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ABSTRACTS 

Remote Sensing of Soybean Maturity Dates via Drones 

High-throughput phenotyping (HTP) using remote sensing is a fast developing 

technology, which has the capacity to reduce the time it takes to measure phenotypic traits in the 

field. HTP shows particular promise as a method for predicting plant maturity. Maturity is the 

date where 95% of the pods reached mature color (R8 growth stage) and is commonly recorded 

on all yield plots in breeding programs by periodically walking through experiments and visually 

estimating maturity dates. Precise maturity dating is a time critical task; therefore, satellites and 

other previously developed methods of remote sensing would not be applicable to this research. 

To combat the limitations of other methods of remote sensing, we constructed a two-camera 

mounted Unmanned Aerial Vehicle (UAV) platform with the capacity to capture visible and 

near-infrared (NIR) images. This study was done in three broad steps: the acquisition of multi-

spectral images using UAVs, constructing composite images of the visible and (NIR) images, 

and extracting digital values to build a model to predict maturity dates from images. Using these 

procedures, we were able to develop a binary prediction model from the multi-spectral image 

data and achieved over 91% accuracy in classifying soybean maturity. The maturity model was 

validated in an independent breeding trial with a different plot type.  These results show that 

remote sensing can be effectively used to estimate the maturity of plots, but the analysis of 

images needs to be more efficient before it can be used routinely. 

 

Automated Greenhouse SCN Screening System 

 Heterodera glycine (Ichinohe 1952) or soybean cyst nematode (SCN) is a pest of 

economic importance to soybean (Glycine max (L.) Merr.) in the USA and around the world. 
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From 2003-2009, SCN was estimated to reduce soybean yields more than any other disease or 

pest in the U.S.A. Methods of control include crop rotation and nematicides, but the most 

effective form of control is the use of resistant soybean cultivars. The current, established 

greenhouse screening method uses soil-filled crocks suspended in thermoregulated water baths to 

control the soil temperature. No current screening method controls the soil moisture to maintain 

optimal levels for SCN survival and propagation. With the use of soil moisture probes that 

automatically controlled an irrigation system, we were able to maintain the moisture levels at a 

constant level. Reproduction of the SCN was improved, with a significant increase in the number 

of cysts counted on the soybean roots. Overall, these results demonstrate that maintaining soil 

moisture increases the effectiveness of greenhouse screening methods for SCN. 

 

Promiscuous Nodulation 

 Soybean (Glycine max.) is an important source of oil and protein for the U.S.A. and has 

the potential to be a staple crop in Africa because of its high protein seed and the benefits of 

nitrogen fixation from the symbiotic relationship with rhizobium bacteria. Soybean has a natural 

relationship with Bradyrhizobium japonicum, which is not indigenous to the tropical soils in 

Africa. For soybean to fix nitrogen with B. japonicum, inoculants of this bacteria would be 

needed, which are generally not available to small-holder African farmers. The cowpea strain of 

rhizobium bacteria is indigenous to the soils throughout Africa, although it does not nodulate 

most US soybean cultivars. Some soybean accessions from the USDA Soybean Germplasm 

Collection can nodulate with the cowpea strain and these are called promiscuous nodulators. The 

objective of this study was to identify additional accessions from the germplasm collection that 

are promiscuous nodulators. By screening plants in inoculated pots in a greenhouse, 415 
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accessions were evaluated for their ability to nodulate and if the nodules were effective. Of the 

lines tested, 200 were able to form effective, nodules and 42 lines showed no foliar signs of 

chlorosis due to nitrogen deficiency. Accessions that stood out were PI 429330 (Nigeria) for the 

highest number of nodules produced, and PI 281883C (Indonesia) for the one of the highest 

average nodule weights.  
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CHAPTER 1 

 

Remote Sensing to Predict Soybean Maturity Dates via Drones 

Introduction 

 There have been many applications of remote sensing in agriculture. For example, 

aircraft have been used since the late 1920’s to aid in U.S. soil surveys. Technology has since 

improved vastly in aiding agricultural professionals with the unique challenges they are 

presented. Current examples of the use of remote sensing include the estimation of yield (NASA 

1977; Doraiswamy et al., 2003; Prasad et al., 2006), crop stress (Ustin et al., 1998), and 

environmental problems (Song et al., 2010). 

 First proposed in 1960 by the National Research Council, the Large Area Crop Inventory 

Experiment (LACIE) was an experiment aimed at developing a method for estimating production 

of the wheat crop worldwide. This did not become feasible though until the launch of the 

Landsat satellite on July 23, 1972, which allowed large scale remote sensing of wheat production 

to become reality, thus it became the first U.S. government sponsored program aimed at 

examining the feasibility of using remotely sensed satellite data to estimate wheat production 

over large areas (Nellis et al., 2009). Prior to LACIE, these estimations relied heavily on 

statistics and reports released by foreign countries (Erickson, 1984).  The program was intended 

to establish an efficient analysis of the Landsat satellite and meteorological data in a timely and 

accurate manner and to create an estimate of global wheat production within 10% of the true 

estimate 90% of the time (NASA, 1977), referred to as the 90/90 criterion. The LACIE 

experiment became a joint operation comprised of the National Aeronautics and Space  

Administration (NASA), the US Department of Agriculture (USDA), and the National Oceanic 

and Atmospheric Administration (NOAA) (NASA, 1977; Erickson, 1984).  
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The LACIE experiment monitored three areas of major wheat production: the United 

States Great Plains, regions of Canada, and regions of the USSR (NASA, 1977). The basic 

approach of this experiment was to use land area planted, derived from Landsat data, and 

weather data, acquired from the World Meteorological Organization (WMO), to produce a model 

for wheat production in that area (Erickson, 1984). This approach found much success in the 

areas monitored in the Soviet Union. In August of 1977, the LACIE experiment produced its first 

accurate estimate for wheat, a spring wheat crop in the Soviet Union. The LACIE experiment’s 

initial early estimate proved to be off by only six percent, while their final estimate was off by 

about one percent of the actual figure released by the USSR (NASA, 1977). Predictions were 

less successful in Canada, because of their different agricultural practices in growing wheat. At 

the time, Canada field size was generally smaller than that of the USSR and these smaller fields 

were at the resolution limits of Landsat 1. Canada also grew more crops that appeared similar to 

wheat from the data acquired from the Landsat satellite. Both issues led to inaccurate estimates 

of the land area planted for Canadian wheat production (Erickson, 1984).  

Despite these limitations, the LACIE experiment showed that crop production 

estimations could be successfully made with satellites. In the 1980’s, a follow up program, 

Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing 

(AgRISTARS), continued the work of its predecessor. Both the LACIE and AgRISTARS 

programs developed methods for regional crop identification, condition assessment, and defined 

the physics of the relation between spectral measurement and biophysical properties of crop 

canopies and soils, and these methods are still in use today (Moran et al., 1997). According to 

Bailey and Boryan (2014), “These programs were successful at generating unbiased statistical  
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estimates of crop area at the state and county level and more importantly reducing the statistical 

variance of acreage indications from farmer reported surveys”. 

 For remote sensing in agriculture, Vegetative Indices (VI) often play a role in evaluating, 

simplifying, and putting data into decipherable forms. These VIs vary on what they monitor or 

evaluate from the crop/field conditions. The Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Water Index (NDWI), Leaf Area Index (LAI), and Vegetation Condition 

Index (VCI) are some examples of widely used indices.  

 Of the VIs used, NDVI tends to be the most popular of these indices (Gao, 1996). Studies 

using NDVI have demonstrated its ability to measure crop canopy chlorophyll content (Rulinda et 

al., 2011), detect early drought conditions (Song et al., 2010), and estimate crop yield 

(Doraiswamy et al., 2003; Prasad et al., 2006). The popularity of NDVI stems from its close 

relationship with canopy Leaf Area Index (LAI) and fraction of Absorbed Photosynthetically 

Active Radiation (fAPAR) (Atzberger, 2013). “Due to its almost linear relation with fAPAR, the 

NDVI can be readily used as an indirect measure of primary productivity” (Atzberger, 2013). 

Biophysical variables, (physical variations that can be observed in the plant ranging from plant 

structure to chlorophyll content), combined with NDVI can be used as an indirect measurement of 

plant maturity. Chlorophyll content, for example, has been related to the growth stage, 

photosynthetic activity, and plant stresses (Ustin et al., 1998).   

 Advances in low cost, high-throughput genotyping has rapidly increased the rate of genetic 

improvements and breeding efficiency (Jannink et al., 2010, Li et al., 2014, Montes et al., 2011). 

In contrast, high-throughput phenotyping has seriously lagged genotyping capacity (Araus and 

Cairns, 2014; Liebisch et al., 2015). The current typical approach to phenotyping is for an expert 

to visually evaluate plants or plots. There has been more demand recently for quicker and  
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more effective ways of phenotyping to keep pace with and support the improvements in 

genotyping. 

 Liebisch et al. (2015) recently produced a pipeline for phenotyping maize traits via aerial 

remote sensing. Multi-spectral images were taken regularly throughout the growing season to 

extract parameter values that correlated with ground measurements with the intent to identify 

phenological traits and morphological characteristics. They were able to show that it is possible to 

phenotype traits via aerial remote sensing at full canopy cover. For this, two row plots had higher 

reliability than one row plots. The study also demonstrated the timeliness of aerial remote sensing 

compared to that of ground-based methods (e.g. tractor mounted sensors). 

 Meng et al. (2013) was able to successfully predict the optimal harvest time for soybean 

through regression analysis of variations of NDVI and NDWI using imagery from the HJ-1 

satellite constellation system belonging to China. This experiment looked to reduce the problems 

of within-field spatial variation that previous meteorological based regression models did not 

account for, with the overall objective to develop a model that led to optimal harvest yields and 

efficient use of time.  

 The two indices used in the Meng et al. (2013) study were significantly associated with 

harvest date, and the coefficients of determination were 0.403 and 0.595 for NDVI and NDWI 

respectively. The Root Mean Square Errors were 1.23 and 1.26 days. This study resulted in 

predictions of the optimal harvest date to within one day with over a 50% success rate, and within 

three days with over a 90% success rate. While the experiment proved to be successful, the author 

expressed the need to have a more accurate prediction model implemented for multi-temporal 

image analysis. With UAVs being able to capture multi-spectral images in a timely, daily manner, 

they are a reasonable choice for capturing images. 
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 Zhang et al. (2014) performed a case study to look into the application of commercial 

UAV’s to monitor crop conditions in a field through remote sensing. The team was able to 

construct NDVI mosaics of the fields using images collected with optical (visible) and NIR (Near 

Infrared) cameras. When they monitored a study in a farmer owned field that had different fertilizer 

treatments in soybean, they were able to identify which treatments had more positive effects on 

plant growth and yield. Also detectable by the UAVs was armyworm damage in wheat, although 

a severe storm caused lodging just prior to surveillance of the field. 

 Zhang et al. (2014) discussed factors that may be challenges for commercial use of the 

UAVs for producers and researchers. First being the cost of equipment used. While Zhang used 

more expensive LARS (Low Altitude Recon System), which can range from 20,000 – 70,000 

USD, there are many low cost commercial units available today. Commercial units may lack some 

of the ability of the LARS, but they are capable of completing flight missions given appropriate 

weather conditions. Cameras used for the capture of visible and NIR images are also expensive 

and can cost upwards of 7,000 USD. In addition, the time required to process images to make 

mosaics can be an additional 3 hours of work, on top of the time needed to acquire images from 

the field.  

