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ABSTRACT 

 

Palmer amaranth has been spreading from the southern United States into the Midwest, 

and the extent of damage this weed can inflict to Illinois row crops is not yet known. Palmer 

amaranth is known for rapid biomass accumulation and multiple emergence events, making this 

weed difficult to control. Field and greenhouse experiments were conducted in 2015 and 2016 to 

evaluate the biology and management of Palmer amaranth in Illinois. Chapter 1 includes a 

literature review of herbicides pertinent to these experiments and a section of Palmer amaranth 

biology. Chapter 2 characterizes the growth accumulation and emergence patterns of Palmer 

amaranth in Illinois to determine when and how long this weed will compete with field crops. 

Results indicate that Palmer amaranth can germinate for at least 10 weeks in Illinois. Due to the 

rapid biomass and height accumulation of Palmer amaranth, post emergence herbicides were 

evaluated in Chapter 3 to determine the herbicide efficacy at different Palmer amaranth heights. 

Results showed chlorimuron (13 g ai ha-1), imazethapyr (70 g ai ha-1), and mesotrione (105 g ai 

ha-1) did not achieve Palmer amaranth control ≥73%, regardless of application timing in all 

experiments. New technology has enabled extensive usage of synthetic auxin herbicides as an 

option for control in resistant-soybean varieties; therefore, Chapter 4 discusses dose response 

experiments of Palmer amaranth in Illinois to 2,4-D and dicamba. Results indicate that dicamba 

ratings did not exceed 86% of Palmer amaranth control under field conditions at the maximum 

labeled rate for dicamba-resistant soybean. Single or multiple applications of glufosinate, or 

glufosinate plus residual herbicides were compared in Chapter 5 to determine the overall control 

of biomass and emergence of Palmer amaranth in glufosinate-resistant soybean. Results indicate 

that Palmer amaranth biomass reduction is greatest when multiple applications of glufosinate are 

used, regardless of the addition of a residual herbicide. Preemergence herbicides were evaluated 
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in Chapter 6 to determine the length of control and reduction in biomass of Palmer amaranth. 

Further research is needed for evaluation of length of residual control.  
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Herbicide Properties 

1.1.1 ALS Inhibitors 

The enzyme acetolactase synthase (ALS), also known as acetohydroxyacid synthase 

(AHAS), is the first enzyme of the branched chain amino acid biosynthetic pathway (Hirai et al. 

2002; Tan et al. 2005). This pathway involves four enzymes (anabolic AHAS, ketol-acid 

reductoisomerase, hydroxyacid dehydratase, and a transaminase) in parallel steps to produce 

valine, leucine, and isoleucine. Pyruvate is a common precursor for these amino acids as well as 

a second precursor for isoleucine, 2-ketobutyrate (Duggleby and Pang 2000).  

There are five classes of ALS inhibiting herbicides based on chemical structure (Shaner 

2014). Sulfonylureas and imidazolinone herbicides have partially overlapping binding sites that 

are within and overlay the channel leading to the active site for this enzyme (McCourt et al. 

2005). Common characteristics of ALS-inhibiting herbicides include low use rates and low 

mammalian toxicity (Hirai et al. 2002). The activity of sulfonylureas as herbicides was 

discovered in mid-1970s by DuPont, which coincided to the time American Cyanamid was 

developing imidazolinones (Duggleby and Pang 2000; Shaner et al. 1984). Commercialization of 

ALS herbicides occurred in 1982 for broadleaf control in small grains (Saari et al. 1994). ALS-

inhibiting herbicides are systemically transported in the xylem and phloem and accumulate in the 

actively growing regions of the plant. Necrosis occurs in sensitive plants after several weeks due 

to depletion of essential amino acids (Shaner 2014). Crop tolerance to ALS herbicides is based 

on the crop’s ability to rapidly metabolize the herbicide. Certain crops are able to naturally 

detoxify the ALS herbicides through a variety of hydroxylation, conjugation, hydrolytic, and 

cleavage reactions (Duggleby and Pang 2000).  
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Sulfonylureas (SUs) have a basic structure of X-SO2-NH-CO-NH-Y, where X is 

typically a phenyl group and Y is a substituted pyrimidine or triazine ring (Duggleby and Pang 

2000). This group has substantial biological activity, as SUs are typically applied at a rate of 10 

to 100 g per hectare (Duggleby and Pang 2000). Mammalian toxicity also is low with high LD50 

values (e.g., chlorosulfuron LD50 is 6 grams per kilogram of biomass in rats) (Duggleby and 

Pang 2000). These herbicides are degraded in soil by a combination of non-enzymatic hydrolysis 

and microbial degradation (Brown and Kearney 1991). SU herbicides depend on crop selectivity, 

which results from a plant species’ ability to convert the herbicide to non-toxic forms via 

hydroxylation, conjugation, hydrolytic, and cleavage reactions (Brown 1990). SU herbicides 

inhibit root and shoot growth in sensitive weed species. Symptoms of injury are slow to develop 

and include vein reddening, leaf chlorosis, terminal bud death, and eventual tissue necrosis 

(Brown 1990). The biochemical site-of-action was discovered when the inhibition of bacterial 

growth by a SU on a medium containing valine was reversed by the addition of isoleucine, 

demonstrating that SUs inhibit the enzyme acetolactate synthase (Larossa and Schloss 1984).  

Imidazolinone (IMI) herbicide structures consist of a 4-isopropyl-4methyl-5oxo-2-

imidzolin-2-yl nucleus linked at the 2-position to an aromatic ring system, which is usually 

heterocyclic (Duggleby and Pang 2000). Herbicides in this chemical family are typically applied 

at rates ranging from 100 to 1000 g per hectare, as these herbicides are less potent than 

sulfonylureas. Residual soil activity is affected by organic matter and pH values lower than 6.0: 

conditions that favor soil microbial activity will enhance herbicide degradation (Kraemer et al. 

2009). 

The widespread use of ALS inhibitors has led to the evolution of resistance to a level that 

surpasses all other herbicide groups (Heap 2017). Currently, there are 92 dicot and 62 monocot 
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species that are resistant to ALS herbicides (Heap 2017).  Most cases of ALS resistance are 

caused by changes in the base sequence of the ALS gene, resulting in an enzyme that is less 

sensitive to the binding of ALS-inhibiting herbicides (Burgos et al. 2001; Saari et al. 1994; 

Sprague et al. 1997; Tranel and Wright 2002). The mutations to the ALS base sequence are 

partially dominant (Tranel and Wright 2002); therefore, only single gene copies are necessary for 

resistance. Metabolism is another factor that allows plants to overcome ALS inhibition. 

Metabolic detoxification is similar to the process that confers crop selectivity to ALS inhibitors 

(Yu and Powles 2014). Some weed populations have been reported to have both mechanisms of 

resistance to ALS-inhibiting herbicides (Ma et al. 2013).  

1.1.2 HPPD Inhibitors  

 4-hydroxy-phenylpyruvate-dioxygenase (HPPD) is a catalyst for the conversion of p-

hydroxyphenylpyruvate to homogentisate in the biosynthesis pathway of plastoquinone (Hirai et 

al. 2002). This pathway produces plastoquinones, vitamin E, and carotenoids.  

Herbicides that inhibit the enzyme HPPD comprises of three chemical classes: triketones, 

isoxazoles, and pyrazolones. When HPPD inhibitors block hydroxylation, no plastoquinone is 

formed, and without this acceptor of hydrogen, phytoene accumulates and carotenoid 

biosynthesis is compromised (Hirai et al 2002). HPPD herbicides interfere with the plant’s 

ability to produce energy by inhibiting the production of plastoquinones, which are needed as 

electron carriers between carotenoid desaturase and the photosynthetic electron transport chain 

(van Almsick 2009). This indirect inhibition was confirmed by eliminating carotenoids and 

adding supplemental homogentisate to treated plants (Norris et al. 1995). Since the plant’s 

energy supply from photosynthesis is inhibited, plant growth is inhibited. The ability to produce 

vitamin E is also disrupted, which is needed to protect against oxidative stress. Without the anti-
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oxidant, the buildup of free radicals disturbs the function and structure of the chloroplast and 

thylakoid membranes. The prevention of carotenoid biosynthesis is caused by the loss of the 

ultraviolet (UV) shield that protects chlorophyll, which is destroyed by UV rays and excess light 

(van Almsick 2009). This loss of chlorophyll causes the plant to turn white, often described as 

bleaching symptoms on new growth (Shaner 2014).  

HPPD-inhibiting herbicides have been used for selective weed control since the early 

1990s (Hirai et al. 2002; van Almsick 2009). Currently, tall waterhemp (Amaranthus 

tuberculatus)  and Palmer amaranth (Amaranthus palmeri) are the only species resistant to 

HPPD-inhibiting herbicides (Heap 2017). HPPD resistance was first reported in Stafford County, 

Kansas. Palmer amaranth was reported to be 7–11 times more resistant to pyrasulfotole and 

bromoxynil than a susceptible population (Thompson et al. 2012). The first case of HPPD-

resistant waterhemp occurred in central Illinois, USA, which was found to have 10-fold 

resistance to mesotrione when compared to sensitive biotypes (Hausman 2011).  

Metabolism of mesotrione was reduced following application of the cytochrome P450 

monooxygenase inhibitors malathion or tetcyclacis, which suggests that enhanced oxidative 

metabolism contributes to mesotrione resistance (Ma et al 2013). Inheritance experiments 

reported metabolism-based atrazine resistance is conferred by a single major gene, while 

inheritance of mesotrione resistance is more complex (Huffman et al. 2015). Reduced 

translocation of mesotrione at high temperatures (40/30°C) has been demonstrated in HPPD-

resistant Palmer amaranth (Godar et al. 2015), indicating another possible mechanism of 

resistance.  

 

 



5 
 

1.1.3 EPSP Inhibitors 

The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the 

transfer of PEP to shikimate-3-phosphate (S3P), to produce EPSP and inorganic phosphate 

(Powles and Preston 2006). These products are vital in the synthesis of the aromatic amino acids 

tryptophan, tyrosine, and phenylalanine, which are critical for production of hormones and other 

critical plant metabolites (Powles and Preston. 2006; Shaner 2014). Glyphosate is an inhibitor of 

EPSP synthase in the shikimate production pathway of plants and is competitive in regards to the 

binding site for phosphoenolpyruvate (PEP) (Amrhein 1980; Franz et al. 1997). Inhibition of 

EPSPS results in shikimic acid accumulation and the plant is deprived of amino acids and EPSP. 

Glyphosate has been widely used for many years due to low mammalian toxicity, low 

weed management costs, and crops engineered to be resistant to this herbicide. Genetically 

modified crops for glyphosate resistance express a bacterial EPSPS that is insensitive to 

glyphosate and may express a gene endowing glyphosate metabolism (Padgette et al. 1996). 

Glyphosate-resistant soybean varieties were commercialized in the USA in 1996, and by 2004, 

85 percent of all soybeans produced were herbicide resistant (Dill 2005). The herbicide is 

applied post-emergence and is rapidly inactivated by soil organisms. Sensitive plants display 

foliar symptoms of chlorosis and necrosis of the actively growing tissue 10 to 20 days after 

treatment (Shaner 2014).  

 Resistance mechanisms to glyphosate include gene amplification of the target site, 

altered translocation, and insensitive target site (Dill 2005; Powles and Preston 2006). The first 

target-site resistance for glyphosate was documented in Malaysian populations of goosegrass 

(Eleusine indica) (Powles and Preston 2006). A mutation from proline to serine at amino acid 

position106 resulted in a 5-times higher resistance to glyphosate than the susceptible biotype. A 
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proline-to-threonin mutation also confers glyphosate resistance in goosegrass (Comai et al. 1983; 

Ng et al. 2004; Powles and Preston 2006). Glyphosate-resistant Palmer amaranth was first 

reported in Georgia, and experiments on this population suggested an altered target site as a 

source of resistance (Culpepper et al. 2006). Glyphosate resistance in an Australian population of 

rigid ryegrass (Lolium rigidum) resulted from accumulated glyphosate in the tip of the treated 

leaf, with little translocation to the roots (Lorraine-Colwill et al. 2002). Biotypes of Palmer 

amaranth from a North Carolina population absorbed less glyphosate compared with the 

sensitive biotype (Whitaker et al. 2013). However, results also supported an increase in EPSPS 

gene copy number (Whitaker et al. 2013). Palmer amaranth populations resistant to glyphosate 

have been shown to produce multiple copies of the EPSPS gene to confer resistance (Gaines et al 

2010). Genomic copy numbers between 30 and 50 are necessary to survive typical field 

applications rates between 0.47 and 0.99 kg ha-1 (Gaines et al. 2011). A total of 37 grass and 

broadleaf species are resistant to glyphosate (Heap 2017).  

1.1.4 PPO Inhibitors 

 The porphyrin pathway synthesizes heme and chlorophyll, which is important for 

photosynthetic processes (Duke et al. 1994). The precursor of this pathway is 5-aminolevulinic 

acid (ALA), which is produced from glutamate then converted to Protoporphyrin IX (Jacobs et 

al. 1991). The enzyme protoporphyrinogen oxidase (Protox or PPO) converts 

protoporphyrinogen IX (Protogen IX) to Protoporphyrin IX (Proto IX) in the chloroplast and 

mitochondria (Duke et al. 1994). The Protox enzyme is the target site of many classes of PPO 

inhibitors including diphenyl ethers, cyclic imides, oxadiazoles, phenylphthalimides, 

triazolinones, and thiadiazolidines (Li et al. 2004; Matsumoto 2002).   
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 PPO-inhibiting herbicides are competitive with Protogen IX to bind with the Protox 

enzyme and cause the Protogen IX substrate to “leak” into the cytoplasm via extraplastidic 

oxidation (Hirai et al. 2002; Lee and Duke 1994). The substrate is then converted to Proto IX, a 

photosensitive chemical, which then transfers the energy from light to oxygen to create a singlet 

oxygen (Shaner 2014). The conversion of Protogen IX to Proto IX in the cytoplasm keeps the 

singlet oxygen segregated from the antioxidants and enzymatic protective mechanisms 

(ascorbate, tocopherols, and reduced glutathione) that are in the chloroplast, which in turn does 

not trigger any feedback inhibition for this reaction (Duke et al. 1994). The singlet oxygen 

initiates a chain reaction of lipid peroxidation, which results in chlorophyll loss and leaky 

membranes, allowing cells to dry and disintegrate (Duke et al. 1994). 

 PPO-inhibiting herbicides can be applied to the soil or plant foliage. Many PPO-

inhibiting herbicides have poor translocation, which can cause reduction in efficacy (Matsumoto 

2002). These herbicides are light-induced, with foliage of susceptible plants becoming necrotic 

within days of herbicide application (Hirai et al. 2002; Shaner 2014). Crop selectivity is due to 

raped metabolic detoxification by GST enzymes and moderate leaf absorption (Grossman and 

Schiffer 1999). Soybeans are tolerant to this class of herbicides and may only exhibit “bronzing” 

on expanded leaves (Shaner 2014). Currently, 11 species, including Palmer amaranth, are 

resistant to PPO herbicides (Heap 2017).   

The mechanism of PPO-inhibitor resistance was first discovered in a waterhemp biotype 

from Illinois that had a unique target-site codon deletion (Patzoldt et al. 2005). This resistance 

mechanism involves the loss of an amino acid codon for glycine at position 210 (ΔG210) of the 

PPX2 gene, which encodes the mitochondrial isoform of PPO (Patzoldt et al. 2005). Two new 

mutations of PPX2 were discovered at the R98 site (R98G and R98M), which likely confer 
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resistance to PPO-inhibitors in Palmer amaranth (Giacomini et al. 2017). These two mutations 

occurred alongside the widespread ΔG210 mutations, indicating high selection pressure 

(Giacomini et al. 2017).  

1.1.5 Glufosinate inhibitors 

 Glufosinate is a structural analog of the amino acid glutamate, which is the substrate for 

the glutamine synthetase enzyme. The herbicide is a competitive inhibitor with glutamate for 

glutamine synthetase enzyme binding (Sauer et al. 1987). The herbicide inhibits the pathway 

responsible for assimilating ammonia and incorporating ammonia into a reduced organic form 

such as the amino acids glutamine and glutamate. In Palmer amaranth, as the ammonia 

accumulation increases, stomatal conductance decreases (Coetzer and Al-Khatib 2001). The 

buildup of ammonia is toxic to the plant, but the primary cause of death is due to the inhibition of 

transamination reactions in photorespiration (Sauer et al 1987; Wild et al. 1987). Without amino 

group donors, glyoxylate, glycolate, and phosphoglycolate accumulate and inhibit the enzyme 

RuBisCo and subsequent carbon fixation in the Calvin cycle, which indirectly leads to inhibition 

of photosynthetic electron transport (Timm et al. 2016; Wild et al. 1987). Development of singlet 

oxygen leads to lipid peroxidation resulting in cell death. Glufosinate is not translocated in plants 

and therefore mainly affects the foliage where the herbicide is applied (Coetzer and Al-Khatib 

2001; Shaner 2014). Herbicide injury occurs rapidly on sensitive species and herbicidal activity 

has been reported to be enhanced by increased light intensity (Köcher 1983).  

