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Abstract

In the first part of this thesis, we follow Varopoulos’s perspective to establish the noncommutaive Sobolev

inequaties (namely, Hardy-Littlewood-Sobolev inequalites), and extend the Sobolev embedding from non-

commutative Lp spaces to general Orlicz function spaces related with Cowling and Meda’s work. Also we

will show some examples to illustract the relation between the Orlicz function, dispersive estimate on semi-

group Tt and general resolvent formula on the generator A of the semigroup (i.e. Ax = limt→0
Ttx−x
t ). And

we prove a borderline case of noncommutaive Sobolev inequality, namely the noncommutative Trudinger

Moser’s inequality.

The focus of the second part of the thesis is the completely bounded version of noncommutative Sobolev

inequalities. We prove a cb version of the Sobolev inequality for noncommutative Lp spaces. As a tool,

we further develop a general embedding theory for von Neumann algebra, continuing the work for [JP10].

Finally we prove the cb version of Varopolous’s theorem and provide some examples and applications.

The third part of the thesis proves the existence of abstract Strichartz estimates on Rθ for operators

that satisfies ultracontractivity and energy estimate. And we show the abstract Strichartz estimates are

applicable to the Schrödinger equation problem on quantum Euclidean spaces Rnθ .
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Chapter 1

Introduction

Singular integral theory is a fundamental and important topic in harmonic analysis. Real variable methods

of singular integral for higher dimension were original by A. P. Calderón and A. Zygmund [CZ52] in the

1950s. Singular integral operators of convolution type commute with translation on Rn and Tn. Interpolation

method, Poisson integrals and the Hardy-Littlewood maximal function are the main classical techniques.

We are mostly concerned with the following kernel:

k(x) = |x|α−n for x ∈ Rn \ {0}, 0 < α < n. (1.0.1)

The singular integral operator Iα is formally given by

Iα(g)(x) =
γ((n− α)/2)

2απn/2Γ(α/2)

∫
Rn
k(x− y)g(y)dy,

which is called a fractional integral. If 1/p− 1/q = α/n and 1 < p < n/α, then

‖Iαf‖q . ‖f‖p. (HLS)

This estimate is called Hardy-Littlewood-Sobolev inequality, proved by Hardy, Littlewood [HL28], [HL30]

and Sobolev [Sob38], dating back to 1920’s. In the pioneering work of N. Varopoulos in [Var85a] and E.

B. Davis[Cha84], they tried to put the HLS inequality into the setting of general Markovian semigroups

[VSCC08]. Then the HLS inequality starts to be widely used in heat kernel estimates in many different

areas. Recalling N. Varopoulos’s paper[Var85a], he identified the equivalence between heat kernel estimates

and Sobolev inequality in a more abstract context. Indeed, Varopoulos proved, given a measure space (Ω, µ),

Tt is a symmetric Markovian semigroup with dimension n in the sense, i.e.

‖Ttf‖∞ . t−n/2‖f‖1, t > 0
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if and only if

‖Iα(f)‖q . ‖f‖p, Iαf(x) =

∫ ∞
0

Ttf(x)tα/2−1dt,

with 0 < α < n, 1 < p < n
α ,

1
q = 1

p −
α
n . Moreover, for the symmetric Markovian semigroup, it’s well-known

that Tt = e−tA, where A is a positive self-adjoint operator on L2(Ω, µ) (See [Var85b] for more information).

Then Iα = c(α)A−α/2 where c(α) is a constant depending on α. In the classical case of the heat diffusion

semigroup on Rn (n ≥ 3), Iα is the standard fractional intergral by the convolution kernel k(x) in (1.0.1).

The Varopoulos dimension of the semigroup has been quite influential in many different areas of mathematics

like probability theory, statistical mechanics or differential geometry. See the survey paper [Gro14] for more

details in this topic.

It’s interesting to understand the HLS inequality between the abstract semigroup theory and the frac-

tional integral (namely, resolvent formula) in the noncommutative setting. Many contributions [JPPP17],[JM10]

represent the starting point of Varopoulos dimension of abstract semigroup in the noncommutative context.

For example, Junge, Palazuelos, Parcet and Perrin[JPPP17] proved that for the free Poisson semgiroup

acting on the free group F∞, the ultracontractivity bounds are invariant with the number of generators.

‖Tt : L1(F∞)→ L∞(F∞)‖ ≤ t−3/2

which is a known consequence of Haagerup’s inequality for homogeneous polynomials [Haa78]. Junge and

Mei [JM10] predict the Sobolev embedding results based on the Varopoulos dimension on the von Neumann

algebra.

In the first part of this thesis, we prove the noncommutative HLS inequalities and extend to the

noncommutative Orlicz function spaces. Recall that Cowling and Meda [CM93] showed that {Tt} is φ-

ultracontractive, i.e.

‖Ttf‖∞ . φ(t)−1‖f‖1,∀f ∈ L1(Ω), t > 0,

if and only if the generator A has the Sobolev embedding properties(HLS), namely,

‖ψ(A)−αf‖q . ‖f‖p,

whenever 1 < p < q <∞, α = 1
p −

1
q on the measure space. Xiao [Xio16] extended the φ-ultracontractivity

of {Tt} and ψ(A)−α into the noncommutative setting. However, his work heavily rely on complex analysis,

holomorphic functions, multiplier operator theory and noncommutaive Lorentz space. We investigate some

basic notions and discover that Sobobev embedding can be extended to Orlicz function spaces with suitable
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connection between φ and modified version of ψ. Indeed we define g and h is p-related if (1) g is increasing,

continuous, positive and p-convex, with satisfying ∆2-condition; (2) h is decreasing and invertible; (3)

xg(x)h(x)1−p is increasing. And we define ψg,h(w) = 2wh−1(w)g(h−1(w)) as the generator function of g

and h. In this section, thanks to [JX07] on maximal inequalitiy for the semigroup on von Neumann algebra,

we use the “optimal” splitting point techinque of a Peter-Paul inequality to get the resullt as follows:

Theorem 1.1. Let the semigroup (Tt) be a symmetric Markovian semigroup with the generator operator A

on a von Neumann algebra M. Assume the function g and h are p-related by the following conditions:

(i) the semigroup {Tt}satisfies the ordered h-p-contractivity, i.e. Ttf ≤ h(t)‖f‖p1, for f ∈ L+
p (M);

(ii) G(A)(x) =
∫∞

0
Ttxg(t)dt.

Let Φ(w) be the inverse function of ψg,h(w1/p). Then we have the following embedding:

‖G(A) : Lp(M) −→ LΦ(M)‖ ≤ C(p, α), 1 < p <∞.

In the second part of this thesis, we investigate the completely bounded HLS (cb-HLS) inequality over

the archetypal algebras of noncommutative geometry: quantum forms of euclidean spaces Rθ and tori Aθ.

It’s very interesting to ask whether the completely bounded HLS holds when the semigroup has the cb

varopoulos dimension. i.e.

‖Tt : L1(M)→ L∞(M)‖cb . t−n/2
?

====⇒ ‖∆−α : L2(M)→ Lq(M)‖cb ≤ C(α, q). (1.0.2)

for two reasons. The first reason is that some semigroup on Rnθ (and Anθ ) has the cb-Varopoulos dimension.

Indeed, a crucial point, as in abelian algebras, is to identify kernels over Rnθ ⊗̄(Rnθ )op, where the op-structure

(reversed product law) is used in the second copy. This is justified by the important map

πθ : L∞(Rn)→ Rθ⊗̄Ropθ ,

exp(2πi〈ξ, ·〉) 7→ λθ(ξ)⊗ λθ(ξ)∗,

which extends to a normal *-homomorphism, for which the op-structure is strickly necessary. We apply

Effros and Ruan’s theorem [ER00] on Rθ⊗̄Ropθ to the heat semigroup Tt = e−t∆, where ∆ is the Laplacian

operator. We prove that

‖Tt : L1(Rnθ )→ L∞(Rnθ )‖cb . t−n/2.
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Assume the cb-HLS inequality (1.0.2) holds, then it implies that

‖(|∆|)−α : L2(Rnθ )→ Lq(Rnθ )‖cb ≤ C(α, q)

The second reason is that the cb-Sobolev embedding on Rθ strengthens the classical vector-valued Sobolev

embedding when θ = 0 and n = 1. Let us denote x as (A−αf) and recall the norms of an operator in Lp(Sq)

and Sp(Lq) as follows:

‖x‖Lp(Sq) = sup
‖α‖2r,‖β‖2r=1

(

∫
‖αxβ‖pp)1/p ≤ (

∫
sup

‖α‖2r,‖β‖2r=1

‖αxβ‖pp)1/p = ‖x‖Sp(Lq),
1

r
= |1

p
− 1

q
|.

Therefore there exists a completely contraction from Sp(Lq(R)) to Lp(R, Sq). The cb Sobolev inequality

reduces the vector-valued Sobolev inequality, but the opposite direction is not. Therefore the cb-HLS

inequality is more general than the vector-valued one. In chapter 3, we prove (1.0.2) in an abstract setting

described as follows:

Theorem 1.2. Suppose {Tt} is a strongly continuous semigroup of normal selfadjoint subunital completely

positive maps on some semifinite von Neumann algebra M. The following are equivalent:

(1) there exist 1 < p < q <∞ with α = n
2 ( 1

p −
1
q ) such that

‖A−α : Lp(M) −→ Lq(M)‖cb ≤ c1;

(2) the semigroup {Tt} satisfies

‖Tt : L1(M) −→ L∞(M)‖cb ≤ c2t−n/2.

We want to emphasize that the proof of Theorem 1.2 develops a new tool to prove cb-boundness for maps

on the semifinite von Neumann algebraM. The cb-norm estimates of maps between noncommutative Lp(M)

spaces have achieved a rapid and considerable progress in recent years. For example, the quantum Fourier

multipliers is easier to prove by transference methods stablished in [GPJP17],[CXY13],[Ric16]. It’s known

from [Bou86][Wei01] that the UMD-property implies the boundedness of all invariant singular integrals or

standard multiplier operators under some regularity assumption. However, the tools for cb-boundness from

Lp to Lq are very rare. A. Harcharras [Har99] dealed with completely bounded version of Fourier multipliers

on Lp and Schur multipliers on the Scatten class Sp when Lp and Sp are viewed as operator spaces by using

subsets of Z enjoying the noncommutative Λ(p)-property. In our work, the main obstacle that we deal with
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is how to completely isomorphically embed a noncommutative Lp space into the sum of two weighted spaces

L2, Lq with 2 < q < p. We use Junge and Xu’s machinery [JX07] as the main ingredient. In chapter 3, we

prove a representation theorm as follows:

Theorem 1.3. Let 2 < p < q. Then there is a map u : L2(M) ∩ Lp(M) → L2(M⊗ B(`2)) such that for

any operator x ∈ Lp(M) ∩ Lsa0 (M),

u(x) . DqaDq +D2bD2, a ∈ L2(M⊗ B(`2)), b ∈ Lq(M⊗ B(`2)).

Here Dq and D2 are two multipliers in M⊗ B(`2).

We discover that we can use an explicite decomposition of A−α. We define two matrix-valued singular

integral operators Φupθ and Φdownθ in a concrete form, derived from the split point in the classical proof of

HLS inequality. Following the scheme of Theorem 1.3 for A−αf , we show that by a deterministic split point,

Φdownθ f is an operator in L2(M⊗ B(`2), w1) and Φupθ f is an operator in Lq(M⊗ B(`2), w2) with a suitable

choice of weights (w1, w2) from interpolation theory.

In the third part of this thesis, we investigate the abstract Strichartz estimates theory in noncommutative

space. Strichartz estimates are a family of inequalities for linear dipersive partial differential equations.

These inequalities establish size and decay of solutions in mixed norm Lebesgue spaces. In [Seg76], the

author investigates the linear Klein-Gordon equation. In the pioneering paper [S+77], Strichartz builds the

connection between space-time estimate and the restriction theorem of Tomas and Stein. See [LS95],[Kap89],

[MSS93], [GV95], [Sog95] for many known Strichartz wave equations. See [GV92] [Yaj87] for Strichartz

results for the Schrödinger equation. In [KT98], Keel and Tao showed an abstract Strichartz estimates for

a family of operators with Varopoulos dimension and boundedness on some Hilbert space. In chapter 5,

we adapt their proof and [Tag08] by defining some bilinear operators. Next we show that the existence of

abstract Strichartz estimates for Rnθ . Indeed the Schrödinger operator Tt = e−it∆ satisfies the dispersive

estimate proved in chapter 3. And Schrödinger operator has the energe estimate followed from Plansherel’s

estimates. Then we apply the Strichartz estimates on Rnθ for the Schrödinger equations.

The thesis is organized as follows. In Chapter 2, we assume the reader has basic knowledge on C∗-

algebras and von Neumann algebra theory. We give a brief introduction on interpolation theory, operator

spaces and completely bounded maps, noncommutative Lp spaces and vector-valued noncommutative Lp

spaces, abstract semigroup theory.

In chapter 3, we prove the Sobolev inequalities in the noncommutative setting. Moreover we extend the

Sobolev embedding from noncommutaive Lp spaces to Orlicz function spaces with the Luxemburg-Nakano

5



norm for 1 < p < ∞. We study three examples to show the existence of such Orlicz function spaces.

Then we establish a normal representation from Rn to Rθ⊗̄Ropθ which provide the main ingredient to prove

the ultracontractivity. Then we introduce the notion of Trudinger-Moser’s inequality, which concerns the

borderline case of Sobolev inequality when p leads to infinity. We show some analytic embedding of Lp(Rnθ )

and prove a noncommutative version of Trudinger-Moser’s inequality on Rnθ .

In chapter 4, we prove the cb Sobolev inequalities in the noncommutaive setting. We introduce the notions

of ”weighted truncated resolvent operator” and show norm estimates of these maps. Then we prove the cb

Sobolev inequlity for Schatten p classes Sp with embedding theory for discrete space. Then we explore the

Lp embedding theory for general von Neumann algebra. We introdcuce the notion of homogeneous space K

and give some certain regularity condition on the pair of weights. We show that, the fundamental sequences

with a mild regularity assumption, completely determine the operator space structure of K. We find a

canonical representation of the homogeneous space K in terms of weighted row and column spaces. Then

we prove the cb-sobolev inequalities for semifinte von Neumann algebra and the cb-version of Varopolous’s

theorem and provide some examples.

In chapter 5, we adapt the proof of abstract Strichartz estimates in Keel and Tao’s paper [KT98],

with notations from [Tag08]. In this section, we replace (Tt) by the group unitaries (eit∆). With the

ultracontractivity of {Tt} proved in chapter 3, we prove the existence of Strichartz estimates on the quantum

euclidean space Rnθ .

6



Chapter 2

Preliminaries

2.1 Interpolation

In this section, we recall some basic knowledge of interpolation theory. Our main reference is from the thesis

paper [Tag08].

2.1.1 Complex interpolation

We first recall the definition of complex interpolation for Banach spaces. Let (E0, E1) be a compatible couple

of complex Banach spaces. Recall that

E0 + E1 = {a0,+a1 : a0 ∈ E0, a1 ∈ E1}

with norm

‖a‖E0+E1 = inf{‖a0‖E0 + ‖a1‖E1 : a = a0 + a1, a0 ∈ E0, a1 ∈ E1}

(see [[Tri95], 1.2.1] for more details).

Let F(E0, E1) be the family of all functions f : S → E0 + E1 satisfying the following conditions:

• f is continous on S and analytic in the interior of S;

• f(k + it) ∈ Ek for all t ∈ R and the function t → f(k + it) is continuous from R to Ek for k = 0 and

k = 1;

• lim|t|→∞ ‖f(k + it)‖Ek = 0 for k = 0 and k = 1.

When the family F(E0, E1) is equipped with the norm

‖f‖F(E0,E1) = max{sup
t∈R
‖f(it)‖E0

, sup
t∈R
‖f(1 + it)‖E1

},

F(E0, E1) is a Banach space.

7



Definition 2.1. For 0 < θ < 1 the complex interpolation space Eθ = (E0, E1)θ is defined as the space of

all those x ∈ E0 + E1 for which there exists f ∈ F(E0, E1) such that f(θ) = x, with the norm

‖x‖θ = inf{‖f‖F(E0,E1) : f(θ) = x, f ∈ F(E0, E1)}.

Remark 2.2. The complex interpolation space Eθ becomes a Banach space. Thanks to maximum principle,

Eθ is isomorphic to the quotient of F(E0, E1).

Theorem 2.3 ([Tri95], Theorem 1.9.3). (E0, E1) is an interpolation couple. Then

(i) (E0, E1)θ = (E1, E0)1−θ holds for 0 ≤ θ ≤ 1,

(ii) E0 ⊂ E1 implies that

E0 ⊂ (E0, E1)θ0 ⊂ (E0, E1)θ1 ⊂ E1

where 0 < θ0 < θ1 < 1,

(iii) (E0, E0)θ = E0 if 0 < θ < 1, and

(iv) E0 ∩ E1 is dense in (E0, E1)θ.

Moreover, suppose that 0 < θ < 1, B = (B0, B1)θ and C = (C0, C1)θ. If S is a linear operator from B0 to C0

and from B1 to C1, i.e.

‖Sb0‖C0
≤M0‖b0‖B0

, ‖Sb1‖C1
≤M1‖b1‖B1

,∀b0 ∈ B0, b1 ∈ B1,

then S is a bounded linear operator from the interpolation space B to the interpolation space C satisfying

‖Sb‖C ≤M1−θ
0 Mθ

1 ‖b‖B ∀b ∈ B.

In Chapter 3, we will often use the bilinear version below.

Theorem 2.4 ([BL12], Theorem 4.4.1). Suppose that the pairs (A0, A1), (B0, B1) and (C0, C1) are Banach

interpolation couples. Assume that S : A0 ∩A1 ×B0 ∩B1 → C0 ∩ C1 is bilinear and that for every (a, b) in

A0 ∩A1 ×B0 ∩B1 the inequalities

‖S(a, b)‖C0
≤M0‖a‖A0

‖b‖B0
, ‖S(a, b)‖C1

≤M1‖a‖A1
‖b‖B1
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holds. If 0 < θ < 1 and 0 < q ≤ ∞ then S extends uniquely to a bilinear mapping from (A0, A1)θ× (B0, B1)θ

to (C0, C1)θ with norm at most M1−θ
0 Mθ

1 .

2.1.2 Real interpolation

Let E0, E1 be Banach spaces.We assume the interpolation couple (E0, E1) is embeded into some larger

Banach space A.

Definition 2.5. Let the real interpolation spaces (E0, E1)θ,q for 0 < θ < 1, 1 ≤ q ≤ ∞ be via the norm

‖a‖(E0,E1)θ,q =
(∫ ∞

0

(t−θK(t, a))q
dt

t

)1/q

,

where

K(t, a) = inf
a=a0+a1

‖a0‖E0
+ t‖a1‖E1

.

We list some basic properties of real interpolation spaces frequently used in this paper.

Theorem 2.6 ([BL12], Theorem 3.1.2 and 3.4.1). Suppose that (E0, E1) is a Banach interpolation couple,

0 < θ < 1 and 1 ≤ q ≤ ∞. Then the following properties hold:

(i) (E0, E1)θ,q = (E1, E0)1−θ,q with equal norms,

(ii) if 1 ≤ q ≤ r ≤ ∞ then

(E0, E1)θ,1 ⊂ (E0, E1)θ,q ⊂ (E0, E1)θ,r ⊂ (E0, E1)θ,∞,

(iii) (E0, E0)θ = E0 with equivalent norms, and

(iv) if E0 and E1 are complete then so is (E0, E1)θ,q.

Moreover, suppose that 0 < θ < 1, B = (B0, B1)θ,q and C = (C0, C1)θ,q. If S is a linear operator such that

‖Sb0‖C0
≤M0‖b0‖B0

, ‖Sb1‖C1
≤M1‖b1‖B1

,∀b0 ∈ B0, b1 ∈ B1,

then S is a bounded linear operator from B to C satisfying

‖Sb‖C ≤M1−θ
0 Mθ

1 ‖b‖B ∀b ∈ B.

We also use some bilinear results for real interpolation spaces as follows.
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Theorem 2.7 ([BL12],pp 76-77). Suppose that the pairs (A0, A1), (B0, B1) and (C0, C1) are Banach inter-

polation couples.

(i) Suppose that for every (a, b) in A0 ∩A1 ×B0 ∩B1 the inequalities

‖S(a, b)‖C0
≤M0‖a‖A0

‖b‖B0
, ‖S(a, b)‖C1

≤M1‖a‖A1
‖b‖B1

holds. If 0 < θ < 1 and 1/r + 1 = 1/p + 1/q with 1 ≤ r ≤ ∞, then S extends uniquely to a bilinear

mapping from (A0, A1)θ,p × (B0, B1)θ,q to (C0, C1)θ,r with norm at most M1−θ
0 Mθ

1 .

(ii) Suppose that the bilinear operator S acts as a bounded transformation as indicated below:

S : A0 ×B0 → C0,

S : A0 ×B1 → C1,

S : A1 ×B0 → C1.

If θ0, θ1 ∈ (0, 1) and p, q, r ∈ [1,∞] such that 1 ≤ 1/p + 1/q and θ0 + θ1 < 1, then S also acts as a

bounded transformation in the following way:

S : (A0, A1)θ0,pr × (B0, B1)θ1,qr → (C0, C1)θ0+θ1,r.

2.1.3 Interpolation of Lp spaces by real and complex method

Complex interpolation of Lp spaces gives us the desired result as follows:

Theorem 2.8 ([BL12], Theorem 5.1.2). Suppose that (χ, µ) is a measure space, (E0, E1) is a Banach

interpolation couple, p0, p1 ∈ [1,∞] and 0 < θ < 1. If 1/p = (1− θ)/p0 + θ/p1 and Eθ = (E0, E1)θ then

(Lp0(χ;E0), Lp1(χ;E1))θ = Lp(χ;Eθ).

If pi = ∞ for some i ∈ {1, 2}, then Lpi must be replaced with the space L∞0 of bounded functions with

compact support.

In general, real interpolation of Lp spaces gives Lorentz spaces rather that Lp spaces, since there is an

extra interpolation parameter. We first give the definition of Lorentz spaces as follows:

Definition 2.9. Suppose that (χ, µ) is a measure space, E is a Banach space and 1 < p <∞. If 1 ≤ q <∞
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then the Lorentz space Lp,q(χ) is given by

Lp,q(χ;E) = {F ∈ L1(χ;E) + L∞(χ;E) : ‖F‖Lp,q(χ;E) <∞},

where

‖F‖Lp,q(χ;E) =
(∫ ∞

0

(t1/pF ∗(t))q
dt

t

)1/q

and F ∗ is the measure-preserving rearrangement function of F (see [[Tri95], 1.18.6] for further details).