Rating the maturity date of soybean experimental lines and cultivars is very labor and 

time intensive for breeders. The current method used to rate maturity dates is to visually check 

each plot at least weekly until all plots are mature. Plots are typically rated as mature when 95% 

of the pods on the plants in plots reach their mature color (Fehr et al., 1971). It is common for 

private industry breeding programs to have tens of thousands of plots that need to be evaluated 

each growing season, and the repeated trips through fields to record plant maturity requires a  
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large amount of time. Reducing the amount of time required to record these maturity dates would 

free time for other activities during the busy fall season. 

With the use of satellites, remote sensing was shown to correctly detect soybean maturity 

to determine optimal harvest dates (Meng et al., 2013). Satellites show much promise in 

agricultural remote sensing and have been widely used because of the availability of the data, but 

due to the delay between the satellite passing over the same area and the chance of 

atmospheric/weather conditions affecting image quality, it would be hard to implement its use 

for something that is time critical such as soybean maturity dating. Other options such as aerial 

imagery via aircraft would be too costly to be effectively used in small programs or those with 

fields in multiple locations.  

In the FAA reauthorization bill signed in 2012, the FAA and the Unmanned Aircraft 

Systems (UAS) industry were required to work together to develop a comprehensive plan that 

would fully integrate UAVs into the regulatory framework (Watts et al., 2012). This eventually 

lead to new policies being put in place in 2016 for commercial use of UAVs that includes laws 

dictating how drones can be flown and the requirement of a remote pilot certificate. UAVs 

provide the unique ability to survey crops daily or even multiple times a day, weather conditions 

permitting. Other promising characteristics are the long flight duration, improved mission safety, 

flight repeatability due to improving autopilots, and reduced operational costs when compared to 

manned aircraft (Watts et al., 2012). 

A UAV was chosen for my study over the more extensively used satellites because UAVs 

have many advantages for image acquisition. Satellites have a set orbit, making time critical 

studies impractical, also resolution of the cameras may not be sufficient to capture the detail 

needed for predictions of small plots, and the images will not always be (near) vertical captures 
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of the object of interest (importance addressed below). Weather plays a factor in image quality 

for both satellites and UAVs as weather may be a hindrance to flight performance of UAVs, 

effectively grounding them. However, due to the flexibility of the UAV planning, flights during 

days with optimal weather are easily achievable. The biggest problem facing UAVs is the weight 

limit of each platform. Yet, it is possible to fix two cameras for multispectral analysis on many 

inexpensive platforms. For these reasons, in this study a UAV was chosen to develop a High 

Throughput Phenotyping Platform (HTTP) that would gather remote sensing data and with the 

use of machine learning, train a random forest model that will be able to accurately predict the 

maturity of soybean in a timely manner. The random forest model is a form of machine learning, 

used as regression model in this study. 

Materials and Methods 

The research plan can be split into three activities: acquisition of the remote sensing 

imagery, image processing, and extraction of data that are analyzed to make maturity predictions. 

All images were taken at a field located at the University of Illinois Crop Science Research and 

Education Center in Urbana, IL. The soybean plots used in the study were 6,400 plant rows of 

experimental lines derived from 106 different parental crosses from Dr. Brian Diers’ breeding 

program at the University of Illinois and five checks (IA2102, LD02-4485, IA3023, IA3048, and 

LD06-7620). All the plant rows were 1-meter long single row plots with a row spacing of 0.76 

meters. The plots were planted on 6/9/2014, and the plant row plots were not replicated. All 

ground truth data of maturity ratings were gathered by Dr. Diers’ group by visual estimates. 

Soybean plants were considered fully mature at the R8 growth stage, defined as 95% of the pods 

on the plants having turned to their mature color. Visual estimates were taken 3-4 days apart. 
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Image Acquisition 

Multi-spectral images used in the study were collected with a UAV that was purchased 

from 3D Robotics (San Diego, California). The UAV purchased is the model X8 octocopter, 

which was chosen for its low cost, easy “Ready to Fly” package, and its ability to autonomously 

fly with set GPS coordinates. 

To capture images, cameras that capture visual and near-infrared light were mounted on 

the UAV facing directly down. Visible and NIR light was used due to the strong contrast 

between these wavelengths for reflectance from vegetation. Two Cannon PowerShot S110 12 

MP Digital Cameras equipped with complementary metal-oxide semiconductor sensors were 

used. To capture the near-infrared images, one camera was sent to Kolari Vision (Raritan, New 

Jersey), which made modifications to the camera by installing a 720 nm long pass filter.  

To continuously capture images when the UAV was flying, the cameras were programed 

with a script to capture an image every second. To cover the entire field, the UAV was 

programmed using the Mission Planner ground station software to fly a scripted route using 

GPS. Overlap of the images taken was 80% forward overlap and 60% side overlap. Options 

available in the Mission Planner software allowed for computer generated flight plans that 

account for image capture delay and then adjustments in the flight speed and route were made to 

produce a flight plan with the desired amount of overlap. The script produced had the UAV 

flying at 6 m sec-1 at an altitude of 95 m. The images produced have a coverage footprint of 

approximately 138.8-by-104.1 m, and the spatial resolution was 3.47 cm/pixel. The UAV was 

flown on multiple dates so that maturity predictions could be made across the time that the plots 

matured. The images were captured on 7/24, 8/25, 9/4, 9/19, 9/23, 9/26, 9/30, 10/6, 10/20. The 

large gap between the final two image dates was due to unfavorable weather conditions and crew 
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unavailability because of the priority of harvest. Multiple dates of image capture were needed for 

accurate model building and maturity prediction. 

Image Processing 

 Each image was selected based on quality before being used. Quality selection was done 

by both visual checks and software analysis. Images that were blurry or did not capture areas of 

interest were discarded. Image quality was also determined using the quality score, which is a 

software measurement of the image sharpness, given by the image software Photoscan Pro, and 

images with a quality score less than 0.6 were discarded.    

The individual images were combined into orthophotos for data extraction. Permanent 

place markers, or ground control points (GCP), were located throughout the field and served as 

landmarks for stitching together images (Figure 1.1). These GCPs were plywood boards, roughly 

0.5 meter by 0.5 meter, painted white with a black cross through the center. The GCPs were 

mounted onto metal poles approximately a meter from the ground. The GPS coordinates of the 

GCPs were taken using a survey grade Trimble GPS unit (Trimble Navigation, Ltd, Sunnyvale, 

California). These coordinates were used to geo-reference the orthophotos. A calibration board 

was also placed in the field and used as a place marker. The calibration board was roughly 1 

meter by 1 meter, with a checkered pattern of 2 black and 2 white blocks. In addition to being 

used as place markers, the calibration boards were used in the normalization of the digital values 

extracted from the images. 

Using the stitching software Agisoft PhotoScan Professional (Agisoft LLC, St. 

Petersburg, Russia), the multiple images were combined into visible light and NIR orthophotos 

of the field. The GCPs uploaded with the GPS coordinates were manually identified in each 

image. This allowed the software to use the GCPs as reference points to combine the images. For 
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orthophoto construction, “Interpolation” mode in the “Build Mesh” stage was disabled. This 

caused the software to only use available points in the dense point cloud. “Mosaic” was set to 

“Blending mode”. During the texture generation process, this caused the software to only use 

pixels the shortest distance from the center of the image. This disables the software from 

overlapping the photos, or averaging them, improving the accuracy of the pixel values used. In 

the end, a geo-referenced orthophoto for visible light and a second for NIR were produced. The 

orthophotos were exported as Geo-TIFF format and later imported to GIS software, ArcGIS. In 

ArcGIS, the visible light and NIR orthophotos were used to generate a composite multispectral 

image. Each orthophoto was comprised of 3 bands, a Blue-channel, a Green-channel, a Red-

channel. Only the Blue-channel from the NIR image was used in the formation of the composite. 

This was due to concern over the potential that the Red-channel would be contaminated with 

visible light. 

Further refinement of the NIR/Visual light composite image was needed. The areas of 

interest (individual plots) were clipped out of the whole image, producing rectangular clippings 

of just the plant row blocks of interest. The number of rows and columns of the plant rows in the 

clipped block were noted for later use. 

Data Extraction and Model Building 

The remainder of the analysis was completed with the software program RStudio (The R 

Foundation for Statistical Computing 2015, version 3.2.2).  Using regression models and 

machine learning, the reflectance data were used to predict soybean plant maturity. The 

reflectance data used in the analysis were the pixel values, or Digital Numbers (DN), which 

measure the reflectance given off by plants. These DNs needed to be normalized for each date 

images were taken before they could be used in model building. The calibration board described 
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earlier was used as a standard form of light reflectance to normalize the DN of the remaining 

pixels in the images. 

 The reflectance values of the four bands that comprise the composite photos have a linear 

relationship with the DNs. The images from the different dates were normalized using the 

following equation: 

𝐵𝑙𝑎𝑐𝑘𝑇1,𝑘 = 𝑎𝑘 × 𝐵𝑙𝑎𝑐𝑘𝑇2,𝑘 + 𝑏𝑘  

𝑊ℎ𝑖𝑡𝑒𝑇1,𝑘 = 𝑎𝑘 × 𝑊ℎ𝑖𝑡𝑒𝑇2,𝑘 + 𝑏𝑘 

where BlackT1,k,  BlackT2,k (dark reference), WhiteT1,k, WhiteT2,k (bright reference) are the DNs of 

the band (k) of the image taken from time one (T1) and time two (T2) and ak is the slope and bk is 

the intercept (Hall et al., 1991, Yang and Lo, 2000). The DN of the dark reference object was 

extracted and averaged from 60 geo-stationary pixels at the black part of the calibration board for 

given bands of the multispectral image. The DN values were for the bright reference also 

originally to be extracted from the calibration board, but due to overexposure, the bright 

reference needed to be taken from another reference object. The new reference object chosen 

was a light grey shed next to the field. Due to it being not completely white, it was not 

oversaturated in the images. The image used as a reference image, “T1”, was taken on September 

19, 2014. Subsequent normalization coefficients of images were calculated using the previously 

given equation and applied to the whole image to accomplish the radiometric normalization. 

 Using the row and column number from each clipping, the plant row studies were broken 

down into their individual plots. In ArcGIS, the “Fishnet” function was used on the clippings to 

visually check that the plots contained the plant rows. From there, the normalized pixels were 

extracted for use in model building. Pixels were extracted two different ways to build two 

different models and to test if one was superior. First, pixels were extracted from the whole plot. 
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This included the whole row of plants and soil that was not covered by foliage. Potential 

problems that could arise from this method are that the soil from the image may skew the model 

and/or produce an invalid prediction. The second method used only the center three rows of 

pixels from each plot. Using only the center three rows reduced the amount of non-foliage pixels 

in model building and prediction analysis. 

 The DNs of the plots were averaged and associated with ground truth data of plot 

maturity. The ground truth data for each date and plot were labeled either as being “Mature” or 

“Non-Mature” at the time of the image capture. A random forest model was developed, using the 

R package ‘randomForestSRC’ (Ishwaran, 2015). The plant rows were divided into two even 

groups. Half were used to train the random forest model, using the DNs and the ground truth 

labeling. The second group was used to validate the effectiveness of the model to predict 

maturity. The predicted maturity dates produced by the random forest model were then compared 

to the ground truth data to calculate accuracy. 

Time Allocations 

Time inputs for this project varied by the step, and all time estimates below are for each 

day of image capture. Acquiring images is done during the summer and fall, but only requires 

one to two hours every four days starting from when the plants began to set pods until harvest. 

Image quality screening takes roughly an hour. Image processing can take up to three hours per 

image produced, and this time varies based on the processing speed of the computer used. 

Overall, the process can take 4-6 hours for each image; however, the actual time that a person 

needed to be present is roughly half this time. 