There is no natural crop mechanism for glufosinate resistance, so crops are genetically 

modified using bacterial genes from Streptomyces viridochromogenes (Droge et al. 1992). The 

bar or PAT gene codes for phosphinothricin acetyltransferase (PAT enzyme) with detoxifies 

glufosinate by acetylating the herbicide molecule (Devine et al. 1993). Glufosinate is a non-
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selective, non-systemic herbicide that has no residual activity in the soil (Shaner 2014). 

Symptoms of chlorosis and necrosis appear rapidly on sensitive plants treated with this herbicide. 

Currently, only 3 monocot species are resistant to this herbicide (Heap 2017).  

1.1.6 Very-long-chain fatty acid inhibitors 

Fatty-acids are created via fatty acid synthase located in the plastid at the Acyl-carrier 

protein (ACP) (Schmalfuβ et al. 2000). Malonyl-CoA is the two carbon unit donor involved in 

the synthesis of VLCFA (Cassange et al. 1994). VLCFAs are classified as possessing 20 or more 

carbon atoms, and the elongation process to VLCFAs occurs in the endoplasmic reticulum (ER) 

(Cassange et al. 1994; Schmalfuβ et al. 2000). The majority of VLCFA are located in the plasma 

membrane and when absent, the membrane loses stability and becomes leaky, which results in 

plant death (Matthes and Böger 2002). Inhibition of VLCFA elongation impedes cuticle 

synthesis and membranes, thus hindering the ability of a developing seedling shoot to emerge 

properly from the soil (Böger et al. 2000). Germination is not inhibited, but rather the shoot 

elongation of the germinated seed (Tanetani et al. 2009). Use rates are typically in low 

concentrations comparatively and weed resistance is rare (Götz and Böger 2004). Herbicide 

injury symptoms in grasses include improper unfurling of the leaf from the coleoptile (buggy-

whipping), and in soybeans injury is evident by slow emergence and crinkled or cupped leaves 

(Fuerst 1987). Only 5 grass species are resistant to herbicides from this site-of-action group. 

Chloroacetamide herbicides, such as acetochlor and S-metolachlor, impede VLCFA 

synthesis and have been commonly used preemergence (PRE) in corn and soybean (Fuerst 

1987). Chloroacetamide herbicides are absorbed by shoot and root and translocated in both the 

xylem and the phloem (Fuerst 1987). Crop selectivity is possible by enhanced metabolism due to 

the ability to rapidly synthesize glutathione, maintaining glutathione in the reduced state, or a 
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glutathione S-transferase (GST) present in higher levels or with specificity for acetamide 

selectivity (Fuerst 1987). Plants are able to detoxify chloroacetamides by conjugation with 

glutathione or homoglutathione in legumes to a non-toxic form (Fuerst 1987).  

Herbicides in the pyrazole family (pyroxasulfone) inhibit VLCFA elongases (Tanetani et 

al. 2011). Pyroxasulfone has a lower use rate than other VLCFA synthesis-inhibiting herbicides, 

ranging from 60–250 g ai ha-1 (Yamaji et al. 2014). Pyroxasulfone is a selective herbicide that is 

applied preemergence in corn, soybeans, wheat, cotton, and other crops (Yamaji et al. 2014). 

Selectivity is observed in corn and soybeans and may be due to GST detoxification (Tanetani et 

al. 2009). A metabolism study between susceptible and tolerant grass species determined that 

cleavage of a methylenesulfonyl linkage by glutathione conjugation plays a significant role in 

detoxification (Tanetani et al. 2013). This study indicates that there are differences in 

physiological activities controlling metabolism of pyroxasulfone (Tanetani et al. 2013). Injury by 

this herbicide results in slight twisting in corn and leaf cupping in soybeans, and both crops 

exhibited growth inhibition (Yamaji et al. 2014).  

1.1.7 Auxin Inhibitors 

Natural auxin (Indole-3-acetic acid) (IAA) causes phototropic movements and regulates 

growth in plants (Sterling and Hall 1997). This hormone is found in actively growing meristems 

and is transported through the phloem parenchyma cells. A receptor for auxin was discovered in 

2005 and was identified as the F-box protein transport inhibitor response 1 (TIR1) (Guilfoyle 

2007). Auxin/IAA bind to the TIR1 receptor and either represses or activates gene expression. 

Gene expression activates most processes regulated by this plant hormone (Guilfoyle 2007).   

Herbicides that mimic IAA are referred to as synthetic auxin herbicides. Also known as 

plant growth regulators (PGRs), these herbicides are translocated in the xylem and the phloem. 
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PGR herbicides regulate cell division and elongation, and developmental processes such as 

vascular tissue and floral meristem differentiation, leaf initiation, phyllotaxy, senescence, apical 

dominance, and root formation (Grossman 2010). These herbicides cause plant death due to 

uncontrolled, unregulated auxin activity in the plant. The auxin has a promiscuous binding site 

on the receptor and in turn acts as “molecular glue” that strengthens the substrate binding to the 

receptor (Guilfoyle 2007), rendering the plant unable to regulate auxin production. The 

deregulation of plant growth by PGRs has been described by Grossman (2010) in three phases 

following uptake of the PGR herbicide in a dicot plant. The first stage is stimulation, which 

occurs after herbicide application, and metabolic processes such as ethylene biosynthesis is 

stimulated through the induction of 1-aminocyclopropane-1-caboxylic acid (ACC) synthase 

(Grossman 2010).  The second phase includes the inhibition of root and shoot growth, decreased 

internode elongation and leaf area, intensified pigmentation, stomatal closure, reduced 

transpiration, and overproduction of reactive oxygen species (ROS). The overproduction of these 

hormones along with ROS cause rapid leaf senescence followed by tissue decay, chlorosis, and 

eventual plant death (Grossman 2009; Grossman 2010).  

Synthetic auxin herbicides cannot be metabolized, compartmentalized, or regulated in 

sensitive dicot species (Kelley and Riechers 2007). PGR herbicides have activity primarily in 

sensitive dicot species rather than grasses. One possible explanation for this selectivity is a 

difference in metabolism. Grasses rapidly convert synthetic auxins to inactive metabolites with 

irreversible ring hydroxylation. Sensitive dicots convert the synthetic auxin to amino acid 

conjugates, which can be converted back to the active auxin, so an active pool of herbicide 

remains (Kelley and Riechers 2007).  
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Sensitive plants exhibit symptoms of epinastic twisting of leaves, leaf cupping, and 

swollen nodes with necrosis occurring in two to four weeks (Shaner 2014). Roots become 

thickened (braced) and stunted, and adventitious roots can develop (Sterling and Hall 1997). 

Auxin herbicides have long been used to control broadleaf species in grain crops such as corn 

(Zea may L.), wheat (Triticum aestivum L.) and grain sorghum [Sorghum bicolor (L.) Moench] 

(Mithila et al. 2011). Previous evaluation of broadleaf weed management in dicamba-resistant 

soybean reported only 60% of Palmer amaranth controlled at preemergence using 0.25 lb ae acre-

1 (Johnson et al. 2010). 2, 4-D (230–1060 g ae ha-1) and dicamba (280–1120 g ae ha-1) applied to 

13–20-cm tall Palmer amaranth plants provided 68 to 80% and 59 to 83% control respectively 

(Merchant et al. 2013).  Currently 26 broadleaf species have been documented resistant to 

synthetic auxin herbicides (Heap 2017). 

An Amaranthus species, tall waterhemp (Amaranthus tuberculatus), has been 

documented to be 10-fold more resistant to 2, 4-D than a susceptible biotype (Bernards et al. 

2012). Increasing doses of 2,4-D induced up-regulation or down-regulation of different genes in 

the ethylene and abscisic acid pathways, indicating several receptor sites may cause resistance in 

Arabidopsis (Raghavan et al. 2006). A kochia (Kochia scoparia) population is resistant to 

dicamba due to a quantitative trait resulting from a number of small changes to a gene (Cranston 

et al. 2001). However, another kochia population resistant to dicamba was reported to be caused 

by a single dominant allele (Preston et al. 2009). As demonstrated by the two conflicting studies, 

the mechanism of action of auxinic herbicides and resistance is difficult to determine due to the 

multiplicity of biochemical effects within the cell (Coupland 1994).  
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1.2 Palmer Amaranth Biology 

Palmer amaranth (Amaranthus palmeri) is a summer annual, small-seeded broadleaf 

species that originates from the Sonoran desert of North America (Sauer 1957; Ward et al. 2013). 

This plant is in the Amaranthaceae family in the order Centrospermae, a group that contains 

anthocyanin pigments (Steckel 2007). Palmer amaranth has been expanding into the Midwest 

and farmers are concerned that this weed will have the same damaging effect on their fields as 

Palmer amaranth has had in areas of the South. Studies conducted by Davis et al. (2015) 

investigated the importance of genetics and environmental factors that would help determine the 

extent of the damage niche Palmer amaranth would inflict upon the Midwest. McDonald et al. 

(2009) hypothesized that increased temperatures would expand the northern damage niche of 

southern originating weed species. Temperature increase would be beneficial for Palmer 

amaranth because of this species’ positive response to increased temperature (Ehleringer 1983; 

Guo and Al-Khatib 2003). The damage niche for Palmer amaranth is not reliant on the genotype 

of this weed, but rather the growing environment in which the seed is dispersed (Davis et al. 

2015). 

Palmer amaranth can be identified by a glabrous stem with petioles that are longer than the 

ovate leaf blade. The leaves are alternate and sometimes have a chevron (Ward et al. 2013). 

Palmer amaranth is dioecious species with the male plants producing pollen and the female 

plants producing seeds. Both inflorescences can grow up to a meter in length. The female 

inflorescence is distinguishable from the male inflorescence by stiff bracts that are sharp to the 

touch. The females produce a prolific amount of seed, often ranging between 200,000–600,000 

seeds when the plant emerges from March to June (Ward et al. 2013). The utricle in 1.5 to 2 mm 

long with dark red to black seed 1 to 1.25 mm in diameter (Sauer 1955; Ward et al. 2013). 
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Palmer amaranth is able to overwhelm a field with multiple emergence events, predominantly 

after a soil disturbance or rainfall event, due to originating and evolving in frequently rewashed 

alluvium (Sauer 1957). The seeds germinate throughout the growing season, which necessitates 

multiple herbicide applications throughout the year (Ward et al. 2013). 

Palmer amaranth has a photosynthetic rate around 80 μmol m -2 s -1 and therefore is able 

to rapidly accumulate biomass (Ehleringer 1983). Palmer amaranth also has a high 

photosynthetic rate due the diaheliotropic movement of the leaves (Ehleringer 1983). This weed 

has been recorded to be 10 centimeters tall 2 weeks after planting and 24 centimeters at 4 weeks 

(Sellers et al. 2003). Palmer amaranth can grow 0.18 to 0.21 centimeters per growing degree day 

(GDD), allowing this weed to quickly outcompete the crop in the field (Horak and Loughin 

2000). Palmer amaranth competition with soybean can cause a 17–63% yield reduction at 0.33 –

10 plants per m-1 (Klingaman and Oliver 1994) or 79% yield reduction at 8 plants per m-1 

(Bensch 2003) when this weed emerges shortly after soybean. Palmer amaranth can reduce corn 

yield 11–91 % when emerging the same time as corn at a density of 0.5–8 plants m-1, while 

emergence after corn resulted in 7–35% yield reduction at the same plant densities (Massinga et 

al. 2001).  

1.3 Research Objectives 

Palmer amaranth is a devastating weed in southern areas of the United States. This weed 

has been expanding to northern states and is a concern for growers because of yield reduction 

and management challenges as Palmer amaranth has exhibited resistance to herbicides from six 

site of action groups. Evaluation of herbicide management strategies is necessary so that 

prevention strategies can be utilized to preserve the effectiveness of herbicide programs. The 

objectives of this project were to determine the best herbicide strategies to manage Palmer 
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amaranth in Illinois agronomic systems. Experiments were designed to determine the optimal 

postemergence herbicide application timing with respect to weed height. The effectiveness of 

multiple herbicide applications for Palmer amaranth control in a soybean system was evaluated. 

Growth parameters were measured to determine the duration of Palmer amaranth emergence and 

biomass accumulation throughout the growing season. Rate titrations of synthetic auxin 

herbicides were evaluated to determine the effective dose to control Palmer amaranth. Pre 

emergence herbicides were evaluated to determine their length of residual control.   

1.4 Stratification Technique 

 The technique for stratifying small seeded Amaranthus species of using a 1:1 bleach and 

distilled water solution (Evans et al. 2015) was too intense for Palmer amaranth seeds from 2015. 

Approximately 58 percent of those treated seeds had a viable embryo when evaluated with a 

tetrazolium test. Experiments were conducted on the use of a dilution of gibberellic acid as well 

as an ethylene dilution. Germination was measured when the radicle was visibly protruding from 

the seed coat.  

Palmer amaranth seed germination enhancement with gibberellic acid consisted of 50 

seeds placed in a petri dish with one petri paper. A 10-3 dilution of gibberellic acid was applied at 

9 milliliters (mL) of solution to the petri paper. The dish was sealed and placed in the 

greenhouse. Germination reached 90 percent, but stems appeared spindly and germination was 

not uniform.  

Similar to the methods of Kępczyński and Sznigir (2013) a 10-4 M ethylene dilution was 

created with ethephon. The ethylene dilution was applied at a volume of 9 mL in each petri dish. 

Petri dishes were filled with 50 Palmer amaranth seeds and three petri papers, then sealed and 

stored at 4°C for two or four weeks. Both time periods for ethylene treatments produced 90 
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percent of seeds germinating and the treatment had a uniform germination pattern without the 

spindly stem growth from the gibberellic acid treatment.  

A modified method of ethylene stratification consisted of the bleach stratification 

technique, but a 10-4 M ethylene dilution was used instead. Seeds were placed in an Eppendorf 

tube to the 0.05mL line. Then 0.95 mL of ethylene dilution was added to the tube. The seeds 

were vortexed periodically for two hours to ensure that all seeds had made contact with the 

solution. After that time period, the ethylene solution was removed and the seeds were rinsed 

with 0.95 milliliters of distilled water for ten minutes. This step was repeated twice and then 0.95 

milliliters of 0.1% agarose was added to the tube for seeds to be stored. The treated seed was 

usable for planting immediately after stratification.  
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CHAPTER 2 

PALMER AMARANTH EMERGENCE DURATION AND GROWTH IN ILLINOIS 

2.1 Abstract 

Palmer amaranth has been spreading from the southern United States into the Midwest, 

and the extent of damage this weed can inflict to Illinois row crops is not yet known. Palmer 

amaranth is known for rapid biomass accumulation and multiple emergence events, making this 

weed difficult to control. The objectives of this study were to determine the duration of Palmer 

amaranth emergence and biomass accumulation during two Illinois growing seasons. Field 

experiments were conducted in 2015 and 2016 near Kankakee, Illinois and in 2016 in Urbana, 

Illinois. Quadrats were marked in untreated plots that had either no crop or planted with 

soybeans. Emerged Palmer amaranth were counted weekly and harvested for aboveground 

biomass. Individual Palmer amaranth plants were marked every 2 and 3 weeks in 2015 and 2016, 

respectively, and their height recorded weekly thereafter. Marked plants were harvested for 

above ground biomass at the end of the growing season. Palmer amaranth plants emerged for 10 

weeks in 2015 and 9 weeks in 2016. A negative correlation was noted in 2015 with Palmer 

amaranth emergence and high amounts of rainfall. Biomass was also affected by the weather in 

2015, with the biomass accumulation averaging 9 g per plant while in 2016 averaging 427.6 and 

269.2 g per plant in Kankakee and Urbana, respectively. Similar to previous research, Palmer 

amaranth height accumulation was 0.2 cm per growing degree day. Plants in the earliest marked 

cohort accumulated the greatest biomass and height, but all marked Palmer amaranth plants 

flowered within a similar time frame. 
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2.2 Introduction  

Palmer amaranth (Amaranthus palmeri) is a summer annual, small-seeded broadleaf 

species that originates from the Sonoran desert of North America (Sauer 1957; Ward et al. 2013). 