Theorem 2.10. Suppose that χ is a measure space, E is a Banach space, 1 ≤ p0 < p1 ≤ ∞, p0 < q ≤ ∞

and 0 < θ < 1. If 1/p = (1− θ)/p0 + θ/p1 then

(Lp0(χ;E), Lp1(χ;E))θ,q = Lp,q(χ;E) with equivalent norms.

Lorentz spaces are equivalent to Lp space in some conditions.

Lemma 2.11 ([BL12], p.8). Suppose that χ is a measure space and E is a Banach space.

(i) If 1 ≤ r1 < r2 ≤ ∞ and 1 < p <∞, then Lp,r1(χ;E) ⊂ Lp,r2(χ;E).

(ii) If 1 ≤ p ≤ ∞ then Lp,p(χ;E) = Lp(χ;E) with equal norms.

Theorem 2.12 ([BL12],p.130). Suppose that χ is a measure space, p0, p1 ∈ [1,∞), θ ∈ (0, 1) and 1/p =

(1− θ)/p0 + θ/p1. If (E0, E1) is a Banach interpolation couple then

(
Lp0(χ;E0), Lp1(χ,E1)

)
θ,p

= Lp(χ; (E0, E1)θ,p).

Remark 2.13. We will need the interpolation space identities (L2
tL

p0
x , L

2
tL

p1
x )θ,2 = L2

tL
p,2
x whenever p0 6= p1

and 1
p = 1−θ

p0
+ 1

p1
in next chapter.

We shall also use interpolation results for weighted Lebesgue sequence spaces in Chapter 5. Let s ∈

R and 1 < q <∞, lsq denote the space of all scalar-valued sequence {aj}j∈Z such that

‖{aj}j∈Z‖lsq =
(∑

2js|aj |q
)1/q

<∞. (2.1.1)

If q =∞ then the norm is defined by ‖{aj}j∈Z‖ls∞ = sup 2js|aj |.

Theorem 2.14 ([BL12], Theorem 5.6.1). Assume that 0 < q0 ≤ ∞, 0 < q1 ≤ ∞, 0 < θ < 1 and s0 6= s1. If

0 < q ≤ ∞ then

(ls0q0 , l
s1
q1 )θ,q = lsq

11



where s = (1− θ)s0 + θs1.

Remark 2.15. In chapter 3, we will use the special case (ls0∞, l
s1
∞)θ,1 = ls1 with s = (1− θ)s0 + θs1.

2.2 Operator spaces and completely bounded maps

We introduce some basic concepts from operator space theory on those aspects which are useful for this

work, and our mainly standard references are from [Xu08].

Definition 2.16. An operator space E is a complex Banach space together with a sequence of matrix norms

‖ · ‖k on Mk[E] = Mk ⊗ E satisfying the following conditions:

• (R1) : ‖v ⊕ w‖k+l = max{‖v‖k, ‖w‖l} and

• (R2) : ‖αwβ‖k = ‖α‖‖w‖l‖β‖

for all v ∈Mk[E], w ∈Ml[E], α ∈Mk,lβ ∈Ml,k. (R1) and (R2) above are usually called Ruan’s axioms.

The following theorem is proved in [Rua88].

Theorem 2.17 (Ruan’s characterization). Let E be a vector space. Assume that each Mn(E) is equipped

with a norm ‖ · ‖n. If these norm ‖ · ‖n satisfy Ruan’s axioms (R1) and (R2), then there are Hilbert space H

and a linear map J : E → B(H) such that

Jn = idMn ⊗ J : Mn(E)→Mn(B(H)) is isometric for every n.

In other words, the sequence (‖ · ‖n) comes from the operator space structure of E given by the embedding

J : E → B(H).

Definition 2.18. An operator space E is called homogeneous if every bounded map on E is c.b. and

‖u‖cb = ‖u‖. E is called Hilbertian if E is isometric to a Hilbert space.

Definition 2.19. Given operator spaces E and F and a linear map T : E −→ F, is said to be completely

bounded if

‖T‖cb = sup
n
‖Tn‖ <∞,

here Tn : Mn[E]→Mn[W ] denotes the linear map by Tn(v) = (idn × T )(v) = (T (vij))i,j . We say that T is

completely contractive if ‖T‖cb ≤ 1. Moreover, T is said to be a completely isomorphism (resp. completely

isometry) if each map Tk is an isomorphism (resp. an isometry).
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Definition 2.20. Given an operator space E, we define the dual operator space E∗ by means of acceptable

matrix norms

Mn[E∗] = CB(E,Mn), n ≥ 1.

It is not difficult to see that ‖T ∗‖cb = ‖T‖cb for every T : E → F, denotes the adjoint map of T.

Theorem 2.21 (Haagerup-Paulsen-Wittstock factorization). Let E ⊂ B(H) and F ⊂ B(K)be two operator

spaces. Let u : E → F be a c.b. map. Then there are a Hilbert space H̃, a representation π : B(H)→ B(H̃)

and two bounded operators a, b ∈ B(K, H̃) such that

u(x) = b∗π(x)a,∀x ∈ E.

Namely, u = Lb∗ ◦Ra◦π|E . Moreover, ‖u‖cb = inf{‖a‖‖b‖} where the infimum is taken over all factorizations

of u as above.

2.3 Noncommutative Lp spaces

2.3.1 Definitions and Propositions

In this section, we mainly follows the notations of [JLMX06]. Let us take a brief presentation of noncom-

mutative Lp spaces associated with a trace. We mainly refer the reader to [Ter81] and [PX03] for further

information on these spaces.

M is a semifinite von Neumman algebra with a normal semifinite faithful (n.s.f) trace τ . We useM+ to

represent the positive part of M. Let S+ be the set of all x ∈ M+ whose support projection have a finite

trace. Then any x ∈ S+ has a finite trace. Let S ⊂ M be the linear span of S+, then S is a w∗-dense

*-subalgebra of M.

Definition 2.22. Let 0 < p <∞. For any x ∈ S, the operator |x|p belongs to S+ and we define

‖x‖p = (τ(|x|p))
1
p , x ∈ S.

Here |x| = (x∗x)
1
2 denotes the modulus of x. It turns out that ‖x‖p is a norm on S if p ≥ 1, and a p-norm

if p < 1. By definition, the noncommutative Lp-space associated with (M, τ) is the completion of (S, ‖x‖p),

denoted as Lp(M).

Remark 2.23. For convience, we let L∞(M) =M equipped with its operator norm. Lp(M) ∩M is dense

in Lp(M) for 1 ≤ p ≤ ∞.M = L∞(Ω, µ) and Schatten classes Sp are two simple examples.
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Assume that M ⊂ B(H) acts on some Hilbert space H. We want to have a description of the elements

of Lp(M) as (possibly unbounded) operators on H. Let M′ ⊂ B(H) denote the commutant of M.

We recall the noncommutative Hölder inequality. If 0 < p, q, r ≤ ∞ are such that 1
p + 1

q = 1
r , then

‖xy‖r ≤ ‖x‖p‖y‖q, x ∈ Lp(M), y ∈ Lq(M). (H)

Conversely for any z ∈ Lr(M),there exist x ∈ Lp(M) and y ∈ Lq(M) such that z = xy, and ‖z‖r =

‖x‖p‖y‖q.

Thanks to Hölder inequality, we get an isometric isomorphism Lp(M)∗ = Lp
′
(M) with 1

p + 1
p′ = 1, 1 ≤

p <∞. We can include the case p =∞ by identifying L1(M) with the (unique) predual M∗ of M.

Another important property of noncommutative Lp-spaces is that they form an interpolation scale(see

[Ter82]), i.e.

[L∞(M), L1(M)] 1
p

= Lp(M), 1 ≤ p ≤ ∞,

where [, ]θ means the complex interpolation method. We refer to the survey paper [PX03] for more informa-

tion and historical references on noncommuative Lp spaces.

2.3.2 Weighted noncommutative Lp spaces

We mainly follow the notations in [JRS05]. Let φ be a normal faithful semifinite weight on M. Consider

the one-parameter modular automorphism σφt (associated with φ) initiated by Haagerup [Haa79]. Then the

semifinite von Neumann algebra M̃ :=Moσφ R will have an induced trace τ with a dual action θ. And the

trace and action have the relation τ ◦ θs = e−sτ for all s ∈ R.

Because of the one-parameter group,M now can be considered as a θ-invariant von Neumann subalgebra

L∞(M) of M̃. As for Lp(M, φ)(1 ≤ p < ∞) , it can be identified as the space of all (unbounded) τ -

measurable operators affiliated with M̃ such that θs(T ) = e−
s
pT for all s ∈ R. Following [Ter81], we have

the follow theorem,

Theorem 2.24. There is a one-to-one correspondence between bounded (positive) linear functionals ϕ ∈M∗

and τ -measurable (positive self-adjoint) operators hϕ ∈ L1(M, φ) under the connection given by

ϕ̂(x̃) = τ(hϕx̃), x̃ ∈ M̃,

where ϕ̂ is the so-called dual weight for ϕ

This correspondence actually extends to all of M∗ and L1(M, ϕ). We set the “tracial” linear functional
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tr = trM : L1(M, φ)→ C by

tr(hϕ) = ϕ(1), satisfying tr(hϕx) = tr(xhϕ) = ϕ(x), ϕ ∈M+
∗ , x ∈M.

Given any h ∈ Lp(M), we have the polar decomposition h = w|h|. Here |h| is the positive operator

in Lp(M)+ and w is the partial isometry contained in M . We call sl(h) = ww∗ the left support of h

(respectively the projection sr(h) = w∗w, right support of h). Thanks to the above therem, we naturally

define a new norm on Lp(M, φ)

Definition 2.25. For h ∈ Lp(M, φ), we define

‖h‖p = tr(|h|p)1/p = ϕ(1)1/p

if ϕ ∈M∗ corresponds to |h|p ∈ L1(M, φ)+.

With this norm, it is easy to see that L1(M, ϕ) is isometrically and orderly isomorphic to M∗. By

isometry, Lp-space constructed above is actually independent of n.f.s weight chosed on M.

If h ∈ Lp(M)+, hp is a positive operator in L1(M)+ . So hp is hϕ for a positive ϕ ∈M+
∗ . Therefore, we

may identify h with ϕ1/p, i.e. h = ϕ1/p. See [Con00, Yam92, She] for more details.

2.4 Vector-valued noncommutative Lp spaces

2.4.1 Vector-valued schatten classes

We want to define Schatten classes with values in operator spaces. Our main reference for this section is

from [Pis03]. Let E be an operator space, S∞[E] be S∞ ⊗min E and S1[E] be S1⊗̂E (projective operator

space tensor product). We define Sp[E] by interpolation for any 1 < p <∞, i.e. Sp[E] = (S∞[E], S1[E])1/p.

The elements of Sp[E] are often represented as infinite matrices with entries in E. The following theorems

in [Pis03] are very useful:

Theorem 2.26. Let 1 ≤ p <∞.

1) Any x = (xij) ∈ Sp[E] admits a factorization x = ayb with a, b ∈ S2p and y ∈ S∞[E]. Here the product

is the usual matrix product. Moreover, we have

‖x‖Sp[E] = inf
x=ayb

{‖a‖2p‖y‖S∞[E]‖b‖2p}.
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2) Conversely, for any x = (xij) ∈ S∞[E]

‖x‖S∞[E] = sup{‖axb‖Sp[E] : a, b ∈ S2p, ‖a‖2p ≤ 1, ‖b‖2p ≤ 1.}

Corollary 2.27. Let E and F be two operator spaces. Let 1 ≤ p <∞. Then a linear map u : E → F is c.b.

iff

sup
n
‖ISnp ⊗ u : Snp [E]→ Snp [F ]‖ <∞;

Moreover, in this case the supremum above is equal to ‖u‖cb.

Proposition 2.28. For the case operator space E = Sdq for some 1 ≤ q ≤ ∞. Given 1 ≤ p, q ≤ ∞ and

1
r = | 1p −

1
q |, we have

1) If p ≤ q, ‖x‖Snp [Sdq ] = inf{‖a‖Sn2r‖y‖Sndq ‖b‖Sn2r}, where the infimum runs over all representations X =

(a⊗ Idd)y(b⊗ Idd) with a, b ∈Mn and y ∈Mn ⊗Md.

2) If p ≥ q, ‖x‖Snp [Sdq ] = sup{‖(a⊗ Idd)x(b⊗ Idd)‖Sndq : a, b ∈ Sn2r with ‖a‖, ‖b‖ ≤ 1}

2.4.2 Column and Row p-spaces

Recall that the column and row spaces, C and R, are the first column and row subspaces of S∞. Now let E

be an operator space. We denote by Cp[E] (resp. Rp[E]) the closure of Cp⊗E (resp. Rp⊗E) in Sp[E]. For

any finite sequence (xk) ∈ E,

‖
∑
k

xk ⊗ ek‖Cp[E] = ‖(
∑
k

x∗kxk)1/2‖Lp(E)

where (ek) denotes the canonical basis of Cp. More generally, if ak ∈ Cp, then

‖
∑
k

xk ⊗ ak‖Cp[E] = ‖(
∑
k,j

〈aj , ak〉x∗kxj)1/2‖Lp(E).

We also have a similar description for Rp[E].

In general, for a Hilbert space H and 1 ≤ p ≤ ∞, we define the Schatten p-class Sp(C,H) (resp.Sp(H̄,C))

as Hcp (resp.Hrp). When H is separable and infinite dimensional, Hcp and Hrp are respectively Cp and Rp

above. If dimH = n <∞, we set Hcp = Cnp and Hrp = Rnp . We call Hcp (resp.Hrp) is a p-column (resp. p-row)

space.
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2.5 Semigroups

The relationship between Littlewood-Paley theory and symmetric contraction semigroups with additional

hypotheses was investigated by Stein [Ste16] in 1970s. Then more attention has been turn to the application

of abstract semigroups on noncommutative Lp-spaces. The authors [JX02] and [JX07] use diffusion semigroup

to prove noncommutative maximal inequalities on Lp-spaces for the first time. [Mei08] and [JX02] provide

the definition of BMO and tent spaces associated with semigroups. [JM10] studied noncommutative Riesz

transform.

Without special explanation, we always assume that {Tt} is a semigroup of completely positive maps on

a finite von Neumann algebra M satisfying the following the assumptions

(i) Every Tt is a normal completely positive maps on M such that ‖Tt(1)‖ ≤ 1;

(ii) Every Tt is selfadjoint with respect to the trace τ , i.e. τ(Tt(x)y) = τ(xTt(y));

(iii) The family (Tt) is strongly continuous, i.e. limt→0 Ttx = x with respect to the strong operator topology

in M for x ∈M.

Remark 2.29. The first two conditions imply that τ(Ttx) = τ(x) for all x, so Tt is faithful and contractive

on L1(M). By interpolation technique, Tt can be extend to a contraction on Lp(M) for 1 ≤ p < ∞ and

satifies limt→0 Ttx = x in Lp(M) for any x ∈ Lp(M).

Let us recall that the dommain domp(A) of the generator A(formally depending on p) is the set of all

x ∈ Lp(M) such that

Ax := lim
t→0

Ttx− x
t

We calll that this semigroup admits an infinitesimal generator A. On the other hand, the resolvent formula

A−α = Γ(α)−1

∫ ∞
0

Ttt
α−1dt for α > 0.

We can easily get the associativity property of A−α by functional calculus. But we want to show an

alternative proof of it to illustrate the reason that there is a coefficient Γ(α)−1 in this formula.

Proposition 2.30. Given arbitrary two positive numbers αq and γ with α = αq + γ,

A−α = A−αqA−γ .
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Proof. Since Beta function B(x, y) and gamma Γ(x) have the relationship B(αq, γ) =
Γ(αq)Γ(γ)
Γ(αq+γ) , we get

A−αqA−γ(x) = Γ(αq)
−1

∫ ∞
0

Tt(A
−γ(x))tαq−1dt = Γ(αq)

−1

∫ ∞
0

Tt

(∫ ∞
0

Ts(x)sγ−1ds
)
tαq−1dt

= (Γ(αq)Γ(γ))−1

∫∫
TtTsxs

γ−1tαq−1dsdt = (Γ(αq)Γ(γ))−1

∫∫
Tt+sxs

γ−1tαq−1dsdt

= (Γ(αq)Γ(γ))−1

∫∫
Tmx(m− t)γ−1tαq−1dmdt

= (Γ(αq)Γ(γ))−1

∫
Tmx

( ∫ m

0

(m− t)γ−1tαq−1dt
)
dm

= (Γ(αq)Γ(γ))−1

∫
Tmx

( ∫ 1

0

mα(1− s)γ−1sαq−1dt
)
dm

= (Γ(αq)Γ(γ))−1

∫
Tmxm

α−1B(αq, γ)dm = Γ(α)−1

∫
Tmxm

α−1dm = A−α(x)

Definition 2.31. A standard semigroup (Tt) on a finite von Neumann algebraM admits a Markov dilation

if there exists a larger finite von Neumann algebra N , an increasing filtration (Ns)s≥0 with conditional

expectation Ns = Es(N ) and trace preserving ∗-homomorphisms πs :M→ N such that πs(M) ⊂ Ns and

Es(πt(x)) = πs(Tt−sx)), 0 ≤ s < t <∞, x ∈M.

In [JM10], the authors proved that every semigroup of completely positive unital selfadjoint maps on a

finite von Neumann algebra admits a Markov dilation.

Definition 2.32. LetM be a von Neumann algebra. A semigroup (Tt) is completely bounded ultracontrac-

tive if it satisfies

‖Tt : L2(M)→M‖cb ≤ Ct−
n
4 , (R2

n)

‖Tt : L1(M)→M‖cb ≤ Ct−
n
2 . (Rn)

If any of these holds, we say the semigroup {Tt} has the cb-Varopoulos dimension n.

Remark 2.33. In general, the Varopoulos dimension can be any constant. For example,

(i) For the classical case, i.e. Rn, it’s known that the heat semigroup Tt = e−t∆ has the classical(not cb)

Varopoulos dimension n. Here the n is exactly the dimension of the space. And the poisson semigroup

has the Varopoulos dimension n/2.

(ii) Free Poisson semigroup acting on the group algebra of the free group F∞, uniformly in the number of

generators, has the following

‖Tt : L1(F∞)→ L∞(F∞)‖ ≤ t−3/2
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which is a known consequence of Haagerup’s inequality for homogeneous polynomials [Haa78] (See

[JPPP17] for more details).

(iii) More examples of semigroup can be found in the Application and Examples section of Chapter 4.

We may also define the family of condition on the semigroup Tt

‖Tt : Lp(M)→ Lq(M)‖cb ≤ Ct−
n
2 (1/p−1/q)., 1 ≤ p ≤ q ≤ ∞. (Rpqn )

However, (Rpqn ) is equivalent to (R2
n) by the following property, proved in Lemma 1.1.2 in [JM10]

Proposition 2.34. Let (Tt) be a selfadjoint family of operators, uniformly bounded on Lp(M). Then (Rpqn )

holds for one pair 1 ≤ p < q ≤ ∞ if and only if it holds for all 1 ≤ p ≤ q ≤ ∞.

We have an explicit form for Tt as follows:

Proposition 2.35. Let (Tt) be a selfadjoint family of operators, uniformly bounded on Lp(N ). Then there

exists a map ut such that

Tt(y
∗
1y2) = ut(y1)∗ut(y2),∀y1, y2.

Moreover, let uα(y)(t) = t(α−1)/2ut(y). Then A−α(y∗y) = uα(y)∗uα(y) for y ∈ N .

Proof. Let us recall the GNS-presentation of a completely positive map. Let T : N −→ N a completely

positive mapping. Then N ⊗N with inner product defined by setting

〈a⊗ b, x⊗ y〉 = b∗T (a∗x)y

is a semi-Hilbert N -N -module in a natural way. Denote Null(N ⊗ N ) = {x ∈ E : 〈x, x〉 = 0}. Setting

E = N ⊗N/NullN⊗N and ξ = 1⊗ 1 + NullN⊗N ∈ E, we have T (a) = 〈ξ, aξ〉. The pair (E, ξ) is called the

GNS-presentation of T. Indeed, the Hilbertian module N ⊗T N = ρC⊗̄N. Therefore ut : x 7→ (x ⊗N 1) is

the map satisfying 〈y ⊗ 1, x⊗ 1〉N = Tt(y
∗x). ut(y1)∗ut(y2) = Tt(y

∗
1y2) be the map obtained from the GNS

construction of Tt. Then let uα(y)(t) = t(α−1)/2ut(y) satisfying

uα(y)∗uα(y) =

∫
Tt(y

∗y)tα−1dt = A−α(y∗y).
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2.6 Quantum Euclidean spaces and Noncommutative tori

Our main reference for this section is from [GPJP17]. Given an integer n ≥ 1, fix an anti-symmetric R-

valued n×n matrix Θ. We define AΘ as the universal C∗-algebra generated b a family u1(s), u2(s), · · · , un(s)

of one-parameter unitary groups in s ∈ Rn which are strongly continuous and satisfy the Θ-commutation

relations below

uj(s)uk(t) = e2πiΘjkstuk(t)uj(s).

If Θ = 0 and by Stone’s theorem we may take uj(s) = exp(2πis〈ej , ·〉) and AΘ is the space of bounded

continuous functions Rn → C. In general given ξ ∈ Rn we shall extensively use the unitaries λθ(ξ) =

u1(ξ1)u2(ξ) · · ·un(ξn) and we define EΘ as the closure in AΘ of λΘ(L1(Rn)) with

λΘ(f) =

∫
Rn
f(ξ)λΘ(ξ)dξ.

If Θ = 0, we find EΘ = C0(Rn).

Proposition 2.36. Given any Θ, we easily see that

(1) λΘ(ξ)∗ = e2πi
∑
j>k ΘjkξjξkλΘ(−ξ),

(2) λΘ(ξ)λΘ(η) = e2πi〈ξ,Θη〉λΘ(η)λΘ(ξ) = e2πi
∑
j>k ΘjkξjηkλΘ(ξ + η),

(3) λΘ(f1)λΘ(f2) = λΘ(f1 ∗Θ f2) with Θ-convolution given by

f1 ∗Θ f2(ξ) =

∫
Rn
f1(ξ − η)f2(η)e2πi

∑
j>k Θjk(ξj−ηj)ηkdη.

Definition 2.37. For any smooth and integrable function f : Rn → C, let

τΘ(λΘ(f)) = τΘ(

∫
Rn
f(ξ)λΘ(ξ)dξ) = f(0).

τΘ extends to a n.f.s trace on EΘ. Let RΘ = E′′Θ be the von Neumann algebra generated by EΘ in the GNS

representation of τΘ. We obtain RΘ = L∞(Rn) for Θ = 0. In general, we call the Θ-deformation RΘ a

quantum Euclidean space.

