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ABSTRACT

The problem of spectral quantification for magnetic resonance spectroscopic

imaging (MRSI) is addressed in this thesis. We present a novel approach to

solving this problem, incorporating both spatial and spectral prior informa-

tion. More specifically, a new signal model is proposed which represents the

spectral variations of each molecule as a subspace and the entire spectrum as

a union-of-subspaces. The proposed model enables an efficient computational

framework to quantify the unknown spectral parameters using both spectral

and spatial prior information. Particularly, based on this model, the spec-

tral quantification can be solved in two steps: (1) subspace estimation based

on the empirical distributions of the spectral parameters obtained by initial

spectral quantification imposing the spectral constraints, and (2) parameter

estimation for the union-of-subspaces model imposing the spatial constraints.

The proposed method has been evaluated using both simulated and exper-

imental data, producing very impressive results. The resulting algorithm is

expected to be useful for any metabolic imaging studies using MRSI.

In this thesis, background materials including a brief review of the existing

spectral quantification methods are firstly presented. Then the proposed

subspace spectral model is introduced followed by a detailed description of

the resulting quantification algorithm. Finally, spectral quantification results

from both simulated and in vivo MRSI data are presented to demonstrate

the performance of the proposed method.
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CHAPTER 1

INTRODUCTION

1.1 Problem Formulation

Spectral quantification for magnetic resonance spectroscopic imaging (MRSI)

is addressed in this thesis. Specifically, we assume that the measured MRSI

signal at spatial location x with L molecules is represented as

d(x, t) =
L∑
`=1

c`(x)φ`(β(x), t) + n(x, t), (1.1)

where c`(x) denotes the molecular concentration for the `th molecule, φ`(β, t)

is the corresponding spectral basis function and n(x, t) is the additive noise.

The functional form of φ`(β, t) can be obtained either from quantum me-

chanical simulation or experiments while β is to compensate the spectral

variations under different experimental conditions [1]. The problem of spec-

tral quantification is to derive the quantitative molecular information from

the measured MRSI data. In practice, molecular concentrations are adequate

for most applications, therefore the objective of this work is to accurately es-

timate the parameters {c`}L`=1 in Eq. (1.1).

1.2 Motivation

Magnetic resonance spectroscopic imaging is a unique tool for non-invasive,

label-free molecular imaging (i.e., without using exogenous contrast agents).
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In contrast to magnetic resonance imaging (MRI) that collects signals from

only the water molecules, MRSI acquires spatially resolved spectra, which

contain information from various physiologically important molecules (e.g.,

metabolites and neurotransmitters) [2]. With this capability, MRSI promises

to significantly impact many applications, from early detection of diseases like

tumors [3–5] to basic scientific studies on metabolism [6, 7]. Most applica-

tions require quantitative derivation of molecular information, which makes

spectral quantification a crucial step in MRSI. However, obtaining accurate

spectral estimates is rather challenging due to the low signal-to-noise ratios

(SNR) of the measured data, especially for high resolution acquisitions and

the nonlinearity of the underlying optimization problem [1].

While many computational solutions have been proposed to address the

problem of spectral quantification in recent decades, among the most pop-

ular are parametric approaches [8–12] incorporating spectral prior informa-

tion which absorb the spectral priors in the form of spectral basis functions

that can be obtained from either quantum mechanical simulations [13–15] or

in vitro experiments. Spectral priors of this nature provide much stronger

constraints compared to those used in the linear prediction based methods

[16,17], improving the spectral estimation. However, these methods quantify

the MRSI data for each spatial location independently and the estimation

variances are often too large to be useful in practice, particularly for high

resolution MRSI. To address this problem, some recent MRSI quantifica-

tion methods have also incorporated the spatial prior information, which

proves to significantly reduce the underlying estimation uncertainty [18–21].

Nevertheless, such formulation often leads to solving a large nonlinear opti-

mization problem, which suffers from severe computational complexity, pre-

venting these solutions from practical use. Given the importance of spectral

quantification to quantitative metabolic imaging studies using MRSI and
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the limitations of the current approaches, a new method which can effec-

tively and efficiently incorporate both spectral and spatial prior information

is demanded.

1.3 Main Results

In this work, we propose a new framework to solve the spectral quantification

problem for MRSI, which effectively incorporates both spatial and spectral

prior knowledge in a computationally efficient way. The main results of this

work are summarized as follows.

