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Abstract

Chapter 1: Cognitive diagnosis models (CDMs) are restricted latent class models designed to

assess test takers’ mastery on a set of skills or attributes. With a wide range of applications in

education and in psychopathology, various CDMs have been proposed and fitted to response

data from different scenarios. Recently, Xu (2017) derived sufficient conditions for identifying

model parameters of a restricted latent class model, which generalizes many existing CDMs.

We propose a Bayesian estimation algorithm for this restricted latent class model. The

model is applied to the Examination for the Certificate of Proficiency in English language

assessment data (e.g. Henson & Templin, 2007).

Chapter 2: There has been a growing interest in measuring students’ growth over time.

CDMs were traditionally used to measure students’ skill mastery at a static time point,

but recently, they have been used in many longitudinal models to track students’ changes

in skill acquisition over time. In this chapter, we propose a longitudinal learning model,

where different kinds of skill hierarchies were considered, and the reduced-reparameterized

unified model (r-RUM) or the noisty input, deterministic-“and”-gate (NIDA) model is used

to measure students’ skill mastery at each time point. This model is fitted to the Spatial

Rotation data set (e.g., S. Wang, Yang, Culpepper, & Douglas, 2016), and different models

were compared using Bayesian model comparison methods.

Chapter 3: The increased popularity of computer-based testing has enabled researchers to

collect various types of process data, including response times. Extensive research has been

conducted on the joint modeling of response accuracy and response times. Recent research

on CDMs begins to explore the relationship between speed and accuracy to understand
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students’ fluency of applying the mastered skills, in addition to mastery information, in a

learning environment. In this chapter, we propose a mixture hidden Markov Diagnostic

Classification Model framework for learning with response times and response accuracy.

Such a model accounts for the heterogeneities in learning styles among students by modeling

the different learning and response behaviors among subgroups. The proposed model is

evaluated through a simulation study in terms of parameter recovery.

Chapter 4: We introduce an R package, hmcdm, that can be used to fit several longitudinal

models for learning under the cognitive diagnosis framework. The package allows users to

simulate item responses (and response times if applicable) under several learning models,

to fit the models using Markov Chain Monte Carlo (MCMC) methods, to compute point

estimates of parameters based on the MCMC samples, and to evaluate and compare different

models using Deviance Information Criterion and posterior predictive probabilities.
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Chapter 1

Bayesian Estimation of Restricted
Latent Class Models

1.1 Introduction

Cognitive diagnosis models (CDMs; Rupp, Templin, & Henson, 2010) are restrictive latent

class models (RLCMs) measuring test-takers’ underlying attribute, or skill patterns, based

on their responses to test items. CDMs could be used in the education context to identify

students’ strengths and weaknesses in learning, providing guidance for personalized, tar-

geted instruction and support. In the psychopathological context CDMs could be applied to

estimate the test takers’ underlying pattern of symptoms, helping diagnosis to design treat-

ments. With a broad range of practical implications, various CDMs have been proposed by

previous researchers (e.g., Junker & Sijtsma, 2001; de la Torre, 2011; Henson, Templin, &

Willse, 2009; von Davier, 2008) to model different relationships between responses to items

and test takers’ underlying attribute patterns.

For any model, identifiability needs to be established as a prerequisite to the estimation

and inference of the model parameters. In fact, several studies (e.g., see Chen, Liu, Xu,

& Ying, 2015; Xu & Zhang, 2016) have established identifiability conditions for the more

restrictive deterministic input, noisy-“and”-gate (DINA, Junker & Sijtsma, 2001) model.

More recently, Xu (2017) proposed a set of sufficient conditions to ensure identifiability

of restricted latent class models (RLCMs) for dichotomous responses. Xu’s identifiability

constraints involve restrictions on the item parameters and the Q-matrix, and he showed

that many of the previously developed CDMs are special cases of the RLCM.

We propose a Bayesian modeling framework for the RLCM and introduce a Gibbs sam-
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pling algorithm that jointly estimates the item, examinee, and population class parameters

based on an observed response matrix. Such an estimation algorithm for this general set

of CDMs could be highly applicable for item calibrations where assumptions behind more

restrictive models are not satisfied. Furthermore, by including additional restrictions to the

parameters, the RLCM could be made equivalent to the more restrictive and interpretable

models, and thus the proposed estimation algorithm could serve as a versatile tool in model

selection, where a test developer can start from fitting the most relaxed model and gradually

move on to more restricted and interpretable ones.

In this chapter, we provide a brief introduction to cognitive diagnosis models and model

identifiability, introduce the general class of restricted latent class models proposed in Xu

(2017), and re-state the theorems on the identifiability of the RLCM parameters. A few

examples of commonly used CDMs will be demonstrated to show how they satisfy Xu’s

identifiability restrictions. A Bayesian model set-up for the class of RLCMs satisfying the

identifiability constraints will be presented. We derive the model parameter full conditional

distributions for a Gibbs sampling algorithm. The results from a simulation study conducted

to evaluate the performance of the proposed estimation routine under different conditions

are reported. And lastly, we conduct an empirical study using the Examination for the

Certificate of Proficiency in English (ECPE) language assessment data (Henson & Templin,

2007; Templin & Hoffman, 2013) and compare model estimates between the RLCM and the

reduced reparametrized unified model (rRUM, Hartz, 2002).

1.2 Xu’s (2017) Restricted Latent Class Model

This section discusses Xu’s (2017) RLCM. The first subsection introduces the RLCM and

outlines the sufficient conditions to ensure model identifiability. The second subsection dis-

cusses how several existing CDMs are special cases of the RLCM, and the third subsection

describes the Bayesian formulation and Gibbs sampler for approximating the posterior dis-
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tribution.

1.2.1 The RLCM

CDMs are concerned with classifying individuals as either masters or non-masters on a set of

attributes. Throughout the following discussion we denote {1, 2, . . . , D} by [D]. Let k ∈ [K]

index attributes and i ∈ [N ] index individuals. The binary attribute pattern for individual

i is αi = [αi1, . . . , αiK ] where αk = 1 if the test-taker has mastered the kth attribute, and

αk = 0 otherwise. CDMs assume that αi underlies performance on a collection of binary

tasks/items. Specifically, let Xi = [Xi1, . . . , XiJ ] denote individual i’s observed response

vector for j ∈ [J ] where Xij is one for correct responses and zero otherwise. Furthermore,

the probability of responding “1” on Xij is a function of test taker’s attribute profile and the

requisite attributes required for item j. In other words, CDMs require a J × K Q matrix

where Qjk = 1 if correctly responding to item j is related to the mastery of attribute k, and

Qjk = 0 otherwise.

Under the RLCM, the model for the jth response for individual i with attribute pattern

αi = αc is,

Xij |(αi = αc,Θ) ∼ Bernoulli(θαc,j), (1.1)

where θαc,j is the correct response probability to item j, given attribute pattern αc. Let the

matrix of item by attribute class matrix Θ be defined as,

Θ =


θα1,1 . . . θαC ,1

...
. . .

...

θα1,J . . . θαC ,J

 .

