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Abstract

Recommendation is a challenging but important task which has applications in nearly every sector of

industry as well as in academia. There are a wide variety of approaches to the recommendation problem,

with network-based techniques garnering increasing interest and study in recent years. However, most of

these studies only explore the problem in the context of a single relationship between entities, such as a

following relationship in a social network like Twitter. Such approaches ignore the complex environment

in which most recommendation tasks exist in favor of simplifying the problem. The complexity of human

decision making necessitates approaches which can utilize the heterogeneous environments in which the

recommendation task is set rather than reducing them to single relationship.

In this work, we explore the problem of entity recommendation without such a simplification, instead

we utilize heterogeneous information networks to capture the complexity of the behaviors for which we are

seeking to make recommendations. Our proposed approach captures the different behaviors of individuals

by examining their heterogeneous relationships in the network and as a result can provide high-quality

personalized recommendations from implicit feedback represented in heterogeneous information networks.

We begin by introducing meta-path-based latent features, which capture the connectivity of entities in the

network along different paths, giving us a foundation which explicitly accounts for the heterogeneous nature

of the task. Upon this foundation we build a global recommendation model using a ranking optimization

technique known as Bayesian Personalized Ranking. We extend this global model into a personalized model,

building a model which can capture the differences present in the network that describe the preferences of

different users. Finally, empirical studies show that our techniques are more effective than several popular

and state-of-the-art entity recommendations techniques.
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Chapter 1

Introduction

As the world becomes more connected and services we increasingly move online, users are faced with a

problem: there are too many choices available in nearly every facet of their lives. Many methods have been

proposed for enabling users to filter and discover information that is both interesting and useful for their

particular needs. Perhaps the most important of these filtering and discovery methods is entity recommen-

dation, due to its effectiveness and widespread adoption. The effectiveness of this group of techniques is

largely thanks to the abundance of user feedback data, both implicit interaction data and explicit rating

data. In contrast to early recommendation techniques which only considered user feedback, more recent

hybrid recommender systems combine both user feedback and additional information about users or items

to achieve better recommendation results in certain scenarios [6, 21].

Given the data-rich space in which most modern applications for recommendation exist, additional con-

textual information about the users and entities being recommended can be exploited to improve recom-

mendation performance. For example, it may be desirable to use a recommendation technique which can

leverage user demographic information, product details, or location data about online content such as blog

posts. The entity recommendation problem tends to exist in an environment that can be expressed as a

heterogeneous information network (HIN) containing different types of entities and a variety of relation-

ships between them. A concrete example for the movie recommendation problem is given in Figure 1.1.

For a classical recommendation technique, only user and movie entities would be considered, and the only

relationship used would be the user-movie relationship. However, even in this simple example we can see

that there is an abundance of other data in the form of other entity types and other relationships. Entities

such as directors, actors, and genre can be linked to movies with relationships which express their role in

the movie, e.g., directed or acted-in. This additional information can potentially be leveraged by a hybrid

recommender system to provide better recommendations.

Previous studies have found that utilizing additional user or item relationship information can lead to

higher quality recommender systems. Our technique follows the hybrid recommender system model with

key differences. While most previous link-based hybrid approaches have only leveraged a single type of

relationship, e.g., friend relationship [20], trust relationship [11], or user membership [32], we propose to
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Figure 1.1: An example of a heterogeneous information network which may be used for movie recommen-
dation. Users are linked by a social network (dashed lines), their implicit feedback over movies is captured
in the relationship depicted between the users and movies, and different entities related to each movie are
depicted on the right. The other entities in this network include actors, directors, and tags.

study the problem in the context of heterogeneous information networks and develop a technique which can

use the diverse data available to achieve superior recommendation performance. We also improve upon the

personalization approach taken in previous studies [30, 31], which apply the same model to all users when

recommending items and rely on the user feedback data to achieve personalization. While such an approach

may work in simple cases, it is not powerful enough to fully capture user interests and preferences and may

lead to undesirable recommendations. For example, two users who watched the same movie may have done

so for entirely different reasons. One may have watched it because they are a fan of the genre and were

interested in the story, whereas the other may have watched it due to recommendations from their friends.

If we simply apply the same model to both users without accounting for this difference, the recommendation

results may only satisfy the information discovery needs of users which fit into the model we have chosen.

We propose other personalization approaches which more closely model user preference and can capture

different interests and preferences across different users.

In this work, we propose a novel entity recommendation technique which exploits the rich data available in

heterogeneous information networks. Our technique relies on the combination of implicit user feedback and a

variety of other entities and relationships between them to produce entity recommendations. Personalization

is achieved through both the use of user implicit feedback and building personalized models for different
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users in order to capture their diverse interests and preferences.

At a high level, we take advantage of the heterogeneous information network and the diverse data therein

by diffusing the observed user feedback along different meta-paths representing different preferences. This

results in a set of possible recommendation candidates which are related to the preference represented to

the meta-path used to generate them. We apply matrix factorization techniques to these diffused versions

of the user feedback, resulting in user and entity latent representations which we can use as the foundation

of the recommender system. We first combine these latent representations to learn a global model. To

further personalize the model, we use the latent features to build different models for different users, thereby

capturing the diverse preferences that users express. To estimate each model we utilize a Bayesian ranking

optimization technique [22]. We perform empirical studies in two real-world datasets, IMDb-MovieLens-100k

and Yelp, which show that the proposed approaches outperform several popular and state-of-the-art implicit

feedback recommender systems.

The remainder of this thesis is organized as follows. The related work is discussed in more detail in

Chapter 2. Requisite background and preliminaries are introduced in Chapter 3. Our methodology, including

both the global and personalized techniques, is discussed in Chapter 4. Our experiments and analysis are

presented in Chapter 5, and finally conclude in Chapter 6.
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Chapter 2

Related Work

2.1 Collaborative Filtering Based Hybrid Recommender Systems

Collaborative filtering is one of the most widely used techniques for recommendation and has been studied

at length from many angles [24, 9]. Matrix factorization based approaches [23, 15] tend to be favored due

to their strong performance [16].

Recently, research has focused on the use of extra information in addition to the explicit or implicit user

feedback as a way to combat data sparsity and improve performance. Several works involve either entity or

user information into their frameworks which is sometimes referred to as content-based collaborative filtering

[21, 6, 1].

Other techniques aim to solve the problem using a link-based approach. As this approach has gained

in popularity, there have been works leveraging different social relationships in social networks such as

friendship [20, 8], trust [19, 11], and group membership [32]. The end goal is to improve performance by

exploring a user’s similar neighbors from these aspects. One study [20] suggests the use of graph Laplacian

regularization to leverage entity similarity along defined meta-paths which can capture different semantic

relationships. While these approaches focus on learning from one or more homogeneous networks, our work

explores the use of heterogeneous information networks which are richer and contain many more semantically

meaningful relationships. Through their use we introduce a framework for collaborative filtering which not

only has the ability to exploit an immense amount of context but also allows for further personalization.