Firstly, we propose a novel signal model for MRSI which represents the

spectral distribution for each molecule as a subspace (instead of a parametric

function) and the entire spectrum as a union-of-subspaces. This new repre-

sentation transforms the formulation of spectral estimation from a nonlinear

problem into a linear one, which enables effective and efficient incorporation

of spatio-spectral priors.

Secondly, with the proposed model, we develop a computational algorithm

which solves the problem in two steps: (1) subspace estimation for individual

molecules based on their empirical distributions, and (2) parameter estima-

tion by solving a linear least-squares problems with incorporation of spatial

regularization.

Finally, the proposed approach has been evaluated using both simulated

and experimental data, producing significantly improved estimation results.

We believe the resulting algorithm will be useful for any quantitative metabolic

studies using MRSI.
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1.4 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 is devoted to a literature review. Several existing spectral quan-

tification methods are discussed, including the linear prediction based meth-

ods, methods imposing spectral constraints alone and methods imposing both

spectral and spatial constraints. The weakness and strengths of each method

are also discussed.

In Chapter 3, the proposed subspace signal model is introduced. More

specifically, the motivation of the proposed model is first given, followed

by the definition and characteristics of the proposed model. The model

is also justified heuristically using a computational simulation. Moreover,

incorporation of spatial prior information into the proposed model has also

been discussed using the Bayesian estimation theory.

Chapter 4 presents the resulting spectral quantification algorithm enabled

by the proposed subspace model. Particularly, the proposed method solves

the spectral quantification problem in two steps: (1) subspace estimation

based on the empirical distributions of the spectral parameters imposing

the spectral constraints, and (2) parameter estimation imposing the spatial

constraints.

In Chapter 5, the performance of the proposed method is analyzed based

on spectral quantification results from both simulated and real experimental

MRSI data.

Chapter 6 concludes this thesis.
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CHAPTER 2

BACKGROUND

2.1 Linear Prediction Based Methods

From spin physics, the spectroscopy signal with L′ spectral components (or

peaks in the spectral domain) can be modeled as a linear combination of

exponential functions:

d(tm) =
L′∑
`′=1

c`′e
i2π4f`′ tme−tm/T2,`′ + ξ(tm),m = 0, 1, ...,M − 1, (2.1)

where {c`′}L
′

`′=1 are linear coefficients related to spin densities, {4f`′}L
′

`′=1 are

the frequency shifts and {T2,`′}L
′

`′=1 are the relaxation times and ξ(tm) is the

noise (often Gaussian and white in practice). Based on Eq. (2.1), obtaining

the optimal parameters in a maximum likelihood sense entails solving the

following optimization problem:

min
c`′ ,4f`′ ,T2,`′

M∑
m=1

||d(tm)−
L′∑
`′=1

c`′e
i2π4f`′ tme−tm/T2,`′ ||22. (2.2)

The problem in Eq. (2.2) is often a complex nonlinear problem with many

local minima where common nonlinear least-squares optimization methods

often result in high computational complexity and poor performance.

However, the signal model in Eq. (2.1) adopts a similar formulation to those

used in classic harmonic retrieval problems. Therefore, harmonic retrieval
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algorithms based on linear predictability can be used to efficiently solve the

problem in Eq. (2.2) with reasonable performance. A number of harmonic

retrieval methods have been proposed, such as Prony’s method [22], Tufts

and Kumaresan method [16,23,24] and Hankel singular value decomposition

(HSVD) [17]. Among these methods, the Tufts and Kumaresan method and

HSVD become the most popular methods for spectral quantification in the

field of magnetic resonance spectroscopy (MRS) or MRSI. In this thesis,

we give a brief review of the HSVD algorithm. The Tufts and Kumaresan

method shares the similar spirit of HSVD; readers may refer to [16].

The HSVD algorithm assumes the signals are uniformly sampled with sam-

pling interval 4t (i.e., tm = m4t) and estimates the unknown parameters in

Eq. (2.1) from the measured data in a non-iterative fashion. For simplicity,

we rewrite the measured spectroscopy signal in a more compact form:

dm =
L′∑
`′=1

c`′z
m
`′ + ξm, (2.3)

where z`′ = ei2π4f`′4te−4t/T2,`′ , dm = d(m4t) and ξm = ξ(m4t). Instead of

directly solving a nonlinear least-squares problem, HSVD manipulates a 2D

Hankel matrix D formed by the measured data as

D =


d0 d1 . . . dM ′

d1 d2 . . . dM ′+1

...
...