Proposition 2.38. The following results hold:

(i) If n = 2 and Θ 6= 0, we have

EΘ ' C0(R) oR.
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In the case, the crossed product action is given by R-translation.

(ii) Let Θ̃ denote the (n − 1) × (n − 1) upper left corner of Θ ∈ Mn(R). Then there exists a continuous

group action βn−1 : R→ Aut(EΘ̃) satisfying

EΘ = EΘ̃ oβn−1 R.

(iii) τΘ extends to a n.f.s trace on RΘ, and the action βn−1 is trace preserving on (RΘ̃, τΘ̃). Induction on

n and iteration give

RΘ ' RΘ̃ oβn−1
R,

RΘ '
(

(L∞(R) oβ1
R) · · ·oβn−1

R
)
.

Let us now recall the weak-* continuous map

σΘ : λΘ(ξ) 7→ expξ ⊗λΘ(ξ),

where expξ stands for the character x 7→ exp(2πi〈x, ξ〉) in L∞(Rn).

Corollary 2.39. σ : RΘ → L∞(Rn)⊗̄RΘ is a normal injective *-homomorphism.

Let us consider the linear map πΘ, determined by

πΘ : expξ 7→ λΘ(ξ)⊗ λΘ(ξ)∗.

As an illustration, recall that for Θ = 0 we may expect to get the following identity for any Schwartz function

f : Rn → C

π0(f)(x, y) = π0

(∫
Rn
f̂(ξ) expξ dξ

)
(x, y) =

∫
Rn
f̂(ξ) expξ(x− y)dξ = f(x− y).

Lemma 2.40. πΘ extends to a normal *-homomorphism

πΘ : L∞(Rn)→ RΘ⊗̄RopΘ satisfying (σΘ ⊗ idRopΘ ) ◦ πΘ = (idRn ⊗ πΘ) ◦ 4Rn .

where 4Rn(expξ) = expξ ⊗ expξ is the comultiplication map in Rn. Moveover, the map πΘ also extends to a

completely isometry πΘ : Lc2(Rn)→ Lc2(RΘ)⊗̄RopΘ .
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2.6.1 BMO space theory

We mainly follow the notations in [JX+03].

Definition 2.41. Let 2 < q ≤ ∞.

(i) We define LcqMO(M) (mean oscillation in Lq in the column sense) as the space of all martingale

difference sequences (dk) in Lq such that the sequence x = (xn)n≥0 defined by xn =
∑n
k=1 dk satifies

‖x‖2LqcMO(M) = sup
m≥0
‖ sup

0≤n≤m
En(|xm − xn−1|2)‖q/2 <∞

Note that

En(|xm − xn−1|2) = En

( m∑
k=n

|dk|2
)
.

(ii) Define LrqMO(M) as the space of all x such that x∗ ∈ LcqMO(M), equipped with the norm

‖x‖LrqMO(M) = ‖x∗‖LcqMO(M)

(iii) Finally,

LqMO(M) = LcqMO(M) ∩ LrqMO(M)

equipped with the intersection norm

‖x‖LqMO(M) = max{‖x‖LrqMO(M), ‖x‖LcqMO(M)}.

Remark 2.42. If q =∞, all these spaces L∞MO(M) = BMO(M), L∞c MO(M) = BMOc(M), L∞r MO(M) =

BMOr(M) coincide [Pis93] and [JX+03].

DefineHpc(M)[resp.Hpr(M)] to be the space of all Lp-martingales x with respect to the filtration (Mn)n≥0

such that dx ∈ Lp(M; `2c)[resp.dx ∈ Lp(M; `2r)], and set

‖x‖Hpc (M) = ‖dx‖Lp(M;`2c)
and ‖x‖Hpr(M) = ‖dx‖Lp(M;`2r).

Proposition 2.43. For faithful von Neumann algebra M, p ≥ 2,we have the following properties:

(i) [BMO, LcpMO]θ = LcqMO, here 1−θ
p = 1

q

(ii) LcpMO ≈ Hcp
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(iii) Hcp ∩Hr
p = Lp

In general, for hyperfinite von Neumann algebras, we have to do some modification to derive the non-

faithful state. In [JX+03], the authors consider to use the increasing filtration of w∗-closed *-subalgebras

{Mn}n≥0 of M such that ∪n≥0Mn is w∗-dense in M. Let (en) be an increasing sequence of projections

converging to 1 in M, and D be the subalgebras of M generated by the en’s. Let fn = en − en−1 (with

e−1 = 0). Clearly (fn) is a sequence of orthogonal projections which sum to 1. Set Dn = Cfn and define

Tn :M→Dn by Tn(x) = 〈xfn, fn〉fn. Note that Tn is the normal conditional expectation from M onto Dn.

We denote

qn(x) =
∑

0≤k≤n

Tk(x), x ∈M.

Define M̃n as the von Neumann subalgebra generated by Mn and D. Then there is a faithful normal

conditional expectation ε̃n from M onto M̃n, i.e.

ε̃n(x) = εn(x) + (1− qn)(x), x ∈M


0 x1n 0

xn1 xnn 0

0 0
. . .


All these mappings extend to contractions and converge on Lp(M). Let d0 = ε0, d̃0 = ε̃0 and dn = εn −

εn−1, d̃n = ε̃n−ε̃n−1 for n ≥ 1. Note that dxn = dnx for all n. Then for any x ∈ Lp(M), (dnx)n[ resp.(d̃nx)n]

is the martingale difference sequence with respect to (Mn)[ resp.(M̃n)]. We have the following easily checked

relations between these martingale differences

d̃nx =


d0x+

∑
k≥1

Tkx, n = 0

dnx− Tnx, n ≥ 1.

Proposition 2.44. The bmo norm has the following properties:

(i) ‖x‖
b̃mo

= sup
k
‖Tkx‖+ sup

n
‖Ẽn(

∑
k>n |dk|2)‖1/2

(ii) ‖x‖
b̃moc

≤ sup
k
‖qkx(1− qk−1)‖, ‖x‖

b̃mor
≤ sup

k
‖(1− qk−1)xqk‖;

(iii) ‖x‖
b̃mo
≤ sup

k
{‖qkx(1− qk−1)‖, ‖(1− qk−1)xqk‖}

23



Proof. For (i), note that d̃nx = dnx− Tnx, n ≥ 1. Then by triangle inequality we obtain,

‖x‖
b̃mo

= sup
n
‖Ẽn(

∑
k>n

|d̃k|2)‖1/2 ≤ sup
k
‖Tkx‖+ sup

n
‖Ẽn(

∑
k>n

(dkx)2)‖1/2.

For (ii), we decompose dk = dck + drk.

‖Ẽn(
∑
k>n

dckx(dckx)∗)‖1/2 = ‖Ẽn|
∑
k>n

dckx⊗ e1k|2‖1/2 = ‖qnx(1− qn−1)x∗qn‖1/2

= ‖qnx(1− qn−1)‖.



0 x1n

...
...

...

0 xnn · · · · · · · · ·

0 0 0 0 0

· · · · · · · · · · · · · · ·


Similarly we get

‖Ẽn(
∑
k>n

(drkx)∗drkx)‖1/2 = ‖Ẽn|
∑
k>n

drkx⊗ ek1|2‖1/2 = ‖(1− qn−1)xqnx
∗(1− qn−1)‖1/2

= ‖(1− qn−1)xqn‖.


0 0 0 · · ·

xn1 xnn 0 · · ·
...

... 0 · · ·


Part (iii) follows from (i) and (ii) immediately.
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Chapter 3

Smoothing estimates on von
Neumann algebras

3.1 Generalized Sobolev inequality with Orlicz function

In 1985, N.Varopoulos [Var85a] discovered the equivalence between heat kernel bounds and Sobolev inequal-

ity in an abstract settings. He proved that, for any fixed n>2 and a complete noncompact Riemannian

manifold M, the equivalence between Varopoulos dimension n of a symmetric Markovian semigroup Tt in

the sense, i.e.

‖Ttf‖∞ . t−n/2‖f‖1, t > 0

and the Sobolev inequality

‖f‖22n/(n−2) ≤ S
∫
M

|Of |2dµ, f ∈ C∞c (M).

For further developments in this direction, see the following references, e.g. [CKS87], [Gri94],[LS97],

[RS97], [SC09]. In [CM93], Cowling and Meda extended the ultracontractivity of semigroup (Tt)t>0 to

φ-ultracontractivity on σ-measure space M (i.e. (Tt)t>0 satisfies the condition ‖Ttf‖∞ ≤ Cφ(t)−1‖f‖1 for

all f in L1(M) and all t in R+). They prove that {Tt} is φ-ultracontrative if and only if the infinitesimal

generator A has Sobolev embedding properties, namely, ‖φ(A)−α‖q . ‖f‖p for all f in Lp(M), whenever

1 < p < q < ∞ and α = 1/p − 1/q. More recently, M.Junge and T.Mei [JM10] predicted that given a

semigroup (Tt) of normal self-adjoint contractions with ‖Tt : L0
1(N )→ L∞(N )‖ ≤ Ct−n2 on some semifinite

von Neumann algebra N .

‖A−z : L0
p(N )→ L0

q(N )‖ ≤ C(α) z ∈ C, α = Re(z)

holds for all 1 < p < q < ∞ such that α = n
2 ( 1

p −
1
q ). Then Xiao [Xio16] proved their theorem in the

noncommutative setting. Their proof heavily relied on complex analysis and multiplier theory. Inspired by

the classical proof, we want to prove Sobolev inequalities by real analysis techinques. We also establish the

connection between φ-ultracontrativity of the semigroup {Tt} and Orlicz function spaces on the semifinite
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von Neumann algebra M.

Orlicz spaces generalize Lebesgue spaces. Recall notations of Orlicz spaces in [CL17]. An Orlicz function

is a convex function ϕ : [0,∞) → [0,∞] satisfying ϕ(0) = 0 and limu→∞ ϕ(u) = ∞, which is neither

identically zero nor infinite valued on all of (0,∞), and which is left continuous at bϕ = sup{u>0 : ϕ(u)<∞}.

It’s worth pointing out that any Orlicz function must also be increasing, and continuous on [0, bϕ]. An Orlicz

function is p-convex, i.e. for all 0 < λ ≤ 1, g(λx) ≤ Cgλpg(x). An Orlicz function g satisfies ∆2-condition if

there exists a constant Cg such that g(2t) ≤ Cgg(t),∀t ∈ R+.

Let L0(X,Σ,m) be the space of measurable function s on some σ−finite measure space (X,Σ,m). The

Orlicz space Lϕ(X,Σ,m) associated with ϕ is defined to be the set

Lϕ = {f ∈ L0 : ϕ(λ|f |) ∈ L1 for some λ = λ(f)>0}.

This space turns out to be a linear subspace of L0 which becomes a Banach space when equipped with the

so-called Luxemburg-Nakano norm

‖f‖ϕ = inf{λ>0 : ‖ϕ(|f |/λ)‖ ≤ 1}.

Let ϕ be a given Orlicz function. In the context of semifinite von Neumann algebras M equipped with

an f.n.s. trace τ , the space of all τ−measurable operators M(equipped with the topology of convergence

in measure) plays the role of L0. In the specific casew where ϕ is a so-called Young’s function (i.e., a map

ϕ : R→ [0,∞] ) having the properties of Orlicz function with additional symmetry ϕ(x) = ϕ(−x)

Lϕ(M, τ) = {f ∈M : τ(ϕ(λ|f |))<∞ for some λ = λ(f)>0}

with the Luxemburg-Nakano norm

‖f‖ϕ = inf{λ>0 : τ(ϕ(|f |/λ)) ≤ 1}.

See [Lux55], [KR], [LZ56], [Kun90] for further development in this direction.

Proposition 3.1. For any two elements x, y ∈ L0(M) and ϕ is an Orlicz function,

(i) If 0 < x ≤ y, ‖x‖ϕ ≤ ‖y‖ϕ;

(ii) If x ≤ y and y ∈ Lϕ(M), x ∈ Lϕ(M).
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Proof. (i) According to [FK86], for any two measurable elements x, y in L0(M), if x ≤ y, their reagr-

rangement functions has the inequality us(x) ≤ us(y). Therefore, we obtain τ(ϕ( |x|λ )) =
∫
ϕ(µs(

|x|
λ ))ds ≤∫

ϕ(µs(
|y|
λ ))ds = τ(ϕ( |y|λ )). Then by the definition, we get ‖x‖ϕ ≤ ‖y‖ϕ. (ii) follows from [DDPSS98].

In our context, we borrow the concept “related pair” from [Cow83], but with a totally different definition

as follows:

Definition 3.2. A pair of functions h : R+ → R+ and g : R+ → C is p-related (p > 1) if

(i) g is a p-convex Orlicz function satisfying the ∆2-condition;

(ii) h is decreasing and invertible when p > 1.

If g and h are p-related, we call ψg,h(w) := wh−1(w)g(h−1(w)) the generator function of g and h. Using

the definition of Orlicz function, we can easily obtain the following:

Proposition 3.3. Assume a pair (g, h) is p-related, the following holds

(1) g is increasing, continuous, and positive function;

(2) xg(x)h(x)1−p is increasing.

Proposition 3.4. A function Φ has ∆2-condition if and only if the function Φ(x)
x is increasing.

Proof. By induction for all 0 < λ < 1,Φ(λx) . λΦ(x). Assume y < x and let λ = y
x , then we can

get Φ(y) ≤ y
xΦ(x) i.e. Φ(y)

y ≤ Φ(x)
x . For the other direction, let y = 2x and we get the ∆2-condition

immediately.

The following Lemma motivates us our definition of the generator function ψg,h.

Lemma 3.5. Assume g and h are p-related and φ : R+ → R+ is defined as follows:

φ(w) := inf
b

(
w

∫ b

0

g(t)dt+

∫ ∞
b

g(t)h(t)dt
)

Then

φ(w) ≤ ψg,h(w)

Proof. Denote the function F(w, b) = w
∫ b

0
g(t)dt +

∫∞
b
g(t)h(t)dt. Therefore, φ(w) = infb F(w, b). Since

F(w, b) is an integrable formula with respect to variable b. Then we can differentiate the function F(w, b)

with the variable b.

∂F(w, b)

∂b
= wg(b)− g(b)h(b) = g(b)

(
w − h(b)

)
.

27



The function admits the global minimum value when w − h(b̃) = 0, i.e. b̃ = h−1(w). Therefore φ(w) =

F(w, h−1(w)). Indeed,

φ(w) = F(w, b̃) ≤ wg(b̃)b̃+ b̃g(b̃)h(b̃) = wg(h−1(w))h−1(w) + h−1(w)g(h−1(w))w

= 2wg(h−1(w))h−1(w) ≤ ψgh(w)

Lemma 3.6. Assume g and h are p-related and ψg,h is their generator function. We define Φg,h as

xp = Φg,h ◦ ψg,h(x).

(i) Φg,h has ∆2-condition if and only if f(x) = xg(x)h(x)1−p is increasing.

(ii) Therefore, Φg,h is an Orlicz function.

Proof. (i) According to Proposition 3.4, Φg,h satisfies ∆2-condition if and only if Φg,h(x)/x is an increasing

function. Then we have the following equivalences:

(i) Φg,h(x)/x increasing

(ii) Φ−1
g,h(x)/x decreasing

(iii) Φ−1
g,h(xp)/xp decreasing

According to the definition, we know Φ−1
g,h(xp) = wg(h−1(w))h−1(w). Therefore, wg(h

−1(w))h−1(w)
wp is decreas-

ing if and only if bg(b)h(b)
h(b)p = bg(b)h(b)1−p is increasing. (ii) It immediately holds by the definition of that g

and h are p-related and (i).

Remark 3.7. Assume f(x) = xg(x)h(x)1−p is increasing, the connection between monotonicity of f and p-

convexity of g can be illustrated as follows: given any positive numbers b, c with b ≤ c, there exists a number

λ = b
c < 1, b = λc. By monotonicity of f, we obtain h(λc)1−pg(λc)λc ≤ h(c)1−pg(c)c. After simplifying, we

have ( h(c)

h(λc)

)1−p
· g(c)

g(λc)
≥ λ.

Lemma 3.8. For any positive operator w in L0(M), there exists an operator w̃ ∈M, such that

w ≤ w̃ ≤ 2w. (3.1.1)
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Proof. For any positive operator in M, we get the spectral decomposation 0 ≤ w =
∫
tdEt. Define the

spectral projection ek := 1[2k,2k+1)(w), we obtain

w ≤
∑
k

2k+1ek ≤ 2
∑
k

2kek ≤ 2w

Let wk := 2k+1 and w̃ :=
∑
k wkek, we get (3.1.1).

Lemma 3.9. For a sequence of self-adjoint projects {ek} inM with
∑
ek = 1. The representation π :M→

M⊗ B(`2) as π(x) =
∑
ekxej ⊗ ekj is a ∗-homomorphism. Here ekj is the elementary basis of B(`2).

Proof. For any two elements x, y ∈M, we get

π(x)π(y) =
(∑

ekxel ⊗ ekl
)(∑

elyej ⊗ elj
)

=
∑

(
∑
l

ekxelyej)⊗ ekj =
∑

ekxyej ⊗ ekj = π(xy)

We refter the reader to semigroup theory in the chapter of preliminaries.

Theorem 3.10. Let the semigroup (Tt) be a family of self-adjoint positive contraction maps, with the

generator operator A on a von Neumann algebra M. Assume the pair (g, h) is p-related with the following

conditions:

(i) the semigroup {Tt} satisfies the ordered h-p-contractivity, i.e. Ttf ≤ h(t)‖f‖p1 for f ∈ L+
p (M);

(ii) G(A)(x) =
∫∞

0
Ttxg(t)dt.

Let Φ(w) be the inverse function of ψgh(w1/p). We have the following resolvent estimate:

‖G(A) : Lp(M)→ LΦ(M)‖ ≤ Cpq(α) 1 < p <∞.

Proof. Thanks to [JX07], for a sequence of self-adjoint positive contraction semigroups {Tt}, we have the

maximal inequality: there exists an operator W such that Tt(x) ≤W . By Lemma 3.8, there exists a family of

basis {ej} such that [ekTt(x)ej ]k,j ≤ [ekWej ]k,j = [wkj ]k,j . Let {bj} be abstract positive numbers. Following

from Lemma 3.9, we decompose the map G(A)(x) into four parts with the family of basis {ej}:

I1,1
k,j (x) =

∫ ∞
0

1[0,bk](t)ekTtxej1[0,bj ](t)g(t)dt and A11 =
∑
k,j

I1,1
k,j

I1,2
k,j (x) =

∫ ∞
0

1[0,bk](t)ekTtxej1[bj ,∞)(t)g(t)dt and A12 =
∑
k,j

I1,2
k,j
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I2,1
k,j (x) =

∫ ∞
0

1[bk,∞)(t)ekTtxej1[0,bj ](t)g(t)dt and A21 =
∑
k,j

I2,1
k,j

I2,2
k,j (x) =

∫ ∞
0

1[bk,∞)(t)ekTtxej1[bj ,∞)(t)g(t)dt and A22 =
∑
k,j

I2,2
k,j .

Therefore the integral function can be reformulated by G(A)(x) = A11 + A12 + A21 + A22. Next we define

three operators V1, V2 ∈ Lc2(R)⊗̄`c2⊗̄M, J ∈ L∞(R)⊗M as follows:

V1 =
∑
j

√
g|1[0,bj ]〉

c ⊗ ej1 ⊗ ejj ,V2 =
∑
j

√
g|1[bj ,∞〉

c ⊗ ej1 ⊗ ejj

J(t) = π(Ttx) =
∑
k,j

ekTt(x)ej ⊗ ek,j .

Then we have A11 = V ∗1 JV1A12 = V ∗1 JV2, A21 = V ∗2 JV1, A22 = V ∗2 JV2. Using 2× 2 matrix, we get

A =

A11 A12

A21 A22

 =

 V ∗1 0

V ∗2 0

×
 J J

J J

×
 V1 V2

0 0


Observe that A is a positive definite matrix. Then the anti-diagonal part can be dominated by the diagonal

part as

A12 +A21 ≤ A11 +A22.

Therefore, G(A)(x) ≤ 2(A11 +A22).

By Lemma 3.9, π is a *-homomorphism. Observe that J = π(Tt(x)) ≤ π(W ) = Jw. Therefore, we obtain

A11 = V ∗1 JV1 ≤ V ∗1 JwV1 =
∑
k

∫ bk

0

wkg(t)dtekk

For the estimate of A22, we use the ordered h-p-contractivity of the semigroup:

A22 = V ∗2 JV2

∫ ∑
k,j

(1− bk(t))ekTtfej(1− bj(t))gα(t)dt ≤
∑
k

∫ ∞
bk

g(t)h(t)‖f‖pdtekk.

Assume ‖f‖p ≤ 1, we take the summation of the two parts

A11 +A22 ≤
∑
k

(
wk

∫ bk

0

gα(t)dt+ ‖f‖p
∫ ∞
bk

gα(t)h(t)dt
)
ekk

≤
∑
k

φ(wk)ekk ≤
∑
k

ψgh(wk)ekk ≤ ψgh(W ).
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Let ψpgh(w) := ψgh(w
1
p ). Taking the above inequality with (3.2.3), we have

Gα(A)f . A11 +A22 ≤ ψgh(W ) = ψpgh(W p).

Let x = Gα(A)f and y = ψpgh(W p). We denote Φ = (ψpgh)−1. Then Φ(y) = Φ(ψpgh(W p)) = W p ∈ L1(M).

By Lemma 3.6, we know Φ is an Orlicz function space. Thus by the definition of the Orlicz function,

y ∈ LΦ(M). Then by Proposation 3.1 with x ≤ y, x ∈ LΦ(M) i.e. Gα(A)f ∈ LΦ(M).

As an important example of Theorem 3.10, let gα(t) = tα−1, h(t) = t−n1 . Then Gα(A) = A−α and Tt

satisfies the Varopoulos dimension n1. And we get

ψpgh(w) =
‖f‖

α
n1
p

n1 − α
w

1
p−

α
n1p , Φ(w) =

n1 − α

‖f‖
α
n1
p

w
n1p
n1−α .

Then let n1p
n1−α = q, i.e. α = n1(1 − p

q ), then Φ(w) = Cwq. Therefore the Orlicz function space LΦ(M) is

Lq(M). Then we have the following noncommutative HLS inequality:

Theorem 3.11. If the symmetric Markovian semigroup (Tt) generated by operator A on a von neumann

algebra M satisfies the Varopoulos dimension n. Then we have the Sobolev embedding:

‖A−α : Lp(M)→ Lq(M)‖ ≤ Cpq(α), α = n1(1− p

q
), 1 < p < q <∞.

