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ABSTRACT

I/O is one of the main performance bottlenecks for many data-intensive scientific applica-
tions. Accurate I/O performance benchmarking, which can help us better understand the
causes of these bottlenecks and to guide the performance optimization of poor performing
applications, is therefore an important problem. We investigate the use of submodular
function maximization as a way to select a set of I/O benchmark applications using measures
of similarities between applications computed from I/O statistics obtained from the Darshan
logs of their jobs. Our optimization problem simultaneously seeks a set of applications that
are representative of the applications running on the HPC platform they are chosen from
while simultaneously encouraging them to possess diverse I/O behavior between them. We
evaluate the quality of the selected applications by training classifiers using features extracted
from the jobs of these applications to predict the I/O performance of other jobs that were
ran on the platform. Our experiments indicate that the trained classifiers can achieve a fair
level of accuracy, thereby lending credence to the feasibility of our optimization approach for
selecting I/O benchmark applications.
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CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

Traditionally, the selection of an I/O benchmark is performed by surveying the requirements
of users on a platform followed by careful analysis and selection of the benchmark applications
from the set of proposed applications by domain experts [1]. The benchmark can then be
used, for e.g., to tune the parameters of a I/O benchmarking tool such as IOR to emulate the
I/O behavior of these applications so that their I/O performance can be predicted accurately
[1].

In this thesis, we investigate the possibility of using machine learning and optimization to
find a small set of representative applications to be the benchmark for I/O behavior on a HPC
system simply by observing their I/O patterns captured by the Darshan I/O characterization
tool [2]. Instead of emulating the I/O workload on a system using software such as IOR
or I/O-kernels like Flash-IO [3], we aim to directly predict I/O performance by training
classifiers using I/O statistics computed from Darshan logs of the benchmark applications
selected by our optimization framework.

Specifically, we frame the problem of selecting a set of I/O benchmarking applications as a
submodular function maximization (SFM) problem seeking a small set of applications that are
representative of the entire collection of applications run on the HPC system. Simultaneously,
we leverage the SFM machinery to encourage selecting applications that have diverse I/O
characteristics, for e.g., different parallel I/O strategy, uses different I/O API (POSIX vs
MPI-IO) etc. Treating the problem this way allows us to exploit the richness of the SFM
framework to define optimization problems that search for solutions with desirable qualities
without resorting to heuristics. It also enables us to tap the vast research that has appeared
in recent years on modeling problems using SFM and solving them efficiently with good
approximation guarantees.

Our experiments on classifying the I/O performance of jobs using classifiers trained on
those belonging to our selected benchmark applications suggests that searching for a set
of applications that are representative of all the applications that run on a HPC platform
while at the same time exhibit diverse I/O patterns amongst themselves can result in fairly
accurate classifiers.
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1.2 PROBLEMS AND CONTRIBUTIONS

This thesis makes the following contributions:

• We frame the problem of selecting applications to make up a I/O benchmark as a
submodular function maximization problem under cardinality constraints. This enables
us to adapt ideas from areas such as document summarization [4] and data subset
selection [5, 6] to model our problem.

• We borrow ideas from image classification to represent an application as a single vector
computed from the set of feature vectors extracted from the Darshan logs of its jobs [7]
and we use this representation to compute similarity scores between applications.

• Our experiments demonstrate that applications chosen using our SFM framework can
be used to train fairly accurate classifiers for predicting the I/O performance of jobs
submitted to the HPC platform the applications are chosen from.

1.3 LIMITATIONS

Our work has several limitations. Firstly, the set of features we work with are highly
summarized statistics (see Appendix A) prepared by a domain expert [8]. These features
appears to lack fine-grain information related to parallel I/O performance (for e.g., MPI-IO
hints), hence it severely limits the performance of classifiers trained on such data. Also, due
to the dataset being highly imbalanced — high performing jobs are very rare and majority of
jobs have poor I/O performance — it is difficult for a model to learn to accurately predict
the I/O performance of those rare high performing jobs.

1.4 RELATED WORK

Existing works on understanding I/O behavior of HPC system rely on tools such as I/O
kernels (e.g., FLASH-IO [3]) that mimics target applications’ I/O patterns. Other tools such
as Skel [9] generates I/O benchmark codes from high-level description of an application’s I/O
pattern, hence reducing the amount of work needed to hand design them. Applications such
as IOR [1] and MADbench2 [10] are I/O benchmark suites that require tuning to emulate
I/O behavior across a span of parameter space, architectures, datasets and applications. The
key consideration for these various approaches is to figure out the I/O patterns they should
be simulating and how to relate those patterns back to actual applications so that their I/O
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behavior can be better understood. The choice of I/O patterns to emulate is often decided
by through a mix of strategies such as surveying users [1] and analyzing the I/O logs of
applications [8] of a HPC. Our approach can be viewed as complementary to these methods
in that we formulate the selection of applications in a data-driven optimization framework
where the need for human input is minimized.

In the domain of machine learning, submodular function maximization have been success-
fully applied to the problem of document summarization [4, 11], sensor placements [12] and
data subset selection, [5, 6, 13] among many others [14]. Our work is most similar to that of
Lin et al. [11] in that we aim to select a subset of items, in this case applications, that are
representative of the collection of applications by framing the task as a submodular function
maximization problem. At the same time, we wish to minimize redundancy by encouraging
the selected applications to possess a wide range of I/O behaviors.
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CHAPTER 2: DATASET

The dataset we use for this thesis is derived primarily from the data used by Huong et al.
[8, 15] for their study on I/O behavior of several petascale supercomputers. It consists of
features extracted from I/O statistics of jobs run on the Mira supercomputer at Argonne
Leadership Computing Facility (ALCF) between April 2013 and October 2015 captured by
the Darshan I/O characterization tool [2] .

In the following sections, we present further statistics of this dataset and an analysis of
the raw features. In Chapter 3, we will describe how these features are used to represent and
measure similarities between applications.

2.1 I/O THROUGHPUT OF JOBS

In this thesis, we are particularly interested in the (aggregate) I/O throughput of jobs as it
is a direct measure of the I/O performance of applications on a platform. We follow the work
of Huong et al. [8] and define the I/O throughput of a job as the ratio of total bytes moved
in Darshan-tracked POSIX IO or MPI-IO calls and the longest total time spent in these calls
among all the processes of a job. The reason for defining I/O throughput this way, according
to Huong et al. [8], is that typically computation does not resume until the slowest process
has finished its I/O activities, so this measure is robust to potentially misleading statistics
when I/O loads are unevenly distributed across processes.

Next, we discretize the I/O throughputs of the jobs by grouping them into 3 performance
intervals (in GB/s): [0, 1.1), [1.1, 26) and [26,∞). These intervals are obtained by examining
the boundaries of the I/O throughputs in the dataset at the 90 and 99.9 percentile. In other
words, 90% of jobs in our original dataset have I/O throughputs less than 1.1 GB/s and
99.9% of them have throughputs less than 26 GB/s. See Figure 2.1 for a graphical depiction
of this effect in the dataset and Table 2.3 for the actual numerical breakdown.