With regard to the user feedback data being consumed, most previous work focused on explicit user

feedback such as item ratings on a predefined rating scale. However, this data is difficult to collect, so

implicit feedback approaches for which the data is much easier to collect have been receiving more attention

recently [10, 22].
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2.2 Information Network Analysis

Heterogeneous information networks, those which are made up of multiple types of entities and relation-

ships, are flexible enough to describe the complex world in which we live, similar to knowledge graphs. In

both industry and academia, the mining and analysis of information networks has gained widespread atten-

tion [28]. Their heterogeneity and ability to represent complex relationships makes them a perfect candidate

for modeling the real world. Studies have focused on many classical data mining techniques for heteroge-

neous information networks, such as clustering [26, 27], classification [13], and link prediction [17, 29]. The

exploration of entity similarity measures in these networks has also been studied [4, 12, 25]. The use of

path-based similarity measures, which are flexible enough to meet the demands of any application and can

capture complex and semantically meaningful relationships has been shown to be effective [18, 25]. These

works also led to user-guided approaches to common problems like clustering [26].
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Chapter 3

Background and Preliminaries

This chapter will cover the requisite background knowledge needed to understand our technique, as well

as introducing the problem definition and other preliminaries.

3.1 Heterogeneous Information Networks

We define information networks in the following way, which follows [25],

Definition 3.1 (Information Network). An information network is defined as a directed graph G = (V,E)

with an entity type mapping function φ : V → A and a link type mapping function ψ : E → R. Each entity

v ∈ V belongs to an entity type φ(v) ∈ A, and each link l ∈ E belongs to a relation type ψ(l) ∈ R.

For an information network I, if |A| > 1 or |R| > 1 then we refer to the network as a heterogeneous

information network (HIN). In order to remain consistent with previous works on recommendation, we will

refer to the entities being recommended as items.

As a way to abstract HINs, we represent them in an abstract graph where the entity types are nodes and

they are connected by the relations present in the network. This abstract graph, also known as a network

schema, is similar to entity-relation diagrams used to represent relational databases. We will denote such

network schemas as GS = (A,R). Examples of simple network schemas can be found in Figure 5.3.
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(b) Yelp Network

Figure 3.1: Example network schemas for two possible heterogeneous information networks.
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3.2 Implicit User Feedback

Implicit feedback from users is represented in a binary matrix R ∈ Rm×n, where the m users are the

rows and the n columns are the items over which the implicit feedback is being collected. The values in the

matrix R can be described as follows:

Rij =


1, if ui interacted with ej

0, otherwise.

(3.1)

Importantly, the value 1 in R represents an interaction between a user and an entity, rather than an

explicit piece of feedback from the user. For example, this could mean a user clicked on a link in a search

engine, watched a movie on an online service such as Netflix, or browsed a page for a particular restaurant

on Yelp. A value of 1 in R does not necessarily mean that a user liked the entity with which they interacted.

Indeed, it is not uncommon to watch a movie which you find interesting, only to discover that you disliked

it. Along the same lines, a value of 0 in R does not mean that a user dislikes a particular entity. Rather,

the 0 values in R are a mixture of three types of relationships: entities which the user certainly dislikes and

thus has chosen not to interact with, entities which the user is uninterested in, and entities which the user

has not yet discovered. It is worth noting that several previous studies have included additional assumptions

about the implicit feedback, such as interaction frequency assumptions. In order to keep this study focused,

we do not explore these avenues, but methods along these lines may be added to the proposed models in a

fashion similar to previous works if desired.

3.3 Implicit Feedback Matrix Factorization

Factorization of the implicit feedback matrix has been studied in prior works [5, 10], where low-rank

matrices are learned to represent users and items in order to approximate the feedback matrix through their

combination. More specifically, factorization techniques aim to approximate the implicit feedback matrix R

as follows:

R ≈ UV T (3.2)

where U ∈ Rm×d are the feature representations of users in some latent space, and V ∈ Rn×d are the feature

representations of items in some latent space. To satisfy the low-rank constraint such techniques require

that d < min (n,m).
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Given low-rank matrices U and V , a score between ui and ej can be computed according to r(ui, ej) =

UiV
T
j , where Ui is the ith row of the matrix U and Vj is the jth row of the matrix V . For each user ui, items

can be sorted according to these scores and we can recommend the top-k items which ui has no implicit

feedback for (i.e., items which ui has not yet interacted with).

In order to find matrices U and V which best solve Equation 3.2, non-negative matrix factorization (NMF)

techniques like that discussed in [5] can be applied to the implicit feedback matrix R. Other approaches

have also been studied [6, 10, 20], which improve performance by incorporating extra information.

In this work we propose models which employ matrix factorization to learn a set of user and item features

which capture different semantic relationships. Importantly, the proposed models are orthogonal to the choice

of matrix factorization technique and one could employ our models along with more advanced factorization

approaches. To remain focused, in this study we use the NMF method in [5] to learn the features which

form the basis for our models. However, due to the orthogonality between the proposed models and the

factorization approach, our methods can be improved further through the use of more advanced factorization

techniques.

3.4 Problem Definition

The implicit-feedback based recommendation problem which we study in this work is defined as follows:

Definition 3.2 (Problem Definition). Given a heterogeneous information network G with user implicit

feedback matrix R, or a user ui we aim to build a personalized recommendation model which can recommend

a ranked list of items that are of potential interest to ui.

The symbols used in this chapter and the remainder of this thesis can be found in the List of Symbols

preceding Chapter 1.
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Chapter 4

Methodology

In this chapter we present our proposed recommendation models. Through the incorporation of het-

erogeneous information networks into the user-item latent feature learning we capture both the implicit

feedback along with user preference over other complex relationships present in the information networks.

This is accomplished by diffusing user preferences along different semantic relationships in the network,

combining the implicit user feedback along with other, more complex, relationships which can be described

by heterogeneous information networks. Using these enriched latent features, we propose a scoring function

for recommendation which can be applied to all users. We refer to this as a global model, the details of

which are covered in Section 4.2. In the context of this model, global means that it is applied in the same

way to all users despite their potentially different preferences. However, this model is still based on user

implicit feedback, so the recommendations for different users will not be the same. Extending this approach,

we present our personalized recommendation model in Section 4.3 which allows the model to learn different

users’ preferences. Finally, the learning algorithms for the proposed techniques are discussed in Section 4.4.