Corollary 3.12. If the semigroup (Tt) generated by operator A on a von Neumann algebra M satisfies these

conditions in Theorem 3.10. Let gα(t) = tα−1, h(t) =


t−n1 t ≤ 1

t−n2 t>1

. We obtain the following embedding

‖Gα(A) : Lp(M) −→ Lq1(M) + Lq2(M)‖ ≤ Cpq(α), α = n1(1− p

q1
) = n2(1− p

q2
).

Proof. According to the assertions of g and h, we can calculate that

ϕ(w) =


‖f‖

α
n1
p

n1−α w
1− α

n1 w ≥ 1

‖f‖
α
n2
p

n2−α w
1− α

n2 w<1
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Therefore,

ψpgh(w) =


‖f‖

α
n1
p

n1−α w
1
p (1− α

n1
) w ≥ 1

‖f‖
α
n2
p

n2−α w
1
p (1− α

n2
) w<1

,Φ(w) =


n1−α

‖f‖
α
n1
p

w
n1p
n1−α w ≥ 1

n2−α

‖f‖
α
n2
p

w
n2p
n2−α w<1

If n1p
n1−α = q1,

n2p
n2−α = q2, i.e.α = n1(1− p

q1
) = n2(1− p

q2
), we have

Φ(w) =


n1−α

‖f‖
α
n1
p

wq1 w ≥ 1

n2−α

‖f‖
α
n2
p

wq2 w<1

Recall that the measure µt = inf{‖X(1− p)‖, τ(X) ≤ t} in [FK86], we get

tr(Φ(x)) ≤ 1⇔
∫ ∞

0

Φ(µt)dt =

∫
µt≤1

uq1t dt+

∫
µt≥1

uq2t dt.

If we truncate any element X ∈ LΦ as X = X1 · 1[0,t] + X2 · 1[t,∞), X1 ∈ Lq1 , X2 ∈ Lq2 . Then X ∈ LΦ ⇔

X ∈ Lq1 + Lq2 .

Remark 3.13. (i) For any von Neumann algebraM with only τ(·) ≤ 1 part. Therefore, it can be improved

to be Gα(A) : Lp(M) −→ Lq1(M) + Lq2(M) ∼= Lq1(M).

(ii) For discrete von Neumann algebra Sp, Gα(A) : Sp −→ Sq1 + Sq2
∼= Sq2 .

Corollary 3.14. If the semigroup (Tt) generated by operator A on a von neumann algebra M satisfies these

assumptions in Theorem 3.10. Let gα(t) =


tα1−1 t ≤ 1

tα2−1 t>1

, h(t) = t−n1 . We have the following inequality

‖Gα(A) : Lp(M)→ Lq1(M) + Lq2(M)‖ ≤ Cpq(α1, α2), n1 =
α1q1

q1 − p
=

α2q2

q2 − p

Proof. According to the assertions of g and h, we can calculate that

ψgh(w) =


‖f‖

α
n1
p

n1−α1
w1−α1

n1 w ≥ 1

‖f‖
α
n1
p

n1−α2
w1−α2

n1 w<1
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Therefore,

ψpgh(w) =


‖f‖

α
n1
p

n1−α1
w

1
p (1−α1

n1
) w ≥ 1

‖f‖
α2
n1
p

n1−α2
w

1
p (1−α2

n1
) w<1

,Φ(w) =


n1−α1

‖f‖
α1
n1
p

w
n1p

n1−α1 w ≥ 1

n1−α2

‖f‖
α2
n1
p

w
n1p

n1−α2 w<1

If n1p
n1−α1

= q1,
n1p

n1−α2
= q2, i.e.n1 = α1q1

q1−p = α2q2
q2−p , we have

Φ(w) =


n1−α1

‖f‖
α1
n1
p

wq1 w ≥ 1

n1−α2

‖f‖
α2
n1
p

wq2 w<1

Repeating the same techique in the above Corollary, we take the measure µt = inf{‖X(1− p)‖, τ(X) ≤ t}

tr(Φ(x)) ≤ 1⇔
∫ ∞

0

Φ(µt)dt =

∫
µt≤1

uq1t dt+

∫
µt≥1

uq2t dt.

If we truncate any element X ∈ LΦ as X = X1 · 1[0,t] + X2 · 1[t,∞), X1 ∈ Lq1 , X2 ∈ Lq2 . Then we getX ∈

LΦ ⇔ X ∈ Lq1 + Lq2 .

In the remainning part of this section, we want to apply the above results to quantum Euclidean spaces

Rθ. A crucial point, as in abelian algebras, is to identify kernels over Rnθ ⊗̄(Rnθ )op, where the op-structure

(reversed product law) is used in the second copy. This is justified by the important map

πθ : L∞(Rn)→ Rθ⊗̄Ropθ ,

exp(2πi〈ξ, ·〉) 7→ λθ(ξ)⊗ λθ(ξ)∗,

which extends to a normal *-homomorphism, for which the op-structure is strickly necessary. We refer

[GPJP17] for the below Lemma.

Lemma 3.15. Fix n ∈ N and σ. Then there exists a normal ∗-endomorphism π : L∞(Rn) → Rθ⊗̄Ropθ
satisfying

π(λ0(ξ)) = λθ(ξ)⊗ λθ(ξ)∗.

Moreover, π and flip◦π extend to an isometries from Lc2(Rn)→ Lc2(Rθ)⊗̄Rθ.

Let us recall CB(L1(Rθ),Rθ) = Rθ⊗̄Ropθ in [ER00]. Then by a combination of this equality and Lemma

3.15, we have the following result:

Theorem 3.16. Let m ∈ L∞(Rn) and define the multiplier map Tm(λθ(h)) =
∫
m(ξ)h(ξ)λθ(ξ)dξ on Rnθ ,
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then we get

‖Tm : L1(Rnθ )→ L∞(Rnθ )‖cb ≤ ‖m‖L∞(Rn).

Example 3.17. The following operators have the Varopolus dimension n on Rnθ :

(i) For Schordöinger evolution operator Tt = eit4, the action on Rn is as follows:

eit4 · f(x) :=
1

(2πit)n/2

∫
Rn

e−
|x−y|2

2it f(y)dy.

Denote the multiplier mt(ξ) := e−it|ξ|
2

, then ‖Tmt‖cb ≤ ct−
n
2 .

(ii) For heat semigroup Tt = e−t4, the action on Rn is as follows:

e−t4 · f(x) :=
1

(4πt)n/2

∫
Rn

e−
|x−y|2

4t f(y)dy.

Denote the multiplier mt(ξ) := e−t|ξ|
2

, then ‖Tmt‖cb ≤ ct−
n
2 .

Lemma 3.18. Given a fixed ε1, for any p ≥ 2

sup
ε≤ε1
‖A−ε : Lp(Rnθ ) −→ Lp(Rnθ )‖ ≤ C(p)

Proof. According to Cowling’s theorem [Cow83], the operator Aiu is bounded on Lp(Rnθ ). Therefore, we

have

‖Aiuf‖p ≤ C0(p)(1 + |u|3 log2(|u|))|1/p−1/2| exp(π|1/p− 1/2||u|)‖f‖p.

Applying this for some 2 < p1 < ∞,

‖A−is : Lp1
(Rnθ ) −→ Lp1

(Rnθ )‖ ≤ p1c1e
|s|
2 .

On the other hand when p = 2, by Plancherel’s theorem, we get

‖A−is : L2(Rnθ ) −→ L2(Rnθ )‖ ≤ c2.

By the complex interpolation in [Pis93], let x ∈ Lp(Rθ), X(θ) = x, θ 6= 0.

‖X(it)‖p1 ≤ 1, ‖X(1 + it)‖2 ≤ 1,here
1

p
=

1− θ
p1

+
θ

2
.
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Let f(z) = A−zε/θX(z)er(z−θ)
2

and r ≥ |ε|2θ ,

‖f(it)‖p1
≤ ‖A−itε/θ‖er(θ

2−t2)‖x(it)‖p1
≤ c1p1e

|ε|
2θ t+r(θ

2−t2) ≤ c1p1e
r(θ2+t−t2)

≤ c1p1e
r(θ2+ 1

4−(t− 1
2 )2) ≤ c1p1e

r(θ2+ 1
4 ) ≤ Cp1.

By a similar calculation, we get ‖f(1 + it)‖2 ≤ C2. Then we conclude that

sup
ε≤ε1
‖A−ε : Lp(Rnθ ) −→ Lp(Rnθ )‖ ≤ C(p).

Corollary 3.19. If the symmetric Markovian semigroup (Tt) generated by operator A on a von neumann

algebra Rnθ satisfies the Varopoulos dimension n, then Sobolev embedding holds with α = n
2p , i.e.

‖A−α : Lp(Rnθ ) −→ Lq(Rnθ )‖ ≤ Cpq(α).

Proof. The generator operator can be written as A−
n
2p = A−( n2p−

n
2q )A−

n
2q . We choose the q satisfying the

condition n
2q ≤ ε1. Here the ε1 is the one in the above Lemma 3.18. Then for ∀f ∈ Lp(Rnθ ),

‖A−
n
2q f‖p ≤ C(p)‖f‖p.

Then for α′ = n
2 ( 1

p −
1
q ). by Theorem 3.11. we get

‖A−α
′
(A−

n
2q f)‖q ≤ Cpq‖A−

n
2q f‖p ≤ CpqC(p)‖f‖p.

Therefore we get ‖A−
n
2p f‖q ≤ C‖f‖p.

3.2 A noncommutative version of Moser’s inequality

In the section, we follow the notations from [FK86]. Let M be a semifinite von Neumann algebra with a

normal semifinite faithfull trace. Let M̃ be the set of the closed, densely defined operators on H affiliated

with M. Then for any positive element x ∈ M̃+, we take its spectrum decomposation x =
∫∞

0
tdex(t).

Then for any subset E ⊂ R, we define vx(E) = tr(ex(E)). Observe that vx is a Borel measure on R and
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tr(x):=
∫∞

0
tdvx(t) is a faithful extension of tr to M̃+. Define

M := {x ∈ M̃ : tr(e|x|(t,∞))<∞ for some t>0}.

Then M equipped with strong sense operations and with the topology of convergence in measure, becomes

a topological *-algebra, called the algebra of tr-measurable operators.

Remark 3.20. WhenM = L∞(X,m) and tr(f)=
∫
fdm, then M̃ is the *-algebra of m-measurable functions

that are finite m-a.e. andM is the *-subalgebra of M̃ consisting of functions that are bounded except on a

set of finite m-measure.

Definition 3.21. Let a ∈M and for all t ≥ 0, we define

(i) λa(t) := tr(e|a|(t,∞)), the distribution function of the operator a with respect to the trace tr,

(ii) µa(t) := inf{s ≥ 0 : λa(s) ≤ t}, t>0, the non-increasing rearrangement of the operator a with respect

to the trace tr,

(iii) Ka(t) := 1
t

∫ t
0
µa(r)dr.

Proposition 3.22 ([FK86]). Let a, b be two operators in M, then

(i) tr(|a|) =
∫∞

0
µa(t)

(ii) µa(t) = inf{‖ap‖ : p ∈ Proj(M), tr(p⊥) ≤ t}

(iii) Ka(t) = 1
t sup
tr(p)≤t

tr(|a|p)

(iv) Ka+b(t) ≤ Ka(t) +Kb(t)

Recall the definition of the convolution of functions f and g on Rn, i.e. Tg(f)(x) =
∫
g(x−y)f(y)dy, h :=

Tg(f). Similarly, we have an analogy of convolutiion in quantum Eculidean space Rθ as follow:

Definition 3.23. The convolution in Rθ is defined as

T θg (f) = g ∗θ F =

∫
Rn
λθ(ξ)ĝ(ξ)f(ξ)dξ, F = λθ(f).

Remark 3.24. When θ = 0, we get g ∗ λ0(ξ) =
∫

exp(i 〈ξ, y − x〉)g(x)dx = λ0(ξ)(y)
∫

exp(−〈ξ, x〉)g(x)dx =

λ0(ξ)ĝ(ξ).

Lemma 3.25. There exists a normal, injective ∗-homomophism σ : Rnθ → Rnθ ⊗ L∞(Rn) such that
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(i) σ(λθ(ξ)) = λθ(ξ)⊗ λ0(ξ),

(ii) σ(T θg (f)) = (Id⊗ Tg)(σ(λθ(f)))

Proof. We refer to [GPJP15], for the fact that σ, defined by (i), extends to a normal and injective ∗-

homomophism. Thus it suffices to calculate the second part:

σ [g ∗θ λθ(f)] =σ(

∫
Rn
λθ(ξ)ĝ(ξ)f(ξ)dξ) =

∫
Rn
λθ(ξ)⊗ λ0(ξ)f(ξ)ĝ(ξ)dξ

=(Id⊗ T 0
g )(

∫
λθ(ξ)⊗ λ0(ξ)f(ξ)dξ) = (Id⊗ T 0

g )(σ(F )).

Problem 3.26. It remains open whether there exists some σ : (Rθ, trθ)→ (Rθ, trθ)⊗L∞(Rn, tr0) to become

a trace preserving *-homomorphism. It is, however, true for Aθ.

Lemma 3.27. Let Rθ be a quantum Euclidean space, then

(i) L2(Rn, tr) ∼= L2(Rθ, trθ) by the map f 7→ λθ(f);

(ii) Lc2(Rθ) ↪→σ L∞(Rd, Lc2(Rθ)) by the map f 7→ σ(λθ(f)) is isometric;

(iii) Lc2(Rθ) ↪→σ L∞(Rθ, Lc2(Rd)) by the map f 7→ σ(λθ(f)) is isometric;

(iv) L1(Rθ) ↪→σ L∞(Rd, L1(Rdθ)), L1(Rθ) ↪→σ L∞(Rdθ , L1(Rd)) by the map f 7→ σ(λθ(f)) are isometric.

Proof. (i) By Plancherel’s theorem, it turns out to be trivial.

(ii) For a function f ∈ L2(Rθ). We have f =
∫
f̃(ξ)λθ(ξ)dξ, ‖f‖2 = ‖f̃‖2. In particular, given a Schwartz

function f ∈ S ∩ L2(Rθ). Let X =
∫
f̂(ξ)λθ(ξ)⊗ λ0(ξ)dξ. By using the fact trθ(λθ(ξ)

∗λθ(f)) = f(ξ),

we get

IdL∞(Rd) ⊗ trθ(X∗X) =

∫
f̂(ξ)trθ[

∫
λθ(ξ)

∗λθ(ξ
′)f̂(ξ′)dξ′]dξ =

∫
|f̂(ξ)|2dξ.

Since the Schwartz function space S is dense in L2(Rθ), then we can extend the operator to L2(Rθ).

(iii) Let X be defined as in (ii). Now we take the trace of the L∞(Rn) part as follows:

(tr0 ⊗ IdRθ )(X∗X) =

∫
f̂(ξ)λθ(ξ)

∗[tr0(λ0(ξ)∗
∫
f̂(ξ′)λθ(ξ

′)⊗ λ0(ξ′)dξ′]dξ

Next we take an arbitrary smooth function φ ∈ (Rθ)∗,

φ[tr0(λ0(ξ)∗
∫
f̂(ξ′)λθ(ξ

′)⊗ λ0(ξ′)dξ′] = tr0(λ0(ξ)∗
∫
f̂(ξ′)φ(λθ(ξ

′))λ0(ξ′)dξ′ = f̂(ξ)φ(λθ(ξ))
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Therefore tr0(λ0(ξ)∗
∫
f̂(ξ′)λθ(ξ

′)⊗λ0(ξ′)dξ′ = f̂(ξ)λθ(ξ)·1 with respect to the weak operator topology.

Then we get

tr0(X∗X) =

∫
f̂(ξ)f̂(ξ)λθ(ξ)

∗λθ(ξ)dξ =

∫
|f̂(ξ)|2dξ = ‖f‖22 · 1

(iv) Analogously we can get the map L2(Rθ)→ L∞(Rd, Lr2(Rθ)) is isometric from (iii). By [JP07] we know

L∞(Rd, Lr2(Rdθ)) · L∞(Rd, Lc2(Rdθ)) ⊂ L∞(Rd, L1(Rdθ)),

we get the cb-isomorphism L1(Rθ) ↪→ L∞(Rd, L1(Rdθ)). The cb-isomorphism L1(Rθ) ↪→ L∞(Rdθ , L1(Rd))

is proved similarily.

Let’s recall the notation of weighted noncommutative Lp spaces in Chapter 2, we have the following:

Lemma 3.28. Let F =
∫
F̂ (ξ)λθ(ξ)dξ, F̂ ∈ S and σ : (Rθ, trθ) → (Rθ, trθ) ⊗ L∞(Rn, tr0) as σ(F ) =∫

F̂ (ξ)λθ(ξ)⊗ λ0(ξ)dξ. For any arbitrary function φ ∈ (Rθ)∗

(i) (φ⊗ tr0)σ(F ) = trθ(F )

(ii) Denote ω as the associated weight with respect to φ⊗ tr0, then we have

‖Id⊗ Tg : L1(Rθ, w)→ L1(Rθ, w)‖ ≤ ‖g‖1.

Proof. (i) By using Lemma 3.27, we observe that Id ⊗ tr0(σ(F )) = 1 ·
∫
F̂ (ξ)dξ. Then for any function

φ ∈ (Rθ)∗, we get (φ⊗ tr0)σ(F ) = trθ(F ).

(ii) For any function F ∈ L1(Rθ), ω(σ(F )) = trθ(F ) and σ(F ∗θ g) = σ(F ) ∗0 g. This gives

ω((Id⊗ Tg)(σ(F ))) = ω(σ(F ∗θ g)) = trθ(F ∗θ g)

In fact, the weight ω is associated with a density D, for which given an arbitrary positive x ≥ 0,

‖x‖L1(ω) = tr(D1/2xD1/2) = ω(x)

For a completely positive map Tg : L1(Rθ)→ L1(Rθ), σ(Tg(λθ(F )∗λθ(F )) = (Id⊗Tg)σ(λθ(F )∗λθ(F )).

Thus we obtain

‖Tg(x)‖L1(trθ) = ‖σ(Tg(x))‖L1(ω) = ‖Id⊗ Tg(σ(x))‖L1(ω) = ‖D1/2Id⊗ Tg(x)D1/2‖
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≤ ‖1⊗D1/2xD1/2‖L1‖Tg‖ ≤ ‖σ(x)‖L1(w)‖g‖1

Proposition 3.29. Let a be an element in L1(Rθ)∩L∞(Rθ), g be a scalar-valued function on Rd and h be

the convolution function, i.e. h = g ∗θ a = T θg (a). The convolution map has the following properties:

(i) ‖h‖∞ ≤ ‖a‖∞‖g‖1

(ii) ‖h‖1 ≤ ‖a‖1‖g‖1

(iii) ‖h‖∞ ≤ ‖a‖1‖g‖∞

Proof. (i) By Lemma 3.28 we know

‖σ(T θg (a))‖∞ = ‖Id⊗ Tg(σ(λθ(a)))‖∞ ≤ ‖Id⊗ Tg‖ · ‖a‖∞ = ‖g‖1‖a‖∞

(iii) It follows from Lemma 3.28 Tg : L1(Rn)→ L1(Rn) is bounded by ‖g‖1.

(iii) By using Lemma 3.27, we know that L1(Rnθ ) ↪→ L∞(Rθ, L1(Rn)). Therefore, given an arbitrary

operator a ∈ Rdθ , we have

σ(Tg(a))(z) = Id⊗ Tg(σ(λθ(a)))(z) =

∫
g(z − y)σ(λθ(a))(y)dy

Define ϕ(f) =
∫
g(z − y)f(y)dy,∀f ∈ L1(Rnθ ). Then we know σ(Tg(a))(z) = Id⊗ ϕ(λθ(a)). Hence we

get

‖σ(Tg(a))(z)‖∞ = ‖Id⊗ ϕ(λθ(a))‖∞ ≤ ‖Id⊗ ϕ‖cp‖(λθ(a))‖∞

= ‖ϕ‖cp‖a‖Rθ(L1(Rd)) = ‖g‖∞‖a‖Rθ(L1(Rd))

These three inequalities above are necessary in order to develop many basic properties for convolutions.

We want to investigate whether Rθ has the analogous properties for convolution operatos mentioned in

[O+63]. Thanks to the functional calculus on Rθ, the next Lemma follows from [O+63] immediately. For

the convenience of the reader, we show the sketch of the proof in this section.

Lemma 3.30. Suppose the convolution function h = a∗θg, where the operator a has tr(supp(a)) ≤ γ, ‖a‖∞ ≤

α and g is a scalar-valued function. Then for all t > 0,

Kh(t) ≤ αγKg(γ), Kh(t) ≤ αγKg(t)
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Proof. Let s > 0, we define a function as follows:

gs(z) =


g(z) if |g(z)| ≤ s

s sgn g(z) otherwise.

Observe that gs(z) = g(z)− gs(z), h = a ∗θ g = a ∗θ (gs + gs) = a ∗θ gs + a ∗θ gs := h1 + h2. By Proposation

3.29, we have the following three inequalities:

‖h2‖∞ ≤ ‖a‖∞‖gs‖1 ≤ α
∫ ∞
s

µ(|g|>y)dy

‖h1‖∞ ≤ ‖a‖1‖gs‖∞ ≤ αxs

‖h2‖1 ≤ ‖a‖1‖gs‖1 ≤ αγ
∫ ∞
s

µ(|g|>y)dy

Taking s = µg(x)

Kh(t) =
1

t

∫ t

0

µh(z)dz ≤ ‖h1‖∞ + ‖h2‖∞ ≤ αγµg(γ) + α

∫ ∞
g∗(γ)

µ(|g|>y)dy ≤ αγKg(γ)

Taking s = µg(t) yields

tKh(t) =

∫ t

0

µh(z)dz ≤
∫ t

0

µh1
(z)dz +

∫ t

0

µh2
(z)dz ≤ t‖h1‖∞ +

∫ ∞
0

µh2
(z)dz = t‖h1‖∞ + ‖h2‖1

≤ tαγµg(t) + αγ

∫ ∞
µg(t)

µ(|g|>y)dy ≤ αγ(tµg(t) +

∫ ∞
µg(t)

µ(|g|>y)dy) ≤ αγtKg(t)

Dividing by t, we complete our assertion.