This imbalance in the I/O performance is one of several long-tail phenomenon noted in
Huong et al. [8]. Modeling this kind of data is challenging due to a lack of examples from
the minority classes and standard performance metrics not taking the class imbalance into
account [16]. We will address these issues using our framework for selecting benchmark
applications in Chapter 4 and when setting up our experiments in Chapter 5.
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Figure 2.1: Distribution of jobs for various I/O throughput.

2.2 DESCRIPTION OF DATA

Our dataset, denoted D = {(xi, yi)}Ni=1, consists of feature vectors xi ∈ Rd computed
from Darshan’s logs for jobs 1, . . . , N and the corresponding discretized I/O throughput,
yi ∈ {0, 1, 2} (see Section 2.1), associated with that job. A full list and description of these
features is given in Appendix A.

2.3 DATA TRANSFORMATION

2.3.1 Data skewness

We know from domain knowledge that the scale of jobs submitted to a HPC platform can
vary over a wide range in terms of the number of processes used, amount of data transferred
and number of files created etc. [8]. Therefore, we should expect the distributions of features
that captures these effects to be skewed. To verify this, we compute the sample skewness for
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each feature using the following formula:

G1 =

√
N(N − 1)
N − 2

 1
N

∑N
i (xi − x̄)3(

1
N

∑N
i (xi − x̄)2

) 3
2

 , (2.1)

where xi is the feature’s value for the example xi. Table 2.1 shows how these skewness values
are distributed across the 44 features. Indeed, for most features, G1 is large and positive,
suggesting that they are extremely right-skewed.

# features mean std min 25% 50% 75% max
44 141.2 119.9 0.8222 59.17 120 199.6 520.1

Table 2.1: Distribution of skewness of the features

We further show the boxplots of the top 10 most skewed feature distributions ranked
according to their G1 value in Figure 2.2. The boxplots confirm our belief that for the
majority of the jobs, these features take on values near 0, and extremely large values for a
relatively small number of jobs.

2.3.2 Log Transformation for Correcting Data Skew

We reduce the skewness of the features with G1 ≥ 2 by applying the following log
transformation to each of those features, denoted x, separately

x̃ = log10(1 + x). (2.2)

The log transformation, along with the square root or inverse, is commonly used to reduce
the skewness of data so that the distribution of the data becomes closer to that of a Normal
distribution, a property implicitly required by many machine learning models [17]. These
transformations in turn are specific cases of the more general Box-Cox transformation [18, 17].

2.4 DATASET PREPARATION

We prepare our dataset by first discarding applications that belongs to I/O benchmark
suites such as “IOR”, “MACSio” etc., by searching for application names that contain the
word “benchmark” or those found on a curated list [19]. Note that we do not discard
applications whose sole purpose is not for I/O benchmarking but are used to understand
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Figure 2.2: Top 10 most skewed features - range and skewness.

a system’s I/O behavior due to their importance or ubiquity on various platforms. For
e.g., we retain nek5000 even though it is considered an important benchmarking application
[19]. The reason for this is that we are searching for applications whose I/O patterns are
representative of the diverse workload on the system and we don’t want to select or represent
these benchmark suites.

After removing the unwanted applications, we split the log-transformed dataset D into two
halves with the same number of jobs based on the time each job started. We then discard
applications with fewer than 10 jobs in each half followed by discarding applications in the
later half that did not appear in the first half. We denote the first half Dtrain as we will
use it for selecting our benchmark applications and training our model. The second half is
denoted Dtest as we will use it for evaluating our methods. The applications with few jobs
are discarded because it is unlikely that we can reliably estimate their feature representation
(see Chapter 3) with only so few examples. We remove applications that are not observed in
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the first half because we cannot expect these applications to be well represented by those we
pick from the first half since they are not observed in that batch of data and therefore it will
not be fair to evaluate the performance of our model on those applications.

Pertinent statistics of these Dtrain and Dtest are given in Tables 2.2, 2.3, 2.4 and 2.5. In
those Table 2.5, “unique” means the job has file(s) that are accessed by only one rank,
“shared” means it has file(s) that are accessed by all processes, and part-shared means the
some files are accessed by only one process and some by more than one.

Train Data Test Data
# Apps 403 90
# Jobs 153624 102894

Earliest Job 05-Apr-2013 13-Dec-2014
Latest Job 13-Dec-2014 21-Oct-2015

Table 2.2: Basic dataset statistics.

Train data Test data
I/O Perf # Jobs % Data # Jobs % Data

0 - 1.1 GB/s 140182 91.25 91902 89.32
1.1 - 26 GB/s 13374 8.71 10933 10.63
> 26 GB/s 68 0.04 59 0.06

Table 2.3: Number of jobs for each I/O performance level in dataset.

Train data Test data
I/O API # Jobs % Data # Jobs % Data

POSIX 125085 81.423 59727 58.047
MPI-IO 742 0.483 11343 11.024

POSIX & MPI-IO 27797 18.094 31824 30.929

Table 2.4: Number of jobs for each I/O API type in dataset.
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Train data Test data
I/O Strategy # Jobs % Data # Jobs % Data

Unique 115918 75.456 55304 53.749
Part-shared 155 0.101 100 0.097

All-shared 2234 1.454 18143 17.633
Unique & All-shared 32549 21.187 24604 23.912

Unique & Part-shared 1731 1.127 3515 3.416
Part-shared & All-shared 131 0.085 5 0.005

Unique & Part-shared & All shared 906 0.590 1223 1.189

Table 2.5: Number of jobs for each I/O strategy in dataset.
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CHAPTER 3: MEASURING SIMILARITIES OF APPLICATIONS

In this chapter, we explore two ways of measuring similarities between applications. They
will come in useful in Chapter 4 when we use them in an optimization framework to select
benchmark applications based on similarities of applications. Note that we consider similarities
only in the narrow context of parallel I/O behavior. Specifically, we consider two applications
to be similar if their I/O behavior, as characterized by the I/O statistics captured by Darshan
for their jobs, are similar. Details are given in the following.

3.1 REPRESENTATING APPLICATIONS AS SETS OF JOBS

To begin, we consider each application to be represented by the set of feature vector
representation of its jobs, Xi = {x1, . . . ,xNi

}, where the features are computed from
Darshan’s logs (see Chapter 2), i = 1, . . . , N indexes the application, and Ni is the number
of jobs observed for the i-th application.