4.1 Motivation

4.1.1 Meta-Paths

In an information network, be it homogeneous or heterogeneous, the entity recommendation task can

be solved by finding highly connected entities for a given user. In heterogeneous information networks,

two nodes can be connected by different paths which may be wildly different. Two paths connecting the

same nodes may be composed of extremely different entity types, relation types, and may be of completely

different lengths. Consider, for example, users u1 and u2 in Figure 4.1, and the paths u1 → u3 → m3 →

d1 → m2 → a3 → m1 → u2 and u1 → m2 → a1 → m3 → u2. As proposed in [25], we introduce the concept

of a meta-path to describe the widely varying paths in heterogeneous information networks. A meta-path is

defined using the network schema of a HIN and describes a particular way in which two entity types could

be connected in the network.

9
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u�

m�

u�

u�

m�

m�

a�

a�

a�

d�

Figure 4.1: A simple heterogeneous information network highlighting two meta-paths.

Definition 4.1 (Meta-Path). A meta-path P = A0
R1−−→ A1

R2−−→ . . .
Rk−−→ Ak is a path in a network schema

GS = (A,R), which defines a new composite relationship R1R2 . . . Rk between entity types A0 and Ak, where

Ai ∈ A and Ri ∈ R for i = 0, . . . , k, A0 = dom(R1) = dom(P), Ak = range(Rk) = range(P), and Ai =

range(Ri) = dom(Ri+1) for i = 1, . . . , k − 1.

where dom(·) defines the domain of a certain relationship and range(·) defines the range.

We differentiate between explicit path instances and meta-paths by using the notation p and P respec-

tively. Given the above definition, one can see that any path p in a heterogeneous information network will

follow an associated meta-path P. Prior work shows that meta-paths can be used for a variety of semanti-

cally meaningful purposes, such as entity similarity semantic disambiguation [24, 28]. Consider the following

example as motivation for the use of meta-paths to help solve the entity recommendation problem.

Example 4.1 (Meta-paths in IMDb). The graph schema of IMDb defined in Figure 3.1a allows us to define

many different meta-paths between users and movies, each of which represents a more complex semantic

relationship. Two possible meta-paths and their associated semantically interesting meaning are as follows:

P1 = user
follows−−−−−→ user

watched−−−−−→ movie

(movies watched by users which are followed by a user)

P2 = user
watched−−−−−→ movie

performed−in−1

−−−−−−−−−−−→ actor
performed−in−−−−−−−−−→ movie

(movies containing an actor which the user has seen in another movie)

Example path-instances following these meta-paths can also be found in Figure 4.1, where we used a blue

lines to represent P1 and orange lines to represent P2. The two semantic relationships are very different:

10



movies highly connected to a target user by P1 will be those which have been watched my many users which

are in the target user’s social network, whereas movies which are highly connected to the target user along

P2 will be ones which contain many actors which the user has seen in other movies. By measuring user-movie

proximity along these and other meta-paths, we can capture the inherent variety in user preference and make

recommendations which make are more effective.

When the relationship type between two entity types is not ambiguous (i.e., there is just one relationship

type connecting the two) then it may be omitted for a simpler notation. Additionally, repeated parts of a

meta-path may be compressed using an exponent. For example, the meta-path

user
watched−−−−−→ movie

in−→ genre
in−1

−−−→ movie
in−→ genre

in−1

−−−→ movie

can be simplified to user—(movie—genre—movie)2.

4.1.2 Preference Diffusion

Given the building blocks of implicit user feedback data as described in Section 3.2 and meta-paths as

defined above, we can now introduce the user preference diffusion approach. In this context, the term user

preference is used to mean the user interests which motivate the implicit feedback data. Remember that in

implicit feedback data, a value of 1 means that a user is more interested in that item than other items with

a value of 0. As a result, if we can view the implicit feedback from a variety of semantic perspectives and

find similar items to ones in which the user is interested under each of these different perspectives, then we

can make entity recommendations using these semantically meaningful views of the implicit feedback.

Consequently, we focus on meta-paths of the form user—item—(· · · )—item in our recommendation

models. Such meta-paths will diffuse the user implicit feedback data to items which the user may not be

directly connected. As a result we can measure the relatedness between a user and all possible items along

each semantically meaningful meta-path, allowing us to build a model with proposes unobserved user-item

interactions which appear to be the most meaningful from a variety of different perspectives of the implicit

feedback. This meta-path based diffusion approach captures user preference which are hidden in the implicit

feedback data, and is therefore referred to as preference diffusion.

In order to actually measure the relatedness between a user and any item when the feedback is diffused

along some meta-path P = R1R2 . . . Rk. We extend PathSim, as proposed in [25], to measure the preference

of user i for item j diffused along P as follows:

s(ui, ej |P) =
∑
e∈I

2×Rui,e × |{pe ej : pe ej ∈ P ′}|
|{pe e : pe e ∈ P ′}|+ |{pej ej : pej ej ∈ P ′}|

(4.1)
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where P ′ = R2 . . . Rk and px y is a path instance between nodes x and y. Additionally, the notation

|{px y : px y ∈ P ′}| represents the number of path instances from x to y in the network which follow the

meta-path P ′. Remembering the types of paths which we have chosen to consider, dom(P ′) = item and

range(P ′) = range(P) = item.

Equation 4.1 models the user preference diffusion with two components: (1) the observed user implicit

feedback of user ui on each item e, Rui,e, and (2) the meta-path based proximity of the items in which the

user has shown interest and all possible items ej , captured by the paths pe ej . Similar to PathSim, the

number of paths between e and ej is normalized so as not to favor very highly connected (i.e., popular)

entities unfairly. A toy example of the preference diffusion process is shown in Figure 4.2 and described

below.

u�

u₂

m�

m₂

m₃

a�

a₂

a₃

a₄

a₅

0�
�

�
��

���

Figure 4.2: A toy example including preference diffusion scores calculated along the meta-path P =
user—movie—actor—movie. Solid lines are observed user implicit feedback, while dashed lines are the
diffused user preferences.