. . .
...

dK dK+1 . . . dM−1


, (2.4)

where K = M−M ′−1. The fact that {dm}M−1m=0 have the linear predictability

of order L′ without the existence of noise ensures that the corresponding

D should have a rank of L′ and can be decomposed using singular value

decomposition [17]:
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D = UL′ΛL′VL′ , (2.5)

in which ΛL′ is an L′×L′ sigular value matrix, UL′ is the left singular vector

matrix and VL′ is the right singular vector matrix. In practice, the rank

of D is often much larger than L′ in the presence of noise and Eq. (2.5) no

longer holds. In this case, the decomposition in Eq. (2.5) is performed on

the rank-L′ approximation of D instead.

On the other hand, it can be ascertained that D can also be factorized by

(in the noiseless case) [17]:

D = DleftDright =


ẽ

ẽZ

...

ẽZK


[
c Zc . . . ZM

′
c
]
, (2.6)

where ẽ is a row vector whose elements are all ones, Z is an L′×L′ diagonal

matrix whose diagonal entries are {z`′} and c is a column vector composed

of {c`′}. Note that the factorization in Eq. (2.5) and Eq. (2.6) are related

through a non-singular matrix Q, which leads to the estimation of Z by

diagonalizing U+
b Ut, where Ub and Ut denote the matrices with the bottom

and top rows removed from UL′ respectively, and (·)+ denotes the Moore-

Penrose psudo-inverse. With Z determined, {z`′} can be extracted from its

diagonal, which in turn yields the estimation of {4f`′} and {T2,`′}.

Although HSVD solves the nonlinear optimization problem in a compu-

tationally efficient way and usually performs well when the measured data

have high SNR, its estimation accuracy will largely reduce when the noise

increases significantly, which is often the case in practice, especially for MRSI

studies. This is because the underlying degrees of freedom is often very large
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for Eq. (2.1), which results in large estimation uncertainty when the SNR is

low. In addition, HSVD is a biased estimator in the presence of noise since

the low-rank truncation would introduce undesired bias into the estimates.

2.2 Spectral Quantification Imposing Spectral

Constraints

A major limitation of the spectral quantification methods based on Eq. (2.1)

is its large degrees of freedom (i.e., L′ is usually a large number in practice),

which leads to large estimation variances especially when the SNR is low.

To address this issue, incorporation of the spectral prior information is often

necessary. A popular approach to achieving this is to impose the spectral

constraints in the form of predetermined spectral basis functions [8–12]. More

specifically, the single voxel spectroscopy signal with L molecules are modeled

as

d(tm) =
L∑
`=1

c`e
i2π4f`tme−tm/T2,`φ̃`(tm) + ξ(tm),m = 0, 1, ...,M − 1, (2.7)

where φ̃`(·) is the spectral basis function for the `th molecule, 4f` is the

corresponding frequency shift and T2,` is the relaxation time. This model can

be derived from Eq. (2.1) with the assumption that the spectral components

associated with the same molecule have the same relaxation parameter. To

see this, we explicitly express {φ̃`(·)}L`=1 as

φ̃`(tm) =
L′′∑
`′′=1

c`′′e
i2π4f`′′ tm , (2.8)

where L′′ denotes the number of specrtal components associated with the

`th metabolite. As can be seen, absorbing Eq. (2.8) into Eq. (2.1) leads
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to the signal model in Eq. (2.7) with {4f`}L`=1 accounting for the overall

frequency shifts. However, instead of estimating {c`′′}L
′′

`′′=1 and {4f`′′}L
′′

`′′=1

from the noisy data as in the linear prediction based method, these unknown

parameters can be predetermined by either in vitro experiments or quantum

mechanical simulations [13–15]. Figure 2.1 illustrates two examples of the

spectral basis functions obtained from simulations shown in [25]. With the

spectral basis functions predetermined, the underlying degrees of freedom

have been largely reduced in that L is usually very small compared to L′,

which leads to significantly improved estimation accuracy as reported in [9–

12].