This plant is in the Amaranthaceae family in the order Centrospermae, a group that contains 

anthocyanin pigments (Steckel 2007). Palmer amaranth has been expanding into the Midwest 

and farmers are concerned that this weed will have the same damaging effect on their fields as 

Palmer amaranth has had in areas of the South. Davis et al. (2015) investigated the genetics and 

environmental factors that would help determine the damage niche of Palmer amaranth in the 

Midwest. They concluded the damage niche of Palmer amaranth is not reliant on genotype, but 

rather the growing environment in which the seed is dispersed. McDonald et al. (2009) 

hypothesized that increased temperatures would expand the damage niche of southern-

originating weed species northward. This temperature increase would be beneficial for Palmer 

amaranth growing conditions because of this species’ positive response to increased temperature 

(Ehleringer 1983; Guo and Al-Khatib 2003).  

Palmer amaranth can be identified by a glabrous stem with petioles that are longer than the 

ovate leaf blade. The leaves are alternate and sometimes have a chevron mark on the leaf (Ward 

et al. 2013). Palmer amaranth is a dioecious species with male plants producing pollen and 

female plants producing seeds. Both inflorescences can grow up to a meter in length. The female 

inflorescence is distinguishable from the male inflorescence by stiff bracts that are sharp to the 

touch. The females produce a prolific amount of seed, often ranging between 200,000–600,000 

seeds when the plant emerges from March to June (Ward et al. 2013). The utricle is 1.5 to 2 mm 

long with dark red to black seed 1 to 1.25 mm in diameter (Sauer 1955; Ward et al. 2013). 

Location on the inflorescence determines when the seed matures, and seeds on the top and 
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middle third of the inflorescence have a 67–78% greater germination rate than seeds lower on the 

inflorescence (Jha et al. 2010). Palmer amaranth is able to overwhelm a field because of multiple 

emergence events within a growing season, which attributes to the species originating and 

evolving in frequently rewashed alluvium (Sauer 1957). The seeds germinate at different times, 

which necessitates multiple herbicide applications throughout the year (Ward et al. 2013).  

Seed germination is stimulated by natural or red light while far-red light inhibits germination 

(Jha et al. 2010), suggesting that when seed is under crop canopy, germination will be decreased 

due to less light. Germination occurs over a wide range of temperatures and the increase of 

temperature also leads to an increase in germination, with the peak occurring at approximately 

30°C (Steckel et al. 2004). Research indicates a narrow window of opportunity to control Palmer 

amaranth before the plant is too large during periods of higher temperatures (Powell 2014).  

Palmer amaranth is a C4 species with a photosynthetic rate around 80 μmol m -2 s -1 and rapid 

biomass accumulation (Ehleringer 1983). Palmer amaranth utilizes this high photosynthetic rate 

via diaheliotropic movement of the leaves (Ehleringer 1983). Previous research has reported 

Palmer amaranth to be 10 cm tall two weeks after planting and 24 cm two weeks later (Sellers et 

al. 2003). Palmer amaranth can grow 0.18 to 0.21 cm per growing degree day (GDD), allowing 

this weed to quickly outcompete many crops (Horak and Loughin 2000). Palmer amaranth 

competition with soybean can cause a 17–63% yield reduction at 0.33–10 plants per m-1 

(Klingaman and Oliver 1994) or 79% yield reduction at 8 plants per m-1 (Bensch et al. 2003) 

when this weed emerges shortly after soybean. Palmer amaranth can reduce corn yield 11–91% 

when emerging at the same time as corn at a density of 0.5–8 plants m-1, or 7 –35% when Palmer 

amaranth emerged after corn at the same densities (Massinga et al. 2001). 



30 
 

The objectives of this study were to determine the duration of Palmer amaranth emergence 

and the amount of biomass that can be accumulated throughout an Illinois growing season.  

2.3 Materials and Methods 

2.3.1 Field Design and Implementation  

Field experiments were conducted in Kankakee County, IL in 2015 and 2016 and Urbana, IL 

in 2016. The soil at Kankakee was a Kankakee fine sandy loam (loamy-skeletal, mixed, 

superactive, mesic Typic Hapludolls) with a pH of 6.5 and organic matter of 2%. The Urbana 

soil type was a Flanagan silt loam (fine, smectitic, mesic Aquic Argiudolls) with a pH of 6.5 and 

organic matter of 4.9%. All plots were 3 meters wide and 7.6 meters long at Kankakee and 10 

meters long at Urbana. Quadrats used in Kankakee were ½ m2, while a 1 x ½ m2 quadrat was 

used at Urbana. Differences in quadrat sizes was due to a much higher Palmer amaranth density 

at Kankakee compared with Urbana.  

Tillage was implemented each spring to remove any existing vegetation and prepare the 

seedbed for planting. Glufosinate-resistant soybean cultivar “Credenz 3233 LL” was planted in 

76-cm rows and soybean planting was simulated on bare ground trials beginning on May 19th, 

2015 and May 26th, 2016 in Kankakee and June 8th, 2016 in Urbana. Experiments were 

organized in a randomized complete block design. 

2.3.2 Duration of Palmer amaranth emergence  

Quadrats were marked near the center of untreated plots with six repetitions in bare 

ground and four repetitions in soybean trials to determine Palmer amaranth emergence with and 

without crop competition. Palmer amaranth emergence was recorded weekly. Emerged plants in 

the quadrats were harvested for above ground biomass and dried for three days at 65°C. Biomass 

was recorded for analysis of weekly and cumulative biomass of Palmer amaranth. 
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2.3.2.1 Statistical analysis 

Emergence data were analyzed in SAS 9.42 (SAS Institute, Cary, NC 27513, USA) using the 

PROC MIXED procedure. Analysis revealed a significant year and location interaction and, 

therefore, the data for location and years were not pooled. Fixed effects were year and treatment 

while random effects were block and replication within block. Above ground biomass and plant 

counts were evaluated in SAS using the PROC GLM procedure. Means of significant main 

effects and interactions were separated using Fischer’s Protected LSD test at (P ≤ 0.05). 

2.3.3 Season-long Palmer amaranth biomass accumulation  

 Six individual Palmer amaranth plants were marked every third week in 2015 and every 

second week in 2016 to determine overall height at the end of the growing season. The total 

number of marked Palmer amaranth per field totaled 18 and 24 in of 2015 and 2016, 

respectively. Palmer amaranth seedlings were marked when the plant was at least 1cm tall and 

the first true leaf was developed. Plants were marked with a numbered stake on the right side of 

the plant and the area around the marked plant cleared of all other vegetation. When the weed 

was 60 cm in height, tags with the corresponding stake number were placed loosely around the 

stem. Plants were tagged so they were clearly visible. Height of each marked weed was recorded 

weekly for 14 weeks. Marked plants were harvested on August 21st in 2015 and August 26th and 

23rd in 2016 Kankakee and Urbana, respectively. Plants were flowering and growth had slowed 

or stopped at the time of harvest. Harvested biomass was then dried for 30 days at 65°C and 

biomass then recorded. 
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2.3.3.1 Statistical Analysis 

The accumulation of biomass per growing degree day (GDD) was calculated using a baseline 

temperature of 10°C (50°F).  GDDs were calculated from cumulative thermal times following a 

modified model (Russelle et al. 1984): 

GDD = ([{ Tmax + Tmin} /2] - TB) 

 where Tmax and Tmin are the maximum and minimum daily temperatures of the given day, 

respectively, and TB is the base temperature below which little or no growth occurs. A TB of 10° 

C was followed based on minimum germination temperatures for these species (Horak and 

Loughlin 2000).  

 Biomass was evaluated in SAS using the PROC MIXED procedure and all possible main 

effects and interactions were tested. Due to interaction by year, years were kept separate, 

however, location was considered an environment as suggested by Carmer et al. (1989). 

Environments, replications (nested within environments), and all interactions containing either of 

these effects were considered random effects; all other variables (cohort timing) were considered 

fixed effects. Means of significant main effects and interactions were separated using Fischer’s 

Protected LSD test at P ≤ 0.05. 

2.4 Results and Discussion 

2.4.1 Duration of Palmer amaranth emergence 

Rainfall amounts were high in 2015 (Table 2.1) and due to interaction by year, data were 

not pooled and data are separated by location and year. Flooding occurred and soil was often 

well saturated in 2015 at Kankakee. Palmer amaranth emerged for 10 weeks in 2015 and 9 weeks 

in 2016 at both locations. Comparisons between years indicated emergence was greater for bare 

ground emergence in 2016 (Table 2.2). Bare ground quadrats had abundant Palmer amaranth 
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emergence, likely due to favorable weather conditions in 2016 (Table 2.1). Emergence patterns 

followed a trend of decreasing after copious rainfall events that left soils overly saturated (Figure 

2.1–2.3).  

Palmer amaranth has a prolonged emergence pattern during the growing season. 

Observations corresponded with Powell (2014) that Palmer amaranth emerges in early May and 

continues until late September. Total Palmer amaranth emergence was lower in soybean quadrats 

for both locations in 2016, possibly due to crop shading the weed seed. Crop canopy can have a 

suppressive effect on emergence due to altering the light quality of red to far red ratio, which is 

vital for germination (Jha et al. 2010; Norsworthy 2004).  

2.4.2 Season-long Palmer amaranth biomass accumulation 

 Two locations in 2016 were beneficial to determine year effect rather than genotype 

because the competitiveness of Palmer has been shown to vary based upon the site-year instead 

of weed genotype (Davis et al. 2015). Cohort 1 had biomass in 2015 that reached 9.1 g, while in 

2016, this same cohort timing accumulated 348.8 g of biomass (Table 2.3). The lower 

accumulation of biomass in 2015 is similar to observations that growth is reduced when the 

temperature is 25°C, which results in half the rate of optimum photosynthesis (Ehleringer 1983). 

Previous research has concluded that Palmer amaranth height increases at a rate of 0.18 to 0.21 

centimeters per growing degree day (Horak and Loughin 2000). Results herein were similar to 

this previous finding, however, growth became more linear after first true leaves were developed 

and decreased as maturity was reached (Figures 2.4–2.5). Earlier emerging plants accumulated 

the most biomass and attained greatest heights, however, by harvest all cohorts had reached the 

reproductive stage regardless of emergence date. Flowering for all marked Palmer amaranth 

occurred around similar time periods, which has been shown to be proportional to the amount of 
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thermal time and growing degree days (Davis et al. 2015). These results are expected since 

Palmer amaranth is a short-day species (Keeley et al. 1987).  

2.4.3 Palmer amaranth emergence and biomass accumulation  

 Palmer amaranth has a long period of germination, which could cause concerns for row 

crop producers when planning herbicide applications. While 10 weeks was observed during the 

study, germination occurred before trials were implemented. Jha and Norsworthy (2009) 

observed long periods of germination from May to September and April to August. Germination 

throughout the season may necessitate multiple applications of postemergence herbicides to be 

utilized. Late season germination achieved flowering, which can then produce more Palmer 

amaranth seeds to germinate during the next growing season. Due to the rapid growth exhibited 

by this weed, the window of opportunity for timely herbicide application may be limited. 

Maximum relative growth rates observed by Horak and Loughin (2000) were greatest for Palmer 

amaranth and therefore herbicide application needs to be based on Palmer amaranth height. 

While the weather can greatly affect the emergence and growth, weed pressure was still 

abundant for both growing seasons, therefore making Palmer amaranth control critical in Illinois 

cropping systems.  

2.5 Source of Materials 

1Statistical Analysis Software (SAS) 9.4. SAS Institute, Inc., 100 SAS Campus Drive, Cary, NC 

27513.  

 

 

 

 



35 
 

2.6 Tables and figures  

Table 2.1. Weekly growing degree days and rainfall for Kankakee (2015 and 2016) and Urbana 

(2016) 

   
 

  
 

       

 GDD50a precipitation 

 Kankakee Urbana Kankakee Urbana 

Weekb 
2015 2016 2015 2016 

    (cm) 

0 117.9 197.8 67.5 0.1 2.5 1.5 

1 217 132.7 141 1.1 0.5 1.1 

2 136.5 185.4 190.5 2.0 1.3 1.7 

3 231.2 177.5 185 2.7 1.9 2.7 

4 170 149.5 135 6.9 0.1 0.1 

5 169 138.5 137 17.4 1.3 1.6 

6 195.3 181.1 180.5 1.5 0.7 0.7 

7 143.2 177.9 186.5 2.8 3.4 0.5 

8 196.8 150.5 169 0.1 0.6 1.6 

9 132.1 187.7 128 0 0.3 0.1 

10 194.1 169.5 186 0 0.04 0 

11 179.5 227.1 213.5 0.4 2.4 2.5 

12 17.4 240.8 157 0.1 2.4 0.6 

   
 

  
 

a Growing Degree Day, GDD; calculated with a base temperature of 10°C (50°F) 

b Weather data collected in Kankakee starting May 19th in 2015 and May 26th in 2016. Urbana 

weather data collected starting June 3rd in 2016 
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Table 2.2. Palmer amaranth mean emergence and biomass in Kankakee (2015 and 2016) and 

Urbana (2016) under field conditions. Means sharing the same letter within a column are not 

significantly different. 

       
 Kankakee Urbana 

 2015 2016 2016 

       

 emergence biomass emergence biomass emergence biomass 

  (g)  (g)   (g) 

bare ground 171.3 a 1.8 a 318.5 a 9.7 a 61.8 a 1.6 a 

soybeansa 162.8 a 1.8 a 216.8 b 5.7 b 8.5 b 0.2 b 

       
 
a glufosinate-resistant soybean (Glycine max) variety “Credenz 3233 LL” 

b Kankakee 2015 week 1 recorded on May 26; Kankakee 2016 week 1 recorded on June 2; Week 

1 in Urbana recorded June 2nd.
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Table 2.3. Palmer amaranth height and biomass means at harvest* in 2015 and 2016. Means 

sharing the same letter within a column are not significantly different. 

         

 2015 2016 

cohorta-d height biomass height biomass 

 (cm) (g) (cm) (g) 

1 95.3 a 9.1 a 195.3 a 348.8 a 

2 43.3 b 2.7 a 124.3 b 27 b 

3 48 b 3.4 a 61.7 c 2.4 b 

4 - - 35 c 0.8 b 
     

a Cohort 1 marked Kankakee 2015, June 2nd; Kankakee 2016, June 2nd; Urbana 2016, June 3rd.  
b Cohort 2 marked June 23rd, Kankakee 2015; June 16th, Kankakee 2016; June 17th, Urbana 2016. 
c Cohort 3 marked July 15th, Kankakee 2015; June 30th, Kankakee 2016; June 30th, Urbana 2016. 
d Cohort 4 marked July 14th Kankakee 2016; July 14th Urbana 2016.  

* Plants were harvested on August 21st in 2015 and August 26th and 23rd in 2016 Kankakee and 

Urbana, respectively
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Figure 2.1. Palmer amaranth emergence and rainfall in Kankakee in 2015 

 

Kankakee 2015 week 1 was recorded from May 26 to August 21st in 2015  
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Figure 2.2. Palmer amaranth emergence and rainfall summarized by week in Kankakee 2016. 

 

Kankakee 2016 week 1 was recorded from June 2 to August 26th  
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Figure 2.3. Palmer amaranth emergence and rainfall summarized by week in Urbana 2016. 

 

Week 1 in Urbana was recorded from June 2nd to August 23rd  
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Figure 2.4. Height summarized by week for six Kankakee (2015) Palmer amaranth under field 

conditions marked every third week starting on June 2nd, 2015. 

