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ABSTRACT

We present a computational framework for describing and predicting the

phase transformation behavior of ferromagnetic shape memory alloys (FS-

MAs). This framework is intended to aid in the discovery of new FSMAs

and optimize desired properties of existing FSMAs for engineering applica-

tions such as solid state refrigeration. Predicting the phase transformation

behavior in theses alloys is necessary to determine the degree to which they

will exhibit the magnetocaloric effect (MCE), which is a promising alterna-

tive to conventional refrigeration mechanisms. Our framework consists of a

combination of ab-initio simulations and Monte Carlo models which allow an

alloy to be examined across its phase space without the need for any empirical

parameters. In this document, we focus on the Heusler alloy Ni50Mn50−xInx

as it has already been the subject of substantial experimental and computa-

tional work. This material serve as a benchmark for the development of our

method. In the remainder of this document we will discuss the framework

and how the ab-initio and Monte Carlo methods are integrated.
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CHAPTER 1

INTRODUCTION

Refrigeration and air conditioning are significant consumers of the world’s en-

ergy supply. As countries around the world continue to develop, the demand

for these technologies will only increase and further strain our already fragile

energy supply and infrastructure. Additionally, many common refrigeration

mechanisms require refrigerants that are harmful to the environment. This

highlights the fact that more energy efficient refrigeration technologies could

have a serious positive impact on a large portion of society and serve to help

mediate the emissions of greenhouse gases. Magnetocaloric materials such

as ferromagnetic shape memory alloys (FSMA) are promising alternatives to

conventional refrigeration methods [5, 6, 7].

The Magnetocaloric effect, or MCE, is associated with a decrease in a

material’s temperature when it is subjected to a changing magnetic field

[8]. FSMAs can, in certain insistences, exhibit an extremely large MCE

because of a coupling between a changing internal magnetic order and a

change in the crystallographic phase of the alloy. Currently, the limit to

developing MCE refrigeration lies with the performance of the the MCE

materials themselves [5]. The degree to which FSMAs exhibit the MCE is

highly dependent on the alloy composition. Small changes in atomic percent

of various elements can cause large changes in the temperature difference

(∆T ) associated with a changing magnetic field [2]. This makes the search

for new and improved FSMAs for MCE applications rather cumbersome from

an experimental standpoint.

In an effort to speed up the materials discovery process, we introduce

a computational framework for predicting the phase change behavior and

temperature change associated with a change in magnetic field. Eventually,

we hope to be able to extend this framework to a high throughput tool for

discovering new FSMAs and optimizing their compositions to maximize MCE

performance.
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This framework is divided into three main tasks: Generating raw data

through ab-initio simulations, using the data to parametrize a spin lattice

model, and running the model in a Monte Carlo simulation to observe its be-

havior as a function of temperature (T ) and applied magnetic field (B). From

the data produced in the final step we can use the Clausius-Clapeyron rela-

tion to determine the temperature change associated with a sudden change

in an applied magnetic field. This thesis will discuss each of these steps, with

the majority of the focus on step one.
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CHAPTER 2

OVERVIEW OF KEY CONCEPTS

In order to ensure that the main contributions and conclusions of this thesis

are easily understood, it is necessary to present a brief overview of several

key concepts relating to the nomenclature, mathematics, and physics used.

2.1 Martensitic Phase Transformations

The driver behind all FSMA properties of interest is the martensitic phase

transformation. This phase transformation is most commonly associated

with steel, specifically with quenching. However, it is often used to describe

any phase transformation that takes place in a diffusionless and coordinated

manner. In most of these cases, the high temperature parent phase is a cubic

L21 structure referred to as ”austenite.” The term ”martensite” is used to

describe the product of the transformation. As a diffusionless transforma-

tion, no atom moves by more than a single inter-atomic spacing during the

transformation. Consequently, there is no local or global change in compo-

sition associated with a martensitic transformation, only a change in crys-

tal structure. The relative coordination of every atom is preserved during

the transformation; therefore there is typically a strain associated with the

change in crystal structure. The propagation of this strain from a nucleation

point is usually what spreads the transformation though the system.

For the engineering applications of FSMAs, martensitic phase transforma-

tion cycles are of primary importance. When a FSMA sample is transformed

back and forth between austenite and martensite, hysteresis effects are ob-

served. This is not unusual for systems having a complex phase space profile

with multiple, competitive local minima, such as FSMAs [9]. This hysteresis

is illustrated in Figure 2.1 for the case of a percent martensite vs. tempera-

ture measurement.
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Figure 2.1: Hysteresis loop for a martensitic phase transformation. The
path in red indicates the sample is being heated while the path in blue
indicates the sample is being cooled.

Starting from the low temperature martensite phase, the sample is heated

until the phase transformation begins. This is referred to as the austenite

starting temperature or TAS
. The transformation may begin at different

points in the sample and begin to nucleate. The temperature at which the

transformation is complete is known as the austenite finishing temperature

or TAF
.

If the sample is cooled starting from an austenite phase, it will not be-

gin transforming back into martensite at TAF
. Instead it will remain in

the metastable austenite state until it is cooled below a critical temperature

known as the martensite starting temperature, TMS
, and continue to trans-

form until it has been cooled to the point where it has fully transformed, the

martensite finishing temperature TMF
.

For the case of a polycrystalline sample, the transformation will nucleate

from separate grains until the entire sample has transformed to austenite. For

monocrystalline systems the transformation is much more abrupt than the

polycrystalline case, with starting and finishing temperatures closer together.