Example 4.2 (Preference Diffusion). For this toy example we use a small HIN containing two users, three

movies, and five actors with the entities connected according to Figure 4.2. Of the six possible user-movie

interactions, we can see that only three have been observed as implicit user feedback. Using the meta-path

P = user—movie—actor—movie, we calculate the preference diffusion of both users for the unobserved

user-movie relations.
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In this example, P ′ = movie—actor—movie, accordingly:

|{pm1 m1
: pm1 m1

∈ P ′}| = 2

|{pm2 m1 : pm2 m1 ∈ P ′}| = 1

|{pm2 m2
: pm2 m2

∈ P ′}| = 2

|{pm3 m1 : pm3 m1 ∈ P ′}| = 0

|{pm3 m3
: pm3 m3

∈ P ′}| = 3

We know from the user implicit feedback represented in the graph that u1 did not watch m1, so we can

calculate the preference diffusion for (u1,m1) along P using Equation 4.1 as follows:

s(u1,m1) =
2×Ru1,m1×|{pm1 m1 :pm1 m1∈P

′}|
|{pm1 m1

:pm1 m1
∈P′}|+|{pm1 m1

:pm1 m1
∈P′}| +

2×Ru1,m2×|{pm2 m1 :pm2 m1∈P
′}|

|{pm2 m2
:pm2 m2

∈P′}|+|{pm1 m1
:pm1 m1

∈P′}| +

2×Ru1,m3×|{pm3 m1 :pm3 m1∈P
′}|

|{pm3 m3
:pm3 m3

∈P′}|+|{pm1 m1
:pm1 m1

∈P′}|

= 2×0×2
2+2 + 2×1×1

2+2 + 2×0×0
3+2

= 0.5

The other diffusion scores can be calculated similarly.

Calculating the preference diffusion score along a meta-path P for every user-item pair (ui, ej) will result

in a user preference matrix R̃ ∈ Rm×n which describes the preference of each user viewed through the lens

of the semantic relationship represented by P. For example, if the P = user—movie—actor—movie then

R̃i (i.e., the ith row of R̃), represents the predict amount to which of user ui would enjoy each movie if they

prefer movies with actors that they commonly watch.

If we define L different meta-paths and calculate L different diffused user preference matrices (denoted

R̃(1), R̃(2), . . . , R̃(L)) as above, then we can capture user preference over the items by combining the scores

from these diffused preference matrices in a way which best describes the observed user feedback. Such a

process is analogous to how users actually discover information and make decisions, weighing a variety of

different preferences in their final decision to interact with an item or not.

4.2 Global Recommendation Model

Using the proposed preference diffused matrices R̃(q) for q = 1, . . . , L we can derive L low-rank user and

item matrices using NMF, as discussed in Section 3.3. These low-rank matrices represent latent features for
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user and items under the L different semantic relationships described by the meta-paths corresponding to

each diffused preference matrix. More specifically, using NMF we factorize the diffused preference matrix

R̃(q) as follows:

(Û (q), V̂ (q)) = argminU,V ||R̃(q) − UV T ||2F

s.t. U ≥ 0, V ≥ 0

(4.2)

where Û (q) ∈ Rm×d are the user latent features and V̂ (q) ∈ Rn×d are the item latent features under the

qth meta-path. As with other low-rank techniques, d < min (m,n). As mentioned in Section 3.3, we

apply the simplest NMF technique to solve Equation 4.2 rather than add complexity with a more involved

technique, leaving that as an orthogonal direction in which performance may be improved if necessitated by

the application.

By repeating this factorization for all L preference diffused matrices we obtain L pairs of latent features

for users and items, (Û (1), V̂ (1)), . . . , (Û (L), V̂ (L)). Each pair represents the latent features of users and

items under the particular semantic relationship expressed by the corresponding meta-path as a result of

the preference diffusion process. Intuitively, different relationships may have different levels of importance,

meaning that a recommendation model should weight different feature pairs differently to best capture user

preference. For example, knowing which actors perform in a movie is likely to have a stronger influence on

a user’s preference for a movie than knowing the studio which produced the movie. Accordingly, as in [31],

we define the global recommendation model as follows:

r(ui, ej) =

L∑
q=1

θq · Û (q)
i V̂

(q)
j

T (4.3)

where θq is a learnable weight for the predicted user and item interaction derived from qth preference

diffused matrix, i.e., under the semantics of the relationship described by the qth meta-path. Due to the

non-negativity of the latent features, we also enforce θq ≥ 0 as an optimization constraint.

Using the global recommendation model defined by Equation 4.3, we can generate scored for all user-item

pairs and then, for each user, return the items with the top-k highest scores. We discuss model learning in

Section 4.4.
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4.3 Personalized Recommendation Model

Having proposed a global model which combines user implicit feedback with heterogeneous information

networks through the use of user preference diffused latent features derived from different meta-paths, in

this section we introduce personalization strategies which eliminate the built-in assumption that all users

should be treated identically. When recommending items to users, the global model is applied in the same

way to all users. Despite using each user’s implicit feedback, the model itself does not distinguish different

user interests and recommend items to users in different ways based on the interests they have exhibited in

the implicit feedback data. For example, the global model may learn that, in general, users prefer to watch

movies directed by famous directors. However, this rule certainly does not hold for all users, and it was only

learned because overall it provided the best one-size-fits-all performance.

The global model serves as a good starting point for the personalized models, especially in the use of

meta-path based user preference diffused matrices. We propose two extensions to the global model, making

it more granular and capable of modeling different users’ interests. At a high level, we do this by learning

different recommendation models for different users enabling us to better capture user preferences by not

treating all users identically.

Perhaps the most straightforward and expressive way to achieve the personalization goal would be to

learn one model for each user using Equation 4.3, based only on their own implicit feedback. In this manner,

each user’s preference over the different semantic relationships present in the hetereogeneous information

network would be captured. Unfortunately, the user feedback data follows a power law distribution as shown

in Section 5.1, meaning that most users lack sufficient data on which to learn a personalized model.

One way to solve this data-sparsity problem is by grouping similar users into several groups, then learning

a model for each group. The intuition underlying this approach is that, while different users may have

different preferences from one another, there should be subgroups of users which share similar preferences.

For example, there may be a group of older users who love traditional western movies, while there is another

group of younger users who watch every movie with Brad Pitt. For the first group, a model will capture

their collective preference for movies of a particular genre, whereas for the second group a model will capture

their preference for movies with particular actors.

Following this logic, we propose to cluster users based on their interests and then learn a recommendation

model for each cluster. A side effect of this approach is that if a user can be in multiple clusters, their personal

interests can be modeled as a mixture of the interests of the clusters to which they belong, bringing us back

to our original goal of a personalized model for each user. The personalized recommendation function for a

user ui is defined as follows:
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r∗(ui, ej) =

c∑
k=1

sim(Ck, ui)

L∑
q=1

θ{k}q · Û (q)
i V̂

(q)
j

T (4.4)

where Ck represents the kth user cluster and sim(Ck, ui) is a measure of the degree to with user ui is

a member of cluster Ck. The learnable weights θ
{k}
q are analogous to those of the global model, but are

learned across all of the c clusters so as to capture the different preferences of different users. The personalized

model parameters are therefore θ{·} = {θ{1}, θ{2}, . . . , θ{c}} of which there are c × L, in contrast to the L

parameters in the global model. This larger number of parameters enables us to better capture preferences at

the user level, rather than the aggregate global level. In the following sub-sections we propose two different

approaches which use this personalization strategy. Model learning for the personalized models is discussed

in Section 4.4.