Figure 2.1: Spectral basis functions for N-acetylaspartate and glutamine,

respectively, as is shown in [25].

The formulation in Eq. (2.7) results in a maximum likelihood estimation
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by solving

min
c`,4f`,T2,`

M∑
m=1

||d(tm)−
L∑
`=1

c`e
i2π4f`tme−tm/T2,`φ̃`(tm)||22. (2.9)

An efficient way to solve this optimization problem is to apply the variable

projection strategy [26,27] where the estimation of the nonlinear parameters

is decoupled from that of the linear parameters, significantly reducing the

computational complexity.

2.3 Spectral Quantification Imposing Spatial

Constraints

In spectral quantification for MRSI, exploitation of spectral prior information

alone (i.e., solving the optimization problem in Eq. (2.11) voxel-by-voxel) is

often inadequate, as the SNR is usually even lower especially for high reso-

lution acquisitions. Much effort has been made to further improve the quan-

tification accuracy for MRSI, by exploiting prior information along spatial

directions. To this end, the state-of-the-art methods all share the same strat-

egy where the use of spatial regularization is adopted to implicitly impose

the spatial constraints [18–21]. More specifically, they solve the following

regularized least-squares problem jointly for all the voxels:

min
c`,4f`,T2,`

M∑
m=1

||d(x, tm)−
L∑
`=1

c`(x)ei2π4f`(x)tme−tm/T2,`(x)φ̃`(tm)||22

+λR({c`}, {4f`}, {T2,`}),

(2.10)

where R(·) is some regularization function and λ is the tunable parame-

ter. An alternative view of spatial regularization is based on the well-known

Bayesian estimation theory where the prior distributions of the unknown pa-

10



rameters are known [28]. In the sense of maximum a posteriori (MAP), the

optimal estimates should maximize the following quantity:

ln(P (d|{c`}, {4f`}, {T2,`})) + ln(P ({c`}, {4f`}, {T2,`})), (2.11)

where d is composed of the measured data. In the case of Gaussian white

noise, this formulation is equivalent to Eq. (2.10).

Many spatial regularization functions have been explored, such as the one

that corresponds to the Gaussian Markov random field prior [20], weighted-

L2 function [29] and total variation function [21, 29]. While most spatial

priors have significantly improved the spectral quantification for MRSI, the

optimization in Eq. (2.10) often results in heavy computational complexity

because of its high-dimensionality of the searching space and nonlinearity.
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CHAPTER 3

THEORY

3.1 Subspace Spectral Model

The conventional spectral model represents the noiseless spectroscopic signal

with L compounds (or molecules) as

s(t) =
L∑
`=1

c`φ`(β, t), (3.1)

where c` denotes the molecular concentration for the `th component and

φ`(β, t) is the corresponding spectral basis function [1]. In the context of

MRSI, both c` and φ`(β, t) depend on the spatial location, therefore the

spectroscopic imaging signal can be expressed as

s(x, t) =
L∑
`=1

c`(x)φ`(β(x), t). (3.2)

The functional form of the spectral basis function can be obtained from

either quantum simulations or in vitro experiments where the parameters β

are used to accommodate the spectral variations under practical conditions

(e.g., lineshape and frequency shifts, etc.). With this signal representation,

the spectral quantification is often formulated as a challenging nonlinear

problem. Conventional methods determine c`(x) and β(x) for each spatial

location independently and their estimation uncertainly is usually too large,

especially for high resolution acquisitions with low SNR. Joint estimation of
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c`(x) and β(x) for all the voxels with incorporation of spatial constraints

proves to reduce the estimation variances, but it usually results in solving a

highly complex nonlinear optimization problem (see Chapter 2 for details).