In this case the difference is disregarded entirely and the critical temperatures

are simply referred to as austenite and martensite transition temperatures

TA and TM .
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The area enclosed by the heating and cooling cycles is directly proportional

to the energy dissipated in the phase transformation [9]. The dependence of

the phase transformation behavior on the directionality of the transformation

is not limited to strain vs. temperature, but also can be seen in all the phase

transformation behaviors of FSMAs. This hysteresis is important for de-

termining the FSMAs performance for the shape memory and pseudoelastic

effects [5, 6, 7, 9, 10].

2.2 Shape Memory Alloys

Shape memory alloys or SMAs refer to any of a number of alloys that can

exhibit the shape memory effect. This is a phase change phenomenon that

allows a deformed alloy sample to return to its undeformed shape upon the

application of heat. Due to their unique properties, SMAs can seem like

something out of science fiction. Indeed, a metal that can remember its

shape brings to mind images a of certain killer robot. However the real

world applications of this particular material are much less sinister, ranging

from aviation to actuators and medical devices [11].

2.2.1 Discovery

Like many of the most interesting discoveries in science and engineering,

shape memory alloys were discovered somewhat by accident. In the early

1960’s, Buehler and colleagues at the US Naval Ordnance Laboratory were

searching for appropriate alloys to be used in reentry vehicles [12]. Among

the potential candidates was NiTi. Buehler became interested in NiTi in

particular after it appeared to have unusual acoustic damping properties as-

sociated with temperature change [12]. A sample of NiTi was brought to a

meeting where the the status of the NiTi project was to be discussed. Dur-

ing the meeting, Buehler’s colleague, Wiley, began bending the sample and

heating it with his lighter. To his surprise, the heated sample reverted to its

pre-deformed shape. Further research later confirmed that the mechanism

for this behavior was a martensitic phase transformation. Over the decades,

this mechanism has been shown to give rise to many other intriguing proper-

ties of SMAs. They include the two-way shape memory effect, pseudoelastic
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Figure 2.2: A Stress vs. Strain plot for a typical sample undergoing plastic
deformation in a loading (red) and unloading (blue) cycle.

effect, and both the elastocaloric and magnetocaloric effects.

2.2.2 Psudoelastic Effect

The easiest way to understand how the martensitic phase transformation

gives rise to some of the SMAs unusual properties is by starting with the

pseudoelastic effect. When bending a sample of NiTi wire it feels more like

a polymer, almost rubber, than a metal. A naive explanation would be

that this is simply because the elastic deformation region for this metal is

unusually large. However, this is not the case at all. In fact, loading and

unloading the wire cycles the material between different crystal structures.

This is illustrated by a stress vs. strain curve under loading and unloading

in Figure 2.2.

As illustrated in Figure 2.2, a typical stress vs. strain diagram can be

divided into two regions: elastic and plastic. In the elastic region, the ma-

terial exhibits a linear response to the applied strain. If the load is released

inside this region, the strain is fully recovered. However, once the sample has

been stressed beyond its yield point it enters the plastic region. From this
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Figure 2.3: Measurement of experimental Stress vs. Strain plot for NiTi
under loading and unloading. Measurements performed by Pataky and
Sehitoglu [1]

point on, if the load is released, the sample will no longer able to recover the

entirety of the strain.

With a pseudoelastic material, a very different behavior is observed. The

sample begins with zero load in the high temperature austenite phase. Upon

loading, the sample first enters the familiar elastic region until a critical

stress is reached. At this point it becomes more energetically favorable for

the crystal to transition to the tetragonal martensite phase than to deform by

conventional elastic or plastic means. As this phase transformation nucleates,

the sample experiences strain at a constant stress until the entire sample is

transformed to martensite. At this point, the conventional elastic stress

strain behavior resumes, only now for a martensite material. If the sample

is unloaded, it will return to an austenite phase and will completely recover

all the strain. Since no plastic deformation has occurred, it will return to

its undeformed dimensions. In essence, when an SMA undegoes strain, it

converts the applied mechanical energy to power a phase transformation

rather than break any atomic bonds.
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2.2.3 Shape Memory Effect

The most well known property of SMAs is also their namesake, the shape

memory effect. This is a process by which a deformed SMA can be returned

to its undeformed shape with the application of heat. The exact mechanisms

by which different SMAs recover their shape can be quite complex and vary

slightly from system to system. However, the driving forces behind the shape

memory effect can be explained by the diffusionless nature of the martensitic

phase transformation and a process known as detwining. Several different

crystal variants of the martensite phase can exist in SMAs. For our purposes

we will focus on a modulated or twinned variant and a regular or detwinned

variant. The modulated twinned structure forms to accommodate any in-

herent stress in the material. When a sample of a twinned martensite SMA

is subject to strain, rather than breaking any atomic bonds, the sample will

detwin. If the sample is heated to above TAF
it will transform to the austen-

ite phase. It can then transform back to martensite through cooling and

the previous twinned variant will reform, again accommodating any intrinsic

stress. Since all of the processes involved are completely diffusionless, and

no bonds are broken, all information about the deformed state that was held

in the detwinned structure has been erased. The sample is reset as if it had

never been deformed at all. A schematic of this process is shown in Figure

2.4.

2.2.4 The Elastocaloric Effect

If loading and unloading phase transformation cycles are applied to an SMA

under adiabatic constraints a change in temperature can be observed. This is

known as the elastocaloric effect or ECE. In order to explain the mechanism

behind the ECE we will assume a sample of an SMA in the cubic austenite

phase that transforms to a tetragonal martensite upon loading. The load is

applied under adiabatic constraints until the martensitic phase transforma-

tion occurs. Due to the adiabatic constraint, the total entropy of the system

is conserved during the transformation such that

∆Stotal =0

∆Stotal =∆Sthermal + ∆Sstructural

(2.1)
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Figure 2.4: The Shape Memory Affect. a) A sample begins as a cubic
austenite. b) It is then cooled down to a twinned martensite. c) The
sample begins to detwin to accommodate applied loading. a) Upon heating
the sample transforms back to a cubic austenite.

where ∆Sthermal is the contribution to the entropy change due to lattice

vibrations and ∆Sstructural is the contribution as a result of the change in

crystal structure.