An immediate observation is that the RLCM admits at most 2K distinct response proba-

bilities for items with Qjk = 1 for all k. As discussed in the next section, some restrictions

must be placed upon Θ to ensure model identifiability.
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1.2.2 Identifiability of CDMs and Xu’s Sufficient Conditions

Unrestricted latent class models with binary responses are not in general identifiable (Lazarsfeld,

1950), thus for any restricted latent class model, such as CDMs, identifiability needs to be

established before proceeding to model estimation and inferences. We say a vector of pa-

rameters β from a family of distributions f(x | β), β ∈ B is identifiable if the parameters β

that can generate probability density function f(x | β) is unique. In other words, for any

β, β′ ∈ B, f(x | β) = f(x | β′) for ∀x only if β = β′ (Xu, 2017). Without model identi-

fiability, given any observed data, two different sets of model parameters can generate the

same likelihood, thus an unique estimate for the parameters could not be obtained. It can

also be shown that model identifiability is a necessary condition for estimation consistency

(Gabrielsen, 1978).

Several previous studies have looked into the conditions under which specific CDMs

could be identifiable. Chiu, Douglas, and Li (2009) proved that under the DINA model when

the item parameters are known, having a complete Q-matrix (i.e., having at least one item

measuring each attribute and that attribute only) is the sufficient and necessary condition

for the identifiability of the membership probabilities for attribute classes in the population.

Xu and Zhang (2016) further showed that when the item parameters are unknown for the

DINA model, a more restrictive Q-matrix structure would be sufficient to guarantee the

identifiability of the item and population parameters.

Xu (2017) recently extended the sufficient conditions for identifiability for the DINA

model to more general restrictive latent class models. In other words, he showed that the

item parameters, Θ, and the population membership probabilities of the attribute classes,

π, are identifiable if restrictions are placed on the item parameters Θ and the Q-matrix

structure (see Xu, 2017, for a proof and examples). Let qj denote the jth row of Q and note

that α � qj represents αk ≥ qjk, for all k, let ek denote the unit vector with 1 on the k−th

entry and 0 elsewhere, and let α′ � qj represent αk < qjk for some k. Three restrictions

must be in place to ensure model identifiability:
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• θq,j = max
α:α�qj

θα,j = min
α:α�qj

θα,j ≥ θα′,j ≥ θ0,j,∀ α′ � qj.

• For all k and j: qj = ek, θ1,j > max
α:α�ek

θα,j.

• After row permutations, the Q-matrix should be of the form


IK

IK

Q′

 ,

where IK are K ×K identity matrices.

• Q′ satisfies that for ∀k ∈ [K], there exists item j in Q′, such that θek,j > θ0,j.

Intuitively, the first restriction implies that: 1) θq,j is the probability of responding “1” to

item j for all attribute patterns with the required attributes; 2) θq,j should be greater than

any other attribute pattern α′ lacking any of the required attributes; and 3) the probability of

responding “1” for α = 0 should not be greater than that for any other attribute patterns.

The second constraint implies that for items requiring only attribute k that the correct

response probability for any class missing attribute k is strictly lower than that for any

other pattern with attribute k. The third constraint implies that for each attribute, there

exists at least two items measuring that attribute only. The fourth constraint indicates there

needs to be at least one additional item for each attribute, such that the correct response

probability on that item is strictly higher for someone with that attribute only than those

with none.

1.2.3 Special Cases

If we regard the RLCMs satisfying the identifiability restrictions above as a general model,

many existing CDMs could be seen as cases, thus satisfying the identifiability restrictions.

We provide a few examples in this subsection.
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A commonly used conjunctive CDM is the DINA model (Junker & Sijtsma, 2001),

where examinee i needs to master all attributes required by item j to answer correctly with

probability (1− sj), and missing any required attributes for this item will result in a correct

response probability of gj < 1− sj, in other words,

P (Xj = 1 | αi) = (1− sj)ηijg1−ηij
j , (1.2)

where ηij =
∏K

k=1 α
qjk
ik . Under the DINA model, correct response probability of the all-zero

class, along with that of any attribute pattern missing 1 or more required attributes, is

gj, and this probability is strictly lower than 1 − sj, the probability of correct response for

αc � qj. Thus the identifiability constraints of the RLCM are satisfied.

A disjunctive alternative to the DINA model is the deterministic input, noisy-“or”-

gate (DINO) model (Templin & Henson, 2006), where only one of the required attributes

for item j is needed for the correct response probability of (1 − sj), and for those without

any of the required attributes, the probability of correct response is gj. In this case ηij =

1 −∏K
k=1(1 − αik)qik . We could also verify that the identifiability restrictions are satisfied,

with the all-zero class and any pattern lacking any of the required attributes having lowest

correct response probability of gj, and the rest having highest correct response probability

for 1− sj.

Other more general models, such as the rRUM (Hartz, 2002), also satisfy the RLCM

identifiability constraints. Under the rRUM model, the correct response probability is

P (Xj = 1 | αi) = π∗j

K∏
k=1

r
qjk(1−αik)

jk .

In other words, the probability of responding “1” is π∗j for someone with all attributes

required by the item and a penalty rjk ∈ [0, 1] is assigned for lacking attribute k if k is

required by item j. The all-zero class hence lacks the largest number of required attributes

and has lowest correct response probability, the chance of a correct response increases with
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the number of mastered attributes required by the item, and it is highest when all required

attributes are acquired, satisfying the RLCM identifiability constraints.

More general cognitive diagnosis modeling frameworks were also proposed, where spe-

cific models such as DINA, DINO, and the rRUM are special cases. For instance, under the

generalized-DINA model (de la Torre, 2011),

P (Xj = 1 | αi) = δj0+
∑

∀k:qjk=1

δjkαik+
∑

∀k:qjk=1

∑
∀k′:qjk′=1,k′>k

δjkk′αikαik′+. . .+δjkk′k′′...
∏

k:qjk=1

αik,

with δj0 > 0 as the intercept (probability of responding “1” with all-zero attribute pattern),

δjk as the main effects (increase in correct response probability) of having attribute k required

by the item, and δjkk′... as the interactions between attributes k, k′, . . . required by item j,

i.e. the increase in correct response probability by simultaneously mastering these attributes.

When the main effects and interactions are free to vary, the G-DINA model is not a special

case of the RLCM. However, under the assumption that all the δs are non-negative, the

parameters of the G-DINA model are identifiable according to the theorem by Xu (2017).

Another example is the loglinear-CDM (L-CDM, Henson et al., 2009), with

logitP (Xj = 1 | αi) = −ηj +
K∑
k=1

λjk(αikqjk) +
K∑
k=1

∑
k′>k

λjkk′(αikqjkαik′qjk′) + . . . .

One could see that similar to the G-DINA model, the L-CDM also involves the interactions

between the attributes required by j in terms of their effects on the probability of responding

“1”. For identifiability purposes, Henson et al. (2009) suggested imposing a monotonicity

assumption, such that mastering any additional skills results in non-decreasing correct re-

sponse probability. Under this constraint, the L-CDM is a special case of the RLCM, hence

the parameters’ identifiability is ensured.
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1.2.4 Bayesian Formulation

In this subsection we present a Bayesian formulation for RLCMs satisfying Xu’s (2017)

identifiability restrictions. Under the proposed formulation, the full conditional distributions

of the model parameters are analytically tractable, thus enabling the implementation of

a Gibbs sampling algorithm for estimation. Previously, Culpepper (2015) introduced a

Bayesian formulation of the DINA model allowing the use of Gibbs sampling for parameter

estimation. Compared to previous estimation methods with Metropolis-Hastings sampling,

where the tuning parameters need to be manually set and adjusted for each data set, Gibbs

sampling can demonstrate advantages in both computational efficiency and convenience in

applications.