Extracting the data using the GIS software ArcGIS is tedious because someone has to be 

physically present throughout the process to insure optimum data accuracy. Current methods 
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require a person to clip segments of the field being studied which requires an hour of work for 

each composite image. After this, analysis in the statistical software R studio was used in the 

prediction model. The final step of extracting data from plots in one full composite image (6,800 

single row plots) takes upwards of eight hours; however, the actual input of human time is 

minimal. It took approximately 15-30 minutes to rewrite the code for each composite image and 

to insure that the script ran correctly.  

From start to finish, this process can take longer than 10 hours. The actual time that a 

human needed to be present was roughly 4-5 hours for each date the images were taken.  

Results 

The experimental plant rows used in this study were being developed as potential new 

cultivars for Illinois. They ranged in maturity from early maturity group (MG) II to late MG IV. 

Image quality was crucial to producing an accurate prediction model. Not all images were of 

sufficient quality and if possible, these poor quality images were not used in making composite 

images. When images were discarded, this potentially could leave gaps if many images in a row 

were of poor quality, and this led to a few blurred areas in some of the composite images. The 

main cause of blurriness was high wind and because of this, low wind was often the deciding 

factor on when to fly. This led to an increase of the quality of images captured. The use of a 

gyroscope or other free moving device to stabilize the cameras would aid in image quality; 

however, a gyroscope could not be used in this study because of the weight limits of the UAV 

used. 

Data collected in the experiment were analyzed with the random forest model using two 

different pixel extraction methods. The first method used pixels from the whole plots and the 

second used the center three columns of pixels from each plot. Each of these methods were used 
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to build separate models using one half of the plot data and then tested on the other half. The 

accuracy of the maturity predictions for these two methods was similar (Figure1.2 and 1.3). The 

overall maturity prediction accuracy (the accuracy of the random forest model to correctly 

predict whether a plot was mature or not-mature on a given date compared to the ground truths) 

was approximately 91%. The kappa coefficient, which controls for correct predictions that result 

from random chance, was 66%. This demonstrates that there was good agreement between the 

ground truth maturity estimates and the random forest model predictions, and they did not just 

match due to chance. Though a high overall accuracy was observed, there was difficulty in 

detecting the mature plots. Of the mature plot predictions, 75% were accurately estimated on the 

exact date of maturity. The remaining 25% were predicted to be mature early, when compared to 

the visual ground truths (Figure 1.2, Confusion Matrix). Vice versa, 33% of the mature plots 

according to the ground truth data were not predicted as mature on the visually estimated date.  

 In a previous study, Yu et al. (2016) trained a random forest model for maturity 

prediction using different source material that was grown in the same field as the current study. 

In the Yu et al. (2016) study, the model achieved a 93% overall accuracy when tested on plots in 

the same study that was used to train it. The Yu et al. (2016) model was then tested on the 

germplasm in the current study, which resulted in a slight decrease in accuracy to 91% for the 

analysis with both whole plots and center plot pixels (Figure 1.4 and 1.5). This shows that the 

maturity prediction models can be successfully applied to studies in which they were not 

developed. 

 The number of days to maturity predictions differed from the manually taken maturity 

notes is shown on Figure 1.6. As expected, the model trained with data from the current study 

had a higher percentage of correct predictions of the exact maturity date with a 77% accuracy 
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compared to predictions with Yu’s model that had a 49% accuracy. The model trained in the 

current study was able to predict maturity 91% of the time within +/-1 date (a date being a day 

when data was taken with the UAV, there were typically 3-4 days between these dates). Yu’s 

model had a similar success rate and was able to predict maturity 92% of the time within +/-1 

date. 

Discussion 

 The random forest model was able to accurately predict the maturity of soybeans with 

91% overall accuracy using both the model from Yu et al. (2016) and the model developed in the 

current study. The use of whole plot or center column of pixels had similar success in predicting 

soybean maturity, which suggests that soil captured in the images and other interferences did not 

affect the maturity prediction. Inaccuracies in predicting soybean maturity at least partially stems 

from how maturity is determined. Soybean maturity is based on pods losing their chlorophyll and 

this does not necessarily align with leaf chlorophyll loss and senescence, which is what is largely 

detected by the images taken by the UAV. Predictions are especially difficult when green stem 

disorder is present in the field or when green leaves still remain on a fully mature plant. Green 

stem disorder can result in plants reaching R8, with 95% of the pods turning to their mature pod 

color, but with plants retaining green leaves and stems (Hill et al., 2006). The random forest 

model could view the greenness as not a mature plant, resulting in an incorrect prediction. 

 The traditional method of estimating maturity done by walking through the field and 

manually dating when plots are going to be mature is also error prone. Within the Diers lab there 

were eight different people taking maturity notes during 2014, resulting in minor differences in 

maturity ratings depending on who rated the plots. Allowing the random forest to have an  
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acceptable amount of error, plus or minus one date, raises the accuracy of determining mature 

plots to 92% and 91% for the previous and new model, respectively (Figure 1.6).  

 While the model developed in the current study had a higher exact maturity prediction 

compared to Yu’s model (Figure 1.6), Yu’s model maintained a slightly higher accuracy when an 

error of plus or minus one date was allowed. It was expected that the new model would be better 

at predicting the exact date of maturity as it was trained using the same material was it was 

tested. Both models were developed using plant rows from the breeding program, but the 

material used to develop Yu’s model had a wider range in maturity when compared to the newer 

model’s source material. It is possible that this wider range in maturity resulted in Yu’s model 

performing better than the model developed in the current study; however, additional research is 

needed to verify this theory. 

 The main goal of this project was to set up a high throughput phenotyping pipeline that 

could be used to predict soybean maturity in a timely manner. The models developed were 

largely successful in predicting maturity, and the images from a single date can be processed in 

less than 10 hours, with only half the time human presence needed. This is less than the amount 

of time required to take manual notes in the field; however, improvements in the analysis 

pipeline could reduce the amount of time needed to predict maturity much further and would 

make high throughput phenotyping for predicting maturity a reality for soybean breeders. 
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Figures 
 

Figure 1.1. A. One of multiple place markers in the field that served as a permanent geo-referenced marker used in composite 

image formation. B. Calibration board, used for radiometric normalization of images, also served as geo-referenced place 

marker. C. A single, visual light image with place markers circled to show the presence of multiple place markers in images. D. 

A composite image containing both visual and NIR bands with place markers and calibration board circled. 
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Figure 1.2. Confusion matrix and statistics for maturities predicted using a random forest model developed in the current 

study and run with the pixels from whole soybean plots. Observed axis includes ground truth visual maturity recordings, 

predicted axis are maturity predictions from the random forest model.  
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*Accuracy was referred to as overall accuracy in results 
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Figure 1.3. Confusion matrix and statistics for maturities predicted using a random forest model developed in the current 

study and run with the pixels from the three center columns from each soybean plot. Observed axis is ground truth visual 

maturity recordings, predicted axis is the random forest model’s predictions.  

  

Confusion Matrix Accuracy Statistics 

*Accuracy was referred to as overall accuracy in results 
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Figure 1.4. Confusion matrix and statistics for the random forest model previously trained (Neil’s model) and run with the 

pixels from the whole soybean plot (Yu et al. 2016). Observed axis is ground truth visual maturity recordings, predicted axis is 

the random forest model’s predictions.  
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Figure 1.5. Confusion matrix and statistics for the random forest model previously trained (Neil’s model) and run with the 

pixels from the three center columns from each soybean plot (Yu et al. 2016). Observed axis is ground truth visual maturity 

recordings, predicted axis is the random forest model’s predictions.  
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Figure 1.6. Comparison of predicted soybean maturities with ground truth maturities based on visual field observations for 

both the random forest model from Yu et al. (2016) and the new trained model from the current study. The data were 

analyzed using the pixels from the whole plot. Each “Date” is a day that the UAV was flown over the field, Dates were usually 

3-4 days apart.  
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CHAPTER 2 

Automated Greenhouse SCN Screening System 

Introduction 

Heterodera glycine (Ichinohe 1952) or soybean cyst nematode (SCN) is a pest of 

economic importance to soybean [Glycine max (L.) Merr.] in the U.S.A. and around the world 

(Zhang et al. 2016). SCN is a parasitic round worm that infects roots of soybean plants. The life 

cycle of the SCN can be broken down into three stages: egg, juvenile, and adult. The juvenile 

stage of the nematode actively seeks out host plant roots. The females will then remain stationary 

for the remainder of its life cycle and after mating will swell to form an egg sack with their body, 

called a cyst. At the optimal soil temperature of 25°C, the life cycle is approximately 21 days, 

with the development process slower at lower temperatures (Lauritis, 1983). 

 SCN was first observed in the USA in North Carolina in 1954, and by 1959 it was 

reported in Illinois, Arkansas, Mississippi, Missouri, Tennessee, and Virginia (Noel, 1993). It is 

now present in all major soybean-producing states in the USA and is recognized as one of the 

leading soybean pests (Koenning and Wrather, 2010). From 2003-2009, SCN was estimated to 

reduce soybean yields more than any other disease or pest in the USA (Wrather et al., 2006; 

Koenning and Wrather, 2010). SCN may reduce yields up to 30% in fields without showing any 

symptoms, such as reduced plant height or chlorosis (Niblack, 2005).   

Forms of SCN control include crop rotation, resistant cultivars, and nematicides. Crop 

rotation is effective if the rotation leaves soybean and other host plants out of the rotation for 3-4 

years. Unfortunately, the typical Midwestern rotation of growing soybean every other year does 

not prevent the establishment of SCN in fields (Noel, 1993). The efficacy of other control 

options such as nematicides has been inconsistent and treated susceptible cultivars typically have 
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lower yields than untreated resistant cultivars (Young, 1996). The most efficient way to control 

SCN is to plant resistant soybean cultivars in rotation with non-host crops (Arelli, 2000). 

SCN populations were originally classified with a race system using soybean 

differentials. The system allowed for the classification of 16 different races (Riggs and Schmidt, 

1988). The race system was later replaced with a Heterodera glycine type system to better 

differentiate SCN populations (Niblack et al., 2002). 

In a study by Kopisch-Obuch and Diers (2005), segregation distortion was reported for 

the major SCN resistance gene rhg1 in F4 populations. They found that the number of plants 

homozygous for the rhg1 resistance allele that emerged in the field was less than expected based 

on Mendelian segregation ratios. The authors speculated that the phenomenon was not caused by 

random genetic drift, but some form of selection at the rhg1 locus. 

The rhg1 gene is responsible for the majority of resistance against SCN race 3 (HG type 

0 or 7) and race 14 (HG type 1.3.7) from several resistance sources (Concibido et al., 2004). 

There have been five resistance genes identified in soybean through traditional genetics studies 

(rhg1-rhg5) (Concibido et al., 2004), and the rhg1-b allele, derived from the plant introduction 

(PI) 88788, is the most common commercially used SCN resistance gene (Kim et al., 2010).  

Greenhouse screening is a reliable way to determine the SCN resistance of soybean 

genotypes. There have been studies to find the optimal soil temperature for the development and 

survival of SCN (Lauritis, 1983), and based these results, researchers have integrated the optimal 

temperature into thermo-regulated water baths used for SCN resistance evaluation (Niblack et 

al., 2002). Another major factor in determining the success of greenhouse screening for SCN 

resistance is soil moisture. Heatherly et al. (1982) studied the effects of soil water potential 

(SWP) in the upper 15 cm of soil on the development of cysts, and they found that the optimal 
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SWP was between -0.3 to -0.4 bars. Little work has been done, however, to develop methods to 

control soil moisture in greenhouse screens.  