 

Average dry biomass by cohort: 1, 9.1g; 2, 2.7g; 3, 3.4g 
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Figure 2.5. Height summarized by week for Palmer amaranth under 2016 field conditions 

marked every second week starting the first week in June.  
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CHAPTER 3 

FOLIAR HERBICIDE OPTIONS AND APPLICATION TIMING FOR PALMER 

AMARANTH MANAGEMENT IN ILLINOIS CROPPING SYSTEMS 

3.1 Abstract 

 Palmer amaranth has been spreading from the southern United States into the Midwest, 

and concerns have been expressed about control options in Illinois cropping systems. Currently, 

Palmer amaranth has evolved resistance to herbicides from six site-of-action groups. The 

objectives of this study were to: 1) determine efficacy of foliar-applied herbicides from six site-

of-action groups, and 2) determine optimal Palmer amaranth height for application of 

postemergence herbicides. Field and greenhouse experiments were conducted in 2015 and 2016 

near Kankakee, Illinois and in 2016 in Urbana, Illinois. Postemergence herbicides were applied 

when Palmer amaranth plants were at three different heights: early-POST (EPOST) when plants 

were 5–8 cm, POST when plants were 9–13 cm, and late-POST (LPOST) when plants were 14–

18 cm tall. In the field, chlorimuron (13 g ai ha-1), imazethapyr (70 g ai ha-1), and mesotrione 

(105 g ai ha-1) controlled Palmer amaranth ≤ 73% regardless of application timing. Recovery of 

Palmer amaranth in 2016 was evident following field applications of glufosinate (594 g ai ha-1), 

lactofen (218 g ai ha-1), and fomesafen (347 g ai ha-1). Herbicides applied LPOST did not 

achieve more than 83% control of Palmer amaranth 21 DAT. Under greenhouse conditions, 

fomesafen, 2,4-D, and glufosinate produced 100% Palmer amaranth mortality following all 

application timings. Palmer amaranth biomass was greatest with chlorimuron following the 

EPOST application timing and chlorimuron or imazethapyr following POST and LPOST 

application timings.  
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3.2 Introduction 

 Palmer amaranth (Amaranthus palmeri) is a dioecious, summer annual broadleaf species 

that originated in the Sonoran Desert (Sauer 1957; Ward et al. 2013). Palmer amaranth has a 

photosynthetic rate around 80 μmol m -2 s -1 and is capable of rapid biomass accumulation 

(Ehleringer 1983). Research examining the effects of genetics and environmental factors on 

Palmer amaranth revealed the extent Palmer amaranth damage in the Midwest would be limited 

only by seed dispersal (Davis et al 2015). The damage niche for Palmer amaranth is not reliant 

on the genotype of this weed, but rather the environment into which seed is dispersed (Davis et 

al. 2015). McDonald et al. (2009) hypothesized that increased temperatures would expand the 

damage niche of southern-originating weeds northward. Female Palmer amaranth plants produce 

a prolific amount of seed, often ranging between 200,000–600,000 seeds when the parent plant 

emerges from March to June (Ward et al. 2013). Palmer amaranth can overtake many crops with 

multiple germination events throughout a growing season (Sauer 1957). The rapid growth of 

Palmer amaranth can cause growers to miss the most effective size of Palmer amaranth for 

postemergence herbicide application, resulting in plant survival, crop yield loss, and increasing 

soil seed bank density.   

Postemergence herbicides should be applied at the appropriate growth stage of Palmer 

amaranth to optimize control. Herbicides applied at an earlier growth stage have been shown to 

provide greater control of several broadleaf species (Hart et al. 1997), whereas delaying 

applications until plants are larger can decrease herbicide efficacy (Lee and Oliver 1982). 

Previous research has demonstrated a significant interaction between herbicide efficacy and 

application timing on Palmer amaranth control (Mayo et al. 1995; Rios et al. 2016). 
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 Palmer amaranth and other Amaranthus species can be difficult to control with 

postemergence herbicides in conventional soybean. Systemic ALS-inhibiting herbicides 

provided acceptable control of plants larger than 10 cm (Mayo et al. 1995). Efficacy of PPO-

inhibiting herbicides often decrease when herbicides are applied at later growth stages (Hager et 

al. 2003). Non-systemic herbicides often provide greater weed control when applied at early 

timings compared with a late stage (Grichar 1997; Jordan et al. 1993; Shaw et al. 1990). 

Non-systemic herbicides, such as fomesafen and glufosinate, provided the greatest 

control when Palmer amaranth was 8 cm or less (Powell et al. 2014). When plant size increases, 

the rate of herbicide required for effective control also increases (Powell et al. 2014). Lactofen 

provided 99% control of Palmer amaranth plants, but control significantly decreased at later 

herbicide applications (Mayo et al. 1995). Variable control has been reported for Amaranthus 

species when using PPO herbicides in the field (Mayo et al. 1995) and control was reported as 

incomplete under heavy weed pressure (Hager et al. 2003).  

Postemergence herbicides are widely used in modern agricultural practices, however data 

describing Palmer amaranth control with postemergence herbicides is lacking in Illinois cropping 

systems and requires evaluation. As Palmer amaranth height increases, attaining acceptable 

control becomes more challenging, therefore Palmer amaranth should be treated at early stages 

of growth (Klingaman et al. 1994). Currently in Illinois, Palmer amaranth has been documented 

resistant to herbicides with ALS, EPSPS, and PPO sites of action (Heap 2017). The first 

objective of this research was to determine the efficacy of herbicides with different sites of 

action for control of Palmer amaranth, while the second objective was to quantify the effects of 

plant size on herbicide efficacy.   
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3.3 Materials and Methods 

3.3.1 Field design and implementation 

 Field experiments were established near Kankakee, Illinois in 2015 and 2016, and 

Urbana, Illinois in 2016. The soil at Kankakee was a Kankakee fine sandy loam (loamy-skeletal, 

mixed, superactive, mesic Typic Hapludolls) with a pH of 6.5 and organic matter of 2%. The soil 

type at Urbana was a Flanagan silt loam (fine, smectitic, mesic Aquic Argiudolls) with a pH of 

6.5 and 4.9% organic matter. All plots were 3 meters wide and 7.6 meters long at Kankakee and 

10 meters long at Urbana. The soil was tilled at the beginning of the season to control any 

existing vegetation. No crop was planted at any location. Plots were arranged in a randomized 

complete block design with three replication per treatment. All herbicides were applied with a 

backpack CO2 sprayer equipped with XR80021 flat-fan spray nozzles spaced 51 cm apart on a 3 

m boom. Spray volume was 187 L ha-1 and pressure was 276 kPa. Environmental conditions 

were recorded at each herbicide application timing. Selection of herbicides, applications rates, 

and additives was based on label recommendations and current Illinois production practices. 

3.3.2 Herbicide application timing based on Palmer amaranth size under field conditions  

Postemergence herbicides representing six site-of-action groups were selected for 

evaluation (Table 3.1). Each herbicide treatment was applied at the corresponding label-

recommended rate and included any appropriate spray additive(s). Each treatment was applied to 

Palmer amaranth at the following plant heights: 5–8 cm (early postemergence (EPOST)), 9–13 

cm (postemergence (POST)), and 14–18 cm (late postemergence (LPOST)). Applications were 

made when the majority of Palmer amaranth plants were within the listed height ranges. 

Five Palmer amaranth plants at the specified height were marked in each plot (15 total 

per treatment) to quantify control and aboveground biomass accumulation after herbicide 
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treatment. Individual plants were also marked in non-treated plots. Individual plants were 

marked by placing a wooden garden stake to the immediate right of the weed. The area around 

the selected weed was cleared of other plants to ensure full spray interception by the marked 

plants. Mortality of marked Palmer amaranth plants was visually determined 7, 14, and 21 days 

after treatment (DAT).  Plants were appraised as dead, likely to die, or alive. Plants were scored 

alive if they demonstrated actively growing tissue. At 21 DAT, marked plants were harvested for 

aboveground biomass, dried at 65°C for 7 days, and dry biomass recorded. 

The effectiveness of each herbicide on a whole-plot basis also was visually determined 7, 

14, and 21 DAT on a scale from 0 (no control) to 100 (complete control). The ratings were based 

on estimates of injury and biomass reduction when compared to non-treated plots.  

3.3.3 Palmer amaranth population used for greenhouse experiments 

Female inflorescences of Palmer amaranth from Kankakee were collected in fall 2015 

when the seed was mature. Seed was cleaned and stratified using 10-4 M dilution of ethephon. 

The mixture was then shaken intermittently over two hours, after which the solution was 

removed and the seeds were rinsed with 0.95 mL distilled water for ten minutes. This rinse was 

repeated and then seeds were suspended in 0.1% agarose solution. Seeds not used immediately 

for planting were stored at 4°C.  

3.3.4 Greenhouse plant culture 

Following stratification, Palmer amaranth seed was placed in 12-cm by 12-cm flats filled 

with a commercial potting medium2 of peat and perlite and covered with sifted soil. Emerged 

seedlings were transplanted at the second true leaf stage into 9 by 12 cm flats also filled with 

potting medium. Subsequently 4-cm tall, Palmer amaranth plants were transplanted to a 950 cm3 
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pot containing a 3:1:1:1 mixture of potting mix: soil: peat: sand. A slow-release fertilizer3 was 

added when needed.  

Herbicides were applied to Palmer amaranth plants at the same plant heights indicated for 

field experiments. Treatments were applied using a compressed air research sprayer4 calibrated 

to deliver 185 L ha1 at 275 kPa. The experiment was arranged in a randomized block design with 

each treatment replicated four times and the experiment was repeated.  

Mortality of treated Palmer amaranth plants was determined 7, 14, and 21 DAT as 

described previously. At 21 DAT, Palmer amaranth plants were harvested for aboveground 

biomass, dried at 65°C for 7 days and dry biomass recorded.  

3.3.5 Statistical Analysis 

Data were tested for the assumptions of ANOVA using the Shapiro-Wilk’s test for 

normality and Levene’s test for homogeneity of variance at α 0.05. Biomass data were log 

transformed [log10 (x+1)] (Gomez and Gomez 1984) to meet residual normality assumptions. 

Data were analyzed using the PROC MIXED procedure using the TYPE 3 model in SAS5 9.4 

(SAS Institute Inc, Cary NC). Each year-location combination was considered an environment as 

suggested by Carmer et al. (1989). All possible main effects and interactions were tested. Fixed 

effects included herbicide site-of-action, treatment within the site-of-action group, and 

application timing. Random effects included environment and block nested within environment 

(field only) and all interactions containing either of these effects, or experimental run 

(greenhouse only).  Mean estimates of plot control (field) and dried biomass (field and 

greenhouse) were separated with the use of the SAS macro %pdmix800 (Saxton 1998). Means of 

Palmer amaranth application timing biomass were compared with the use of single-degree-of-

freedom contrast statements. 
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3.4 Results and Discussion 

3.4.1 Herbicide efficacy on Palmer amaranth under field conditions 

Control of Palmer amaranth with chlorimuron and imazethapyr did not exceed 78% 

regardless of application timing (Table 3.2), and no difference was observed between these ALS-

inhibiting herbicides. Tembotrione controlled Palmer amaranth more than mesotrione 7 and 14 

days after the EPOST and POST application timings, but no differences in control were apparent 

by 21 days after these application timings nor at any evaluation of the LPOST application timing. 

No differences in Palmer amaranth control with lactofen and fomesafen were observed at any 

application timing, which is similar to the lack of difference in control between dicamba and 2,4-

D. Additionally, control with the two PPO-inhibiting herbicides was greater than control of the 

two growth regulator herbicides only at the 7 DAT evaluation of the EPOST and LPOST 

application timings. The non-selective herbicides glyphosate and glufosinate controlled Palmer 

amaranth equally at all evaluation timings. Numerically, control values tended to decline 

between the first and last evaluation of each application timing, although control from dicamba 

and 2,4-D tended to trend upward at the latest evaluation timing of each application.  

 All treatments reduced biomass of marked Palmer amaranth plants compared with the 

nontreated control 21 days after each application timing (Table 3.3). A difference in biomass 

between chlorimuron and imazethapyr was apparent only following the EPOST application 

timing. Similar to control observation, tembotrione reduced Palmer amaranth biomass more than 

mesotrione following each application timing. Biomass was similar between lactofen and 

fomesafen for all application timings, and these PPO-inhibiting herbicides were consistently 

among those treatments that reduced biomass most regardless of application timing. Dicamba 

and 2,4-D reduced Palmer amaranth biomass similarly at each application timing, and no 
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differences in biomass were determined between glyphosate and glufosinate. Biomass data 

collected from plants marked prior to herbicides application generally support whole-plot control 

observations that the PPO-inhibiting and nonselective herbicides provided the greatest control 

and biomass reduction of Palmer amaranth. Plant mortality did not exceed 98% for any 

treatment. Numerically, mortality values were higher at the EPOST application timing with five 

treatments producing at least 82% mortality. Following the POST and LPOST application 

timings, mortality of marked plants did not exceed 74% and 50% respectively. 

 Contrast statements were generated to compare estimated differences and 95% 

confidence intervals in Palmer amaranth biomass by application timing (Table 3.4). Contrast 

statements comparing application timings at 21 DAT demonstrated that Palmer amaranth 

biomass was significantly less for EPOST than the POST or LPOST application timings.  

3.4.2 Response of Palmer amaranth biomass and mortality to herbicide applications based 

on plant size under greenhouse conditions 

Under greenhouse conditions, differences in Palmer amaranth biomass and mortality 

among treatments were less apparent compared to results from treatments applied under field 

conditions. Palmer amaranth biomass was greatest with chlorimuron following the EPOST 

application timing and chlorimuron or imazethapyr following POST and LPOST application 

timings (Table 3.5). No other differences in biomass among treatments applied EPOST or POST 

were observed. Mortality was zero following treatment with chlorimuron regardless of 

application timing. Subsequent molecular screening revealed this population contains an altered 

coding sequence for the ALS gene that is known to confer resistance to sulfonylurea and 

imidazolinone herbicides (data not presented). There were no differences in mortality between 

the two herbicides from each site-of-action group after any application timing, except between 
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ALS inhibitors and the nonselective herbicides at the EPOST and POST application timings, 

respectively. Fomesafen, 2,4-D, and glufosinate produced 100% Palmer amaranth mortality 

following all application timings. All treated biomass was significantly lower than the non-

treated Palmer amaranth plants at each timing.  

Previous studies have found ALS inhibitor herbicides to have incomplete Palmer 

amaranth control (Horak and Peterson 1995; Mayo et al. 1995; Sprague 1997). Control of Palmer 

amaranth with chlorimuron and imazethapyr did not exceed 78% and differences in biomass 

were only noted under greenhouse conditions after the EPOST application timing. Palmer 

amaranth populations have also been documented to be 4- to 23-fold resistant to HPPD-

inhibiting herbicides (Jhala et al. 2014). Tembotrione controlled Palmer amaranth greater than 

mesotrione. Applications of glufosinate and glyphosate efficacy was reduced once Palmer 

amaranth size increases similar to findings by Rios et al. (2016), however no differences between 

herbicides at each application timing were noted. PPO inhibiting herbicides have reduced 

efficacy under field conditions as the plant size increased over 10 cm (Hager et al. 2003; Grichar 

2007; Morechetti et al. 2012). POST and LPOST herbicide timings had control values that 

tended to decline between the first and last evaluation timings. Similar to research by Morechetti 

et al. (2012), plants did not completely die and regrowth was noted weeks after herbicide 

application. Results concur with findings by Klingaman et al. (1992), that Palmer amaranth 

should be controlled with herbicide at the early postemergence stage before this weed becomes 

too large for control. Post emergence herbicide treatments should be applied at the EPOST 

application height to ensure the greatest level of Palmer amaranth control. 
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3.5 Source of Materials 

1TeeJet 80025EVS. TeeJet Technologies, P.O. Box 7900, Wheaton, IL 60187.  

2LC1. Sun Gro Horticulture, 15831 N.E. 8th Street, Bellevue, WA 98008.  

3Osmocote 13-13-13 slow release fertilizer. The Scotts Company, 14111 Scottslawn Rd., 

Marysville, OH 43041.  

4Generation III Research Sprayer. DeVries Manufacturing, 28081 870th Ave., Hollandale, MN 

56045. 