Our formulation for the RLCM assumes that item response function (IRF) follows Equa-

tion 1.1. Similar to Culpepper (2015), we assume that the prior probability that examinee

i has attribute pattern αi is

P (αi|π) =
2K∏
c=1

πI(αi=αc)
c , (1.3)

where I(·) is the indicator function, πc = P (αi = αc) is the probability of having attribute

pattern αc in the population, and the prior for π =

[
π1 . . . πC

]
is

π ∼ Dirichlet(δ01, . . . , δ0C), (1.4)

where C = 2K .

For the item parameters, we assume that each θ follows a truncated Beta prior distri-

bution. In particular,

θα,j ∼


Beta(a, b)I(θ0,j < θα,j < θq,j) α � qj,

Beta(a, b)I(θα,j = θq,j > maxα′�qj θα′,j) α � qj.

(1.5)

where θq,j = minα�qj θα,j. Note that the support for the prior distributions of the θ’s imposes
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Xu’s model identifiability constraints.

Full Conditional Distributions

Let Xi = (Xi1, . . . , XiJ)′ be the observed responses for individual i and α = (α1, . . . ,αN)′.

Then, given the examinees’ responses to the J items,X = (X1, . . . ,XN)′, the full conditional

distributions of the parameters follow:

1. For α :

P (αi = αc |Xi,π,Θ) =

∏J
j=1 θ

xij
αc,j

(1− θαc,j)1−xijπc∑C
c=1

∏J
j=1 θ

xij
αc,j

(1− θαc,j)1−xijπc
. (1.6)

2. For π :

π | α,Θ,X = π | α (1.7)

∼ Dirichlet(δ01 +
N∑
i=1

I(αi = α1), . . . , δ0C +
N∑
i=1

I(αi = αC)).

3. For elements of Θ:

θα,j | α,X,π ∼ (1.8)
Beta(a+

∑
i:αi=α

Xij, b+
∑

i:αi=α

(1−Xij))I(θ0,j < θα,j < θq,j), if α � qj;

Beta(a+
∑

i:αi�qj
Xij,

∑
i:αi�qj

(1−Xij))I(maxα′�qj θα′,j < θα,j = θq,j), if α � qj.

With analytically tractable full conditional distributions of all parameters, a Bayesian

Gibbs sampling algorithm could be used for parameter estimation. The Gibbs sampler starts

with specifying the initial values, α
[0]
i for each i, π[0], and Θ[0]. Based on the response matrix,

X, the full conditional distributions of π, α’s, and Θ are then updated in each iteration,

and one sample of each is obtained. Specifically, the following procedures are taken in the

tth iteration:
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• For each subject, obtain α
[t]
i from the multinomial distribution, with class probabilities

according to equation (4) conditioned upon Θ[t−1],π[t−1], and Xi.

• Sample π[t] from the Dirichlet full conditional distribution in equation (5) given α
[t]
i ’s.

• For each item j and each attribute class αc with unique correct response probability,

obtain θαc,j from the full conditional distribution in equation (6) based on α
[t]
i ’s and

X.

The random initial values for θ’s are set to satisfy the model constraints for identifia-

bility, and to satisfy the restriction that

max
α:α�qj

θα,j = min
α:α�qj

θα,j = θq,j,

within each iteration and for each item. Note that θq,j was sampled only once and set to the

same value for any α � qj.

1.3 Simulation Studies

The performance of the proposed Gibbs sampler is evaluated in a simulation study in terms

of accuracy, efficiency, computational intensity, and convergence. Three factors were consid-

ered, generating a total of 12 combinations of factors:

• Number of attributes: K = 3 or 4;

• Tetrachoric correlation between attributes: ρ = 0 or .5;

• Sample size: N = 500, 1000, or 2500.

1.3.1 True parameter generation

We generated 50 replications for each condition using separately generated true α’s, Θ,

Q-matrix, and response matrix. In each repetition, a random Q-matrix including J =

10



2× (2K−1) items was generated. To ensure that the randomly generated Q-matrices satisfy

the requirements for identifiability, three identity matrices were included in the Q-matrix,

so that for each attribute, there are at least 3 items measuring that attribute only. The rest

of the rows of the Q-matrix are randomly sampled from possible attribute patterns, except

[0, 0, . . . , 0].

In order to examine the performance of the Gibbs sampler the true item parameters were

randomly generated to satisfy the identifiability constraints for the RLCM. More specifically,

the following steps were taken to generate the true θ’s for each item j:

• Randomly sample θq,j from Beta(15, 3) and set θα,j = θq,j for all α � qj;

• Randomly sample θ0,j from truncated Beta(1.5, 15), with the restriction that θ0,j < θq,j

for α � qj;

• For each non-zero α′ � qj, randomly sample θα′,j from truncated Beta(5, 5) restricted

to the range (θ0,j, θq,j).

The true attribute patterns of the examinees were randomly generated using similar

procedures as Chiu and Köhn (2015). Specifically, for subject i, a K-dimensional multivari-

ate normal latent trait Zi was first generated from NK(0,Σ), where the diagonal entries of

Σ are 1, and the off-diagonal entries are ρ = 0 or .5. Next, αik = I(Zik ≥ Φ−1( k
K+1

)) was

obtained for each k, giving the true attribute pattern of subject i, αi.

1.3.2 Parameter Estimation

The prior distribution of the population membership probabilities, π, was set to be Dirichlet(1),

and each of the correct response probabilities, θα,j, was assigned to follow prior distribution

of Beta(1, 1). To start the Gibbs sampler, initial values were assigned to Θ, αi’s, and π.

In particular, the initial item parameters, θ
[0]
α,j, were randomly sampled following the same
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procedures of generating the true item parameters, so that they satisfy the identifiability

constraints for the RLCM. Each entry of the initial attribute patterns for the examinees,

α
[0]
i , for each individual i, was randomly sampled from Bernoulli(.5). The initial values of

the population membership probabilities, π[0], were generated from the Dirichlet distribution

with δ01 = . . . = δ0C = 1. Then, the MCMC algorithm was executed following the procedures

formerly described.

The algorithm terminates after all T iterations, and the last 10, 000 iterations were cho-

sen as the post burn-in samples for parameter estimation. The expected a posteriori (EAP)

estimate of the item parameters and the population proportions, as well as the maximum

a posteiori (MAP) estimate of the individuals’ attribute patterns, were taken as the point

estimates of the item, population membership, and examinee attribute pattern parameters.

The Gibbs sampling algorithm mentioned above for parameter estimation were written in

C++ and were deployed in R via the Rcpp package (Eddelbuettel et al., 2011).

