
c© 2017 Andrey Zaytsev

FASTER APPRENTICESHIP LEARNING
THROUGH INVERSE OPTIMAL CONTROL

BY

ANDREY ZAYTSEV

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Adviser:

Assistant Professor Jian Peng

Abstract

One of the fundamental problems of artificial intelligence is learning how to be-

have optimally. With applications ranging from self-driving cars to medical devices,

this task is vital to modern society. There are two complementary problems in this

area – reinforcement learning and inverse reinforcement learning. While reinforce-

ment learning tries to find an optimal strategy in a given environment with known

rewards for each action, inverse reinforcement learning or inverse optimal control

seeks to recover rewards associated with actions given the environment and an op-

timal policy. Typically, apprenticeship learning is approached as a combination of

these two techniques. This is an iterative process – at each step inverse reinforce-

ment learning is applied first to get the rewards, followed by reinforcement learning

to produce a guess for an optimal policy. Each guess is used in the further iterations

to come up with a more accurate estimate of the reward function. While this works

for problems with a small number of discreet states, the approach scales poorly. In

order to mitigate those limitations, this research proposes a robust approach based on

recent advances in the field of deep learning. Using the matrix formulation of inverse

reinforcement learning, a reward function and an optimal policy can be recovered

without having to iteratively optimize both. The approach scales well for problems

with very large and continuous state spaces such as autonomous vehicle navigation.

An evaluation performed using OpenAI RLLab suggests that this method is robust

and ready to be adopted for solving problems both in research and various indus-

tries.

ii

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 Background . 3

Chapter 3 Related Work . 5
3.1 Max-margin Formulation . 5
3.2 Maximum Entropy Formulation . 6
3.3 Deep Q-Learning . 8

Chapter 4 Method and Implementation 9
4.1 Reward Shaping . 9
4.2 Model . 10
4.3 Implementation . 13

Chapter 5 Evaluation . 15
5.1 Approach . 15
5.2 Reinforcement Learning using DDPG 18
5.3 Results and Discussion . 19

Chapter 6 Conclusion . 21

Chapter 7 Future Work . 22

References . 23

iii

Chapter 1

Introduction

The problem of learning to perform various tasks in an optimal way is one of

the fundamentals of the field of artificial intelligence. While this problem appears in

different subfields of machine learning such as supervised and unsupervised learning,

it is the central task of reinforcement and apprenticeship learning.

There is a multitude of applications related to optimal control. Autonomous

vehicles require selecting an optimal direction and speed of driving given various

sensor and location inputs. Robots need to continuously find optimal torques for

their motors in order to walk or navigate through environments full of obstacles.

Strategies for games such as Go and Poker involve finding an optimal move given

the current state of the board. All these use cases make the problem a vital one.

There are three main problems related to optimal control: reinforcement learning,

inverse reinforcement learning, and apprenticeship learning. The first, reinforcement

learning, assumes that there is an environment with known states, actions, and re-

wards. One example would be a game of Pacman, where states are simply the states

of the board, actions are directions of travel of Pacman, and rewards are the game

scores in the upper right-hand corner. Therefore, the problem of optimal control

(another name often used for reinforcement learning) is to find a formalized set of

behaviors, known as a policy, that maximizes the total obtained reward. The sec-

ond problem, inverse reinforcement learning (or inverse optimal control) assumes

that there is an optimal policy and an environment with known states and actions

but without the reward function. The goal is to recover the rewards of the orig-

inal environment such that the optimal policy gets the highest total reward of all

other possible policies. The third problem, apprenticeship learning, seeks to mimic a

given optimal policy in an environment without rewards. The goal of apprenticeship

1

learning is to come up with a model that represents a policy performing as optimally

and close as possible to the given policy in the original environment. Due to the

nature of the problem, it is often approached as a combination of inverse reinforce-

ment learning and reinforcement learning. First, the environment is fully modeled

by recovering the original reward function. Next, an optimal policy is found in the

resulting environment.

This research focuses on apprenticeship learning. Traditionally, in order to solve

the apprenticeship learning problem, an iterative approach is taken [Abbeel and Ng,

2004]. At the beginning of each step a reward function is found that separates the

given optimal policy from all the other policies we currently have in our collection.