After estimating all the parameters needed to describe the model, θ{·}, we can make user specific rec-

ommendations. For user ui, we first determine how well their interests are described by each cluster using

sim(Ck, ui), then we combine the recommendation models of each cluster according to the degree to which

each cluster represents the user’s preferences using Equation 4.4. As before, we return as recommendations

the top-k items with the highest scores.

Choosing the number of clusters, c, can have a large impact on performance. Too few clusters may

inhibit the personalized model from being able to distinguish user preferences well, similar to the global

model. Too many clusters and the data sparsity issue returns due to the small number of user per cluster.

One effective approach for determining a value for c is to use cross-validation in the training data to select a

value. The impact of the number of clusters on the overall performance of the personalize models is discussed

in Section 5.5.

4.3.1 Implicit Feedback Based Personalization

For the implicit feedback based personalization technique, we start from the user implicit feedback matrix

R. Intuitively, this matrix captures the different preferences of different users as expressed by their interaction

behavior. If we could cluster users according to their implicit feedback, each cluster could capture different

user preferences as demonstrated by their behavior. However, due to the sparsity of the matrix R, clustering

users directly is ineffectual. First, we learn low-rank but dense representations for users by applying NMF

to R, giving us representations for each user. We then apply the well-studied and straightforward k-means

algorithm to these user representations to cluster the users into c clusters using cosine distance as the

distance metric between users. For consistency, sim(Ck, ui) is defined to be the cosine similarity between
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the low-rank representation of ui and the cluster centroid for cluster Ck.

4.3.2 Heterogeneous Information Network Based Personalization

While the personalization strategy proposed in Section 4.3.1 is straightforward, it relies on matrix factor-

ization of the implicit feedback matrix to capture complex user preferences and enable user clustering. This

approach neglects all of the heterogeneous context data available in the HIN. A more principled approach

would be to cluster the users based directly on their preferences and interests over entities in the HIN, rather

than hoping that the matrix factorization will capture these preferences. To achieve this goal we employ a

technique known as HyperEdge-Based Embedding (HEBE) [7], which learns distributed representations for

entities in a heterogeneous information network based directly on the heterogeneous event data of which the

network is composed. For example, an event in the IMDb network would represent a user watching a movie

and would be represented by a hyperedge connecting the user, movie, and all other entities related to the

movie such as actors, director(s), and the genre(s) of the movie. HEBE learns dense but low-dimensional rep-

resentations for users based on the entities with which they have directly interacted, meaning that clustering

users based on these representations will explicitly capture users’ interests and preferences. After HEBE has

learned user representations, we apply the k-means algorithm to find clusters of users using cosine distance.

To make user recommendations, we use cosine similarity for sim(Ck, ui), meaning that each user may be

described by several clusters if they are closely related in the learned vector space.

4.4 Model Learning

This chapter covers the learning algorithms for the global and personalized recommendation models

discussed in Chapter 4. In a similar fashion, we introduce the learning method for the parameters of the

global model from Equation 4.3 and then extend it to the personalized models expressed by Equation 4.4.

The models proposed in this work leverage the rich knowledge available in heterogeneous information

networks by diffusing user feedback over a set of semantic relationships described by L different meta-paths.

After preference diffusion, latent representations of users and items are estimated using NMF to capture the

underlying preferences present in each diffused matrix. The learning problem is then to find weights with

which to combine the user and item latent features in order to make the best recommendations. To do so,

we use the implicit feedback from users as our training data, with the goal being for the model to accurately

capture the actual behavior of the users. Recall that for implicit user feedback, a value of 1 means that

a user was interested in an item, but a value of 0 is a mixture of items which the user is uninterested in

17



and items which the user has not yet discovered. This means that traditional methods with classification or

learning-to-rank based objectives, which treat values of 1 as positive and 0 as negative, are not well suited

for the learning problem when using implicit user feedback and cannot generate high quality models.

Taking motivation from [22], we take a different learning approach and utilize a pairwise optimization

strategy. Our objective function attempts to learn an ordering for items, in a pairwise manner, where values

of 1 should be ranked higher than values of 0 for each user. The assumption underlying the proposed

objective is that items with a value of 1 in the feedback data are more interesting to the corresponding users

than all items with the value 0. This assumption is a weaker form of that used by the traditional methods,

and is likely a closer model of reality which results in better performance.

4.5 Bayesian Ranking-Based Optimization

As is common among Bayesian methods, we aim to maximize the following posterior probability:

p(θ|R) ∝ p(R|θ)p(θ) (4.5)

where θ = {θ1, θ2, . . . , θL} are the global model parameters, and p(R|θ) represents the probability that all

pairs of items for all users defined by R can be correctly ranked by the model. Therefore, a good model will

have high p(R|θ) and be able to correctly rank items with the value 1 above items with the value 0 for each

user.

Assuming that user preferences and the ordering of item pairs are independent allows us to expand the

likelihood p(R|θ) as follows:

p(R|θ) =
∏
ui∈U

p(Ri|θ)

=
∏
ui∈U

∏
(ea>eb)∈Ri

p(ea > eb;ui|θ)
(4.6)

where (ea > eb) ∈ Ri are all pairs of items with correct ordering in R for user ui and p(ea > eb;ui|θ)

represents the probability that user ui prefers item ea over eb according to the model defined by θ. We

define said probability as follows:

p(ea > eb;ui|θ) = σ(r(ui, ea)− r(ui, eb)) (4.7)
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where σ(x) = 1
1+e−x is the sigmoid function.

We further assume that p(θ) is a Gaussian distribution with mean zero and variance-covariance matrix

Σθ = λI. Using these definitions leads to the following objective function:

O = − ln p(θ|R) = − ln p(R|θ)p(θ)

= −
∑
ui∈U

∑
(ea>eb)∈Ri

ln p(ea > eb;ui|θ) + λ||θ||22

= −
∑
ui∈U

∑
(ea>eb)∈Ri

lnσ(r(ui, ea)− r(ui, eb)) + λ||θ||22

(4.8)

where λ||θ||22 is a regularization term which depends on the data.

We estimate the parameters of the global model, θ, by minimizing O in Equation 4.8.