3.2 HAUSDORFF DISTANCE

Given our set representation for applications, a way to measure the distance between a pair
of applications X, Y is to use the following symmetric (or two-sided) Hausdorff distance [20],

dH(X, Y ) := max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}, (3.1)

where we choose d(x, y) to be the L2 metric ||x− y||. Given the distance between a pair of
applications Xi and Xj, we can convert it to a similarity weight wij ∈ [0, 1] in several ways.
We opt to use a decaying exponential function,

wij = exp
(
−dH(Xi, Xj)

σ

)
, (3.2)

and σ is estimated to be the median pairwise distances of every pair of applications. Note
that we replace any set with more than 10,000 jobs with 10,000 jobs sampled uniformly at
random without replacement from that set to reduce the computational load.
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3.3 FISHER VECTORS AND THEIR SIMILARITIES

Another representation of applications that we experiment with is the Fisher vector
representation commonly used in image classification [21, 7]. The Fisher vector representation
is an extension of the Bag-of-words (BOW) model used in classical Natural Language
Processing (NLP). Specifically, given a set of data points, it assumes that they are generated
by some generative process. We follow the work of Perronnin et al. [7] and assume this
process to be a Gaussian Mixture Model (GMM) with M Gaussians representing a probability
density function uλ with parameters λ. Then, a way to represent a set of jobs of an application
X = {x1, . . . ,xT} is as the gradient vector [7]:

GX
λ = 1

T
∇λ log uλ(X). (3.3)

If we model the GMM as having diagonal covariance matrices, then its parameters are
λ = {πi, µi,Σi, i = 1, . . . ,M}. Let us denote the diagonal of each covariance matrix as the
vector σi and denote the soft assignment of the t-th job of an application, xt to the i-th
Gaussian as:

γt(i) = πiui(xt)∑M
j=1 πjuj(xt)

. (3.4)

Then, the derivatives of the log-likelihood w.r.t. these parameters can be computed as [21, 7]:

GXπ,i = γt(i)−
exp(πi)∑M
j=1 exp(πj)

, (3.5)

GXµ,i = 1
T
√
πi

T∑
t=1

γt(i)
(
xt − µi
σi

)
, (3.6)

GXµ,i = 1
T
√

2πi

T∑
t=1

γt(i)
(

(xt − µi)2

σ2
i

− 1
)
, (3.7)

where the division of the variances in the vector σi is performed elementwise. Finally, the
Fisher vector representation of application X is just the concatenation of these gradient
vectors. Next, it is recommended to normalize these Fisher vectors by first transforming each
of its entry using the function

h(z) = sign(z)|z|α, (3.8)

where α is commonly set to 0.5. This is followed by normalizing the vectors to have unit
L2 norm. Since these vectors have unit norm, the dot product of the Fisher vectors of two

11



application is just their cosine similarity score. We scale these scores to be in the range
[0, 1] by adding 1 and multiplying by 0.5 to become similarity weights wij. We will use
these weights later in Chapter 4 in solving for a set of representative and diverse benchmark
applications.
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CHAPTER 4: OPTIMIZING SELECTION OF BENCHMARK
APPLICATIONS

Submodular functions optimization have been used successfully to achieve state-of-the-art
results in a variety of domains such as sensor placement [12], document summarization [11],
and product recommendation [22], amongst many others. The common thread among the
applications of these domains is the need to choose a subset of objects from a collection such
that those chosen are representative of the entire collection in some sense and yet possess
diverse characteristics among themselves.

Our work on selecting a set of representative applications to model the I/O performance of a
platform is built on top of the theory of submodular function optimization. We therefore begin
by giving a short review on submodular functions and their key properties. Following that, we
properly formulate the problem of selecting a set of benchmark applications as a submodular
function maximization problem that produces solutions with desirable characteristics. Lastly,
we list algorithms for solving our submodular function maximization problem along with
their theoretical guarantees.

4.1 BACKGROUND ON SUBMODULARITY

We briefly review the theory of submodular functions here. Most of the material are taken
from the survey of Krause et al. [14]. The interested reader can refer to Fujishige [23] or
Krause et al. [14] for additional details.

A set function is a function f : 2V 7→ R that assign each subset S ⊆ V a value f(S). Here
V is a finite set often referred to as the ground set. For our problem, consider V to be the
set of applications from which benchmark applications are to be chosen from.

4.1.1 Basic Definitions

Definition 4.1. A set function f : 2V 7→ R is normalized if f(∅) = 0.

Definition 4.2. For a set function f : 2V 7→ R, S ⊆ V , and e ∈ V , the discrete derivative of
f at S with respect to e is defined as

∆f (e | S) = f(S ∪ {e})− f(S).

We drop the subscript and write ∆(e | S) when there is no ambiguity regarding the function
f .

13



Definition 4.3. A function f : 2V 7→ R is submodular if and only if ∀S ⊆ T ⊆ V and
∀e ∈ V \ T it holds that

∆(e | S) ≥ ∆(e | T ).

Equivalently, a function f : 2V 7→ R is submodular if and only if ∀S, T ⊆ V ,

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ).

The first definition above captures the essence of submodularity — that of diminishing
marginal returns. This is a phenomenon that occurs in various domains [14] and is a reason
why submodular functions are useful for modeling problems of this nature. Intuitively, if
f(S) is a measure of the utility of selecting items in S, then what the submodular property
implies is that the “benefit” from adding items to a set S diminishes as S gets larger.

Definition 4.4. A function f : 2V 7→ R is supermodular if and only if −f is submodular.
Equivalently, f : 2V 7→ R to be supermodular if and only if ∀S ⊆ T ⊆ V and e ∈ V \ T,

∆(e | T ) ≥ ∆(e | S).

Yet another way to define a function f : 2V 7→ R as supermodular, analogous to the one
given in Definition 4.3, is ∀S ⊆ T ⊆ V ,

f(S) + f(T ) ≤ f(S ∩ T ) + f(S ∪ T ).

Definition 4.5. A function f : 2V 7→ R is modular if it is both submodular and supermodular,
i.e., ∀S, T ⊆ V

f(S) + f(T ) = f(S ∪ T ) + f(S ∩ T ).

A modular function is therefore akin to something like a linear function in the sense that
a normalized modular function f can always be written in the form f(S) = ∑

e∈S w(e) for
some weight function w : V 7→ R. Another way to view the modularity property of f is that
each item contributes an amount to the value of f independent of the other items in S. In
contrast, if f is submodular, then the gain to f(S) by adding an item e /∈ S will typically
depend on what is currently in S.

Definition 4.6. A set function f : 2V 7→ R is monotone increasing if and only if ∀S ⊆ T ⊆
V, f(S) ≤ f(T ).

Note that a function f is monotone if and only if all its discrete derivatives are nonnegative.
Furthermore, submodular functions that are also monotone, i.e., monotone submodular
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functions, have the property that ∀S ⊆ T ⊆ V and e ∈ V,∆(e | S) ≥ ∆(e | T ). Unlike
Definition 4.3, we do not require e /∈ T here.

4.1.2 Properties of Submodular Functions

We list without proof some useful properties of submodular functions here. These properties
allow us to generate a rich set of submodular functions from simpler ones, thereby greatly
enhancing the modeling power of the submodular function optimization framework. We will
use them to construct relevant submodular functions for our problem of selecting benchmark
applications from a set of applications in Section 4.2.

Nonenegative linear combinations. If functions f1, . . . , fk : 2V 7→ R are submodular,
and w1, . . . , wk ∈ R≥0, then f(S) = ∑

iwifi(S) is also submodular. This is an important
property as it allows us to conjure up complex submodular objectives from simpler ones, each
with possibly very different characteristics, thereby allowing us to optimize for a far more
sophisticated objective than can be done with any single objective alone.

Restriction. If g : 2V 7→ R is submodular and S, P ⊆ V , then f(S) = (S ∩P ) is submodu-
lar.

Contraction. if g : 2V 7→ R is submodular and S, P ⊆ V , then f(S) = g(S ∪ P ) is
submodular.