The transformation from a cubic austenite to a tetragonal martensite rep-

resents a decrease in symmetry and thus an increase in the entropy associated

with the lattice structure. In order for the total change in entropy, ∆Stotal,

to be conserved, ∆Sthermal must increase. This directly corresponds with

an increase in lattice vibrations and thus an increase in temperature. The

adiabatic constraint can be removed and the sample temperature is allowed

to equilibrate with its surroundings. If the adiabatic constraint is reapplied,

and the load is removed, the sample will transform back into an cubic austen-

ite lattice. This decreases ∆Sstructural which corresponds to an increase in

∆Sthermal and hence an increase in temperature.

2.2.5 The Magnetocaloric Effect

Assuming a strong enough magnetic field is applied, any magnetic spin disor-

dered or anti-ferromagnetic system can exhibit a magnetocaloric effect. The

underlying physics of the magnetocaloric effect are fairly straightforward. An
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anti-ferromagnetic or spin disordered system in an adiabatic environment is

introduced to a magnetic field. The spins of the system will self align with

the field producing an ordered ferromagnetic system. Since the field is in-

troduced in an adiabatic environment, the total entropy of the system is

conserved according to the relation

∆Stotal =0

∆Stotal =∆Sthermal + ∆Smagnetic

(2.2)

where ∆Sthermal is again the contribution to the entropy change due to lattice

vibrations and ∆Smagnetic is the change in entropy due to the change in the

magnetic order. The alignment of the spins with the magnetic field reduces

the entropy contribution due to the spins and thus the contribution from the

lattice vibrations must compensate. This leads to an increase in temperature.

At this point, the adiabatic constraint can be lifted and the temperature

of the sample can equilibrate with the surroundings. Next, the adiabatic

constraint is re-applied and the magnetic field is removed. As a result, the

spins relax back to their previous anti-ferromagnetic or disordered state,

resulting in a decrease of the magnetic contribution to the total entropy. This

time, the thermal entropy contribution must decrease in response, resulting

in a temperature drop.

2.2.6 Magnetocaloric Effect in Magnetic SMAs

For SMAs that are also magnetic (FSMAs), the ECE and MCE can be-

come coupled. For example, in the magnetic SMA Ni50Mn50−xInx, the cubic

austenite phase favors ferromagnetic ordering, while the tetragonal marten-

site phase favors anti-ferromagnetic ordering. This complicates the behavior

of the combined effect. In some cases, such as Ni50Mn50−xInx FSMAs, this

leads to the magnetocaloric temperature change being reversed. The tem-

perature increases when the field is applied and decreases when it is removed.

This coupling can also give rise to a larger change in temperature associated

with the magnetostructural transformation, sometimes referred to as a giant

MCE. One unusual aspect of the MCE in FSMAs is the relative importance

of the magnetic order to the stability of austenite and martensite phases.

In most materials, the contribution to the total stability of the system is
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negligible, however, for FSMAs it is appreciable enough to drive a structural

phase transformation.

2.3 A Brief Discussion of Spin Lattice Models

Understanding the phase transformation behavior of any system relies on

the ability to find the global minimum of a underlying Hamiltonian. This is

often a multidimensional many-body system, making it extremely difficult or

more likely impossible to solve analytically. Therefore, a numerical solution

is necessary.

In the case of the present work, the framework used to obtain these nu-

merical solutions is a spin lattice model solved via Monte Carlo sampling.

In a spin lattice model, the atoms of the crystal system in question are rep-

resented as points on a n-dimensional grid. Each point is assigned a set of

discrete values which represent the properties of an individual component of

the system. The overall state of the system is then described in terms of the

interactions between different components as a function of their individual

properties. This modeling approach has proven very successful in studying

the magnetic properties of materials, most famously in the Ising model, but

has also been used in a variety of other fields ranging from economics to

biology.

2.3.1 Ising Model and Magnetism

Understanding magnetization in materials is essentially a quantum problem.

It arises from the interplay of a particle’s spin and the fermionic nature of

electrons, protons, and neutrons in an atom. A particle’s spin refers to its

intrinsic quantized angular momentum, a quantity similar to that of a sphere

rotating about an axis. However, as elementary particles are described as

waves or point particles it is difficult to envision how they might actually

“spin.” For the purposes of this document it is convenient to consider these

particles as having a radius, when appropriate, so as to avoid too much

existential or philosophical distress. If an electron is allowed to have a radius,

and since it is a charged particle, this spin results in a magnetic field. The

same is true for the nucleus. However, the magnitude of the nuclear moment
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is typically significantly smaller than that of the electrons and is usually

disregarded. The magnetic moment of a single atom can then be described

as the sum of the moments of each of its electrons.

The second key point for discussing the quantum roots of magnetization

is that of a fermion. Fermions are a class of particles with half integer spins

which satisfy the condition that two otherwise identical particles cannot si-

multaneously occupy the same state. Therefore, in order for two fermions to

occupy the same orbital they must have opposite spins. The electrons in a

material must arrange themselves according to this constraint known as an

exchange interaction. These exchange interactions can take place through dif-

ferent mechanisms, leading to ordered or disordered arrangements of atomic

spins in a lattice, and therefore magnetic or non-magnetic materials.

