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ABSTRACT

In approximate graph matching, the goal is to find the best correspondence

between the labels of two correlated graphs. Recently, the problem has been

applied to social network de-anonymization, and several efficient algorithms

have been proposed for approximate graph matching in that domain. These

algorithms employ seeds, or matches known before running the algorithm,

as a catalyst to match the remaining nodes in the graph. We adapt the

ideas from these seeded algorithms to develop a computationally efficient

method for improving any given correspondence between two graphs. In our

analysis of our algorithm, we show a new parallel between the seeded social

network de-anonymization algorithms and existing optimization-based algo-

rithms. When given a partially correct correspondence between two Erdos-

Renyi graphs as input, we show that our algorithm can correct all errors with

high probability. Furthermore, when applied to real-world social networks,

we empirically demonstrate that our algorithm can perform graph matching

accurately, even without using any seed matches.
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CHAPTER 1

INTRODUCTION

With the proliferation of publicly available social information, both released

by companies and mined, privacy is becoming a large concern. Recently,

after Netflix provided anonymized data to researchers on movie ratings for

the Netflix Challenge, researchers were able to match the data to publicly

available IMDB data to recover many identities [1]. Because of this, it is im-

portant to understand how to guarantee the privacy of data which is collected

or released to the public.

Social network data, such as the Facebook or LinkedIn graphs, contains

rich structural information in the form of friendships or connections between

users. Recently, it has become apparent that this structural information is

sufficient to recover node identities, even without additional labels such as

movie ratings being attached to the anonymous nodes. This process of recov-

ering node identities in a partially or completely unlabeled social network is

known as social network de-anonymization. In the years since Narayanan and

Shmatikov demonstrated a successful de-anonymization attack on real social

networks, the problem of developing efficient de-anonymization algorithms

has received much scrutiny [2].

Social network de-anonymization is a recent application of a more gen-

eral graph mining problem called “approximate graph matching.” The goal

of approximate graph matching is to find the best correspondence between

two given graphs, for some sense of “best.” This goal is a generalization

of that of graph isomorphism, where an exact correspondence is required.

If a graph isomorphism is found, then this isomorphism will also solve the

approximate graph matching problem. In addition to network security, ap-

proximate graph matching has seen various applications in many areas over

the years, including computer vision [3] and bioinformatics [4, 5].

Finding an efficient, practical algorithm for graph isomorphism remains a

celebrated problem, and by extension, there is also no known efficient exact
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algorithm for approximate graph matching. In fact, one common setting

for the approximate graph matching problem is known to be NP-hard [6].

Therefore, we turn to approximate algorithms. A broad range of approximate

approaches exist for approximate graph matching, but they can be broadly

divided into two categories: seedless and seeded matching algorithms.

Seedless algorithms attempt to solve the matching problem with no ad-

ditional side information. Some algorithms use various relaxations of the

original optimization problem. Examples include a convex relaxation ap-

proach called QCV and a convex-concave approach called PATH [7]. Other

algorithms, such as the algorithm developed by Umeyama [8], use spectral

techniques. Still other algorithms use techniques such as random walks [9]

and Bayesian inference [10].

The other category of matching algorithms is the set of seeded algorithms.

These require “seeds,” which take the form of a set of matches which each

identify the correct correspondence for one vertex in each graph. These initial

matches can be used to efficiently recover the remaining matches across the

entire graph. Many seedless algorithms can be adapted to perform seeded

matching, for example, by encoding the constraints into the convex program

used by the QCV (convex relaxation) algorithm. Doing so can significantly

improve the graph matching results [11]. However, inspired by performing de-

anonymization on large-scale social networks, where some identities may not

be anonymous and the network sizes can be enormous, new algorithms have

been developed. The two primary algorithms are percolation graph matching,

proposed by Pedarsani and Grossglauser [12], and a similar witness-based

algorithm proposed by Korula and Lattanzi [13]. These and other similar

algorithms have been shown to work on a fairly wide range of graph models

[14].

We attempt to extend the ideas present in these seeded graph matching

algorithms by asking a new question: Can we use them for correction? The

output of a seedless algorithm can be interpreted as a set of seed matches,

some of which are correct, and some of which are incorrect relative to an

optimal solution. We develop a new algorithm, based on the algorithms in

[12, 13], that will take in a partially correct graph matching and efficiently

correct all of the errors. We will give a new interpretation of the matching

mechanism for our algorithm, and show that it can theoretically correct all

errors on a stochastic block model and, under certain assumptions, when used
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as a post-processing step for other graph matching algorithms, can produce

seedless graph matching with accuracy that is significantly better than the

current state-of-the-art.