Reflection. If g : 2V 7→ R and S ⊆ V , then f̄(S) = g(V \ S) is submodular.

Truncation. If g : 2V 7→ R is submodular and S ⊆ V , then f(S) = min{g(S), c} is also
submodular for any constant c.

Concave composition. Given any nondecreasing submodular function g : 2V 7→ R and any
nondecreasing concave function h : R 7→ R, the composition f(S) = h(g(S)) is submodular.
In particular, for any modular function m : 2V 7→ R≥0, f(S) = h(m(S)) is submodular.

4.2 PROBLEM FORMULATION

We formulate our problem of choosing a set of benchmark applications for a HPC system
(in this case the Mira supercomputer) as a submodular function maximization (SFM) problem.
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In doing so, we borrow ideas from the domains of document summarization [11], data subset
selection [13, 6, 5], and sensor placement [12], amongst several others that make use of SFM.

First, let V be the ground set containing applications to choose from. Our goal is to
select a subset of applications S ⊆ V where |S| � |V |, such that the applications in S are
good representatives of the entire population V in the sense that S can be used to model
the diverse I/O behavior of all applications in V well. One can therefore think of S as a
“summary” of V , which essentially makes S a benchmark.

Specifically, we formulate the search for a good benchmark, S, as a submodular function
maximization problem with cardinality constraint:

Problem 4.1. Find

S∗ = argmax
S⊆V

L(S) + λR(S) subject to: |S| ≤ K (4.1)

where L(S) is a submodular function that measures how well S covers the applications in V

in terms of their overall similarity, R(S) is a submodular function that encourages diversity
in S and λ ≥ 0 trade-off one objective for the other. K is a positive integer given as input
for the number of applications to select for the benchmark.

Note that the nonnegative weighted combination of two submodular functions is still
a submodular function (see Section 4.1.2). Also, if L(S) and R(S) are both monotone
submodular functions, then there is no difference between requiring |S| ≤ K and |S| = K as
adding more items cannot hurt the performance of the objective function, so K items will
always be picked.

A more general variation of Problem 4.1 with knapsack constraint is:

Problem 4.2. Find

S∗ = argmax
S⊆V

L(S) + λR(S) subject to:
∑
i∈S

ci ≤ B. (4.2)

The difference between these two problem is that here each item has an associated cost,
ci, and B is a given total budget. This variation is useful if there is a way to associate a
cost with each application. For e.g., one might define the ci to be the run time of the i-th
application and B to be the total run time. The problem can then be interpreted as finding
the best benchmark that runs within a given time budget B. Note that if all the ci are 1 and
B = |S|, then the two problems are identical.

It is possible to consider other more sophisticated constraints when maximizing a sub-
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modular function, for e.g., matroid contraints [24]. However, our focus will primarily be
on Problem 4.1, where we deal only with cardinality constraints, and our choice of set
functions will be monotone submodular. The reason is that problem of this nature can be
optimized using a simple greedy algorithm to obtain a solution guaranteed to be within
(1− 1

e
) ≈ 63% of the optimal value. Details will be given in Section 4.5.

4.3 SUBMODULAR COVERAGE AND DIVERSITY FUNCTIONS

We describe a number of possible submodular functions for L(S) and R(S) taken from
existing literature [11, 4, 14] here.

4.3.1 Coverage

In the following, let wij ≥ 0 be a measure of similarity between the i-th and j-th application
in V . They can be computed using any of the similarity measures described in Chapter 3. The
nonnegative requirement on wij is necessary to ensure the following functions are nonnegative
monotone submodular as this is a requirement to ensure the optimality guarantees of the
greedy optimization algorithm described in Section 4.5.

Facility location. One way to model coverage is to measure the maximum similarity
between each application i ∈ V with any one of the chosen application in j ∈ S. This idea
can be represented using the following uncapacitated facility location function [25, 4]:

ffac(S) =
∑
i∈V

max
j∈S

wij. (4.3)

If we set ffac(∅) = 0, and if wij ≥ 0 for all i, j, then this function is monotone submodular
[26, 14].

Max cut. We can also quantify how well S represents the set V by measuring how similar
S and V \ S are. This idea is commonly encoded using the graph cut function

fcut(S) =
∑
i∈V \S

∑
j∈S

wij, (4.4)

which is known to be submodular [4].
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Coverage. A simple way to measure the representativeness of S is through the following
monotone submodular function described in Lin et al. [11]:

fcov(S) =
∑
i∈V

∑
j∈S

wij (4.5)

Saturated coverage. An alternative to fcov that is also submodular and can sometimes
give better results [11] is

fsat(S) =
∑
i∈V

min{Ci(S), αCi(V )},

Ci(S) =
∑
j∈S

wij,
(4.6)

and α ∈ [0, 1] is a tunable threshold parameter. Note that Ci(S) is submodular, αCi(V ) is
actually a constant, so using the properties given in Section 4.1.2, we can easily show that fsat

is submodular. The intuition behind this function as given by Lin et al. [11] is to first observe
that Ci(S) basically measures how well element i is “covered” by S. Therefore, limiting the
maximum coverage of each element to αCi(V ) allows elements which are disimilar to i to be
added to S if i is already “sufficiently well covered” by S.

4.3.2 Diversity

We introduce a number of submodular functions for encouraging applications with diverse
I/O characteristics to be selected. In particular, we are interested in selecting applications so
that their jobs have

1. different performance intervals,

2. uses diverse parallel I/O strategies (for e.g., shared-file approach, single-file approach,
or a mix of the two), and

3. different I/O APIs (e.g., POSIX, MPI-IO).

Specifically, for each of the above three categories, we generate a set of partitions that are
the powerset of the possible cases for that category. For e.g., since we have three performance
intervals (see Chapter 2), the partitions for this case are applications with jobs performing
only in exactly one of the three intervals, a mix of any two of the three intervals, and all
three intervals. In general, for a category with n possible labels, we generate 2n partitions
containing the applications with jobs that only belong to that partition. Clearly this is only
feasible for categories with relatively few labels.
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Partition diversity. Suppose we have disjoint sets P1, . . . , Pn such that ⋃i Pi = V and ∀i 6=
j, Pi ∩ Pj = ∅. These sets can be considered groupings of the set of applications V into
separate partition based on some properties that they possess, for e.g., those discussed above.
Then

fpart(S) =
n∑
k

√
|Pk ∩ S| (4.7)

is a objective function that encourages the selection of applications from various partitions.
This function can be easily shown to be monotone submodular using the properties listed in
Section 4.1.2.

Partition diversity with reward. We can make fpart more general by associating with
each item in the partition a nonnegative reward, rj, as follow:

freward(S) =
n∑
k

√ ∑
j∈Pk∩S

rj. (4.8)

The reward for picking the j-th application, rj, can either be calibrated by a domain expert,
or estimated somehow based on the data. In the latter case, one might, for e.g., estimate rj
using a formula that takes into account the total I/O time of all the jobs for that application,
or the number of its jobs observed within a certain time period. These two ways respectively
correspond roughly to encouraging the selection of applications that use I/O heavily or are
commonly run. For us, we follow Lin and experiment with ri = 1

|V |
∑
j wij as our reward

function. Note that fpart is a special case of this function where all items have the same
reward rj = 1.