Lemma 3.31. (Basic lemma on convolution operators) For arbitrary self adjoint a ∈ L∞(Rθ, trθ) ∩

L1(Rθ, trθ) and h = a ∗θ g. Then for any t > 0

Kh(t) ≤ tKa(t)Kg(t) +

∫ ∞
t

µa(s)µg(s)ds

Proof. By definition we know µa([t,∞) = trθ(e|a|(t,∞)), therefore µa is a measure on R. Set f(z) = z. Then

there exists a normal ∗−homomorphism πa(f) = f(a) = a. By functional calculus, (f, µa) and (a, tr) have

the same distribution, i.e. trθ(φ(a)) =
∫
φ(f)dµa(f), for any measurable function φ.

Given an arbitrary ε, there exists a doubly infinite sequence {yn}∞−∞ such that y0 = uf (t), yn ≤

yn+1, limn→∞ yn =∞, limn→−∞ yn = 0.
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Decompose f(z) =
∑∞
−∞ fn(z). where

fn(z) =


0 if |f(z)| ≤ yn−1

z − yn−1 ∗ sgnf(z) if yn−1<|f(z)| ≤ yn

(yn − yn−1) ∗ sgnf(z) if yn<|f(z)|

For each fn, we denote Fn := πa(fn) ∈ Rθ. Then they have the following properties:

(i) supp(fn) ⊂ En := {z : |f(z)|>yn−1} =⇒ ‖Fn‖∞ = ‖fn‖∞, τ(suppFn) = µ(|fn|>0);

(ii) µ(En) = µ(|f |>yn−1) =⇒ τ(suppFn) ≤ µ(|f |>yn−1);

(iii) ‖fn(z)‖∞ ≤ yn − yn−1 =⇒ ‖Fn‖∞ ≤ yn − yn−1

(iv) ‖fn‖1 ≤ (yn − yn−1)µ(|f |>yn−1) =⇒ ‖Fn‖1 ≤ (yn − yn−1)µ(|f |>yn−1)

With these properties, we get

h = a ∗θ g = (

∞∑
−∞

Fn, g) = (

0∑
n=−∞

Fn) ∗ g + (

∞∑
n=1

Fn) ∗ g := h1 + h2

By Proposition 3.22, Kh(t) ≤ Kh1
(t) +Kh2

(t). To evaluate Kh2
(t) we use Lemma 3.30,

Kh2
(t) ≤

∞∑
n=1

Kπa(fn)∗θg ≤
∞∑
n=1

‖Fn‖∞τθ(suppFn)Kg(t) ≤
∞∑
n=1

(yn − yn−1)µa(|f |>yn−1)Kg(t)

≤ (1 + ε)(

∫
µ∗a(t)

f∗(ξ)dξ)Kg(t) = (1 + ε)(

∫
f∗(t)

µa(y)dy)Kg(t)

The series on the last second line is an infinite Riemann sum for the integral
∫∞
f∗(t)

µ(|f |>y)dy using a proper

choice of the sequence {yn}.

Lemma 3.32. [Ada88] Let a(s,t) be a non-negative measurable function on (−∞,∞)× [0,+∞) such that

α(s, t) ≤ 1, 0<s<t, (3.2.1)

sup
t>0

(

∫ 0

−∞
+

∫ ∞
t

α(s, t)p
′
ds)1/p′ = b<∞. (3.2.2)

Then there is a constant c0 = c0(p, b) such that for φ ≥ 0,

∫ ∞
−∞

φ(s)pds ≤ 1, (3.2.3)
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then ∫ ∞
0

e−F (t)dt ≤ c0, F (t) = t− (

∫ ∞
−∞

α(s, t)φ(s)ds)p
′

Theorem 3.33. For 1<p<∞, there is a constant c0 = c0(p), such that for any self adjoint element a ∈

Lp(Rθ) with tr(supp(a)) ≤ γ,

∫ γ

0

(
exp(C| µh

‖a‖p
|p
′
)
)
≤ c0γ, for h = Iβ ∗θ a ∈ L1(Rθ),

where β = n
p and Iβ(x) = |x|β−n is the Riesz potential of order β.

Proof. Set h(x) = In/p ∗θ a(x) for a ≥ 0. Let g(x) = |x|β−n with β = n/p,

ug(t) = C(t−1)1/p′and Kg(t) = p · ug(t).

Then by Lemma 3.31, we can write

µh(t) ≤ Kh(t) ≤ tKa(t)Kg(t) +

∫ ∞
t

ua(s)ug(s)ds

= C(pt−1/p′
∫ t

0

ua(s)ds+

∫ γ

t

ua(s)s−1/p′ds).

Denote G(t) = pt−1/p′
∫ t

0
ua(s)ds+

∫ γ
t
ua(s)s−1/p′ds. Then the above inequality is as follow

µh(t) ≤ CG(t)

Then replacing C1 with C−p
′
, we obtain

C1µh(t)p
′
≤ G(t)p

′

Next, we change variables by setting φ(s) = γ1/p

‖a‖p · ua(γe−s) · e−s/p. Then we obtain

α(s, t) =


1 0<s<t

pe(t−s)/p′ t<s<∞

0 −∞<s ≤ 0
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The construction of α(s, t) satifies the assumption (5.1.1) and (3.2.2) and φ(s) satisfies (3.2.3).

F (t) = t−
(∫ ∞

0

α(s, t)φ(s)ds
)p′

= t−
( γ1/p

‖a‖p
( ∫ t

0

·ua(γe−s)e−s/pds+

∫ γ

t

ua(γe−s)et/p
′
e−sds

))p′
= t−

( γ1/p

‖a‖p
( ∫ γ

γe−t
(
γ

x
)1/p′ua(x)dx+ pet/p

′
∫ γe−t

0

ua(x)dx
))p′

= t−
( γ1/p

‖a‖p
(
pet/p

′
∫ γe−t

0

ua(x)dx+ γ1/p′
∫ γ

γe−t
x−1/p′ua(x)dx

))p′
= t−

( 1

‖a‖p
(
p(γe−t)−1/p′

∫ γe−t

0

ua(x)dx+

∫ γ

γe−t
x−1/p′ua(x)dx

))p′
= t−

(G(γe−t)

‖a‖p

)p′

Then by Lemma 3.32, we have

∫ ∞
0

φ(s)pds ≤ 1 implies

∫ ∞
0

e−F (t)dt ≤ c0,

and

∫ ∞
0

e−F (t)dt =

∫ ∞
0

e

(
G(γe−t)
‖a‖p

)p′
· e−tdt =

1

γ

∫ γ

0

e

(
G(x)
‖a‖p

)p′
dx ≤ c0

Since

tr
(
eCa(x)p

′)
=

∫ γ

0

eCµa(x)p
′

dx, tr
(
a(x)p

)
=

∫ γ

0

µa(x)pdx

Then we have

∫ γ

0

e
C1(

µh
‖a‖p

)p
′

dx ≤
∫ γ

0

e
(
G(x)
‖a‖p

)p
′

dx ≤ c0γ.

Then we finish the proof.

Let Φ(a) = exp
(
C| Iβ∗θa‖a‖p |

p′ − Iβ ∗θ a
)
, a ∈ Lp(Rθ) ∩ L1(Rθ) with tr(supp(a)) < ∞. Then according to

this Theorem above, we obtain tr(Φ(a)) . 1, which means a ∈ LΦ(Rθ). Now we define the space L00
p (Rθ) =

{a ∈ Lp(Rθ)|tr(supp(a)) <∞} and the (LΦ + L∞)(Rθ) space with the norm ‖x‖ = max(‖x‖Φ, ‖x‖∞).

Corollary 3.34. Let Iβ(x) = |x|β−n be the Riesz potential of order β. Then the map

Iβ : L00
p (Rθ)→ LΦ + L∞(Rθ)
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is bounded. Here Φ(x) = exp
(
C|x|p′

)
− 1.

Proof. Assume the element a in Lp(Rθ) has ‖a‖p = 1 and h is the convolution element of the resolvent

operator, i.e. h = Iβ(a). Thanks to the monotonicity of µh, we get

γ

2
eC1(µh(γ))p

′

≤
∫ γ

γ/2

eC1(µh(x))p
′

dx ≤ c0(p)(γ).

Therefore, we know µh(γ) ≤ C2(p). Then we decompose the µh as follows:

µh = 1[0,γ)µh + I[γ,∞)µh := µ1
h + µ2

h.

According to Theorem 3.33, we know
∫ γ

0
(eC1(µ1

h(x))p
′

− 1)dx ≤ (c0(p) − 1)γ ≤ c0(p)′γ. Thus µ1
h ∈ LΦ

where Φ(µh) = exp
(
C|µh|p

′
)
− 1. And ‖µ2

h‖∞ = max (µ2
h) = µ2

h(γ) ≤ C2(p). Thus µ2
h ∈ L∞. Hence

µh ∈ LΦ + L∞(Rn). By functional calculus, we obtain our assertion of the resolvent operator Iβ .

Recall the noncommutative Lorentz space Lp,q(M, τ) with the norm ‖x‖p,q defined as follows:

‖x‖p,q =


(∫∞

0
(t1/pµx(t))q dtt

)1/q

, q <∞,

supt t
1/pµx(t), q =∞.

Now for any element a in Lq,∞, we choose a family of elements ak, where we can decompose

µa =

∞∑
k=0

1[2k−1,2k]µa with respect to a =
∑
k

ak.

Then from the above Corollary 3.34, we have

‖Iβ(a)‖LΦ+L∞ ≤
∑
k

‖Iak‖LΦ+L∞ ≤
∑

2k(

∫ 2k+1

2k
µa(x)pdx)1/p ≤ (

∫ 1

0

µa(x)pdx)
1
p +

∑
µa(2k)2k(1+1/p)

≤ (

∫ 1

0

µa(x)pdx)
1
p +

∫ ∞
1

x1/pµa(x)dx ≤ (

∫ 1

0

µa(x)pdx)
1
p +

∫ ∞
1

x1/px−qdx.

When 1/p − q + 1 is strictly less than zero, the last term above is bounded. Therefore we imply the result

below:

Corollary 3.35. The resolvent operator Iβ

Iβ : Lp ∩ Lq,∞ → LΦ + L∞,
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is bounded when 1/p− q + 1 < 0. Here Φ(x) = exp
(
C|x|p′

)
− 1.

45



Chapter 4

Completely bounded Sobolev
inequality

Our main goal in this chapter is to prove the complete version of Varapoulos’ Theorem, i.e. we replace the

operator norm by the completely bounded norm. This makes sense because, thanks to interpolation, Pisier

found a suitable definition of noncommutative Lp spaces as operator spaces, [Pis93] and [Pis03]. Quite sur-

prisingly, there are natural examples of semigroups which admit Sobolev inequalities in the bounded, but not

in the completely bounded sense. However, we show that the archetypical examples from noncommutative

geometry, noncommutative tori with finitely many generators satisfy the assumption on completely bounded

heat kernels. Moreover, the easiest examples of noncommutative, noncompact spaces, the higher dimensional

Moyal planes, i.e. the quantum Euclidean spaces from [GPJP15], also satisfy cb-heat kernel estimates. The

complete version of Varopoulos’ theorem is interesting for two reasons. First, for commutative spaces such

as Rn, Tn or compact Riemanian manifolds, the heat kernel estimates from L1 to L∞ are automatically com-

pletely bounded. However, estimates for the cb-norm of the resolvent are strict improvements of the classical

estimates by Hardy-Littlewood and Sobolev. Indeed, by positivity the classical HLS inequality implies that

for a matrix valued function

‖id⊗A−α(f)‖Lq(Rn,Smp ) ≤ cpq(
∫
Rn
‖f(x)‖pSmp dx)1/p, (4.0.1)

whereas the cb-norm implies that id⊗Aα(f) = (a⊗ 1)F (b⊗ 1) and

‖a‖Sm2r‖F‖Lq(Rn;Smq )‖b‖Sm2r ≤ cpq(
∫
Rn
‖f(x)‖pSmp dx)1/p.

From this algebraic factorization a simple applications of Hölder’s inequality for matrices easily implies

(4.0.1). Secondly, cb-estimates for operators from Lp to Lq for p 6= q are very rare. A notable excpetion to

this rule are results on completely bounded version of Fourier multipliers and Schur multipliers on the Scatten

class p-classes obtained by A. Harcharras [Har99]. In her work strong algebraic tools for subset of integers

enjoying the noncommutative Λ(p)-property are used. The theory of estimates for the cb-norm estimates

of maps from Lp(M) to Lp(N ) has made considerable progress in recent years. For example, estimates
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for quantum Fourier multipliers can easily proved by variations of the transference methods stablished in

[GPJP17],[CXY13],[Ric16]. It’s known from [Bou86][Wei01] that the UMD-property implies the boundedness

of all invariant singular integrals or standard multiplier operators under some regularity assumption, for

further results using BMO-techniques see [JM12, JM10, JMP13]. However, in our proof we have to develop

abstract interpolation tools which allow us to the apply the standard ‘divide and concquer principle from

analysis’. The main difficulty lies, of course, in the lack of pointwise estimates which are replaced by

sophisticated matrix decomposition of operators inspired by the classical proof.

Finally, we also discovered an efficient method to prove complete heat kernel estimates. Starting from

Effros-Ruan’s theorem CB(N∗,M) = N⊗̄M , we observe that it suffices to estimate the noncommutative

‘heat kernel’ in Rnθ ⊗̄(Rnθ )op for the quantum euclidean spaces Rnθ of dimension n. It is convenient to think of

Rnθ as the von Neumann algebras with a trace generated by strongly continuous one parameter group uk(t),

k = 1, ..., n such that

uk(t)uk(s) ≤ eiθkjstuk(s)uj(t).

Recall also that Aop is the C∗-algebra obtained from inverting the order in the multiplication. Since

L1(Rnθ )∗ = Rnθ holds for the duality bracket given by the trace, the kernel estimates follow from a sim-

ple use of the ∗-homomorphism

πθ : L∞(Rn)→ Rθ⊗̄Ropθ ,

exp(i〈ξ, ·〉) 7→ u1(ξ1) · · ·un(ξn)⊗ (u1(ξ1) · · ·un(ξn))∗.

Then πθ(
e−|x|

2/4t

(4πt)n/2
) turn out to be the ‘correct’ kernel for the ‘integral operator’ implementing the heat

semigroup. Hence the cb-estimates follows immediately from the explicit knowledge of the commutative

heat kernel.

4.1 Matrixed resolvent estimates

Because of the failure of the noncommutative analogue of the usual pointwise resolvent formula in the

classical proof, we investigate the matrix decomposation of the matrixed valued resolvent formula. We first

introduce the weighted upper and lower resolvent operators. Then we use the bmo-norm instead of L∞, and

L2 norm for other cases to investigate some estimate properties of these two operators.
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4.1.1 BMO estimates

Definition 4.1. Assume {Rt} satisfies the condition (R2
n) and α < n

4 , we define

Rk,j(x) = 2
kθ
2 2

jθ
2

∫
1[2k,∞)1[2j ,∞)Rtxt

α−1dt

Thanks to α < n
4 , this is well-defined. Observe that ‖Rk,j : X → N‖cb < ∞, because ‖Rk,j(x)‖ =

2
kθ
2 2

jθ
2 ‖
∫

max(2j ,2k)
Rtxt

α−1dt‖ ≤cb 2
kθ
2 2

jθ
2

( ∫
max(2j ,2k)

tα−1−n4
)
· ‖x‖ ≤cb c‖x‖.

Definition 4.2. Given a semigroup Tt such that (R2
n) holds and α < n

4 , we define the weighted upper

resolvent operator Φup
θ,α by

Φup
θ,α(x) =

∑
ekj ⊗ 2

kθ
2 2

jθ
2

∫
1[2k,∞)1[2j ,∞)Ttxt

α−1dt =
∑

ekj ⊗Rk,j(x).

Similarly, the weighted lower resolvent operator Φlower
θ,α is defined as

Φlower
θ,α (x) =

∑
ekj ⊗ 2−

k(1−θ)
2 2−

j(1−θ)
2

∫
1[0,2k)1[0,2j)Ttxt

α−1dt.

Lemma 4.3. Let θ + σ = n
4 , then the upper resolvent operator

Φup
θ,σ : `2 → bmo(B(l2))

is completely bounded.

Proof. We observe that dk(x) = drk(x) + dck(x) given the following two terms

drk(x) =
∑
j≤k

ek,j ⊗Rk,j(x), dck(x) =
∑
j≤k

ej,k ⊗Rj,k(x)

Note that

drk(x)∗drk(x) =
∑

m,n≤k

em,n ⊗R∗k,mRk,n

drk(x)drk(x)∗ = ek,k ⊗ (
∑
j,k

Rk,jR
∗
k,j)
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By the definition of BMO’s norm, we have

‖x‖LcBMO = sup
v
‖
∑
k≥v

Ev(d∗kdk)‖

‖x‖LrBMO = sup
v
‖
∑
k≥v

Ev(dkd∗k)‖

When k ≥ v, we have

Ev(drk(x)∗drk(x)) =
∑
m,n≤v

em,n ⊗R∗k,mRk,n

Ev(drk(x)drk(x)∗ =


evv ⊗

∑
j≤v Rv,jR

∗
v,j k = v

0 k < v

Summing over all k > v, we get

∑
k≥v

Ev(drk(x)∗drk(x)) =
∑
k≥v

( ∑
m,n≤v

em,n ⊗R∗k,mRk,n
)

=
∑

m,n≤v≤k

em,n ⊗R∗k,mRk,n

∑
k≥v

Ev(drk(x)drk(x)∗) =
∑
k≥v

ev,v ⊗
∑
j≤v

Rv,jR
∗
v,j

We mainly focus on the scalar case, i.e.

αk,j := ‖Rk,j‖ ≤ 2
kθ
2 2

jθ
2

∫ ∞
2k

tα−1t−
n
4 dt = 2

kθ
2 2

jθ
2 2k(α−n4 ) := βkγj ,

here βk = 2k(θ/2+α−n/4), γj = 2jθ/2.

‖(αk,j)k,j‖ ≤ (
∑
k≥v

β2
k)1/2(

∑
j≤v

γ2
j )1/2 ≤ C12v(θ/2+α−n/4)2vθ/2 = C12v(θ+α−n/4) = C1.

Therefore, we get

‖
∑

drk(x)‖2Lrbmo ≤ sup
v

∑
j≤v

‖RvjR∗vj‖ ≤ C12θ+α−n/4 = C1,

‖
∑

drk(x)‖2Lcbmo ≤ sup
v
‖

∑
m,n≤v≤k

em,n ⊗R∗k,mRk,n‖

= sup
v
‖
∑
m,n≤v

em,n ⊗ (
∑
k≥v

R∗kmRkn)‖
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= sup
v
‖
∑

n≤v≤k

ekn ⊗Rkn‖2 ≤ C2

Similarily, we get the max{‖
∑
dck(x)‖2Lcbmo , ‖

∑
dck(x)‖2Lrbmo} ≤ max{C1, C2}. We finish the proof of the scalar

case. The matrix-valued version follows from Md(bmo(N )) = bmo(Md ⊗N ), where now Md is incorporated

in the constant functions. Replacing by a matrix of elements in B(`2), the same argument applies and gives

the cb-version.

4.1.2 L2 estimates

With the concrete resolvent formula of these weighted trucated operators Φup
θ,α,Φ

lower
θ,α , we prove the completely

boundness of these maps from noncommutative L2(M) to L2(M) spaces by functional calucalus. Then by

interpolation theory between bmo estimates and L2 estimates, we show the cb-norm of the map Φup
θ,α from

noncommutative L2(M) to Lq(B(`2)⊗M).

Lemma 4.4. Let {Tt} be a semigroup of normal selfadjoint contractions such that (R2
n) holds. then for any

x ∈ L2(N ), the following holds:

(i) ‖Φup
θ,α(x)‖2 ≤cb ‖A−α−θx‖2,

(ii) ‖Φlower
θ,α (x)‖2 ≤cb ‖A−α+1−θx‖2.

Proof. (i) We decompose Φup
θ,α(x) into two parts

Φup
θ,α(x) =

∑
k≤j

ekj ⊗ 2
kθ
2 2

jθ
2

∫
1[2k,∞)1[2j ,∞)Ttxt

α−1dt

+
∑
k>j

ekj ⊗ 2
kθ
2 2

jθ
2

∫
1[2k,∞)1[2j ,∞)Ttxt

α−1dt

By symmetry, it suffcies to estimate the part

‖Φup
θ,α(x)‖22 ≤ 2

∑
k≤j

2kθ2jθ‖
∫ ∞

2j
Ttxt

α−1‖22

For the right side of the above inquality, we have

∑
k≤j

2kθ2jθ‖
∫ ∞

2j
Ttxt

α−1‖22 ≤ 〈x,
∫ ∞
−∞

(∑
j

22jθ

∫ ∞
2j

∫ ∞
2j

e−λte−λstα−1sα−1dtds
)
dµx(λ)〉
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Now it remains to estimate the integral part in the above inequality via some calculus

∑
j

22jθ

∫ ∞
2j

∫ ∞
2j

e−λte−λstα−1sα−1dtds

=

∫∫ ∑
j

min(t, s)2θ1[j≤min(log t,log s)]e
−λte−λstα−1sα−1dtds

≤
∫ ∞

0

e−λssα−1s2θ
(∫ ∞

s

tα−1e−λtdt
)
ds

We recall that for
∫∞
s
tα−1e−λtdt ≤ 1

λs
α−1e−λs for all λ 6= 0. Hence we have

∑
j

22jθ

∫ ∞
2j

∫ ∞
2j

e−λte−λstα−1sα−1dtds

≤
∫ ∞

0

e−λssα−1s2θ
( 1

λ
sα−1e−λs

)
ds ≤ 2

λ

∫ ∞
0

e−2λss2α−2+2θds

=
22−2α−2θ

λ2α+2θ

∫ ∞
0

e−uu2α−2+2θdu ≤ Cλ−2α−2θ

Therefore we have

‖Φup
θ,α(x)‖22 = 〈x, (Φup

θ,α)∗Φup
θ,αx〉 ≤ C〈x,

∫
λ−2α−2θdµx(λ)〉/ (4.1.1)

(ii) Similarily, we start the proof for Φlower
θ,α (x) as follows:

‖Φlower
θ,α (x)‖22 ≤ 2

∑
k≤j

2−k(1−θ)2−j(1−θ)‖
∫ 2k

0

Ttxt
α−1‖22

Then we use agin the spectral measure and get the analogous inquality of (4.1.1):

‖Φlower
θ,α (x)‖22 = 〈x, (Φlower

θ,α )∗Φlower
θ,α x〉 ≤ C1〈x,

∫
λ−2α−2θ+2dµx(λ)〉.