Our first contribution is to develop an algorithm which corrects errors in

a given initial correspondence. In order to model seedless graph matching,

which often produces results with some correct matches but also many un-

known incorrect matches, we propose a new model where a correspondence

is given between the node labels of two correlated graphs, but only a small

fraction of the matches in this correspondence are correct. We show that

under this model, our algorithm corrects all errors for stochastic block model

graphs under certain, reasonably interpretable assumptions.

Our second contribution is to propose a general methodology for perform-

ing graph matching when there is no initial correspondence given, or only a

very small number of seeds, where first an appropriate approximate graph

matching algorithm is run, depending on the problem, and then our algorithm

is run on the output. Using extensive numerical experiments on both random

graph models (including models other than the stochastic block model) and

real social network datasets, we show that using our algorithm as a post-

processing step improves the results produced by state-of-the-art algorithms

for approximate graph matching.

The rest of the thesis is organized as follows. Chapter 2 contains our

mathematical model and problem statement. Chapters 3 and 4 contain our

main result and its proof, respectively. Chapter 5 relates our work to prior

work on the problem. Chapter 6 contains simulation results, and concluding

remarks are presented in Chapter 7.
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CHAPTER 2

MODEL AND PROBLEM STATEMENT

In order to generate two correlated graphs G1 and G2, we use the following

subsampling model. We start with an underlying graph G = (V,E) on n

nodes, which can be interpreted, for example, as the set of all acquaintances

among n people. Each edge of G is sampled independently with probability

s for inclusion into a subgraph G1, which could represent the relationships

present between the individuals in one social network. Independently, the

edges are sampled again with probability s to produce another graph G2,

which could represent the relationships between the same individuals in a

different social network. However, the identities of the individuals in G2 are

anonymized, or unknown. Therefore, we permute the vertices of G2 according

to a permutation π, chosen uniformly at random. Given G1 = (V1, E1) and

π(G2) = (V2, Ẽ2), the goal is to recover π. This model was introduced by

Pedarsani and Grossglauser in the case that G is an Erdös-Rényi graph [15].

However, here, we will assume a more general stochastic block model for G:

Partition V into k communities: V = C1 t C2 t . . . t Ck. Then, given a

symmetric k × k matrix P of community connection probabilities, connect

vertices between communities Ci and Cj with probability Pij. We will assume

that Pii ≥ Pij for all i, j, so edges are more likely within the same community.

Various algorithms exist for solving this approximate graph matching prob-

lem. However, they are, in general, imperfect, and may only successfully

recover π(v) for a subset of the vertices v in V . We wish to start with an

estimate π̂ which agrees with π on an unknown subset of V , and then use

this estimate to correct these unknown errors and recover π exactly with

high probability. In our model, we assume the initial estimate π̂ is randomly

generated with a constant fraction β of correct matches as follows:

First, a subset W ⊂ V is generated by sampling each vertex in V with

probability β. For each v ∈ W , set π̂(v) = π(v). Next, generate a per-

mutation πW of V \ W uniformly at random. For each v ∈ V \ W , set
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π̂(v) = π(πW (V )). Our algorithm is intended as a post-processing step for

other algorithms which may produce such a π̂. However, it is difficult to

model exactly how such algorithms will produce their estimate π̂. Our mod-

eling assumption on π̂ is used to obtain tractable theoretical results. However,

the algorithm we obtain works remarkably well in practice, even though the

pre-processing algorithms may or may not produce an estimate that agrees

with our assumptions.
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CHAPTER 3

MAIN RESULTS

3.1 Basic Algorithm

To correct the errors of π̂, we propose an algorithm based on “witnesses,”

as defined in [13]: for each pair (v1, v2), where v1, v2 ∈ V , we count the

number of witnesses for that pair, defined as the set of vertices x such that

(v1, x) ∈ E1 and (v2, π̂(x)) ∈ Ẽ2. Let w(v1, v2) be this number of witnesses.

Each of these witnesses encodes some evidence that π(v1) = v2. Therefore,

we would like to find a maximum weight bipartite matching using the weights

w(v1, v2) in order to improve our estimate of π̂ (see Figure 3.1). The complete

algorithm is presented as Algorithm 1 below.