To determine the number of iterations needed for the Markov chain to converge, T ,

we first evaluated the convergence as a function of number of iterations for the most com-

putationally intensive condition, in other words, N = 2500, K = 4, and ρ = .5. Based on

the same response matrix, 5 separate chains of the Gibbs Sampler were run, with different

starting values. For both Θ and π, the Brooks-Gelman multivariate scale reduction factor,

R̂ (Brooks & Gelman, 1998), was computed for chain lengths of 20000 to 50000 at increments

of 500, with 10000 post-burn-in iterations. The code for computing the Brooks-Gelman di-

agnostic statistic can be found in the coda package in R (Plummer, Best, Cowles, & Vines,

2006). Figure 1.1 shows the progression of the R̂ statistic as a function of the number of

iterations for MCMC sampling. The multivariate R̂ statistic decreased to around 1.2 after

approximately 35000 iterations. Thus, the simulation study used 35000 MCMC cycles with

25000 as the burn-in.
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Figure 1.1: Brooks-Gelman R̂ for the convergence of Θ and π in 5 chains, under the condition

of N = 2500, K = 4, ρ = .5. Horizontal line represents the R̂ = 1.2 cutoff that is commonly

used as a threshold for parameter convergence.

1.3.3 Evaluation Criteria

We evaluate the performance of the proposed Gibbs sampling algorithm in terms of pa-

rameter recovery and computational efficiency. For each distinct true item parameter in

each repetition, θα,j, we calculate the bias and root-mean-square deviation of the parameter

estimate using

Bias(θ̂α,j) = θ̂α,j − θα,j,

RMSE(θ̂α,j) =

√∑T
t=Tburn+1(θ̂

[t]
α,j − θα,j)2

T − Tburn
,

where θ̂α,j is the EAP estimate of the item parameter, and θ̂
[t]
α,j is the sample for the item

parameter in the tth iteration of the MCMC algorithm.

Similarly, for each repetition, the bias and RMSE were computed for each population
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probability estimate, π̂. We thus computed the bias and RMSE of the π samples obtained

from the MCMC cycles using the values implied by the multivariate probability as the true

π.

The estimation accuracy of the examinees’ attribute patterns were evaluated in terms

of the Attribute-wise Agreement Rate (AAR) and the Pattern-wise Agreement Rate (PAR),

given by

AAR =

∑N
i=1

∑K
k=1 I(αik = α̂ik)

N ×K , and

PAR =

∑N
i=1 I(αi = α̂i)

N
.

Finally, to evaluate the computational efficiency of the proposed algorithm, for each

simulation condition, the computation time for 35000 iterations of the MCMC algorithm on

a PC laptop with Intel Core i7 CPU 2.60 GHz processor and 8GB RAM was recorded.

1.3.4 Results

In Figures 1.2 and 1.3, we present the bias and RMSE of item parameter estimates when

K = 3. Results for different sample sizes and attribute correlations are shown in separate

grids. The x-axis on each plot represents the Q-matrix loadings, qj, of an item, where

the dots, from bottom to top, denote attribute 1, 2, and 3, respectively, with a solid black

dot indicating the item requiring that attribute (hollow otherwise). The y-axis in Figure

1.2 represents the averaged bias of item parameter estimates, where across repetitions and

across all items with same Q-matrix loadings, the bias for elements of Θ̂ are collapsed for

each αc configuration. Similarly for the RMSEs in Figure 1.3. As we have mentioned above,

for each item, the correct response probabilities, elements of Θ̂ can be categorized into three

groups based on the type of skill mastery pattern, namely people who have not acquired

any attributes (i.e., α = 0), people who have not acquired all skills required by item j (i.e.,

α � 0 and α � qj), and people who have acquired all skills required by the item (i.e.,

α � qj). These three types of item parameters for each item are represented with different
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shapes on the bias and RMSE plots (cross, hollow dot, and solid dot, respectively).
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Figure 1.2: Bias of item parameter (i.e., elements of θ) estimates across repetitions when the
number of attributes is K = 3. Note. The three different plotting characters item parameters
for three groups based on the type of skill mastery pattern: a cross denotes parameters for
the class without any attributes (i.e., α = 0); a hollow dot represents classes that do not
have all required attributes (i.e., α � 0 and α � qj); and a solid dot indicates classes that
have all requisite skills (i.e., α � qj).

Overall, the proposed estimation procedures have accurately recovered the true item

parameters across all of the simulation conditions, with bias close to zero and RMSE below
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Figure 1.3: RMSE of item parameter (i.e., elements of θ) estimates for K = 3. Note. The
three different plotting characters item parameters for three groups based on the type of
skill mastery pattern: a cross denotes parameters for the class without any attributes (i.e.,
α = 0); a hollow dot represents classes that do not have all required attributes (i.e., α � 0
and α � qj); and a solid dot indicates classes that have all requisite skills (i.e., α � qj).

0.2 for almost all elements of Θ̂. Whereas the averaged bias and RMSE for item parameters

associated with αc � qj and αc = 0 were all very close to 0, a few item parameter estimates

associated with 0 ≺ αc � qj had larger deviations from the true values and larger RMSEs.
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After manually inspecting the item parameter bias of a few repetitions, we infer that this

is likely because some of the α classes, such as α = [0, 0, 1] and [0, 1, 1], have very small

sample sizes due to how we generated the true α. Consistent with previous studies we observe

smaller bias and RMSE for items with simple Q-matrix loadings. A slight decrease in bias

and RMSE was seen as we increased the sample size. However, the estimation accuracy

and efficiency of certain item parameters with αc � qj did not improve significantly with

larger sample sizes, as the attribute classes with near zero implied membership probabilities

still have expected sample size below 25 even for N = 2500. The bias in item parameter

estimates seemed slightly lower when ρ = .5 than when the attributes are independent.

Figures 1.4 and 1.5 present the bias and RMSE of Θ̂ when K = 4. We note here

that the number of items J , was equal to 2 × (2K − 1) and hence varied across different

K’s, thus the results from the K = 4 condition is not directly comparable to when K = 3.

When K = 4, the estimation algorithm demonstrated similar performance to when K = 3.

One difference we could observe from the figures is that when K = 4, the item parameters

associated with αc � qj, represented by solid dots, tend to be consistently overestimated,

with positive bias between 0 and .05. This positive bias is more obvious for items with

complex Q-matrix loadings and for small sample sizes, and it gradually fades away as the

sample size increases.

The bias and RMSE of the estimation of population membership probabilities, π, are

presented in Figures 1.6 and 1.7 for K = 3, and in Figures 1.8 and 1.9 for K = 4. The

x-axis represents the attribute pattern, αc, and from bottom to top, the dots represent

attributes 1 to K, with hollow dots indicating αk = 0 (solid otherwise). The y-axis denotes

the averaged-across-repetitions bias of π estimates associated with that attribute pattern.

Under all simulation conditions we observed bias and RMSE of the π estimates close to zero,

suggesting high recovery of the true population membership probabilities. When K = 3 and

N = 500, the absolute bias and RMSE for π̂c was larger for αc = [1, 0, 0] and αc = [1, 1, 0],

where the averaged bias equaled −.05. This is likely due to the low implied membership
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Figure 1.4: Bias of item parameter (i.e., elements of θ) estimates for K = 4. Note. The
three different plotting characters item parameters for three groups based on the type of
skill mastery pattern: a cross denotes parameters for the class without any attributes (i.e.,
α = 0); a hollow dot represents classes that do not have all required attributes (i.e., α � 0
and α � qj); and a solid dot indicates classes that have all requisite skills (i.e., α � qj).

probabilities for these two patterns, both of which are below .01. However, as sample size

increases and in the case of K = 4 (with more items), this bias gets close to zero. Similar to

item pameter estimation, we observed smaller bias and lower RMSE for π̂c when αc is “1”
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Figure 1.5: RMSE of item parameter (i.e., elements of θ) estimates for K = 4. Note. The
three different plotting characters item parameters for three groups based on the type of
skill mastery pattern: a cross denotes parameters for the class without any attributes (i.e.,
α = 0); a hollow dot represents classes that do not have all required attributes (i.e., α � 0
and α � qj); and a solid dot indicates classes that have all requisite skills (i.e., α � qj).

on one attribute only. And finally, we did not find any consistent differences for ρ = 0 and

ρ = .5.