Theorem 4.5. Let {Tt} be a strongly continuous semigroup with normal selfadjoint completely positive maps

such that (R2
n) holds. Then

‖Φup
θq,αq

x‖q ≤cb ‖|A−γqx‖2 (4.1.2)

here αq + θq = (1− 2
q )n4 + γq.
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Proof. In the following section, we will use complex interpolation theory for a function defined as follow

F (z) =
∑
k,j

ekj ⊗ 2
k
2 [(1−z)θ0+zθ1]2

j
2 [(1−z)θ0+zθ1]

∫
1[2σ,∞)1[2σ,∞)Tt(A

−γ1z)t(1−z)α0+zα1−1dt

We have the boundary conditions

‖F (it) : `2 −→ bmo‖cb <∞ and ‖F (1 + it) : `2 −→ `2‖cb <∞

By the desired Stein interpolation theorem in [Ste56], we obtain

‖F (2/p) : `2 −→ `q‖cb <∞

Then the parameters have identities:

θ0 + α0 −
n

4
= 0 and γ1 = α1 + θ1

Take zq = 2
q , we have

F (zq) =
∑

ekj ⊗ 2kθq/22jθq/2
∫

1[2σq ,∞)1[2σq ,∞)Tt(A
−γq )tαq−1dt

Then γq = 2
qγ1, αq = (1 − 2

q )α0 + 2
qα1, θq = (1 − 2

q )θ0 + 2
q θ1 And αq = n

2 ( 1
2 −

1
q ). Similarily, we have the

following equations 

θ0 + α0 − n
4 = 0,

γ1 = α1 + θ1,

γq = 2
qγ1,

αq = (1− 2
q )α0 + 2

qα1,

θq = (1− 2
q )θ0 + 2

q θ1,

After simplifying the above equations, we have

αq + θq = (1− 2

q
) · n

4
+ γq
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4.2 Embedding for discrete noncommutative spaces

In this chapter, we investigate the cb-version of the HLS inequality happens to Sp(H). As usual, we shall write

Rn = B(l2n,C) and Cn = B(C, l2n) to denote the row and column Hilbert spaces over `2n. Both spaces embed

isometrically in B(`2n). Hence, they admit a natural o.s.s. As usual, we shall write Lr2(M) = B(L2(M),C)

and Lc2(M) = B(C, L2(M)) to denote the row and column Hilbert spaces over L2(M). According to the

interpolation in [JP10], we obtain Lrp(M) and Lcp(M). Let a1, a2, . . . , an ∈ Lp(M) and b1, b2, . . . , bn ∈

Lp(M). Using that the Haagerup tensor product commutes with complex interpolation, it is not difficult to

check that the following identities hold

‖
n∑
k=1

ak ⊗ e1k‖Lrp(M)⊗hRn = ‖
( n∑
k=1

aka
∗
k

)1/2

‖Lp(M),

‖
n∑
k=1

ek1 ⊗ bk‖Cn⊗hLcp(M) = ‖
( n∑
k=1

b∗kbk

)1/2

‖Lp(M),

See [JP10] for more details.

4.2.1 Discrete case

Given a Hilbert space H and 1 ≤ p ≤ ∞, we denote by HCp(resp. HCp) the Schatten p-class Sp(C,H) (resp,

Sp(H̄,C)) equipped with its natural operator space structure. HCp(resp. HCp) can be naturally viewed as

the column (resp. row) subspace of the Schatten class Sp(H) (resp. Sp(H̄)). When H is a separable and

infinite dimensional, HCp andHRp are respectively Cp and Rp from above. HCp andHRp are respectively the

p-column and p-row spaces associated with H. In the following, we consider the case when H = `2n⊗ `2(w)).

For 1 ≤ p ≤ ∞, we define the weighted Lp(w) as follows:

Lp(w) = {x ∈ L0(M) : wx+ xw ∈ Lp(M)} and ‖x‖p = ‖wx+ xw‖p.

Lemma 4.6. The natural embedding

iα : Cnq ↪→ (`2n ⊗ `2(wθ))
Cq1 + (`2n ⊗ `2(wσ))C2 as iα(x) = x⊗ 1

is a completely bounded isomorphism with weights defined as

wθ = 2θ, wσ = 2σ, and
1

p
=

θ

θ + σ
· 1

q1
+

σ

θ + σ
· 1

2
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Proof. According to [Pis93], we know

∥∥∥∥∥∥
n∑
j=1

ej1 ⊗ ej

∥∥∥∥∥∥
Cn(H)

= inf
k0

‖
∑
k≤k0

n∑
j=1

ej1 ⊗ (e1j ⊗ ek)‖

For x =
∑n
k=1 ek1 ⊗ ek = ak + bk where

ak =


∑n
j=1 ej1 ⊗ ej k ≥ k0

0 k < k0

, bk =


0 k ≥ k0∑n
j=1 ej1 ⊗ ej k < k0

Denote a =
∑
ak, b =

∑
bk, for C[Cq1 ] = [CC,CR] 1

q1

= [S2, S∞] 1
q1

= Sp, here 1
p = (1− 1

q1
) 1

2 .

‖a‖Cn(Cq1 ) = ‖1n‖Snp
( ∑
k≤k0

2kθ
)1/2

= n
1
p 2

k0θ
2

‖b‖C2(l2⊗l2;2−kσ) = ‖1n‖Sn2
( ∑
k≥k0

2−kσ
)1/2

=
√
n2−k0σ

‖x‖ = inf
x=a+b

(‖a‖Cn(Cq1 ) + ‖b‖C2(l2⊗l2;2−kσ)) = inf
k0

(n
1
p 2

k0θ
2 +

√
n2−k0σ)

Consider the function f(k0) = n
1
p 2

k0θ
2 +
√
n2−k0σ with its derivative function f ′(k0) = θ

2n
1
p 2

k0θ
2 − σ

2

√
n2−k0σ.

The critical point appears whenever the equation f ′(k0) = 0 holds, then we will have the following equation

θ

σ
= n

1
2−

1
p 2−

k0
2 (σ+θ)

Then we know

min f(k0) = (1 +
θ

σ
)n

1
p 2

k0θ
2 = (1 +

θ

σ
)n

1
p

(σ
θ

) θ
θ+σ

n
1

2q1
( θ
θ+σ ) = c(θ, σ)n

1
p+ 1

2q1
( θ
θ+σ )

Since we know ‖
∑
ej1 ⊗ ej‖Cn(Cq) = n

1
2 (1− 1

q ), then we have the following identities

1

2

θ

θ + σ
+

1

q1

σ

θ + σ
=

1

q
.

Remark 4.7. In general, we assume that θ + σ = 1. Then we find the standard interpolation pair, i.e.

1
p = 1−θ

2 + θ
q1
.

Theorem 4.8. Let {Tt} be a strongly continuous semigroup of normal selfadjoint completely positive maps
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such that (R2
n) holds for Sp. Then

‖A−α : `2 −→ `q‖cb ≤ C,

here α = n
2 ( 1

2 −
1
q ).

Proof. For a finite matrix element x with entries in dom(A−γ) , recall (4.1.2) and Lemma 4.4

‖Φup
θ,αq

x‖Sm2 (Sq1 ) ≤ ‖A−γx‖Sm2 (S2)

‖Φlower
θ,αq (x)‖Sm2 (S2) ≤cb ‖A−αq+1−θx‖Sm2 (S2)

with αq + θ = (1− 2
q1

) · n4 + γ.

From Lemma 4.6 1 , we have

‖A−αqx‖Sm2 (Sq) ≤ 2(‖Φup
θ,αq

x‖Sm2 (Sq1 ) + ‖Φlower
σ,αq (x)‖Sm2 (S2))

≤ 2(‖A−γx‖Sm2 (S2) + ‖A−αq+1−θx‖Sm2 (S2)).

Then let γ = αq − (1− θ), we have

‖A−αqx‖Sm2 (Sq) ≤ 4‖A−γx‖Sm2 (S2)

with the identities 
γ = αq − (1− θ)

αq + θ = (1− 2
q1

) · n4 + γ

1−θ
2 + θ

q1
= 1

q

Then we will have

αq − γ =
n

2
(
1

2
− 1

q
)

Replacing Aγx with x,

‖A−(αq−γ)x‖q ≤cb 2‖x‖2,

Since α = αq − γ, we deduce the assertion for 0 < α < 1. For the case α ≥ 1, we interpolate between

‖A−1 : L2 → Lq‖ ≤ c1
1Lemma 4.6 is not enough to induce (4.2.1). More details can be found in Theorem 4.26.
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‖A−iθ : Lp1
→ Lp1

‖ ≤ c2.

We obtain

‖A−2/q : Lq → Lp‖ ≤ C(q).

We choose the parameter with the condition 2
q = n

2 ( 1
q −

1
p ), i.e. 1

p = 1
q (1− 4

n ). Then we choose a geometric

sequence (pk) with 1
pk+1

= 1
pk

(1− 4
n )(n > 4), p1 = p and

‖A−2/pk : Lpk → Lpk+1
‖ ≤ Cpk .

Therefore we show that for any α = 2/q +
∑m
k 2/pk = n/2(1/q − 1/pm+1), we have

‖A−α : Lq → Lpm+1
‖ ≤ C(q, pm+1)

When the sequence approaches to infinity with n > 4, pm+1 approaches to infinity as well and α can be a

number greater than 1. Therefore, we finish the assertion when α > 1 and n > 4.

4.2.2 General case

In this section, we explore the Lp embedding theory for general von Neumann algebras. We introdcuce the

notion of homogeneous space and give some certain regularity condition on the pair of weights. We show

that, the fundamental sequences with a mild regularity assumption, completely determine the operator space

structure of a homogeneous space. We find a canonical representation of the homogeneous space in terms

of weighted row and column spaces. Then we prove the cb-Sobolev inequalities for semifinte von Neumann

algebra and the cb-version of Varopolouss theorem and provide some examples. Let us recall the following

space mentioned in [JX10]:

Definition 4.9. Let (Ω,m) be a measure space and 2 ≤ p < q ≤ ∞, (µ, ν) is a pair of weights on Ω( i.e., a

nonnegative measurable functions) ∫
min(µ, ν)dm <∞. (4.2.1)

Given a semifinite von Neumann algebra M , define a norm as

‖x‖K = inf
x=a(w)+b(w) a.s.

(
‖a‖

L
C2q
2q (M⊗B(C,L2(µ,m)))

+ ‖b‖
L
C2p
2p (M⊗B(C,L2(ν,m)))

)
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and the space

Kq,p
M (µ, ν,m) = {x ∈ L1(M) ∩M|‖x‖K <∞}

Proposition 4.10. Let µ, ν, (Ω,m),M,Kq,p
M (µ, ν) defined as above:

1. If there exists a map α such that ‖α : L2(Ω,m, µ) → L2(Ω,m1, µ)‖ ≤ λ and ‖α : L2(Ω,m, ν) →

L2(Ω,m1, ν1)‖ ≤ λ, then ‖id : Kq,p
M (µ, ν)→ Kq,p

M (µ1, ν1)‖cb ≤ λ.

2. For two pairs of measures (µ, ν) and (µ1, ν1), if they are equivalent in the following sense λµ1 ≤ µ ≤

λ−1µ1 and λν1 ≤ ν ≤ λ−1ν1 then Kq,p
M (µ, ν) ≈cb Kq,p

M (µ1, ν1).

Lemma 4.11. Assume µ, ν are Σ-measurable, Kq,p
M (µ, ν,m) = Kq,p

M (µ, ν,mΣ)

Proof. By the definition of the norm, Kq,p
M (µ, ν,m) ≥ Kq,p

M (µ, ν,mΣ) since there are fewer Σ-measurable

functions. On the other hand, there exists a conditional expectation such that ‖E : L2(µ,m)→ L2(Ω,Σ)‖ ≤

1 and ‖α : L2(Ω,m) → L2(ν,Σ)‖ ≤ 1. Then by Proposition 4.10, we know that ‖id : Kq,p
M (µ, ν) →

Kq,p
M (µ1, ν1)‖cb ≤ 1.

It is sometimes convenient to work with the discrete analogue of Kq,p
M (µ, ν), i.e, when (µ, ν) are two

weights on Z. Then the two weights µ and ν become two positive sequeseces (µ(j))j≥1 and (ν(j))j≥1 satis-

fying the following weight condition ∑
j

min(µ(j), ν(j)) <∞. (4.2.2)

By standard arguments it is easy to transfer the continuous case to the discrete one and vice versa. More

details can be found in [JX10]. However, we need more monotonicity property of the canonical weights.

Therefore, we show the construction as follows:

In the discrete case, we decompose the space Z into Z+ and Z− as follows

Z+ := {k ∈ Z : ν(k) < µ(k)} and Z− := {k ∈ Z : ν(k) ≥ µ(k)}

And we decompose our spaces as follows:

Kq,p
M,+(µ, ν) = {x ∈ L1(M) ∩M|x = a(k) + b(k), k ∈ Z+

‖a‖
L
C2q
2q (M⊗B(C,l2(Z+,µ)))

+ ‖b‖
L
C2p
2p (M⊗B(C,l2(Z+,µ)))

<∞}

and
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Kq,p
M,−(µ, ν) = {x ∈ L1(M) ∩M|x = a(k) + b(k) k ∈ Z−,

‖a‖
L
C2q
2q (M⊗B(C,l2(Z−,µ)))

+ ‖b‖
L
C2p
2p (M⊗B(C,l2(Z−,ν)))

<∞}

Proposition 4.12. For a pair of weights on Ω = [0, T ] satisfying the condition (4.2.2), then there exists

two functions f+ ≥ 1, f− ≥ 1 on Ω, such that

Kq,p
M (µ, ν) = Kq,p

M,+(f+λ, λ)
⋂
Kq,p
M,−(λ, f−λ).

Here λ means Lebesgue measure.

Proof. Since Z = Z+

⋃
Z−, ∅ = Z+

⋂
Z−, then

max{‖x‖K+
M
, ‖x‖K−M} ≤ ‖x‖KM ≤ ‖x‖K+

M
+ ‖x‖K−M ≤ 2 max{‖x‖K+

M
, ‖x‖K−M}.

Since the norms are equivalent, then we get

Kq,p
M (µ, ν) = Kq,p

M,+(µ, ν)
⋂
Kq,p
M,−(µ, ν).

For the domain Ω = [0, T ], we divide it into disjoint intervals as I1, I2, · · · , with |Ik| = ν(k), T =
∑
k≥0 ν(k).

And we define the Randon Nikodym derivative F :=
∑
k
µ(k)
ν(k) 1Ik on [0, T ]. Therefore given the measure space

(Z+, µ, ν), there exists a pair of weights (Fν, ν) on [0, T ] satisfying (4.2.1). Then we can find a rearrangement

decreasing function f+ := F ∗ with respect to the Lebesgue measure λ. Therefore according to Lemma 4.11,

Kq,p
M,+(µ, ν) = Kq,p

M,+(f+λ, λ).

Similarly, on the domain Ω = [0, T̃ ] where we decompose into disjoint intervals as Ĩ1, Ĩ2, · · · , |Ĩk| = µ(k), T̃ =∑
k≤0 µ(k), we can find the rearrangement decreasing function f− on Z−, and we get

Kq,p
M,−(µ, ν) = Kq,p

M,−(λ, f−λ) with completely equivalent norms.

Therefore we get the result.

Remark 4.13. We call two functions f1 ∼ f2 is equivalent in the following sense

1

c
f1(λs) ≤ f2(s) ≤ cf1(

s

λ
),
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then

K+
M (f1λ, λ) = K+

M (f2λ, λ) with completely equivalent norms.

We should call the reader’s attention to the fact that the complex interpoolation space is a subspace of

the direct sum of two Hilbert spaces. Therefore we need recall the following decomposition for Hilbertian

operator spaces in [Xu06].

Theorem 4.14. Let X0, X1 be 1-homogeneous 1-Hilbertian operator spaces. Let X = X0⊗2 X1 and S ⊂ X

be a closed subspace. Then there are closed subspaces Y0, Z0 ⊂ X0, Y1, Z1 ⊂ X1 and an injective closed

densely defined operator T from Z0 to Z1 with dense range such that

S = Y0 ⊕2 Y1 ⊕2 G(T ) with completely equivalent norms.

HereG(T ) = {(x, Tx) : x ∈ Dom(T )}, where Dom(T) stands for the domain of T. LetH0 = L2(Ω, u0), H1 =

L2(Ω, u0), ξ = (g, h) ∈ H0 ⊕H1 and H = {(x, fx)|x ∈ dom(T )}, f ∈ L0(Ω, u0). Recall the norm defined in

H0 ⊕H1/H

‖(g, h)‖2H0⊕H1/H
= inf
v∈L2

‖(g − v)‖22 + ‖h− fv‖22.

As a technical tool, we need to define the interpolation space as follows:

Definition 4.15. Let H ⊂ H0 ⊕H1 and ξ ∈ H0 ⊕H1/G(T ), denote the space

χξ,H(M) = {ξ ⊗ x|x ∈M∩ L1(M)} ⊂ M⊗
(
H0 ⊕H1/H

)

and

χq,pξ (M) = {ξ ⊗ x|x ∈M∩ L1(M)} ⊂ LC2q

2q (M⊗Hr
0 )⊕ LC2p

2p (M⊗Hr
1 )/L1(M) ∩M⊗H

with the norm defined as

‖x⊗ ξ‖ = inf
ξ⊗x=a+b

‖a‖
L
C2q
2q (M⊗Hr0 ))

+ ‖b‖
L
C2p
2p (M⊗Hr1 )

Lemma 4.16. There exists a pair of weights (µ, ν) satisfying the condition (4.2.1) such that

χq,pξ,G(T )(M) = Kq,p
M (µ, ν,m)

Proof. By the polar decomposition T = u|T | and using homogeneity, we can assume H0 = H1 = L2(m) and

T is a positive operator. Therefore we can assume there exists a function f ∈ L2(m), such that T is the
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multiplication operator Mf : L2(m)→ L2(m). Let ξ ∈ L2(m)⊕ L2(m)/G(T )

‖x⊗ ξ‖ = inf
(y,fy)∈M⊗G(Mf )

‖x⊗ (ξ1, ξ2) + (y, fy)‖

= inf
y∈M⊗L2(m)

‖x⊗ ξ1 + y‖
L
C2q
2q (M,B(C,L2(m)))

+ ‖x⊗ ξ2 + fy‖
L
C2p
2p (M,B(C,L2(m)))

Denote a := x⊗ ξ1 + y and b := −ξ2 + fy. Then we have the following observation

af + b = x⊗ (fξ1 − ξ2) := x⊗ h

Since ξ ∈ H0⊗H1/G(T ), we can assume ξ is not equivalent to 0. Therefore h = fξ1− ξ2 is not 0. Replacing

h with h · 1h>0, we can assume h is a positive function and strictly greater than 0 (Otherwise we multiply

by −1h<0). Thus we get

a′ + b′ =
af

h
+
b

h
= x⊗ 1.

This implies

‖x⊗ ξ‖ = inf
x⊗1=a′+b′

‖a′‖
L
C2q
2q (M,B(C,L2(

√
h
fm)))

+ ‖b′‖
L
C2p
2p (M,B(C,L2(

√
hm)))

= ‖x‖
Kq,p
M (

√
h
f ,
√
h,m)

Definition 4.17. A function ϕ satisfies the ∆2 condition, if there exist positive constants c, d and α with

α > 1 such that

c(
t

s
)α ≤ ϕ(s)

ϕ(t)
and

ϕ(s)

ϕ(2s)
≤ d,∀t ≥ s ≥ 1.

By normalization of the domain, we can assume the measure space as Ω = [0, 1]. Given a continuous

decreasing positive function f defined on [0, 1], we define

ϕf (t) :=

∫ 1

0

min(t, f(s))ds

Lemma 4.18. If the function ϕf (t) satifies the ∆2 condition, then

f−1(t) ∼ ϕf (t)

t
.
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Proof. Decomposing the interval into two parts yields

ϕf (t) = tf−1(t) +

∫ 1

f−1(t)

f(s)ds ≥ tf−1(t).

Therefore we get that
ϕf (t)
t ≥ f−1(t). Moreover, if we differentiate the above decomposition form, we obtain

ϕf (t)′ = f−1(t). Now we assume δα ≤ 1
2

ϕf (t) =

∫ t

0

ϕf (t)′ds =

∫ δt

0

ϕf (t)′ds+

∫ t

δt

ϕf (t)′ds

≤ ϕf (δt) + ϕf (δt)′(1− δ)t ≤ 1

2
ϕf (t) + ϕf (δt)′t.

Therefore we get

ϕf (t)

t
≤ 2ϕf (δt)′ ≤ 2f−1(δt).

Now let us consider a special case M = B(l2). We will often identify the canonical bases (ek1) of C and

(e1k) of R with (ek) of l2. And we have

‖
n∑
k=1

ek ⊗ ek‖Cn⊗Rns = n
1
2s and ‖

n∑
k=1

ek ⊗ ek‖Rns⊗R = n
1

2s′ (4.2.3)

Lemma 4.19. The fundament sequences have the following equivalence

ϕc(n) :=
∥∥∥ n∑

1

ek1 ⊗ e1k

∥∥∥2

Kq,p
B(l2)

∼ n1/qϕf+(n1/p−1/q),

ϕr(n) :=
∥∥∥ n∑

1

ek ⊗ e1k

∥∥∥2

Kq,p
B(l2)

⊗Rn
∼ n1−1/pϕf−(n1/p−1/q).

Proof. Denote x =
∑
k ek1 ⊗ ek, we get

‖x‖Cn⊗KB(l2)
= inf

1=a(k)+b(k)
‖
∑
k

a(k)⊗ e1k

√
µ(k)‖Cn⊗Cnq + ‖

∑
k

b(k)⊗ e1k

√
ν(k)‖Cn⊗Cnp

= inf
A

(∑
k∈A

µ(k)
)1/2‖1‖Cn⊗Cnq +

( ∑
k∈Ac

ν(k)
)1/2‖1‖Cn⊗Cnp

By (4.2.3), we get

‖x‖ ∼ inf
A⊂Ω

(
µ(A)n1/q + ν(Ac)n1/p

)1/2
= n1/2q inf

A⊂Ω

(
µ(A) + ν(Ac)n1/p−1/q

)1/2
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Denote

ϕ̂c(t) := inf
A⊂Ω

µ(A) + tν(Ac) and ϕ̂r(t) := inf
A⊂Ω

tµ(A) + ν(Ac). (4.2.4)

Then we obtain ∥∥∥ n∑
1

ek1 ⊗ ek
∥∥∥2

Kq,r
B(l2)

(µ,ν)
= n1/qϕ̂c(n

1/p−1/q).

