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ABSTRACT 

Researchers working on a USDA-sponsored research project are exploring a new concept 

of on-farm experimentation (OFE). These trials are implemented by farmers at their fields, in a 

similar way to how they would plant a regular production crop. This concept generates large 

amounts of data at low cost that, after processing, will generate local models about the yield 

response function within a field. 

At the time of this work, the research group is running more than 100 trials in different 

states and countries. There are questions related to how to optimize OFE. To address those 

questions, the APSIM crop growth model was used to simulate the concept of running on-field 

trials, use that information to calculate the Economic Optimum Nitrogen Rate (EONR), and 

finally use that EONR in a regular crop production.  Spatially variable layers of data that 

characterized a field were transformed into APSIM parameters. Daily weather events were 

obtained from historical weather data for the field’s county. Economic analysis of different 

strategies was performed, which involved testing if the increase in revenues due to including 

more variables or running more trials outperforms the cost, and how weather affects the results. 

The results will help to optimize the actual protocol that is guiding the implementation of 

the trials. Key results obtained by this research were: (1) The value of conducting trials and using 

that information for N-management advice was 9.8 $/ha. (2) The added value of gathering soil 

sampling data at the same time was 7.4 $/ha. (3) The optimal time to stop running trials and start 

using the information for N-management advice was one or two years, depending on the 

weather. (4) Conducting trials and using that information for N-management advice decreased 

N-leaching by 10.4 kg/ha. Performing soil sampling tests together with running trials made N-

management advice increase the efficiency and reduced N-leaching by 5.9 kg/ha more. (5) A 

tentative rule for deciding if a one trial year is sufficient or if one more year is needed was 

obtained by determining the likelihood of the weather of the trial year compared with the historic 

weather. These results provide insights that will be helpful to optimize the protocol that guide 

OFE and help farmers increase profits in the fastest way and decrease the environmental impact 

of nitrogen fertilization. 
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CHAPTER 1: INTRODUCTION 

1.1 EVOLUTION OF ON-FARM, LARGE SCALE FIELD TRIALS 

In 1905, the Haber-Bosch process was invented, a process that industrially transforms 

nitrogen gas, abundant in the atmosphere, into ammonia, which could be absorbed and used by 

plants (Haber, 1905). During the following decades, between the 1930s and the 1960s, a second 

shift was produced when crop geneticists began to adapt cultivars to this new way of producing 

grains with high inputs (Castleberry et al, 1984). This combination of factors led to increase farm 

yields and grew the economic interest in understanding the crop response to inputs. This question 

has traditionally been addressed by running field trials that generate data, which is then analyzed 

and translated into recommendations for farmers.  

Specifically, in corn (Zea Mays L.), this process became very active in the 1950s, 60s and 

70s when the numbers of trials and publications increased (Heady and Pesek 1954; Heady et al. 

1964, Heady, et al. 1964; Olson et al 1964, Hexem et al. 1976, Shrader et al 1966), opening a 

lively debate in major agricultural economics journals about the functional form of crop yield 

response functions. This conversation has continued over the last several decades (Swanson et al. 

1973; Grimm et al. 1987; Frank et al. 1990; Berck and Helfand 1990; Paris 1992; Bullock and 

Bullock 1994; Chambers and Lichtenberg 1996; Llewelyn and Featherstone 1997;  MaBL and 

Dwyer 1998; Anselin et al. 2006; Tembo et al. 2008; Tumusiime et al. 2011; Brorsen and Richter 

2012). 

In the first period, the conduction of the trials was done using labor-intensive techniques, 

with researchers marking small plots in the field, applying inputs and harvesting by hand or with 

small machines, and without the benefit of large-scale farm machinery (Bullock and Lowenberg-

DeBoer 2007). This method was cost intensive, restricting the trials to small plots and mainly on 

experiment stations, where workers were available. Recommendations based on these small plots 

were extrapolated over large areas (Pan et al., 1997, Bullock, et al. 2002), ignoring variability 

and assuming average weather (Swinton and Lowenberg-DeBoer 1998). The results were useful 

at this initial stage only to provide a range of Nitrogen (N) rates that could be close to the EONR 

with a regional approach for a wide range of field characteristics. This regionals models were not 

useful to provide recommendations at a higher detailed level (field or site-specific). For that, 

more data, measuring more variables in different sites and weathers was necessary.   
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With the advent of precision agriculture technology starting in the 1990s, machines were 

able to control the applied N rate and measure different variables (like soil electro-conductivity, 

applied inputs rates or yield) site-specifically. This technological change shifted the demand for 

site specific N management recommendations (Bullock 2013). The previous regional 

recommendations were not sufficient to approach this new challenge, and new data needed to be 

generated that guided how different site-specific characteristics affected the EONR (Bullock et al 

1998).  

Fortunately, the same new technology could be used to generate agronomic experiments 

at low cost and with a high number of repetitions (Bullock et al 2002, Bullock and Lowendberg-

DeBoer 2007). These advantages provided the groundwork for the following breakthrough in 

agronomic experimentation. The new concept is that the same farmers can run on-farm, large-

scale field trials, over many fields to inexpensively gather large amounts of data in multiple field 

characteristic and weather (Bullock et al. 2009; Casanoves et al. 2007; Peralta, Cordoba, Costas, 

and Balzarini 2013). This new concept of on-farm Experimentation (OFE) is being implemented 

by collaborating researchers at the University of Illinois, University of Nebraska, Montana State 

University, Washington State University, and Louisiana State University, together with several 

international research partners, in an USDA-sponsored project called Data Intensive Farm 

Management project (DIFM). This work is originated in that project. The trials implemented by 

this working group have a “checkerboard” design and feature a large number of repetitions with 

plots small enough to explore similar site characteristics. The trials are also large enough to 

collect reliable data from the sensors. Researchers designed the trials for the farmers to conduct 

in their field, with minimal change in how they would regularly manage a production crop. 

Because experiments are run in an automatized way, it is possible to generate more data at lower 

cost than with the previously described labor-intensive plots from the past. 

1.2 PURPOSE AND CONTRIBUTION 

The project that originates this work has a working protocol, that states the instructions 

on how trials are designed, conducted and analyzed. The objective of this work is to explore the 

economic value of different strategies that could be used in that protocol, together with the 

environmental trade-offs from those field trials, and how that value can be optimized. With 

simulations we attempt to address: 1) Is the value of generating on-farm information in trials 
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likely to cover the cost of conducting such experiments; 2) What is the set of variables that, 

measured in the field and incorporated in the model, maximize profits for the farmer?; 3) What is 

the optimal number of years to run trials before moving to regular production using the results of 

the experimentation as management advice?; 4) What is the environmental benefit of these 

different strategies?; and 5) What insights can be used to detect the optimal number of trials in an 

ex-ante situation?  

Answering these questions will provide insights that can be used to improve the protocol 

while helping the associated farmers of the project to make profitable use of the new concept. 

The results obtained in this work should not be taken as absolute values, rather as tendencies that 

will allow us to move on the path of discovering the best strategy. 

1.3 WORK ORGANIZATION 

This study is divided into six chapters. Following this introductory chapter, Chapter 2 

provides a narrative review of previous studies that also used crop simulation in a spatially 

variable field. Chapter 3 is a review focused in providing the conceptual framework for the 

methods than will be used later in this study, paying special attention to models that explain and 

compare the value of information and technology. Chapter 4 describes the methods used in this 

research to create the field, simulate the crop under different situations and strategies, calculate a 

model using spatial techniques and finally analyze the results economically. Chapter 5 provides 

results from the simulations and discusses these results in detail. Finally, Chapter 6 summarizes 

this study’s results and proposes avenues for future research. 
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CHAPTER 2: PREVIOUS STUDIES USING CROP SIMULATIONS IN 

SPATIALLY VARIABLE FIELDS 

In Bakhsh et al (2001), the simulation model called Root Zone Water Quality Model 

(RZWQM), was used to evaluate the response of soils and crops to different N rates. They had a 

data set from 1996 to 1999 of a rotation of corn and soybeans trial data with nine plots where 

three different N-rates were applied. Tile flow, NO3-N losses and yield was measured over the 

four years. The work showed three parts. In the first part, they calibrated RZWQM by adjusting 

some parameters to fit the model output with the real measurements of tile flow data from 1996, 

corn yield from 1996 and soybean yield from 1997. Then, in the second part, they evaluated the 

model using the data not used during the calibration.  The model simulated annual tile flow 

adequately, by showing a difference of -8% between measured and simulated values. Similarly, 

yield for both crops showed a difference of less than 5% between measured and simulated 

values.   Finally, in the third part, they use the model to simulate the effect of six different N 

rates, including the three tested. The results showed that RZWQM98 model could be used to 

assess the effects of N-applications rates on corn yields and NO3-N losses in tile flow, and it may 

require further refinements in soybeans. Their article shares with the present work the idea of 

using crop simulation to understand the response of corn yield and N losses with different N 

rates. Their focus was on calibration and validation of the model, while in the present work no 

calibration was performed since we assumed that the model outputs are the real data. Instead, we 

focused on creating models that would transform that data into recommendations to farmers, 

which can then be evaluated in terms of farmer profits.   

Thorp et al (2008) (30) developed a software called APOLLO that allows running 

DSSAT, a crop modeling software designed to model a crop in a uniform area, over a spatially 

variable area. The most significant incorporation is that it can condense, in a square grid, all the 

layers of information that the model needs and then run the model on each of the cells of the 

grid. In the second part of the work, they created a spatially variable field and described the 

process used to calibrate and validate the model using real data from that same field. Finally, in 

the third part they used the system to simulate the effects of climate change over the yield in the 

spatially variable field. For this they used two climate scenarios, one from the 1990s and the 
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other was a future prediction for 2040s. They conclude that climate change will decrease average 

yield in this situation and the spatial distribution of higher and lower-yielding areas.  

The described software, APOLLO, follows a very similar procedure to the one we use in 

this work. We both created a grid condensing spatial information that is needed by the crop 

modeling software. The difference is that, instead of using a specially designed software to create 

the spatially variable grid and then run the crop modeling software, we performed this procedure 

using R (R Core Team 2018). Additionally, their crop modeling software was DSSAT and we 

used APSIM (Holzworth et al, 2014). However, the objectives of the two works are different, 

since they are predicting the effect of climate change over a field and we are creating trials and 

trying to fit models that help to provide advice based on those trials. 

Although they described APOLLO in detail in the 2008 work, Thorp et al (2006) used it 

to jointly analyze the production function and the environmental externalities of different N rates 

in corn. In this work, they created a spatially variable field with 100 cells and, after calibration 

with real data, they run 13 N application rates over 37 growing seasons (based on 37 historic 

weather years) restarting the field every year to the assumed initial conditions. Their output 

included the yield of the crop and the amount of total N unused by the crop. They defined the 

profits maximizing rate for each cell as the one that maximized the mean profits of the 37 years. 

The environmental rate was determined to be the one that left less than 40 kg/ha of N in soil at 

harvest with a probability of 80%. In most of the cases, the profits maximizing rate was higher 

than the environmental rate. They calculated the opportunity cost of environmental protection as 

the difference in profits of decreasing the rates that were higher to the one that achieve the 

environmental goal. That opportunity cost was of $48.12 average for the whole field.  

A similar approach to the previous article was followed in Miao et al (2006). In their 

work, they divided a field into four management zones based on cluster analysis of multiple soil 

layers. After calibrating and validating the model with real data, they used crop modeling with 

historical data of the previous 15 years to estimate the EONR, testing different strategies: ex-post 

estimation, an average of the EONR for each year and choosing the N rate the maximized the 15-

year marginal net return. They mentioned that, although the first approach was the most 

profitable, it was not realistic since it is assuming full information. They concluded that choosing 

the N rate that maximized the 15-year marginal net return should be the method used by farmers 
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since it had higher long-term profits than the more straightforward method of averaging the 

yearly’s EONR.  

The two-last works, Thorp et (2006) and in Miao et al (2006) have much in common with 

the present work. The three works used crop modeling to estimate the response of corn to N in a 

spatially variable field. One important difference is that they used crop modeling to obtain the 

yield response curve and then EONR by running sequential rates for a same site of the field and 

calculating the optimal. In our work, each plot of our field had only one N rate each year, not a 

sequence. We pretended real trials over the field and crop simulation was used to start thinking 

about possible outcomes of those trials.  