The forth and fifth columns of Table 1 present the accuracy of attribute pattern αi es-
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Figure 1.6: Bias for population membership probability (π) estimates when K = 3.

timates for the simulated respondents, in terms of averaged-across-repetitions attribute-wise

agreement rate (AAR) and pattern-wise agreement rate (PAR). The proposed estimation

routine for the RLCM achieved over 87% of attribute entry recovery and over 70% of whole

pattern recovery of the simulated subjects for K = 3. And for K = 4, because the number

of items is larger, the accuracy was even higher, achieving over 90% for attribute entries re-

covery and over 72% for pattern recovery across all simulation conditions. We also observed
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Figure 1.7: RMSE for population membership probability (π) estimates when K = 3.

that the AAR and PAR were higher for larger sample sizes, which is potentially due to the

increase in item parameter estimation accuracy, and when the attributes are correlated.

The last column of Table 1.1 summarizes the computation time in seconds for 35000

MCMC chains in each of the simulation conditions, on a personal laptop with Intel i7-4510U

CPU and 8GB RAM. We can see that for the simpler conditions, such as when K = 3

and N = 500 or 1000, the algorithm terminated after slightly more than 2 minutes. The
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Figure 1.8: Bias for population membership probability (π) estimates when K = 4.

computation time increases as the sample size, item number, and number of attributes

increase, but even for the most computational intensive condition, where K = 4, N = 2500,

and J = 30, the algorithm terminated after around 44 minutes. Given the flexibility of the

model and the large number of free parameters to be estimated, we believe that the proposed

Gibbs sampler could accurately recover the underlying model parameters with a manageable

computation time.

22



0.00

0.02

0.04

0.06

0.08

0.10

◦◦
◦

◦◦
•

◦•
◦

◦•
•

•◦
◦

•◦
•

••
◦

••
•

◦◦
◦

◦◦
•

◦•
◦

◦•
•

•◦
◦

•◦
•

••
◦

••
•

αc

[ ]

N
=

5
0
0

R
M
S
E

ρ = 0

0.00

0.02

0.04

0.06

0.08

0.10

◦◦
◦

◦◦
•

◦•
◦

◦•
•

•◦
◦

•◦
•

••
◦

••
•

◦◦
◦

◦◦
•

◦•
◦

◦•
•

•◦
◦

•◦
•

••
◦

••
•

αc

[ ]

R
M
S
E

ρ = 0.5

0.00

0.02

0.04

0.06

0.08

0.10

◦◦
◦

◦◦
•

◦•
◦

◦•
•

•◦
◦

•◦
•

••
◦

••
•

◦◦
◦

◦◦
•

◦•
◦

◦•
•

•◦
◦

•◦
•

••
◦

••
•

αc

[ ]

N
=

10
00

R
M
S
E

0.00

0.02

0.04

0.06

0.08

0.10

◦◦
◦

◦◦
•

◦•
◦

◦•
•

•◦
◦

•◦
•

••
◦

••
•

◦◦
◦

◦◦
•

◦•
◦

◦•
•

•◦
◦

•◦
•

••
◦

••
•

αc

[ ]

R
M
S
E

0.00

0.02

0.04

0.06

0.08

0.10

◦◦
◦

◦◦
•

◦•
◦

◦•
•

•◦
◦

•◦
•

••
◦

••
•

◦◦
◦

◦◦
•

◦•
◦

◦•
•

•◦
◦

•◦
•

••
◦

••
•

αc

[ ]

N
=

25
00

R
M
S
E

0.00

0.02

0.04

0.06

0.08

0.10

◦◦
◦

◦◦
•

◦•
◦

◦•
•

•◦
◦

•◦
•

••
◦

••
•

◦◦
◦

◦◦
•

◦•
◦

◦•
•

•◦
◦

•◦
•

••
◦

••
•

αc

[ ]

R
M
S
E

Figure 1.9: RMSE for population membership probability (π) estimates when K = 4.

1.4 Application: Examination for the Certificate of

Proficiency in English

In this section we present the results for fitting the RLCM to the Examination for the Cer-

tificate of Proficiency in English (ECPE) data set (Henson & Templin, 2007; Templin &

Hoffman, 2013), which could be obtained from the cdm package in R (George, Robitzsch,
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Table 1.1: Attribute-wise Agreement Rate (AAR), Pattern-wise Agreement Rate (PAR),
and computational Time of the RLCM Gibbs Sampler for Values of K, ρ, and N .

K ρ N AAR PAR Time (sec)
3 0 500 0.876 0.701 125.22
3 0.5 500 0.882 0.714 129.98
3 0 1000 0.888 0.726 243.66
3 0.5 1000 0.889 0.729 132.63
3 0 2500 0.893 0.738 463.35
3 0.5 2500 0.895 0.744 468.66
4 0 500 0.905 0.721 693.81
4 0.5 500 0.905 0.724 704.82
4 0 1000 0.917 0.755 1101.42
4 0.5 1000 0.920 0.766 1187.02
4 0 2500 0.924 0.779 2499.27
4 0.5 2500 0.924 0.780 2641.05

Kiefer, Groß, & Ünlü, 2016). The ECPE data was collected from a large-scale English

language assessment using cognitive diagnosis models, and it contains 2922 examinees’ di-

chotomous responses to 28 items. Three attributes, namely morphosyntactic rules, cohesive

rules, and lexical rules, and the 28× 3 Q-matrix were identified by content experts.

We fit both the RLCM and the rRUM (Hartz, 2002) to the ECPE response data. The

rRUM model is a multiplicative model, where lacking each required attribute introduces a

“penalty” to the probability of correct response. The rRUM satisfies Xu’s (2017) identifia-

bility conditions and can be considered as a more parsimonious model nested in the RLCM.

By comparing the performance of rRUM and RLCM in fit to the empirical data, we can

assess the extent to which the introduction of additional parameters could improve model

fit.

Similar to the simulation studies, 35000 iterations of the MCMC algorithm was used

for the RLCM, and 20000 iterations was used for the rRUM, as previous studies (Culpepper

& Hudson, 2017) suggested that this would be sufficient for convergence when K = 3. For

both models, 10000 post-burn iterations were used for estimating the model parameters. We

compare the fit of the two models in two main aspects, specifically overall model fit and item

fit.
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The overall fit of the two models to the ECPE data was evaluated in terms of the pos-

terior predictive probabilities of the observed total scores (i.e., number of correct responses).