As with any multi-body problem, analytically determining the magnetic

structure of a material quickly becomes intractable. Various assumptions and

methods have been developed to deal with this issue. Before the development

of tools such as density functional theory (DFT) which can approximate

the solution to the many body Schroedinger equation for the system, the

magnetic structure of a crystal was solved for by simplifying the system’s

Hamiltonian into something that was easier to work with. One of the most

successful and useful of these is the Ising model. In the Ising model, the

system of atoms is divided into a grid with each grid site representing an

individual atom. Each atom is then allowed to have a half integer spin,

usually σ = ±1
2
. The total energy of the system is then represented by the

effective Hamiltonian:

H = −
∑
i,j

Ji,jσiσj − µ
∑
i

hiσi . (2.3)

The first summation is over all sites i and neighboring sites j. It is usu-

ally truncated to include only nearest neighbor atoms since the magnitude

of magnetic exchange interactions decrease quickly as a function of distance.

However, if more complex or longer range interactions need to be accounted

for, the summation can be extended to cover any arbitrary set of sites such

as triplets or long distance pairs. In the Ising Hamiltonian, Ji,j is the in-

teraction coefficient between atoms i, j based on their spins. The second

summation is added to allow for the inclusion of an external magnetic field
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h, and magnetic moment µ. When framed in this way, the problem of eval-

uating and minimizing the effective Hamiltonian can be easily approached

computationally.

The Ising model is one of the most basic models for describing spin in-

teractions between atoms in a lattice. However, it can still yield important

insights and surprisingly accurate results when applied correctly to problems

of magnetism and magnetic phase transformations. For the particular case

where Ji,j = J ′ some important behaviors can be observed without having to

explicitly solve for the Hamiltonian minimum. A simple analysis will show

that if J ′ is positive, the lowest energy configuration would arise from an anti-

ferromagnetic arrangement of spins. Conversely, if J ′ is negative, the lowest

energy configuration would arise form a ferromagnetic arrangement of spins.

This is a relatively good model for describing the exchange interactions in

materials that follow the Heisenberg model of magnetism.

The energy and average magnetization for any arrangement of spins on a

lattice can be easily evaluated by summing over all lattice sites. However,

since this model is describing a natural phenomenon, it is useful to consider

the “solution” to the Ising model as the configuration that minimizes the

Hamiltonian. In order to gain information about the ground state configura-

tion, or how such a system will evolve as a function of temperature, additional

methods, such as Monte Carlo strategies, are often implemented.

2.3.2 Blume-Emery-Griffiths Model and Martensitic Phase
Transformations

Different effective Hamiltonians have been developed to study various phe-

nomena. In the case of martensitic phase transformations, one of the more

successful models has been the Blume-Emery-Griffiths model (BEG). The

Blume-Emery-Griffiths model was originally designed to study first-order

phase transformations and phase separation in liquid He3-He4 mixtures and

takes the form:

H = −J
∑
i,j

σiσj −K
∑
i,j

σi
2σj

2 + ∆
∑
i

σi
2 . (2.4)
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Here the summations are over all points i and neighbors j on an n-dimensional

lattice [13]. The original BEG model was later revised by Vives, Castán,

Lindg̊ard and Burkhardt to create the degenerate BEG (DBEG) model and

applied to the study of first order martensitic phase transformations [14,

15, 16]. In the DBEG model, the crystal field ∆ is shifted by a degeneracy

parameter kBT ln(p), where kB is the Boltzmann constant and p is an integer

representing the system degeneracy. For the case where ∆ = zK, where z is

the coordination number, the DBEG hamiltonian takes the form:

H = −
∑
i,j

(Jijσiσj −Kij(1− σi2)(1− σj2))− kbT ln(p)
∑
i

(1− σi2) (2.5)

The σ term represents the atomic displacement of a site in a cubic austenite

lattice and can take values of ±1, 0. A σ of zero represents an austenite

lattice site site with zero strain. However if some arbitrary strain were to

be introduced the site could be deformed into one of six degenerate variants,

corresponding to displacements in the ±x, y, z directions and assigned cor-

responding values of ±1. Assuming that the strain is uniaxial, the system

can be simplified to contain only two variants. The Jij and Kij are the in-

teraction coefficients for martensite and austenite respectively. In the case

of a martensitic phase transformation, these coefficients do have a physical

significance related to the phonon modes of the crystal. However for our

purpose it is more helpful to consider Jij and Kijthe contributions to the

system stability from martensite or austenite lattice sites. This is easily il-

lustrated with a brief analysis if we assume that the system in question is

entirely made up of a single phase or phase variant.

In the low temperature purely martensitic case (where all sites have σn =

+1 or σn = −1) the Hamiltonian simplifies to

H = −
∑
i,j

(Jσiσj) = −
∑
i,j

J (2.6)

We can then consider the J term to be the contribution to the Hamiltonian

of a martensitic system. Similarly, we can show that if we have an austenitic

lattice, our Hamiltonian will simplify to

H = −
∑
i,j

(K(1− σi2)(1− σj2)) = −
∑
i,j

K (2.7)
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and K can be interpreted as the contribution from austenitic systems.

2.3.3 Metropolis Monte Carlo

As mentioned in a previous section, the ground state configuration of a spin

lattice model can be found by finding the configuration that minimizes the

energy of the Hamiltonian. One of the most common algorithms for this

application is the Metropolis Monte Carlo method. The algorithm itself is

quite simple. In Metropolis Monte Carlo the population of states in the

system is assumed to follow a Boltzmann distribution

Fstate ∝ e
− E

kBT (2.8)

where E is the system energy, kB is the Boltzmann constant, and T is the

system temperature. The following algorithm is then used to minimize the

system energy:

• A site is selected at random. The state is recorded and the energy is

calculated from the Hamiltonian.