The objective for this study was to develop a method to improve the accuracy and 

consistency of results from SCN resistance screening with an automated watering system that 

uses a soil moisture probe to maintain optimal soil water levels. This system utilizes the 

greenhouse thermo-regulated water bath method outlined by Niblack et al. (2002). Watering 

rates are critical in greenhouse SCN studies as either too much or too little water will reduce 

SCN reproduction. Providing the correct amount of water is especially difficult in these tests 

because the plants are grown in crocks that are in a water bath and therefore have no drainage, 

resulting in waterlogging when too much water is applied.  

Materials and Methods 

Evaluations were done by growing plants in a temperature regulated water bath in a 

greenhouse (Niblack et al., 2002). The evaluations included the genotypes LD01-5907 and 

LD00-2817P (Diers et al., 2010), which have resistance tracing to PI 437654; LD00-3309 (Diers 

et al., 2006), which has resistance from PI 88788; and the susceptible cultivars Macon (Nickell, 

1996), Lee 74 (Caviness et al., 1974), and IA3023. These genotypes and cultivars were 

germinated on germination paper 48 hours prior to the experiments being set up. The individual 

seedlings were transferred into plastic crocks fill with sterilized soil and partially submerged in 

the water bath. Each crock contained 23 PVC tubes that were each 16 cm high and 3 cm in 

diameter, with 22 containing soil and plants while one was empty and used for watering. The 

center, empty tube is filled with water everyday, allowing the water to percolate through the 

whole crook evenly. The soil in each tube was then inoculated with ~2000 SCN eggs of HG 

Type 0 and a germinated seedling was planted in each tube. The eggs were obtained from Alison 

Colgrove, a senior research specialist at the University of Illinois Urbana-Champaign. The plants 
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in tubes were arranged in an incomplete split plot design with automatic vs. manual watering 

being main plots and soybean genotypes and cultivars subplots. The main plots were replicated 4 

times and genotypes and cultivars were replicated 3-4 times in each whole plot, giving either 14-

15 total replications of a genotypes in both the manual and automated watering systems. Each 

crook was filled entirely, but this left unequal reps. Reasoning for this being it was unknown if 

having a crock partially filled would affect the moisture levels. The crocks were randomly placed 

in two rows in the water bath, so that it formed a 2x4 grid. The temperature of the water bath was 

set 27°C, and for the first week after planting, both the manual and automated systems were hand 

watered. At this stage, the root systems of the newly transplanted seedlings were not extensive 

enough to be watered by filling the center tube. Each PVC tube containing a plant was watered 

daily with approximately 5 mL of water. 

 For those crocks that were watered by hand (manual system), every morning the center 

PVC tube was watered at the same time (within 15 minutes of the hour). Hand watering worked 

by using a watering wand, or another narrow hose apparatus, and filling the center tube to the 

top. This allowed for each crook to receive approximately the same amount of water, with each 

PVC tube being capable of holding approximately 165 mL of water.  For those crocks watered 

with the automatic system, the center watering tube had a drip emitter attached. The drip emitter 

system is part of a commercial garden watering system. The system is comprised of a pressure 

regulator [Senninger 3/4" FPT x 3/4" FPT Low Flow Regulator 12 PSI (Clermont, Florida)], a 

stainless steel filter [JAIN irrigation (Jalgaon, India) ], 3/4” and 1/8” polyethylene tubing (Jain 

irrigation), pressure compensating emitters [Netafim (Hatzerim, Israel) ], and flush valves (JAIN 

irrigation). In a tube that contained a plant, an EC-5 Decagon soil moisture probe (Pullman, WA) 

was placed in the soil, with the prongs reaching a depth of approximately 6 cm. This probe 
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transmitted data to the greenhouse software, Argus (Surrey, BC, Canada), which activated a 

solenoid valve releasing water to each crock for a set amount of time, which was calibrated to 

release approximately 15 mL. The moisture level set to trip the solenoid valve was 51% 

Volumetric Water Content (VWC), this value was determined using the default moisture level 

settings of the EC-5 Decagon.  Due to the cost and practicality limitations, only two soil moisture 

probes were used, one for the automated watering system and the other for the manual. The soil 

moisture probe took soil moisture data at set time intervals for both the manual and automated 

watering systems for later comparison. The moisture probes took data every 15 seconds to 

determine if activation of the solenoid valve was needed.  

 After 28-30 days, the crocks were taken down, and the PVC tubes were soaked in water 

for 10 minutes prior to root extraction to reduce chances of root damage and dislodging of cysts 

from the roots. By pulling on plant stems, the roots were then removed from the tubes and rinsed 

under low water pressure to wash away soil. After removing as much loose material as possible, 

the roots were then placed in water filled 50 mL plastic tubes with caps. These were placed in a 

cold room until time allowed for the removal of the cysts. 

 For cyst extraction, a strong jet of water was used to dislodge the female cysts from the 

roots. The root mass was placed over a sieve with a 1 mm openings stacked onto a second sieve 

with a 250 micron openings (Fisher Scientific International, Inc., Pittsburg, PA). Female cysts 

were then counted under a light microscope, and the female index (FI), described by Niblack et 

al. (2002), was determined for each plant and used in the statistical analysis of the results. The 

formula for the FI is the average number of cyst on a tested line divided by the average number 

of cysts of the standard susceptible, with Lee 74 used as the standard susceptible line in this 
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study. If the value is higher than 0.1 (10 percent), the line is considered susceptible, or the SCN 

population is considered virulent and able to overcome resistance in the plant. 

Results 

 The plants watered with the automated system had a significantly (p <0.0001) greater 

number of females on their roots at the end of the experiment than plants manually watered 

(Table 2.1).  This was largely due to the significant (p <0.0001) increase of cysts forming on the 

susceptible cultivars (Lee 74, Macon, and IA3023) under the automated system compared to the 

manual system. The susceptible cultivars all had a significant increase in cyst number with the 

automated system, with a 185.5% (P < 0.0001), 62.5% (P < 0.0001), and 112.0% (P < 0.0001) 

increase for Lee 74, Macon, and IA3023, respectively. The three remaining tested lines, LD00-

3309 (resistance), LD00-2817P (resistant), and LD01-5907 (resistant), showed no significant 

(α=0.05) change in nematode number between the automated and manual watering systems 

compared to the manual watering system.  

The female index (FI) values of the genotypes watered with the automated system were 

lower than those manually watered (Table 2.2). The decrease was largely due to the 185.5% 

increase of cyst counts on Lee 74, the denominator used in calculating the FI.  

 After the initial week of individual plant hand watering, both the manual and automated 

watering had fairly consistent moisture levels (Figure 2.1), the manual system took additional 

time to level out. The automated system had a smaller standard deviation (automated = 1.53, 

manual = 2.67) for moisture levels after individual plant hand watering was concluded. Along 

with the reduced variation in moisture levels, the automated system allowed for the ability to 

easily raise or lower the VWC to the desired level.  
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Discussion 

 Plants of the susceptible cultivars watered with the automated had large and significant 

increases in cyst number compared to the manually watered plants. This was especially true for 

Lee 74, which had an increase in cyst number from 132 for manual watering to 377 for automatic 

watering (Table 2.1). In contrast, no significant increases in cyst number was observed for the 

resistant genotypes. This resulted in lower FI values for the resistant genotypes. Lower FI values 

were also observed for the susceptible cultivars Macon and IA3023 as the result of the greater 

cyst increase for Lee 74 than for the other susceptible cultivars. These differences did not result 

in any changes in the resistant or susceptible ratings of the genotypes in the test. 

Maintaining optimal moisture levels should improve SCN survivability and reproduction, 

leading to increases to cyst levels. Data collected from this experiment supports this theory. 

When watering of the center tube began (11/28, Figure 2.1) a benefit of the watering system is 

shown. Immediately after activation, the moisture level raised to the desired amount (51% VWC) 

and was maintained at this level consistently. After the initial week of hand watering each 

individual plant, the automated system leveled out to its specified VWC, the manual watering 

took a week to level out. This could indicate that this is a critical time (second week of study) for 

nematode development/survival, though additional research is needed to verify this.  Early 

differences in the crock moisture levels were apparent before watering began, and this was most 

likely caused during set up. While inoculating the soil and transplanting, the soil is kept moist, 

but not saturated. The soil is moistened without measuring the water used which can lead to 

moisture variability within and among the crocks. Due to budget and design constraints in 

building the automated system used in this study, the automated watering was controlled by a 

single moisture probe in one crock; however, because the same number of plants were grown in 
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each crock, similar levels of transpiration was expected to occur in each crock, and the single 

moisture probe was able to control the entire system.  

Ease of use was another justification for developing the automated watering system. 

While the automated system needs to be routinely checked for problems, the time regiment 

requirements are not as strict as the manual system. The manual system requires that the 

individual waters the plants at the same time daily. Failure to do so, even late by a couple of 

hours, will cause wilting in the plants and potentially decrease the survivability of the SCN. With 

manual watering, the person caring for the plants also has to know how much water crocks need 

based on the plant size and the amount of sun the plants receive. Too much water will inhibit 

nematode reproduction and too little will result in plant death. Because the amount of water 

plants receive with the automatic watering system is based on the soil moisture level, watering is 

automatically adjusted based on sunlight and plant size. Additionally, the automated system can 

be monitored via the Argus greenhouse control system. If there is a mechanical error and the 

moisture level drops below a critical level, alarm notices are sent to the greenhouse manager, 

allowing for human intervention. 
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Tables and Figures 
 

Figure 2.1. Time graph of the moisture levels of soils in both the automated and manual watering systems. Y-axis is percentage 

Volumetric Water Content (VWC); X-axis is date. 

 

 
 *red line represents when automated watering system was initiated 
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Table 2.1. Average number of female cysts that formed on the soybean roots of each line for both the automated and manual 

watering systems. 
 

 

 

 

*Indicates significant increase of cyst count on line under automated watering system compared to manual hand watering  

System Lee 74* IA3023* 
LD00-
2817P LD00-3309 LD01-5907 Macon* 

Manual 132 116 1.1 31 0.5 106 

Automated 377 245 1.6 40 0.5 172 
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Table 2.2. Female indices of the tested lines compared to Lee 74 for both the manual and automated watering systems. Female 

indices were obtained by taking the number of cysts for the tested lines, divided by the number of cysts on Lee 74 and 

multiplying by 100. Soybean genotypes with values that are below 10 are considered highly resistance to the SCN population. 

 

 

 

 

*Lee 74, IA-3023, and Macon all had a significant increase to cyst counts under the automated watering system compared to manual hand watering 

  

        Female Index on Tested Lines 

  

# 

Females   LD00- LD00- LD01-    
System  on Lee  IA3023 2817P 3309 5907 Macon   
Manual  132  87.7 0.9 23.7 0.4 80.3   

Automated   377   65.1 0.4 10.6 0.1 45.7   
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CHAPTER 3 

 

Promiscuous Nodulation 

Introduction 

 Soybean [Glycine max (L.) Merr.] is an important source of oil and protein for the USA, 

and has the potential to be a staple crop in Africa because of its high protein concentration and 

the benefits of the nitrogen fixation from the symbiotic relationship with rhizobium bacteria 

(Sinclair et al., 2014; Sanginga et al., 2002). For African farmers to benefit from this symbiotic 

relationship, they need to inoculate soil with Bradyrhizobium japonicum, the primary species of 

bacteria that nodulates soybean, or grow cultivars that nodulate promiscuously. Unfortunately, B. 

japonicum inoculant is often unavailable to small or subsistence farmers in Africa.  