By the decomposition

ϕ̂c(t) = inf
|A|=t

µ(A) + tν(Ac)

= inf
|A|=t

µ(A ∩ Z+) + µ(A ∩ Z−) + tν(Ac ∩ Z+) + tν(Ac ∩ Z−))

Since t ≥ 1 and ν ≥ µ on Z−, µ(A∩Z−) + tν(Ac ∩Z−) ≥ µ(A∩Z−) + µ(Ac ∩Z−) = µ(Z−). Let f+ be the

Random-Nikodym derivative in Proposition 4.12 and denote At = {s|f+(s) ≤ t}, thanks to µ ≥ ν on Z+

µ(A ∩ Z+) + tν(Ac ∩ Z+) ≥
∫ 1

0

min(t, f+(s))ds = ϕf+(t)

Therefore, we get

ϕf+(t) ≤ ϕ̂c(t) ≤ ϕf+(t) + µ(Z−).

i.e.

ϕ̂c(t) ∼ ϕf+(t)

Analogously we denote y =
∑
k ek ⊗ e1k, then we have

‖y‖KB(l2)⊗hRn = inf
A
n1/2q′µ(A)1/2 + n1/2p′ν(Ac)1/2.

Therefore we get ∥∥∥ n∑
1

e1k ⊗ e1k

∥∥∥2

Kq,p
B(l2)

(µ,ν)⊗Rn
∼ n1−1/pϕf−(n1/p−1/q)

Proposition 4.20. Let ϕc, ϕ̃c be as in (4.2.4) and both satisfy ∆2 condition, then

ϕc ∼ ϕ̃c ⇐⇒ f+ ∼ f̃+

The same results hold for ϕr and f−.

Proof. By Lemma 4.18, we know f(t) ∼ ϕf (t)
t . Then by Lemma 3.5 in [JX10], we get the conclusion.
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Theorem 4.21. If Kq,p
B(l2)(µ, ν) = Kq,p

B(l2)(µ̃, ν̃) and ϕc, ϕr satisfying ∆2, then

Kq,p
M (µ, ν) = Kq,p

M (µ̃, ν̃) (completely equivalent norm ).

Proof. According to the definition of ϕc, ϕr,

ϕc(n) =
∥∥∥ n∑

1

ek1 ⊗ ek
∥∥∥2

CnK
q,p
B(l2)

(µ,ν)
and ϕ̃c(n) =

∥∥∥ n∑
1

ek1 ⊗ ek
∥∥∥2

CnK
q,p
B(l2)

(µ̃,ν̃)

Then we obtain ϕc ∼ ϕ̃c. Then Proposition 4.20 implies f+ ∼ f̃+. Analogously we get f− ∼ f̃−. Then by

Proposition 4.12, we finish the proof.

Theorem 4.22. For a von Neumann algebra M,

LC2s
2s (M) ≈ χξ,H(M) (completely equivalent norm )

here 1
s = 1−θ

q + θ
p .

Proof. Thanks to reiteration theorem for the complex interpolation method, we get

LC2s
2s =

[
L
C2q

2q , L
C2p

2p

]
θ

=

{
f(θ)

∣∣∣∣∣f ∣∣∂0
∈ L∞(L

C2q

2q ), f
∣∣
∂1
∈ L∞(L

C2p

2p ), f is analytic

}
.

Then by definition of χξ,H , we observe that

LC2s
2s (M) ⊂ χξ,H(M) with constant 2.

We interpolate between these two following spaces:

q =∞ :M⊗̄L∞(∂0) −→M⊗̄Lr2(∂0, µθ)

q = 2 : Lc2(M)⊗̄L∞ −→ Lc2(M)⊗̄Lc2(∂0, µθ)

We obtain

f
∣∣
∂0
∈ L∞(L

C2q

2q (M)) −→ L
C2q

2q (M⊗B(C, L2(∂0, µθ)))

Similarily we get

f
∣∣
∂1
∈ L∞(L

C2p

2p (M)) −→ L
C2p

2p (M⊗B(C, L2(∂1, µθ))).
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Then it remains to prove the opposite direction inclusion. Recall that

‖x‖2
Mm(L

C2s
2s )

= ‖x∗x‖Mm(Ls)

= sup
a∈Sm2s

‖(a⊗ 1)x∗x(a⊗ 1)‖Ls(Mm⊗M) = sup
a∈Sm2s

‖x(a⊗ 1)‖L2s(Mm⊗M)

By Hölder’s inequality with 1
2 = 1

2s + 1
v , we get

‖x‖2
Mm(L

C2s
2s )

= sup
‖α‖v≤1,‖a‖2s≤1

‖αxa⊗ 1‖L2(Mm⊗M)

Assume x ∈ χξ,H , this means there exists an analytic function f : Ω → M ∩ L1(M), s.t.f(θ) = x. Fix

α, a ≥ 0, 1
s = 1−θ

q + θ
p ,

1
v = 1−θ

v0
+ 1

v1
, define

g(z) = αv( 1−z
v0

+ z
v1

), h(z) = as(
1−z
q + z

p ).

Then we define

F (z) := α(z)f(z)[a(z)⊗ 1]

Thanks to interpolation theory in [BL12], we know

‖F (θ)‖2L2(Mm⊗M) ≤ ∫
‖F (it)‖2L2(Mm⊗M)dµθ(it) +

∫
‖F (1 + it)‖2L2(Mm⊗M)dµθ(1 + it).

For F (z) = αz(
1
v1
− 1
v0

)α
v
v0 f(z)a

s
q az(

1
p−

1
q ) ⊗ 1

‖F (it)‖2 = ‖α
v
v0 f(it)a

s
q ⊗ 1‖2

Similarly,

‖F (1 + it)‖2 = ‖α
v
v1 f(it)a

s
p ⊗ 1‖2

The function α
v
v0 f(it)a

s
q ∈ L2(Mm ⊗M⊗B(C, L2(µθ|∂0))).

‖F (it)‖22 ≤ tr
[
α

2v
v0

∫
f(it)a

s
q a

s
q f(it)∗

]
dµ(t)

≤ ‖α‖L2v
· ‖f(it)a

s
q ‖L2q(M⊗B(C,L2(∂0)))
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Take ã = a
s
q ∈ Sm2q. By assumption, f(it) ∈ MmL2q(M⊗ Lr2). Then

∫
f(it)ãã∗f(it)∗dµ(t) ∈ Lq(Mm ⊗M)

Therefore,

‖F (i·)‖2 ≤ ‖f(i·)‖L2q(Mm⊗M) (4.2.5)

Analogously, we get

‖F (1 + i·)‖2 ≤ ‖f(1 + i·)‖L2p(Mm⊗M) (4.2.6)

Plugging (4.2.5) and (4.2.6) into (4.2.2), we have

‖x‖2
Mm(L

C2p
2p )
≤ ‖f(i·)‖2L2q(Mm⊗M) + ‖f(1 + i·)‖2L2p(Mm⊗M)

Therefore, we obtain the missing inclusion.

Theorem 4.23. For a semifinite von Neumann algebra M and 1
s = 1−θ

q + θ
p ,

LC2s
2s (M) = Kq,p

M,H(2θ, 21−θ, λ) (completely equivalent norms)

Proof. Thanks to Theorem 4.22 and Lemma 4.16, for arbitrary von Neumann M, we obtain

LC2s
2s (M) = χξ,H(M) = Kq,p

M,H(µ, ν). (4.2.7)

With Theorem 4.21 for B(l2)

χξ,H(B(l2)) = Kq,p
B(l2)(2

θ, 21−θ, λ)

we get

Kq,p
M (µ, ν) = Kq,p

M (2θ, 21−θ, λ) (4.2.8)

Combining (4.2.7) and (4.2.8), we obtain the result.

With the help of conditional Lp spaces mentioned in [JP10], Theorem 4.23 implies the following result:

Corollary 4.24. For arbitrary semifinite von Neumann algebra M and 1
s = 1−θ

q + θ
p , ,

Ls(M) = Kq,p
M (2θ, 21−θ, λ)∗ ⊗h Kq,p

M (2θ, 21−θ, λ)

Proposition 4.25. The Scatten class Sp has the following embedding

Sp ↪→cb (l
Cq1
2 (ln2 ⊗ l2, wθ) + lC2

2 (ln2 ⊗ l2)wσ)⊗h (l
Rq1
2 (ln2 ⊗ l2, wθ) + lR2

2 (ln2 ⊗ l2)wσ)
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Recall the resolvent formula

A−αx = Γ(α)−1

∫ ∞
0

Ttt
α−1dt for α > 0.

Given a family of positive semigroup Tt, we want to prove

‖A−α : L2(M) −→ Lq(M)‖cb <∞

holds for any semifinite von Neumann algebra M. Because the generator A−α is completely positive,

A−α(x∗y) = uα(x)∗uα(y). In our context, we need to use an explicite decomposition of A−α.

Theorem 4.26. Let {Tt} be a strongly continuous semigroup of normal selfadjoint subunital completely

positive maps such that (R2
n) holds for Lp(M). Then

(i) ‖A−αqx‖s ≤cb ‖Φup
θ,αq

x‖q + ‖Φlower
1−θ,αq (x)‖2

(ii) ‖A−α : L2(N ) −→ Ls(N )‖cb ≤ C

with 1
s = 1−θ

q + θ
2 , α = αq + γ = n

2 ( 1
2 −

1
s ) and α+ θ = (1− 2

q )n4 + γ.

Proof. (i) By Proposation 2.35, let z = y∗y ∈ Mm(L2(M)), y ∈ Mm(L4(M)) and ut(y1)∗ut(y2) = Tt(y
∗
1y2)

be the map obtained from the GNS construction of Tt. Then let uαq (y)(t) = t(αq−1)/2ut(y) satisfying

uαq (y)∗uαq (y) =

∫
Tt(y

∗y)tαq−1dt = A−αq (y∗y)

Then we may choose the following decomposation

uαq (y) = 1[2k,∞)uαq (y) + 1[0,2k]uαq (y) := u1
αq (k) + u2

αq (k),∀k > 0.

Thanks to Theorem 4.23, this implies

‖uαq (y)‖Mm(Lc2s)
≤ ‖u1

αq‖Mm(Lc2q(2
θ)) + ‖u2

αq‖Mm(Lc2p(21−θ))

with 1
s = 1−θ

q + θ
p . Now we choose p = 2. Then

‖uαq (y)‖Mm(Lc2s)
≤ ‖(u1

αq )
∗u1
αq‖

1/2

Mm(Lq(2θ))
+ ‖(u2

αq )
∗u2
αq‖

1/2

Mm(L2(21−θ))

= ‖Φup
θ,αq

(y∗y)‖Mm(Lq) + ‖Φlower
1−θ,αq (y

∗y)‖Mm(L2)

(4.2.9)
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Recall that ‖A−αq (z)‖Mm(Ls) = ‖(uαq (y))∗uαq (y)‖1/2Mm(Ls)
. By Hölder’s inequality, we get

‖A−αq (z)‖Mm(Ls) ≤ 2(‖Φup
θ,αq

(z)‖Mm(Lq) + ‖Φdown
1−θ,αq (z)‖Mm(L2)).

(ii) Let x > 0 and x ∈Mm(L2). Then there exists z ∈Mm(L4), such that x = z∗z. Then we use the map ut

obtained from GNS construction of Tt, and generate uγ(z)(t) = t(γ−1)/2ut(z). We get A−γ(x) = A−γ(z∗z) =

uγ(z)∗uγ(z). Next we repeat the argument in part (i) with y = uγ(z). Thanks to Lemma 2.30, we get

A−αx = A−αq (A−γx) = A−αq (uγ(z)∗uγ(z)) = A−αq (y∗y).

And by part(i), we obtain

‖A−αx‖Mm(Ls) = ‖A−αq (y∗y)‖Mm(Ls) ≤ 2(‖Φup
1−θ,αq (y

∗y)‖Mm(Lq) + ‖Φlower
θ,αq (y∗y)‖Mm(L2))

By Theorem 4.5 with α+ θ = (1− 2
q )n4 + γ, we get

‖Φup
θ,αq

(y∗y)‖Mm(Lq) = ‖Φup
θ,αq

(A−γ(z∗z))‖Mm(Lq) ≤ ‖z
∗z‖Mm(L2) = ‖x‖Mm(L2).

According the Lemma 4.4, the norm of Φlower
1−θ,αq (y

∗y) is controlled by that of A−(αq−1+θ). With cancellation

of the exponent, we assume γ = αq − 1 + θ, then we obtain

‖Φlower
1−θ,αq (y

∗y)‖Mm(L2) = ‖Φlower
1−θ,αq (A

−γ(z∗z))‖Mm(Lq) ≤ ‖z
∗z‖Mm(L2) = ‖x‖Mm(L2).

Therefore we get

‖A−αx‖Mm(Ls) . ‖x‖Mm(L2).

we deduce the assertion for 0 < α < 1. For the case α ≥ 1, repeating the same technique in Theorem 4.8 we

obtain the assertion.

Remark 4.27. Equation (4.2.9) leads us to the definition of singular operators Φup
θ,αq

and Φlower
1−θ,αq .

We want to illustrate our result for the strongly continuous semigroup of normal selfadjoint subunital

completely positive maps {Tt} for completely bounded norm on commutative space R. Then Lp(M) coincides

with the usual commutative space Lp(R) and Sp(H;Lp(R)) = Lp(R;Sp(H)) for any H and any 1 ≤ p <∞.

Thus a completely bounded map A−α : Lp(R)→ Lq(R) is a bounded maps whose tensor extension T ⊗ ISq

extends to a bounded operator on the vector valued spaces A−α : Lp(R;Sq)→ Lq(R;Sq). However we want
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to show a more general version A−α : Sq(L
p(R))→ Sq(L

q(R)) as follows:

Corollary 4.28. Let {Tt} be a strongly continuous semigroup of normal selfadjoint subunital completely

positive maps such that (R2
n) holds for Lp(R). Then

‖A−α : Sq(Lp(R)) −→ Sq(Lq(R))‖ ≤ C

with α = n
2 ( 1

q −
1
p ).

Remark 4.29.

Sq(Lp(R)) Sq(Lq(R))

Lp(R, Sq) Lq(R, Sq) = Sq(Lq(R))

A−α

id

A−α

For the vector valued Sobolev inequality, we already have the base line in the following diagram. And

Corollary 4.28 proves the up line. ∀x ∈ Sq(Lp), 1
r = | 1p −

1
q |.

‖x‖Lp(Sp) = (

∫
sup

‖α‖2r,‖β‖2r=1

‖αxβ‖pp)1/p ≤ sup
‖α‖2r,‖β‖2r=1

(

∫
‖αxβ‖pp)1/p = ‖x‖Sp(Lp).

Therefore there exists a completely contraction from Sq(Lp(R)) to Lp(R, Sq). Up line’s estimate reduces the

base line’s, but the opposite direction is not. Therefore the cb-version of Sobolev inequality is much stronger

than the vector-valued one.

4.3 Application and Examples

In this section, we want to prove the cb-version of Varopoulos’s theorem. The scope of the proof is standard

by now.

Theorem 4.30. Let (Tt) be a semigroup of completely positive selfadjoint contractions on a von Neumann

algebra M with negative generator A and n > 2. The following are equivalent

(i) ‖Tt : L1(M)→ L∞(M)‖cb ≤ C1t
−n/2

(ii) ‖A− 1
2 : L2(M)→ L 2n

n−2
(M)‖cb <∞;

(iii) ‖x‖2+4/n
S2(L2(M)) ≤cb C2〈1⊗Ax, x〉‖x‖4/nS2(L1(M));

Proof. (i)⇒(ii) follows from Theorem 4.26. Next we show (ii)⇒(iii). From the assertion (ii), let x ∈

Sm2 (L2(M)), we have

‖x‖S2(L2n/(n−2)) ≤ ‖A
1/2x‖S2(L2).
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This implies

‖x‖2S2(L2n/(n−2))
≤ 〈1⊗A1/2x, 1⊗A1/2x〉 = 〈1⊗Ax, x〉.

From interpolation theory in Pisier’s paper [Pis93] for 1
2 = (1−θ)(n−2)

2n + θ
1 with θ = 2

n+2 , we obtain

‖x‖S2(L2) ≤ ‖x‖1−θS2(L2n/(n−2))
‖x‖θS2(L1).

Therefore we have

‖x‖2+4/n
S2(L2) ≤ 〈1⊗Ax, x〉‖x‖

4/n
S2(L1).

For (iii) to (i), fix x ∈ S2(L2(M))∩S2(L1(M)) with ‖x‖S2(L1) = 1. Because Tt is a completely contraction,

‖Ttx‖S2(L1) ≤ 1. Denote V (t) := ‖Ttx‖2S2(L2),

V ′(t) = − < ATtx, Ttx >,

the hypothesis yields

V ′(t) ≤ −2C−1
2 ‖Ttx‖

2+4/n
S2(L2)‖Ttx‖

−4/n
S2(L1) ≤ −2C−1

2 ‖Ttx‖
2+4/n
S2(L2) ≤ −2C−1

2 V (t)1+2/n

i.e.

d

dt
(V (t)−2/n) ≤ 2n−1C−1

2 .

Integrate both sides, we get

V (t) ≤ (nC2)n/2t−n/2,∀t > 0.

The first assertion (i) immediately holds by taking square root.

Corollary 4.31. Suppose {Tt} is a strongly continuous semigroup of normal selfadjoint subunital completely

positive maps. The following are equivalent:

(1) there exist 1 < p < q <∞ with α = n
2 ( 1

p −
1
q ) such that

‖A−α : Lp −→ Lq‖cb ≤ c1;

(2) the semigroup {Tt} satisfies (Rcbn ), i.e.

‖Tt : L1 −→ L∞‖cb ≤ c2t−n/4.
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As before, let Tt = e−tA be a symmetric submarkovian semigroup and let St = e−tB be a semigroup on

Lp(N), 1 ≤ p ≤ ∞. We then have

Theorem 4.32. Suppose A and B are two completely positive operators that

1. there exist n > 2, C1 > 0 such that

‖f‖22n/(n−2) ≤cb C1〈Af, f〉, (4.3.1)

2. there exist C2 > 0, d > 0 and ε > 0 such that

〈Aεx, x〉 ≤cb C2〈Bx, x〉+ d‖x‖2, (4.3.2)

Then there exists C > 0 such that

‖Stf‖2 ≤ Ct−n/(4ε)et‖f‖1,∀t > 0,∀f ∈ L1(N).

Proof. From assertion (5.1.3) and Theorem 4.30, we obtain ‖Tt : L1(M)→ L∞(M)‖cb ≤ C1t
−n/2. Then by

Theorem 4.26, we get

‖A−ε/2 : L2 → L2m/(m−1)‖cb ≤ C.

here ε
2 = n

2 (1− m−1
m ). Then we get m = n

2ε . From the assertion (4.3.2),

‖x‖22m/(m−1) ≤cb C‖A
ε/2x‖22 ≤cb CC2〈Bx, x〉+ Cd‖x‖2 ≤cb C̃〈(B + I)x, x〉

i.e.

‖x‖2m/(m−1) ≤cb C̃‖(B + I)1/2x‖2

Denote B̃ = B+ I. The S̃t = e−tBe−t is a symmetric submarkovian semigroup. Applying Theorem 4.32 (ii)

to (i) for B̃ and S̃t, we get

‖S̃t : L1(M)→ L2(M)‖cb ≤ C̃1t
−m/2.

This implies that

‖St : L1(M)→ L2(M)‖cb ≤ C̃1t
−m/2et = C̃1t

−n/(4ε)et.

Example 4.33. Let X1, X2, · · · , Xk be a system of vector fields satifying Hörmander’s condition at step r

in some open connected Ω of compact Lie group G. For any multiindex I = (i1, i2, · · · , ik) of length |I| = k

70



we set

XI = Xi1Xi2 · · ·Xik and X[I] = [Xi1 , [Xi2 · · · [Xik−1
, Xik ] · · · ]].

If I = (i1), then XI = X[I] = Xi1 . By Hörmander’s condition, the vectors {(X[I])}|I|≤d span G. Let

A =
∑
|I|<dX

2
[I] and B =

∑k
j=1X

2
j . We are now ready to state the result proved showed in Lemma 2.1 of

as follows:

〈Aεx, x〉 ≤ 〈Bx, x〉+ c‖x‖2

Therefore we apply Theorem 4.32 to operator A and B, then we can get

‖St = e−tB : Lp(G) −→ Lq(G)‖cb ≤ Ct−n/4εet.

Example 4.34. Let the semigroup Tt(ers) = e−t(r−s)
2

ers. For x = (xrs) ∈ Sm1 (S1) with Tt(x) =∑
k∈Z e

−tk2
(∑

s xs+k,ses+k,s

)
,

‖Tt(x)‖Mm(B(l2)) ≤
∑
k∈Z

e−tk
2

‖
∑
s

xs+k,ses,s‖Mm(l∞) ≤
∑
k∈Z

e−tk
2

‖x‖Mm(S1)

≤ 2
(∫ ∞

0

e−ty
2

dy
)
‖x‖Mm(S1) = t−1/2‖x‖Mm(S1),

therefore the semigroup satifies the (R2
n) for n = 1.

Example 4.35. With the matrix Mm where vk(er) = ek+r and uj(er) = e
2πijr
n er, let the semigroup

Tt(ujvk) = e−t(j
2+k2)ujvk. For x =

∑
αj,kujvk where αj,k = 1

m tr(v
∗
ku
∗
jx).

‖Ttx‖Mm
≤
∑
k∈Z

e−t(k
2+j2)‖(αj,k)‖Mm

≤ t−1‖x‖L1(Mn,tr).

Therefore the semigroup satifies the (R2
n) for n = 2.

Example 4.36. Let Aθ be the quantumn euclidean space with UV = exp(2πiθ)V U , and the semigroups Tt

have

Tt(UkVj) = exp(−t(k − j)2)UkVj .

Then ‖Tt : L1(Aθ, τθ) −→ L∞(Aθ, τθ)‖cb ≤ ct−1. See [JMP13] for more details.
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Chapter 5

Stricharz estimates

In applied mathematics, Strichartz estimates are used for linear dipersive partial differential equations.

These inequalities describe size and decay of solutions in mixed norm Lebesgue spaces. In [Seg76], the

author investigates the linear Klein-Gordon equation. In the pioneering paper [S+77], Strichartz builds the

connection between space-time estimate and the restriction theorem of Tomas and Stein. See [LS95],[Kap89],

[MSS93], [GV95], [Sog95] for many known Strichartz wave equations. See [GV92] [Yaj87] for Strichartz

results for the Schrödinger equation.

Let (A0, A1) be an interpolation pair and (A0, A1)1/r = A1/r. Suppose that for each time t ∈ R, we have

an operator U(t) : H −→ A1/2 which obeys the followings:

• For all t and all f ∈ H we have

‖U(t)f‖A1/2
≤ C1‖f‖H (energy estimate) (5.0.1)

• For some σ > 0, all t 6= s and all g ∈ L1

‖U(s)(U(t))∗g‖A1
≤ C2|t− s|−σ‖g‖A0

(dispersive estimate) (5.0.2)

In [KT98], Keel and Tao gave the concrete form of Strichartz estimates on Rn as follows:

(

∫
(

∫
|U(t)f |rdx)q/rdt)1/q . ‖f‖2.