As presented in the previous review, there has been research using crop modeling 

software to simulate spatially variable fields with different objectives. To the best of our 

knowledge, no previous economic studies have used it to analyze the problem we will present 

here, combining this new concept of running whole field trials and using crop simulation to 

obtain the possible outcomes of those trials, compare strategies and finally optimize how those 

trials should be run to maximize farmer’s profits. 
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CHAPTER 3: CONCEPTUAL FRAMEWORK 

3.1 NATURE’S META-RESPONSE FUNCTION 

To explain how to calculate the value of the new concept of OFE, first it is helpful to 

describe the hypothetic function of the response of Yield to inputs. Bullock and Bullock (2000) 

and Bullock et. al (2002) provided the “meta-response function” framework to discuss the 

concept of how crop yield (Y) responds to all the factors to which is responds. The function 

express the Y on a small and uniform site of a field as a function of a vector of “managed inputs” 

x = (x1, …, xJ) (decided by the farmer, such us hybrid, seed and fertilizer rates), a vector of 

unmanaged spatially dependent “field characteristics” c = (c1 , … , cK) (such as Organic Matter 

(OM), elevation, depth of the soil, soil N content) and a vector of stochastic time dependent 

variables called “weather” z = (z1,…, zL) (mostly weather variables such as temperature, rain, 

radiation, first frost date, but also pest infestations and other factors): 

 𝑦 = 𝑓(𝒙, 𝒄, 𝒛) (1) 

 𝑐 = 𝑓(𝒑) (2) 

In this work the concept of past variables p = (p1,…,pm) is incorporated:  

This vector is compounded by characteristics of a site measured in the previous season 

that affect the present conditions, such as Yt-1, applied Nt-1 rate and the ratio between them Y/Nt-1 

(where t-1 means previous year). These past variables do not affect Y directly, if not through an 

effect over c. Nevertheless, they may worth being included in the models because with the new 

sensors technologies, they have the advantage of being easily measurable at a low cost and being 

highly available on most farms. One goal of this work is to explore how using p in the function 

would be a promising cost-efficient method to predict the Y response function. For example, 

initial N in the soil is a c variable that can be obtained by doing soil sampling (SS), incurring a 

certain cost. Instead of using that variable, we can use Y/Nt-1, expecting that when it is high, the 

previous crop had used most of the applied N and the residual N in the soil would be low and 

vice versa. That way, an important variable of the function, like initial N, can be predicted using 

a low-cost variable.  

Based on the knowledge of the farmer about the three different vectors, it is possible to 

estimate an expected response function. That function can be analyzed and optimized to generate 
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a field’s application map that maximizes the expected profits for the farmer based on the 

available information. When more information is available, the farmer’s decision should be 

closer to the true EONR. 

3.2 CALCULATING THE VALUE OF TECHNOLOGY AND INFORMATION  

In the first stages of precision agriculture, many studies were performed on the 

economics of the new technology. Unfortunately, these studies used a wide range of assumptions 

and methods (Lowenberg-De Boer 2003). Some of them omitted significant cost, made different 

assumptions, or compared profits under different situations. A common mistake had been using 

rates obtained without trial data for Uniform Rate Application (URA) versus rates obtained by 

analyzing trial data for Variable Rate Applications (VRA), confusing the value of technology 

with the value of information (Bullock et al. 2009). A Purdue University review from 2000 

showed that the number of economist co-authoring articles was increasing between 1991 and 

1999, and several authors outlined methods for obtaining reliable economic estimates of the new 

technology (Swinton and Lowenberg-DeBoer 1998, Bullock and Bullock 1998). 

Bullock et al. (2009) used a methodology to compare the value of different strategies. 

They compared three factors that affect the decisions of the farmer:  

• Y response to N knowledge: the knowledge of the exact response function of Y to N rate 

(ex-ante, ex-post). “Ex -ante” means that decisions are made before the growing season, 

thus the weather is unknown and the farmer does not know the exact yield curve, thus he 

must use some historic average. “Ex-post” means that different rates are tested during the 

growing season, the exact response curve is known and the optimal N rate selected for 

each situation. In “Ex-post” scenario, decisions are optimized for the growing season. 

• Information (I): the availability of site-specific information for the field (yes, no). When 

more significant spatial variables are incorporate as predictors to a model, the capacity to 

explain and predict the response is usually increased. In their work, no information meant 

that the farmer had no knowledge of site-specific characteristics and, in that situation, he 

had no incentive to use VRA and he would use URA and a regional model to predict the 

EONR. 

• Technology (T): weather the farmer is using uniform rate application (URA) or has 

access to Variable Rate Technology (VRT).  
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By combining these three factors, eight structures were created combining information 

and technology levels.  

It can be easily seen how technology can increase profits, by comparing the achieved 

profits with and without the technology. It is more complex to see how information affects 

profits. According to Lowenberg-DeBoer (1998), information affects profits if it changes 

decisions. If certain decisions are more profitable than the ones that would have been made 

without the information, the increase in profit is due to the information. Following that 

reasoning, a farmer will choose the N rate that maximizes his expected profits on each of the 

eight structures. Then, by comparing the change in actual profits, the marginal value of each 

structure can be determined.  

The economic analysis of this work built over that approach, with slight adaptations. The 

first adaptation is that EONR was calculated only in ex-ante conditions. This is because the 

interest of the work was analyzing real strategies under partial-information (unknown weather) 

and thus, the ex-post EONR is not meaningful for this goal.  

The second adaptation is how information is treated. At present, most of the modern 

machines used in the U.S. Corn Belt come with sensors to measure different variables. Since the 

price of these sensors has been decreasing over time, nowadays most of the base models of 

machinery include them. Moreover, that trend is expected to increase in the future. For that 

reason, these sensors are assumed a sunk cost, and the information they provide is assumed to be 

free. Researchers in the project, in constant contact with farmers, state that it is common to 

observe that modern farmers have accumulated over the years many as-applied maps (that is a 

map with points where applied rates of the planter or sprayer are recorded), yield maps (that is a 

map with points were yield at harvesting is recorded) and elevation maps from their fields over 

time, and they are willing to transform it in information that can be useful. For that reason, 

instead of having two levels of information (yes or no), three levels were created. One is the “no” 

information level and includes the situation where a farmer does not have -or if he/she has does it 

is not used for N management purposes- site-specific information and is not running trials. The 

“low” information level is the situation where a farmer run trial/s and has free site-specific 

information provided by sensors at no cost or insignificant cost. Finally, the third is the “high” 

information level and it is the situation where a farmer has information from trials together with 
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free site-specific information and also gathers soil sampling information every year for initial N 

and every four years for OM.  

3.3 MAXIMUM RETURN TO N (MRTN) 

In 2004, University soil fertility researchers from different States in the corn belt (Illinois, 

Iowa, Michigan, Minnesota, Ohio and Wisconsin) with the aim of unifying methods started a 

program oriented to provide regional N rate guidelines (Sawyer et al. 2006). In this program, 

they collected information from trials across the region, analyzed the data to generate response 

models and create, as a final output a N-calculator that is available to the public in their website 

(http://cnrc.agron.iastate.edu/).  

They way how N-calculator works is allowing the user to select an area within the 6 

states, together with management information (rotation, type of fertilizer) and prices of N and 

corn. Then the platform provides the result of the model in those conditions, and the suggested 

rate to apply to get the Maximum Return to N application (MRTN rate). For the region where the 

field is located, the MRTN rate is 224 kg/ha of N. 
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CHAPTER 4: METHODS 

4.1 CONCEPTUAL STEPS OVERVIEW 

The present work is compound by two parts. First the data generation process and then 

the analysis process. Figure 1 shows the workflow followed during the data generation process. 

First, a spatially variable field was created. Over that field, one year of a regular crop using 

MRTN rate was simulated to set the initial conditions. That simulation year is not part of the 

observations. The research process starts with the Trials Stage (TS), where completely 

randomized trials were simulated each year. After TS, the trial information was analyzed, and an 

econometric regression model was estimated. The Production Stage (PS) is considered the stage 

when the field is used for the regular production of a crop using the EONR obtained from the 

trial data.   

A ten years-long simulation for the whole field (256 cells x 10 years = 2560 

observations), composed by TS and PS is called a set (z,L,SI,T). Different sets were created by 

combining the following factors: 

- Weather scenarios (z = 1980, 1985, 1990, 1995, 2000): They were created using historic 

weather and named based on the first year of the sequence. That means that z = 1980 uses 

the weather from 1980 to 1989. Consecutive years of the historic weather were used, to 

capture real patterns in the weather.  

- Number of trials (L = 0 to 5): being 0 when no trials were run and L from 1 to 5 the 

number of years when a trial was run over the field. 

- Information (I = No, Low, High): No is the situation where no trials were run; Low is 

where trials were run and “free” site-specific variables are collected. High is where trials 

were run, “free” site specific information is collected and also soil sampling information 

of initial Nitrogen (NApr) and Organic Matter (OMApr).  

- Technology (T = URT, VRT) was the technology used during PS, being URT when the 

farmer was constrained to select only one rate that maximizes expected profits in the 

whole field VRT when the farmer had the ability to select the rate that maximizes 

expected profits in each site of the field. It is important to note that during TS the farmer 

will always use VRT, because changing the rates that is needed to apply the different 

treatments in the trial. 
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Strategies (SI,T) was the word used to describe the possible combinations of Technology 

and Information during this work. Since comparisons were done usually by z and at LOPT, this 

will simplify the notation and avoid repeating the first two superscripts.  

In this work, it was assumed that a farmed that did not run trials will not have incentive to 

use VRA, and will use only URA of MRTN rate. That way, five S (Sno,URA, Slow,URA, Slow,VRA , 

Shigh,URA , Shigh,VRA) were obtained in this work, tested over different L and z.  

Having explained what a set and S are, it is possible to account the total number of sets 

simulated in this work. The sets are combinations of z,L and S, but not all combinations are 

possible. The number of sets that do not involve trials are 5 and they are the combination of 

Sno,URA with L = 0 (if no trials are run, L can only be 0). The number of sets that involves trials 

are 100, and they are the combination of the five z (1980,…,2000), with the five L (1,…,5), with 

the remaining S that includes trial information (Slow,URA, Slow,VRA, Shigh,URA, Shigh,VRA). Adding 

them, the total of 105 sets simulated in this work are accounted. Considering that each set is 10 

years long and that the whole field has 256 cells, that is a total of 268,800 simulations.  
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Figure 1: Data generation process workflow

 

After generating the data, the work continued with the analysis process shown in figure 2. 

First, economic variables were computed. The input was the APSIM results map. This map was 

condensed into total field values by year (i.e. the N and Y by cell was added for the whole field 

to obtain the total N applied and the total grain harvested) and the costs and revenues were 

computed by year.  

The trajectory of the Present Value (PV) of each set by increasing L was graph and 

analyzed to answer question 1 from section 1.2. Using the PV at the LOPT, the value of the 

different combinations of I and T was obtained, answering question 2 and 3. Then, 

Environmental Variables trajectory was analyzed to answer question 4. Finally, two especial 

analyses were performed to address question 5, one to understand underlying causes of the 

results and the other one to find insights that could help to predict the LOPT in ex-ante conditions. 
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Figure 2: Data analysis process

 

4.2 FIELD CREATION 

4.2.1 INITIAL CONDITIONS 

To capture the essence of spatial experimentation and management, a farm field with 

spatially heterogeneous field characteristics was modeled. A real 32–ha field owned and 

managed by a farmer near Effingham, Illinois (39.1 N latitude and 88.7 W longitude) was used 

as starting point. 

Spatial site-specific information about elevation, information from soil sampling, and the 

soil survey report (SSURGO 2018) were collected. All the variables were edited, following 

different procedures. These way, we created a new research field, different than the original, that 

could lead us to explore how variability affects the results. The final product is a square grid 

(figure 3) with one-ha cells (c = 1,…,32). Each cell had unique site-specific characteristics 

obtained by condensing and editing the different layers of site-characteristics information with 

the following procedures:  
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• Soils: because the soil survey report indicated that 85% of the field is classified under the 

same soil type, for simplicity we categorized the whole field under that soil type. This 

soil is named Cisne silt loam, with 0 to 2 percent slopes. The typical profile is Ap-E-Bt1-

2Bt2-2C. These soil characteristics were reproduced in APSIM following the 

methodology described in Archontoulis et al. (2014).  

• Organic Matter in April (OMApr): OM was sampled in April 2016 at 32 points, each at the 

center of 1-ha grid cell. Since OM was not highly variable over the field, with a mean of 

2.42% and standard deviation of 0.15, the residuals between each measurement and the 

mean were multiplied by 1.8 to increase the variation.  The final OMApr has a mean of 

2.42% and a standard deviation of 0.27. The purpose of this was to explore more 

variability in the field that the one present in 2016.  