In this thesis, we propose a novel subspace model to represent the paramet-

ric spectral basis function for each molecule. More specifically, we assume

that φ`(β, t) resides in a Q`-dimensional subspace spanned by {b`,q(t)}Q`
q=1

and express φ`(β, t) as

φ`(β, t) =

Q∑̀
q=1

a`,qb`,q(t). (3.3)

The subspace model in Eq. (3.3) is motivated by the fact that the spectral

distributions of an individual molecule, which are currently represented by a

family of functions φ`(β, t), often reside in a low-dimensional subspace when

the random vector β varies over a small range, as is often the case in prac-

tice. To heuristically justify this property, we take N-acetylaspartate (NAA),

myo-inositol (mI) and glutamate (Glu) as examples. For each molecule, we

generated a set of spectral functions {φ(βm, t)}Mm=1 (with M = 5000) using

quantum mechanical simulations [13–15] with parameter vector β consist-

ing of frequency shifts 4f and relaxation times T2. We further assume β

is uniformly distributed with 4f varies over [−5, 5] Hz and T2 varies over

[150, 350] ms, [100, 300] ms and [75, 275] ms for NAA, mI and Glu respec-

tively according to the literature values [30]. The generated spectral functions

{φ(βm, t)}Mm=1 are indeed highly linearly dependent for a particular molecule.

To see this, we form the following Casorati matrix for each molecule using

{φ(βm, t)}Mm=1 and calculate its corresponding singular values:
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C =


φ(β1, t1) φ(β1, t2) . . . φ(β1, tn)

φ(β2, t1) φ(β2, t2) . . . φ(β2, tn)

...
...

. . .
...

φ(βM , t1) φ(βM , t2) . . . φ(βM , tn)


. (3.4)

Figure 3.1 illustrates the singular value distributions of the Casorati matrices.

As it can be seen, the singular values correspond to each molecules decays

rapidly (rank < 16 in contrast to M = 5000), indicating that {φ(βm, t)}Mm=1

indeed reside in a low-dimensional subspace.

Combining the subspace representation for each spectral component, the

entire spectrum can be expressed using a union-of-subspaces model:

s(x, t) =
L∑
`=1

Q∑̀
q=1

a`,q(x)b`,q(t), (3.5)

where a`,q absorbs the c` in Eq. (3.2). This union-of-subspaces representa-

tion transforms the formulation of spectral quantification from a nonlinear

problem into a bilinear one. This novel representation enables effective and

efficient incorporation of spatio-spectral constraints, as shown in Chapter 4.

3.2 Exploitation of Spatial Priors

Incorporation of spatial priors has been demonstrated to be useful to improve

spectral quantification [18–21]. A common practice is to follow a Bayesian

approach by maximizing the posterior distribution of the observed data with

specific priors over the parameter maps. Under the conventional signal rep-

resentation, this Bayesian formulation leads to rather complex optimization

problems with spatial regularizations over the nonlinear parameters. In con-

trast, the proposed union-of-subspaces model enables more efficient incorpo-
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Figure 3.1: Singular value distributions of the Casorati matrices defined in

Eq. (3.4) for the spectral basis functions of NAA, mI and Glu respectively.

Note that the singular values decay rapidly, signifying the low-rank nature

of C. Equivalently, {φ(βm, t)}Mm=1 reside in a low-dimensional subspace.

ration of the spatial prior information by maximizing the following posteriors:

ln(P (d|{al,q})) + ln(P ({al,q})), (3.6)

where d is composed of the measured data and {a`,q} are the linear coefficients

in Eq. (3.5). Note that the spectral estimation problem associated with

formulation (3.6) only regularizes over the linear parameters, which leads to

a much simpler optimization problem.
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CHAPTER 4

ALGORITHM

4.1 Subspace Estimation

Estimation of the underlying subspace for each individual spectral compo-

nent (or molecule) is an important step in the proposed method. This pro-

cedure requires the prior distribution P (β) which is usually not accessible in

practice. In the proposed method, we use the empirical distribution to ap-

proximate P (β). To see this, let βi denote the parameter vector associated

with the spectroscopic signal at location xi. From a particular MRSI dataset,

we can have a set of such parameters obtained from every voxel, denoted as

{βi}Ii=1 (where I is the total number of voxles) which is a series of samples

drawn based on P (β). These samples determine an empirical distribution of

β as

P̃ (β = θ) =
1

I

I∑
i=1

δ{β:β=θ}(βi), (4.1)

where δA is the indicator function of set A. The Glivenko-Cantelli theorem in

statistics states that the empirical distribution in Eq. (4.1) is asymptotically

identical to P (β), which ensures P̃ (β) to be a reasonable approximation of

P (β) when I is a large number [31], as is often the case for MRSI. Therefore,

the subspace for the `th spectral component can be estimated by the singular

value decomposition of the following Casorati matrix:
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C =


φ(β1, t1) φ(β1, t2) . . . φ(β1, tn)

φ(β2, t1) φ(β2, t2) . . . φ(β2, tn)

...
...