Diversification. In the absence of any domain knowledge on how to construct a suitable
diversity-inducing function, one might simply optimize for the selection items to be different
using a function such as

fdissim(S) = −
∑
i,j∈S

wij. (4.9)

Although we can easily show that this function is submodular, it is also clear that it is not
monotone and definitely not nonnegative since the similarity weights wij are nonnegative.
An alternative is to get rid of the negative sign by replacing the similarity weights wij
with quantity measuring the distance dij between the two applications. This result in the
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diversification function

fdiv(S) =
∑
i,j∈S

dij. (4.10)

The problem with this function is that although it is monotone, it is not submodular. In
fact, it is supermodular. Therefore, using either of these objective functions will cause us to
lose the optimality guarantee of the algorithms given in Section 4.5. But we should note
that there exists algorithms to optimize non-monotone submodular functions [27, 28] and
the special case of a sum of a submodular function and fdiv [29], but they come with worse
optimality guarantees compared to optimizing monotone submodular functions, and in our
case, do not really benefit our problem much since the other diversification functions are
already adequate as we shall see in our experimental results in Chapter 5. They are listed
here for completeness sake.

4.4 SFM WITH MULTIPLE DIVERSITY TERMS

Initial experiments using fcut and fcov did not produce good results. Therefore, even
though we list them here, we choose to experiment only with the other submodular functions.
In Chapter 5, we run experiments based on Problem 4.1. with ffac or fsat as the coverage
function L and either fpart or freward as the diversity inducing function R using any of the
three category of partitions given in Section 4.3. We further introduce a third problem that
combines all three partition functions

Problem 4.3.

maximize
S⊆V

L(S) + λRiotype(S) + βRiostrat(S) + γRioperf(S)

subject to |S| ≤ K
(4.11)

where again L is either ffac or fsat and the subscripts iotype, iostrat, ioperf refers to the
partitions generated based on I/O API type (MPI-IO or POSIX), I/O strategy (single process,
shared) and I/O performance respectively. The function R like before can be either fpart or
freward. Also, λ, β, γ ≥ 0 are weights to tradeoff the influence of each term.
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Algorithm 4.1 Greedy (Cardinality constraint)
Require: V , K, and f . Ground set, budget, and set function

1: S ← ∅
2: while |S| < K do
3: v ← argmaxv∈V f(S ∪ {v})− f(S)
4: S ← S ∪ {v}
5: V ← V \ v
6: return S

4.5 ALGORITHMS FOR SFM

Unfortunately, maximizing a submodular function under cardinality constraints in general
is NP-hard [30, 14, 27]. However, for the class of nonnegative monotone submodular functions
f : 2V 7→ R≥0, the solution returned from the greedy algorithm by Nemhauser et al. [30]
given in Algorithm 4.1 is guaranteed to be within (1− 1

e
) ≈ 0.63 of the optimum. Essentially

all the greedy algorithm does is pick the item that maximizes the gain in the submodular
objective function at each iteration until the desired number of items have been selected.

A variation of the greedy algorithm by Minoux [31] that is sometimes referred to as
lazy greedy can greatly improve its speed while retaining its optimality guarantees. The
pseudocode, slightly modified from [32], is listed in Algorithm 4.2.

Algorithm 4.2 Lazy Greedy (Cardinality constraint)
Require: V , K, and f . Ground set, budget, and set function

1: S0 ← ∅; i← 0; Initialize priority queue Q;
2: for v ∈ V do
3: INSERT(Q, (f(v), v, i))
4: while |Si| < K do
5: (α, v, j)← POP(Q)
6: if j < i then . α was computed in an earlier iteration
7: α← ∆(v | Si)
8: if i = j or α ≥ MAX(Q)[0] then . If α is “fresh” or current largest
9: Si+1 ← Si ∪ {v}

10: i← i+ 1
11: else
12: INSERT(Q, (f(v), v, i)))
13: return Si

The main difference between the lazy greedy algorithm and the original greedy algorithm
is that it avoids evaluating the function f whenever possible as that operation may be costly.
This is achieved through the key insight that the marginal gain of a submodular function
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is monotonically nonincreasing as the iteration progresses [14]. That is, for a given item
e, iterations i and j where i ≤ j, we always have ∆(e | Sj) ≤ ∆(e | Si). Therefore, if the
marginal gain of an item e computed for the current iteration is greater than the largest
marginal gain for the remaining items, even if they were computed in previous iterations, e
should be selected as those items’ marginal gain can only be smaller or equal to their earlier
marginal gains. In this way, we avoid evaluating the marginal gains of those items even if
they are “outdated”. As mentioned earlier, the optimality guarantees of the lazy greedy and
greedy are the same — approximately 0.63 of the optimal. In terms of runtime, their worst
case performance is the same, but in practice the lazy greedy can perform up to several
hundred times faster than the greedy algorithm [12, 14] in some cases.
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CHAPTER 5: EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

As a quick reminder, we described in Section 2.4 how our dataset, D, was split into two
parts: Dtrain for training and Dtest for testing.

5.1.1 Proposed Approach

To evaluate our proposed approach for selecting benchmark applications, we solve problems
4.1 and 4.3 proposed in Chapter 4 for K ∈ {10, 15, 20, 25} benchmark applications using
various combinations of the coverage functions ffac and fsat, and the diversity inducing
functions fpart and freward proposed in Section 4.3 to get our benchmark applications SOPT.
The set of candidate applications to choose from, V , are the available applications in Dtrain,
and the applicable weights of each term (λ, β, γ) in the optimization problem is determined
by running randomized search [33] in the range [0.1, 1000].

After solving for SOPT for each of the above configurations, we train various classifiers on
the jobs belonging to these applications to predict which of the performance interval the job’s
aggregate throughput falls in (see Section 2.1). Note that these jobs will typically only be a
small subset of the jobs in Dtrain as we select at most 25 out of 403 applications, although
some applications have more than 10,000 jobs. The best hyperparameters for each classifier
is also determined using a randomized search [33] of the hyperparameter space based on the
performance of the classifier on the entire set of jobs in Dtrain. The classifiers we experiment
with are Naive Bayes (nb) [34], Logistic Regression (lr) [34], Random Forest (rf) [35] and
XGBoost (xg) [36]. Finally, we evaluate the performance of each combination of the above
objective functions and classifiers on the held out dataset, Dtest.

5.1.2 Baselines

Heaviest I/O Users. One baseline is based on selecting the applications for a benchmark
in descending order of their I/O activity. For e.g., to pick K = 10 applications, we simply
rank the applications in descending order of the total time their jobs spent performing I/O
tasks and select those that are the top K heaviest I/O users. This baseline, motivated by the
work of Huong et al. [8], is meant to test if our selected benchmark applications can be used
to predict the I/O performance of this important class of applications as well as a model
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trained directly on them. We refer to this baseline as top-iotime in our experiments (see
Tables 5.2 and 5.3).

Most Frequently Used. Another baseline we created is based on selecting applications
in decreasing order of the number of jobs that belongs to the applications. The reason for
having this baseline is to compare how well our proposed approach perform against a model
trained on applications whose jobs are likely to make up a significant portion of the training
and test sets. We refer to this baseline as top-jobs in our experiments.