• Nitrogen in April (NApr): is the sum of the quantities N available as N-NO3 and N-NH4 in 

April, the day before planting. It was estimated by conducting a linear relation with OM. 

Also, a spatially autocorrelated error was added to the result of the function using 

Gaussian simulation, according to the following autoregressive process: 

𝑁. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 25 ∗ 𝑂𝑀 − 38.52 + 𝑄 (1) 

𝑄 = 𝜌𝑞𝑊𝑄 + 𝑒𝑟𝑟𝑜𝑟 

𝑒𝑟𝑟𝑜𝑟 ~ 𝑁(0, 𝜎𝑞
2), 

where 𝜌𝑞is the spatial autoregressive parameter, W is the spatial weight matrix, 

and 𝜇𝑞and 𝜎𝑞
2 are the expected value and variance of Q. The W is a matrix whose (i,j) 

elements are 𝑒−0.1∗𝑑𝑖𝑗, where 𝑑𝑖,𝑗 is the distance between the centroid of the i-th and j-th 

square of the grid. 

With this procedure a spatially autocorrelated NApr was obtained for each cell of 

the field. NApr values varied among cells between 1 kg/ha and 37 kg/ha.  

• Elevation: using high-density point information data from the tractor GPS system, a 

point-in-polygon operation was performed, obtaining the median of the elevation points 

for each square of the grid. 

• Depth: The original thickness of the soil units’ last layers varied between 153 cm and 196 

cm. Spatial variation of the total soil depth was generated by varying only the thickness 
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of the last layer (upper layers were not affected by this procedure). In the same way than 

with NApr, Depth was calculated as a linear function of Elevation, and an autocorrelated 

errors were added: 

𝐷𝑒𝑝𝑡ℎ = 3.183 𝐸𝑙𝑒𝑣 − 1806.46 + 𝑄 (2) 

𝑄 = 𝜌𝑞𝑊𝑄 + 𝑒𝑟𝑟𝑜𝑟 

With this procedure, a spatially autocorrelated depth was obtained for each cell of 

the field, which varied from 153 cm to 200 cm among cells.  

As explained before, a set is a 10-year simulation of the whole field. Every set starts with 

the field and the initial conditions described above. Then, a regular corn crop was simulated 

using a nitrogen fertilizer application at the MRTN rate. These simulations of a regular corn crop 

were considered to be in year 0 and they were discarded. Since the initial conditions have an 

impact on the result of the trial, the goal of simulating a regular corn before the TS was to expose 

those initial conditions to a simulation with a random weather. If this were not done, the first trial 

year would always have had the same initial conditions, which would impose the same effect 

over the L = 1 strategy in all z scenarios. For example, if the initial conditions have a high NApr, 

then response to N would be low for L=1 and random for higher values of L, which is not 

realistic.  

4.2.2 TRIAL DESIGN 

Over the previously described field, a trial was created following the protocol used in the 

DIFM project. A planter machine width of 12 meters was assumed. A border of 24 meters was 

created on the edges of the field and considered an area excluded for experimentation. The 

reason is that, in real trials, the edges of the field are exposed to uncontrolled factors that 

decreased the quality of the data, like winds, heavy machinery transit or different soil quality. 

Even though these factors will not be incorporated in the crop modeling simulations, the border 

was included because it will change the relative area of the trial and, since the border will receive 

the target rate instead of the different treatments, it will have an impact on the economic result of 

the strategy.  

As shown in figure 3, inside the border, a grid of 110 plots was created. Each plot had 24 

m width and 85 m length.  When overlapping the initial grid of varying c characteristics, with 32 



17 

 

squares of 1 ha, with the trial design with 110 plots and a border, 256 cells are gotten. Within 

these cells, rather the site-characteristics or the received treatment was different. For that reason, 

each of these cells was unique and all APSIM simulations were run for each cell. Then, results 

were aggregated, to a dimension that represents what we would obtain in a real situation. For 

example, if at the time of analyzing the data from the trials, a plot had three cells, all needed 

variables were aggregated weighing by area and that that was the data used for the regression 

analysis. 

With the aim of using the same naming convention throughout the present discussion, 

each of the 32 squares in the initial grid was called a “square”. Each of the 110 trial plots that 

was created over the field was called a “plot”. Each of the 256 cells with varying dimensions that 

have a unique combination of site-characteristics with treatment is called a “cell”.   

Figure 3: Naming convention for field layers and resolution

 

4.2.3 DYNAMIC TREATMENTS 

Farmers run annual field trials with a completely randomized design. Each year, five 

nitrogen fertilizer rates were randomized on the 110 plots. That is, each one of the five N Rates 

were applied on 22 of the 110 plots. The treatments (T) were selected dynamically based on the 

following process: 

Each year there was a central target rate (TR) and the other 4 rates were calculated based 

on this central rate according to: T1= TR – 90 kg/ha, T2 = TR – 60 kg/ha, T3 = TR – 30 kg/ha, 

T4 = TR, T5 = TR + 30 kg/ha. Areas along the field perimeter were placed in a “buffer zone,” 

not included in the experiment, and assumed fertilized at rate TR. The first trial year, the TR was 
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the MRTN rate. In subsequent years, the TR was the average among the MRTN rate and the 

rates that would have maximized profits in each of the previous trial years.  

4.2.4 OTHER MANAGEMENT PRACTICES 

All other management practices that are not related with N rate were held constant in all 

simulations. Soil sampling was performed on April 29th (as explained later, this information 

could be used or not, depending on the strategy). The field was tilled every year on April 30th of 

every year, at a depth of 11 cm, incorporating 40% of the surface residues. The planting date was 

May 1st of every year. The hybrid was a generic APSIM hybrid with called A110, with 110 days 

maturity. The plant population was 8 plants/m2 and the row spacing was 76 cm. No tiling was 

included in the field. 

4.3 ON-FARM YIELD CURVE ESTIMATION 

4.3.1 SOIL SAMPLING SIMULATION  

To make results economically realistic, soil sampling variables needed to be transformed. 

High-resolution NApr and OMApr data were provided for each of the 256 cells, by APSIM every 

April. Since soil sampling at that resolution would be economically prohibitive, two new 

variables were created. They were the spatial and temporal aggregation of the high-resolution 

NApr and OMApr data. Although this process decreased the precision of the data, it is imitating 

what could be obtained in a real situation.  

One of the new variables was the soil N in April obtained by soil sampling (NApr.ss). This 

variable was the area-weighted average of NApr (whose resolution is by cell) with the following 

soil sampling strategy: 

• Year 1: by square. Since the field previously had a uniform-rate crop, variation will 

depend on site-specific characteristics that varied by square. 

• Year 2 to L +1: by plot. During trial years, since treatments were applied by plot, the soil 

sampling was performed at that same scale. Then in the first year after TS (year = L + 1), 

since the field still would have high variability in NApr because it had different rates in the 

previous year, NApr.ss is still performed by plot (and the border area was characterized by 

a single soil sample).   
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• Year L+2 to 10: by square. Two years after the TS, NApr variation over the field is 

smoother, and soil sampling is performed by  square. 

The other new variable was the soil OM in April obtained by soil sampling (OMApr.ss). 

This variable was the area-weighted average of OMApr simulating a soil sampling strategy 

performed by square every four years (that is in April of year 1, 5 and 9). That means that for one 

of the squares OMApr.ss had the same value from year 1 to 4, then a new value from year 5 to 8, 

and finally another new value from year 9 to 10. 

4.3.2 MODEL ESTIMATION  

In section 3.2 and 4.1, the concept of how Information was treated in this work was 

introduced. The level of information of the set will impact the variables included as regressors in 

the model estimation. There are three levels of information (no, low, high). If the information 

level was no, that means that the farmer did not conduct trials, thus no regression model was 

estimated.  

If the information level was low, the model included variables that are considered “free” 

nowadays. They are the as-applied N, elevation, Y/Nt-1. The N rate is automatically measured by 

sensors in the fertilizer applicator that automatically records the rate. The Elevation is recorded 

by the guiding system of the tractor. Y is measure by the yield monitor in the harvesting machine 

and then transformed to the Y/N ratio. The Low information model was: 

𝑌𝑖𝑡 =  𝛽0 +  𝛽𝑁 ∗ 𝑁𝑡,𝑖 +  𝛽𝑁2 ∗ 𝑁𝑡,𝑖
2 + 𝛼2 ∗ 𝑌𝑒𝑎𝑟2 +  𝛼2 ∗ 𝑌𝑒𝑎𝑟2 ∗ 𝑁𝑡,𝑖 +

 𝛼2 ∗ 𝑌𝑒𝑎𝑟2 ∗ 𝑁𝑡,𝑖
2 +  𝛼3 ∗ 𝑌𝑒𝑎𝑟3 +  𝛼3 ∗ 𝑌𝑒𝑎𝑟3 ∗ 𝑁𝑡,𝑖 +  𝛼3 ∗ 𝑌𝑒𝑎𝑟3 ∗ 𝑁𝑡,𝑖

2 +

𝛼4 ∗ 𝑌𝑒𝑎𝑟4 + 𝛼4 ∗ 𝑌𝑒𝑎𝑟4 ∗ 𝑁𝑡,𝑖 +  𝛼2 ∗ 𝑌𝑒𝑎𝑟4 ∗ 𝑁𝑡,𝑖
2 + 𝛼5 ∗ 𝑌𝑒𝑎𝑟5 + 𝛼5 ∗

𝑌𝑒𝑎𝑟5 ∗ 𝑁𝑡,𝑖 +  𝛼5 ∗ 𝑌𝑒𝑎𝑟5 ∗ 𝑁𝑡,𝑖
2  + 

𝛽𝐸 ∗ 𝐸𝑖 +  𝛽𝐸𝑁 ∗ 𝐸𝑖 ∗ 𝑁𝑡,𝑖 +  𝛽𝐸𝑁2 ∗ 𝐸𝑖 ∗  𝑁𝑡,𝑖
2 +  𝛽𝑌/𝑁 ∗ 𝑌/𝑁𝑡−1,𝑖 +  𝛽𝑌.𝑁 ∗ 𝑁

∗ 𝑌/𝑁𝑡−1,𝑖 ∗ 𝑁𝑡,𝑖 + 𝛽𝑌/𝑁∗𝑁2 ∗ 𝑌/𝑁𝑡−1,𝑖 ∗  𝑁𝑖
2 + ε𝑡,𝑖 

(3) 

𝑤ith ε𝑡,𝑖 =  λWε𝑡,𝑖  +  𝑢𝑡,𝑖 𝑎𝑛𝑑 𝑢~𝑁(0, 𝜎2𝐼𝑛)  

Where, 

𝑡 is the trial year and goes from 1 to 5, 𝑖 is the plot and goes from 1 to 110, 
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𝛽0 is the parameter for the intercept,  

𝑌𝑒𝑎𝑟2 𝑡𝑜 𝑌𝑒𝑎𝑟5 are dummies variables for the respective year. When combine with the 

respective parameter 𝛼2 𝑡𝑜 𝛼5 they constituted the year effect, representing the change in the 

quadratic response relative to year 1 (omitted category). They estimated unobserved 

characteristics that are specific to a particular year, 

𝑁𝑡,𝑖 is the N rate, 𝐸𝑖 is the Elevation, 𝑌/𝑁𝑡−1,𝑖 is the Y/N ratio from the previous year, 

If the information level was high, the model included all the low information variables, 

but also incorporated the soil sampling information. The High information model was: 