. . .
...

φ(βI , t1) φ(βM , t2) . . . φ(βI , tn)


. (4.2)

We choose the conjugate of the most dominant Q` right singular vectors of

C as {b`,q(t)}Q`
q=1. As reported in [1], Q` is selected such that the Q`+1th

singular value decays below -50 dB.

It remains to obtain the sample spectral functions {φ`(βi, t)}Ii=1 for each

molecule. To address this, the proposed method solves the following nonlin-

ear optimization problem voxel-by-voxel for all the locations (i = 1, 2, · · · , I):

{c∗i,`},β∗i = arg min
{ci,`},βi

N∑
n=1

∥∥∥∥∥d(xi, tn)−
L∑
`=1

ci,`φ`(βi, tn)

∥∥∥∥∥
2

2

, (4.3)

where {tn} are sampling indexes and d(xi, tn) denotes the measured noisy

data correspond to s(xi, tn). Note that this processing step is the same

as what is done in conventional parametric quantification methods (e.g.,

QUEST [12]) but the estimated {c∗i,`} and β∗i are used to determine the

subspace structure instead of being treated as the final estimates, as is the

case in conventional methods.

It is worthwhile to note that for a fixed distribution P (β), different trials

will generate different sample values according to P (β) such that the cor-

responding Casorati matrices vary as well. However, it can be proved that

when the number of samples is large enough, these Casorati matrices all share

the same subspace. The detailed discussion of the proof is beyond the scope

of this thesis and will be addressed in future research. In addition, when the

SNR of the measured data is too low as is often the case, especially for high

resolution MRSI, the {β∗i }Ii=1 as estimated in Eq. (4.3) usually results in a
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biased approximation of P (β). This problem can be handled by determining

{β∗i }Ii=1 at a lower spatial resolution where the SNR is improved. This strat-

egy is reasonable since {β∗i }Ii=1 are only used for subspace estimation rather

than as a final estimates, which is another strength of the proposed method

[1].

4.2 Spectral Quantification

Once the subspace structure (i.e., basis functions {b`,q(t)}Q`
q=1) for each spec-

tral compound has been determined, the problem of spectral quantification

is reduced to estimation of a`,q in Eq. (3.3) from the measured data. As

discussed in Chapter 3, joint estimation for all the spatial locations together

with incorporation of spatial priors is desirable and proves to significantly re-

duce the estimation uncertainty. Some recent spectral quantification methods

absorb the spatial constraints but at the cost of largely increased computa-

tional complexity. In contrast, the union-of-subspaces signal model (3.3) is a

linear representation which simplifies the incorporation of spatial constraints.

To see this, within the Bayesian framework (as discussed in Chapter 2), the

underlying parameter estimation problem can be formulated as

{a`,q}∗ = arg min
{a`,q}

ln(P (d|{al,q})) + ln(P ({al,q})). (4.4)

In practice, the noise in the measured data can be assumed as being Gaussian

and white, therefore the likelihood term in Eq. (4.4) can be rewritten as

ln(P (d|{al,q})) =
∑
i,n

∥∥∥∥∥d(xi, tn)−
∑
`,q

a`,q(xi)b`,q(tn)

∥∥∥∥∥
2

2

+ const. (4.5)

18



To simplify the notation, we denote the linear coefficients for a particular

basis as a`,q = [a`,q(x1), a`,q(x2), ..., a`,q(xI)]
T and the collection of all the

coefficients as a = [aT1,1,a
T
1,2, ...,a

T
1,Q1

, ...,aTL,1,a
T
L,2, ...,a

T
L,QL

]T [1]. Further-

more, we represent ln(P ({al,q})) as a function of a and denote it as R(a).