4.6 Optimization

Because Equation 4.8 is differentiable, there are many optimization strategies which we could apply to

estimate the model parameters θ. We considered methods like stochastic gradient descent (SGD) [2] and

L-BFGS-B [3]. To use any of these approaches, we first take the gradient of Equation 4.8 with respect to θ

as follows:

∂O

∂θ
= −

∑
ui∈U

∑
(ea>eb)∈Ri

∂

∂θ
lnσ(r(ui, ea)− r(ui, eb)) +

λ

2

∂

∂θ
||θ||22

= −
∑
ui∈U

∑
(ea>eb)∈Ri

1

1 + er(ui,ea)−r(ui,eb))

∂

∂θ
(r(ui, ea)− r(ui, eb)) + λθ

Considering the scale of the data for real-world recommender systems, we chose to employ SGD [2]

to estimate the parameters of our models in our experiments. We chose this method so as to avoid the

O(mn2) time complexity needed to compute the full gradient, opting rather to compute the gradient using

stochastic minibatches with a sampling rate of 10−5. We discuss the sampling rate hyperparameter selection

in Section 5.5.
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Algorithm 4.1: Personalized Recommendation Model

Input: R,G,M = {P1, . . . ,PL}, d, c,method
Output: θ{·}

for q ← 1 to L do
foreach ui and ej do

R̃
(q)
ui,ej = s(ui, ej |P(q) (Eqn. 4.1)

Calculate latent features Û (q), V̂ (q) from R̃(q) (Eqn. 4.2)

/* Generate low-dimension user representations */

if method is HEBE then
U = HEBE(R,G, d)

else
U, V = NMF(R, d)

C = k-means(U, c)

/* Learn recommendation models */

foreach Ck in C do
Optimize θ{k} with implicit feedback of users in cluster Ck (Eqn. 4.8)

4.7 Learning Personalized Models

The proposed global model effectively leverages a heterogeneous information network to improve recom-

mendation results, but it lacks the capacity to distinguish the underlying interests and preferences which

drive user-item interaction for a particular user. Instead, the global model treats all users equally and finds

the best one-size-fits-all solution to the problem. We observed that while users may have different inter-

ests, there exist groups of users which share common preferences and we can leverage this to learn more

personalized models.

In Section 4.3 we covered two personalization approaches which can improve model performance. Begin-

ning with NMF or HEBE, we produce user representations based on the implicit feedback or the entirety

of the heterogeneous event data available, respectively. Then we apply the k-means clustering algorithm to

cluster the users into c clusters. Finally, we learn a model for each of the clusters according to the learning

method described above. The full learning algorithm for these models can be found in Algorithm 4.1.
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Chapter 5

Experiments

In this chapter we present a variety of empirical studies of the proposed recommendation framework. We

implemented the global model in Section 4.2, as well as both personalized models proposed in Section 4.3.

For comparison, we also implemented several popular or state-of-the-art techniques for implicit feedback

recommendation.

5.1 Data

We choose two real-world datasets from different domains for our empirical studies: movie recommenda-

tion using IMDb-MovieLens-100K (IM100K) data and local business recommendation using Yelp data. The

network schemas for these two datasets can be found in Figure 5.3.

The IM100K dataset is a combination of the popular MovieLens-100k dataset with additional entities

from IMDb related to the movies therein. Together, the MovieLens ratings with the entities from IMDb

allow us to build a heterogeneous information network upon which we can apply our algorithms. While the

MovieLens data contains explicit ratings, we treat it as implicit feedback data by assigning values of 1 for

any movie with a user rated, and 0 for those which a user did not rate. In order to map movies and their

associated entities from IMDb to MovieLens, we used their titles and release years, which could lead to a

small percentage of errors. Consequently, the results we present below can be considered a lower-bound of

the actual performance as a result of this source of noise.

The local business recommendation data comes from the Yelp challenge1. We did not need to augment

this data as it contains both user reviews and local business information which can be fit into a heterogeneous

information network. We build our implicit feedback by setting values of 1 for any user-business pair where

the user wrote a review for the business, and 0 for all other pairs.

Each dataset has timestamp information along with the user interactions. We use these to split the

feedback from each user into train and test sets in a fair manner, i.e., the model can only learn from a

user’s past interactions to predict their future interactions. This means that each user must have at least

1http://www.yelp.com/dataset challenge/
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two interactions in order to be in both the train and test sets, so we filter out users with only only one

interaction. We use a train/test split of 80%/20%.

Name #Items #Users #Ratings #Entities #Links

IM100K 943 1360 89,626 60,905 146,013
Yelp 11,537 43,873 229,907 285,317 570,634

(a) Dataset Properties

(b) IM100K Feedback Distribution (c) Yelp Feedback Distribution

Figure 5.1: Properties and feedback distributions for IM100K and Yelp Datasets

We summarize the properties of the two datasets in Figure 5.1a. Of note is the fact that the Yelp dataset

is much sparser than the IM100K dataset, meaning that the performance of all methods degrades due to

lack of signal. Additionally, the dataset’s user feedback distributions maybe be found in Figure 5.1b and

Figure 5.1c, demonstrating the power law behavior discussed in Section 4.3.

5.2 Baselines and Evaluation Metrics

As mentioned before, we implemented several popular or state-of-the-art recommendation techniques for

baseline comparisons, their details are as follows:

• Popularity: Recommend the most popular items to all users.

• Co-Click: Estimate the conditional probabilities between items and recommend items with an aggre-

gated conditional probability calculated using the training data of the target user.

• NMF: Non-negative matrix factorization on R, as discussed in Section 3.3.

• Hybrid-SVM: Use SVM-based ranking function [14] to learn a global recommendation model with

user implicit feedback and meta-path based similarity measures [25].
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Table 5.1: Example meta-paths (we set n = 1 and 2)

Network Meta-Path

IM100K

user—(movie—actor—movie)n

user—(movie—director—movie)n

user—(movie—genre—movie)n

user—movie—keyword—movie

Yelp

user—(business—category—business)n

user—(business—user—business)n

user—business—checkin—business
user—business—location—business

We refer to the proposed global model as HeteRec-g and the proposed personal models collectively as

HeteRec-p. Unless otherwise specified, results we present results using the implicit feedback based person-

alization approach. We choose 10 different meta-paths in each information network, ranging from the most

simple path of user—item to longer paths such as those introduced in Table 5.1.

For implicit feedback data, the standard evaluation metric of root mean squared error (RMSE) from

recommendation models using explicit user feedback is not well suited. Consequently, we choose two well

studied metric from information retrieval: Precision@k (P@k) and top-10 mean reciprocal rank (MRR)

to evaluate the performance of each baseline as well as the proposed models. Precision@k is the average

percentage of correct (i.e., appearing in the test data) recommendations in the top-k recommendations over

all users. MRR is defined as follows:

MRRK =
1

m

m∑
i=1

 ∑
e∈test(ui)

1

rank(ui, r)

 (5.1)

5.3 Performance Comparison

Table 5.2 presents the performance of each method across the two datasets.