5Statistical Analysis Software (SAS) 9.4. SAS Institute, Inc., 100 SAS Campus Drive, Cary, NC 

27513.  
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3.6 Tables  

Table 3.1 Herbicides and rates used for all postemergence applications in Kankakee and Urbana 

herbicidea Trade name site of actionb ratec manufacturer 

   g ha-1  

chlorimuron Classic ALS 13 
DuPont Crop Protection, Wilmington, DE; 

http://www.dupont.com 

imazethapyr Pursuit ALS 70 
BASF Corporation Agricultural Products, Research Triangle 

Park, NC; http://www.agro.basf.com 

mesotrione Callisto HPPD 105 
Syngenta Crop Protection, Greensboro, NC; 

http://www.syngentacropprotection.com 

tembotrione Laudis HPPD 91 
Bayer CropScience, Research Triangle Park, NC: 

http://www.bayercropscience.com 

dicamba Clarity Synthetic auxin 560 
BASF Corporation Agricultural Products, Research Triangle 

Park, NC; http://www.agro.basf.com 

2,4-D Weedar 64 Synthetic auxin 1120 Nufarm Inc. Alsip, IL; http://www.nufarm.com 

fomesafen Flexstar PPO 347 
Syngenta Crop Protection, Greensboro, NC; 

http://syngentacropprotection.com 

lactofen Cobra PPO 218 
Valent U.S.A. Corporation, Walnut Creek, CA; 

http://www.valent.com 

glyphosate 
RoundUp 

Powermax 
EPSP 1260 Monsanto Company, St. Louis, MO; http://www.monsanto.com 

glufosinate Liberty GS 594 
Bayer CropScience, Research Triangle Park, NC: 

http://www.bayercropscience.com 
a Herbicide treatments, excluding the synthetic auxins, included a nonionic surfactant at 2.5% (v/v); herbicide treatments containing 

PPO, HPPD, and ALS inhibitors included a crop oil concentrate (COC 1% v/v); Synthetic auxin herbicide treatments included a 

nonionic surfactant at 0.25% (v/v). 

b Abbreviations for site of action; GS, glutamine synthetase; EPSP, enolpyruvylshikimate-3-phosphate synthase; PPO, 

protoporphyrinogen oxidase; HPPD, hydroxyphenylpyruvate dioxygenase; ALS, acetolactate synthase.  

c Rates expressed at active ingredient for all herbicides, excluding glyphosate, dicamba, and 2,4-D, which are expressed as acid 

equivalent. 

http://www.agro.basf.com/
http://www.syngentacropprotection.com/
http://www.agro.basf.com/
http://syngentacropprotection.com/
http://www.valent.com/
http://www.monsanto.com/


57 
 

Table 3.2. Visual estimates of whole-plot control of Palmer amaranth under field conditions by timing. Visual estimates of control 

sharing the same letter within a column are not significantly different at α=0.05 (separated by the SAS macro %pdmix800). 

  application timinga 

  EPOST POST LPOST 

  ---------------------------------------DATb------------------------------------------ 

herbicide ratec 7 14 21 7 14 21 7 14 21 

 g ha-1 ------------------------% control-------------------------- 

untreated 0 0 e 0 e 0 d 0 e 0 e 0 d 0 e 0 e 0 d 

chlorimuron 13 78 bcd 71 bcd 65 c 70 cd 71 bcd 62 c 67 cd 62 d 58 c 

imazethapyr 70 73 cd 69 cd 68 bc 65 d 69 cd 61 c 67 cd 67 bcd 59 bc 

mesotrione 105 65 d 66 d 66 c 64 d 66 d 65 bc 60 d 63 cd 65 abc 

tembotrione 91 87 ab 81 ab 87 abc 81 abc 81 ab 83 ab 68 cd 68 bcd 74 abc 

dicamba 560 79 bc 80 abc 95 a 78 bcd 80 abc 86 a 76 bc 82 ab 80 ab 

2,4-D 1120 81 bc 83 a 91 a 79 abc 83 a 87 a 77 bc 79 abcd 84 a 

fomesafen 347 97 a 87 a 88 ab 96 a 87 a 83 ab 93 a 81 ab 79 abc 

lactofen 218 96 a 87 a 89 ab 92 a 87 a 83 ab 93 a 80 abc 82 a 

glyphosate 1260 86 abc 81 ab 76 abc 87 ab 81 ab 77 abc 88 ab 84 ab 77 abc 

glufosinate 594 97 a 88 a 85 abc 92 a 88 a 77 abc 91 ab 88 a 77 abc 
a Early postemergence, EPOST; postemergence, POST; late postemergence, LPOST. 

b Days after treatment, DAT 

c Rates expressed at active ingredient for all herbicides, excluding glyphosate, dicamba, and 2,4-D, which are expressed as acid 

equivalent. 
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Table 3.3. Mean separation of marked Palmer amaranth biomass and mortality ratings by timing at 21 DAT under field conditions. 

Means sharing the same letter within a column are not significantly different at α=0.05 (separated by the SAS macro %pdmix800). 

        

herbicide ratea EPOST POST LPOST 

 g ai (ae) ha-1
 biomass mortality biomass mortality biomass mortality 

  (g) (%) (g) (%) (g) (%) 

untreated 0 3.18 a - 5.98 a - 5.48 a - 

chlorimuron 13 0.95 b 26.7c 1.44 b 19.7 b 1.60 b 6.7 d 

imazethapyr 70 0.46 cde 33.3 c 4.81 b 15.7 b 1.65 b 11 cd 

mesotrione 105 0.72 bc 35.7 bc 1.51 b 33.3 ab 1.59 b 15.7 cd 

tembotrione 91 0.18 e 88.7 a 0.51 c 48.7 ab 0.41 d 44.7 bcd 

lactofen 218 0.17 e 95.7 a 0.70 c 64.3 ab 0.71 cd 88 a 

fomesafen 347 0.27 de 80 ab 0.54 c 42.3 ab 1.03 bcd 46.7 abcd 

2,4-D 1120 0.31 de 82.3 a 0.76 c 46.7 ab 1.17 bc 44.3 bcd 

dicamba 560 0.59 bcd 84.7 a 0.77 c 62 ab 1.27 bc 46.3 abcd 

glyphosate 1260 0.76 bc 66.7 abc 0.80 c 80 a 1.52 b 80 ab 

glufosinate 594 0.43 cde 97.7 a 0.62 c 73.3 a 1.02 bcd 49.7 abc 

   
     

a Rates expressed at active ingredient for all herbicides, excluding glyphosate, dicamba, and 2,4-D, which are expressed as acid 

equivalent.
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Table 3.4. Contrasts of Palmer amaranth biomass by treatment timing under field conditions at 

21 DAT.  

    

timinga estimated differenceb 95% confidence interval standard error 

EPOST vs POST 0.607 -1.419 – -0.001* 0.099 

POST vs LPOST 0.205 -2.839 – -0.0002* 0.199 

LPOST vs EPOST 0.812 -2.129 – -0.0003* 0.298 

    
a Timings: early post emergence, EPOST; post emergence, POST; late post emergence, LPOST. 

b Estimated difference of biomass means 

* Significant at α=0.05. 
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Table 3.5. Mean separation of Palmer amaranth biomass at 21 DAT under greenhouse conditions. Means sharing the same letter 

within a column are not significantly different at α=0.05(separated by the SAS macro %pdmix800). 

  EPOST POST LPOST 

herbicide ratea biomass mortality biomass mortality biomass mortality 

 g ai (ae) ha-1
 (g) (%) (g) (%) (g) (%) 

nontreated - 3.04 a - 4.03 a - 3.54 a - 

chlorimuron 13 1.89 b 0 c 2.47 b 0 c 3.08 b 0 b 

imazethapyr 70 0.90 c 75 ab 1.90 b 0 c 3.19 b 68 ab 

mesotrione 105 0.60 cd 50 b 0.73 c 50 b 1.54 c 0 b 

tembotrione 91 0.30 d 88 ab 0.55 c 63 ab 1.35 cd 75 ab 

lactofen 218 0.22 d 100 a 0.82 c 63 ab 1.96 c 63 ab 

fomesafen 347 0.20 d 100 a 0.46 c 100 a 0.67 e 100 a 

2,4-D 1120 0.30 d 100 a 0.53 c 100 a 0.78 de 100 a 

dicamba 560 0.36 d 100 a 0.33 c 100 a 0.89 de  75 ab 

glyphosate 1260 0.29 d 100 a 0.50 c 50 b 0.75 de 75 ab 

glufosinate 594 0.18 d 100 a 0.45 c 100 a 0.57 e 100 a 
a Rates expressed as active ingredient for all herbicides, excluding glyphosate, dicamba, and 2,4-D, which are expressed as acid 

equivalent. 
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CHAPTER 4 

DOSE-RESPONSE OF PALMER AMARANTH TO SYNTHETIC AUXIN HERBICIDES  

4.1 Abstract 

The objectives of this study were to determine the effective herbicide rate of dicamba and 

2,4-D to control Palmer amaranth in Illinois. Field dose-response experiments were conducted in 

2015 and 2016 near Kankakee, Illinois and in 2016 in Urbana, Illinois. Dicamba or 2,4-D was 

applied to 10–12 cm tall Palmer amaranth plants at increasing rates equally spaced along a base 

3.16 logarithmic scale. Greenhouse experiments compared the dose-response of Palmer 

amaranth, tall waterhemp and smooth pigweed to 2,4-D and dicamba applied when plants had 8-

9 true leaves. Dicamba and 2,4-D rates ranged from 82 to 2242 g ae ha-1, resulting in nine rates 

for each herbicide. By 21 DAT under field conditions, control of Palmer amaranth did not 

exceed 86% with 560 g dicamba ha-1, however control exceeded 80% with 2,4-D at doses greater 

than or equal to 532 g ha-1.  Estimated doses for 50–90% of Palmer amaranth biomass reduction 

was at rates at 496–1332 g ae ha-1 of dicamba and 254–536 g ae ha-1 of 2,4-D. Under greenhouse 

conditions, doses resulting in visual assessment of 50% Palmer amaranth mortality were 404 g 

dicamba ha-1 and 388 g 2,4-D ha-1, while 90% mortality occurred near rates of 885 g dicamba ha-

1 and 1507 g 2,4-D ha-1. Results indicate that rates for 90% mortality of Palmer amaranth 

exceeds the maximum in-crop application rate of dicamba when applied to dicamba-resistant 

soybean.  

4.2 Introduction  

Palmer amaranth (Amaranthus palmeri) is a dioecious, summer annual, broadleaf species 

indigenous to the Sonoran Desert (Sauer 1957; Ward et al. 2013). Palmer amaranth has a 

photosynthetic rate of approximately 80 μmol m -2 s -1, which contributes to the plant’s ability to 
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rapidly accumulate biomass (Ehleringer 1983). Research examining genetics and environmental 

factors of Palmer amaranth distribution determined the extent of Palmer amaranth damage in the 

Midwest would be limited only by seed dispersal (Davis et al 2015). McDonald et al. (2009) 

hypothesized that increased temperatures would expand the damage niche of southern-

originating weed species northward. Female Palmer amaranth plants produce a prolific amount 

of seed, often ranging between 200,000–600,000 seeds when the plant emerges from March to 

June (Ward et al. 2013). Palmer amaranth can overtake many agronomic crops with multiple 

germination events within a growing season (Sauer 1957).  

Natural auxin (Indole-3-acetic acid, IAA) causes phototropic movements in plants. The 

hormone is found in actively growing meristems and is transported through the phloem 

parenchyma cells. A receptor for auxin was discovered in 2005 and identified as the F-box 

protein transport inhibitor response 1 (TIR1) (Guilfoyle 2007). Auxin/IAA bind to the TIR1 

receptor and either represses or activates gene expression. Gene expression activates most 

processes regulated by this plant hormone (Guilfoyle 2007).   

Herbicides that mimic IAA are commonly referred to as synthetic auxin herbicides or 

plant growth regulators (PGRs). These herbicides are translocated in the xylem and the phloem 

and cause plant death due to uncontrolled, unregulated auxin activity in the plant. Auxin has a 

promiscuous binding site on the receptor and in turn acts as “molecular glue” that strengthens the 

substrate binding to the receptor (Guilfoyle 2007), rendering the plant unable to regulate auxin 

production. The increase of auxin promotes an increase in ethylene production, causing leaf 

senescence and excess production of abscisic acid. The overproduction of these hormones, along 

with radical oxygen species (ROS), cause rapid leaf senescence followed by eventual plant 

death. There are multiple sites of action due to the plant having many auxin receptors in cells. 
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Synthetic auxin herbicides cannot be metabolized, compartmentalized, or regulated in sensitive 

dicot species (Kelley and Riechers 2007).  

 PGR herbicides injure primarily sensitive dicot species rather than monocot species. One 

possible reason for this selectivity is differential metabolism. Grasses rapidly convert synthetic 

auxins to inactive metabolites with irreversible ring hydroxylation (Kelley and Riechers 2007). 

Sensitive dicots convert the synthetic auxin to amino acid conjugates, which can be converted 

back to the active auxin, so an active pool of herbicide remains (Kelley and Riechers 2007).    

Auxin herbicides have long been used to control broadleaf species in grain crops such as 

corn (Zea may L.), wheat (Triticum aestivum L.) and grain sorghum [Sorghum bicolor (L.) 

Moench] (Mithila et al. 2011). Currently, 26 broadleaf species have documented resistance to 

synthetic auxin herbicides (Heap 2017). An Amaranthus species, tall waterhemp (Amaranthus 

tuberculatus), has been documented to be 10-fold more resistant to 2,4-D than the susceptible 

biotype (Bernards et al. 2012). Previous research evaluating broadleaf weed management in 

dicamba-resistant soybean reported only 60% of Palmer amaranth control when dicamba was 

applied preemergence at 113.4 g ae acre-1 (Johnson et al. 2010). 2,4-D applied at 230-1060 g ae 

ha-1 and dicamba applied at 280-1120 g ae ha-1 to 13–20-cm tall Palmer amaranth plants 

provided between 68 – 80% and 59 – 83% control, respectively (Merchant et al. 2013). The 

baseline sensitivity of a Nebraska Palmer amaranth population was reported to be below the 

recommended field rate for both dicamba (560 g ha-1) and 2,4-D (800 g ha-1) (Crespo et al. 

2016). General field use rates of auxin herbicides in Illinois are 560 g ha-1 dicamba and 1120 g 

ha-1 2, 4-D. 

 Concerns exist about the extent of damage Palmer amaranth could inflict upon Illinois 

agronomic crops, and what herbicide options are effective for control and suppression of this 



66 
 

weed. Currently in Illinois, Palmer amaranth has been documented to be resistant to herbicides 

from acetolactate synthethase (ALS), 5-enolpyruvyl-shikimate-3-phosphate (EPSP), and 

protoporphyrinogen oxidase (PPO) site-of-action inhibitors (Heap 2017). With new soybean 

varieties with resistance to dicamba or 2,4-D entering the market, synthetic auxin herbicides 

likely will be more extensively used in crop management programs. The objective of this study 

was to determine the appropriate use rate of synthetic auxin herbicides to control Palmer 

amaranth in Illinois. Additionally, greenhouse experiments were conducted to compare and 

quantify the response of three Amaranthus species, (A. palmeri, tuberculatus, hybridus) to 

dicamba and 2,4-D. 

4.3 Materials and Methods 

4.3.1 Field design and implementation 

Field experiments were established near Kankakee, IL in 2015 and 2016 and Urbana, IL 

in 2016. The soil at Kankakee was a Kankakee fine sandy loam (loamy-skeletal, mixed, 

superactive, mesic Typic Hapludolls) with a pH of 6.5 and organic matter of 2%. The soil type at 

Urbana was a Flanagan silt loam (fine, smectitic, mesic Aquic Argiudolls) with a pH of 6.5 and 

4.9% organic matter. All plots were 3 meters wide and 7.6 meters long at Kankakee and 10 

meters in long at Urbana. The soil was tilled at the beginning of the season to control any 

existing vegetation. No soybean crop was planted at any location due to the regulated status of 

the dicamba-resistant trait technology. Plots were arranged in a randomized complete block 

design with each treatment replicated three times. All herbicides were applied with a pressurized 

CO2 backpack sprayer equipped with XR80021 flat-fan spray tips spaced 51 cm apart on a 3 m 

boom. Spray volume was 187 L ha-1 and pressure was 276 kPa. Environmental conditions were 

recorded at each herbicide application.  
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4.3.2 Dose response of dicamba and 2,4-D for Palmer amaranth control under field 

conditions 

Dicamba or 2,4-D was applied to 10–12 cm tall Palmer amaranth plants at increasing 

rates equally spaced along a base 3.16 logarithmic scale. Dicamba and 2,4-D rates ranged from 

82 to 2242 g ae ha-1, resulting in nine rates for each herbicide. Spray additives were included 

with each herbicide based on label recommendations.  

Visual estimates of percent Palmer amaranth control were recorded 7, 14, and 21 DAT on 

a scale of 0 (no control) to 100 (complete control). In addition to visual estimates, five uniformly 

sized Palmer amaranth plants per plot (15 per treatment) were selected prior to treatment to 

quantify aboveground biomass accumulation following herbicide application. These uniformly 

sized Palmer amaranth plants (10–12 cm) were marked by placing a wooden stake near each 

plant prior to herbicide application. All other Palmer amaranth plants within a 15-cm diameter of 

each marked plant were carefully removed to ensure full spray interception by the marked plants. 

Each year, marked plants were scored dead, likely to die, or alive 21 DAT. To be scored alive, 

plants needed to exhibit new, unaffected tissue. The aboveground portion of all marked plants 

was harvested 21 DAT and placed in a dryer for seven days at 65°C, after which dried biomass 

was recorded.  

4.3.3 Dose response of dicamba and 2,4-D for Palmer amaranth, waterhemp, and smooth 

pigweed under greenhouse conditions 

Inflorescences of female Palmer amaranth plants were collected from Kankakee in fall 

2015 when seed was mature. Seed from herbicide-sensitive biotypes of waterhemp (Amaranthus 

tuberculatus) and smooth pigweed (Amaranthus retroflexus) were obtained for comparison. 

Palmer amaranth, waterhemp, and smooth pigweed seed was cleaned and treated separately 
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using a 10-4 M dilution of ethephon. The mixture was then shaken intermittently over two hours, 

after which the solution was removed and the seeds were rinsed with 0.95 mL distilled water for 

ten minutes. This rinse was repeated and then seeds were suspended in 0.1% agarose solution. 