𝑌𝑖𝑡 =  𝛽0 +  𝛽𝑁 ∗ 𝑁𝑡,𝑖
𝑇 +  𝛽𝑁2 ∗ 𝑁𝑡,𝑖

𝑇 2
+ 𝛼2 ∗ 𝑌𝑒𝑎𝑟2 +  𝛼2 ∗ 𝑌𝑒𝑎𝑟2 ∗ 𝑁𝑡,𝑖

𝑇 +

 𝛼2 ∗ 𝑌𝑒𝑎𝑟2 ∗ 𝑁𝑡,𝑖
𝑇 2

+  𝛼3 ∗ 𝑌𝑒𝑎𝑟3 +  𝛼3 ∗ 𝑌𝑒𝑎𝑟3 ∗ 𝑁𝑡,𝑖
𝑇 +  𝛼3 ∗ 𝑌𝑒𝑎𝑟3 ∗ 𝑁𝑡,𝑖

𝑇 2
+

𝛼4 ∗ 𝑌𝑒𝑎𝑟4 + 𝛼4 ∗ 𝑌𝑒𝑎𝑟4 ∗ 𝑁𝑡,𝑖
𝑇 +  𝛼2 ∗ 𝑌𝑒𝑎𝑟4 ∗ 𝑁𝑡,𝑖

𝑇 2
+ 𝛼5 ∗ 𝑌𝑒𝑎𝑟5 + 𝛼5 ∗

𝑌𝑒𝑎𝑟5 ∗ 𝑁𝑡,𝑖
𝑇 +  𝛼5 ∗ 𝑌𝑒𝑎𝑟5 ∗ 𝑁𝑡,𝑖

𝑇 2
 + 

 𝛽𝐸 ∗ 𝐸𝑖 +  𝛽𝐸𝑁 ∗ 𝐸𝑖 ∗ 𝑁𝑡,𝑖
𝑇 +  𝛽𝐸𝑁2 ∗ 𝐸𝑖 ∗  𝑁𝑡,𝑖

𝑇 2
+  𝛽𝑌/𝑁 ∗ 𝑌. 𝑁𝑡−1,𝑖 +

 𝛽𝑌/𝑁 ∗ 𝑁 ∗ 𝑌/𝑁𝑡−1,𝑖 ∗ 𝑁𝑡,𝑖
𝑇 + 𝛽𝑌/𝑁∗𝑁2 ∗ 𝑌/𝑁𝑡−1,𝑖  ∗ 𝑁𝑡,𝑖

𝑇 + 𝛽𝑂𝑀 ∗ 𝑂𝑀𝑡,𝑖
𝐴𝑝𝑟.𝑠𝑠 +

 𝛽𝑂𝑀𝑁 ∗ 𝑂𝑀𝑡,𝑖
𝐴𝑝𝑟.𝑠𝑠 ∗ 𝑁𝑡,𝑖

𝑇 +  𝛽𝑂𝑀𝑁2 ∗ 𝑂𝑀𝑡,𝑖
𝐴𝑝𝑟.𝑠𝑠 ∗  𝑁𝑡,𝑖

𝑇 2
+  ε𝑡,𝑖  

(4) 

𝑤ith ε𝑡,𝑖 =  λWε𝑡,𝑖  +  𝑢𝑡,𝑖 𝑎𝑛𝑑 𝑢~𝑁(0, 𝜎2𝐼𝑛)  

Where, 

𝑁𝑡,𝑖
𝑇  (Total Nitrogen), is the sum of 𝑁𝑡,𝑖

𝐴𝑝𝑟.𝑠𝑠
and 𝑁𝑡,𝑖 rate, 

𝑂𝑀𝑡,𝑖
𝐴𝑝𝑟.𝑠𝑠

 is the OM obtained by soil sampling. 

In statistics, Ordinary Least Squares (OLS) is an estimation method for the unknown 

parameters that assumes that errors in the dependent variable are uncorrelated with the 

independent variable(s). When this is not the case, OLS would not provide unbiased model 

estimates. For that reason, in this work, statistic procedures that allow spatial autocorrelation, 

were used to estimate the unknown parameters. 
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In spatial statistics there are different options for including spatial autocorrelation in a 

model. Given the characteristics of the variables in this work (𝑁𝑡,𝑖, 𝐸𝑖, 𝑂𝑀𝑡,𝑖
𝐴𝑝𝑟.𝑠𝑠

, 𝑁𝑡,𝑖
𝑇 , 𝑌/𝑁𝑡−1,𝑖), 

no spillover could exist between the different plots. The treatments were applied only in the 

target area, affecting the Yield of that site and not the neighbors. Moreover, a change in the 

regressors would not affect the Yield of a neighbor indirectly (no spillover effect). For that 

reason, the only model for spatial autocorrelation that could be used is the Spatial Error Model 

(SER). When only one year of data was available (L=1), the “errorsalm” function from the R 

package “spdep” (Bivand et al. 2013, Bivand and Piras 2015) was used. If more than one year of 

data was available (L > 1) the Spatial Panel Error model from the R package “splm” was used 

(Giovanni and Piras 2012).  

4.3.3 SOURCES OF ERROR FOR THE MODEL 

In this work, data was simulated using APSIM based on all the provided inputs. Then, a 

regression model was adjusted over that data using less information, or with different spatial and 

temporal resolution. In consequence, the regression did not explain all the variability, having a 

random error - ε𝑡,𝑖 in (1) and (2). In this section, the sources of that random error are explained in 

detail: 

- Omitted variables: Depth was one of the inputs in the APSIM simulations and it affects 

Yield, especially in dry years, since it changes the amount of water that the soil can retain. 

This variable was not included in the regressions directly, it was included indirectly since it is 

correlated with Elevation. The two other omitted variables were NApr.ss and OMApr.ss in the 

low information model. The portion of the variability explained by the omitted variables 

would be part of the error in the model. 

- Soil sampling representation: since soil sampling is costly, in the high information model, 

NApr and OM were spatially and temporally aggregated based on the procedure explained in 

4.3.1. This decreased precision of the data, increasing the error of the model. 

- Spatial resolution: The field had 256 cells and APSIM is run every time for each cell. One 

plot can be composed by more than one cell. For the regression model estimation, variables 

were aggregated doing and area-weighted averaged to obtain one observation per plot (total 

of 110 observations). All the variables in the model were affected by this process 𝑌𝑖𝑡, 𝑁𝑖𝑡, 𝐸𝑖, 

𝑂𝑀𝑡,𝑖
𝐴𝑝𝑟.𝑠𝑠

, 𝑁𝑡,𝑖
𝑇 , 𝑌/𝑁𝑡−1,𝑖). 
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In the case of 𝑁𝑡,𝑖
𝑇  and 𝑂𝑀𝑡,𝑖

𝐴𝑝𝑟.𝑠𝑠
 they were aggregated twice, first according to the 

soil sampling resolution and then, if a plot had more than one value, it was again 

aggregated by plot. 

- Functional form: APSIM is not an equation, it is a crop modeling software with modules that 

interact which each other. In this work, a quadratic functional form was used and it has not 

necessarily the exact same shape than the APSIM output, increasing the error term.  

- Weather not captured by year fixed effect: To make the model applicable in a wider range of 

situations, the year effect was incorporated only affecting the quadratic response of Y to N 

and the intercept, not the other regressors. If it also interacted with other variables, the 

interaction will be part of the error term. 

4.4 EONR PREDICTION  

4.4.1 WEATHER WEIGHTED PROFIT FUNCTION 

During PS, every April, yield predictions for each cell for each year were obtained using 

the corresponding regression model, the initial conditions of the cell in April for that year and an 

increasing sequence of N rates. As a precaution, the included sequence ranged from the lowest 

tested rate in the trial to the highest, to avoid extrapolations outside the tested rates.  

Some considerations were made regarding the year dummy variables. The model for L > 

1 had a fixed year effect variable interacting with the intercept, the linear and the quadratic 

response to N (or NT) in the high information model. These year fixed effects are for past years 

and, at this time of the process, we need to predict the EONR for the future year, in ex-ante 

conditions, with uncertainty in the weather. To do this, the yield for each N in the sequence rates 

was calculated using each year fixed effect. Then, Partial Profits were calculated considering the 

price of corn (PC= 0.157 $/kg = 4 $/bu) and the cost of Nitrogen (PN = 0.881 $/kg = 0.4 $/lb). All 

other costs are assumed to be the same for all rates and not considered at this part of the work 

since they will not affect the optimization process. For example: if L = 3, a dummy variable for 

year 2 and year 3 was added to the sequence of N rates, and three response curves of profits to N 

were created for each cell.  

The profit curves for each year were condensed in one weather weighted profit 

function. For this, a probability of occurrence was assigned to each of them. This probability 
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was calculated using the historic weather and assuming a normal distribution of it. Two weather 

variables were used: Season precipitation (ppS) and July precipitation (ppJ): 

- 𝑝𝑝𝑡
𝑆: is the amount of precipitation from sowing to harvesting during year t. ppS affects 

two processes. On one hand, if the crop is limited by water, an increase in ppS would 

produce a higher response of the yield to N, because it will increase the growing rate of 

the plants and with that the uptake of N. On the other hand, an increase in ppS is 

associated with an increase of leaching, especially if the precipitations are concentrated 

in the stages were the growing rates (and thus the N uptake) are low.  

- 𝑝𝑝𝑡
𝐽
: is the amount of precipitation in July of year t. July is the month of the year where a 

crop planted at the beginning of May will be flowering. The -15 and +15 days before and 

after flowering are the Critical Period of the crop, when the crop generates the potential 

grains and thus the availability of resources produce a great impact on yield. As a result, 

high values of ppJ are associated with a higher capacity of the crop to uptake N and 

generate in Y. In contrast, water limitations in this period will reduce the Y of the crop 

and the demand of N. 

Is important to consider both variables, because they could have different effects on the 

crop-soil system. For example, it is expected that a high ppS in combination with a low ppJ will 

produce a high N-leaching without increase in Y. This is because the precipitations will be 

concentrated in a period of the season when the crop is not growing fast and up-taking N, thus 

the N in the soil will be transported below the roots depth.  If a normal ppS is combined with a 

high ppJ it is expected to have a high response of Y to N, and not much over the N-leaching, 

since the crop is receiving water in the moment when it is at full capacity to uptake the nutrient 

from the soil and generate grains. 

For that reason, both variables were combined to determine the probability of each year, 

doing the following procedure: 

With Season precipitation 

𝑍𝑡
𝑆 =

𝑝𝑝𝑡
𝑆− 𝜇

𝑝𝑝𝑡
𝑆

𝜎
𝑝𝑝𝑡

𝑆
                      (5) 

With July precipitation 

𝑍𝑡
𝐽 =

𝑝𝑝𝑡
𝐽

− 𝜇
𝑝𝑝𝑡

𝐽

𝜎
𝑝𝑝𝑡

𝑆
                       (7) 
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𝑃𝑍𝑡
𝑆 = 𝑃(−𝑎𝑏𝑠(𝑍𝑡

𝑆))          (6) 𝑃𝑍𝑡
𝐽

= 𝑃 (−𝑎𝑏𝑠(𝑍𝑡
𝐽
))          (8) 

 

Combined probability of both weather variables: 

                                         𝑊𝑃𝑡 =
𝑃𝑍𝑡

𝑆 𝑃𝑍𝑡
𝐽

∑ (𝑃𝑍𝑡
𝑆 𝑃𝑍𝑡

𝐽
)𝑡=𝐿

𝑡=1

                                                  (9) 

Where 𝜇 is the mean and 𝜎is the standard deviation of the indicated variable. Then, 𝑍 is 

the distance between each of the observed values and the respective historic mean in units of 

standard deviation.  

𝑃(−𝑎𝑏𝑠(𝑍)) is the accumulated probability of the negative of the absolute value of the Z 

score (left side of the distribution), assuming that Z ~ N(0, 1)  

With this method, the Weather Probability (WPt) of each profit function was calculated 

considering how usual was the combined weather of both variables. This allowed to decrease the 

weight of trials run in years with a weather that is not expected to happen in the future, and 

increase the weight of those whose weather is more likely to happen.  

To explain this, the example in table 1 is provided. With z = 1990, 5 trials were 

conducted (L = 5). The historic weather from 1979 to 2015 has a 𝜇𝑃𝑝𝑡
𝑆 = 454 , 𝜎𝑃𝑝𝑡

𝑆 = 153, 

𝜇
𝑃𝑝𝑡

𝐽 = 105 and 𝜎
𝑃𝑝𝑡

𝐽 = 62. In this example, year 4 was an extremely wet year, both for the total 

amount during the Season and during July. If we calculate the profits as a regular average of the 

5 productions functions, we would assign year 4 a probability of 20%. With this methodology we 

will assign it a probability of 0.1%. Year 3 had a  

𝑃𝑝𝑡
𝑆 very close to the mean and thus, highly probable. Nevertheless, 𝑃𝑝𝑡

𝐽
 was extremely high, 

with a very low probability. This last characteristic decreased the final probability of year 3 to 

0.5%. The weather weighted profits function will be mainly a combination of year 2 (61.9%), 

year 1 (21.8%) and year 5 (15.5%).   
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Table 1: Year fixed effects aggregation example, using the weather scenario starting in year 1990. 