Algorithm 1: Basic Correction Algorithm

Input: G1, π(G2), π̂
Initialize W = zeros(n× n)
for u in V do

for v in V do
Calculate Wu,v = w(u, v)

Return MaximumWeightMatching(W )

Unfortunately, for large values of n, this procedure is inefficient. Naively

iteratively computing w(u, v) for every u and v requires at least n2 com-

putations, which is infeasible for large social networks which may contain

thousands or even millions of nodes. Similarly, maximum weighted bipartite

matching can be done in n(|W | + n log(n)) time, where |W | is the number

of nonzero entries of W [16]. This is also too inefficient for large values of n.

Instead, we will replace the procedure for constructing W by a more ef-

ficient procedure featuring the “CountPaths” subroutine, introduced below,

which can achieve a better complexity of O(|E1|∆2), where ∆2 is the largest
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Figure 3.1: Maximizing the number of witnesses as a bipartite matching
problem

degree of a vertex in G2. In an Erdös-Rényi graph with p = O(log(n)/n),

for example, at the threshold for connectivity, our this procedure runs in

O(n log2(n)) time. We will also replace the maximum weight matching by

a greedy matching (complexity |W | log(|W |)). In practice, and theoretically

in the case of the stochastic block model, the greedy matching is sufficient

to recover π perfectly from π̂.

Algorithm 2: Optimized Correction Algorithm

Input: G1, π(G2), π̂
for u in V do

W (u, ·) = CountPaths(G1, π(G2), π̂, u)

Return GreedyMaximumWeightMatching(W )

CountPaths relies on the interpretation that every vertex x which is a

witness for (u, v) can be thought of as a “path” from u, to a, to π(a), to v,

where the first edge (u, a) is an edge in G1, the second edge (a, π(a)) is along

the mapping π, and the third edge (π(a), v) is an edge in π(G2) (see Figure

3.2). Counting these paths can be implemented as a simple iterative process,

reproduced below.
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Figure 3.2: Counting paths to determine witnesses for (u, v)

Algorithm 3: CountPaths

Input: G1, π(G2), π̂, u
Initialize W (u, ·) = 0
for x ∈ G1.neighbors(u) do

for v ∈ π(G2).neighbors(π̂(x)) do
W (u, v) += 1

Return W (u, ·)
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3.2 Iterated Algorithm

One feature of our matching algorithm is its ability to take a mapping as

input and output an improved mapping. It is then natural to take the new,

improved mapping and feed it back into our algorithm, to further improve

it. This is the intuition behind the iterated correction algorithm, presented

as Algorithm 4:

Algorithm 4: Iterated Correction Algorithm

Input: G1, π(G2), π̂, k
for iteration = 1, . . . , k do

π̂ = OptimizedCorrection(G1, π(G2), π̂)

Return π̂

As long as the first iteration of our algorithm is able to improve the ac-

curacy of the original input matching, further iterations should be able to

further improve, until a local optimum is reached, where (hopefully) all nodes

are matched correctly. An illustration of this phenomenon is available in Fig-

ures 3.3 and 3.4. As long as one iteration of our algorithm performs above

the dotted line (corresponding to producing more correct matches than in

the input matching), then the iterated algorithm is able to correct all errors

in the input matching.

3.3 Intuition

One metric sometimes used for quantifying the correctness of an approximate

graph matching is the “overlap metric,” which counts the number of edges

on which two graphs G1 = (V,E1) and G2 = (V,E2) agree. The larger

this metric, the more evidence we have that G1 and G2 are the same. In

our setting where G1 and G2 are random objects, this can be conveniently

expressed using indicator variables I:

∆(G1, G2) =
∑
u∈V

∑
v∈V

I{(u, v) ∈ E1, (u, v) ∈ E2} (3.1)

If we are given a random permutation π(G2) = (V, Ẽ2), we can use this

metric to try to recover π, by solving a maximization problem over all per-
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Figure 3.3: Erdös-Rényi graphs for varying values of β. Algorithm 2 is used.