Next, this reward function is used to find an optimal policy in the resulting envi-

ronment. This policy is added to the current collection of policies to be used in

further steps. The process terminates once the reward function and the derived pol-

icy converge to the optimality. While this process is fairly intuitive and effective for

problems with small spaces of discreet states, it does not scale well. Applications

such as self-driving cars have vast continuous state spaces, which make it infeasible

to run this approach with today’s computational capabilities.

While the amount of data and state spaces required to represent problems grew

much faster than computational capabilities, the field of machine learning saw a

significant breakthrough related to the scale of data in the form of deep neural

networks [Krizhevsky et al., 2012]. Such neural networks are capable of representing

complex nonlinear multidimensional functions, which allows them to solve tasks such

as image recognition [He et al., 2016] with above human performance. Deep neural

networks can be integrated with reinforcement learning in the form of deep Q learning

[Mnih et al., 2013], which makes it possible to train a model that directly produces

an optimal policy.

In order to make apprenticeship learning robust and scalable, this research em-

ploys deep neural networks alongside a novel matrix formulation of inverse reinforce-

ment learning in order to quickly recover both the reward function and a model of

an optimal policy. This approach generalizes to infinite continuous state and action

spaces, and can be used with the previously mentioned applications.

2

Chapter 2

Background

While the applications of optimal control are very diverse, there is one widely rec-

ognized formalization called the Markov Decision Process (MDP) that is used across

reinforcement, inverse reinforcement [Ng et al., 2000], and apprenticeship learning

[Abbeel and Ng, 2004]. Typically, it is a model that consists of state space S, action

space A, reward function R, transition model T , discount factor γ and initial state

distribution D. T , the transition model is a set Psa, which given a state and an

action yields a probability distribution over the next states the system will end up

in. R, the reward function maps a state (or a state and an action depending on the

formulation) to a reward, which is a real number. This represents the reinforcement

the agent receives after ending up in a particular state and/or picking a particular

action. γ, the discount factor, ensures that the rewards obtained now are more valu-

able than the rewards obtained in the future. If the instantaneous reward is r, then

after n steps, the reward will be γnr.

Given this model, we can define a policy π as a mapping of S 7→ A. That is,

given a state, the policy produces an action that it deems to be optimal. There are

two functions related to the notion of a policy. The first one is the value function:

V π(s1) = E[R(s1) + γR(s2) + . . . |π] (2.1)

This represents the total discounted reward the policy gets by starting in a given

state. Similarly, the Q-function is:

Qπ(s, a) = R(s) + γEs′∼Psa(.)[V
π(s′)] (2.2)

This represents the total discounted reward the policy gets by taking a certain

action in a given state.

3

Using these definitions, we can now formulate what it means for a policy to be

optimal. The optimal value function is V ∗ = sup
π
V π(s). A policy π∗ is considered

optimal when for all s, V π(s) = V ∗π(s). Thus, the value function at each state is

optimal for such a policy. Finding an optimal policy is the main task of reinforcement

learning. In contrast, inverse reinforcement learning finds R given an optimal policy

and an MDP without the reward function. Similarly, apprenticeship learning seeks

to find parameters θ for a policy πθ, such that for all S, Vπθ(s) = Vπ∗(s) given a set

of state-action pairs (s, a) for an optimal policy π∗.

4

Chapter 3

Related Work

There has been a substantial amount of research focusing on apprenticeship learn-

ing and related problems.

3.1 Max-margin Formulation

Apprenticeship learning is usually solved through inverse reinforcement learning.

This approach was established by one of the foundational studies in the area [Abbeel

and Ng, 2004]. The algorithm is based on the max-margin formulation of the prob-

lem. The target reward function is represented as a linear combination of the feature

mapping φ and the optimal coefficients w∗, which are unknown:

R∗ = w∗Tφ (3.1)

In addition, we assume that we have some trajectories sampled from the expert

policy πE. This gives us the expert’s feature expectations µE = µ(πE).