5.1.3 Handling Imbalanced Data

As mentioned in Section 2.1, the class labels based on the throughput of the jobs are highly
imbalanced. In particular, according to Table 2.3, less than 9% of the jobs have aggregate
throughput greater than 1.1 GB/s in Dtrain and around 0.04% of jobs have throughput greater
than 26 GB/s. The corresponding numbers for Dtest are roughly 11% and 0.06 %.

To mitigate this problem, we use the SMOTE algorithm [37] to re-sample the feature
vectors of the jobs belonging to the selected applications before training our classifiers so that
the minority classes with have the same number of examples as the majority class. This step
of rectifying the class imbalance has been shown to significantly improve the performance of
classifiers when dealing with this kind of data [16]. Note that SMOTE is not applied to the
test set, Dtest, so the test set is still imbalanced. This is because in an actual deployment
environment we will not know the true labels of the test examples for us to re-sample them.
Also, configurations that result in selected applications whose jobs as a whole do not have at
least 6 jobs in each performance intervals are discarded as we will not be able to run SMOTE
on the data successfully. These cases therefore do not show up in the tables of results, Table
5.2 and 5.3.

5.1.4 Evaluation Metrics

As the dataset is extremely imbalanced, the usual performance metric, prediction accuracy,
will not give a good indication of the performance of our models [16]. The reason is that a
model can simply overfit to the majority class and predict all examples as having throughput
less than 1.1 GB/s (the majority class) to achieve an accuracy close to 1. Therefore, to
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account for the class imbalance, we use the F1 score as our performance metric

F1 = 2 · precision · recall
precision + recall ,

precision = true positive
true positive + false positive

recall = true positive
true positive + false negative .

Details on this metric can be found in any standard machine learning textbook such as
Murphy [38]. Furthermore, since we have a multiclass classification problem rather than a
binary classification problem that the F1 metric is designed for, we evaluate our models on
the unweighted average of the F1 scores computed for each label (also known as macro F1) as
well as the average of the F1 scores weighted by the number of true instances for each label.
The latter metric takes into account the class imbalance better than the former and is the
metric we use for selecting the best configurations for each of our models.

5.2 CONTRIBUTION OF INDIVIDUAL OBJECTIVE TERMS TO OVERALL
PERFORMANCE

We experiment with different combinations of submodular coverage and diversity inducing
functions for selecting benchmark applications to investigate the effects these functions have
on the quality of the benchmark applications, measured in terms of the F1 scores of classifiers
trained on the jobs of these applications and tested on Dtest. The results are given in Tables
5.2 and 5.3. Labels for the objective functions are given in Table 5.1 and details of the
submodular functions are given in Section 4.3.

Objective Description
iotype-cnt fpart with I/O API type partitions
iostrat-cnt fpart with I/O strategy partitions
ioperf-cnt fpart with I/O performance partitions
fac + iotype-cnt ffac with iotype-cnt
fac + iostrat-cnt ffac with iostrat-cnt
fac + ioperf-cnt ffac with ioperf-cnt
fac + all-cnt ffac with iotype-cnt, iostrat-cnt, and ioperf-cnt
fac + all-rwd ffac with freward in place of fpart for iotype-cnt, iostrat-cnt, and ioperf-cnt
sat + all-cnt fsat with iotype-cnt, iostrat-cnt, and ioperf-cnt
sat + all-rwd fsat with freward in place of fpart for iotype-cnt, iostrat-cnt, and ioperf-cnt

Table 5.1: Labels of submodular objective functions and the functions they correspond to.
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Table 5.2 shows the result obtained from training our four classifiers on 25 applications
selected by our SFM framework using similarities computed from the Hausdorff distances
between applications and their Fisher vector representation described in Chapter 3. The
first thing we note is that the best performing configuration is the one that uses the
saturated coverage function with all three versions of parition-based diversity functions
along with similarities computed from the Fisher vector representation of the applications.
This configuration achieved the highest weighted F1 score of 0.9668 and the second highest
unweighted score of 0.6848 among all the configurations and baselines we experimented with.
This confirms our intuition that selecting applications that are diverse in the sense that their
jobs reflect the wide range of I/O behavior on a platform is a good strategy for building an
I/O benchmark.

Furthermore, notice that the configurations that use only the single diversity functions —
iotype-cnt, iostrat-cut, and ioperf-cnt — tend to perform worse than the other configurations
that also use a coverage function such as ffac or fsat. This suggests that a simple strategy that
simply picks applications with different I/O behavior from any single category, as one might
try as a heuristic, is unlikely to produce a good benchmark compared to using a coverage
function to ensure that the applications are also similar to the remaining applications and
casting the net wider to find applications with different I/O characteristics.

Lastly, results from the baseline approaches suggests that selecting applications from
among those that are heavy I/O users is fairly helpful for building models for predicting I/O
performance. Presumably, they already cover a wide spectrum of I/O behavior. However, as
we shall discuss in the following section, the performance of this baseline as the number of
applications selected varies is not as consistent as those from our SFM framework that uses
all the diversity functions, even though it has the highest unweighted F1 score. The other
baseline, top-jobs, in general performs worse than the best model from our SFM framework
(fac + all-cnt) and even the other baseline, top-iotime.

The list of 25 applications that make up our best benchmark in Table 5.2 selected by our
SFM approach is given in Appendix B. The best performing benchmarks selected by the
baseline approaches, top-iotime and top-jobs, are listed in Appendix C and D respectively.
Based on a quick inspection of Appendix B, we notice that a few of the prominent applications
commonly used for I/O benchmarking [19], for e.g., nek5000 and qb, have been selected
by our optimization algorithm. At the same time, the names of the selected applications
suggests that few, if any of these applications, are simply different versions of each other.
This is a pleasant surprise as our SFM algorithm has no knowledge of parallel I/O other
than what was encoded in the Darshan extracted statistics and the various I/O category
partitions we used to design our diversity functions. This further supports the usefulness of
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framing I/O benchmark selection as a submodular function maximization problem.
Furthermore, we note that the top-jobs baseline with weighted F1 score of 0.9357 and

unweighted F1 score of 0.6411 performs much worse than our SFM approach and the top-
iotime baseline. As we go through the applications selected by top-jobs in Appendix D, we
note that it had selected many applications from the same suite of applications, namely,
“qb”, “qb-30”, “qb-1.52.2-dfpt”, “qb-1.57.13” etc. Therefore, this benchmark contains a fair
amount of “redundancy” and it lost the opportunity to represent some other applications in
place of these applications. This suggests that the quality of the benchmark is unlikely to be
ideal if we simply select the benchmark based on criteria that are loosely related to the I/O
behavior of the applications. In contrast, our approach that searches for a set of applications
that possess diverse I/O behavior is able to find applications that are fairly different and
resulted in a model that has better predictive capabilities than this simple baseline.