Seeds not used immediately for planting were stored at 4°C. Following treatment, seeds of each 

species were planted in 12-cm by 12-cm flats filled with a commercial potting medium2 of peat 

and perlite and covered with sifted soil. Emerged seedlings were transplanted at the second true 

leaf stage into 9 by 12 cm flats also filled with potting medium. Subsequently, 4-cm tall plants 

were transplanted to a 950 cm3 pot containing a 3:1:1:1 mixture of potting mix: soil: peat: sand; a 

slow-release fertilizer3 was added when needed. 

Dicamba or 2,4-D was applied to plants 10–12 cm tall or having 8–9 true leaves using a 

compressed air research sprayer4 calibrated to deliver 185 L ha1 at 276 kPa of pressure. 

Application rates were identical to those applied in the field experiment. The greenhouse 

experiment was conducted twice and each treatment was replicated five or six times per run. 

Following application, plants were placed on greenhouse benches in a randomized complete 

block design. Mortality of treated Palmer amaranth plants was determined 21 DAT. Plants were 

appraised as dead, likely to die, or alive. Plants were scored alive if they demonstrated new, 

actively growing tissue. At 21 DAT, the Palmer amaranth plants were harvested for aboveground 

biomass, samples were dried at 65°C for 7 days and biomass was recorded. 

4.3.4 Statistical Analysis 

The dried biomass data of all plants (field and greenhouse) within each treatment were 

averaged and converted to a percentage of the untreated control. Mortality ratings were 

calculated on the amount of plants visually assed as deceased at 21 DAT as a percentage of total 

plants per treatment. Data were evaluated with PROC Mixed in SAS5 9.4 (SAS Institute Inc, 
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Cary NC). Each year-location combination was considered an environment as suggested by 

Carmer et al. (1989). Fixed effects included herbicide treatment and rate, while random effects 

included environment and block within environment. All possible main effects and interactions 

were tested. Visual estimates mean separations were performed using Fischer’s protected LSD at 

P≤0.05. 

Data were analyzed in R software using a non-linear regression model with the dose-

response curve package (R statistical software, R Foundation for Statistical Computing, Vienna, 

Austria) (Knezevic et al. 2007). The dose-response model was constructed using the equation 

𝑦 = 𝑐 +
𝑑 − 𝑐

1 − exp⁡[𝑏(log(𝑥) − log(𝐺𝑅50))]
 

 The four parameter log-logistic is described as follows: 𝑏 is the slope of the curve, c is 

the lower limit, d is the upper limit, and GR50 is a 50% reduction in biomass or 50% of plants 

visually estimated as deceased.  

4.4 Results and Discussion 

4.4.1 Response of Palmer amaranth to dicamba and 2,4-D under field conditions 

 Visual estimates of Palmer amaranth control, biomass, and mortality data were pooled 

across all environments. Both dicamba and 2,4-D caused characteristic injury (epinasty, leaf 

strapping, stunting, etc.) on treated plants within a few days after application. Injury tended to be 

greater at higher application doses. By 21 DAT, 496 g dicamba ha-1 and 254 g 2,4-D ha-1 reduced 

Palmer amaranth dry biomass by 50% (Table 4.1). The two lowest doses of dicamba increased 

biomass of treated plants to greater than the non-treated control plants (Figure 4.1), but this was 

not observed with the two lowest doses of 2,4-D. A 90% reduction in Palmer amaranth biomass 

required estimated doses of 1332 g ha-1 and 536 g ha-1 dicamba and 2,4-D, respectively. The 

estimated dose of dicamba to reduce Palmer amaranth biomass 90% is greater than two times the 
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maximum in-crop application dose of dicamba allowed by label when applied to dicamba-

resistant soybean varieties, while the estimated dose of 2,4-D to reduce Palmer amaranth 

biomass 90% falls within the in-crop application dose labeled for application in 2,4-D resistant 

soybean varieties.  

Control of Palmer amaranth did not exceed 86% with 560 g ha-1 dicamba (Table 4.2). 

This represents the maximum in-crop application dose of dicamba when applied to dicamba-

resistant soybean varieties. Control exceeded 90% only with the three highest rates of dicamba 

doses 14 DAT. As described previously, 1332 g ha-1 dicamba was the estimated dose required to 

reduce Palmer amaranth biomass 90%, which closely agrees with the visual estimates of Palmer 

amaranth control. By 21 DAT, Palmer amaranth control exceed 80% with 2,4-D at doses of 532 

g ha-1 or greater. Control was 87–90% with 781–1147 g 2,4-D ha-1, a dose range that 

encompasses the maximum allowable in-crop application dose (1060 g ha-1) for 2,4-D when 

applied to 2,4-D resistant soybean varieties (Table 4.2). A higher dose of 2,4-D was required to 

control Palmer amaranth 90% compared with the estimated dose required to reduce Palmer 

amaranth biomass 90%. While estimates of doses required for 90% biomass reduction and 

Palmer amaranth control were somewhat similar, no such similarity exists for plant mortality. 

Plant mortality of 90% or greater was only achieved at the highest (2242 g ha-1) dose of each 

herbicide. Palmer amaranth mortality was only 57% with dicamba at the labeled in-crop 

application dose of 560 g ha-1 and between 47–80% at the maximum labeled in-crop application 

dose of 2,4-D. A 90% reduction in Palmer amaranth mortality required estimated doses of 885 g 

ha-1 and 1507 g ha-1 dicamba and 2,4-D, respectively (Table 4.3 and Figure 4.2).  
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4.4.2 Response of Palmer amaranth to dicamba and 2,4-D under greenhouse conditions 

 Estimated doses of dicamba and 2,4-D required to reduce Palmer amaranth biomass 50% 

under greenhouse conditions were approximately half those calculated under field conditions. 

Doses of dicamba and 2,4-D required to reduce Palmer amaranth biomass 50% were 217 and 129 

g ae ha-1 for dicamba and 2,4-D, respectively, (Table 4.4) compared with doses of 496 and 254 g 

ae ha-1 under field conditions. Similar to observations by Hausman (2016) the amount of control 

provided by plant growth regulators was greater under greenhouse conditions when compared to 

evaluation under field conditions. Estimated doses to reduce waterhemp biomass 50% were 

similar for dicamba and 2,4-D (231 and 252 g ae ha-1, respectively), and also similar for smooth 

pigweed (145 g ae ha-1 dicamba and 140 g ae ha-1 2,4-D). The estimated dose of dicamba to 

reduce biomass 90% for each species exceeded the maximum in-crop application rate of dicamba 

allowed by label when applied to dicamba-resistant soybean varieties, while the estimated dose 

of 2,4-D to reduce biomass of each species 90% was less than the maximum in-crop application 

dose labeled for application in 2,4-D-resistant soybean varieties. Mortality of Palmer amaranth, 

waterhemp, and smooth pigweed was less than 75% with 560 g ae ha-1 dicamba (Table 4.5), 

whereas mortality of Palmer amaranth, waterhemp, and smooth pigweed was 82% or greater 

with 823 g ae ha-1 2,4-D. The estimated dose required for 90% mortality of each species ranged 

from 816–1233 and 436–901 g ae ha-1 dicamba and 2,4-D, respectively (Table 4.6). 

4.4.3 Dose response of Palmer amaranth populations in Illinois 

Synthetic auxin herbicide applications in Illinois need to be at the rate of 560 g dicamba 

ha-1 and 532 g 2,4-D ha-1, or as required by label in order to provide adequate control of Palmer 

amaranth. Using rates lower than the lethal dose can lead to increased selection pressure for 

dicamba and 2,4-D resistance (Ashworth et al. 2016; Tehranchian et al. 2017). The majority of 
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resistance cases are caused by a single gene or a couple of dominant genes when the herbicide is 

applied at the field rate with high plant mortality (Preston and Mallory-Smith 2001).  Plant 

mortality is achievable in the susceptible genotype, but selection pressure can result in polygenic 

resistance. Plants with these select few resistances or plants that were sprayed at an improper 

growth stage may survive and therefore cross pollinate thus evolving resistance. To be able to 

combat selection pressure for resistance, synthetic auxins should not be applied below the 

recommended field rate.  

4.5 Source of Materials 

1TeeJet 80025EVS. TeeJet Technologies, P.O. Box 7900, Wheaton, IL 60187.  

2LC1. Sun Gro Horticulture, 15831 N.E. 8th Street, Bellevue, WA 98008.  

3Osmocote 13-13-13 slow release fertilizer. The Scotts Company, 14111 Scottslawn Rd., 

Marysville, OH 43041.  

4Generation III Research Sprayer. DeVries Manufacturing, 28081 870th Ave., Hollandale, MN 

56045. 

5Statistical Analysis Software (SAS) 9.4. SAS Institute, Inc., 100 SAS Campus Drive, Cary, NC 

27513.  
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4.6 Tables and Figures  

Table 4.1. Estimated doses and standard errors of dicamba and 2,4-D required to reduce Palmer 

amaranth biomass 10, 50, or 90% under field conditions. Biomass data generated from 

uniformly-sized (10–12 cm) Palmer amaranth plants (15 treatment-1) marked prior to herbicide 

application and harvested 21 DAT. 

   

 Dicamba 2.4-D 

 Estimate SEb Estimate SE 

 (g ha-1)  (g ha-1)  

ED:10a 185 156 121 118 

ED:50 496 169 254 85 

ED:90 1332 1142 536 474 
a ED:10, estimated dose to reduce 10% biomass; ED:50, estimated dose to reduce 50% biomass; 

ED:90, estimated dose to reduce 90% biomass. 

b Standard error 
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Table 4.2. Visual estimates of Palmer amaranth control and mortality with dicamba and 2,4-D under field conditions. means sharing 

the same letter within a column are not significantly different at α=0.05  

        

 Dicamba   2,4-D 

        

doseb DATa  dose DAT  

g ae ha-1 7  14 21   g ae ha-1  7 14 21 

 % controlc % mortality   % control % mortality 

82 63 g 63 g 57 e 0 e  82 61 g 61 f 52 f 0 g 

121 68 fg 68 fg 62 de 2 e  114 67 fg 65 f 63 e 0 g 

177 71 fe 72 ef 59 e 2 e  168 71 ef 73 e 66 e 0 g 

260 74 de 76 de 68 cde 21 de  247 75 de 78 de 75 d 14 f 

382 78 cd 83cd 74 bcd 47 cd  363 78 cd 81 cd 78 d 40 e 

560 82 bc 86 bc 79 abc 57 bc  532 79 cd 86 bc 81 cd 44 d 

823 83 ab 93 ab 86 ab 67 bc  781 83 bc 90 ab 87 bc 47 c 

1207 88 a 97 a 89 a 85 ab  1147 88 ab 94 a 90 ab 80 b 

2242 88 a 98 a 89 a 97 a  2242 93 a 97 a 95 a 94 a 
a DAT, days after treatment. 

b All doses included nonionic surfactant at 0.25% v/v and ammonium sulfate at 2.5% v/v  

c Plots were rated as a whole as a percentage of total Palmer amaranth controlled 



75 
 

Table 4.3. Estimated doses and standard errors of dicamba and 2,4-D required to result in 10, 50, 

or 90% Palmer amaranth mortality under field conditions. Mortality data generated from 

uniformly sized (10–12 cm) Palmer amaranth plants (15 treatment-1) marked prior to herbicide 

application and assessed 21 DAT. 

    

 dicamba 2,4-D 

 dose SEb dose SE 

 (g ha-1)  (g ha-1)  

ED:10a 185 46 100 69 

ED:50 404 50 388 90 

ED:90 885 247 1507 1165 
a ED:10, estimated dose to kill 10% of the population; ED:50, estimated dose to kill 50% of the 

population; ED:90, estimated dose to kill 90% of the population. 

b Standard error 
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Table 4.4. Estimate doses and standard errors of dicamba and 2,4-D required to reduce biomass 

of Palmer amaranth, waterhemp, and smooth pigweed 10, 50, or 90% under greenhouse 

conditions. Biomass data generated from uniformly-sized (10–12 cm or 8–9 true leaves) plants 

(11 treatment-1) harvested 21 DAT. 

 Dicamba 2,4-D 

Species EDa Dose SE Dose SE 

 g ae ha-1  g ae ha-1  

PA:10 144 63 22 54 

PA:50 217 28 129 136 

PA:90 326 108 395 123 

     

WH:10 67 58 86 130 

WH:50 231 80 252 121 

WH:90 788 299 501 246 

     

Sm:10 24 55 37 84 

Sm:50 145 143 140 127 

Sm:90 889 637 327 101 
a  abbreviations; ED: estimated dose; PA:10, estimated dose to reduce 10% of Palmer amaranth 

biomass; PA:50, estimated dose to reduce 50% of Palmer amaranth biomass; PA:90, estimated 

dose to reduce 90% of Palmer amaranth biomass; WH:10, estimated dose to reduce 10% of 

waterhemp biomass; WH:50, estimated dose to reduce 50% of waterhemp biomass; WH:90, 

estimated dose to reduce 90% of waterhemp biomass; Sm:10, estimated dose to reduce 10% of 

smooth pigweed biomass; Sm:50, estimated dose to reduce 50% of smooth pigweed biomass; 

Sm:90, estimated dose to reduce 90% of smooth pigweed biomass. 
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Table 4.5. Mortality estimates of Palmer amaranth, waterhemp, and smooth pigweed at 21 DAT 

under greenhouse conditions to rates of dicamba and 2,4-D. Means sharing the same letter within 

a continuous treatment are not significantly different at α=0.05.  

     

     

herbicide rate Palmer amaranth waterhemp smooth pigweed 

 (g ae ha-1) ----% mortality---- 

dicamba 82 9 d 0 c 0 e 

 121 19 d 0 c 9 e 

 177 25 cd 0 c 0 e 

 260 17 d 9 bc 36 d 

 382 55 bc 9 b 45 cd 

 560 74 ab 27 b 64 bc 

 823 90 ab 73 a 82 ab 

 1207 100 a 82 a 100 a 

 2242 100 a 91 a 100 a 

     

2,4-D 82 0 d 20 c 0 c 

 114 0 d 0 c 20 bc 

 168 30 cd 29 bc 40 bc 

 247 19 cd 20 c 54 ab 

 363 40 bcd 49 abc 92 a 

 532 65 abc 74 ab 100 a 

 781 100 a 82 a 100 a 

 1147 92 ab 82 a 100 a 

 2242 100 a 100 a 100 a 

     

 

 

 

 

 

 

 

 

 



78 
 

Table 4.6. Estimated doses and standard errors of dicamba and 2,4-D required to result in 10, 50, 

or 90% mortality of Palmer amaranth, waterhemp, and smooth pigweed under greenhouse 

conditions. Mortality data generated from uniformly-sized (10–12 cm or 8–9 true leaves) plants 

(11 treatment-1) evaluated 21 DAT. 

 Dicamba 2,4-D 

Species EDa Dose SEb Dose SE 

 g ae ha-1  g ae ha-1  

PA:10 225 44 199 82 

PA:50 428 39 424 58 

PA:90 816 184 902 295 

     

WH:10 436 70 207 79 

WH:50 648 46 407 58 

WH:90 963 179 801 356 

     

Sm:10 142 48 101 42 

Sm:50 419 61 210 37 

Sm:90 1233 420 436 95 
a abbreviations; ED: estimated dose; PA:10, estimated dose to kill 10% of Palmer amaranth; 

PA:50, estimated dose to kill 50% of Palmer amaranth; PA:90, estimated dose to kill 90% of 

Palmer amaranth; WH:10, estimated dose to kill 10% of waterhemp; WH:50, estimated dose to 

kill 50% of waterhemp; WH:90, estimated dose to kill 90% of waterhemp; Sm:10, estimated 

dose to kill 10% of smooth pigweed; Sm:50, estimated dose to kill 50% of smooth pigweed; 

Sm:90, estimated dose to kill 90% of smooth pigweed. 

b Standard error 
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Figure 4.1. Dose response curve of Palmer amaranth to dicamba and 2,4-D under field 

conditions. Lines are the predicted values for treated plant biomass as a percent of the non-

treated control.  
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Figure 4.2. Estimated percent of Palmer amaranth survivors per treatment under field conditions. 

Lines are predicted values for percentage Palmer amaranth survival. 
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Figure 4.3. Percent of Amaranthus species survivors to dicamba doses under greenhouse 

conditions. Lines are predicted values for percentage survival. 