The algorithm is iterative and maintains a current collection of previously found

policies π(j). At the beginning of each step, it gets the current policy’s feature ex-

pectations µ(π(i)). Following that, it uses the max-margin formulation that requires

the given expert policy to be the only optimal one and the rest of the policies in the

collection to be separated from the expert one with the largest margin possible:

t(i) = max
w:||w||2≤1

min
j∈{0..(i−1)}

wT (µE − µ(j)) (3.2)

The w at which this maximum is achieved gives us the linear features w(i) of

the reward function R(i) – the estimate of our target function R∗. In addition,

5

the maximum itself, t(i), is used as a termination or convergence criterion for the

algorithm. If its value is less than some predefined ε, the algorithm terminates, and

R(i) is declared to be the target reward function. This maximum margin problem is

similar to that of a support vector machine (SVM). Thus, solving for t(i) and w(i)

can be done using any SVM-solver.

In the event t(i) is still greater than ε, the obtained reward function is used to find

an optimal policy π(i), which is added to the collection of obtained policies. This

is done using any robust reinforcement learning algorithm such as REINFORCE

[Williams, 1988]. This is the end of the step, and the method continues onto another

iteration.

This method is fairly intuitive, since at each step it tries to find the reward

function that separates optimal policy from non-optimal ones as much as possible.

However, this algorithm does not scale well to be applicable to modern day complex

multidimensional problems. In addition to the assumption that the reward function

can be expressed as a linear combination of some predefined features, there is a need

to do reinforcement learning repeatedly.

3.2 Maximum Entropy Formulation

The max-margin formulation is only one of the many approaches to inverse re-

inforcement learning. Some of the other approaches are based on the maximum

entropy formulation of inverse optimal control [Ziebart et al., 2008]. This model as-

sumes that the probability of user preference for a given trajectory is proportional to

the exponential of the reward along that path. In other words, the following holds:

P (ς|r) ∝ exp{
∑
s,a∈ς

rs,a} (3.3)

In this formula, ς represents an expert demonstration, r represents the reward

obtained on that demonstration. This formulation allows the model to handle expert

sub-optimality as well as stochasticity by looking at a distribution.

There were developed some approaches using this formulation in combination

6

Figure 3.1: Pseudocode for maximum entropy deep IRL [Wulfmeier et al., 2015]

with deep neural networks [Wulfmeier et al., 2015]. This approach uses the context

of Bayesian inference to solve the problem using MAP estimation, by maximizing

the probability to observe expert demonstrations under current parameters. Based

on that, the gradients are calculated and back propagated through the deep neural

network that constitutes a base of the model. A pseudocode of this algorithm is

illustrated on figure 3.1.

Despite taking a different approach to the problem of inverse reinforcement learn-

ing, the maximum entropy based formulation still suffers from the drawback of having

to iteratively run reinforcement learning algorithms. As mentioned earlier, this limits

the scalability of an IRL algorithm, which is vital in modern complex multidimen-

sional research problems.

7

Figure 3.2: Pseudocode for deep Q-learning [Mnih et al., 2013]

3.3 Deep Q-Learning

In addition to various improvements to inverse optimal control algorithms, re-

inforcement learning has also been an active area of research. With the emergence

of deep neural networks, the state-of-the-art reinforcement learning algorithms are

largely based on deep Q-learning [Mnih et al., 2013]. This method employs deep

convolutional neural networks to model the Q-function of the underlying MDP. The

pseudocode of the approach is shown on figure 3.2. It takes advantage of a technique

called experience replay by storing agent’s experiences at each time-step pooled over

many episodes into replay memory.

By using this technique, which is based on deep convolutional neural networks,

it is possible to successfully perform reinforcement learning on complex multidimen-

sional problems such as playing Atari games. While this technique improves the ro-

bustness of reinforcement, there is still a significant cost associated with iteratively

running RL as a part of apprenticeship learning or inverse optimal control. Our

method takes advantage of the breakthroughs in the area of deep neural networks,

and we use a variation of deep Q-learning in the evaluation part of this thesis.