Here (q,r) satisfies 1
q + n

2r = n
4 . Therefore our goal is to determine the space-time norms

‖F‖LqtLr′ (M) ≡ (

∫
‖F (t)‖qA1/r

dt)
1
q ,

where now A1/r = Lr
′
(M) is a noncommutative Lp space and F (t) = U(t)f, ∀f ∈ A1/r(M).

As for non-commutative space setting, for which noncompact noncommutative n-dimensional space the
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unitary operator U(t) still satisfy the Strichartz estimates is a natural question to ask. First candidate to

check is deformed Euclidean space Rnθ , since it’s the noncommutative version of Euclidean space Rn. More

precisely, our goal is to prove

(

∫
‖U(t)f‖qLr(Rnθ )dt)

1/q . ‖f‖2.

Proposition 5.1. If U(t) is an operator from some Hilbert space H to A1/2(M),

(1) If U(t) obeys (5.0.1), we have

‖U(s)∗U(t) : H → H‖ ≤ C2
1 (5.0.3)

(2) If U(t) obeys (5.0.1) and (5.0.2), we have

‖U(s)∗U(t) : A1/r → A1/r′‖ ≤ C
4
r
1 C

1− 2
r

2 |t− s|−1−β(r,r) (5.0.4)

where β(r, r̃) is given by

β(r, r̃) = σ − 1− σ

r
− σ

r̃
.

Proof. (1) follows from the (5.0.1) directly. We get (2) by interpolation between (5.0.2) and (5.0.3) with

θ = 1
r .

Definition 5.2. We say that the exponent pair (q, r) is sharp σ-admissible if q, r ≥ 2, (q, r, σ) 6= (2,∞, 1)

and

1

q
+
σ

r
=
σ

2
.

Remark 5.3. (1) Note in particular that when σ > 1 the endpoint

P = (2,
2σ

σ − 1
)

is also a sharp σ-admissible.

(2) By the definition of sharp σ-admissible point, one can check that β(r, r) < 0 for q > 2.

In this chapter we will show that, for certain exponent pair (q, r), (q̃, r̃), the family {U(t) : t ∈ R}

satisfying (5.0.1) and (5.0.2) has Strichartz estimates of the following form:

(i) the homogeneous Strichartz estimate

‖U(t)f‖LqtA1/r
≤ C3‖f‖H
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(ii) its dual estimate

‖
∫

(U(s))∗F (s)ds‖H ≤ C3‖F‖Lq′t A1/r
(5.0.5)

(iii) the inhomogeneous(retarded) Strichartz estimate

‖
∫
t<s

U(t)(U(s))∗F (s)ds‖LqtA1/r′
≤ C4‖F‖

Lq̃
′
t A1/r̃

(5.0.6)

In order to prove Strichartz estimate, we define the bilinear form T : L1
tA0 × L1

tA0 → C by

T (F,G) :=

∫∫
s≤t

< U(s)∗F (s), U(t)∗G(t) > dsdt.

Remark 5.4. Suppose that q, q̃ ∈ [1,∞] and r, r̃ ∈ [1,∞]. Then

(i) The homogeneous Strichartz estimate (5.0.5) is equivalent to the bilinear estimate

|T (F,G)| . ‖F‖LqtA1/r
‖G‖LqtA1/r

(5.0.7)

(ii) The inhomogeneous Strichartz estimate (5.0.6) is equivalent to the bilinear estimate

|T (F,G)| . ‖F‖Lq̃tA1/r̃
‖G‖

Lq
′
t A1/r

(5.0.8)

5.1 Homogeneous Strichartz estimate

In order to prove the homogeneous Strichartz estimate (5.0.7), we have to consider p = 2(endpoint estimate)

and p 6= 2 (nonendpoint estimate) separately.

5.1.1 Nonendpoint estimate

Lemma 5.5. Suppose that q ∈ (2,∞] and θ ∈ [0, 1]. If U(t) obeys (5.0.1) and (5.0.2), then the estimate

|T (F,G)| ≤ C2
3‖F‖Lq′t A1/r

‖G‖
Lq
′
t A1/r

holds with (q, r) sharp σ-admissible.
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Proof. By the definition of the sharp σ-admissible point (5.0.1) for the case 1
q + σ

r = σ
2 , we have

1

q′
− 1

q
= −β(r, r),

and if we integral (5.0.4) and using Hardy-Littlewood-Sobolev inequality when q > q′.[Ste70]

|T (F,G)| ≤
∫∫
| < U(s)∗F (s), U(t)∗G(t) > |dsdt

≤
∫∫

C
4
r
1 C

1− 2
r

2 |t− s|−1−β(r,r)‖F (s)‖A1/r
‖G(t)‖A1/r

dsdt

≤ C
4
r
1 C

1− 2
r

2 ‖F‖
Lq
′
t A1/r

‖G‖
Lq
′
t A1/r

5.1.2 Endpoint estimate

For the endpoint case, i.e. q = 2, we have to decompose T (F,G) dyadicdally as
∑
j Tj(F,G), where the

summation is over the integers Z and

Tj(F,G) =

∫
t−2j+1<s≤t−2j

< (U(s))∗F (s), (U(t))∗G(t) > dsdt, (5.1.1)

Lemma 5.6. If U(t) is an operator from some Hilbert space H to A1/2(M) satisfying (5.0.1) and (5.0.2),

the estimate

|Tj(F,G)| . 2−jβ(a,b)‖F‖L2
tA 1

a

‖G‖L2
tA 1

b

(5.1.2)

holds for all j ∈ Z and all ( 1
a ,

1
b ) in a neighbourhood of ( 1

r ,
1
r ).

Proof. We first prove the case when j = 0. We may assume that F,G are supported on a time interval

of duration O(1), since we need to decompose F and G into linear combinations of (approximate) L2−

normalized characteristic functions. Without lose of generality, we can assume the supports of functions F,

G is a small interval near the original point. We shall prove (5.1.8) for the exponents

(1) a = b =∞

(2) 2 ≤ a < r, b = 2

(3) 2 ≤ b < r, a = 2;

the lemma will then follow by interpolation and the fact that 2 < r <∞.
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To prove(1), observe that (5.0.2) gives

|T0(F,G)| .
∫∫

t−2<s<t−1

|t− s|−σ‖F (s)‖A0‖G(t)‖A0dsdt . ‖F‖L1
tA0
‖G‖L1

tA0
. (5.1.3)

For (2), we prove a general case. Bring the s-integration inside the inner product in (5.1.1) and apply

the Cauchy-Schwarz inequality to obtain

|Tj(F,G)| ≤ (sup
t
‖
∫
t−2j+1<s≤t−2j

(U(s))∗F (s)ds‖H)

∫
‖(U(t))∗G(t)‖Hdt.

Using the energy estimate ‖(U(t))∗G(t)‖H ≤ ‖G(t)‖A 1
2

this becomes

|Tj(F,G)| ≤ (sup
t
‖
∫
t−2j+1<s≤t−2j

(U(s))∗F (s)ds‖H)‖G‖L1
tA1/2

. (5.1.4)

Define the quantity q(a) by requiring (q(a), a) to be sharp σ-admissible. By the results of the previous

section of non-endpoint estimates for (q(a), a). Now applying this to (5.1.4) for the case j=0, we obtain

|T0(F,G) : L
q(a)′

t A1/a × L1
tA1/2 → C| ≤ C

2
a+1
1 C

1
2−

1
a

2

|T0(F,G) : L2
tA1/a′ × L2

tA1/2 → C| ≤ C
2
a+1
1 C

1
2−

1
a

2

The last inequality holds if we require q(a) ≥ 2. Same argument, we get

|T0(F,G) : L1
tA1/2 × L

q(b)′

t A1/b → C| ≤ C
2
b+1
1 C

1
2−

1
b

2

|T0(F,G) : L2
tA1/2 × L2

tA1/b → C| ≤ C
2
b+1
1 C

1
2−

1
b

2

The last inequality holds if we require q(b) ≥ 2. Let H(a, b) = C
2
a+ 2

b
1 C

1− 1
a−

1
b

2 . Interpolate these two

inequations, we get for 2 ≤ a0<r, 2 ≤ b0<r,

|T0(F,G) : L2A θ
a′+

1−θ
2
× L2A 1−θ

b + θ
2
→ C| ≤ H(a, 2)θH(2, b)1−θ

|T0(F,G) : L2
tA1/a0

× L2
tA1/b′0

→ C| ≤ H(a0, b0) (5.1.5)

By interpolating (5.1.3) and (5.1.5), we get all pair of (a,b) in a neighbourhood of ( 1
r ,

1
r ), which have

|T0(F,G) : L2
tA1/a × L2

tA1/b′ → C| ≤ C
2
a+ 2

b
1 C

1− 1
a−

1
b

2 .
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For the general case, it’s same as the above proof. We need to consider three exponents:

(i) a = b =∞

(ii) 2 ≤ a < r, b = 2

(iii) 2 ≤ b < r, a = 2;

For case (i) We know

| < U(s)∗F (s), U(t)∗G(t) > | ≤ C
4
r
1 C

1− 2
r

2 |t− s|−1−β(r,r)‖F (s)‖A1/r
‖G(t)‖A1/r

Now we want to consider the Tj(F,G) =
∫
t−2j+1<s≤t−2j

< U(s)∗F (s), U(t)∗G(t) > dsdt.

Taking integral of (5.1.8), we get

|Tj(F,G)| ≤ C22j−jσ‖F‖L2
tA0
‖G‖L2

tA0
(5.1.6)

To prove (ii). By (5.1.4), we have

|Tj(F̃ , G̃)| ≤ C
2
a
1 C

1
2−

1
a

2 ‖F̃‖
L
q(a)′
t A1/a

C1‖G̃‖L1
tA1/2

= C
2
a+1
1 C

1
2−

1
a

2 ‖F̃‖
L
q(a)′
t A1/a

‖G̃‖L1
tA1/2

≤ C
2
a+1
1 C

1
2−

1
a

2 2
j( 1
q(a)′−

1
2 )‖F̃‖L2

tA1/a
‖G̃‖L2

tA1/2

≤ C
2
a+1
1 C

1
2−

1
a

2 2j(
1
2−σ( 1

2−
1
a ))‖F̃‖L2

tA1/a
‖G̃‖L2

tA1/2

The last inequality holds if we require q(a) ≥ 2. Repeating the same argument, we get

|Tj(F̃ , G̃)| ≤ C
2
b
1 C

1
2−

1
b

2 ‖F̃‖L1
tA1/2

C1‖G̃‖Lq(b)′t A1/b

= C
2
b+1
1 C

1
2−

1
b

2 ‖F̃‖L1
tA1/2

‖G̃‖
L
q(b)′
t A1/b

≤ C
2
b+1
1 C

1
2−

1
b

2 2
j( 1
q(b)′−

1
2 )‖F̃‖L2

tA1/2
‖G̃‖L2

tA1/b

≤ C
2
b+1
1 C

1
2−

1
b

2 2j(
1
2−σ( 1

2−
1
b ))‖F̃‖L2

tA1/2
‖G̃‖L2

tA1/b

The last inequality holds if we require q(b) ≥ 2. Taking the interpolation these two inequations, we get for

2 ≤ a0<r, 2 ≤ b0<r

|Tj(F̃ , G̃)| ≤ H̃(a, 2)θH̃(2, b)1−θ2j(1−θ)(
1
2−σ( 1

2−
1
b ))2θj(

1
2−σ( 1

2−
1
a ))
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×‖F̃‖L2A θ
a

+ 1−θ
2

‖G̃‖L2A 1−θ
b

+ θ
2

|Tj(F̃ , G̃)| ≤ H̃(a0, b0)2j(1−σ(1− 1
a−

1
b ))‖F̃‖L2

tA1/a0
‖G̃‖L2

tA1/b0
(5.1.7)

Let H̃(a, b) = C
2
a+ 2

b
1 C

1− 1
a−

1
b

2 . Then we set H̃(a, 2) = C
2
a+1
1 C

1
2−

1
a

2 ,H̃(2, b) = C
2
b+1
1 C

1
2−

1
b

2 . Let 1
a = 1−λ

a1
+

λ
a2
, 1
b = 1−λ

b1
+ λ

b2
.β(a, b) = σ − 1− σ

a −
σ
b . Then we know β(a, b) = β(a1, b1) + β(a2, b2). Since β(a, b) is an

affine form, then it can interpolate. Take C = max{C2
1 , C2}, by (5.1.6) and (5.1.7), we know


|Tj(F,G)| ≤ C2−jβ(∞,∞)‖F‖L2

tA0
‖G‖L2

tA0

|Tj(F,G)| ≤ C2−jβ(a0,b0)‖F‖L2
tA1/a0

‖G‖L2
tA1/b0

=⇒ |Tj(F,G)| ≤ C2−jβ(a,b)‖F‖L2
tA1/a

‖G‖L2
tA1/b

here ( 1
a ,

1
b ) is a neighbourhood of ( 1

r ,
1
r ).

One would hope that the

|T (F,G)| =
∑
j∈Z
‖Tj(F,G)‖ .

∑
j∈Z

2−jβ(r,r)‖F‖L2
tA 1

r

‖G‖L2
tA 1

r

. ‖F‖L2
tA 1

r

‖G‖L2
tA 1

r

.

However, β(1/r, 1/r) = 0 so the summation diverges. Therefore we have to slightly perturb the exponent

pair (r, r) by abstract real interpolation argument mentioned in the preliminary.

Lemma 5.7 (Endpoint estimate). If U(t) obeys (5.0.1) and (5.0.2), the estimate

|T (F,G) : L2
tA 1

r
× L2

tA 1
r
→ C| ≤ C5 (5.1.8)

holds for r = 2σ
σ−1 , σ > 1.

Proof. Thanks to triangle inequality, It suffices to show that

∑
|Tj(F,G)| . ‖F‖L2

tA 1
r

‖G‖L2
tA 1

r

.

Recall the definition of lqs given by (2.1.1). Then the above inequality is equivalent with the following:

T̃ : L2
tA1/r × L2

tA1/r → l01 is bounded. (5.1.9)
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By Lemma 5.6 there is a positive ε such that the map

T̃ : L2
tA1/a × L2

tA1/b → lβ(a,b)
∞

is bounded for all (a, b) in the neighbourhood Nε = {(a, b)|(1/a− 1/r)2 + (1/b− 1/r)2 ≤ ε2}. We carefully

choose three points (a, b) as follows: Suppose that a0 = b0 = 1/r + ε/3 and a1 = b1 = 1/r − 2ε/3, then

β(a0, b1) = β(a1, b0) 6= β(a0, b0). And the maps

T̃ : L2
tA1/a0

× L2
tA1/b0 → lβ(a0,b0)

∞

T̃ : L2
tA1/a0

× L2
tA1/b1 → lβ(a0,b1)

∞

T̃ : L2
tA1/a1

× L2
tA1/b0 → lβ(a1,b0)

∞

are bounded. By Theorem 2.7 (ii) we deduce that the map

T̃ : (L2
tA1/a0

, L2
tA1/a1

)η0,2 × (L2
tA1/b0 , L

2
tA1/b1)η1,2 → (lβ(a0,b0)

∞ , lβ(a0,b1)
∞ )η,1 (5.1.10)

is bounded, where η0 = η1 = 1
3 and η = η0 + η1. And we have (1− η)β(a0, b0) + ηβ(a0, b1) = β(r, r) = 0. If

we combine this with (5.1.10), then we get (5.1.9).

5.1.3 Inhomogeneous Strichartz estimates

We now want to estimate inhomogeneous Strichartz inequality(5.0.6). By Lemma 5.4, it suffices to prove

(5.0.8), i.e.

|T (F,G)| . ‖F‖
Lq
′
t A1/r′

‖G‖
Lq̃
′
t A1/r̃′

into three cases.

Sketch of the proof. Suppose that (q, r) and (q̃, r̃) are sharp σ-admissible. Observe that (∞, 2) is sharp

σ-admissible. By the definition of the bilinear form, we have

|T (F,G)| .
(

sup
t
‖
∫
s<t

(U(s))∗F (s)ds‖H
)
‖G‖L1

tA1/2
,

(i) If (q̃, r̃) = (0, 2) then we can use the homogeneous Strichartz estimate (5.0.5), we have the map

T : Lq
′

t A1/r′ × L1
tA1/2 is bounded;

(ii) If (q, r) = (0, 2), by symmetry we have the map T : L1
tA1/2 × Lq̃

′

t A1/r̃′ is bounded;
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(iii) If (q, r) = (q̃, r̃), it’s the homogeneous Strichartz estimate (5.0.7). Therefore we have T : Lq
′

t A1/r′ ×

Lq
′

t A1/r′ is bounded.

We interpolate between these three special cases we can obtain the result since ( 1
q ,

1
r ), ( 1

q̃ ,
1
r̃ ) and (0, 1

2 ) are

collinear.

Combining thess above three subsections, we get the Abstract Strichartz estimate theorem as follows:

Theorem 5.8 (Abstract Strichartz estimates). If U(t) obeys (5.0.1) and (5.0.2), then the estimates

‖U(t)f‖LqtA1/r
≤ C3‖f‖H

‖
∫

(U(s))∗F (s)ds‖H ≤ C3‖F‖Lq′t A1/r

‖
∫
U(t)(U(s))∗F (s)ds‖LqtA1/r′

≤ C4‖F‖
Lq̃
′
t A1/r̃

hold for all sharp σ-admissible exponent pairs (q, r), (q̃, r̃).

Remark 5.9. So a natural question comes whether strichartz estimates still hold in completely bounded norm

setting. Given the operator U(t) : H → L2(M) satisfies

‖U(t)f‖A1/2(M) ≤cb C1‖f‖H

‖U(s)(U(t))∗g‖A1(M) ≤cb C2|t− s|−σ‖g‖A0(M).

Then

‖U(t)f‖LqtA1/r

?
≤cb C3‖f‖H

However, the answer is negative. By the above conditions, we get

| < U(s)∗F (s), U(t)∗G(t) > | ≤ C2
1‖F (s)‖Sm2 A1/2

‖G(t)‖Sm2 A1/2

| < U(s)∗F (s), U(t)∗G(t) > | ≤ C2|t− s|−σ‖F (s)‖Sm2 A0
‖G(t)‖Sm2 A0

By interpolation, we know

| < U(s)∗F (s), U(t)∗G(t) > | ≤ C|t− s|−θσ‖F‖Sm2 Ar‖G(t)‖Sm2 Ar
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Then by the Hardy-Littlewood-Sobolev inequality, we have

|T (F,G)| ≤ C‖F‖Lq′ (Sm2 Ar)‖G‖Lq′ (Sm2 Ar)

However, q′<2<q, therefore, we fail to swap the Schatten-2 class with the Lq′ space. Therefore, the

technique we used above doesn’t work any more.

5.2 Application to PDE

In this section, we define an operator

U(t)(f) = eit∆f

on the Hilbert space H = L2(Rnθ ) and A1/r = Lr(Rnθ ).

Lemma 5.10. The operator U(t) has the following estimates:

(i) ‖U(t)f‖A1/2
. ‖f‖A1/2

(ii) ‖U(t)U(s)∗f‖A0
. |t− s|−n/2‖f‖A1

Proof. (i) follows from Plancherel’s theorem and (ii) is given in Example 3.17.

Combining Lemma 5.10 with Theorem 5.8, we get the following result:

Corollary 5.11. The operator U(t) on quantum euclidean space Rnθ has the Strichartz estimates:

‖U(t)f‖LqtA1/r
. ‖f‖A1/2

‖
∫
t>s

U(t)(U(s))∗F (s)ds‖LqtA1/r
. ‖F‖

Lq̃
′
t A1/r̃′

hold for all sharp n/2-admissible exponent pairs (q, r), (q̃, r̃).

Corollary 5.12. (q,r) and (q̃, r̃) are two pairs with sharp n/2-admissible conditons for n ≥ 1, r, r̃<∞. If u

is a (weak) solution to the problem


(i ∂∂t + ∆)u(t, x) = F (t, x), (t, x) ∈ [0, T ]×Rnθ

u(0, ·) = f
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for some data f, F and time 0<T<∞, then

‖u‖Lq([0,T ];A1/r) . ‖f‖A1/2
+ ‖F‖Lq̃′ ([0,T ];A1/r̃′ )

.

Proof. Accoring to [KT98], the Schrödinger problem can by solved as follows:

u = Sf − iGF

with S(t)(f) = χ[0,T ]U(t)f and GF (t) =
∫
t>s

χ[0,T ](t, s)U(t)U(s)∗F (s)ds. Then by applying above Corollary

5.11, we obtain

‖u‖Lq([0,T ];A1/r) ≤ ‖S(t)f‖Lq([0,T ];A1/r) + ‖GF‖Lq([0,T ];A1/r)

= ‖χ[0,T ](t)U(t)f‖Lq([0,T ];A1/r) + ‖χ[0,T ](t)

∫
t>s

U(t)U(s)∗F (s)ds‖Lq([0,T ];A1/r)

. ‖f‖A1/2
+ ‖F‖Lq̃′ ([0,T ];A1/r̃′ )

.
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[CL17] Vladimir Chilin and Semyon Litvinov. Individual ergodic theorems in noncommutative orlicz
spaces. Positivity, 21(1):49–59, 2017.

[CM93] Michael Cowling and Stefano Meda. Harmonic analysis and ultracontractivity. Transactions of
the American Mathematical Society, 340(2):733–752, 1993.

[Con00] Alain Connes. Noncommutative geometry year 2000. In Visions in Mathematics, pages 481–559.
Springer, 2000.

[Cow83] Michael G Cowling. Harmonic analysis on semigroups. Annals of Mathematics, pages 267–283,
1983.

[CXY13] Zeqian Chen, Quanhua Xu, and Zhi Yin. Harmonic analysis on quantum tori. Communications
in Mathematical Physics, 322(3):755–805, 2013.

[CZ52] Alberto P Calderón and Antoni Zygmund. On the existence of certain singular integrals. Acta
Mathematica, 88(1):85, 1952.

[DDPSS98] Peter G Dodds, B De Pagter, EM Semenov, and FA Sukochev. Symmetric functionals and
singular traces. Positivity, 2(1):47–75, 1998.

[ER00] Edward G Effros and Zhong-Jin Ruan. Operator spaces, volume 23 of london mathematical
society monographs. new series. The Clarendon Press Oxford University Press, New York, 8:29–
32, 2000.

[FK86] Thierry Fack and Hideki Kosaki. Generalized s-numbers of τ -measurable operators. Pacific
Journal of Mathematics, 123(2):269–300, 1986.
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