• The state of the site is changed, and the energy is re-evaluated.

• Energies are compared before and after the change.

– The change is accepted if the energy decreases after the change.

– If the energy increases after the change it is accepted with prob-

ability Paccept, which is defined as:

Paccept = e
− ∆E

kBT (2.9)

Using this algorithm, it can be shown that the ground state can be found for

any system given an infinite number of iterations. However, in finite practical

application this algorithm can find local minimums and become stuck. This

problem is known as critical slowing down, and alternative algorithms have

been developed to overcome this limitation.
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CHAPTER 3

LITERATURE REVIEW

The idea of using the MCE for refrigeration first appeared in the 1920s and

was successfully utilized in the 1930s for experiments at cryogenic temper-

atures [5]. It wasn’t until the turn of the century that any device capable

of operating at room temperature was developed. However, this device re-

quired the expensive element gadolinium, making it an unattractive alterna-

tive to vapor compression systems [5]. While a number of other promising

candidate materials have been proposed, many require either rare and ex-

pensive elements or environmentally harmful compounds. The absence of

these particular drawbacks has driven the research community to consider

Ni-Mn based Heusler alloys as promising alternatives. In general Heusler al-

loys follow the formula X50Y25Z25, where X and Y are transition metals and

Z is usually a group III, IV, or V element [5, 7]. An example of the typical

martensite and austenite crystal structures are shown in Figure 3.1. Certain

Ni-Mn based alloys have been well studied experimentally. Of particular in-

terest to this document are the works of Ito et al. [17] and Liu et al. [6]

which focus on Ni50Mn50−xInx alloys. Ito et al. did extensive work deter-

mining properties important for MCE performance for a significant range of

Ni50Mn50−xInx compositions, which, as discussed in Chapter 4, is extremely

useful for benchmarking computational frameworks for these alloys. The im-

portance of these materials was highlighted by Liu et al., who recorded a

change in temperature of up to -6.2K under a 2T magnetic field for cobalt

doped Ni-Mn-In alloys.

Despite their promise, these materials come with their own set of chal-

lenges, such as significant hysteresis effects and variability of MCE perfor-

mance with small changes in alloy composition [2, 5]. This complexity is

illustrated in Figure 3.2, where the martensitic transformation temperature

changes by 600K over a ten percent chance in nickel composition [2]. The

sensitivity of key material properties for MCE effectiveness makes exper-
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Figure 3.1: Example of cubic austenite and tetragonal martensite phases of
the Heusler alloy Ni2MnIn. While this precises composition does not
exhibit a MCE, off stoichiometric compositions do.

imental surveys of the entire phase space a prohibitively time-consuming

process. Therefore any computational tool for predicting the magnetocaloric

performance is a valuable asset. Early work in this field was carried out by

Vives, Castán, and Lindg̊ard in 1999 [18]. Their approach consisted of a

combination of a degenerate Blume-Emery-Griffiths model (DBEG) and an

Ising model, with a coupling component to capture the magnetostatic phase

transformation in Ni2MnGa. This work was expanded on by Buchelnikov,

Entel, Taskaev Sokolovskiy et al (BETS). They replaced the Ising model

with a q state Potts model, to better capture the first-order nature of the

phase transformation. Additionally, the Potts model and portions of the

coupling component of the model were parametrized directly from ab-initio

simulations. The BETS model has been used to simulate the magnetostruc-

tural transformation in various Ni-Mn-X alloys such as X=(Ga, In, Sn, Sb)

[2, 5, 19] as well as to study the effects of dopants such as Co, Cu and Cr on

the MCE (Figure 3.3) [20, 21, 22]. It has also been used in a predictive capac-

ity to help develop design rules for the minimization of hysteresis in Ni-Mn

based Heuslers [3, 10]. The BETS model has proven useful as both a de-

scriptive and predictive tool. However, its reliance on experimental data for

some of its key parameters diminishes its effectiveness as a tool for materials

discovery.

From a materials discovery perspective it would be useful to have a tool

that could function without the need for previous experimental data. In the
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Figure 3.2: Phase diagram of Ni2+xMn1−xGa. The blue line represents the
martensitic transformation temperature, the red line marks the
paramagnetic transition temperature, the purple lines represent the Curie
temperatures predicted through Monte Carlo simulations, and the tan line
represents the extrapolated magnetic transformation temperature. Several
distinct regions with separate crystal variants, phase and magnetic
structures are present over a small section of the phase space [2].
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Figure 3.3: Magnetization vs. temperature curves in a constant magnetic
field of 2 Tesla for doped and undoped Ni-Mn based alloys. The curves
represent heating and cooling cycles with closed symbols indicating heating
and open symbols indicating cooling. Varying degrees of hysteresis are
observed for all alloys [3].
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remainder of this document, we introduce a new model for predicting the

properties of FSMAs across a materials composition space. Using a degener-

ate Blume-Emery-Griffiths model (DBEG) and Monte Carlo sampling tech-

niques we can examine a material’s behavior across magnetic and structural

phase transformations. The model is parametrized solely from first princi-

ples data and a single tuning parameter. Unlike the previous works discussed,

our method relies on dynamic DBEG parameters that are dependent on the

local environment. Preliminary results from simulations of Ni50Mn50−xInx

have shown transition temperatures that appear to be in good agreement

with experimental results.
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CHAPTER 4

COMPUTATIONAL FRAMEWORK AND
MODEL FITTING RESULTS

In order to design a model of any system, it is necessary to first acquire

a general understanding of the laws that govern the system. In our case,

this entails acquiring an understanding of the physics that governs FSMAs.