 

 

 

 

 

 



82 
 

Figure 4.4. Percent of Amaranthus species survivors to 2,4-D doses under greenhouse 

conditions. Lines are predicted values for percentage survival. 
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CHAPTER 5 

RESIDUAL HERBICIDE COMBINATIONS FOR PALMER AMARANTH CONTROL 

IN GLUFOSINATE-RESISTANT SOYBEAN 

5.1 Abstract 

Palmer amaranth is known for rapid biomass accumulation and multiple germination 

events, making this weed difficult to control. Palmer amaranth resistance has been documented 

to herbicides from six site-of-action groups. In Illinois, however, resistance has been documented 

only to ALS, EPSP, and PPO inhibitors. Glufosinate-resistant soybean varieties used in 

combination with glufosinate is an option to combat this resistance, and therefore should be 

evaluated. The objectives of this study were to compare half and full rates of PRE-only 

applications (sulfentrazone + imazethapyr) PRE followed by (fb) early-POST (EPOST) 

applications (glufosinate or glufosinate + acetochlor), and PRE fb EPOST applications 

(glufosinate or glufosinate + acetochlor) fb POST applications (glufosinate or glufosinate + 

pyroxasulfone) for control of Palmer amaranth. Field experiments were conducted in 2015 and 

2016 near Kankakee, Illinois. Quadrats were marked in each plot and Palmer amaranth 

emergence was recorded weekly. Above ground Palmer amaranth biomass was harvested from 

quadrats before each sequential herbicide application. End-of-season Palmer amaranth biomass 

from plots treated with PRE herbicides only was not significantly different than non-treated plot 

biomass. EPOST applications of glufosinate + acetochlor were significantly different in Palmer 

amaranth density than glufosinate only in 2016. EPOST fb POST applications were found to 

have greater control of Palmer amaranth biomass, regardless of additional residual activity 

herbicides.  
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5.2 Introduction 

Palmer amaranth (Amaranthus palmeri) is a dioecious, summer annual, broadleaf species 

that originated in the southwestern United States (Sauer 1957). Palmer amaranth has a 

photosynthetic rate around 80 μmol m -2 s -1 and therefore can rapidly accumulate biomass 

(Ehleringer 1983). Research examining the influence of genetics and environmental factors on 

Palmer amaranth establishment determined the range of damage in the Midwest would be limited 

by seed dispersal rather than the environment (Davis et al 2015). McDonald et al. (2009) 

hypothesized that increased temperatures would expand the damage niche of southern-

originating weed species northward, thus expanding the niche for favorable Palmer amaranth 

growth and development. The females produce a prolific amount of seed, often ranging between 

200,000–600,000 seeds when the plant emerges from March to June (Ward et al. 2013). Palmer 

amaranth is able to overwhelm a field with multiple emergence events, predominantly after a soil 

disturbance or rainfall event (Sauer 1957; Ward et al. 2013). Not controlling early-emerging 

plants can lead to season long competition from Palmer amaranth in soybean, which caused a 

17–63% yield reduction at 0.33–10 plants per m-1 (Klingaman and Oliver 1994), or 79% yield 

reduction at 8 plants per m-1 (Bensch 2003) when Palmer amaranth emerges shortly after 

soybeans. Currently in Illinois, Palmer amaranth has been documented to be resistant to 

herbicides from acetolactate synthethase (ALS), 5-enolpyruvyl-shikimate-3-phosphate (EPSP), 

and protoporphyrinogen oxidase (PPO) site of action inhibitors (Heap 2017). Options are still 

available to growers to control Palmer amaranth in Illinois include glutamine synthetase and 

very-long-chain fatty acid inhibitors since there is no documented Palmer amaranth resistance to 

herbicides from these site of action (Heap 2017).  
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One herbicide that can be used for controlling Palmer amaranth is glufosinate, which 

inhibits glutamine synthetase. Glufosinate is a structural analog of the amino acid glutamate, 

which is the substrate for the glutamine synthetase enzyme. The herbicide is a competitive 

inhibitor with glutamate for glutamine synthetase enzyme binding (Sauer et al. 1987). The 

herbicide inhibits the pathway responsible for assimilating ammonia and incorporating ammonia 

into a reduced, organic form such as the amino acids glutamine and glutamate. The buildup of 

ammonia is toxic to the plant, but the primary cause of death is due to the inhibition of 

transamination reactions in photorespiration (Sauer et al 1987; Wild et al. 1987). Without amino 

group donors, glyoxylate, glycolate, and phosphoglycolate accumulate and inhibit the enzyme 

RuBisCo and the carbon fixation in the Calvin cycle, which indirectly leads to inhibition of 

photosynthetic electron transport (Timm et al. 2016; Wild et al. 1987). Glufosinate is not 

translocated throughout the plant and herbicidal activity is enhanced by light.  

There is no natural plant mechanism for glufosinate resistance, so crops are genetically 

modified for resistance using bacterial genes from Streptomyces viridochromogenes (Droge et al. 

1992). These genes, referred to as the bar or PAT gene, codes for phosphinothricin 

acetyltransferase (PAT enzyme) which detoxifies glufosinate by acetylating the herbicide 

molecule (Devine et al. 1993). Glufosinate is a non-selective herbicide that has no residual 

activity in the soil (Shaner 2014). The addition of another herbicide with soil residual activity 

would be beneficial to control plants from multiple germination events in a growing season.  

Herbicides that inhibit long-chain-fatty acid synthesis typically provide several weeks of 

residual control (Tanetani et al. 2009; Shaner 2014). Fatty acids are created via fatty acid 

synthase located in the plastid at the Acyl-carrier protein (ACP) and are then exported to the 

cytosol where elongation to very-long-chain fatty acids (VLCFA) occurs in the endoplasmic 
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reticulum (ER) (Schmalfuβ et al. 2000). The majority of VLCFA are located in the plasma 

membrane and when absent, the membrane loses stability and then becomes leaky, which results 

in plant death (Matthes and Böger 2002). 

VLCFA herbicides, such as acetochlor and pyroxasulfone, inhibit VLCFA synthesis and 

are typically used preemergence (PRE) in corn and soybean (Fuerst 1987). Use rates are 

typically in low concentrations comparatively and weed resistance is rare (Götz and Böger 

2004). These herbicides inhibit VLCFA elongases, which impedes cuticle synthesis and 

membranes, thus hindering the ability of a developing seedling shoot to emerge from the soil 

(Böger et al. 2000). Herbicide injury symptoms in grasses include improper unfurling of the leaf 

from the coleoptile (buggy-whipping) while in soybean injury is evident by slow emergence and 

crinkled or cupped leaves (Fuerst 1987; Yamaji et al. 2014). Acetochlor and pyroxasulfone 

provide control for several weeks (Shaner 2014). Palmer amaranth has a long duration of 

emergence and this residual control would be beneficial in controlling the new flushes of 

emergence. 

 Season-long palmer amaranth control is important for reducing yield loss and decreasing 

the soil seed-bank. The objective of this study was to determine the extent of Palmer amaranth 

control using post emergence applications of glufosinate only, or in combination with a residual 

herbicide. 

5.3 Materials and Methods 

5.3.1 Field design and implementation 

Fields were located near Kankakee, Illinois in 2015 and 2016. The soil at Kankakee was a 

Kankakee fine sandy loam (loamy-skeletal, mixed, superactive, mesic Typic Hapludolls) with a 

pH of 6.5 and organic matter of 2%. Tillage was implemented each spring to remove any 
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existing vegetation and prepare the seedbed for planting. Glufosinate-resistant soybean variety 

“Credenz 3233 LL” was planted in 76-cm rows on May 19th, 2015 and May 26th, 2016 at 

Kankakee. Plots were 3 meters wide and 7.6 meters long and contained 4 rows of soybeans. An 

area between rows in the plot was marked with ½ m2 quadrats.  Experiments were designed as a 

randomized complete block design with four replications per treatment. 

Herbicides were applied with a backpack CO2 sprayer with Teejet1 AI110025 and 

AIXR8002 spray tips for preemergence and post emergence applications, respectively. Nozzles 

were spaced 51 cm apart on a 3 meter boom calibrated to deliver 187 L ha-1 at 276 kPa. 

Environmental conditions were recorded at the time of each herbicide application. 

Treatments consisted of combinations of preemergence and postemergence herbicides for 

Palmer amaranth control. Preemergence (PRE) treatments of tank-mixed sulfentrazone plus 

imazethapyr were applied at soybean planting at a full or half rate, based on common herbicide 

use rate in Illinois, to all of the plots. PRE herbicides were followed by an early postemergence 

(EPOST) application of glufosinate or glufosinate plus acetochlor when weeds were 5–8 cm tall 

and soybean were at the V2 growth stage. Additional postemergence (POST) applications 

consisted of glufosinate or glufosinate plus pyroxasulfone when weeds were 5–10 cm tall and 

soybeans were at a V6 growth stage (Table 1). 

Herbicide effectiveness was visually estimated at 7, 14, and 21 days after treatment 

(DAT) on a scale ranging from 0 (no control) to 100 (complete weed control). The ratings were 

based on estimates of injury and biomass reduction when compared to non-treated plots. 

Quadrats were randomly placed near the center of each plot and emerged Palmer 

amaranth plants within quadrats were recorded weekly to determine the number and duration of 

Palmer amaranth emergence after herbicide application. Above-ground Palmer amaranth 
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biomass was harvested within the quadrat area before each sequential herbicide application. At 

21 days after final treatment, all remaining Palmer amaranth was harvested for above ground 

biomass from each marked quadrat. Palmer amaranth biomass was dried at 65°C for 7 days and 

dried biomass recorded. 

5.3.2 Statistical Analysis 

Data were evaluated in SAS2 9.4 (SAS Institute, Cary, NC 27513, USA) using the GLM 

procedure. Fixed effects were herbicide rate, year, and herbicide application timing. Random 

effects were block within year. The effect of year had a significant interaction and therefore the 

data from different years were not pooled. Means of significant main effects and interactions 

were separated using Fischer’s Protected LSD test at P ≤ 0.05. 

5.4 Results and Discussion 

High soybean injury ratings (Table 5.1) occurred in 2015 likely due to the excessive 

amount of rainfall and cool weather at the time of planting and soybean emergence. Soybean 

injury was low and nearly negligible in 2016 after the soybeans emerged from the soil. In both 

years, glufosinate in combination with glyphosate had the highest amount of soybean injury and 

necrosis (data not shown). Control of Palmer amaranth was greatest at 7 DAT after glufosinate 

only POST applications, but declined over time due to additional emerging weed seedlings and 

weed recovery. Glufosinate tank-mixed with acetochlor applied early postemergence (EPOST) 

had higher control ratings of Palmer amaranth compared to glufosinate alone at 21 DAT, 

however, the percent of control gradually declined as time after application increased. Similar 

research has also shown that a PRE herbicide followed by an EPOST application of glufosinate 

tank-mixed with acetochlor or pyroxasulfone provided the highest level of control for common 

lambsquarters (Chenopodium album), common waterhemp, Eastern black nightshade (Solanum 
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ptycanthum), and velvetleaf (Abutilon theophrasti) in glufosinate-resistant soybean compared to 

single or sequential glufosinate applications (Aulakh and Jhala 2015). Herbicides applied POST 

provided ≥90% control of Palmer amaranth in 2015 and the greatest control at 21 DAT both 

years, regardless if pyroxasulfone was added.  

No difference in weed density or plant biomass was observed between the full and half 

rate of PRE-only treatments in both field years (Table 5.2). Greater Palmer amaranth biomass in 

the treated plots may be due to reduced interspecies competition for light and other nutrients in 

the marked quadrat. Single applications of glufosinate plus acetochlor had significantly lower 

final Palmer amaranth density than just a single application of glufosinate in 2016 (Table 5.3). 

This finding coincides with Coetzer et al. (2002), who reported less reduction of Palmer 

amaranth biomass using a single application of glufosinate rather than sequential applications. 

Tank mixing with glufosinate has been recommended to have greater control over species, such 

as common lambsquarters, that have multiple emergence events in a season (Steckel et al. 1997). 

Palmer amaranth control was greater when using sequential applications of glufosinate (Table 

5.1) similar to studies by Hoffner et al. (2012) and Culpepper et al. (2000) reporting that a PRE 

followed by a POST application of glufosinate provided greater control of Palmer amaranth than 

a single application of glufosinate.  

Biomass accumulation and Palmer amaranth density did not differ between two 

applications of glufosinate or two applications of glufosinate plus residual herbicides (Table 5.3). 

Two glufosinate applications decreased Palmer amaranth density early in the season similar to 

findings by Coetzer et al. (2002). Final dry biomass of Palmer amaranth harvested was lowest in 

plots where EPOST followed POST herbicide treatments. However, due to resistance concerns, 

the use of a post application of glufosinate and acetochlor or pyroxasulfone is recommended, 
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therefore when multiple modes of action are utilized, selection pressure is decreased (Diggle et 

al. 2003; Johnson et al. 2012; Norsworthy et al 2012). Acetochlor and pyroxasulfone herbicides 

have been reported to provide greater than 75% control of common waterhemp (Hausman 2011) 

and therefore could be utilized for suppression of other Amaranthus species. 

5.5 Source of Materials  

1TeeJet 80025EVS. TeeJet Technologies, P.O. Box 7900, Wheaton, IL 60187.  

2Statistical Analysis Software (SAS) 9.4. SAS Institute, Inc., 100 SAS Campus Drive, Cary, NC 

27513.  
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5.6 Tables  

Table 5.1. Visual estimates of Palmer amaranth control and soybean injury at 7 and 21 DAT of latest herbicide application in 

Kankakee (2015 and 2016) under field conditions. Visual estimates of control sharing the same letter within a column are not 

significantly different at α=0.05.  

          

    2015 2016 
treatment herbicidea rate timingb controlc injuryd control 

    7 21 7 21 7 21 

  g ai ha-1  -----------------------------%--------------------------- 

0 untreated  0  0 e 0 d 0 d 0 c 0 d 0 e 
          

1 sulfentrazone+imazethapyr 280 PRE 56 cd 45 c 2.5 c 2.3 b 26 c 14 e 
          

2 sulfentrazone+imazethapyr 280 PRE       

 glufosinate 594 EPOST 79 b 69 b 2.8 c 2.8 ab 58 b 38 d 
          

3 sulfentrazone+imazethapyr 280 PRE       

 glufosinate+acetochlor 594+1260 EPOST 73 b 66 b 2.5c 2.3 b 63 b 46 d 
          

4 sulfentrazone+imazethapyr 280 PRE       

 glufosinate 594 EPOST       

 glufosinate 594 POST 95 a 93 a 3 bc 3 ab 86 a 68 bc 
          

5 sulfentrazone+imazethapyr 280 PRE       

 glufosinate+acetochlor 594+1260 EPOST       

 glufosinate 594 POST 97 a 97 a 4.5 ab 3.5 ab 94 a 83 ab 
          

6 sulfentrazone+imazethapyr 280 PRE       

 glufosinate+acetochlor 594+1260 EPOST       

 glufosinate+pyroxasulfone 594+118 POST 97 a 95 a 4.5 ab 3.5 ab 96 a 80 ab 
          

7 sulfentrazone+imazethapyr 140 PRE 49 d 46 c 3.3 bc 3.3 ab 5 d 5 e 
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Table 5.1 (cont.) 

8 sulfentrazone+imazethapyr 140 PRE       

 glufosinate 594 EPOST 79 b 70 b 2.5 c 2.3 b 59 b 35 d 
          

9 sulfentrazone+imazethapyr 140 PRE       

 glufosinate+acetochlor 594+1260 EPOST 65 bc 61 bc 5.5 a 3 ab 68 b 50 cd 
          

10 sulfentrazone+imazethapyr 140 PRE       

 glufosinate 594 EPOST       

 glufosinate 594 POST 96 a 97 a 5 a 4 a 91 a 79 ab 
          

11 sulfentrazone+imazethapyr 140 PRE       

 glufosinate+acetochlor 594+1260 EPOST       

 glufosinate 594 POST 97 a 98 a 5 a 3.5 ab 97 a 88 a 
          

12 sulfentrazone+imazethapyr 140 PRE       

 glufosinate+acetochlor 594+1260 EPOST       

 glufosinate+pyroxasulfone 594+118 POST 97 a 97 a 4.5 ab 4 a 95 a 79 ab 

          
a All POST treatments included AMS, ammonium sulfate at 2.5% (v/v). 
b PRE, pre emergence; EPOST, post emergence; POST, post emergence. 
c average rating of Palmer amaranth control in treated plot 
d average rating of soybean injury from herbicide treatment. Blank spaces are negligible injury 
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Table 5.2. Mean separation of PRE-only and the non-treated biomass of Kankakee Palmer 

amaranth under field conditions (2015 and 2016). Means sharing the same letter within the same 

column are not significantly different a α=0.05. 

