, u′)ds

)
(x′ − x)

+

(∫ 1

0

Ju(x, u+ (u′ − u)τ)dτ

)
(u′ − u).

Lemma 6 The function V (x, x′) := ‖x − x′‖2 is a local IS discrepancy for

System (2.4) over any compact set X ⊂ Rn and interval [t0, t1] ⊆ R≥0, with

β(y, t− t0) := e2a(t−t0)y2 and γ(y) := b2e2a(t1−t0)y2,

where

t ∈ [t0, t1], a := sup
t∈[t0,t1]

u∈U ,x∈X

λmax
(Jx + JTx

2

)
+

1

2
and b := sup

t∈[t0,t1]

u∈U ,x∈X

�Ju�.

(4.4)

Proof Let x and x′ ∈ K, and u and u′ ∈ U . Define y(t) = ξx′,u′(t)− ξx,u(t)
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and v(t) = u′(t)− u(t). For a t ∈ R≥0, using proposition (15), we have

ẏ(t) = f(ξx′,u′(t), u
′(t))− f(ξx,u(t), u(t)),

=

(∫ 1

0

Jx(ξx,u(t) + sy(t), u′(t))ds

)
y(t)

+

(∫ 1

0

Ju(ξx,u(t), u(t) + v(t)τ)dτ

)
v(t). (A.1)

We write Jx(ξx,u(t)+sy(t), u′(t)) as Jx(t, s) or simply Jx when the dependence

on t and s is clear from context. Similarly, Ju(ξx,u(t), u(t) + v(t)τ) is written

as Ju(t, τ) or Ju. Then, differentiating ‖y(t)‖2 with respect to t leads to:

d

dt
‖y(t)‖2 =

d

dt
(y(t)Ty(t)) = ẏ(t)Ty(t) + y(t)T ẏ(t)

= y(t)T
( ∫ 1

0

(JTx + Jx)ds
)
y(t) + v(t)T

( ∫ 1

0

JTu dτ
)
y(t)

+ y(t)T
( ∫ 1

0

Judτ
)
v(t)

[substituting ẏ(t) with (A.1)]

≤ y(t)T
( ∫ 1

0

(JTx + Jx)ds
)
y(t) + y(t)Ty(t)

+
(( ∫ 1

0

Judτ
)
v(t)

)T (( ∫ 1

0

Judτ
)
v(t)

)
, (A.2)

where the inequality follows from the fact that for all w, z ∈ Rn, wT z+zTw ≤
wTw + zT z, since 0 ≤ (z − w)T (z − w) = zT z − wT z − zTw + wTw. Let

λJ(X ) = supx∈X λmax(
Jx+JTx

2
) be the upper bound of the eigenvalues of the

symmetric part of Jx over X , so Jx + JTx � 2λJ(K)I. Thus, (A.2) becomes:

d

dt
‖y(t)‖2 ≤ (2λJ(X ) + 1)‖y(t)‖2 + ‖

( ∫ 1

0

Judτ
)
v(t)‖2

≤ 2a‖y(t)‖2 + (b‖v(t)‖)2,

for t ∈ [t0, t1]. Integrating both sides of the above inequality from t0 to t and

using Bellman-Gronwall inequality results in:

‖y(t)‖2 ≤ e2at
(
‖y(0)‖2 +

∫ t

0

(b‖v(τ)‖)2dτ
)
.
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Proposition 11 For any time interval [t0, t1] ⊂ R≥0 and compact set X ⊂
Rn, a ≤ nL′x + 1

2
and b ≤ m

√
mL′u, where L′x and L′u are the Lipschitz

constants of f with respect to each coordinate of the state and the input

respectively.

Proof First, Ju and Jx exist since f is differentiable in both arguments.

Second, note that �Ju� ≤
√
m�Ju�∞, where �Ju�∞ = maxi∈[n]

∑m
j=1 |(Jx)i,j|,

and (Ju)i,j is the entry in the ith row and jth column of Ju. Moreover, since

for all i ∈ [n], j ∈ [m], |(Ju)i,j| ≤ L′u, by Lipschitz continuity of f with

respect to u, then �Ju�∞ ≤ mL′u. Hence, �Ju� ≤ m
√
mL′u. Similarly, one

can prove that �Jx�∞ ≤ nL′x, since the number of columns is n instead of

m. Therefore,

a ≤ �Jx + JTx
2

�∞ +
1

2
≤ �Jx�∞ + �JTx �∞

2
+

1

2
≤ nL′x +

1

2
, and,

b ≤ m
√
mL′u.
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