Figure 3.4: Erdös-Rényi graphs for varying values of β. Algorithm 4 is used.
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mutations, attempting to recover π:

max
π′

∑
u∈V

∑
v∈V

I{(u, v) ∈ E1, (π
′(u), π′(v)) ∈ Ẽ2} (3.2)

This natural approach is the maximum likelihood estimator in the case

that G is an Erdös-Rényi graph and G1 and G2 are sampled according to

our model [17]. However, it is very difficult to solve exactly. Our approach,

given an estimate matching π̂, is to solve the maximization problem using

our estimate in place of π′ in one spot:

max
π′

∑
u∈V

∑
v∈V

I{(u, v) ∈ E1, (π
′(u), π̂(v)) ∈ Ẽ2} (3.3)

Note that the inside sum is merely the number of witnesses for u and π′(u):

max
π′

∑
u∈V1

w(u, π′(u)) (3.4)

This one change transforms the problem from an extremely difficult combi-

natorial optimization problem into a much simpler maximum weighted bipar-

tite matching problem, which can now be solved efficiently. The assumption

is that if π̂ is close enough to π, the solutions to (3.2) and (3.3) will also be

close.

In order to provide intuition as to why this is true, we will consider the

simple case where G is an Erdös-Rényi graph with edge probability p. Pro-

ceeding in a similar manner to Yartseva and Grossglauser in [12], look at the

indicator I{(u, v) ∈ E1, (π̂(u), π′(v)) ∈ Ẽ2} in (3.3). Suppose π̂(v) = π(v).

Then if π′(u) = π(u), it takes the value 1 if (u, v) ∈ E and the edge is

sampled twice, for a total probability of ps2. However, in any other case,

(u, v) in E1 and ( ˆπ(u), π′(v)) in E2 no longer are sampled from the same

edge in the underlying graph E. Therefore, the indicator takes the value 1

with probability only p2s2. Because p is assumed to be small, p2s2 << ps2.

We expect approximately n(βps2 + (1 − β)p2s2) witnesses for a correct

match (u, π(u)), and only approximately np2s2 witnesses for an incorrect

match. Because n(βps2 + (1 − β)p2s2) >> np2s2 if β is large enough, we

expect greedy matching to recover correct matches with high probability. As

an example, see Figure 3.5. Already, for n = 40, one entry corresponding to

the correct match dominates each row and column. We will make a similar
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Figure 3.5: w(u, v) for u, v ∈ G1, G2. Here, G is Erdös-Rényi(40, 0.25),
s = 0.9, and π̂ agrees with π=identity on 20 vertices.

argument formal for the stochastic block model below.

3.4 Connection to Optimization-Based Methods

There is another way to represent the witness matrixW which is enlightening.

Letting A1 be the adjacency matrix of G1 and A2 the adjacency matrix of

π(G2), we note that w(u, v) is the inner product of the u-th row of A1 and the

π̂(v)-th row of A2. Therefore, if P̂ is the permutation matrix corresponding

to π̂, we can express W succinctly as:

W = AT1 P̂A2 (3.5)

One way to write the overlap metric in matrix form (defined in the previous

section) is as follows:

f(P̂ ) = ∆(G1, π̂(G2)) = Tr(P̂AT1 P̂
TA2) (3.6)
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It is easy to verify that, in fact, our witness matrix W is proportional to

the gradient of f :

∇f(P̂ ) = AT1 P̂A2 + A1P̂A
T
2 = 2AT1 P̂A2 (3.7)

This implies a connection between witness-based methods like ours and

optimization-based methods based on the overlap metric. The closest con-

nection is to the Frank-Wolfe algorithm. Following is the Frank-Wolfe algo-

rithm for maximizing f over the set of doubly stochastic matrices (Πn here

is the set of n× n permutation matrices):

Algorithm 5: Frank-Wolfe Algorithm for Approximate Graph Match-
ing

Input: Initial Guess P0, A1, A2, k
for i = 0, . . . , k − 1 do

Compute W = 2A1P
T
i A2

Use the Hungarian algorithm to maximize 〈Q,W 〉 subject to
Q ∈ Πn

Maximize 〈((1− γ)Pi + γQi)
TA1((1− γ)Pi + γQi), A2〉 over

γ ∈ [0, 1]
Set Pi+1 ⇐ Pi + γ(Q− Pi)

Find P̂ to maximize 〈Pk, P 〉 for P ∈ Π using the Hungarian Algorithm

For comparison, following is our iterated algorithm:

Algorithm 6: Our Iterated Correction Algorithm (Again)

Input: Initial Guess P0, A1, A2, k
for i = 0, . . . , k − 1 do

Compute W = A1P
T
i A2

Use the greedy matching to approximately maximize 〈Q,W 〉
subject to Q ∈ Πn

γ = 1
Set Pi+1 ⇐ Pi + γ(Q− Pi)

Return Pk

The only difference here is that we are approximately solving the linear

assignment problem to compute Q, and we are always using a step size γ

of 1 instead of computing the optimal step size at every iteration. We have

already explained why using a greedy matching makes sense, but why does

setting γ = 1 make sense? Computationally, it restricts Pi to a permutation
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matrix at every step, ensuring that computing W always remains efficient.