8

Chapter 4

Method and Implementation

We propose a method that takes advantage of the recent advances in deep learning

by employing neural networks to model both the rewards function and the obtained

optimal policy. In this section, we first describe the concept of reward shaping, which

is heavily used by our method. We then describe our apprenticeship learning model,

followed by a discussion of our implementation of the approach.

4.1 Reward Shaping

Certain reward functions allow a greedy policy, which chooses the action asso-

ciated with the highest immediate reward, to be optimal. If one can transform a

given reward function into this form without changing the value and Q-functions,

the problem of reinforcement learning will be solved by a simple greedy policy with-

out the need for expensive computation. An example of this is illustrated in figure

4.1.

This idea lies at the heart of reward shaping [Ng et al., 1999]. It turns out that it

is always possible to transform the rewards function in an MDP without changing the

optimal value and Q-functions. Specifically, the preferred transformation is such that

the rewards associated with optimal actions are zero, and the rewards for suboptimal

actions are negative.

The method modifies the original rewards function by adding a function that

takes following parameters: s, the current state, a, the current action, and s′, the

next state. This function is the following:

F (s, a, s′) = γV ∗(s′)− V ∗(s) (4.1)

9

Figure 4.1: Example of reward shaping allowing for greedy policies to be optimal
[Ng et al., 1999]

The new reward function is then the following:

Rshaped(s, a) = R(s, a) + F (s, a, s′) (4.2)

The optimal value function is necessary to do reward shaping. Thus, reward

shaping does not help us solve the problem of reinforcement learning since it de-

pends on having a solution to it – the optimal value function is sufficient by itself to

construct an optimal policy without additional computation. However, if an algo-

rithm for inverse reinforcement learning could recover a shaped reward function, the

problem of apprenticeship learning would be solved as well. We use this observation

in our method.

4.2 Model

Employing the concept of reward shaping, the problems of inverse optimal control

and apprenticeship learning becomes simply the task of finding the shaped reward

function for a given policy and environment. All values of the shaped reward func-

10

Figure 4.2: Diagram of the final modular neural network

tion are less than or equal to zero. This is one of the necessary conditions for the

correctness of the found reward function.

Taking the above into account, it is also important to learn an optimal policy.

The task of inverse optimal control can be formulated as a maximization problem.

Thus, to include apprenticeship learning, a − fθ1(s) should be in the final product.

We therefore develop the following equation to learn the shaped rewards function

and the optimal policy simultaneously:

R(s, a) = −(a− fθ1(s))T (Lθ2(s)Lθ2(s)
T + I)(a− fθ1(s)) (4.3)

In this equation, R(s, a) represents the resulting shaped reward function and

fθ1(s) is the learned optimal policy, which is represented by a deep neural network.

The other parametrized variable represented by a deep neural network Lθ2(s) is a

matrix that is directly related to representing the final reward function.

11

Figure 4.3: Code snippet showing the implementation of the model using Keras

Note, that Lθ2(s)Lθ2(s)
T +I is a positive-definite matrix. This allows us to ensure

that the resulting reward function satisfies one of the criteria to be shaped by always

being less than or equal to zero.

The term a− fθ1(s) becomes zero when a given action is optimal, which in turn,

gives the overall reward of zero. When an action is suboptimal according to the

learned policy, the overall result is strictly negative since we are multiplying by a

positive definite matrix and inverting the sign.

The described model is one modular deep neural network with various layers

corresponding to part of the equation. Figure 4.2 illustrates the layers of the resulting

neural network. Note, that in addition to the main output, which is the rewards

function for IRL, we also have an auxiliary output – an optimal policy for the task

of apprenticeship learning.

In order to train the model, the following optimization is implemented:

R∗ = max
θ1,θ2

R(s, a) (4.4)

12

Figure 4.4: Code snippet showing a TensorFlow implementation of the final layer

Note, that while there are separate coefficients θ1 and θ2 for parts of the model,

the overall optimization is completed via back propagation through all the layers of

the final model, and thus does not require any special optimization methods.