While an option, the use of B. japonicum inoculants, even when available, may not be 

best course of action for farmers in Africa. Drought conditions and high temperatures found in 

tropical environments decrease the survivability of B. japonicum, which may make inoculant 

applications necessary each time a soybean crop is grown (Kueneman, 1984). Responses to 

Bradyrhizobium japonicum inoculant in African soils are often positive, but at times inconsistent 

depending on factors such as the host plant, the environment, and past field management 

(Sanginga et al., 1996). These factors have resulted in interest in developing promiscuous 

soybean cultivars that are compatible with the cowpea strain of rhizobium. The cowpea strain 

already has a large presence throughout the tropics, and was shown to survive in acidic soils and 

drought conditions (Kueneman, 1984).  Screening for promiscuous nodulation of soybean with 

indigenous cowpea strains of rhizobium would result in a more sustainable soybean production 

system. A goal of tropical soybean breeding efforts is to develop highly promiscuous soybean  
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lines that could match the amount of nitrogen fixation of B. japonicum, which can produce 300 

kg of N per hectare under ideal circumstances (Keyser and Li, 1992). 

 Increasing the amount of nitrogen fixed by soybean by breeding promiscuous cultivars 

that are capable of fixing nitrogen with indigenous rhizobium strains is one of the targeted paths 

of the International Institute of Tropical Agriculture (IITA) (Kueneman 1984). To meet this goal, 

it has been important to screen germplasm to identify sources of promiscuous nodulation (Keyser 

and Li, 1992; Pulver et al., 1985). 

 Previous germplasm screening work has been done to identify promiscuous soybean 

lines. Giller et al. (1998) stated that screening for promiscuous nodulation occurred as early as 

1981 when 400 soybean lines were tested. Research was then done to develop better methods to 

screen for promiscuous nodulation, and Gwata et al. (2004) reported that the amount of fixation 

by promiscuous nodules is correlated with leaf color or greenness. This method will be 

incorporated in this study to further screen soybean lines for promiscuous nodulation, by using 

both the “greenness” of the leaves and other factors such nodule number and weight to identify 

promiscuous lines. The objective of this study was to screen accessions from the soybean 

germplasm collection for the ability to promiscuously nodulate with the cowpea strain of 

rhizobium. 

Materials and Methods 

 Accessions were screened for the ability to promiscuously nodulate in greenhouse tests. 

The majority of the accessions screened were from Asian countries (365 entries), [many being 

from China (171 entries)], there were some from African countries (49 entries), and Williams 82 

from North America was included. Nineteen lines developed at IITA were included in the test 

because the IITA breeding program develops promiscuously nodulating cultivars.  
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The plants were grown in vermiculite (BFG Supply [Janesville, WI]) because there are 

limited nutrients available in this media and therefore would better show nitrogen deficiency 

symptoms when nodulation is ineffective. To prevent contamination of Bradyrhizobium 

japonicum in the tests, all seed, soil, and pots were sterilized. The vermiculite was sterilized in 

Bel-Art SP Scienceware Clavies High-Temperature Autoclave Bags (Fisher Science [Pittsburg, 

PA]) that were autoclaved at 20 PSI and 127°C for 2 hours before planting. The accessions were 

planted in 15 cm diameter plastic pots, one accession per pot, that were sterilized before planting 

by dipping in a ZeroTol 2.0 (BioSafe Systems L.L.C, East Hartford, CT) solution mixed at a 

ratio of 1:100 ZeroTol to water. The ZeroTol was additionally sprayed on the work area used for 

planting.  

Before planting the seeds, 6 g of granular peat inoculant was spread evenly in a 2.5 cm 

hole dug into the vermiculite media in each pot. This inoculant was the USDA3456 strain of 

cowpea inoculant provided by Patrick Elia, USDA-ARS. The seeds were placed on top of the 

inoculant to allow the roots to grow directly through the inoculant. Fifteen seeds from each 

accession were planted, unless a limitation on available seed prevented this. Prior to planting, 

seeds were sterilized for 10 minutes in a 5% sodium hypochlorite solution, using Clorox bleach 

as the source of hypochlorite (The Clorox Company, Oakland, CA). Seeds were then 

immediately triple washed in distilled water and sown into the vermiculite. 

In a greenhouse, the pots were placed into 27x42x6 cm water basins that were sterilized 

with the ZeroTol 2.0 solution described above. Greenhouse condition were set to approximately 

28°C/20°C day/night temperatures, and a 14-hour day length. The water basins were used to both 

water and fertilize the plants. The plants were fertilized days 14, 21, and 28 after planting by 

adding 150 mL of a 5 X modified Hoagland solution minus nitrogen (Imsande, 1981) per pot to 
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the water basins, which each typically had six pots. Thirty four days after planting, the plants in 

each pot were visually scored for their chlorosis level (Gwata et al. 2004) using a score of 1-5, 

with 1 given to pots that lacked nearly all chlorophyll and 5 for pots showing no signs of 

chlorosis (Figure 3.1). The number of plants that germinated in each pot was also recorded. 

After the plants were scored for chlorosis, they were uprooted, and the nodules were 

removed, checked for effectiveness, counted, dried, and weighed (these figures were done on a 

whole pot basis). The nodules were first tested for the presence of leghemoglobin by breaking 

open a nodule from each accession and scoring it for the presence of red/pinkish coloration. 

Nodules with the red/pinkish coloration were scored as effective. Nodules were then hand 

counted by removing them from the roots, and stored in paper coin envelopes (this measurement 

is not size dependent).  All the paper coin envelopes containing the nodules were then placed in a 

dryer for four days at 30°C. After this drying period, they were weighted using a Mettler 

PM4000 balance [Mettler-Toledo (Greifensee, Switzerland)]. 

Results 

 Because the goal of this experiment was to screen a large amount of germplasm to 

identify accessions that are potential sources of the promiscuous nodulation trait, only one 

replication of testing was performed for each accession. Correlations between nodulation traits 

were examined (Table 3.1). Because inconsistent emergence resulted in the number of plants 

varying from pot to pot, it was important to consider the correlation between the number of 

plants in pots and other traits. The chlorosis index (CI) was positively correlated with all of the 

nodulation traits, which was expected as this shows that on average, the more green plants were, 

the more nodulation and effective nodulation occurred. Nodule count and weight was determined 

both on a pot and plant basis and these values on a pot basis were more highly correlated with CI 
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than the values on a plant basis. The highest correlation with CI for the traits measured was 

nodule weight, followed by nodule count and effective nodules.  

The results were further examined by dividing lines into four groups based on the average 

number of nodules formed on a plant basis for each line (Table 3.2). The none group had no 

nodule formation, and low, medium, high, were roughly broken up into three groups with similar 

numbers of accessions. These groups were broken up evenly because of the lack of reference 

genotypes for defining groups. The high group provided further evidence that the CI was 

correlated with the average number of nodules (Table 3.2). Nearly half of the lines in the high 

group were a ranked a 5 on the CI scale, meaning they were fully green and showed no signs of 

chlorosis. As other groups were considered, the number of accessions that received CI rating of 5 

and 4 dropped rapidly. Inversely, the majority of high average nodule counts tended to be in the 

higher CI ranks (Figure 3.1). There was also strong correlation between the nodule weights and 

nodule counts, and the average nodule weights and nodule counts (Table 3.1). 

 There were 42 accessions with CI values of 5, meaning they showed no chlorosis. Of 

these accessions, 19 were from China, eight from India, four from Indonesia, three from Japan, 

two from Nigeria, six from Vietnam and one from Zimbabwe. The accession that produced the 

greatest number of nodules was PI 429330, which was collected in Nigeria. This accession had 

174 nodules and an average of 21.75 nodules plant-1 (Table 3.3). These nodules were rated as 

effective, and the accession had a CI of 5. The name of this accession is TGM 618, and it was 

developed by IITA, which suggests that it was likely developed to nodulate promiscuously. 

Other lines that were able to produce a high number of average nodules were PI587860, 

PI606419, and PI603563C. 
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Nodule weight was highly correlated with nodule counts (Table 3.1), due primarily to an 

increase in nodule number resulting in an increase in the overall weight of nodules per line. 

Because of this, evaluation based on the average weights of the nodules would be more effective 

than using the total nodule weights. Accession PI281883C had an average nodule weight of 90.6 

milligrams-1 (Table 3.3), while not the heaviest nodules in the study, it had the heaviest nodules 

for any accession with a CI score of 5. PI281883C, which was collected from Indonesia, also had 

an average of 16 nodules plant1.  

 Fourteen accessions were selected for inclusion in this study based on references in the 

literature that indicated that they may promiscuously nodulate (Keyser and Li, 1992; Pulver et 

al., 1985), (these lines are highlighted on Table 3.3). Of these accessions, one had a CI of 5 and 

two had CI values for 4. One of these accessions with a CI value of 4 was not nodulated. The 

IITA lines emerged poorly, and no plants emerged for eight of the lines. The low These IITA 

lines did not nodulate well in the test with only one line having a CI of 4, six with CI of 3 and 

four with CI of 2. Further research is needed to determine why these accessions and lines that 

were predicted to nodulate well were poorly nodulated. It is possible that they could respond 

better to other strains of cowpea rhizobium.  

Discussion 
 

 This test was a preliminary screening of germplasm to identify new sources of 

promiscuous nodulation. From this preliminary single replication test, accessions that showed 

little to no leaf chlorosis and good nodulation were identified. These accessions will need to be 

retested in replicated experiments to verify these results and to eliminate the possibility that 

nodulation was not the result of contamination with B. japonicum. Accessions with verified 



45 

 

promiscuous nodulation could then be tested to determine if they have unique genes controlling 

this trait.  

 Of the 19 IITA lines that early showed evidence of promiscuous nodulation in previous 

screenings, only 5 successfully nodulated in this study. The theory behind this low number being 

able to nodulate in this study was the due to the strain of cowpea rhizobia used. The lines may 

have not been able to nodulate with this specific stain used. 

Some correlations were apparent between nodulations traits, such as the nodule weights 

and nodule counts, and the average nodule weights and nodule counts. The total nodule weight 

and the nodule counts showed a strong correlation, as expected, but the average nodule weight 

and nodule counts did as well. The average nodule weights seemed to decrease in average weight 

as the number of nodules present increased. Further research would be needed to evaluate this 

trend.  

Correlations with CI are important in this study as it is our method to visually evaluate 

nitrogen fixation. CI was significantly correlated with average nodule count, average nodule 

weight, and effective nodulation (Table 3.1), which are all important traits for lines to efficiently 

fix nitrogen. CI is a useful trait, but not a perfect method for evaluating nitrogen fixation, as a 

few lines were able to score 4 and 5 while having no to very few effective nodules (Table 3.3), 

though these lines were shown to be outliers (Figure 3.2). Theories on how these lines 

maintained the high CI level while under nitrogen stress are that they are genetically better at 

coping with nitrogen stress, and some of the pots with these lines had fewer plants to emerge, 

further enabling the lines to reduce nitrogen stress. Overall, despite these outliers, CI still is an 

effective preliminary screening method to identify germplasm that can fix nitrogen by nodulation 

with the cowpea strain of rhizobium bacteria.
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Tables and Figures 
 

Figure 3.1. A representation of the scale used for the chlorosis index. From left to right, rank 5-1.  
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Figure 3.2. Box plots of the chlorosis index and average number of nodules per plant. 
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Table 3.1. Correlation values for promiscuous nodulation traits. Chlorosis index is a 1-5 scale with 1 = fully bleached and 5 = 

no signs of chlorosis, effective nodules is a rating of whether the nodules have red/pinkish cores which is associated with the 

ability to fix nitrogen, nodule counts are the number of nodules that formed in a pot, nodule weight is the dry weight of all the 

nodules found in the pot, and average count  is the number of nodules on a single soybean plant basis and average nodule 

weight is the average dry weight of individual nodules.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

†All correlation values are significant 

 ‡Effective nodules were run as a binary presence absent format, with presence of red/pinkish coloration as 1 and no 

red/pinkish coloration as 0  

 Plant Count 
Chlorosis 

Index 

Effective 

Nodules 

Nodule 

Counts 

Average 

Count 

Nodule 

Weight 

Average 

Nodule 

Weight 

Plant Count - 0.18 0.12 0.16 -0.10 0.14 -0.10 

Chlorosis Index  - 0.44 0.47 0.38 0.53 0.38 

Effective Nodules‡   - 0.52 0.44 0.58 0.44 

Nodule Counts    - 0.74 0.85 0.74 

Average Count     - 0.62 1.00 

Nodule Weight      - 0.62 

Average Nodule Weight       - 



49 

 

Table 3.2. Distribution of chlorosis index (CI) values after separating soybean accessions into four groups based on average 

nodule count per plant. 