       

   biomassa  densityb  

treatment herbicide  rate 2015 2016 2015 2016 

 
 

g 

ha-1 

    

0 untreated 0 34.1 a 64.9 a 24.5 a 41 a 

1 sulfentrazone+imazethapyr 280 27.4 a 66.8 a 3.3 b 9.5 a 

7 sulfentrazone+imazethapyr 140 11.0 a 111.7 a 5 b 24.8 a 

       
a biomass of Palmer amaranth in the marked quadrat at 21 days after last experiment treatment 
c number of Palmer amaranth in marked at 21 days after last experiment treatment quadrat 
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Table 5.3. Mean separation of EPOST and POST herbicide application biomass and density of Kankakee Palmer amaranth 21 days 

after POST application under field conditions (2015 and 2016). Means sharing the same letter within a column are not significantly 

different as α=0.05 

        

 Herbicide application timing biomassa densityb 

        

trtc 
PRE EPOST POST 2015 2016 2015 2016 

    (g)   

        

2 sulfentrazone+imazethapyr glufosinate  2.83 ab 33.57 a 14.75 ab 7 a 

8 sulfentrazone+imazethapyr glufosinate  3.72 a 19.72 ab 10.75 abc 6.25 ab 

3 sulfentrazone+imazethapyr glufosinate+acetochlor  0.75 bc 5.74 b 11.25 abc 1.5 c 

9 sulfentrazone+imazethapyr glufosinate+acetochlor  2.62 abc 17.49 ab 15.25 a 1.5 c 

4 sulfentrazone+imazethapyr glufosinate glufosinate 1.04 abc 0.03 b 1.5 bc 2.75 abc 

10 sulfentrazone+imazethapyr glufosinate glufosinate 0 c 0.01 b 0.25 c 1.5 c 

5 sulfentrazone+imazethapyr glufosinate+acetochlor glufosinate 0.98 bc 0 b 2 ab 0.5 c 

11 sulfentrazone+imazethapyr glufosinate+acetochlor glufosinate 0.08 c 0 b 0.5 c 0 c 

6 
sulfentrazone+imazethapyr 

glufosinate+acetochlor 
glufosinate+pyroxasulfon

e 
0 c 

0.01 b 
0 c 1 c 

12 
sulfentrazone+imazethapyr 

glufosinate+acetochlor 
glufosinate+pyroxasulfon

e 
0 c 

0 b 
0.25 c 0 c 

a biomass of Palmer amaranth in the marked quadrat at 21 days after POST treatment 
b number of Palmer amaranth plants at 21 days after POST treatment 
c trt, treatment
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CHAPTER 6 

SOIL APPLIED HERBICIDES FOR PREEMERGENCE PALMER AMARANTH 

CONTROL 

6.1 Abstract 

Palmer amaranth is known for rapid biomass accumulation and multiple emergence 

events, making this weed difficult to control. Currently, Palmer amaranth populations in Illinois 

have only been documented for resistance to ALS, EPSP, and PPO site-of-action herbicides 

applied POST emergence, thus necessitating more research in PRE herbicides for Palmer 

amaranth suppression and control. Field experiments were conducted in 2016 near Kankakee and 

Urbana, IL. Herbicides from five different site-of-action groups were applied to bare ground 

fields, and Palmer amaranth biomass was collected at 56 days after treatment (DAT).  Results 

indicated Palmer amaranth visual estimates of control was not different than the non-treated 

control 21 DAT. Only atrazine (2242 g ai ha-1) and mesotrione (210 g ai ha-1) had lower biomass 

than non-treated biomass in Kankakee. At Urbana, all treatments, excluding rimsulfuron (35 g ai 

ha-1), had biomass lower than non-treated biomass. Under greenhouse conditions, PRE 

applications of rimsulfuron and imazethapyr (71 g ai ha-1) were not different than the untreated 

control.  

6.2 Introduction 

Palmer Amaranth (Amaranthus palmeri) is a summer annual, small-seeded broadleaf 

species that originates from the Sonoran desert of North America (Sauer 1957; Ward et al. 2013). 

This plant is in the Amaranthaceae family in the order Centrospermae, a group that contains 

anthocyanin pigments (Steckel 2007). Palmer amaranth has been expanding into the Midwest 

and farmers are concerned that this weed will have the same damaging effect on their fields as 

Palmer amaranth has released upon the South. Studies conducted by Davis et al. (2015) 
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investigated the importance of genetics and environmental factors that would help determine the 

extent of damage Palmer amaranth would inflict upon the Midwest. McDonald et al. (2009) 

hypothesized that increased temperatures would expand the damage niche of southern-

originating weed species northward. This temperature increase would be beneficial for Palmer 

amaranth growing conditions because of the favorable response of Palmer amaranth to increased 

temperature (Ehleringer, 1983; Guo and Al-Khatib, 2003). The damage niche for Palmer 

amaranth is not reliant on the genotype of this weed, but rather the growing environment in 

which the seed is dispersed (Davis et al. 2015). 

Palmer amaranth can be identified by a glabrous stem with petioles that are longer than the 

ovate leaf blade. The leaves are alternate and sometimes have a chevron (Ward et al. 2013). 

Palmer amaranth is dioecious species with male plants producing the pollen and the female 

plants producing the seeds. Both inflorescences can grow up to a meter in length. The female 

inflorescence is distinguishable from the male inflorescence due to stiff bracts that are sharp to 

the touch. The females produce a prolific amount of seed, often ranging between 200,000–

600,000 seeds when the plant emerges from March to June (Ward et al. 2013). The utricle in 1.5 

to 2 mm long with seed 1 to 1.25 mm in diameter with dark red to black coloring (Sauer 1955; 

Ward et al. 2013). Location on the inflorescence influences when seed matures, and seeds that 

mature on the top and middle third of the inflorescence have a 67–78% greater germination rate 

(Jha et al. 2010). Palmer amaranth is able to overwhelm a field because of multiple emergence 

events that are produced within a growing season (Sauer 1957). The seeds germinate throughout 

the growing season, which necessitates multiple herbicides application times throughout the year 

if there is no lasting soil activity from the herbicide (Ward et al).  
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Germination is stimulated by natural or red light while far-red light inhibits germination (Jha 

et al. 2010) which suggests when seed is under crop canopy rather than bare ground, germination 

will be decreased due to less light penetration. Germination occurs over a wide range of 

temperatures and the increase of temperature also leads to an increase in germination, with the 

peak occurring when the temperature was approximately 30°C (Steckel et al. 2004). Research 

indicates a smaller window of opportunity to control Palmer amaranth with herbicides before the 

plant is too large during periods of higher temperatures (Powell 2014).  

Palmer amaranth is a C4 species with a photosynthetic rate around 80 μmol m -2 s -1 and rapid 

biomass accumulation (Ehleringer 1983). Palmer amaranth utilizes this high photosynthetic rate 

via diaheliotropic movement of the leaves (Ehleringer, 1983). This weed has been recorded to be 

10 centimeters tall two weeks after planting and 24 centimeters at four weeks (Sellers et al. 

2003). Palmer amaranth can grow 0.18–0.21 centimeters per growing degree day (GDD), which 

can quickly begin to outcompete the crop in the field (Horak and Loughin, 2000). Palmer 

amaranth competition with soybean can cause a 17–63% reduction in yield per 0.33–10 plants 

per m-1 (Klingaman and Oliver 1994) or 79% yield reduction at 8 plants per m-1 (Bensch 2003) 

when this weed emerges shortly after soybeans. In corn, Palmer amaranth reduced yield 11–91% 

when this weed emerged with corn at a density of 0.5 to 8 plants m-1, while emergence after corn 

still resulted in 7 to 35% yield reduction at the same plant densities (Massinga et al. 2001). 

Due to Palmer amaranth’s ability of germinate multiple times throughout the season, pre 

emergence herbicides are an effective option for reducing early season weed populations. 

Herbicide applications of a very-long-chain fatty acid (VLCFA) inhibitor has been shown to 

reduce sicklepod fresh biomass when compared to untreated controls (Adcock and Banks 1991).  
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Preemergence along with postemergence herbicides are recommended for maximum weed 

control and crop yield protection (Loux et al. 2016). Soil-applied herbicides have been shown to 

reduce weed density and dry biomass more than non-treated controls (Hager et al. 2001). 

Without the addition of a PRE herbicide, corn yield has been reported to decrease when POST 

herbicide application was delayed, while yield was unaffected by POST timing when PRE 

herbicides were included (Parker et al. 2006). Previous research reported flumioxazin and 

formesafen to control Palmer amaranth at 20 DAT ranging from 74–100% depending on 

environment (Whitaker et al. 2011) Palmer amaranth control in sandy soils ranged from 50–97% 

at 28 DAT when metolachlor (1.7 kg ha) was applied preemergence (Keeling and Abernathy 

1989). Predicted control of Palmer amaranth was reported higher at 96 and 90% for 

pyroxasulfone (179 g ai ha-1) and isoxaflutole (105 g ai ha-1) and lower at 82 and 69% for S-

metolachlor (1068 g ai ha-1) and metribuzin (420 g ai ha-1) (Meyers et al. 2016). The objective of 

this study was to evaluate residual control of Palmer amaranth by site-of-action herbicides 

commonly applied preemergence in Illinois cropping systems. Palmer amaranth has been 

reported to be resistant to 6 herbicide sites-of-action (Heap 2017), but only one of these site-of-

action herbicides is a PRE herbicide (microtubule inhibitors) (Gosset et al. 1992). 

6.3 Materials and Methods 

6.3.1 Plant propagation and experimental design under greenhouse conditions  

Palmer amaranth seed inflorescences were collected in fall 2015. Seeds were removed 

from the inflorescence and treated similar to the methods of Kępczyński, and Sznigir (2013) to 

improve germination. The ethylene dilution of was applied at a volume of 9 mL in each petri 

dishes. Petri dishes were filled with 50 Palmer amaranth seeds and three petri papers, and then 

sealed and stored at 4°C for four weeks.  
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 Greenhouse experiments followed the procedure described by Hausman (2011). Plastic 

pots (720cm3) were filled to the top with growth medium (1:1:1 mixture of soil, peat, and sand, 

with a pH of 6.8 and 3.5% organic matter), tamped to create a level planting surface, and then 

soaked in water for 12 hours to ensure uniform moisture. Stratified Palmer amaranth seed were 

placed in a 5 by 5 grid and then covered with 50 ml of the same soil mixture. The top surface 

was lightly tamped down to produce and even, flat surface. Pots were watered over the top with a 

1.9 liter per minute (LPM) mister nozzle until the soil surface was moist to the touch. 

Greenhouse conditions were maintained with a 16-hour photoperiod at 28/22°C day/night 

fluctuation. 

 Preemergence herbicides representing five site-of-action groups were selected for 

evaluation and applied at the corresponding label-recommended rate (Table 1).  Herbicides were 

applied using a compresses air research sprayer3 fitted with a TeeJet1 80015 EVS nozzle 

calibrated to deliver 185 L ha-1 at 275 kPa. After the treatments were applied, rainfall was 

simulated to move the herbicide into the growth medium at a rate of 7 milliliters per pot using a 

8005 E nozzle. The treated pots were then returned to the greenhouse room and arranged in a 

randomized complete block design with four replication per treatment and the experiment was 

conducted twice. The pots were watered daily with a 1.9 LPM mister until the soil was moist to 

the touch. Germination counts were taken and the applications were visually evaluated at 7, 14, 

and 21 days after treatment (DAT).  

 6.3.2 Field design and implementation 

Fields were near Kankakee, Illinois and Urbana, Illinois in 2016. The soil at Kankakee 

was a Kankakee fine sandy loam (loamy-skeletal, mixed, superactive, mesic Typic Hapludolls) 

with a pH of 6.5 and organic matter of 2%. The Urbana soil type was a Flanagan silt loam (fine, 
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smectitic, mesic Aquic Argiudolls) with a pH of 6.5 and an organic content of 4.9%. Soybean 

planting was simulated on bare ground trials began on May 26th in 2016 for the Kankakee field 

location and the Champaign location was planted on June 8th in 2016. While all plots were 3 

meters wide, plots in Kankakee were 7.6 meters in length and Urbana plots were 10 meters in 

length. Quadrats in Kankakee were ½ m2, while a 1 x ½ m2 was used in Urbana. Differences in 

quadrat size was due to a much higher Palmer amaranth density at Kankakee compared with 

Urbana. 

Tillage was implemented each spring to remove any existing vegetation and prepare the 

seedbed for planting. Treatments were structured in a randomized complete block design with 

three replications. All herbicides were applied with a backpack CO2 sprayer equipped with 

TeeJet1 AI110025 spray tips spaced 51 cm on a 3 m spray boom. Spray volume was 187 L ha-1 

and pressure was 276 kPa. Environmental conditions were recorded at each herbicide 

application. Selection of herbicides rates and additives were chosen based on label 

recommendations and current Illinois crop practices. 

6.3.3 Statistical Analysis 

Due to Palmer amaranth population variability between fields, results were analyzed 

separately by location. Data were analyzed in SAS2 9.4 (SAS Institute, Cary, NC 27513, USA) 

using the GLM procedure. Fixed effects were Palmer amaranth population and herbicide 

treatment. Random effects were year and block within year (field only), or experimental run 

(greenhouse only). Means of Palmer amaranth biomass were separated using Fischer’s Protected 

LSD test at (P≤0.05).  
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6.4 Results and Discussion 

6.4.1 Preemergence herbicide efficacy on Palmer amaranth under greenhouse conditions 

Non-necrotic Palmer amaranth plants were observed in both ALS and HPPD herbicide 

treatments at the end of the 21 DAT. The number of Palmer amaranth that was present at 21 

DAT in the untreated control was higher than all the other herbicide treatments (Table 6.1). 

Counts of emerged Palmer amaranth in rimsulfuron and imazethapyr treatments was lower than 

the amount in non-treated pots, but also greater than other herbicide treatments. When comparing 

21 DAT biomass, rimsulfuron and imazethapyr treatments were similar to the non-treated (Table 

6.1).  

6.4.2 Preemergence herbicide efficacy on Palmer amaranth under field conditions 

Lack of weed control was noted in Kankakee after 14 DAT, causing control ratings to be 

undiscernible by 28 DAT. Control of Palmer amaranth with PRE herbicides has been shown to 

be negatively correlated with weeks after treatment (Meyer et al. 2016). Only atrazine and 

mesotrione had biomass lower than non-treated biomass in Kankakee (Table 6.2). Palmer 

amaranth control has been reported as achievable in sandy soils, however, postemergence 

treatments will be required (Keeling and Abernathy 1989).  

 Urbana Palmer amaranth pressure was noted as low in the first block of the experiment. 

Urbana 21 DAT data showed non-treated biomass higher than all other treatments, except for 

rimsulfuron.  

Greenhouse and field experiments in Urbana coincided with findings by Whitaker (2011) 

and Everman (2009) that PPO-inhibiting herbicides provide greater control of Palmer amaranth 

compared to other PRE treatments. PRE herbicides are important in an increasingly post 

emergence herbicide resistant weed species. More research is needed to validate these findings as 

Palmer amaranth weed pressure was inconsistent in Urbana during the summer of 2016.  
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6.5 Source of Materials 

1TeeJet 80025EVS. TeeJet Technologies, P.O. Box 7900, Wheaton, IL 60187.  

2Statistical Analysis Software (SAS) 9.4. SAS Institute, Inc., 100 SAS Campus Drive, Cary, NC 

27513.  

3 Generation III Research Sprayer. DeVries Manufacturing, 28081 870th Ave., Hollandale, MN 

56045. 
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6.6 Tables  

Table 6.1. Mean separation of Palmer amaranth biomass 21 days after treatment in greenhouse 

experiment. 

     

 herbicide rate biomassa plantb 

  g ha-1 (g)  

 control 0 0.25 a 7.88 a 

 rimsulfuron 35 0.29 a 5.38 b 

 imazethapyr 71 0.20 a 5.13 b 

 isoxaflutole 105 0.03 b 1.00 c 

 mesotrione 210 0.33 b 0.75 c 

 metribuzin 420 0.001 b 0.13 c 

 s-metolachlor 1423 0.001 b 0.13 c 

 flumioxazin 108 0 b 0 c 

 atrazine 2242 0 b 0 c 

 sulfentrazone 280 0 b 0 c 

 pyroxasulfone 178 0 b 0 c 

     

a biomass with the same letter are not significantly different 

b Palmer amaranth counts with the same letter are not significantly different 
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Table 6.2. Mean separation of Palmer amaranth biomass 56 days after treatment in 2016 field 

locations in Kankakee and Urbana. 

    

  Kankakee Urbana 

herbicide rate biomassa 

 g ai ha-1 (g) 

    

control 0 235 a 300 a 

acetochlor 1715 168.3 abc 61.5 c 

atrazine 2242 121.7 c 29.8 c 

flumioxazin 108 176.7 abc 5.5 c 

imazethapyr 71 173.3 abc 128.8 bc 

isoxaflutole 105 195 abc 90.6 bc 

mesotrione 210 126.7 bc 14 c 

metribuzin 420 156.7 abc 2.7 c 

pyroxasulfone 178 196.7 abc 2.5 c 

rimsulfuron 35 148.3 abc 253.3 ab 

s-metolachlor 1423 230 ab 20.5 c 

sulfentrazone 108 200 abc 74.5 c 
    

a biomass with the same letter are not significantly different. 
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