Year 𝒑𝒑𝒕
𝑺 𝑍𝑡

𝑆 𝑃𝑍𝑡
𝑆 𝒑𝒑𝒕

𝑱
 𝑍𝑡

𝐽
 𝑃𝑍𝑡

𝐽
 𝑾𝑷𝒕 

1 635 1.183 0.118 127 0.354 0.361 0.218 

2 387 -0.437 0.330 84 -0.338 0.367 0.619 

3 483 0.189 0.424 279 2.806 0.002 0.005 

4 762 2.013 0.022 244 2.241 0.012 0.001 

5 297 -1.026 0.152 53 -0.838 0.200 0.155 

4.4.2 RESOLUTION AND TECHNOLOGY 

In section 4.2 and Figure 3, the naming convention of square, plot and cell was stated. 

The model was generated using as data the trial information, where each of the 110 plots was an 

observation. The reason why data was aggregated to one observation per plot is that, under a real 

situation, it takes time and distance to the spraying machine to change from a rate to another, 

especially when rates are separated one from another like in a trial. Also, the yield monitor has a 

lag between it finishes processing one plot and the harvesting machine has enough flow of grain 

from the following plot, to provide a quality measure of grain.  

During PS, the change in rates over the field is expected to be smoother than over the trial 

and it was assumed that the sprayer could apply the target rate and that the yield monitor was 

able to provide quality measures of yield for each of the 256 cells. For that reason, even though 

the model was generated at the plot level -i.e. using plots as observations-, the predictions were 

done at the cell level. 

After calculating the weather weighted profits function for each of the squares there are 

two possible paths to proceed:  

If the farmer was going to use URA during PS, he had the restriction of using only one 

rate in the whole field. For that, all the weather weighted profits function for each cell were 

combined in only one for the whole field. This was done by adding the gross profits of each cell 

(considering the area) for each N rate. Then, the N rate that maximized the profits for the whole 

field was selected (𝐸𝑂𝑁𝑅𝑈𝑅,𝑡). This is the rate that will be applied the following year uniformly 

over the field. 
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On the other hand, if the farmer is using VRA during PS, the weather weighted profits of 

each cell for each N rate was calculated. Then, the N rate that maximized profits was selected 

(𝐸𝑂𝑁𝑅𝑉𝑅,𝑡,𝑗). This was the rate that will be applied the next year on each cell, using VRA. 

4.4.3 SOURCES OF ERROR FOR THE PREDICTIONS 

The predictions of yield and profits for a future year were made using the model that has 

a random error term ε𝑡,𝑖whose composition was explained in 4.3.3. Since the predictions are 

made for future conditions, instead of past, new sources of error are added: 

• Different weather: predictions are obtained for a future year, with unknown weather. The 

weather weighted profit function created with the historic weather could be different than 

the one that will be experienced during the next growing season. 

• Extrapolation in initial conditions: the initial conditions in April can have a different 

combination of values in the different variables of the model than the ones explored 

during the trial years. Thus, the predictions would extrapolate values outside the 

evaluated range that could lead to error in the predictions. For example, the model could 

be created with a range of variation in Y/Nt-1 and applied afterwards in a different range. 

• Spatial aggregation of NApr: After TS, NApr is aggregated. The first year, the aggregation 

is at a plot level and then at a 1 ha square grid level. This reduce the precision of the 

model. 

• Evaluated rates: each trial had five treatments rates, with rates separated by 30 kg/ha. 

Prediction of the Y response to N were calculated using a N sequence that goes from the 

maximum N rate used in the trial to the minimum N rate use in the trial, by 10 kg/ha . In 

consequence, there is interpolation between the rates used for generating the model and 

the rates used for the predictions.  

4.5 ECONOMIC ANALYSIS  

For each set(z, L, SI,T), all the cost related with N management was tracked and 

considered in the economic analysis. During TS, the cost of the farmer’s extra effort and time 

that takes to learn and implement the experiment on year t was called 𝐶𝑡
𝐹. In the DIFM project, 

new farmers that are starting to participate in the project for the first time, are invited to a two-

hour meeting where they are informed about the basic experimental procedures. Including the 
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travel and the time, an opportunity cost of $200 was determined for attending this meeting. Also, 

researchers of the project have noticed that there is a learning curve of farmers, where the first 

year they have frequent questions related with the conduction of the experiments, and in 

subsequent years consultation becomes less necessary. For that reason, a lump sum of $500 was 

considered the first year as a compensation for the communication effort and time of the farmer. 

This sum was decreased to $400 for year two, $200 for year 3 and $100 for the remaining years 

of experiments. Adding both items, 𝐶1
𝐹=$700, 𝐶2

𝐹=$400, 𝐶3
𝐹=$200 and 𝐶𝑡>3

𝐹 =$100 for the 

remaining years 

𝐶𝑡
𝐴 was the total cost of applying N on the whole field during year t. The price charged by 

fertilizer applications service providers vary in the U.S. Corn Belt. Plastina, Johanns, and Erwin 

(2016) reported an average charge of 16.43 $/ha for URA of liquid fertilizer from a survey in 

Iowa. For those same services, Miller (2013) reported an average charge of 15.17 $/ha from a 

survey of Indiana, Stein (2014) reported an average charge of 18.78 $/ha by custom applicators 

in Michigan, and Halich (2016) reported an average 14.82 $/ha in Kentucky. Halich (2016) also 

stated that custom applicators in Kentucky charged 4.94 $/ha more for VRA (instead of URA) 

dry fertilizer. In this work it was assumed that the price that service providers charged is 

PVR=22.39 $/ha for VRA and PUR=$17.3 $/ha for URA. During TS, 𝐶𝑡
𝐴 is obtained by doing the 

area of the field times the PVR, because VRA is needed to run the trial. During PS, when VRA 

was used, 𝐶𝑡
𝐴 is also calculated doing the area of the field times PVR. In contrast, when URA was 

used, 𝐶𝑡
𝐴is the area of the field times PUR. 

𝐶𝑡
𝐶𝐶  denotes the cost of soil sampling to obtain NApr.ss and OMApr.ss. The cost of soil 

analysis in a laboratory in the Midwest was assumed to be $4/sample for N and $4/sample for 

OMApr.ss. In the high information sets, at the beginning of year 1, a soil sampling in the squared 

grid is performed both for N and OM, providing 32 samples with a cost of $8 each sample (since 

it was analyzed for both OM and N). Then, during TS a soil sample of N by plot was considered 

every year, composed of 110 samples at $4 each. The same criteria of one sample per plot for N 

was considered for the first year of PS, adding one sample for the border (total 111 samples). 

The soil sampling of OM was performed again in year 5 and 9 (every 4 years) always by the 

squared grid, providing 32 samples with a cost of $4 each sample. OM soil sampling cost was 
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not distributed over the 4 years, if not that it was computed at the moment it happened. For 

example, if L = 3: 

- 𝐶1
𝑆𝑆= 32 x 4 + 32 x 4 = $256, 

- 𝐶2
𝑆𝑆 = 𝐶3

𝑆𝑆 = 𝐶4
𝑆𝑆= 110 x 4 = $440,  

- 𝐶5
𝑆𝑆= 32 x 4 + 32 x 4 = $256, 

- 𝐶6
𝑆𝑆= 𝐶7

𝑆𝑆= 𝐶8
𝑆𝑆= 32 x 4 = $128, 

- 𝐶9
𝑆𝑆= 32 x 4 + 32 x 4 = $256 

- 𝐶10
𝑆𝑆= 32 x 4 = $128 

The cost of N (𝑪𝑵) was calculated by adding for the whole field the N used in each cell 

and multiplying by 𝑃𝑁. In the same way, revenue (R) is obtained by adding for the whole field 

the amount of grain harvested in each cell and multiplying by 𝑃𝐶 . 

𝐶 𝑡
𝑁 = 𝑃𝑁 ∑ (𝑁𝑡

256
𝑗=1 𝑥 𝑎𝑟𝑒𝑎𝑗) (10) 

𝑅 𝑡 = 𝑃𝐶 ∑ (𝑌 𝑡
256
𝑗=1 𝑥 𝑎𝑟𝑒𝑎𝑗) (11) 

Finally, two summarizing variables were calculated. One is the profits (𝚷), calculated 

every year by subtracting the revenue and the different cost variables: 

𝛱𝑡 = 𝑅 𝑡 − 𝐶𝑡
𝑁 − 𝐶𝑡

𝐹 − 𝐶𝑡
𝐴 − 𝐶𝑡

𝑆𝑆  (12) 

The other one is called present value (PV). It was calculated in April of year 1 (first day 

of the set) adding the discount value of all flows. For this, all costs were assumed to be incurred 

in April of each year, and revenue was obtained in October of each year (0.5 years after the 

income). Nominal values were discounted with an annual discount rate (𝑟) of 5%.  

𝑃𝑉𝑡 =
1

(1+𝑟)(𝑡−1)
[𝑅𝑡] − ∑

1

(1+𝑟)(𝑡−0.5)
[𝐶𝑡

𝑁 + 𝐶𝑡
𝐹 + 𝐶𝑡

𝐴 + 𝐶𝑡
𝑆𝑆]10

𝑡=1   (13) 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑃𝑉 =
∑ (𝑃𝑉 𝑡)10

𝑡=1

10
 (14) 

4.6 VALUE OF INFORMATION AND TECHNOLOGY  

Throughout this work, it was assumed that all other management practices that are not 

related with N management are held constant. Also, it was assumed that, when no experiments 

were conducted over the field, the farmer used MRTN. Since MRTN does not take into account 
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site-specific information, the management plan in every cell will be the same, and the farmer will 

use URA. Following the methodology presented in section 3.2, the value of information and 

technology was calculated. Since the time when the farmer decides to change from running trials 

to regular production will affect the PV, for this calculation, it was assumed that the farmer 

would change at the optimal stopping time (𝐿𝑧,𝐼,𝑇
𝑂𝑃𝑇 ) for each z, I and T. 

If trials were run over the field and data were used to select the best UR for the field, then 

the value of the information of those OFT (VI.OFT) can be obtained by comparing the PV of the 

sets with Slow,URA with the PV of the sets with Sno,URA for each z: 

𝑉𝐼.𝑂𝐹𝑇(𝑧) =  𝑃𝑉(𝑧, 𝐿𝑧,𝑙𝑜𝑤,𝑈𝑅𝐴
𝑂𝑃𝑇 , 𝑆𝑙𝑜𝑤,𝑈𝑅𝐴) − 𝑃𝑉(𝑧, 0, 𝑆𝑛𝑜,𝑈𝑅𝐴) (15) 

If trials were run and the information was used for VRA during the PS, then the realized 

value can be decomposed into two parts: the already explained VI.OFT and the added value of 

using VRT in the PS (after running trials) in the low information scenario (VT.LOW). Based on the 

assumptions of this work, the farmer has no incentive to use VRA if no trials were run in the 

field, thus this value is only calculated as a complement of OFT. Then VT.LOW can be obtained by 

comparing the PV of the sets with Slow,VRA with the PV of the sets with Slow,URA for each z: 

𝑉𝑇.𝐿𝑂𝑊(𝑧) = =  𝑃𝑉(𝑧, 𝐿𝑧,𝑙𝑜𝑤,𝑉𝑅𝐴
𝑂𝑃𝑇 , 𝑆𝑙𝑜𝑤,𝑉𝑅𝐴) − 𝑃𝑉(𝑧, 𝐿𝑧,𝑙𝑜𝑤,𝑈𝑅𝐴

𝑂𝑃𝑇 , 𝑆𝑙𝑜𝑤,𝑈𝑅𝐴) (16) 

If trials were run over the field together with the gathering of soil sampling information, 

then the realized value can be decomposed into two parts: the VI.OFT and the added value of the 

information from soil sampling (VI.SS). Again, this value is always complementary to the VI.OFT 

because, in the assumptions of this work, the farmer would use a uniform MRTN rate if no trials 

were run in the field, thus there is no incentive to do soil sampling if no trials are run. Then VI.SS 

can be obtained by comparing the PV of the sets with Slow,URA with the PV of the sets with 

Shigh,URA for each z: 

𝑉𝐼.𝑆𝑆(𝑧) =  𝑃𝑉(𝑧, 𝐿𝑧,ℎ𝑖𝑔ℎ,𝑈𝑅𝐴
𝑂𝑃𝑇 , 𝑆ℎ𝑖𝑔ℎ,𝑈𝑅𝐴) − 𝑃𝑉(𝑧, 𝐿𝑧,𝑙𝑜𝑤,𝑈𝑅𝐴

𝑂𝑃𝑇 , 𝑆𝑙𝑜𝑤,𝑈𝑅𝐴) (17) 

Finally, if the information of the trials and soil sampling is used together with VRA, then 

the realized value can be decomposed into three parts: the VI.OFT, the VI.SS and the value of VRT 

in the high information scenario (VT.HIGH). This last value can be obtained by comparing the PV 

of the sets with Shigh,VRA with the PV of the sets with Shigh,URA for each z: 
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𝑉𝑇.𝐻𝐼𝐺𝐻(𝑧) = =  𝑃𝑉(𝑧, 𝐿𝑧,ℎ𝑖𝑔ℎ,𝑉𝑅𝐴
𝑂𝑃𝑇 , 𝑆ℎ𝑖𝑔ℎ,𝑉𝑅𝐴) − 𝑃𝑉(𝑧, 𝐿𝑧,ℎ𝑖𝑔ℎ,𝑈𝑅𝐴

𝑂𝑃𝑇 , 𝑆ℎ𝑖𝑔ℎ,𝑈𝑅𝐴) (18) 

4.7 ENVIROMENTAL IMPACT  

The environmental impact of N management is mostly related to the movement of N 

outside the crop system, producing contamination of sub-superficial water. This problem arises 

when precipitation events, NO3-N availability and crop N-uptake do not agree in time (Dinnes et 

al, 2002). To compare the environmental impact that the different strategies would have, the N-

leaching estimated by APSIM was considered. For each set (z,L,I,T) this variable was averaged 

by year and called annual N-leaching (ANL) (kg/ha). 