Table 5.2: Algorithm Performance

Method
IM100K Yelp

P@1 P@5 P@10 MRR P@1 P@5 P@10 MRR

Popularity 0.0731 0.0513 0.0489 0.1923 0.00747 0.00825 0.00780 0.0228
Co-Click 0.0668 0.0558 0.0538 0.2041 0.0147 0.0126 0.01132 0.0371

NMF 0.2064 0.1661 0.1491 0.4938 0.0162 0.0131 0.0110 0.0382
Hybrid-SVM 0.2087 0.1441 0.1241 0.4493 0.0122 0.0121 0.0110 0.0337

HeteRec-g 0.2094 0.1791 0.1614 0.5249 0.0165 0.0144 0.0129 0.0422
HeteRec-p 0.2121 0.1932 0.1681 0.5530 0.0213 0.0171 0.0150 0.0513
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The simplest methods, popularity and co-click, perform moderately well in both datasets. It is no surprise

that recommending the most popular items to all users can achieve moderate performance, due to the power

law distribution of user feedback seen in Figure 5.1. The co-click method, which enjoys a very wide userbase,

underperforms in the IM100K dataset but rivals NMF in the Yelp dataset where it scores an MRR of 0.0371

compared with NMF’s 0.0382.

Moving to the more advanced collaborative-filtering-based matrix factorization method, NMF, we choose

dimensionality d = 20 in IM100K and d = 60 in Yelp using cross validation on the training data. For fairness,

we use the same method and settings in the preference diffusion step of the HeteRec-* methods. With further

performance tuning and the inclusion of additional information as in [10], the performance of NMF may

increase, but the same improvement would be enjoyed by our proposed models as well. We see that NMF

is a strong contender, achieving MRR = 0.4938 in IM100K and 0.0382 in Yelp, outperforming the other

baselines.

Hybrid-SVM, similar to our models, combines both implicit feedback and heterogeneous relations cap-

tured in a HIN. This hybrid recommendation approach uses the same amount of information as our proposed

methods, but uses an SVM-based ranking framework and PathSim measures as features when learning a

recommendation model. However, with the proposed diffusion and personalization strategies, Hybrid-SVM

fails to fully leverage the richness of the data to improve performance. It achieves MRR = 0.4493 in IM100K

and 0.0337 in Yelp, where it is even outperformed by co-click. When compared with our methods, which

are based on the same amount of information, it is clear that the methods we have proposed are effectively

leverage the data-right heterogeneous information networks to make entity recommendations.

Our global model, HeteRec-g, which uses the implicit user feedback augmented with a heterogeneous

information network, is able to outperform all baselines. It improves upon the MRR of the strongest

baseline, NMF, by 6.1% in IM100K and 10.4% in Yelp. This suggests that our assumptions that augmenting

the implicit feedback with an information network can improve performance and help alleviate data sparsity

by connecting users to movies via various meta-paths. Our method performs significantly better than Hybrid-

SVM, which uses the same meta-paths and implicit feedback to define its own global model, proving that our

preference diffusion strategy leads to latent features which correctly describe user preferences and interests.

Interestingly, the MRR improvement of HeteRec-g over NMF is less for the more dense dataset IM100K

than it is for the sparser dataset of Yelp. This aligns with the intuition that using information networks as

we do can mitigate sparsity by bringing move items into close proximity to a user based on several longer

paths in the network. During training, we use the same dimensionality as previous methods and a sample

rate for SGD of 10−5. We apply the same sample rate to all supervised approaches for these experiments.
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Parameter tuning of the sample rate is discussed in Section 5.5.

Out personalized recommendation approach, HeteRec-p, improves upon HeteRec-g further by treating

learning user preference on a more granular level. For these experiments we used the implicit feedback

based personalization strategy. We analyze the differences between the implicit feedback approach and the

combined approach in Section 5.4. We use c = 10 in IM100K and c = 100 in Yelp. We discuss choosing

the correct number of clusters, c, in Section 5.5. When comparing the personalized model with the global

model, we see that HeteRec-p can outperform HeteRec-g in both datasets. The MRR improvement of

HeteRec-p over HeteRec-g is 5.4% in IM100K and 21.5% in Yelp. This verifies our intuition that different

users have different preferences and that the recommendation model should capture these preferences and

recommend items to users based on their own interests, rather than treating all users identically. By learning

recommendation models within user clusters which display similar interests in the feedback data, the model

comes closer to approximating the human decision making process and as a result can offer each user higher

quality recommendations.

Both HeteRec-g and HeteRec-p approached outperform all baseline models in both the IM100K and Yelp

datasets. These experiments verify that using heterogeneous information networks to enrich the implicit

user feedback, and learning more granular personalized models are both effective strategies for improving

recommendation performance and satisfying users desires.

5.4 Performance Analysis

In order to understand when our models perform at their best and how they compare with others in

these scenarios, we analyze the performance characteristics of co-click, NMF, HeteRec-g, and HeteRec-p

(using implicit feedback only) when controlling the data for two variables: the average number of feedbacks

given by a user and the average popularity of items on which a user has given feedback. We also discuss the

performance difference between the two personalized models we propose.

When investigating the impact that feedback frequency has on algorithmic performance, we split users

into groups based on the number of item interactions they had in the training data. We split the users into

6 groups, where users in group 1 had the least feedback (averaging 13) and those in group 6 had the most

(averaging 224). We applied each of the 4 methods in each group, the results are displayed in Figure 5.2a.

HeteRec-p outperforms the other methods in each group. As is expected, the performance of all methods is

negatively impacted by the lack of information available for users in the lower groups. However, co-click is

not nearly as influenced by this factor as the other methods, suggesting that the other CF based approaches
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(a) Performance Difference by Feedback Count (b) Performance Difference by Feedback Popularity

Figure 5.2: Performance Analysis

are much more sensitive to data sparsity and motivating our proposed use of heterogeneous information

networks to help alleviate sparsity issues.

Next, we present the impact item popularity has on recommendation performance in Figure 5.2b. In this

experiment we grouped users according to the average popularity of the items for which they gave feedback

(i.e., the average number of users who rated the items they rated). As before, we split users into 6 groups,

where the users in group 1 had an overall average item popularity of 71 and the users in group 6 had average

item popularity of 281. This means that the users in group 1 tended to like less popular movies, and the

users in group 6 tended to like much more popular movies. Again, HeteRec-p can be seen to be the winner

overall, outperforming the other methods nearly across the board. We see that the CF based methods tend

to perform best, in this experiment, when users prefer less popular items. This may seem unintuitive, but

one explanation is that these users may be expressing actual interest which the models are able to capture,

whereas users who prefer popular movies choose to watch anything that is popular rather than actually

expressing any particular interests.