In practice, it seems to work well, often still converging to a good solution.

3.5 Performance Guarantees

Given n, P , C1, . . . , Ck, and β, let G, G1, G2, π, and π̂ be generated according

to our model above (so G is generated from a stochastic block model). We

define di as follows for each community i ∈ [k], with the interpretation that

di is the average degree in G for vertices in community i:

di := Pii(|Ci| − 1) +
∑

j∈[k]\{i}

Pij|Cj| (3.8)

Then, as long as the minimum di is large enough, but not so large as to

make the graph too densely connected, the optimized correction algorithm

above will perfectly recover π with high probability (in the asymptotic limit

as n increases):

Theorem 1 Suppose s2βmini∈[k] di > 16 log(n) and Pij = o(1) for all i, j.

Then the optimized correction algorithm recovers π from π̂ with probability

1− o(1).

As a corollary, by setting every entry of P to be equal to p, we recover a

result similar to that of Korula and Lattanzi [13]:

Corollary 1 Suppose G is Erdös-Rényi(n, p), where (n−1)ps2β > 16 log(n)

and p = o(1). Then the optimized correction algorithm recovers π from π̂ with

probability 1− o(1).

These results can be interpreted as follows: First, the expected degree of

every node should be high enough that the intersection of G1 and G2 is con-

nected. For Erdös-Rényi graphs, it is known that if nps2 < log(n), then no

algorithm can recover π, given no side information, and if nps2 > 2 log(n),

then the maximum likelihood estimator succeeds with high probability [17].

Our lower bound on the average degree is therefore within a constant factor
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of optimal for Erdös-Rényi graphs. Secondly, the graphs should not be too

densely connected. Some limit on the density of the graphs is required, as

matching two graphs is equivalent to matching their complements, and we

have already established that the graphs cannot be too sparse. Furthermore,

most real-life networks have relatively small degrees or even constant aver-

age degrees, so forcing the degree of each node to be o(n) is a reasonable

assumption in this light.

Interestingly, none of our proofs depend on the number of communities k.

Therefore, we can let k grow with n as fast as we like, or even set k = n to

independently designate each edge probability in our graph G. This allows

us to extend our result to other models utilizing independent Bernoulli edges

such as the Chung-Lu model (see [18]), as long as the expected degree di of

each node is large enough to satisfy the same constraint s2βdi > 16 log(n):

Corollary 2 Let P be a symmetric n× n matrix, and let G = (V,E) be the

undirected graph with each edge (i, j) independently present with probability

Pij. Suppose Pij = o(1) for all i, j. Furthermore, assume that for every vertex

i, the expected degree di satisfies s2βdi > 16 log(n). Then, the optimized

correction algorithm recovers π from π̂ with probability 1− o(1).
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CHAPTER 4

PROOF

The general strategy will be to show that with high probability, w(u, π(u)) >

w(u, v) for all u and all v 6= u. Then, a greedy maximum weight matching

will match u with π(u) for each u. In order to show that w(u, π(u)) domi-

nates other numbers of witnesses for a given w, we will show the following

results:

Lemma 1 For each u ∈ V , suppose u ∈ Ci. Then, if s2βdi > 16 log(n):

P
(
w(u, π(u)) <

3

8
s2βdi

)
= O(n−

3
2 ) (4.1)

Lemma 2 For each u ∈ V and v ∈ V \ {π(u)}, suppose u ∈ Ci. Then, if

s2βdi > 16 log(n) and Pjj = o(1) for every j:

P
(
w(u, v) >

3

8
s2βdi

)
= O(n−4) (4.2)

Lemma 1 says that the number of witnesses obtained for a correct match is

at least a constant times the average number of witnesses expected from cor-

rect matches. Independently, we also show with Lemma 2 that no incorrect

match ever reaches this same number of witnesses. By the union bound, these

thresholds are respected with high probability for every u and v. Therefore,

w(u, π(u)) > w(u, v) for all u and for all v 6= u. By the reasoning given at

the beginning of the section, therefore the theorem is proved.