4.3 Implementation

In order to implement our proposed model, we chose to use a Python deep learning

framework called Keras. This cross-platform library is compatible both with Theano

and TensorFlow, allowing it to take advantage of the massive scalability potential

offered by those platforms. In order to quickly train a deep neural network, Theano

and TensorFlow use GPUs to massively parallelize the computation. That illustrates

that it is equally easy to implement our model both for small toy examples and for

complex multidimensional research problems such as autonomous vehicle navigation.

The main part of our code representing the model is shown on figure 4.3. We

took advantage of neural network layers provided by Keras in order to achieve concise

and understandable source code. In our code, Dense layers represent fully-connected

layers, Lambda layers are used for simple operations such as multiplying the output

by −1, and the Merge layer is used for the final operation involving matrix multipli-

cation. One way to implement the final layer in TensorFlow is shown in figure 4.4.

Another advantage of Keras is that back propagation is done automatically using

13

the function associated with each layer. This further reduces the amount of code

that needs to be written for the final model to work.

14

Chapter 5

Evaluation

Our goal is that the proposed method is able to run robustly and correctly on

real tasks such as autonomous driving and playing complex games, in which a human

has not been beaten using state-of-the-art research. In order to ensure that this

is achievable, an evaluation must be done. The next three sections describe the

evaluation approach, prior research, and the results, followed by a discussion.

5.1 Approach

Current research problems such as autonomous navigation and robotic control

are complex multidimensional tasks. Obtaining meaningful results on such tasks

requires access to either special hardware [Levine et al., 2016] or a cluster with

immense computational power [Mnih et al., 2013]. In order to avoid investments

both in terms of resources and time, we took the approach of training our algorithm

to perform the simple and easily-reproducible task of Cart-Pole balancing.

Figure 5.1 illustrates the specifics of the task. There is a cart that is able to move

left and right. On top of the cart, a pole is attached using two springs. Whenever

some force is applied to the cart, it experiences acceleration, and the spring changes

position. The goal of the task is to balance the pole such that it remains at a certain

angle, usually 90 degrees, to the cart. A policy receives a reward at every timestep

that the pole is within a certain ε of the target angle.

While one way to perform an evaluation of our model is to implement the Cart-

Pole task from scratch, this is not the best approach. In addition to being prone to

errors, such an implementation is not easily reproducible by future research in this

area. In order to solve those problems, we used the state-of-the-art reinforcement

15

Figure 5.1: The Cart-Pole task illustration [Michie and Chambers, 1968]

learning benchmarking package called RLLab [Duan et al., 2016]. The package has

an implementation of the Cart-Pole task and provides an API in Python to interact

with the environment. In addition, this allows us to use our Keras implementation

of the model described in the previous section without making any modifications to

it.

After choosing the task and fine-tuning implementation specifics, we proceeded

with our evaluation using the following approach. Each of the described steps are

discussed in details below.

1. Train an optimal policy πE in the original Cart-Pole environment to be used

as the expert policy and as a benchmark

2. Sample trajectories form the expert policy πE

3. Run our implementation using those trajectories and the original environment

with rewards removed

4. Take the resulting learned policy π∗ and evaluate it in the original environment

comparing it to the benchmark πE

5. Take the resulting rewards function R∗ and use it to train an optimal policy

πR

16

6. Evaluate the learned policy πR in the original environment and compare it to

the benchmark πE

The first step of the process uses reinforcement learning in the original environ-

ment to train an optimal policy πE for the task of Cart-Pole. This is necessary in

order to have an expert policy to perform apprenticeship learning. In addition, this

policy’s average discounted reward total is used to benchmark other policies trained

in the further stages of this evaluation process.

The next step uses the expert policy πE to obtain trajectories. Both inverse

optimal control and apprenticeship learning problems take trajectories of the expert

policy as an input. Thus, it is necessary to run our policy πE and obtain sequences

in the form (s, a) representing successive states and actions.

At the beginning of the third step, we took the original environment and removed

the rewards, since both IRL and apprenticeship learning operate on MDPs without

rewards. We then used the resulting environment without rewards and the trajecto-

ries obtained in the previous step to train our model. As a result of this process, the

model gave us two outputs: the learned rewards function R∗ and the learned optimal

policy π∗. This represents a combination of the tasks of apprenticeship learning and

inverse optimal control.