With the above notation, Eq. (4.4) can be reformulated as

a∗ = arg min
a

∑
i,n

∥∥∥∥∥d(xi, tn)−
∑
`,q

a`,q(xi)b`,q(tn)

∥∥∥∥∥
2

2

+R(a), (4.6)

which is essentially a linear least-squares optimization problem with spatial

regularization. While spatial priors of any form can be easily imposed into

the formulation, two types of spatial constraints are the most popular: (a)

weighted-L2 regularization, and (b) total variation regularization [1]. The

idea behind both formulations is to impose edge-preserving spatial smooth-

ness onto the linear coefficients, which is motivated by the fact that in most

biological samples, only limited types of tissues exist where the molecular

concentrations are expected to be smooth. For weighted-L2 regularization,

R(a) is chosen to be

R(a) =
L∑
`=1

λ`

Q∑̀
q=1

‖Wa`,q‖22 , (4.7)

where the λ` controls the trade-off between data-consistency and spatial

smoothness while W is a edge-preserving weighting matrix derived from the

auxilliary anatomical images [32]. For total variation regularization, R(a)

can be expressed by

R(a) =
L∑
`=1

λ`

Q∑̀
q=1

‖∇a`,q‖1 , (4.8)

where ∇ denotes the gradient operator.
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In this thesis, we focus on the weighted-L2 regularization to demonstrate

the feasibility of the proposed method. Changing into total variation regu-

larization is also within the reach since the formulation only regularizes over

the linear coefficients. With weighted-L2 regularization, the optimization

problem in Eq. (4.6) becomes a quadratic programming problem and can be

solved by many algorithms such as the preconditioned conjugate gradient

[33].

The final concentration for the `th molecule (c`) can be computed as

c`(x) =

Q∑̀
q=1

a`,q(x)b`,q(0). (4.9)

This can be justified by assuming that the `th spectral component can be

represented as

s`(x, t) =

Q∑̀
q=1

a`,q(x)b`,q(t) = c`(x)ei2π4f`te−α`tφ̃`(t), (4.10)

where 4f` represents the frequency shift, α` is the damping factor and φ̃`(t)

is the basis function obtained by quantum simulation. Then c` is equivalent

to
∑Q`

q=1 a`,q(x)b`,q(0) if φ̃`(t) is normalized properly.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 Simulation Study

The performance of the proposed method has been evaluated and compared

to two different quantification methods using 2-D MRSI simulation data.

The simulated data was synthesized based on Eq. (2.7) using the spectral

structures obtained from NMR-SCOPE [15], a standard software generating

spectral basis functions based on quantum mechanics. The data were com-

posed of six common molecules, namely, N-acetylaspartate (NAA), creatine

(Cr), choline (Cho), myo-inositol (mI) and glutamate (Glu). The spatial dis-

tributions of the molecular concentrations and relaxation times were chosen

to be smooth within each tissue (e.g., gray matter, white matter and cere-

brospinal fluid) but varies across different tissue types. Considering that the

inter-voxel field inhomogeneity can be effectively removed using the method

proposed in [34,35] and the residual intra-voxel field inhomogeneity is usually

negligible, in this study, the frequency shifts {4f`} were not included. Ad-

ditive Gaussian and white noise was also added into the data. The sampling

bandwidth was set as 2000 Hz and the matrix size was 128× 128.

The proposed method was first evaluated by a Monte-Carlo study with

40 realizations, comparing the quantification results obtained from the pro-

posed method and QUEST which is a conventional quantification algorithm

imposing only the spectral constraints [12]. Figure 5.1 illustrates the quan-

21



tification accuracy along spatial directions including standard deviation of

the estimates from the Monte-Carlo studies and the concentration maps of

different molecules estimated in one of the realizations. Figure 5.2 illustrates

the quantification accuracy along the spectral direction using a set of repre-

sentative spectral fitting results including the spectra synthesized from the

estimated parameters and the error spectra compared to the ground truth.

The figures show that the proposed method has significantly improved the

estimation accuracy and reduced the spatial variations compared to QUEST,

which indicates effective incorporation of both spectral and spatial prior in-

formation.

The proposed method was also compared to one of the state-of-the-art

quantification methods imposing both spatial and spectral constraints pro-

posed in [21], using a similar Monte-Carlo study. Figure 5.3 shows the es-

timation standard deviations in the Monte-Carlo study and the estimated

concentration maps in one realization. As can be seen, the two methods

achieved comparable performances both qualitatively and quantitatively in

terms of relative errors for the estimated concentration maps. However, it

took the method in [21] approximately 6.8 hours to produce these results

while the proposed method only took about 10 minutes. As expected, the

proposed method is significantly more computationally efficient.