To show the second corollary, note that the graph generation process is

equivalent to the stochastic block model with n communities. Setting the

diagonal entries of P to be equal to the maximum of their rows gives us the

condition Pjj = o(1) for every j. Therefore, Lemma 1 and 2 still apply to

this case.
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4.1 Proofs of Lemmas

In order to prove lemmas 2 and 3, it will be convenient to express w(u, v) as

a sum of indicators as follows:

∑
x∈V1\{u}

I{(u, x) ∈ E1, (v, π̂(x)) ∈ Ẽ2} (4.3)

We will also find the following two Chernoff bounds useful (see, for exam-

ple, [19]):

Bound 1 If X = X1 + . . . + Xn, where the {Xi} are independent random

variables taking values in {0, 1}, then for δ ∈ (0, 1) we have:

P (X < (1− δ)E[X]) ≤ exp(−δ
2E[X]

2
) (4.4)

Bound 2 If X = X1 + . . . + Xn, where the {Xi} are independent random

variables taking values in {0, 1}, then for δ > 1 we have:

P (X > (1 + δ)E[X]) ≤ exp(−δE[X]

3
) (4.5)

4.1.1 Proof of Lemma 1

Recall that in our generation of π̂, first every vertex is sampled with proba-

bility β to form a subset W ⊂ V , and those vertices are matched correctly

in π̂. Let A(u, x) be the indicator that (u, x) ∈ E1, (π(u), π(x)) ∈ E2, and

x ∈ W . Clearly, we have:

w(u, π(u)) ≥
∑

x∈(F1∪...∪Fk)\{u}

A(u, x)

After fixing u, each A(u, x) is independent for all x 6= u. The indicators

all take the value 1 with probability βPijs
2, for appropriate Pij. Therefore:

E

 ∑
x∈(F1∪...∪Fk)\{u}

A(u, x)

 = s2βdi

Applying Bound 2 to this, we get:
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P
(
w(u, π(u)) <

1

2
s2βdi

)
≤ exp(−s

2βdi
8

)

≤ exp(−2 log(n))

=
1

n2

where we used the assumption that s2βdi ≥ 16 log(n).

4.1.2 Proof of Lemma 2

For this proof, assume the following procedure is used to produce G = (V,E):

First, create an Erdös-Rényi graph GER = (V,EER) with edge probability

pmax := maxj Pjj. Then, independently, for every edge (u, v) ∈ EER with

u ∈ Ci and v ∈ Cj, sample the edge (u, v) with probability Pij/(pmax) to

obtain E. Clearly, this process is stochastically identical to the original

creation process for the stochastic block model.

For this proof, we always assume v 6= π(u) and u ∈ Ci. For now, choose

an arbitrary fixed π̂. This time, we decompose the sum (4.3) as

w(u, v) =
∑
j∈[k]

∑
x∈Cj\{u}

I
{

(u, x) ∈ E1, (v, π̂(x)) ∈ Ẽ2

}
The indicator in the summand above can be stochastically dominated by

an indicator (denoted by B(u, v, x)) for the following event: (u, x) ∈ E,

(v, π̂(x)) ∈ EER, (u, x) is sampled for inclusion into E1 (with probability

s), and (v, π̂(x)) is sampled for inclusion into Ẽ2 (with probability s). This

indicator B(u, v, x) is independent for every x 6= u, is 0 if π̂(x) = v, and is

Ber(s2Pij(pmax)), otherwise, where x ∈ Cj. We will bound the case when

B(u, v, x) = 0 by a Bernoulli random variable as well. We can therefore

bound the sum, conditioned on our choice of π̂:

P
(
w(u, v) > (1 + δ)s2(pmax)di

)
< exp(−δs

2(pmax)di
3

)

Letting 1 + δ = (3β)/(8(pmax)), we get for large enough n:

P
(
w(u, v) >

3

8
βs2di

)
< exp

(
−

( 3β
8(pmax)

− 1)s2(pmax)di

3

)
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But ( 3β
8(pmax)

− 1)(pmax) < β, so combining that with s2βdi > 16 log(n)

gives us the result conditioned on π̂. However, since the bound holds for

every choice of π̂, it also holds without conditioning on π̂, and the result is

proved.
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CHAPTER 5

RELATIONSHIP TO PRIOR WORK

Our algorithm for approximate graph matching correction uses the concept of

witnesses presented by Korula and Lattanzi in [13]. This paper first presents

the idea of counting witnesses, and we use similar terminology. However,

in their theoretical analysis, the seed set is assumed to be accurate. This

also precludes the case where the seed set encompasses the entire graph.