The FSMAs used to develop the model were Ni50Mn50−xInx. These alloys

have phase transformations from tetragonal low-temperature phases to cu-

bic high-temperature phases and have been well-documented experimentally

[17, 23]. In addition to structural phase transformations Ni50Mn50−xInx un-

dergoes a magnetic phase transformation from a low temperature ordered,

antiferromagnetic structure to a higher temperature ferromagnet before it

becomes spin disordered at its Curie temperature. The structural and mag-

netic transformations are both dependent on the precise composition of the

alloy.

4.1 Magnetic Structure of Ni50Mn50−xInx

In an effort to understand the nature of this dependence and the coupling be-

tween the structural and magnetic contributions, a number of different DFT

simulations were carried out. To determine the initial lattice parameters, a

16 atom tetragonal cell of Ni50Mn50−xInx with a composition of x = 25 was

relaxed and then distorted along the tetragonal axis with different ratios of

lattice constants. The results, shown in Figure 4.1, clearly show the existence

of two stable local minima and one unstable equilibrium. The most sta-

ble minimum represents the tetragonal martensite structure while the other

likely indicates the existence of a modulated variant which, for the purpose

of the model, is disregarded. The unstable equilibrium represents the cubic

austenite structure which will become more stable at higher temperatures.

In order to analyze the magnetic structure, three points were chosen from
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Figure 4.1: Ground state energy landscape for Ni50Mn25In25. Each
individual paraboloid represents a constant lattice volume with a changing
ration of lattice constants c/a. The experimentally observed tetragonal and
cubic phases are marked, as well as a third phase with lattice constants
similar to those expected of a modulated martensite phase if such
distortions had been allowed in the calculations.
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Figure 4.2: Spin density plots for Ni50Mn50−xInx with x=0, x=12.5 and
x=25. The top row shows the density in the [110] crystal plane and bottom
row shows the density in the [001] plane. The first two columns depict a
tetragonal ground state structure while the third depicts a cubic ground
state.

the Ni50Mn50−xInx phase space: x=0, x=12.5 and x=25. For each of these

compositions, a 16 atom cell was constructed for a martensite and austenite

phase. A separate calculation was carried out for every possible arrangement

of spins and atomic positions in a standard cubic or tetragonal cell. Both

phases can be described in terms of two intersecting simple cubic or tetrag-

onal sub-lattices. One sub-lattice is made up for Ni sites and the other of

Mn-In sites. When generating possible configurations for atomic positions,

each atomic species was confined to its respective sub-lattice. All calcula-

tions were performed with the DFT software package VASP [24, 25, 26, 27]

and projector augmented-wave PBE potentials [28, 29]. A standard k-point

mesh of 7x7x7 and energy cutoff of 500eV were used.

The spin density plots for each structure were examined to gain intuition

for the nature of the magnetic interactions present at each composition. Of

particular interest were the structures that had the lowest overall energy

since they would be the most stable and most likely to be observed in na-

ture. For each of the three compositions chosen, the lowest energy austenite
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and martensite structures are shown in Figure 4.2 as spin density plots.

While these are only a small sample of all the spin configurations generated,

they highlight how the magnetic interactions change as a function of indium

concentration.

In systems with no indium, the ground state structure is tetragonal. The

manganese atoms have the largest spin moment and align themselves anti-

ferromagnetically in the [001] plane and ferromagnetically along the tetrago-

nal axis. From the spin density plots, it appears that the anti-ferromagnetic

exchange in the [001] plane is similar to Heisenberg magnetism, while in the

[110] plane there appear to be longer-range interactions similar to superex-

change between the manganese and nickel atoms. As the indium concentra-

tion is increased, the antiferromagnetic structure is interrupted by the low

spin indium atoms and a large number of similarly stable spin arrangements

can be formed. At this concentration, identifying the nature of the exchange

interactions becomes more difficult and no further speculation can be made.

Once the indium concentration is sufficiently increased and the short range

Mn-Mn interactions have been replaced, the ground state structure becomes

cubic. This in turn is accompanied by a ferromagnetic spin arrangement. In

this case, the spin density plots seem to reflect a form of magnetic exchange

similar to RKKY interactions, with the nickel and manganese spins inter-

acting ferromagnetically, mediated by antiferromagnetic interactions with

delocalized conduction electrons. This progression from tetragonal, antifer-

romagnetic, low-indium concentration to cubic, ferromagnetic, high-indium

concentration must be born out in any model concerned with the effects of

alloy composition on the magnetocaloric effect in Ni50Mn50−xInx.

4.2 Model Design

The method we chose for modeling the behavior of FSMAs relies heavily on

the DBEG, discussed in Chapter two and displayed again for convenience:

H = −
∑
i,j

(Jσiσj −K(1− σi2)(1− σj2))− kBT ln(p)
∑
i

(1− σi2) . (4.1)

While the DBEG is well-suited for describing the structural phase trans-

formation, it does not inherently have any mechanisms to incorporate the
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coupling of the magnetic and lattice structure or changes in stoichiometry

that are important in describing the physics of FSMAs. In order to accom-

modate these factors, we create an effective Hamiltonian that replaces J and

K with dynamic parameters. In this new form, J and K are evaluated at

each lattice point and are functions of the spin and atomic species of that

point and its neighbors. The effective Hamiltonian can be written as follows:

H = −
∑
i,j

(J ′iσiσj −K ′i(1− σi2)(1− σj2))− kBT ln(p)
∑
i

(1− σi2) (4.2)

where J ′ and K ′ are the dynamic parameters. These parameters are calcu-

lated as linear combinations of a cluster expansion over the spins of neigh-

boring atoms and a cluster expansion over the species of neighboring atoms.