5.3 EFFECT OF NUMBER OF SELECTED BENCHMARK APPLICATIONS ON
PREDICTIVE PERFORMANCE

From Table 5.2, we notice that the XGBoost classifier tends to perform much better
than the remaining ones, possibly because it is a nonlinear classifier unlike Naive Bayes and
Logistic Regression which are linear classifiers, hence it is able to fit much more complicated
models using the data. We therefore experiment just with this classifier as we investigate the
effect of the number of selected benchmark applications on the trained model’s performance
in order to simplify our experiments. Results are given in Table 5.3 and Figures 5.1 and 5.2.

One thing we observe is that unsurprisingly, the model’s performance tends to improve
when the number of applications selected increases but generally only if the jobs are selected
with a combinations of all three diversity functions. One reason for this could be that if
there are no forces (such as our diversity functions) in place to encourage applications with
different I/O behavior from being selected, then the trained model will just overfit to a small
set of I/O behavior, especially for those of the minority classes. This will therefore result in
poorer performance when measured using a metric such as the F1 score which is sensitive to
class imbalance. In particular, we note that the configurations that select applications based
on them having different I/O performance (ioperf-cnt) performed worse as the number of
applications selected increased (see Figure 5.1, 5.2).

Also, the baseline top-iotime experienced a sharp drop in performance when the number
of applications selected increased from from 10 to 15. This sensitivity of the model to the
number of applications selected could be due to the applications that are the 11-th to 15-th
most heavy I/O users being very different from the remaining applications in some way. This
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Objective F1 (unweighted) F1 (weighted)
Hausdorff nb lr rf xg nb lr rf xg
iotype-cnt 0.3839 0.4028 0.4331 0.5870 0.7554 0.7958 0.7949 0.9274
iostrat-cnt 0.3063 0.3520 0.4137 0.5649 0.6661 0.7150 0.7476 0.8877
ioperf-cnt 0.2685 0.3597 0.4123 0.6452 0.6449 0.7402 0.7569 0.9306
fac + iotype-cnt 0.4974 0.4256 0.4881 0.5774 0.8823 0.8283 0.8537 0.9369
fac + iostrat-cnt 0.3780 0.4873 0.4716 0.5954 0.7769 0.8668 0.8366 0.9501
fac + ioperf-cnt 0.4273 0.4196 0.4623 0.5772 0.8415 0.8146 0.8470 0.9337
fac + all-cnt 0.4462 0.5051 0.5529 0.6269 0.8293 0.9124 0.9295 0.9603
fac + all-rwd 0.4463 0.4833 0.4924 0.5792 0.8510 0.8607 0.8802 0.9501
sat + all-cnt 0.4184 0.5178 0.5917 0.6262 0.8064 0.9247 0.9307 0.9571
sat + all-rwd 0.4819 0.4778 0.5220 0.5865 0.8461 0.8728 0.9157 0.9425
Fisher
iotype-cnt 0.3843 0.4030 0.4463 0.5933 0.7554 0.7963 0.8069 0.9297
iostrat-cnt 0.3063 0.3520 0.4137 0.5649 0.6661 0.7150 0.7476 0.8877
ioperf-cnt 0.2713 0.3614 0.4174 0.5713 0.6503 0.7423 0.7699 0.8992
fac + iotype-cnt 0.4394 0.4963 0.5349 0.5572 0.8185 0.8832 0.9176 0.9320
fac + iostrat-cnt 0.4847 0.5116 0.5461 0.5763 0.8889 0.8757 0.9150 0.9366
fac + ioperf-cnt 0.3014 0.5120 0.4824 0.5101 0.7555 0.8557 0.8228 0.8618
fac + all-cnt 0.4890 0.5117 0.5876 0.6025 0.8728 0.9091 0.9477 0.9516
fac + all-rwd 0.4038 0.4878 0.5176 0.6058 0.8107 0.8972 0.9114 0.9577
sat + all-cnt 0.3963 0.4988 0.6015 0.6848 0.8007 0.9077 0.9449 0.9668
sat + all-rwd 0.4047 0.5031 0.5478 0.6061 0.8132 0.8899 0.9369 0.9634
Baseline
top-jobs 0.1092 0.3993 0.4618 0.6411 0.1180 0.7857 0.8069 0.9357
top-iotime 0.1008 0.4672 0.5078 0.7374 0.2288 0.8692 0.8737 0.9610

Table 5.2: Effect of different objective terms vs baseline approaches for 25 selected
benchmark applications. The classifiers used are Naive Bayes (nb), Logistic Regression (lr),
Random Forest (rf) and XGBoost (xg).
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Objective F1 (unweighted) F1 (weighted)
Hausdorff 10 15 20 25 10 15 20 25
iotype-cnt - - - 0.5870 - - - 0.9274
iostrat-cnt 0.5876 0.5658 0.5827 0.5649 0.8726 0.9121 0.9033 0.8877
ioperf-cnt 0.6343 0.6416 0.6263 0.6452 0.9315 0.9309 0.9038 0.9306
fac + iotype-cnt - - 0.5443 0.5774 - - 0.9189 0.9369
fac + iostrat-cnt - - 0.6022 0.5954 - - 0.9571 0.9501
fac + ioperf-cnt - - 0.5442 0.5772 - - 0.9204 0.9337
fac + all-cnt 0.5806 0.5802 0.5912 0.6269 0.9522 0.955 0.9532 0.9603
fac + all-rwd 0.4322 0.4987 0.5903 0.5792 0.8134 0.911 0.9487 0.9501
sat + all-cnt 0.5584 0.5703 0.6023 0.6262 0.9268 0.9376 0.954 0.9571
sat + all-rwd 0.4322 0.4922 0.5808 0.5865 0.8134 0.8807 0.9462 0.9425
Fisher
iotype-cnt - - - 0.5933 - - - 0.9297
iostrat-cnt 0.5876 0.5658 0.5827 0.5649 0.8726 0.9121 0.9033 0.8877
ioperf-cnt 0.6343 0.6308 0.6351 0.5713 0.9315 0.9276 0.902 0.8992
fac + iotype-cnt 0.5044 0.5265 0.5595 0.5572 0.8958 0.9155 0.9397 0.9320
fac + iostrat-cnt - - 0.5761 0.5763 - - 0.9357 0.9366
fac + ioperf-cnt 0.496 0.5329 0.6091 0.5101 0.8803 0.8618 0.8856 0.8618
fac + all-cnt 0.5683 0.5716 0.6165 0.6025 0.9255 0.9386 0.935 0.9516
fac + all-rwd 0.576 0.6124 0.5942 0.6058 0.9479 0.9583 0.9502 0.9577
sat + all-cnt 0.5981 0.5802 0.6586 0.6848 0.9553 0.9519 0.9562 0.9668
sat + all-rwd 0.6053 0.6063 0.5988 0.6061 0.9543 0.9588 0.9614 0.9634
Baseline
top-jobs 0.6165 0.6489 0.6939 0.6411 0.9286 0.9353 0.9332 0.9357
top-iotime 0.6144 0.3708 0.5831 0.7374 0.9248 0.8648 0.9435 0.9610