When these assumptions are relaxed, we showed that the algorithm can then

be viewed as a sort of bipartite matching problem. Their degree bucketing

approach can be viewed as a sort of greedy matching algorithm in that light.

Furthermore, we give the first analysis of a witness method with highly noisy

seeds.

Noisy seeds have been considered in the past for similar algorithms by

Kazemi, Hassani, and Grossglauser [20]. Here, however, the algorithm that

is analyzed, when modified for our use case, does not perform well on gen-

eral graph models, due to the thresholding that they use for the percolation

model. Their more applicable algorithm is heuristic in nature and cannot

be applied directly to graph matching correction. Furthermore, unlike other

papers covering similar graph matching approaches, we apply our analysis to

the stochastic block model [21, 12, 14].
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CHAPTER 6

SIMULATION RESULTS

We examine the performance of our graph matching correction algorithm,

and present experiments to attempt to answer the following questions:

1. How does our algorithm perform on our model?

2. How does our algorithm perform for correcting seedless graph match-

ing?

3. How does our algorithm perform for correcting with a small number of

seeds?

6.1 Results for Subsampling Model

Recall that in our subsampling model, there is an initial graph G, whose

edges are sampled twice with probability s to create two correlated graphs

to match. Then, we are given a permutation π̂ to correct, which matches

the two graphs correctly on a fraction β of vertices. We apply this model

to a number of graphs G, both synthetic and real-world, and evaluate the

performance of our correction algorithm.

6.1.1 Synthetic Graphs

For our first experiment, we attempt to use our algorithm to correct match-

ing errors, assuming a π̂ randomly generated according to our model and

assuming that G is an Erdös-Rényi graph with n = 1000 and (n− 1)p = 40,

randomly generated and sampled according to various values of s for each

trial. The results were presented in Figure 3.3.

We also run our algorithm on a simple stochastic block model, with two

communities, and edge probabilities chosen such that the average degree of
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Figure 6.1: Stochastic block model graphs for varying values of β. Iterated
algorithm used.

the graph is 40, and P11 = P22 = 2P12. The performance, plotted in Figure

6.1, is similar to that of the Erdös-Rényi graph. Finally, we run our algorithm

on Barabási-Albert graphs, a more realistic model for social networks, again

chosen with an average degree of 40. The performance is similar, as shown

in Figure 6.2. Note that when s = 0.5, some nodes are isolated in either G1

or G2 and therefore cannot be matched at all by our algorithm.

6.1.2 Real-World Graphs

All of the graphs used so far have been synthetic, but our algorithm also per-

forms well when the subsampling model is applied to real-world graphs. For

this experiment, we used a snapshot of the Slashdot social network (Figure

6.3) and a snapshot of the Epinions social network (Figure 6.4) with 77360

and 75888 nodes, respectively [22]. We sampled each edge twice with proba-

bilities 0.5, 0.7, and 0.9, and evaluated the performance of our algorithm on

our model, for various values of β.

Interestingly, for s = 0.9, our algorithm could sometimes match a large

fraction of nodes with no seed information, making it an efficient seedless

graph matching algorithm. Again, large fractions of nodes were isolated in
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Figure 6.2: Barabási-Albert graphs for varying values of β. Iterated
algorithm used.

Figure 6.3: Error correction on the Slashdot social network graph for
varying values of β. Iterated algorithm used.
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Figure 6.4: Error correction on the Epinions social network graph for
varying values of β. Iterated algorithm used.

either G1 or G2 after edge sampling, making those nodes impossible to match

using our algorithm.

6.1.3 Beyond the Subsampling Model

Naturally, real-world examples of G1 and G2 may not be generated by sam-

pling edges independently from a ground-truth graph G. To show that our

algorithm works even in this case, we examine the two-hop neighborhood

of the article for “Earth” in both the French and German Wikipedia, as

they appeared on June 20, 2017. Wikipedia maintains inter-language links,

which we use as the canonical correspondence between the two graphs. We

treat links between different articles as undirected edges in the graphs. For

this experiment, we let G1 and G2 be the subgraph in each respective lan-

guage containing articles which are present in both two-hop neighborhoods

of “Earth.” The results can be found in Figure 6.5.