Finally, to understand the performance characteristics of the proposed personalization models we compare

them both against one another and against the global model. Both personalized models outperform the global

model overall. We can see that the personalization strategy which utilizes the extra information present in

the heterogeneous information network to cluster users performs much better than the implicit feedback only

approach according to the P@1 measure. This measure is perhaps the most important measure in many

scenarios, where few recommendations are given and the quality of the topmost recommendation is of the

utmost importance. While the HIN approach underperforms the implicit feedback approach in the other

measures, the gap is not expansive meaning that the HIN approach could be employed to good effect on

its own, or ideally merged with results from the implicit feedback only approach in order to get the best of
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both worlds. Such a combined approach would yield the highest performing model.

Table 5.3: Personalization Strategy Comparison

Method
IM100K

P@1 P@5 P@10 MRR

HeteRec-g 0.2094 0.1791 0.1614 0.5249
HeteRec-p (implicit only) 0.2121 0.1932 0.1681 0.5530
HeteRec-p (entire HIN) 0.2312 0.1801 0.1563 0.5377

5.5 Parameter Tuning

Our proposed methods include several hyperparameters that need to be tuned in order to achieve optimal

performance. In this section we discuss their impact on the effectiveness of the proposed approaches and

how to tune them.

In Equation 4.8, λ is a hyperparameter that adjusts the amount of L2 regularization of the model

parameters. We used cross-validation and grid search to set this parameter to 0.1.

(a) Sample Rate (b) Cluster Count

Figure 5.3: Hyperparameter Tuning

The next hyperparameter of interest is the SGD sampling rate. This controls a tradeoff between exactness

of the gradient updates and efficiency by only sampling a small portion of the entire training data to estimate

the gradients at each step of training. If the sampling rate were set to 1 and the learning process scaled

by O(mn2), the number of training instances in the Yelp dataset would be approximately 1012, which is

computationally unfeasible. We explore the relationship between the sampling rate and performance of

HeteRec-g in IM100K in Figure 5.3a. The x-axis of Figure 5.3a is in log-scale, meaning that very small

batches can be sampled without sacrificing too much overall performance. However, when the sampling rate
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falls below 10−5, the performance does then to degrade as a result of a lack of training data for each step of

the algorithm.

For the HeteRec-p models we have an additional hyperparameter c, the number of clusters for which to

learn recommendation models. We investigate the performance of the model with respect to this hyperpa-

rameter in Figure 5.3b. Although the personalized model is not overly sensitive to this hyperparameter, it is

clear that certain values lead to higher overall performance than others, with maximum values occurring at

c = 10 for IM100K and c = 100 for Yelp. Clearly when the number of clusters is too small, the personalized

models are unable to distinguish user interests and revert to something nearer to our proposed global model.

By using an appropriately large number of clusters, different user behaviors are learned by the model and

this results in better entity recommendations.
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Chapter 6

Conclusion

In this thesis, we study the recommendation problem when faced with implicit user feedback. Our

proposed models leverage data-rich heterogeneous information networks to both capture user interests and

preferences and offer more personalized entity recommendations for users. User preferences are learned based

on the semantic relationships described by meta-paths in the heterogeneous information networks, which

when combined with the implicit user feedback data provide different views which each have the potential

to explain the underlying motivation for user-item interactions. We introduce a global recommendation

model which serves as the foundation for our proposed personalized models. We proposed two methods

for personalization, leveraging both the implciit feedback data and the heterogeneous information network

to give our model the capacity to learn why users are interested in the items they are. Using a Bayesian

ranking method, we estimate the weights for both global and personalized models in an efficient manner.

Comparisons between the proposed approaches and other widely used and state-of-the-art implicit feedback

recommendation techniques show that our proposed approaches outperform other techniques. Several possi-

ble future works include model online model updating with user feedback, jointly learning a recommendation

model along with user clustering, and an approximate learning process to further increase efficiency.

29



References

[1] J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In Proceedings of the
Twenty-first International Conference on Machine Learning, ICML ’04, pages 9–, New York, NY, USA,
2004. ACM.

[2] L. Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent, pages 177–186. Physica-
Verlag HD, Heidelberg, 2010.

[3] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput., 16(5):1190–1208, Sept. 1995.

[4] S. Chakrabarti. Dynamic personalized pagerank in entity-relation graphs. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07, pages 571–580, New York, NY, USA, 2007.
ACM.

[5] C. H. Q. Ding, T. Li, and M. I. Jordan. Convex and semi-nonnegative matrix factorizations. IEEE
Trans. Pattern Anal. Mach. Intell., 32(1):45–55, Jan. 2010.

[6] Q. Gu, J. Zhou, and C. H. Q. Ding. Collaborative filtering: Weighted nonnegative matrix factorization
incorporating user and item graphs. In Proceedings of the SIAM International Conference on Data
Mining, SDM 2010, April 29 - May 1, 2010, Columbus, Ohio, USA, pages 199–210, 2010.

[7] H. Gui, J. Liu, F. Tao, M. Jiang, B. Norick, and J. Han. Large-scale embedding learning in heterogeneous
event data. In Data Mining (ICDM), 2016 IEEE 16th International Conference on, pages 907–912.
IEEE, 2016.

[8] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel, S. Yogev, and S. Ofek-Koifman. Personalized
recommendation of social software items based on social relations. In Proceedings of the 2009 ACM
Conference on Recommender Systems, RecSys 2009, New York, NY, USA, October 23-25, 2009, pages
53–60, 2009.

[9] T. Hofmann. Collaborative filtering via gaussian probabilistic latent semantic analysis. In SIGIR 2003:
Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, July 28 - August 1, 2003, Toronto, Canada, pages 259–266, 2003.

[10] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In Proceedings
of the 8th IEEE International Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa,
Italy, pages 263–272. IEEE Computer Society, 2008.

[11] M. Jamali and M. Ester. A matrix factorization technique with trust propagation for recommendation
in social networks. In X. Amatriain, M. Torrens, P. Resnick, and M. Zanker, editors, Proceedings of the
2010 ACM Conference on Recommender Systems, RecSys 2010, Barcelona, Spain, September 26-30,
2010, pages 135–142. ACM, 2010.

[12] G. Jeh and J. Widom. Simrank: a measure of structural-context similarity. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 23-26, 2002,
Edmonton, Alberta, Canada, pages 538–543. ACM, 2002.

30



[13] M. Ji, J. Han, and M. Danilevsky. Ranking-based classification of heterogeneous information networks.
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