For both models, using each MCMC iterations’ samples of attribute patterns and item pa-

rameters, we simulated a response matrix and computed the total score of the respondents in

that iteration. The percentile rank of the observed total score relative to the simulated total

scores across the 10000 iterations was then obtained for each subject, used as the posterior

predictive probability (PPP) of the observed total score. Figure 1.10 presents the PPPs for

observed scores under the two models. The x-axis denotes the observed total score of the

respondent, and the y-axis gives the PPP of the observed score, relative to the simulated

ones over 10000 iterations. Each point in the plot represents one of the 2922 subjects, and

the PPPs obtained under the two models are plotted in separate panels, with the RLCM on

the left and the rRUM on the right. Because the PPPs indicate the percentile rank of the

observed total score to the simulated ones based on the sampled model parameters in the

MCMC algorithms, the more extreme the PPPs (i.e., closer to 0 or 1), intuitively the larger

the distance between the observed data and the model-predicted data. Overall, the percent-

age of extreme PPPs above .95 or below .05 was slightly lower for the RLCM (7.67%) than

for the rRUM (9.86%). We could observe from the figure that the PPPs for the rRUM and

for the RLCM are very similar in the middle range of total scores, but for respondents with

total scores less than 14 or more than 24, the PPPs under the rRUM appeared more extreme

than under the RLCM, which indicates better fit of the RLCM for participants with more

extreme observed scores. It should be noted that neither models fit well for participants with

extreme low or extreme high scores, with PPPs of both models around 0 and 1, respectively.

For item fit, we first examined the congruence between observed and expected pro-

portion correct in each equivalence class, as suggested in Sinharay and Almond (2007) for

assessing item fit in cognitive diagnosis models. Sinharay and Almond (2007) defined equiv-

alence classes in terms of partitions of attribute types, so that in each equivalence class, all

attribute types have the same probability of correct response by the model. For the RLCM,
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Figure 1.10: Posterior predictive probabilities of observed total scores for the RLCM and
the rRUM.

all attribute patterns αc � qj are required to have the same correct response probability

on an item, thus these patterns form an equivalence class. None of the other patterns are

required by the model to have the same correct response probability, thus each of them

form their own class. Under the rRUM model, individuals with the same αik values on at-

tributes required by the item, i.e. {k : qjk = 1}, have the same correct response probability,

forming equivalence classes. Ideally, item fit can be evaluated by comparing the observed

proportion correct and the expected proportion correct estimated from the model for each

equivalence class. Because the true attribute patterns of the respondents are unknown in

practice, Sinharay and Almond (2007) suggested using the MCMC-sampled attribute pat-

terns in each iteration as an approximate. For both the RLCM and rRUM, we used the

sampled attribute patterns of the examinees to calculate the “observed” proportion correct

in each equivalence class for each item in that iteration. A 95% credible interval band over

iterations was then obtained for each item and each equivalence class’ observed proportion

correct. This band is then compared to the expected proportion correct given by the EAP

of item parameters. An expected proportion correct near the two poles of or outside the

26



95% band would indicate a discrepancy between the observed data and model predictions

for that item and class.

Figures 1.11 and 1.12 present the model predicted proportion correct and the MCMC-

sampled observed proportion correct of each item and equivalence class. On each item plot,

the x-axis denotes the attribute pattern and the y-axis gives the proportion correct for that

pattern. The dots represent the expected proportion correct computed based on the EAP of

item parameters, and we can see that attribute patterns that fall into the same equivalence

class have the same model predicted proportion correct. The vertical bands represent the

95% band for MCMC-sample observed proportion correct, and because some of the band

widths were very close to 0, they are not shown on the figures. Again, patterns from the same

equivalence class have the same aggregated proportion correct band, and since the rRUM has

a smaller number of equivalence classes, the number of subjects in each class in the MCMC-

cycles are larger than that of the RLCM, resulting in narrower bands. Comparing the plots

for the RLCM and the rRUM, we observe that the predicted proportions correct differed

for some classes associated with α � qj. For example, on item 19, the RLCM predicts

only the all-zero class has expected proportion correct around .4, and the other attribute

patterns lacking the required skill 3 were expected to have proportion correct close to .6 or

.8. The rRUM, on the other hand, predicts that all attribute patterns lacking skill 3 have

expected proportion correct near .4. Looking at the positions of the expected proportions

correct relative to the 95% observed band, we see that all dots are close to the center of the

bands for both models, thus both models did well in predicting the first moments (proportion

correct) of the items.
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Figure 1.11: Plots of RLCM empirical item response probabilities across attribute profiles

αc. Note. Some of the band widths were very close to 0, they are not shown on the figures.
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Figure 1.12: Plots of rRUM empirical item response probabilities across attribute profiles

αc. Note. Some of the band widths were very close to 0, they are not shown on the figures.
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To further evaluate item-level fit, we examined the item-pairwise odds ratios (ORs). For

any item pair, Sinharay, Johnson, and Stern (2006) suggested using OR = (n11n00)/(n01n10),

where n11 is number of respondents responding to both items correctly, n01 is number of

respondents who answered item 1 wrong and item 2 correctly, etc., as a measure of item-

pairwise associations. The OR would then be used for posterior predictive model checking

(PPMC). Similar to the PPMC for total scores, for each MCMC iteration we simulated a

2922 × 28 response matrix based on the sampled parameters. Each response matrix was

used to obtain the ORs for each item pair in that iteration. The observed item-pairsise

ORs were calculated using the observed ECPE response matrix, and the posterior predictive

probability of the observed OR for each item pair among the 10000 model predicted ORs

was computed. A PPP close to .5 would indicate consistency between the observed item

association and the model prediction, and deviation in either direction would indicate misfit.

Figure 1.13 presents the PPPs of the ORs for the RLCM in the top-left corner and of

the rRUM in the bottom-right. The vertical and horizontal axes represent the item indices,

and the PPP for every item pair is represented by the shaded areas of the corresponding

circle. The number of circles with close to 1/2 of shaded area is observed to be larger for the

RLCM than for the rRUM. Whereas 28.31% of the PPPs lied above .95 or below .05 for the

rRUM, only 10.32% of the PPPs were in this extreme range for the RLCM. We thus conclude

that the RLCM was observed to provide a better fit in terms of item pairwise relationships.

1.5 Discussion

In this chapter we introduced a Bayesian estimation method for the restricted latent class

model satisfying Xu’s (2017) sufficient conditions for parameter identifiability. Results from

simulation and empirical studies suggested accurate parameter recovery, efficient computa-

tion, and improved fit to the ECPE data in comparison to the more parsimonious rRUM.

The RLCM is by far the most general cognitive diagnosis model satisfying parameter
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Figure 1.13: Posterior predictive probabilities of the observed item pairwise odds ratios for
the RLCM (top-left) and the rRUM (bottom-right). Each bubble represents an item pair,
and the shaded area on each bubble represents the posterior predictive probability of the
observed odds ratio for that pair of item.

identifiability and subsumes many existing CDMs (e.g., Junker & Sijtsma, 2001; Henson &

Templin, 2007; Templin & Henson, 2006; von Davier, 2008; de la Torre, 2011; Hartz, 2002). It

relaxes two main assumptions that are usually imposed by other CDMs. First, it is typically

assumed in CDMs that for any item and any two attribute patterns α1 � α2, the correct
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response probability of the latter cannot be higher than the former. A scenario in which

this monotonicity assumption could be violated is when there are distractors: For example,

suppose K = 3, and we consider a multiple choice item requiring all three attributes. To

better differentiate examinees who have mastered all skills versus only the first two skills,

one of the distractors of the item may specifically attract individuals who possess the first

two skills. In this case, it is possible that individuals with α = [1, 0, 0] may have higher

correct response probability than those with α = [1, 1, 0], because the latter is more prone

to select the incorrect distractor. Under the RLCM, however, two nonzero patterns, both

lacking 1 or more required skills for an item, can have correct response probabilities of any

relationship.