† Average for all data not separated into groups. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distribution of the Chlorosis Index 

Average Count Level Mean Median Mode 
Percentage 

with a CI of 5 

Percentage 

with a CI of 4+ 

High 4.083 4 5 47% 74% 

Medium 3.286 3 3 6% 41% 

Low 2.653 3 3 0% 15% 

None 2.201 2 3 2% 12% 

Average† 2.768 3 3 10% 28% 
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Table 3.3. Ratings of accessions from the nodulation test. Plant count is the number of plants in the pot and evaluated for the 

line. Chlorosis index measures the chlorosis level of each accession with 1 = fully bleached and 5 = no signs of chlorosis. 

Effective nodules is a rating for the presence of leghemoglobin, 1 = red/pinkish color in the core of the tested nodule indicating 

the presence of leghemoglobin and 0 = brown core indicating no leghemoglobin present. Nodule number is the number of 

nodules on a whole pot basis. Nodule weights (milligrams) are the dry weight of nodules on a whole pot basis. Average count 

plant-1 is the average number of number of nodules on a plant basis and average weight nodule-1 is the average dry weight of 

individual nodules. Highlighted rows are fourteen accessions selected for previous indication for promiscuous nodulation.  

 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

(1-5) 

Effective 

Nodules 

Nodule  

Number 

Nodule 

Weights 

(mg) 

Average 

Nodule 

Number 

Plant-1 

Average 

Weight 

nodule-1 

(mg) 

PI429330 unknown Nigeria VIII 8 5 1 174 470 21.75 2.70 

PI567365 Ningxia China III 11 5 1 145 400 13.18 2.76 

PI475822B Xinjiang China III 8 5 1 134 500 16.75 3.73 

PI606367 (north) Vietnam VIII 8 5 1 133 340 16.63 2.56 

PI475818 Xinjiang China III 8 5 1 110 230 13.75 2.09 

PI578449 Minh Hai Vietnam IX 7 5 1 104 580 14.86 5.58 

PI374189 Madhya Pradesh India X 9 5 1 102 320 11.33 3.14 

PI429329 unknown Nigeria VII 5 5 1 94 290 18.80 3.09 

PI307882A Madhya Pradesh India IX 5 5 1 93 520 18.60 5.59 

PI606419 (north) Vietnam VIII 4 5 1 92 300 23.00 3.26 

PI497957 Bihar India X 11 5 1 91 350 8.27 3.85 

PI086006 Hokkaido Japan III 9 5 1 82 220 9.11 2.68 

PI605823 Ha giang Vietnam IX 8 5 1 76 300 9.50 3.95 

PI549019 Ningxia China V 11 5 1 75 160 6.82 2.13 

PI307896 Madhya Pradesh India IX 6 5 1 74 520 12.33 7.03 

PI603596 Fujian China III 8 5 1 73 450 9.13 6.16 

PI497952 Bihar India X 7 5 1 71 260 10.14 3.66 

PI603563C Shanxi China V 3 5 1 70 160 23.33 2.29 

PI567388 Shaanxi China V 10 5 1 69 250 6.90 3.62 

PI567343 Gansu China V 7 5 1 68 270 9.71 3.97 
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Table 3.3. (cont.)  

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 

Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI567303B Gansu China V 7 5 1 66 110 9.43 1.67 

PI281883C unknown Indonesia X 4 5 1 64 580 16.00 9.06 

PI175174 Uttar Pradesh India VI 7 5 1 58 120 8.29 2.07 

PI567568B Shandong China V 5 5 1 57 180 11.40 3.16 

PI171438 Sichuan China VII 11 5 1 55 270 5.00 4.91 

PI606412 (north) Vietnam V 3 5 1 54 190 18.00 3.52 

PI307882E Madhya Pradesh India IX 9 5 1 48 220 5.33 4.58 

PI441381 Java Indonesia VIII 6 5 1 48 260 8.00 5.42 

PI567074A East Java Indonesia VIII 10 5 1 41 240 4.10 5.85 

PI232992 Saga Japan III 2 5 1 37 160 18.50 4.32 

PI587860 Zhejiang China V 1 5 1 35 120 35.00 3.43 

PI175188 Uttar Pradesh India VII 2 5 1 34 30 17.00 0.88 

PI499955 Sichuan China VII 5 5 1 32 250 6.40 7.81 

PI567342 Gansu China V 3 5 1 27 110 9.00 4.07 

PI594890 Yunnan China VII 2 5 1 24 140 12.00 5.83 

PI441359 Java Indonesia VIII 6 5 1 24 200 4.00 8.33 

PI476892 (north) Vietnam VIII 5 5 1 19 120 3.80 6.32 

PI548469 unknown Japan VII 5 5 1 15 180 3.00 12.00 

PI476898 unknown China VIII 1 5 0 0 0 0.00 0.00 

PI587583D Jiangsu China VII 2 5 0 0 0 0.00 0.00 

PI594457A Sichuan China III 10 5 0 0 0 9.43 1.67 

PI603530C Shaanxi China V 3 5 0 0 0 16.00 9.06 

PI594885A Yunnan China V 7 4.5 1 24 140 8.29 2.07 

PI417054 Tohoku Japan III 4 4.5 1 12 100 11.40 3.16 

PI594770B Guangxi China VIII 5 4 1 100 330 5.00 4.91 

PI391586 Liaoning China III 11 4 1 84 150 18.00 3.52 
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Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 

Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI615450 Ca Mau Vietnam X 7 4 1 82 520 11.71 6.34 

PI578460 (north) Vietnam VIII 5 4 1 79 340 15.80 4.30 

PI567257C Jiangxi China VIII 9 4 1 66 360 7.33 5.45 

PI567315 Gansu China VII 5 4 1 59 280 11.80 4.75 

PI326578 unknown China VIII 5 4 1 51 160 10.20 3.14 

PI407769 Guangdong China VIII 3 4 1 51 300 17.00 5.88 

PI605862B Hai hung Vietnam VI 4 4 1 48 200 12.00 4.17 

PI381682 unknown Uganda VII 6 4 1 46 130 7.67 2.83 

PI203399 unknown Japan VIII 9 4 1 43 300 4.78 6.98 

PI567595A Shandong China III 9 4 1 42 190 4.67 4.52 

PI567107A East Java Indonesia VIII 7 4 1 42 250 6.00 5.95 

PI429328 unknown Nigeria VIII 11 4 1 41 190 3.73 4.63 

PI594839A Yunnan China VIII 8 4 1 39 180 4.88 4.62 

PI567250B Hunan China III 11 4 1 39 200 3.55 5.13 

PI240671 Luzon Philippines VIII 6 4 1 31 330 5.17 10.65 

PI468967 unknown Vietnam V 6 4 1 30 170 5.00 5.67 

PI603588 Shanxi China V 8 4 1 29 130 3.63 4.48 

PI567071A East Java Indonesia IX 12 4 1 28 200 2.33 7.14 

PI567377A Shaanxi China V 5 4 1 27 110 5.40 4.07 

PI594792A Yunnan China V 6 4 1 23 260 3.83 11.30 

PI587992C Sichuan China VII 7 4 1 19 100 11.71 6.34 

PI567130C East Java Indonesia IX 3 4 1 19 60 15.80 4.30 

PI594662B Guizhou China V 5 4 1 18 90 7.33 5.45 

PI200478 Shikoku Japan III 9 4 1 17 200 11.80 4.75 

PI561382 Jiangxi China VII 6 4 1 16 130 10.20 3.14 

PI407746 Shanghai China III 6 4 1 12 110 17.00 5.88 
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Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 
Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI567015 unknown Indonesia IX 2 4 1 12 120 6.00 10.00 

PI221715 North West South Africa VII 5 4 1 10 60 2.00 6.00 

PI437734 unknown China V 6 4 1 9 70 1.50 7.78 

PI441353 Java Indonesia VIII 3 4 1 9 30 3.00 3.33 

TGX 1937-1F    3 4 1 9 70 3.00 7.78 

PI518295 unknown Taiwan VII 2 4 1 8 80 4.00 10.00 

PI548444 Zhejiang China VIII 6 4 1 7 100 1.17 14.29 

PI407761 Shanghai China V 3 4 1 7 60 2.33 8.57 

PI171450 Kagoshima Japan III 5 4 1 7 10 1.40 1.43 

PI587567A Jiangsu China VII 6 4 1 6 40 1.00 6.67 

PI587633A Jiangsu China VII 3 4 1 6 90 2.00 15.00 

PI341251 unknown Taiwan IX 4 4 1 6 40 1.50 6.67 

PI594846 Yunnan China VIII 2 4 1 4 10 2.00 2.50 

PI567017A unknown Indonesia VIII 1 4 1 4 10 4.00 2.50 

PI416892 Hokuriku Japan III 5 4 1 3 >10 0.60 >10 

PI548447 Zhejiang China VIII 8 4 1 2 >10 0.25 >10 

PI594904 Sichuan China VII 5 4 1 2 50 0.40 25.00 

PI200498 unknown China VII 5 4 1 1 >10 0.20 >10 

PI603674 Jiangsu China III 4 4 1 1 10 0.25 10.00 

PI594568A Jiangxi China V 6 4 1 1 >10 0.17 >10 

PI507491 Tohoku Japan III 5 4 0 0 0 6.00 10.00 

PI548489 Zhejiang China VIII 2 4 0 0 0 2.00 6.00 

PI587568A Jiangsu China VII 2 4 0 0 0 1.50 7.78 

PI594751B Guangxi China VII 2 4 0 0 0 3.00 3.33 

PI090392 Tianjin China III 1 4 0 0 0 3.00 7.78 

PI561271 Zhejiang China V 3 4 0 0 0 4.00 10.00 
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Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 

Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI567521 Shandong China V 1 4 0 0 0 0.00 0.00 

PI567759 Jiangsu China V 7 4 0 0 0 0.00 0.00 

PI594567D Jiangxi China V 12 4 0 0 0 0.00 0.00 

PI603578 Shanxi China V 5 4 0 0 0 0.00 0.00 

PI603677A Jiangsu China V 6 4 0 0 0 0.00 0.00 

PI323555 Uttar Pradesh India IV 11 4 0 0 0 0.00 0.00 

PI567009A unknown Indonesia VIII 1 4 0 0 0 0.00 0.00 

PI417047 Hokuriku Japan VII 2 4 0 0 0 0.00 0.00 

PI506975 Kanto Japan VII 3 4 0 0 0 0.00 0.00 

PI084973 Saitama Japan III 8 4 0 0 0 0.00 0.00 

PI379559D Hyogo Japan III 5 4 0 0 0 0.00 0.00 

PI506529 Tohoku Japan III 3 4 0 0 0 0.00 0.00 

PI504492 unknown Taiwan 00 11 4 0 0 0 0.00 0.00 

PI606431 (north) Vietnam VIII 6 4 0 0 0 0.00 0.00 

PI145079 unknown Zimbabwe VII 1 4 0 0 0 0.00 0.00 

PI566957 East Java Indonesia IX 6 3.5 1 15 140 2.50 9.33 

PI567071B East Java Indonesia IX 10 3.5 1 21 60 2.10 2.86 

PI346306 unknown India V 9 3 1 150 220 16.67 1.47 

PI578451 (north) Vietnam IV 2 3 1 111 150 55.50 1.35 

PI303652 unknown China V 11 3 1 97 200 8.82 2.06 

PI548468 Mississippi United States VIII 5 3 1 60 240 0.00 0.00 

PI307880A Madhya Pradesh India IX 1 3 1 55 80 0.00 0.00 

PI603560 Shanxi China III 9 3 1 42 110 0.00 0.00 

PI229336 Kyushu Japan III 8 3 1 40 100 0.00 0.00 

PI578439 (north) Vietnam III 6 3 1 40 160 0.00 0.00 

PI171449 Niigata Japan III 6 3 1 39 110 0.00 0.00 
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Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 

Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI587597C Jiangsu China VIII 5 3 1 35 130 7.00 3.71 

PI086081 Hokkaido Japan III 6 3 1 31 150 5.17 4.84 

PI605861A Hai hung Vietnam VII 4 3 1 31 160 7.75 5.16 

PI393546 unknown Taiwan VIII 9 3 1 30 60 3.33 2.00 

PI603442 Nei Monggol China III 12 3 1 29 100 2.42 3.45 

PI374192A Madhya Pradesh India IX 7 3 1 27 180 3.86 6.67 

PI175191 Uttar Pradesh India VII 8 3 1 24 50 3.00 2.08 

PI170896 North West South Africa V 6 3 1 24 70 4.00 2.92 

PI587601E Jiangsu China VII 8 3 1 23 60 2.88 2.61 

PI221714 North West South Africa VI 11 3 1 23 100 2.09 4.35 

PI200548 Shikoku Japan III 7 3 1 20 >10 2.86 >10 

PI163308 Himachal Pradesh India X 4 3 1 19 60 4.75 3.16 

PI438282B unknown Japan VII 7 3 1 19 30 2.71 1.58 

PI507487 Tohoku Japan III 3 3 1 19 200 6.33 10.53 

PI605761 Lang son Vietnam VIII 6 3 1 18 50 3.00 2.78 

PI605833 Ha giang Vietnam IX 9 3 1 17 90 1.89 5.29 

PI504490 unknown Taiwan II 4 3 1 16 80 4.00 5.00 

PI603438E Nei Monggol China III 9 3 1 14 60 1.56 4.29 

PI567097B East Java Indonesia VIII 4 3 1 14 70 3.50 5.00 

PI507024 Kyushu Japan VII 8 3 1 14 70 1.75 5.00 

PI518757 unknown Taiwan III 5 3 1 14 140 7.00 3.71 

PI587622B Jiangsu China VII 6 3 1 12 80 5.17 4.84 

PI567347 Gansu China V 9 3 0 11 10 7.75 5.16 

PI464877 Jilin China III 11 3 1 10 50 3.33 2.00 

PI566992B unknown Indonesia VI 3 3 1 10 40 2.42 3.45 

PI587695 Anhui China VII 9 3 1 9 120 3.86 6.67 
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Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 
Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI245008  Uganda VIII 1 3 1 9 10 9.00 1.11 

PI605827B Ha giang Vietnam V 12 3 1 9 20 0.75 2.22 

PI445845 Zhejiang China III 9 3 1 7 160 0.78 22.86 

TGX 1440-1E    2 3 1 7 20 3.50 2.86 

PI088292 Jilin China III 10 3 1 6 20 0.60 3.33 

PI567054B unknown Indonesia VIII 4 3 1 6 50 1.50 8.33 

PI417198 Tohoku Japan III 5 3 1 6 10 1.20 1.67 

PI434973A unknown Nigeria IX 9 3 1 6 60 0.67 10.00 

WILLIAMS 82 Illinois United States III 6 3 0 6 >10 1.00 >10 

PI549018 Ningxia China V 5 3 1 5 >10 1.00 >10 

PI240667A Luzon Philippines IX 5 3 1 5 20 1.00 4.00 

PI240667B Luzon Philippines IX 8 3 1 5 40 0.63 8.00 

PI538377 Hebei China III 9 3 1 4 30 0.44 7.50 

PI507017 Kanto Japan VII 9 3 1 4 20 0.44 5.00 

TGX 1989-19F    4 3 1 4 40 1.00 10.00 

PI079861 Heilongjiang China VII 6 3 1 3 10 0.50 3.33 

PI091341 Hebei China III 7 3 1 3 20 0.43 6.67 

PI578491B Henan China V 2 3 1 3 10 1.50 3.33 

PI307843A Madhya Pradesh India IX 9 3 1 3 80 0.33 26.67 

PI567121B East Java Indonesia IX 1 3 1 3 10 3.00 3.33 

PI506592 Tohoku Japan III 4 3 1 3 10 9.00 1.11 

PI381662 unknown Uganda VI 7 3 1 3 10 0.75 2.22 

PI548472 Jiangsu China VII 5 3 1 2 10 0.78 22.86 

PI587815A Hubei China VII 2 3 1 2 10 3.50 2.86 

PI468914 Liaoning China III 4 3 1 2 >10 0.60 3.33 

PI470227B Liaoning China III 10 3 1 2 10 1.50 8.33 
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Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 

Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

FC031592 unknown Indonesia VIII 5 3 1 2 >10 0.40 >10 

PI203404 unknown Japan VII 3 3 1 2 10 0.67 5.00 

PI376070 unknown Cameroon VII 9 3 0 1 >10 0.11 >10 

PI548464 Tianjin China V 7 3 1 1 >10 0.14 >10 

PI346298 unknown India VII 3 3 1 1 >10 0.33 >10 

PI605792D Cao bang Vietnam IV 1 3 1 1 >10 1.00 >10 

TGX 1987-62F    2 3 1 1 >10 0.50 >10 

PI341245 unknown Tanzania IX 10 3 0 0 0 0.00 0.00 

PI476933 (north) Vietnam V 6 3 0 0 0 0.00 0.00 

PI509113 Yunnan China VII 3 3 0 0 0 0.00 0.00 

PI532458 Shanxi China VIII 10 3 0 0 0 0.00 0.00 

PI587632B Jiangsu China VII 2 3 0 0 0 0.00 0.00 

PI587889 Zhejiang China VIII 7 3 0 0 0 0.00 0.00 

PI594793 Yunnan China VII 6 3 0 0 0 0.00 0.00 

PI594879 Yunnan China VIII 1 3 0 0 0 0.00 0.00 

PI603641 Hubei China VIII 5 3 0 0 0 0.00 0.00 

PI088289 Jilin China III 8 3 0 0 0 0.00 0.00 

PI088305 Liaoning China III 6 3 0 0 0 0.00 0.00 

PI088788 Liaoning China III 6 3 0 0 0 0.00 0.00 

PI464914B Liaoning China III 8 3 0 0 0 0.00 0.00 

PI468384 Jilin China III 3 3 0 0 0 0.40 >10 

PI532462A Hebei China III 5 3 0 0 0 0.67 5.00 

PI548316 Zhejiang China III 6 3 0 0 0 0.11 >10 

PI549021A Liaoning China III 12 3 0 0 0 0.14 >10 

PI549031 Beijing China III 11 3 0 0 0 0.33 >10 

PI567583A Shandong China III 11 3 0 0 0 1.00 >10 
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Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 

Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI567729 Anhui China III 11 3 0 0 0 0 0 

PI567774B Jiangsu China III 10 3 0 0 0 0 0 

PI574480B Liaoning China III 11 3 0 0 0 0 0 

PI594394 Anhui China III 11 3 0 0 0 0 0 

PI548439 Hebei China V 9 3 0 0 0 0 0 

PI587848 Hubei China V 4 3 0 0 0 0 0 

PI594614B Guizhou China V 7 3 0 0 0 0 0 

PI594656 Guizhou China V 4 3 0 0 0 0 0 

PI594784B Yunnan China V 9 3 0 0 0 0 0 

PI594856 Yunnan China V 9 3 0 0 0 0 0 

PI594864 Yunnan China V 5 3 0 0 0 0 0 

PI603693A Jiangsu China V 7 3 0 0 0 0 0 

PI307891A Madhya Pradesh India IX 10 3 0 0 0 0 0 

PI428691 Manipur India VIII 4 3 0 0 0 0 0 

PI578486 Uttarakhand India III 8 3 0 0 0 0 0 

PI567045 South Sulawesi Indonesia IX 4 3 0 0 0 0 0 

PI567048A unknown Indonesia VIII 1 3 0 0 0 0 0 

PI200464 Shikoku Japan VII 3 3 0 0 0 0 0 

PI200528 Shikoku Japan VIII 9 3 0 0 0 0 0 

PI200542 Shikoku Japan VII 4 3 0 0 0 0 0 

PI230971 unknown Japan VIII 8 3 0 0 0 0 0 

PI230972 unknown Japan VIII 3 3 0 0 0 0 0 

PI284873 Chiba Japan VIII 8 3 0 0 0 0 0 

PI378693A Miyagi Japan VIII 8 3 0 0 0 0 0 

PI417428 Kanto and Tosan Japan VIII 11 3 0 0 0 0 0 

PI506548 Kanto Japan VII 8 3 0 0 0 0 0 



59 

 

Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 

Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI507058 Kanto Japan VII 2 3 0 0 0 0 0 

PI567176 unknown Japan VII 2 3 0 0 0 0 0 

PI080459 unknown Japan III 1 3 0 0 0 0 0 

PI196149 unknown Japan III 5 3 0 0 0 0 0 

PI417297 Kanto and Tosan Japan III 10 3 0 0 0 0 0 

PI506527 Tohoku Japan III 9 3 0 0 0 0 0 

PI507171 Kanto Japan III 9 3 0 0 0 0 0 

PI210352 unknown Mozambique VII 10 3 0 0 0 0 0 

PI310439 unknown Papua New Guinea VII 3 3 0 0 0 0 0 

PI324924 unknown South Africa V 7 3 0 0 0 0 0 

PI159319 North West South Africa V 7 3 0 0 0 0 0 

PI330635 unknown South Africa VII 1 3 0 0 0 0 0 

PI504483A unknown Taiwan 00 8 3 0 0 0 0 0 

PI504489 unknown Taiwan I 9 3 0 0 0 0 0 

PI341242 unknown Tanzania IX 9 3 0 0 0 0 0 

PI341247 Tabora Tanzania IX 9 3 0 0 0 0 0 

WILLIAMS 82 Illinois United States III 6 3 0 0 0 0 0 

WILLIAMS 82 Illinois United States III 3 3 0 0 0 0 0 

PI476926 (north) Vietnam VII 6 3 0 0 0 0 0 

PI567183 unknown Vietnam V 6 3 0 0 0 0 0 

PI605767B Lang son Vietnam VIII 1 3 0 0 0 0 0 

PI605828B Ha giang Vietnam IV 5 3 0 0 0 0 0 

PI606364 (north) Vietnam V 7 3 0 0 0 0 0 

TGX 1448-2E    6 3 0 0 0 0 0 

TGX 1805-31F    7 3 0 0 0 0 0 

TGX 1987-14F    2 3 0 0 0 0 0 
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Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 
Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI368037 unknown Taiwan VI 9 2.5 1 6 10 0.67 1.67 