A𝑁𝐿 = ∑ 𝑁𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔𝑡
10
𝑡=1  (19) 

The same comparisons explained in 4.7 to obtain the Value of the different information 

sources and technology were followed. In this case, instead of calling it value, since it did not 

involve economic variables, it was called N-leaching impact (NLI). In the same way, instead of 

using PV, the variable used was ANL. This way the environmental impact of on farm trials 

(NLI.OFT), of using VRA in low information scenario (NLI.LOW), of doing soils sampling (NLI.SS) 

and of using VRA in a high information scenario (NLI.HIGH) were obtained using the following 

equations: 

𝑁𝐿𝐼𝐼.𝑂𝐹𝑇(𝑧) =  𝐴𝑁𝐿(𝑧, 𝐿𝑧,𝑙𝑜𝑤,𝑈𝑅𝐴
𝑂𝑃𝑇 , 𝑆𝑙𝑜𝑤,𝑈𝑅𝐴) − 𝐴𝑁𝐿(𝑧, 0, 𝑆𝑛𝑜,𝑈𝑅𝐴) (20) 

𝑁𝐿𝐼𝑇.𝐿𝑂𝑊(𝑧) =  𝐴𝑁𝐿(𝑧, 𝐿𝑧,𝑙𝑜𝑤,𝑉𝑅𝐴
𝑂𝑃𝑇 , 𝑆𝑙𝑜𝑤,𝑉𝑅𝐴) − 𝐴𝑁𝐿(𝑧, 𝐿𝑧,𝑙𝑜𝑤,𝑈𝑅𝐴

𝑂𝑃𝑇 , 𝑆𝑙𝑜𝑤,𝑈𝑅𝐴) (21) 

𝑁𝐿𝐼𝐼.𝑆𝑆(𝑧) =  𝐴𝑁𝐿(𝑧, 𝐿𝑧,ℎ𝑖𝑔ℎ,𝑈𝑅𝐴
𝑂𝑃𝑇 , 𝑆ℎ𝑖𝑔ℎ,𝑈𝑅𝐴) − 𝐴𝑁𝐿(𝑧, 𝐿𝑧,𝑙𝑜𝑤,𝑈𝑅𝐴

𝑂𝑃𝑇 , 𝑆𝑙𝑜𝑤,𝑈𝑅𝐴) (22) 

𝑁𝐿𝐼𝑇.𝐻𝐼𝐺𝐻(𝑧) =  𝐴𝑁𝐿(𝑧, 𝐿𝑧,ℎ𝑖𝑔ℎ,𝑉𝑅𝐴
𝑂𝑃𝑇 , 𝑆ℎ𝑖𝑔ℎ,𝑉𝑅𝐴) − 𝐴𝑁𝐿(𝑧, 𝐿𝑧,ℎ𝑖𝑔ℎ,𝑈𝑅𝐴

𝑂𝑃𝑇 , 𝑆ℎ𝑖𝑔ℎ,𝑈𝑅𝐴) (23) 
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CHAPTER 5: RESULTS 

This work involved a considerable amount of data. To show the results in a way that all 

the considerations made during this work can be seen, the approach of showing in detail only 

two S and then increase the number of sets and information was followed. 

First, the breakdown of the economic variables of sets is shown. Then, those economic 

variables are summarized in the PV, with only one value per set and 21 sets, corresponding to the 

same z, were compared. Then the economic value and environmental value of the different 

sources of information and the technology was calculated. Finally, a data exploration was 

performed to understand what are the underlying causes of the different performance of the 

strategies under different weather scenarios. 

5.1 RESULTS EXPLORATION 

5.1.1 WEATHER CHARACTERIZATION 

One of the main advantages of crop simulation is that allows to compare results of 

different N management strategies (combinations of information and technology) over different 

weather scenarios, maintaining all other factors equal (i.e. initial conditions of the field, prices). 

Since in this work weather is one of the main sources of variability and it will allow to explain 

differences in the results, in figure 4 the precipitation of each of the years explored in this work 

is shown, detailed in three different weather variables: ppA, ppS, ppJ. The first variable is called 

Annual precipitation and is the summation of the precipitation over the year. The following two 

variables area Season and July’s precipitation and they were explained in section 4.4.1. 
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Figure 4: Weather description for the period 1979-2009

 

5.1.2 TWO SETS DESCRIPTION 

To understand the economics considered in this work, the trajectory of revenues, profits 

and cost of two of the 10-year sets is showed in figure 3. From the 105 sets of this work, the 

chosen are set(1990,2,Shigh,URA) together with Set(1990,0,Sno,URA). We will refer to them only by 

mentioning the S. 

In figure 5 the total values for the whole field in ($/year) of the different variables are 

shown. In the first set, since L =2, there were two trials made before moving to regular 

production and then, in PS, URA was implemented. In Sno,URA, URA was used and no trials were 

involved. CF was present only in the Shigh,URA and was higher for the first year and decreasing for 

the second since a learning curve was assumed for the farmer; after year 3 this cost is zero since 

no trials were run. As explained in section 4.3.1, the CSS changed due to the change in the 

number of samples (depending if it is done by square grid or by plot) and the analysis performed 

(N every year, OM in year 1,5 and 9). CA is the cost of application, it is higher in the Shigh,URA in 

year 1 and 2 since VRT was used, at PVR. Then, both sets used URA at the lower PUR.  

The highest cost is the cost of fertilizer. This cost was constant for Sno,URA. In the Shigh,URA 

it is lower during the year 1 since trial rates are lower than MRTN. In year 2 it decreased even 

more, since the most profitable treatment was lower than MRTN, and in consequence the central 
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TR was lowered. When the field moved to the PS, the rates are estimated using the model and 

considering the NApr.ss, and they were lower than MRTN rate. 

Moving to the top part of the figure, revenues were close between both sets during most 

of the years, being slightly higher for the Sno,URA during years 1 to 4. Profits, on the other hand, 

started to be higher for the Shigh,URA after year 4, mainly due to the decrease in the use of fertilizer 

based on the better knowledge of the response curve. 

Figure 5: Economic variables trajectory for two sets

 

5.1.3 TWENTY-ONE SETS DESCRIPTION (z = 1990)  

In Figure 6, all the sets for z=1990 are represented, showing the Annual PV of each 

strategy for increasing L. The four strategies that involve trials exceeded Sno,URA for all the L 

options. Moreover, all the strategies had an optimal stopping time in LOPT=2, where the Annual 

PV was maximized. The strategy with the highest PV was Shigh,URA with L = 2. This strategy 

overachieved the Annual PV of Sno,URA by 16.79 $/ha. 
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Figure 6: Annual PV of all the sets with z=1990

 

5.1.4 ALL SETS PV 

Continuing with the pattern of increasing the number of sets shown, in Figure 7 the 105 

simulated sets can be seen. They are grouped by z, and the Annual ΔPV is shown, which is the 

difference between the Annual PV of each of the strategies with the Annual PV of the strategy 

that does not involved trials for the same z. 

This plot shows the variability found in the results of the simulation, and how the weather 

scenario could affect both the LOPT and what strategy is the most profitable. Regarding the LOPT 

different patterns can be seen. In z = 1980, the LOPT change based on the information, being 1 

year for the low information strategies (Slow,URA and Slow,VRA) and 2 years for the high 

information (Shigh,URA and Shigh,VRA). In z = 1985 the LOPT was 1 year for all the strategies. In 

1990 and 1995 the LOPT was 2 for all the strategies. Simulations with z = 2000 showed a 

completely different pattern, where the new concept almost never overachieved the Annual PV 

of the Sno,URA, except for Shigh,URA L = 2 and L=4 with an Annual ΔPV of 0.89 $/ha and for 0.43 

$/ha respectively.  

On the other hand, the weather also affected the ranking of the strategies. Comparing all 

at the LOPT, the best strategy was Shigh,URA for 4 of the 5 years, being 1980 the exception where 

Slow,URA was the highest. Another noticeable pattern is how in z = 1985 and 2000 the high 
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information strategies overachieved considerably the low information strategies, while, in the 

other z, the difference is smaller. 

Overall, as general insight from this graph, it can be said that in this field, the concept of 

OFT was more profitable that the concept of using MRTN in 4 of 5 weather scenarios, the 

optimal L was always between 1 and 2 and that Shigh,URA had the highest Annual PV in 4 of the 5 

weather scenarios. 

Figure 7: ΔPV for each strategy with increasing L by z. Annual ΔPV is the different of the Annual PV of each strategy 

with the Annual PV of Sno,URA for the same z.

 

5.2 VALUE OF INFORMATION AND TECHNOLOGY AT LOPT  

The value of the four strategies is presented in table 2. These values are the annual ΔPV 

($ / ha) using the LOPT in each strategy and subtracting the corresponding annual PV ($/ha) of the 

Sno,URA for the same z. In the last row, the values were averaged over the five weather scenarios.  

Following the methods explained in section 4.7, VI.OFT is the value of the information 

obtained doing trials and it was 9.8 $/ha. VT.LOW was the added value of the VRT in a low 

information scenario (only with trial information and “free” variables) and it was -2.4 $/ha, 

meaning that using this technology after running trials did not pay the increased cost that the 

farmer faced to hire the variable rate equipment. 
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VI.SS is the added value of information from soil sampling and it was 7.4 $/ha. That means 

that this source of information paid its cost and provided value for the farmer when PS strategy 

was URA. VT.HIGH was the added value of using VRT in the PS in a high information scenario 

and it was -1.8 $/ha. That means that using VRT in post-production did not payed the cost with 

high information. 

It is important to notice that even though the value of the technology was negative in both 

information level, this is the value in the second stage (post-trial production). VRT was valuably 

used in TS to run the trials and learn the production function. The 17.3 $/ha of Shigh,low would not 

be possible without VR. Unfortunately, with the data we have it is not possible to isolate the 

value of VRT in TS, since it is also combined with all the factors involved in the proposed new 

concept of on-farm trial experimentation (trial design, analysis of the data, knowledge). Overall, 

in this work, VRT was valuable to run OFT, but not for doing a regular production using the 

information of those OFT. In this situation, the farmer should use/hire a VRT machine during the 

1 or 2 years to run trials, and then use/hire a URA machine, at a lower cost. 

Table 2: Left: Annual ΔPV ($/ha). Right: the value of different sources of Information and technology. 

 

5.3 N-LEACHING TRAJECTORY AND ENVIRONMENTAL VALUE AT OPTIMAL 

STOPPING TIME 

In Figure 8, the trajectory of the Annual N-Leaching (ANL) concerning L is shown. In 

most of the cases L = 5 is the number of trials that maximized the reduction in N-leaching. 

Nevertheless, in most of the weather scenarios, the big drop is produced at LOPT, and the 

marginal contribution of higher L is insignificant. This allows explaining that, in this section, the 

NLC the different strategies will be calculated at the LOPT. Note that LOPT is an economic 

maximization, where the PV for each strategy was the highest. Moreover, since the graph shows 

that the contribution of L higher than LOPT is small, the ANL at the economic LOPT would be 

similar that the ANL at an environmental LOPT. 
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Figure 8: Average Annual N-leaching trajectory at different L and weather scenarios

 

Contributing to show the environmental impact of OFE, Figure 9 shows the ANL for 

each strategy at the LOPT. This figure is useful to perceive in total amounts the environmental 

benefit of the proposed concept. In most of the situations, the four strategies involving OFE 

reduced the ANL to half of the value of the Sno,URA. 