J ′i =
∑

clusters j

Mjsisj +
∑

clusters j

Nj (4.3)

K ′i =
∑

clusters j

Pjsisj +
∑

clusters j

Qj (4.4)

where sn represents the spin of a particular site and can take values ±1, 0.

The parameters M,N,P,Q are vectors of length equal to the number of

clusters used, and are fit from first-principles data. The resulting composite

model can then be solved using several different Monte Carlo techniques.

4.3 Fitting Model Parameters

The parameters for the cluster expansions were fit from a DFT dataset

consisting of structures that span the phase space of the material in ques-

tion. Three specific compositions were chosen for the Ni50Mn50−xInx alloy,

x = 0, 12.5, 25. At each of these compositions, supercells were generated that

represent every unique population of spins and species allowed within a 16

atom supercell. This process was repeated for both austenite and martensite.

In order to fit the N,M,P and Q vectors from the DFT data, it is first

necessary to define the clusters to be used for the spin and composition clus-

ter expansions. After examining spin density plots from the DFT data, it

appeared that both long-range and short-range spin interactions play impor-

tant roles in determining the magnetic structure. Therefore first, second and

25



Figure 4.3: Examples of clusters used to account for spin and local
composition. The red lines connecting certain atoms represent pairs that lie
along the axis of tetragonal distortion. These pairs are fit separately from
those that lie in the plain orthogonal to the tetragonal axis.

third nearest-neighbor pairs were included in the expansion for the magnetic

contributions. In order to simplify the fitting process, the neighbor distances

between atoms was defined in terms of the cubic austenite unit cell. A dis-

tinction is made between neighbor pairs along the direction of the tetragonal

distortion in order to account for relative changes in distance following the

phase transformation. For the clusters based purely on the local composition,

it was determined that the minimum number of clusters should include in-

teractions between each of the atomic species. This was accomplished using

second nearest-neighbor interactions for Ni-Ni, Mn-Mn, Mn-In and In-In as

well as first nearest-neighbor interactions for In-In. The interactions for Ni-

Mn and Ni-In were discarded since they proved to be redundant. Monomer

terms were also included. Examples of some of the clusters used are shown

in Figure 4.3.

Austenite and martensite instances were created for each cluster, with the

austenite clusters used to calculate K ′ and the martensite clusters used to cal-

culate J ′. In total, 23 spin clusters and 42 composition clusters were chosen.

Of these clusters, some showed zero contribution to the total Hamiltonian

upon summing and were disregarded.

In order to prepare the data for the fit, the VASP output for each system
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Figure 4.4: Relative prevalence of each cluster type in the dataset. The
y-axis represents the ratio of total possible occurrences of a cluster to
actual instances in the data set.
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Figure 4.5: Fitted clusters from ridge regression as a function of
regularization parameter α. The optimum value of α was determined to be
the order of 10−2.

is scanned for relevant information. This includes the magnetic moment,

species, and position of each atom, as well as the total energy for each system.

This information is then processed to determine the number of occurrences

of each cluster for an individual system. As previously mentioned, some of

the proposed clusters never occurred in any of the systems in the data set.

These are filtered out and the set of clusters is revised. This is illustrated

in Figure 4.4. The remaining 44 cluster expansion parameters are then fit

using ridge regression and cross validation to determine the regularization

parameter α. The optimal α was determined to be the one that converged

the cross validation score R2 to 1. Here R2 is calculated as

R2 = (1− u

v
) (4.5)

where u is the residual sum of squares and v is the total sum of squares. The

values of the clusters as a function of α are shown in Figure 4.5.

A comparison between the total energy predicted from DFT and total en-

ergy predicted by the fitted model is shown in Figure 4.6. From this figure

we can see that the fitted model correctly identifies the lowest energy struc-
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Figure 4.6: Comparison of total energy predicted in DFT to total energy
calculated using the fitted cluster parameters. Red symbols indicate
calculated energies from the fitted cluster parameters. The x-axis is divided
into three sections, one for each composition. For each of the sections, the
data points are spread out to make the plot easier to read.

tures for each of the three composition. This is of primary importance for

the model since the lowest energy structures are what should be observed

in nature. The fitted points also appear to bear out the trend that at low

temperatures structures with low indium concentration should favor tetrag-

onal anti-ferromagnetic structures. As the indium concentration increases,

different magnetic structures become similarly stable and cubic austenite

structures begin to become competitive. Finally, once the indium concentra-

tion reaches a critical point the cubic ferromagnetic structures become the

most stable.
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4.3.1 Monte Carlo Methods

While DFT is a powerful computational tool, it is limited to describing struc-

tures at zero temperature. Therefore, Monte Carlo methods can be imple-

mented as a means of extending the predictive power to the temperatures

needed to describe the phase transitions that give rise to the MCE. For the

Monte Carlo portion of the model a 3D lattice is generated, representing a

Ni50Mn50−xInx supercell. Each lattice site holds three values: phase, species

and spin. These in turn correspond to the DBEG and species cluster and

the spin cluster components of the model.

Initially the Metropolis algorithm was used for spin, species and phase.

However critical slowing down was observed around the phase transforma-

tion, necessitating the implementation of a different algorithm. The algo-

rithm used is a combination of Metropolis, Wolff and mixed cluster ap-

proaches.

In the first step of our approach, a standard Metropolis algorithm is used

to sweep over the lattice and attempt to change the spin of a site or swap the

species of a pair of sites. For the species attempts, the pairs are chosen at

random under the constraint that they represent Mn-In swaps. This main-

tains the correct stoichiometry throughout the simulation and reduces the

runtime of the algorithm. Before each individual spin or species flip, the J ′

and K ′ parameters are recalculated to ensure that the acceptance probability

of each move, calculated from the effective Hamiltonian, reflects the current

local environment.