Second, the other typical CDM assumption that is not imposed by the RLCM is the

effect of non-required attributes on correct response probability. Whereas most of the gen-

eral CDMs require the item response probability to be independent from the absence or

presence of attributes not required by the Q-matrix, this independence assumption could

be violated if possession of a non-required skill can increase the chance of correct response

using an alternative strategy. The RLCM allows two examinees with same pattern on the

required skill but different patterns on the non-required skills to have different correct re-

sponse probabilities, as long as they lack some required skills by the item and both correct

response chances are less than people who mastered all skills.

One could imagine that for the ECPE application described above, without more com-

plex modeling of distractors or alternative strategies, some items might be discarded due

to lack of fit if more restricted CDMs, such as the rRUM, are used. However, the RLCM

is more flexible than the rRUM and hence the item and attribute patterns could be more

accurately recovered if the RLCM is used. On consequence is that poorly fitting items under

the rRUM are retained when using the RLCM rather than being discarded.

On the other hand, the RLCM can be further restricted and reduced to more parsi-

monious CDMs. For instance, the DINA (Junker & Sijtsma, 2001) model can be seen as a
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special case of the RLCM when the probability of correct response is the same for all αc � qj;

the DINO (Templin & Henson, 2006) model requires probability of correct response to be

the same for {αc : αck = 1, some k : Qjk = 1} and for {αc : αck = 0, ∀k : Qjk = 1}; and the

L-CDM model (Henson et al., 2009) imposes the monotonicity inequality constraint and the

independence equality constraint described above. By aggregating over equivalence classes

for equality constraints and truncating the prior distribution of the item parameters based

on inequality constraints, the proposed Bayesian Gibbs sampling algorithm could readily be

modified to fit more restricted CDMs that are subsumed by the RLCM. One possible direc-

tion for future research is to further extend the proposed Gibbs sampling algorithm, so that

any additional equality or inequality constraints can be easily incorporated in the parameter

estimation. The potential to fit more restricted models also provides the possibility of using

the proposed Bayesian estimation routine for model comparison. Posterior predictive model

checking and other Bayesian model testing approaches can be used to assess the additional

gain of including extra parameters and to identify the best fitting model for each item. Fu-

ture studies can look into the development of model comparison and model testing methods

under the Bayesian framework for the RLCM.
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Chapter 2

Assessing Learning with the Reduced
RUM

2.1 Introduction

With the rapid development in information technology, we see a growing number of online

learning or tutoring systems that can be used by students either in or outside the class-

rooms. To enable real-time tracking of learners’ progress, assessment are transforming from

long, end-of-the-course tests to a trajectory of small quizzes embedded in the instruction

(U.S. Department of Education, 2016). The response data collected from the assessments

throughout the learning process allows researchers to develop models for learning, which can

be used to (1) track students’ progress over time, (2) evaluate the effectiveness of learning

interventions, and (3) discover factors that may affect learning outcomes. Because students’

acquisition of the contents cannot be directly observed and needs to be measured through

assessment questions, psychometrics serves an important role in the learning models and

provides a potent tool to assist learning (Chang, 2015; Zhang & Chang, 2016).

A lot of recent research considered the application of cognitive diagnosis models (CDMs)

in the modeling of learning. Under these models, the learning process is considered as the

repeated alternation between a learning stage, in which students are provided with materials

that can improve their mastery of knowledge or skills, and an assessment stage, in which

students are administered test questions to measure their mastery of skills in the curriculum

at that time point. The students’ progress throughout the learning process can be represented

with changes in the attribute patterns over time. Markovian models are usually used for the

transition between mastery and non-mastery on skills at each learning stage, and CDMs are
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used to infer the unobserved mastery profiles based on the observed responses.

Previous research on learning models based on CDMs often adopted the deterministic

input, noisy-“and”-gate (DINA) model as the measurement model. However, the DINA

model’s strict assumptions may lead to a lack of fit of most available items. The cur-

rent chapter introduces learning models using two alternative measurement models, includ-

ing the reduced-reparameterized unified model (rRUM, Hartz, 2002) and the noisy input,

deterministic-“and”-gate (NIDA) model. We further consider two types of transition mod-

els: One is the simple independent monotonic transition model, and the other considers the

existence of hierarchical relationships among attributes.

In the subsequent sections, we provide an incomplete overview of learning models based

on CDMs, introduce the current models, propose a Bayesian modeling framework and an

MCMC-based estimation algorithm, and evaluate the models’ fit to a data set on the learning

of spatial rotation skills.

2.1.1 Learning Models Based on CDMs

Whereas traditional research on CDMs focused on the assessment of the students’ mastery

at a single time point, there is increasing interest in assessing the students’ progression

of attribute mastery over time. Li, Cohen, Bottge, and Templin (2015) combined latent

transition analysis (LTA; Langeheine, 1988; Collins & Wugalter, 1992) with the DINA

model to estimate the students’ mastery change in a longitudinal setting. At each wave, a

student has a probability of transitioning from non-mastery to mastery, or from mastery to

non-mastery, on each skill. The transitions on different skills are assumed to be independent.

Using the estimated transition probabilities between mastery and non-mastery on each skill

between waves, they compared the effectiveness of two different learning interventions.

Chen, Culpepper, Wang, and Douglas (2017) generalized Li et al.’s (2015) model to the

case where attribute transitions are not necessarily independent — in other words, instead

of modeling the attribute-wise transitions and multiplying them to get the pattern-wise
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transition probabilities, they directly modelled the transition probabilities between different

skill patterns. Different models for learning, including the most general unrestricted model

and the monotonic model (i.e., where the probability of transitioning from mastery to non-

mastery is 0), were introduced, and the cardinalities of the sets of all possible trajectories

were derived.

S. Wang et al. (2016) proposed the higher-order hidden Markov cognitive dianosis model

(HO-HM CDM) with higher-order covariates affecting the learning outcome. Given the

attribute pattern of subject i at time t, αi,t = [αi,1,t, . . . , αi,K,t]
′, the logit of the probability

of transitioning from non-master to master on attribute k is

logit[P (αi,k,t+1 = 1 | αi,k,t = 0,αi,t)] = λ0 + λ1θi + λ2

∑
∀k′ 6=k

αi,k′,t + λ3

t∑
m=1

Jt∑
j=1

qj,m,k. (2.1)

In this model, θi was used to denote the overall, time-invariant learning ability of subject i.

The term
∑
∀k′ 6=k ai,k′,t represents how many attributes subject i has already acquired other

than attribute k, and
∑t

m=1

∑Jt
j=1 qj,m,k denotes the number of items involving skill k that

the student has completed at previous time points, in other words, the amount of practice

so far on attribute k. By using a higher order logistic model for the transition probabilities

in the hidden Markov model, the effect of different factors on the probability of learning a

skill can hence be examined.