PI587563A Jiangsu China VII 2 2 1 34 80 17.00 2.35 

PI605758A Lang son Vietnam VIII 8 2 1 33 130 4.13 3.94 

PI504497 unknown Taiwan II 8 2 1 24 140 3.00 5.83 

PI072232 Jiangxi China III 5 2 1 23 80 4.60 3.48 

PI307868 Madhya Pradesh India X 5 2 1 22 100 4.40 4.55 

PI594307 Chiba Japan VIII 12 2 1 21 20 1.75 0.95 

PI434980A unknown 

Central African 

Republic VIII 7 2 1 19 
130 2.71 6.84 

PI561381 Jiangxi China VII 10 2 1 15 180 1.50 12.00 

PI205086 unknown Japan III 8 2 1 15 150 1.88 10.00 

PI587719B Hubei China V 5 2 1 14 60 2.80 4.29 

PI588011A Sichuan China V 5 2 1 14 50 2.80 3.57 

PI549026 Liaoning China V 5 2 0 13 50 2.60 3.85 

PI346309 unknown India V 5 2 1 12 70 2.40 5.83 

PI379561 Hyogo Japan III 7 2 0 12 >10 1.71 >10 

PI603428D Nei Monggol China III 11 2 1 10 30 0.91 3.00 

PI393545 unknown Taiwan VIII 7 2 1 10 10 1.43 1.00 

TGX 1991-10F    7 2 1 9 40 1.29 4.44 

PI603631 Hubei China VII 8 2 1 8 50 1.00 6.25 

PI476929 (north) Vietnam VI 9 2 0 8 10 0.89 1.25 

PI594805A Yunnan China VII 6 2 1 6 20 0.67 1.67 

PI479729 Jilin China III 10 2 1 6 10 17.00 2.35 

PI506607 Kyushu Japan VIII 6 2 1 5 20 4.13 3.94 

TGX 1904-6F    4 2 1 4 20 3.00 5.83 

PI587882 Zhejiang China VII 10 2 1 2 50 4.60 3.48 

PI241424 Hokkaido Japan VII 7 2 1 2 >10 4.40 4.55 
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Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 

Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI567069A East Java Indonesia VIII 8 2 1 1 >10 0.13 >10 

PI504499 unknown Taiwan 000 3 2 1 1 >10 0.33 >10 

PI381663 unknown Uganda VI 6 2 0 1 0 0.17 0.00 

TGX 1990-67F    6 2 1 1 10 0.17 10.00 

PI587615 Jiangsu China VII 7 2 0 0 0 0.00 0.00 

PI587681 Anhui China VII 8 2 0 0 0 0.00 0.00 

PI588014C Sichuan China VII 7 2 0 0 0 0.00 0.00 

PI588017C Sichuan China VII 6 2 0 0 0 0.00 0.00 

PI594449 Sichuan China VII 9 2 0 0 0 0.00 0.00 

PI594458A Sichuan China VII 5 2 0 0 0 0.00 0.00 

PI594753A Guangxi China VII 8 2 0 0 0 0.00 0.00 

PI603537C Shaanxi China VIII 8 2 0 0 0 0.00 0.00 

PI603540A Shaanxi China VII 10 2 0 0 0 0.00 0.00 

PI603630 Hubei China VII 10 2 0 0 0 0.00 0.00 

PI603722 Sichuan China VIII 9 2 0 0 0 0.00 0.00 

PI603737B Sichuan China VIII 9 2 0 0 0 0.00 0.00 

PI458517 Shandong China III 3 2 0 0 0 0.00 0.00 

PI458521 Jilin China III 9 2 0 0 0 0.00 0.00 

PI468385 Jilin China III 9 2 0 0 0 0.00 0.00 

PI479740 Jilin China III 11 2 0 0 0 0.00 0.00 

PI567644 Henan China III 10 2 0 0 0 0.13 >10 

PI594471A Sichuan China III 8 2 0 0 0 0.33 >10 

PI603655 Hunan China III 11 2 0 0 0 0.17 0.00 

PI123590 Hebei China V 1 2 0 0 0 0.17 10.00 

PI518291B Liaoning China V 6 2 0 0 0 0.00 0.00 

PI567233 Sichuan China V 10 2 0 0 0 0.00 0.00 
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Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 

Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI588007A Sichuan China V 6 2 0 0 0 0 0 

PI594480A Sichuan China V 7 2 0 0 0 0 0 

PI597473 Hubei China V 8 2 0 0 0 0 0 

PI603573B Shanxi China V 7 2 0 0 0 0 0 

PI603714 Sichuan China V 7 2 0 0 0 0 0 

PI603720 Sichuan China V 6 2 0 0 0 0 0 

PI183929 Meghalaya India VII 1 2 0 0 0 0 0 

PI346308 unknown India IV 11 2 0 0 0 0 0 

PI567041D East Java Indonesia IX 5 2 0 0 0 0 0 

PI567061 unknown Indonesia VIII 9 2 0 0 0 0 0 

PI567081 East Java Indonesia VIII 3 2 0 0 0 0 0 

PI200538 Shikoku Japan VIII 4 2 0 0 0 0 0 

PI224269 Hyogo Japan VII 4 2 0 0 0 0 0 

PI416826A unknown Japan VIII 5 2 0 0 0 0 0 

PI417126 

Kyushu and 

Okinawa Japan VIII 6 2 0 0 0 0 0 

PI594172C Kumamoto Japan VIII 9 2 0 0 0 0 0 

PI205087 unknown Japan III 10 2 0 0 0 0 0 

PI227212 Shizuoka Japan III 7 2 0 0 0 0 0 

PI261466 Kyushu Japan III 4 2 0 0 0 0 0 

PI416902 Tohoku Japan III 10 2 0 0 0 0 0 

PI507226A Tohoku Japan III 4 2 0 0 0 0 0 

PI548442 unknown Taiwan VIII 6 2 0 0 0 0 0 

WILLIAMS 82 Illinois United States III 7 2 0 0 0 0 0 

WILLIAMS 82 Illinois United States III 6 2 0 0 0 0 0 

PI578458 An Giang Vietnam IX 2 2 0 0 0 0 0 

PI605793 Cao bang Vietnam VI 5 2 0 0 0 0 0 
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Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 

Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI606390B (north) Vietnam VIII 3 2 0 0 0 0.00 0.00 

PI324067 unknown Zimbabwe VII 7 2 0 0 0 0.00 0.00 

PI324068 unknown Zimbabwe VIII 8 2 0 0 0 0.00 0.00 

TGX 1908-8F    4 2 0 0 0 0.00 0.00 

PI416868A Kinki Japan III 7 1 0 110 50 15.71 0.45 

PI567397 Shaanxi China V 10 1 1 48 100 4.80 2.08 

PI179935 Himachal Pradesh India VII 4 1 0 47 70 11.75 1.49 

PI605787D Cao bang Vietnam VIII 6 1 1 39 160 6.50 4.10 

PI587744 Hubei China V 5 1 1 14 50 2.80 3.57 

PI060273 Zhejiang China V 8 1 1 10 90 1.25 9.00 

PI605906 Hoa binh Vietnam VIII 10 1 1 10 30 1.00 3.00 

PI518283 unknown Taiwan II 10 1 1 8 20 0.80 2.50 

PI578440 (north) Vietnam IV 9 1 1 7 10 0.78 1.43 

PI476880 (north) Vietnam IV 8 1 1 6 40 0.75 6.67 

PI594511C Sichuan China VIII 8 1 1 4 10 0.50 2.50 

PI506887 Kanto Japan III 10 1 1 4 >10 0.40 >10 

PI381677 unknown Uganda VI 3 1 1 2 10 0.67 5.00 

PI605757 Lang son Vietnam VIII 4 1 1 1 10 0.25 10.00 

PI567295 Gansu China VIII 11 1 1 0 0 0.00 0.00 

PI594651 Guizhou China V 8 1 0 0 0 0.00 0.00 

PI086452 Akita Japan III 9 1 0 0 0 0.00 0.00 

PI506800B Tohoku Japan III 3 1 0 0 0 0.00 0.00 

PI476904 (north) Vietnam VII 1 1 0 0 0 0.00 0.00 

PI476911 (north) Vietnam II 12 1 0 0 0 0.00 0.00 

PI247678 Haut-Zaire Zaire VIII 9 1 0 0 0 15.71 0.45 

PI587966A Sichuan China VIII 6 1 0 0 0 4.80 2.08 
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Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 

Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI588023A Sichuan China VII 8 1 0 0 0 0 0 

PI594502 Sichuan China VII 7 1 0 0 0 0 0 

PI060296 Zhejiang China V 5 1 0 0 0 0 0 

PI587975 Sichuan China V 6 1 0 0 0 0 0 

PI587986B Sichuan China V 7 1 0 0 0 0 0 

PI594650B Guizhou China V 8 1 0 0 0 0 0 

PI486331 Maharashtra India IX 7 1 0 0 0 0 0 

PI441352 Java Indonesia VIII 11 1 0 0 0 0 0 

PI471899 Java Indonesia III 12 1 0 0 0 0 0 

PI567087A East Java Indonesia VIII 2 1 0 0 0 0 0 

PI567089A East Java Indonesia VIII 2 1 0 0 0 0 0 

PI567130A East Java Indonesia IX 6 1 0 0 0 0 0 

PI229321 Kanto Japan VII 5 1 0 0 0 0 0 

PI506528 Tohoku Japan III 10 1 0 0 0 0 0 

PI210179 unknown Taiwan V 9 1 0 0 0 0 0 

PI417569 unknown Taiwan VIII 10 1 0 0 0 0 0 

PI578459 (north) Vietnam VII 8 1 0 0 0 0 0 

PI605865A Lao cai Vietnam V 10 1 0 0 0 0 0 

PI587900C Zhejiang China VIII 0 0 0 0 0 0 0 

PI391597 Shaanxi China V 0 0 0 0 0 0 0 

PI407759 Shanghai China V 0 0 0 0 0 0 0 

PI549024 Liaoning China V 0 0 0 0 0 0 0 

PI567269D Guangdong China V 0 0 0 0 0 0 0 

PI594776 Yunnan China V 0 0 0 0 0 0 0 

PI438424 unknown India IV 0 0 0 0 0 0 0 

PI438425 unknown India V 0 0 0 0 0 0 0 
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Table 3.3. (cont.) 

acid Province Country MG 

Plant 

Count 

Chlorosis 

Index 

Effective 

Nodules 
Nodule  

Number 

Nodule 

Weights 

Average 

Number 

Plant-1 

Average 

Weight 

nodule-1 

PI567122D East Java Indonesia IX 0 0 0 0 0 0 0 

PI567147C Bali Indonesia IX 0 0 0 0 0 0 0 

PI227219 Aichi Japan VII 0 0 0 0 0 0 0 

PI417290 Shikoku Japan VIII 0 0 0 0 0 0 0 

PI417442 Kanto and Tosan Japan VII 0 0 0 0 0 0 0 

PI423908 Nagano Japan VII 0 0 0 0 0 0 0 

PI506556 Kanto Japan VII 0 0 0 0 0 0 0 

PI506579 Kanto Japan VIII 0 0 0 0 0 0 0 

PI159096 North West South Africa VII 0 0 0 0 0 0 0 

PI476914 (north) Vietnam IV 0 0 0 0 0 0 0 

PI578452 Can Tho Vietnam VIII 0 0 0 0 0 0 0 

PI578455A Dong Nai Vietnam VIII 0 0 0 0 0 0 0 

TGX 1485-1D    0 0 0 0 0 0 0 

TGX 1740-2F    0 0 0 0 0 0 0 

TGX 1835-10E    0 0 0 0 0 0 0 

TGX 1987-10F    0 0 0 0 0 0 0 

TGX 1987-76F    0 0 0 0 0 0 0 

TGX 1987-118F    0 0 0 0 0 0 0 

TGX1987-129F    0 0 0 0 0 0 0 

TGX 1988-5F    0 0 0 0 0 0 0 

PI085009-1 Saitama Japan III 4 0 0 0 0 0 0 
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