Table 3 breaks down the total N-leaching amounts into specific contributions. On the left, 

the ΔNLC (reduction in N-leaching compared with the strategy of using MRTN) is shown. Then, 

it is decomposed into NLCI.OFT,  NLCT.LOW, NLCI.SS and NLCT.HIGH. The lowest the NLC, the 

lowest the environmental impact the strategy is producing. Doing OFT for LOPT years and then 

using that information to optimize the UR in post-production provided a marginal NLCI.OFT of -

10.4 kg/ha. Also, if the OFT information is used with VR, the marginal NLCT.LOW was -0.3 

kg/ha, meaning that using VRT in post-trial production did not reduce the environmental impact 

considerably. NLCI.SS is the marginal impact of doing soil sampling with the OFT and it had a 

value of -5.9 kg/ha. NLCT.HIGH is the marginal environmental impact of using VRT in the post-

trial production in a high information scenario and it was -0.8 kg/ha. That means that using VRT 

in post-production neither had a considerable reduction in N-leaching.  

All in all, OFT together with soil sampling would reduce the annual N-leaching by 16.2 

kg/ha. This is the Shigh,URA , and it was also the strategy that maximized the PV in almost all the 
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weather scenarios (except one). Again, VRT is important in TS, for running trials that allows to 

reduce the N-leaching by knowing the yield response function. However, it did not contribute to 

reduce the N-leaching by itself in the post-trial production phase. 

Figure 9: ANL of each strategy at LOPT

 

Table 3: Left: Annual ΔANL (kg/ha). Right: NLI of Information and technology (kg/ha)

 

5.4 UNDERSTANDING UNDERLYING CAUSES: CASE ANALYSIS 

One goal of this work is to detect general patterns that allow researchers to improve the 

new concept. Also, given the five different weather scenarios explored, another goal is to 

understand differences in those patterns, discuss the underlying causes and get insights that could 

help to adapt the new proposed concept to maximize profits in those situations.  

To understand with more detail how different scenarios affected the profitability of the 

proposed new concept, especially patterns and exceptions observed in figure 7 were analyzed in 
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detail. The approach was to isolate those situations in cases and explore it using a useful graph 

with the important variables that explain the final results.  

5.4.1 IMPORTANCE OF INFORMATION IN DIFFERENT WEATHER SCENARIOS 

5.4.1.1 CASE 1: LOW PV OF OFE IN 2000 

In figure 7 it was noticeable that in z = 2000, the proposed new concept did not increase 

the PV compared with the Sno,URA. To understand this exception, figure 10 shows the trajectory 

of different variables during the 10 years of two sets: set(2000, 0, Sno,URA) and set(2000, 1, 

Shigh,URA). The top graph shows weather information, the middle one show economic variables 

and the bottom one show the Cumulative ΔPV ($/ha). This variable shows the trajectory of the 

difference in PV between the most profitable set and the less profitable set of the graph. 

 It can be seen that there is a big difference in profits in year 1 (the trial year) where the 

yield of Sno,URA overachieved the yield of the trial by 850 kg/ha, increasing revenues. 

Considering that the cost of the trial was also higher, the whole field profits were 145 $/ha 

higher. Afterwards, the higher efficiency of the Shigh,URA is noticed along the remaining years, 

showing higher profits and increasing the cumulative ΔPV especially in years 5 and 7. 

Nevertheless, this was not enough to compensate for the higher cost of the trial and the PV of the 

Shigh,URA was very close to the PV of Sno,URA. 
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Figure 10: Weather, economic variables and soil characteristics set(2000, 0, Sno,URA) and set(2000, 2, Shigh,URA). 

Cumulative ΔPV is the cumulated difference in PV between the most profitable set and the less profitable set

 

To illustrate the opportunity cost of the trial (OCT) (in Shigh,URA) compared to Sno,URA, 

figure 11 is presented. For each weather scenario, for each trial year, the opportunity cost in $/ha 

was calculated subtracting the Profits of the set with trials with the Profits of the set without trial. 

The formula was: 
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𝑂𝐶𝑇𝑧,𝑡 =  Π𝑧,𝑡,ℎ𝑖𝑔ℎ,𝑈𝑅𝐴 − Π𝑧,𝑡,𝑛𝑜,𝑈𝑅𝐴 

It can be seen how, in fact, the opportunity cost of the first trial for z = 2000 was -150 

$/ha. This cost is much higher than all other first trials and was not possible to be compensated 

with the afterward increased efficiency. To explain the underlying cause, Figure 12 shows the 

response of Y to N for the first trials in different w.  Clearly, for z = 2000, the conditions of the 

field and the weather produced a high response to N. This means that the yield of the low rate 

treatments of the trial were low, causing that the average yield of the trial was lower than the one 

obtained with MRTN rate.  

Possible solutions that should be discussed to avoid this problem could be test rates closer 

to MRTN, avoiding the low TR-90 kg/ha used in this work. Another one could be to have an 

unbalanced design, and instead of assigning a same number of plots to each treatment, assign 

less plots to the extreme treatments and more to the central ones. Another solution could be to 

make to make spread trials, with most of the field using the same rate and spread plots with 

treatments. This would reduce the area that is receiving extreme rates. All these solutions would 

improve the performance in a weather scenario like 2000, but could deteriorate the performance 

in the other scenarios. More research will be helpful to address what is the best overall strategy 

to assign treatments. 

Figure 11: Annual opportunity cost of running trials compared with using MRTN rate
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Figure 12: Response of Y to N for the first trial on each Z

 

5.4.1.2 CASE 2: HIGH VS LOW INFORMATION IN z=1985 AND 2000 

In figure 7, in the weather scenario of 1985 and 2000, there is a noticeable difference 

between the low information strategies (Slow,URA and Slow,VRA) versus the high information 

strategies (Shigh,URA and Shigh,VRA). To understand the underlying causes, a similar graph to the 

one showed in the previous analysis is shown in figure 13a. Two sets are included: set(1985,1, 

Slow,URA) and set(1985,1, Shigh,URA), in representation of the low and the high information 

strategies. In the top graph it can be noticed that revenues are almost the same for both strategies. 

The difference is produced in the profits after year 4, mainly due to a lower fertilizer cost in 

Shigh,URA. This behavior can be explained by looking at the weather and the NApr trajectory (lower 

graph). Year 4 was a dry year, thus the crop did not use the applied N, and this N stayed in the 

soil, increasing the NApr of year 5. Shigh,URA could capture this with soil sampling providing a 

lower N recommendation, reducing the cost and increasing profits. On the other hand, Slow,URA  

did not include soils sampling information in the model. In consequence it was not able to 

capture the availability of N in the soil and the recommendations for year 5 were higher, 

increasing the cost and reducing profits. This produce that NApr was also high for year 6 and tend 

to stabilize to similar values in year 7.  

In the same way, figure 13b shows the comparison between set(2000,1, Slow,URA) and 

set(2000,1, Shigh,URA). It can be seen, again, that the increase in profits of the high information 
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strategy was due to the capacity of the model to detect high NApr in the soil and lower the N 

recommendations, increasing profits. 

One of the objectives of this work was to test if past variables like Y/Nt-1 could proxy the 

N in the soil. This case shows that the range of variation in Y/N t-1 explored during the trials did 

not provide enough information to build a model that could capture the excess of N after a dry 

year like 1988. On the other hand, in the high information model, the excess of N was well 

captured by soil sampling by adjusting the recommended N to the situation. Potentially, higher L 

would allow Y/N t-1 in the low information model to represent better the NApr, but as seen when 

comparing the PV, the LOPT was always between 1 and 2, suggesting that it is economically more 

efficient to do soil sampling and decrease the number of trials. 

Figure 13: Weather, economic variables and soil characteristics set(1985, 0, Sno,URA) and set(2000, 1, Shigh,URA)
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5.4.2 LOPT CHANGE IN DIFFERENT WEATHER SCENARIONS 

As explained in section 5.1, the LOPT was in most of the situations between 1 and 2 years. 

Figure 7 shows how important would be to recognize when the number of trials is enough to 

provide profitable N management recommendations. In some situations, like in the weather 

scenario of 1980, increasing L one more year, from 1 to 2, reduced the Annual ΔPV of the high 

information Strategies to almost zero.  

This section was attempted to discuss possible signs that could be considered by 

researchers and/or farmers to know that the trial data is enough and has sufficient quality and 

move to the PS. For this, the chosen strategy to analyze was Shigh,URA, because it was the most 

profitable in all z, except one. Also, for simplification, the weather scenario z = 2000 was not 

considered in this analysis because, as shown in case 1, the concept of OFE was slightly 

profitable in that scenario and it could provide difficulties to this analysis.  

5.4.2.1 CASE 3: LOPT = 1 IN Z = 1980 (EXPERIENCING A WET WEATHER IN THE 

SECOND TRIAL) 

In figure 7, in the weather scenario of 1980, there was a noticeable drop in the PV from 

L=1 to L=2. Figure 14a shows in detail more variables that help to explain the underlying causes 

of that drop. It can be seen that profits between both L in year 1 and 2 are similar, meaning that 

the second trial did not have a high opportunity cost compared to the regular crop using 

information of trial 1. It can also be seen that year 1 was below the historic average for the three 

weather variables (dry year) and year 2 was above average for the three weather variables 

(excessively wet year). In the model calculation using the weather weighting method (section 

4.4) the second year showed a very uncommon weather and was weighted only 0.3%, being year 

1 weighted 99.7%. Following the trajectory of the profits, L=1 starts to perform better after year 

3, providing better recommendations that allowed to overcome L=2. That higher profitability in 

those years increased the cumulative   

Since the model for L=2 weighted the second year fixed effects only by 0.3%, the 

recommendations should be very similar than the one with model L=1. Even more, the trial did 

not have a noticeable opportunity cost. Thus the model had more data at no cost. In that situation, 

why does L=1 provide better recommendations? Analyzing the models in detail, a possible 

explanation is that the fixed effects are only included as an interaction with 𝑁𝑇and  𝑁𝑇2
, but not 
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with the other variables (E, OM, Y/Nt-1). This was done to increase the range explored in those 

variables and have a model capable of performing in a wider range of situations. Nevertheless, in 

this case, the excessive wet year 2 is influencing the predictions through those other variables, 

increasing the recommended N. That means that even though the second trial had a low weight 

in the direct response to N, it had an indirect response through the coefficients that affect the 

other variables that interacted with N (for example through the term 𝛽𝐸𝑁 ∗ 𝐸𝑖 ∗ 𝑁𝑡,𝑖
𝑇 ).  

In summary, doing one more trial and getting information from a very excessive wet year 

harmed the N efficiency of the model. Considerations were made to avoid this using the weather 

weighting method of the year fixed effects, but it was produced indirectly. A possible solution 

would be to include fixed effects interactions with the other variables. 

Figure 14: Weather, economic variables and soil characteristics. Cumulative ΔPV is the cumulated difference in PV 

between the most profitable set (L=1) and the less profitable set (L=2).
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5.4.2.2 CASE 4: LOPT = 1 IN 1985 (EXPERIENCING A SIMILAR WEATHER IN THE 

SECOND TRIAL) 

In a similar way than in 1980, in the z = 1985, it is also a drop in the PV from L=1 to 

L=2. Figure 14b shows that the underlying causes were different in this scenario. Looking at the 

Cumulative ΔPV, the second trial in had an opportunity cost compared with regular crop using 

information of only one trial. The final Cumulative ΔPV between L=1 and L=2 was 100 $/ha and 

most of that difference (68.25 $/ha) was built in this second year. Moreover, this high 

opportunity cost, the second trial had similar weather in the growing season than the first, and 

thus did not provide new information to the model. Following the time line, in year 3 again the 

L=1 overperformed the L=2 model, by providing a slightly lower N recommendation that 

decreased the cost of fertilizer and produced higher profits. These three first years have a higher 

impact on the PV since the discount rate is lower and most part of the final PV difference is built. 

Afterwards, the model switched on their performance over the years, slightly loosing and then 

recovering the Cumulative ΔPV.  