Table 5.3: Effect of number of benchmark applications on classifier (XGBoost) performance.
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highlights the problem of selecting applications based on a singular criteria such as I/O
usage as applications that have similar I/O behavior in some way (in this case heavy I/O
usage) could be very similar among themselves. Therefore, selecting them could introduce
unnecessary redundancy in the benchmark and lead to a lost opportunity to represent a wider
range of applications. In this respect, our proposed SFM framework with multiple functions
to encourage selecting applications that are different intuitively will be less susceptible to
such problems.
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Figure 5.1: Effect of number of benchmark applications selected using Fisher similarities on
classifier (XGBoost) performance (weighted F1).
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Figure 5.2: Effect of number of benchmark applications selected using Fisher similarities on
classifier (XGBoost) performance (unweighted F1).
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CHAPTER 6: CONCLUSION

We setup the problem of selecting a good set of applications for a I/O benchmark as a
submodular function maximization problem, borrowing ideas from the domain of document
summarization and data subset selection. Our optimization algorithm solves for a set of
applications that are simultaneously representative of the applications they are chosen from,
and also possess diverse I/O behavior as a group. Our experiments show that our algorithm
can produce a good I/O benchmark in the sense that classifiers trained on features extracted
from Darshan logs of jobs belonging to the applications selected by our algorithm can be
used to predict the I/O throughput level of other jobs fairly well.
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APPENDIX A: DESCRIPTION OF FEATURES

We describe the list of features used to describe a job here.

Table A.1: Description of features.

Features Description

allshared mpi count # of allshared MPI files.
allshared mpi read Amount of time spent by MPI-IO on reading

from files accessed by all processes.
allshared mpi readwrite Amount of time spent by MPI-IO on reading

and writing to files accessed by all processes.
allshared mpi write Amount of time spent by MPI-IO on writing

to files accessed by all processes.
allshared posix count # of allshared POSIX files.
allshared posix read Amount of time spent by POSIX on reading

from files accessed by all processes.
allshared posix readwrite Amount of time spent by POSIX on reading

and writing to files accessed by all processes.
allshared posix write Amount of time spent by POSIX on writing to

files accessed by all processes.
global meta Time spent on meta calls for files opened by

all processes.
local meta Time spent on meta calls for files opened by 1

process.
nprocs # of processes.
partshared mpi count # partshared MPI files.
partshared mpi read Amount of time spent by MPI-IO on reading

from files accessed by a subset of processes.
partshared mpi readwrite Amount of time spent by MPI-IO on reading

and writing to files accessed by a subset of
processes.

partshared mpi write Amount of time spent by MPI-IO on writing
to files accessed by a subset of processes.

partshared posix count # of partshared POSIX files.
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Table A.1 Continued: Description of features.

Features Description

partshared posix read Amount of time spent by POSIX on reading
from files accessed by a subset of processes.

partshared posix readwrite Amount of time spent by POSIX on reading
and writing to files accessed by a subset of
processes.

partshared posix write Amount of time spent by POSIX on writing to
files accessed by a subset of processes.

read only count # of files that are read only.
read only max offset Maximum offset among files that were read.
read only size Size of read only operation.
read write count # of files that are write only.
read write max offset Maximum offset among files that were read

and written to.
read write size Size of read write operation.
runtime Runtime of job in seconds.
shared max offset Maximum offset among shared files.
shared size Size of I/O operations on files accessed by more

than one rank.
meta io ratio Ratio of time spent in meta calls over time

spent moving data.
total bytes Total bytes transferred by job.
total max offset Sum of maximum offset among files.
unique max offset Maximum offset among files opened by unique

process.
unique mpi count # of unique MPI files.
unique mpi read Amount of time spent by MPI-IO on reading

from files accessed by only one process.
unique mpi readwrite Amount of time spent by MPI-IO on reading

and writing from files accessed by only one
process.

unique mpi write Amount of time spent by MPI-IO on writing
to files accessed by only one process.
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Table A.1 Continued: Description of features.

Features Description

unique posix count # of unique POSIX files.
unique posix read mount of time spent by POSIX on reading and

writing from files accessed by only one process.
unique posix readwrite Amount of time spent by POSIX on reading

and writing to files accessed by only one pro-
cess.

unique posix write Amount of time spent by POSIX on writing to
files accessed by only one process.

unique size Size of files opened by unique process.
write only count # of write only files.
write only max offset Maximum offset among files that were written

to.
write only size Size of writes.

Table A.1: Description of features.
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APPENDIX B: BEST PERFORMING BENCHMARK SELECTED USING
SFM

Application # Jobs
CHANNEL DNS 97
FlexPepDocking.staticmpi.linuxxlcdebug 11
Solver CharlesX 54
adios global 17
agg sparse.x 11
chris.exe 21
ddt 2d 33
ex2 dif.out 24
ker GWL v3 noRho sta 284
ks spectrum hisq-7.7.10-10.qop.xl.dp 256
nek5000 740
openmc-blocking 81
pmergesort.optimized 13
pmergesort.verify 13
qb 3174
qmcapp 137
readInputFile 20
rt-response-time-test.exe 332
sparse-data-writer 28
spinspin 36
test 61
test-PIDX-writer 21
vida.exe 481
x.adlb.12c-11 states-pn 258
xspin1 98

Table B.1: Best performing 25 application benchmark selected using SFM for XGBoost
classifier (weighted F1 = 0.9668). SFM weights are: λ = 6.210, β = 108.263 and γ = 8.532.
Applications are selected in the order listed.
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APPENDIX C: BEST PERFORMING TOP-IOTIME BASELINE
BENCHMARK

Application Total I/O Time (Hours)
vida.exe 103.7047
cp.CL.save.x 78.3444
Solver CharlesX 74.5181
charles.exe 56.8940
openmc 56.4613
cliff.exe 51.2189
nek5000 50.0532
cp.x 41.3335
ker GWL v3 noRho sta 39.9775
x.mc.4he-pn 38.4781
phParAdapt 34.0489
qb-1.60.4-omp 23.1810
CHANNEL DNS 19.4462
chris.exe 14.6220
qwalk 13.7667
ddt 13.5540
cesm.exe 13.5439
prepro.exe 11.3841
qb-30 9.8341
aggregate 8.8917
swap 7.6636
shock tube 3d 6.9638
osiris-2D.e 6.3573
converge-KEVIN 5.9561
qb 5.8520

Table C.1: Best performing 25 application top-iotime baseline benchmark (weighted F1 =
0.961) with the total I/O time of their jobs (in hours). Applications are selected in the order
listed.
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APPENDIX D: BEST PERFORMING TOP-JOBS BASELINE
BENCHMARK

Application # Jobs
qb-1.52.2-dfpt 114125
qb-1.60.4-omp 11899
x.mc.4he-pn 3202
qb 3174
qb-30 2011
lmp mira 1914
qb-1.57.13 1369
mpicatnap 1204
nek5000 740
qb-1.60.0 717
pw.x 660
qb-1.57.13-omp 627
cliff.exe 563
moldft 482
vida.exe 481
cp.CL.save.x 425
qb-1e-8 385
rt-response-time-test.exe 332
cp.x 326
ker GWL v3 noRho sta 284
x.adlb.12c-11 states-pn 258
ks spectrum hisq-7.7.10-10.qop.xl.dp 256
cp.CL.new.x 251
phParAdapt 249
cesm.exe 233

Table D.1: Best performing 25 application top-jobs baseline benchmark (weighted F1 =
0.9357). Applications are selected in the order listed.
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