After this step, we obtained two outputs of our algorithm that need to be eval-

uated. We first evaluated the resulting policy π∗ in the original environment and

compare it to πE. A similarly high average discounted reward total would signify

that the task of apprenticeship learning was completed successfully.

As the fifth step, we evaluated the recovered shaped reward function R∗. Since

we cannot directly compare it to the original R, we evaluated its potential to pro-

duce optimal policies. Thus, we trained an optimal policy πR using a reinforcement

learning algorithm on the environment R∗.

Finally, we compared the performance of the obtained policy πR to the expert

policy πE on the original environment. If πR performs just as well as πE, that

would indicate that the task of inverse reinforcement learning successfully produced

a rewards function with the same optimal policy.

17

Figure 5.2: Pseudocode for the DDPG algorithm [Lillicrap et al., 2015]

Overall, the goal of our approach was to evaluate the performance of both inverse

optimal control and apprenticeship learning tasks embedded in our method.

5.2 Reinforcement Learning using DDPG

The evaluation process, mentioned in detail in the previous sections, has multiple

instances where reinforcement learning is needed. In our implementation, we chose

to use a state-of-the-art RL method called DDPG [Lillicrap et al., 2015].

DDPG combines the actor-critic approach with deep convolutional neural net-

works and replay buffers introduced in the deep Q-learning algorithm (DQN) [Mnih

et al., 2013]. This allows it to overcome the limitations of DQN and robustly per-

form on tasks with continuous action spaces. The pseudocode for the algorithm is

illustrated on figure 5.2. We believe that due to its advantages, this state-of-the-art

18

Figure 5.3: Cartpole environment evaluation

reinforcement learning algorithm best fits our purpose to training optimal policies

on the Cart-Pole environment in this evaluation.

5.3 Results and Discussion

Figure 5.3 illustrates the results of our evaluation in the form of learning curves of

the implementation on the Cart-Pole task. The evaluation began by first training an

optimal policy in the original environment with known rewards (shown as the blue

curve). As stated before, this was done using the DDPG reinforcement learning al-

gorithm [Lillicrap et al., 2015]. This optimal policy was then used as the benchmark.

Next, we sampled 100 trajectories from our optimal policy and used those to train

our model. Each trajectory represents one complete execution of an optimal policy.

The green dotted line represents the optimal policy learned from those trajectories

using our implementation and evaluated in the original environment. In addition, we

tracked the average discounted reward of the optimal policy on the learned shaped

environment (the orange line). This was also done using DDPG and allows us to see

how close the policy gets to being optimal under the shaped rewards assumption.

Following this process, we took the optimal policy, which obtains the average dis-

19

counted reward of about zero, and transferred it into the original environment (the

red dotted line) to evaluate whether our learned environment could be used to train

optimal policies.

As can be seen on the graph, the trained policy π∗ achieves performance as high

as the expert policy πE. This indicates that the implementation of our approach

completes the task of apprenticeship learning successfully. The average discounted

reward of the optimal policy πE obtained by DDPG on the original environment

starts to fluctuate after iteration 30 (seen as the blue line on the graph). This happens

because the algorithm converged to the optimal policy, and further optimization does

not provided any added benefit. The green line representing the average discounted

return on the trained policy π∗ closely matches the level at which the return of πE

converged.

While the method produced a nearly-optimal policy in the Cart-Pole environ-

ment, the results in relation to the trained rewards function R∗ were not as definite.

The average discounted return of the optimal policy πR trained and evaluated on R∗

converged to zero, just as expected with a shaped rewards function. However, when

this policy πR was transferred to the original environment, it did not perform nearly

as well as the trained policy π∗. This implies that at this stage, the obtained rewards

function R∗ is not a solution to the inverse optimal control problem.

We believe that this result in terms of the rewards function R∗ may be caused

by the overfitting of the model or insufficient trajectory sampling. This can be

investigated in the future studies on this approach. We believe that evaluating the

rewards function on different tasks such as balancing a pendulum or driving a car in

a racing simulator will produce a conclusive result regarding the robustness of the

inverse reinforcement learning part of our method. Despite these shortcomings of

the produced rewards function, the main task of apprenticeship learning produces

robust policies with high average returns.