5.4.2.3 CASE 5: LOPT = 2 IN 1990 (EXPERIENCING A WET SEASON IN THE FIRST 

TRIAL) 

In the z = 1990, the LOPT was 2. Figure 15a shows the underlying causes of this 

difference. In this case, the first year happened to be excessively wet. This had two 

consequences. First, the N recommendations for L=1 were high, based on the expected high 

response obtained in a trial during a wet year. Second, the opportunity cost of doing one more 

trial was low, since the recommended rates with L=1 were high for the weather experienced in 

the year, the rates of the trial were more efficient. Year 3 was slightly wet, especially in July and 

thus the model with L =1 performed better, recovering the difference of the second year. 

Afterwards, the L=2 was more efficient, building slowly a final Cumulative ΔPV of 132 $/ha 
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Figure 15: Weather, economic variables and soil characteristics. Cumulative ΔPV is the cumulated difference in PV 

between the most profitable set (L=2) and the less profitable set (L=1).

 

 

5.4.2.4 CASE 6: LOPT = 2 IN 1995 (EXPERIENCING A DRY CRITIC PERIOD IN THE FIRST 

TRIAL) 

In the z = 1995, the LOPT was 2. To understand the reasons, figure 15b shows the graph of 

meaningful variables. July’s precipitation in the first trial was low. July is the time when the crop 

is going through the critical period, and water limitations in this stage caused that the response of 

yield to N in trial one was low (figure 16). The second trial experienced a weather closer to the 

average weather, regarding July’s precipitation and Season’s precipitation. Also, the opportunity 

cost of this trial compared with L=1 strategy was low. Since trial one had a low response to N, 

the recommended N rates were low. Trial two allowed to explore a weather closer to the average 

with a low cost of opportunity, and the recommended N rates were higher and more profitable. 
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Afterwards, the L=2 strategy was more efficient, accumulating slowly after year 3 a final PV 

difference of 332.09 $/ha.  

Figure 16: Response of Y to N for the first and the second trials in z = 1995.

 

5.5 INSIGHTS FOR FINDING THE OPTIMAL STOPPING TIME EX-ANTE 

Some general patterns discussed in previous sections included that L was most of the 

times between 1 and 2. In the section 5.4.2 in cases 3 to 6, differences in LOPT were analyzed in 

detail, to understand the underlying causes. The weather scenarios 1980 and 1985 had LOPT =1. 

The one from 1980 because the second trial experienced high precipitations and in consequence 

predicting high N rates (due to an indirect effect in the model). The other was caused by a second 

trial experiencing a similar weather than the first trial, having an opportunity cost and not 

providing more information. 

The weather scenarios of 1990 and 1995 had LOPT= 2. The one from 1990 was produced 

by a wet season in the first trial, producing high N recommendations that were fixed by including 

a second trial. The other one was produced by a dry critical period, producing low N 

recommendations that were fixed again by including a second trial. 

The ΔPV presented in Figure 7 allowed to detect how important would be for the farmer 

and researcher to have insights to detect the optimal stopping time. The PV between L=1 and 

L=2 can change noticeable, and sometimes running one more year of experiments could damage 

a big part of the benefit of the proposed new concept of OFE. The goal of this section is to 

compare different z to detect if there are rules that could help the researcher to recognize that the 

available data is enough to provide profitable N management recommendations. 
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The variables shown in Table 4 were selected with the aim of recognizing the LOPT. The 

main conclusions are: 

-Ymax.r: is the highest Y of the trial compared with the average historic mean Y for the 

period 1980-2009 using MRTN. The attempt is to characterize the potential yield of the trial - 

without N limitations- in relation with the historical average yield. The hypothesis was that high 

or low yields in the first trial will increase the importance of the second trial. Based on the table, 

this happened in z=1995 were the first trial was 0.86 and the second 1.07. On the other hand, it 

did not happen in z=1980 were the first trial had a similar Ymax.r than in 1995 but the LOPT was 

not shifted to the second trial.  

-NApr: is the average NApr in the field. The hypothesis was that if NApr was high, the 

response of Y to N in the trial would be low, and then the recommended rates will be low. A 

second trial would be valuable in this situation. Considering that the EONR (using NT) ranged 

between 160-260 kg/ha (depending on the year), and that the lowest treatment was 90 kg below 

the TR (224 kg/ha the first year), the NApr range showed in the table was not high enough to 

avoid the trial explore rates close to the EONR.  

-CP: ppA, ppS and ppJ precipitations are shown in the table. Also, following the equations 

in section 4.4.1, ppS and ppJ are transformed probability (following a normal distribution) and 

then the combined probability was calculated (CP) using the following formula: 

𝐶𝑃𝑡 = 𝑃𝑍𝑡
𝑆 𝑃𝑍𝑡

𝐽 (24) 

This variable shows how close to the historic weather average are the season and the July 

precipitation together. A very unusual value of any of them will make the CP low. The table 

shows promising expectations for this value to predict the LOPT. In the weather scenario of 1985 

a trial with CP = 0.15 maximized profits. In weather scenarios of 1990 and 1995 the initial CP 

was low (0.04 and 0.08 respectively) and a second trial maximized profits. The weather scenario 

of 1980 was unusual because the CP of the first trial was low, and the second was even lower. In 

this case the first trial provided higher profits. More exploration needs to be done in z = 2000. 

The first trial had the higher CP. Nevertheless, the response of Y to N was much higher than in 

other trials, producing high N recommendations. This was fixed by including one more trial. 

This leads to think that some more weather variables should be weighted besides ppJ and ppS. 
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Y/Noverlap: This value is showing how much of a normal range of variation for Y/Nt-1 was 

captured by the model. Using historic data of corn in the field using MRTN the 10% and 90% 

percentile of the Y/Nt-1 was set in 26 and 45 respectively. Then, the percentiles of the 

accumulated Y/Nt-1 by the model were obtained (accumulated means that the second trial year  

also includes the range explored by the first year). Finally, it was calculated how much of the 

historical range was explored by the trial (for example, if the percentiles for the trial were 30 and 

44, the overlap would be 14/(45-26)=73%. The hypothesis was that a low overlap in the first trial 

would make the second trial more valuable. Clearly, more trials allowed to explore higher 

overlaps, but not that a low overlap is reason sufficient to make another trial, since years like 

1980 and 1985 had <0.12 in the first trial and that was also the LOPT. 

Table 4: Variables describing the conditions for each trial. * shows the LOPT
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

This study analyzed the economic optimization together with the environmental trade-

offs of different strategies for conducting on-farm experimentation and how the results changed 

with different weather scenarios. Simulations were conducted in order to answer the initial five 

questions.  

The first question that the work targeted was if the concept of OFE was profitable. 

Simulation results showed that the concept was profitable, if the right strategy and optimal 

stopping time was selected. At the optimal stopping time, the value of running trials together 

with measuring the “free” variables was 9.8 $/ha. The additional value of gathering soil sampling 

information at the same time was 7.4 $/ha. VRA was necessary for running trials; nevertheless, 

using VRA in the after-trial stage was not cost-beneficial, having a negative value of -2.4 $/ha 

(with low information) and -1.8 $/ha (with high information). 

The second question investigated was what variables should be measured over the field 

and incorporated into the model that would maximize profits. Results showed that the “free” 

variables (Elevation, Y/Nt-1, as-applied N, Y) together with soil sampling information of NApr
 and 

OMApr following a soil sampling strategy (every year for NApr and every four years for OM) 

covered the cost and maximized profits for the farmer. The benefit of soil sampling was 

noticeable when residual N in the soil was high, such as when there was a dry year with low 

Yield or when a high response of yield to N provided high N recommendations. The model with 

soil sampling could capture that condition and decrease the following recommended N rate, 

increasing profits. On the other hand, the model without soil sampling information recommended 

high N rates in those situations, decreasing profits and sometimes making them negative (like in 

z=1985 and 2000). Y/Nt-1 attempted to capture this condition, but since the optimal number of 

trials was one or two, the model was built with low variation in this variable, and it was not able 

to capture extreme situations that led to an increase in residual N. Since trials have an 

opportunity cost, this was not economically efficient, and it was more profitable to practice soil 

sampling. 

The third question examined was how many years to run trials (LOPT) before moving to 

regular production using the results of those trials. Simulations showed that the LOPT was 1 or 2 

in all the scenarios. The underlying causes were explored. The reasons that made LOPT to be 1 
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were that the second trial explored a more unlikely weather (in terms of distance to the historic 

average of ppS and ppJ) than the first one, or a weather similar to the first one (consequently, not 

adding information). The reasons that made LOPT to be 2 were that the first trial explored an 

unlikely weather, and thus adding one more trial improved the recommendations.  

The fourth question was related to the environmental benefits of OFE. This question was 

studied by analyzing the possible reduction in N-leaching that could be produced by the different 

combinations of L, technology, and information. The first conclusion is that the LOPT that 

maximized profits also produced a high drop in the N-leaching, and thus doing more trials did 

not have a significant impact in the N-leaching reduction. This means that being economically 

efficient and stopping trials at LOPT also reduced N-leaching as much as possible. The second 

conclusion was related to the breakdown of the impact of the Information and Technology over 

the N-leaching reduction. Simulations showed that running OFT decreased N-leaching by 10.4 

kg/ha on average. Doing soil sampling together with OFT decreased the N-leaching another 5.9 

kg/ha. Using VRA decreased N-leaching by 0.3 kg/ha and by 0.8 kg/ha in the low information 

and in the high information scenarios respectively. This means that VRA in the post-trial stage 

did not have a noticeable effect in the reduction of N-leaching. 

The fifth question was what insights can be used to detect the LOPT in ex-ante situations. 

Simulations showed how important this decision would be, since often doing one more trial 

could reduce the whole benefit of the OFE. Variables that described conditions explored during 

the trial were used to detect possible insights that could lead to detect when a trial would provide 

profitable N management advice. Simulations showed promising results for a variable that 

assigns a combined probability to precipitations during the season and during July based on 

historic weather. Tentatively, a combined probability of 0.15 in the weather of the first trial 

suggested the optimal stopping time. If the probability is lower, another trial is needed. However, 

this rule needs to be explored in more weather scenarios.  

One conclusion of the work that was not an initial question is related to the Treatment’s 

selection strategy. In year 2000, the new concept of OFE did not increase profits compared with 

not running trials and using MRTN. The reason was a high opportunity cost of the trial. This was 

produced due to a combination of low NApr with a high response of yield to N. In that context, 

the low rates of the trial had a low Yield, decreasing the profitability. This result suggested that 
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the cost of the trial is important, and that more research should be done to improve the Dynamic 

Treatments assignment used in this work. Three possible options to decrease the opportunity cost 

of the trial were suggested. The first was to concentrate the treatments closer to the MRTN. 

Another option was to have unbalanced designs, where a lower number of plots are assigned to 

treatments with extreme values (low and/or high) and a higher number of plots are assigned to 

the central treatments.  The last option was to, instead of running whole field trials, spread out 

plots in the field to avoid having large parts of the field with rates that could be lower than the 

optimal. 

OFE is a complex economic problem that involves decisions about how to run the trials 

(whole field, part of the field), how to assign the treatments (what rates to explore in the trial), 

what variables should be measured (“free” variables, soil sampling variables), when to stop 

running trials (LOPT), how to analyze the data (OLS, panel spatial error model), how to calculate 

predictions with more than one year of data (equally weighted, weather weighted). Moreover, 

results are affected by the weather of the year and by the field conditions, providing a source of 

random variability that makes the problem more complex. Given the complexity of the problem 

and the amount of possible combinations of decisions, not all of them were tested in this work. 

Some of the decisions were addressed with a research approach of testing different combinations 

(like what variables should be included and different L). Others were decided based on 

experience or previous works (doing whole field trials, the treatment selection strategy, using 

SER and obtaining predictions weighting the trial data based on their weather probability). This 

study could be extended by testing all those decisions that were taken as assumptions in this 

work. It could also be extended by testing more weather scenarios and fields. 

The results of the simulations in this work provided helpful information that underscores 

the exciting possibilities that exist related to OFE. After the work, we truly consider that the 

complexity of the problem makes Crop Simulation a valuable tool to start thinking about all the 

possible ways to optimize OFE. Crop simulation allows researchers to create many equal fields 

and apply different strategies and weathers, testing combinations that would not be possible to 

test in real situations. In real situation, if one strategy is tested in a site, another one cannot be 

tested in the same site. It also allows to test these combinations at low cost, saving time and 

effort. The trends observed in simulation results are a sound foundation that should be 
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complemented with empirical data and used together to optimize the actual protocol of the DIFM 

project.  
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