In order to avoid problems with critical slowing down, a cluster moves

method is implemented for the DBEG component. We choose to implement

a combination of a Wolff algorithm with mixed cluster moves first proposed

by Bouabci and Carneiro [30]. In this method, a site is chosen at random

with a phase σc, and a change in phase σp is proposed. Depending on the

values of σc and σp one of three procedures is used. If σc = ±1 and σp = ∓1

then the standard Wolff algorithm is used. Otherwise, clusters of sites are

grown that contain a mix of either σ = −1, 0 or σ = 1, 0. If σc = 1 and

σp = 0 or σc = 0 and σp = −1 a cluster of sites is grown with allowed values

of σ = 1, 0. If σc = −1 and σp = 0 or σc = 0 and σp = 1 a cluster of sites

is grown with allowed values of σ = −1, 0. Sites are added to the cluster

with a probability of Peq = 1 − exp(−J ′ − K ′/3) if the site being added
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has the same phase as the last site added to the cluster, and a probability

of Pdiff = 1 − exp−J ′ +K ′/3 if the sites have different phases. Once the

growth of the cluster has stopped, the entire cluster is flipped. In clusters

that contain σ = 1, 0 sites that are σ = 1 are changed to 0 and σ = 0 to

−1. In clusters that contain σ = −1, 0, sites that are σ = 0 are changed to

0 and σ = 0 to 1. In reference [30], the flip is always accepted if it results in

a decrease in the Hamiltonian, or with a probability of Paccept = e
− ∆E

kBT if it

results in an increase. However, at this point, our implementation and that

of reference [30] differ. Once the cluster is grown and the flips are made, a

separate set of Metropolis passes are made over the cluster attempting to flip

the site spins. Once a set number of Metropolis passes have been completed,

the same acceptance procedure is used as in reference [30]. It is important

to note that this method can still exhibit problems due to metastability for

certain ratios of K/J . However, for our purposes this has not proven to be

an issue [31].

The three Monte Carlo simulations - spin, species and phase - are run

sequentially. However, as noted earlier, the spin and composition compo-

nents of the model depend on the phase. Therefore after each move of the

DBEG component it is necessary to allow time for the spin and composition

components to equilibrate. Experimenting with relaxation times has shown

that only around twenty spin moves and twenty species moves are needed,

ensuring that the model runtime remains manageable.
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CHAPTER 5

MONTE CARLO RESULTS

The methods discussed in previous sections have been implemented in an

open source python code. At this point, it has only been used for bench-

marking tests for systems of 128 atoms and 100 Metropolis passes through

the lattice for spin and species, and 100 cluster growth attempts for a given

simulation temperature. This is due to the large amount of time it takes

for the simulation to run. Figure 5.1 shows the phase vs. temperature for a

simulation of Ni64Mn48In16 (or 12.5% In), while Figure 5.2 shows the average

magnetization vs. temperature data for the same alloy.

The predicted TMS
and TMF

appear to be around 300K and 250K respec-

tively. The transition temperatures for alloys with 13% In have been shown

experimentally to be TMS
= 387 and TMF

= 386 [17]. Our results from

Monte Carlo are much closer to the experimental values for alloys with 15%

In of TMS
= 297K and TMF

= 283K [17]. In fact, as seen in Figure 5.2, the

overall behavior of the magnetization vs. temperature curve follows a similar

trend to that of the experimental curve from reference [17] with 15.5% In.

Despite the lack of precise agreement with experiment, from the standpoint

of a tool for materials discovery, it is much more important to have the

general trend correct than to have a precise agreement with experimental

values. Additionally, longer simulation times and larger simulation sizes may

tighten the difference in the transformation temperatures and give a clearer

picture of the magnetization vs. temperature behavior.
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Figure 5.1: Average phase vs. temperature for Ni64Mn48In16. The
simulation represents cooling from 400K to 150K.
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Figure 5.2: Absolute value of average magnetization vs. temperature for
simulated Ni64Mn48In16 (blue) and experimental values for Ni50Mn35In15

(red) [4]. Values obtained from simulation have been normalized for better
comparison with experiment.
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CHAPTER 6

FUTURE WORK

The final goal of this research is to develop an open source platform capable

of a high throughput search for Heusler alloys that exhibit the MCE, as well

as to determine the optimal composition of alloys for the MCE. In order

to further this goal, work is needed to increase the speed of the algorithm

and perform benchmark tests. In order to decrease the error in the Monte

Carlo simulation, an order of magnitude increase in the number of Metropolis

and Cluster moves will be required. The resulting increase in runtime will

diminish the effectiveness of the model as a high throughput tool. In order

to diminish the increase in runtime, two separate steps will be taken. First,

the current python implementation of the model will be replaced by a faster

C++ version. Secondly, if the speedup is still insufficient, the model will be

parallelized. These two steps will enable the model to generate more accurate

results with larger simulation sizes.

In order for the the model to be a useful tool for materials discovery, it

is important that it be able to accurately reproduce trends seen in experi-

ment. To this end, tests will be carried out on different Ni50Mn50−xInx alloys

to examine the change in predicted properties with small changes in com-

position. Properties of interest will include starting and finishing transition

temperatures, Curie temperature, hysteresis width and changes in entropy.

An additional question that could be addressed using the methods dis-

cussed in this document is the effect of lattice order and disorder on the

MCE. This has been shown to contribute to MCE effectiveness [32]. Disor-

der effects could be studied by freezing the atomic positions of systems with

short-range and long-range order, and for completely disordered systems.

This will require simulations with considerably more than the 128 atoms

currently used. Therefore, it will require the higher speeds of the C++ and

parallel implementations.
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