20

Chapter 6

Conclusion

In this thesis, we presented a novel way to perform apprenticeship learning by

simultaneously solving the task of inverse optimal control. Our evaluation of the

method demonstrated that it is capable of producing optimal policies without know-

ing the original rewards function. These policies are able to perform just as well as

those obtained by state-of-the-art reinforcement learning algorithms such as DDPG

on the full environment with known rewards.

In addition to being robust, this method is simple to implement with an immense

scalability potential. The entire system can be easily implemented using cutting-edge

machine learning libraries such as TensorFlow and Theano. The use of those libraries

and the representation of the learned policy and the learned environment as deep

neural networks allow the system to be applied to complex multidimensional tasks

such as autonomous vehicle control. While those tasks require significant investments

in computing resources and time, TensorFlow and Theano utilize GPUs in order to

parallelize the computations, giving the opportunity to solve tasks that were not

feasible in the past.

Our method is completely task-agnostic, which means it can be applied just as

easily to the problem of robotic navigation through a 3-dimensional terrain, as to

the problem of balancing a Cart-Pole. In contrast, some of the previous works in

this area made various simplifying assumptions about the environment or scaled

poorly with the complexity and dimensionality of inputs. Our approach requires

only a sample of trajectories of an optimal agent, which allows for use in continuous,

partially-observable, and infinite environments.

21

Chapter 7

Future Work

In addition to improving the generalization of the rewards function in the Cartpole

environment, there is a wide range of future research directions. The RLLab envi-

ronment includes a variety of complex tasks ranging from overcoming 2-dimensional

obstacles to a 3-dimensional model of a human walking through difficult terrain.

Evaluating our proposed method on those tasks will make it possible to see how

generalizable and robust it is.

In today’s world, one of the most pervasive areas for apprenticeship learning is

driving autonomous vehicles. Just as with the RLLab environment, our appren-

ticeship learning method can be applied to a 3D driving simulator to evaluate the

performance and applicability of it to the task of driving. We believe that the use

of deep neural networks in an efficient manner gives our method the potential to

produce high performance on this task.

Our method is completely task-agnostic, which implies that the user is in charge

of choosing an appropriate deep neural network structure. Integrating existing spe-

cialized deep neural networks trained on the inputs relevant to the given environment,

such as those for image recognition, may prove beneficial to the performance of the

overall system.

22

References

[Abbeel and Ng, 2004] Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the twenty-first international
conference on Machine learning, page 1. ACM.

[Duan et al., 2016] Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel,
P. (2016). Benchmarking deep reinforcement learning for continuous control. In
International Conference on Machine Learning, pages 1329–1338.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105.

[Levine et al., 2016] Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-
end training of deep visuomotor policies. Journal of Machine Learning Research,
17(39):1–40.

[Lillicrap et al., 2015] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. (2015). Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971.

[Michie and Chambers, 1968] Michie, D. and Chambers, R. A. (1968). Boxes: An
experiment in adaptive control. Machine intelligence, 2(2):137–152.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,
I., Wierstra, D., and Riedmiller, M. (2013). Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602.

[Ng et al., 1999] Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance
under reward transformations: Theory and application to reward shaping. In
ICML, volume 99, pages 278–287.

23

[Ng et al., 2000] Ng, A. Y., Russell, S. J., et al. (2000). Algorithms for inverse
reinforcement learning. In Icml, pages 663–670.

[Williams, 1988] Williams, R. J. (1988). On the use of backpropagation in associative
reinforcement learning. In Proceedings of the IEEE International Conference on
Neural Networks, volume 1, pages 263–270. San Diego, CA.

[Wulfmeier et al., 2015] Wulfmeier, M., Ondruska, P., and Posner, I. (2015).
Maximum entropy deep inverse reinforcement learning. arXiv preprint
arXiv:1507.04888.

[Ziebart et al., 2008] Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
(2008). Maximum entropy inverse reinforcement learning. In AAAI, volume 8,
pages 1433–1438. Chicago, IL, USA.

24