5.2 In Vivo Study

To further validate the proposed method under practical conditions, two in

vivo experiments were also conducted. The first experiment acquired a set

of data from a healthy subject on a 3T Siemens Trio scanner using an echo-

planar spectroscopic imaging (EPSI) sequence with water suppression [36]

and outer-volume saturation [37]. The echo time was 30 ms, the echo spacing
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Figure 5.1: Simulation results showing the quality of spatial estimation,

including (a) ground truth concentration distributions for NAA, Cr, Cho

and Glx, concentration distributions estimated in one of the realizations of

the Monte-Carlo study using (b) QUEST and (c) the proposed method,

and standard deviation (SD) maps (normalized by the true concentrations)

for (d) QUEST and (e) the proposed method. The mean SDs for individual

molecules are also shown in red texts. Note the proposed method

significantly improves the accuracy of the estimated concentrations

compared to QUEST.
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Figure 5.2: Simulation results showing the quality of spectral estimation,

including spectra from two representative voxels marked by the red and

blue dots shown in rows (a) and (b), respectively. The additive noise and

estimation errors are also shown in red. Note the proposed method

produces significantly better spectral variations than QUEST.

was 1.42 ms and the in-plane resolution was 4.6× 4.6 mm2 [1]. The residual

water and lipid signals were removed using the method proposed in [38].

The inter-voxel field inhomogeneity was also corrected before quantification

using the B0 maps obtained from an auxiliary scan. Figure 5.4 compares

the concentration maps estimated by QUEST and the proposed method.

The figure shows that the estimates produced by QUEST have large spatial

variations, which has been significantly reduced by the proposed method.

These estimation results are consistent to the simulation study shown in Fig.

5.1 and Fig. 5.2.

The second experiment was designed to validate the proposed method for

processing high resolution MRSI data. To this end, another set of data

was acquired from a healthy subject using the recently developed SPICE
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Figure 5.3: Simulation results comparing the estimated concentration maps

from our previous method and the proposed method: (a) true concentration

maps for NAA, Cr, Cho and Glx; (b) concentration maps estimated using

the state-of-the-art method described in [21]; (c) concentration maps

estimated using the proposed method; and (d-e) relative error maps for the

results in (b) and (c), respectively. The average relative L2 errors for the

entire brain are also shown (in red texts). Note that the computation time

is around 7 hours for the previous method, and only 10 minutes for the

proposed method.
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Figure 5.4: In vivo results from an MRSI data acquired using the EPSI

sequence, including (a) noisy spectra from the voxels marked by the blue

and red dots, (b) quantification results from QUEST including the

synthesized individual spectral components and the concentration maps

(note the mI maps are scaled by a factor of 3 for better visualization), and

(c) quantification results from the proposed method.

technique [34, 39] with the following imaging parameters: 230 × 230 mm2

field-of-view (FOV), 2.5× 2.5 mm2 in-plane resolution, TR/TE = 260/4 ms

and 1.78 ms echo spacing. Figure 5.5 shows the quantification results from

the proposed method. As it can be seen, both the concentration distributions

and spectral decompositions are of high quality, which is very encouraging

considered such a small voxel size.
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Figure 5.5: In vivo results from a high resolution MRSI data acquired using

the SPICE technique, including (a) two spectra from the voxels marked by

the blue and red dots and (b) quantification results from the proposed

method including spectral decomposition and the concentration maps.
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CHAPTER 6

CONCLUSIONS

The problem of spectral quantification for noisy MRSI data has been ad-

dressed in this thesis. The low SNR of the measured data and high degrees

of freedom makes this problem rather challenging. Previous studies have

proven that incorporation of both spatial and spectral prior information is

very useful to improve the quantification accuracy. However, the current

spectral models imposing spatio-spectral constraints often lead to highly

complex nonlinear optimization problems which are very difficult to solve

in practice. To address this issue, we present a new approach to spectral

quantification for MRSI using a subspace spectral model. This novel model

represents the spectral variations of each molecule using a subspace and the

entire spectrum as a union-of-subspaces. The proposed model transforms

the formulation of spectral quantification from a nonlinear problem into a

linear one, which enables effective and efficient incorporation of prior infor-

mation. The proposed method has been evaluated using both simulated and

experimental data, producing very accurate quantification results in a com-

putationally efficient way. The resulting algorithm is expected to be useful

for any quantitative metabolic imaging studies using MRSI.
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