We note that in many real-life graphs, it may be impossible to match all

of the nodes. Generally, if there exists an automorphism (i.e., a permutation

of the nodes that leaves the adjacency graph unchanged) of either G1 or G2

that changes the labels of some of the nodes, then such node labels cannot be
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Figure 6.5: Error correction on a subgraph of the French and German
Wikipedia graphs (containing 8418 articles), for varying values of β.
Iterated algorithm used.

uniquely determined. For example, there could be multiple isolated nodes, or

multiple degree-1 nodes with the same neighbor. In the French and German

Wikipedia subgraphs, each subgraph has 8418 nodes, but we can only recover

approximately 3260 of the correct correspondences. We examined one π̂

obtained for β = 0.1, and verified that it is correct up to an automorphism

of G1 and G2, so we succeeded in correctly identifying all correspondences

between the two graphs which were possible to discern uniquely.

6.2 Seedless Graph Matching

One primary application of our algorithm is in correction of seedless graph

matching algorithms. Such algorithms include QCV [7], PATH [7], and a

Bayesian approach [10]. We test the performance of our algorithm in correct-

ing initial matchings made by each of these algorithms on Barabási-Albert

graphs. For these experiments, we use n = 500, as some of these algorithms

are not scalable for extremely large graphs. In Table 6.1 we record the

precision, defined as the fraction of matched nodes which are matched cor-

rectly. In every case, all 500 nodes are present in each matching. For QCV
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Table 6.1: Average precision after various seedless matching techniques

QCV PATH Bayesian QCV + Correction
s = 1.0 1.00 1.00 1.00 1.00
s = 0.9 1.00 1.00 0.06 1.00
s = 0.8 0.71 0.00 0.03 1.00
s = 0.7 0.23 0.00 0.02 1.00
s = 0.6 0.07 0.00 0.02 0.07
s = 0.5 0.03 0.00 0.02 0.02

Figure 6.6: Error correction on the QCV algorithm using our algorithm

and PATH, we use the implementation from the publicly available GraphM

package [7]. For the Bayesian method developed by Pedarsani et al., we use

the implementation provided by SecGraph [10, 23].

Although the performance degrades rapidly for all of the seedless algo-

rithms as s decreases, QCV still manages to match a fraction of nodes cor-

rectly, allowing our algorithm to correct the remaining errors and outperform

every seedless algorithm run in isolation. Figure 6.6 shows this phenomenon

for QCV on various values of s.
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Figure 6.7: Number of correctly matched nodes on the Epinions graph
(sampled with s = 0.9), after ExpandWhenStuck from [20] and after
correction

6.3 Graph Matching with a Small Number of Seeds

In addition to seedless graph matching algorithms, we can boost the perfor-

mance of some seeded algorithms. In [20], Kazemi and Grossglauser present

an algorithm called ExpandWhenStuck that can perform approximate graph

matching on very large graphs with just a handful of seeds. Their algorithm

matches a large fraction of nodes correctly on the Epinions social networks

when starting with even just one seed. However, with such a small number

of seeds, the accuracy of the matching suffers. We apply our algorithm as a

post-processing step, and universally improve the results when starting with

ten or fewer seeds, as seen in Figure 6.7. For a fair comparison, we have

restricted ourselves to matching only nodes with two or more witnesses for

this experiment, as ExpandWhenStuck uses a similar technique to increase

precision.
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CHAPTER 7

CONCLUSIONS

Approximate graph matching is a hard problem in general, but efficient al-

gorithms exist to solve the problem on a wide range of graphs, in practice.

Sometimes, these algorithms produce sub-optimal results. However, using

ideas learned from seeded graph matching algorithms, we can improve these

results to produce state-of-the-art graph matching results.

Although we have only proven that our algorithm can correct a random

initial distribution of errors on stochastic block model graphs, in practice,

the effect seems much more general. We suspect there is a general thresh-

olding effect: if enough initial seeds are present, all correct matches can be

recovered, regardless of the initial condition, but if not enough are present,

then no matches can be recovered. This implies that the greatest difficulty

for approximate graph matching is to match just a few vertices. Quantifying

this difficulty is an interesting direction for future research.
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