2.2 Current Model

Our proposed model can be regarded as the combination of two parts, a learning model

that describes the transition of attribute patterns over time, and a measurement model

that assesses the learners’ skill mastery at each time point. The section below provides an

overview for these two components.
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2.2.1 Learning Model

We denote the attribute pattern for subject i ∈ {1, . . . , N} at time t ∈ {1, . . . , T} by αi,t =

(αi,t,1, . . . , αi,t,K)′. Here, t = 1 represents the initial time point before any learning takes

place, and t = 2, . . . , T represent each subsequent time point. Two transition models are

considered below, a general monotonic Markov model and a restricted model with attribute

hierarchies.

Monotonic Markov model. Given the attribute pattern of subject i at time t,

αi,t = (αi,t,1, . . . , αi,t,K)′, the probability that the student masters skill k ∈ {1, . . . , K} at

time t+ 1 is given by

P (αi,t+1,k = 1 | αi,t, τk) =


1, αi,t,k = 1

τk, αi,t,k = 0

, (2.2)

where τk is the probability of transitioning from non-master to master on skill k at any given

time point. If we denote the observed mastery status on attribute k at time t + 1 by a we

have

P (αi,t+1,k = a | αi,t,k, τk) = P (αi,t+1,k = 1 | αi,t, τk)a[1− P (αi,t+1,k = 1 | αi,t, τk)]1−a. (2.3)

The probability of attribute pattern αi,t+1, given αi,t and τ = (τ1, . . . , τK)′, is

P (αi,t+1 | αi,t, τ ) =
K∏
k=1

P (αi,t+1,k | αi,t,k, τk). (2.4)

Restricted model with attribute hierarchies. The monotonic Markov model above

assumes that the probability of learning an attribute does not depend on whether another

attribute is also learned. In practice, however, some attributes may be prerequisite to others,

and as a result, we may have a restricted set of possible attribute patterns. This will limit the

number of possible attribute patterns from all 2K possibilities. Denote the set of prerequisites
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to attribute k as {k̄}, then instead of equation (1), the probability of the transition is given

by

P (αi,t+1,k = 1 | αi,t, τk) =


∏

k′∈{k̄} αi,t+1,k′ , αi,t,k = 1;

τk ·
∏

k′∈{k̄} αi,t+1,k′ , αi,t,k = 0.

(2.5)

The hierarchical relationship between attributes can be captured by using a K ×K reacha-

bility matrix, R (e.g., Leighton, Gierl, & Hunka, 2004), where Rkk′ = 1 if attribute k requires

attribute k′ as a prerequisite, and Rkk′ = 0 otherwise.

2.2.2 Measurement Models

Here we consider two possible response models, the NIDA model (Junker & Sijtsma, 2001)

and the rRUM model (Hartz, 2002). At a certain time point, we index the items by j =

1, . . . , Jt, where Jt is the number of items administered at time t. Under the NIDA model,

the probability of a correct response is given by

P (Xi,t,j = 1 | αi,t, s,g) =
K∏
k=1

[(1− sk)αi,t,kg(1−αi,t,k)

k ]qj,k , (2.6)

where s = [s1, . . . , sK ],g = [g1, . . . , gK ] can be interpreted as the probabilities of incorrectly

applying an acquired attribute (slipping) and probabilities of correctly applying an unaquired

attribute (guessing), respectively.

By relaxing the slipping and guessing parameters to be item-specific (sj,gj), we have the

Generalized NIDA (GNIDA) model, given by

P (Xi,t,j = 1 | αi,t, sj,gj) =
K∏
k=1

[(1− sj,k)αi,t,kg(1−αi,t,k)

j,k ]qj,k . (2.7)
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With a reparameterization of the GNIDA model through the following conversions,

π∗j =
K∏
k=1

(1− sj,k)qj,k , (2.8)

r∗j,k =
gj,k

1− sj,k
, (2.9)

we obtain the rRUM model (Hartz, 2002), where the probability of correct response is given

by

P (Xi,t,j = 1 | αi,t,qj, π∗j , rj) = π∗j

K∏
k=1

r
∗(1−αi,t,k)qj,k
j,k . (2.10)

2.3 Parameter Estimation

A Bayesian formulation is adopted to estimate the learning model’s parameters. Similar

to Culpepper and Hudson (2017), a data augmentation approach is used for updating the

generalized NIDA (NIDA and rRUM) model parameters, and similar to S. Wang et al. (2016)

and Chen, Culpepper, Shiyu, and Douglas (2017), the forward-backward algorithm was used

for sequentially updating the learning model and the attribute parameters under the hidden

Markov model. Under the current Bayesian formulation, the full conditional distributions of

the parameters, given the data, are known families of distributions and thus can be directly

sampled from using a Gibbs sampling algorithm.

2.3.1 Prior distribution

We assume that the prior distribution for the initial population membership probabilities,

Π, is

Π ∼ Dirichlet(δ0),where δ0 = (δ01, . . . , δ0C)′, with C = 2K . (2.11)
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We further assume the prior distributions for the transition probabilities T , are

p(T = τ ) ∝
K∏
k=1

τa−1
k (1− τk)b−1. (2.12)

In addition, for both the NIDA and the rRUM model truncated Beta priors were used for

sj,ks and gj,ks, the slipping and guessing parameters under the G-NIDA formulation (note

that under the NIDA model, the sj,ks and gj,ks were constrained to be equal across items

and hence could be simplified to sk and gk):

p(sj,k, gj,k) ∝ sas−1
j,k (1− sj,k)bs−1g

ag−1
j,k (1− gj,k)bg−1I(0 ≤ gj,k < 1− sj,k ≤ 1). (2.13)

2.3.2 Full conditional distributions

Let Zi,t,k,· = (Zi,t,j,1, . . . , Zi,t,j,K)′ denote the augmented latent responses to item j by subject

i at time t, where Zi,t,j,k = 1 if subject i has successfully applied skill k on item j at time t,

and Zi,t,j,k = 0 otherwise. In addition, let Zi,t,j,(k) denote the vector of the latent responses on

item j by subject i at time t except on attribute k. With the assumed prior distributions of

the parameters described above, the full conditional distributions for the parameters, given

the observed responses xi,t,js, are described below.

• For Zi,t,j,ks such that the corresponding qj,k = 1, the conditional distribution given the

data and other parameters is the same as in Culpepper and Hudson (2017):

Zi,t,j,k | (Xi,t,j = xi,t,j,Zi,t,j,(k), αi,t,k, sj,k, gj,k) ∼ Bernoulli(π̃i,t,j,k),where (2.14)

π̃i,t,j,k =
P (xi,t,j | Zi,t,j,(k), Zi,t,j,k = 1)P (Zi,t,j,k = 1 | αi,t,k, sj,k, gj,k)∑1

zi,t,j,k=0 P (xi,t,j | Zi,t,j,(k), Zi,t,j,k = zi,t,j,k)P (Zi,t,j,k = zi,t,j,k | αi,t,k, sj,k, gj,k)
= {(1−

∏
k′ 6=k

z
qj,k′

i,t,j,k′)[(1− sj,k)αi,t,kg
1−αi,t,k
j,k ]qj,k}1−xi,t,j . (2.15)
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• For αi,t,k’s: Let s·k,g·k denote the vectors of slipping and guessing parameters associated

with applying skill k for all items administered to subject n at time t, and let α∗ denote

the attribute vector of length K, whose kth entry is αi,t,k and the other entries are equal

to αi,t,(k). Then

p(αi,t,k | zi,t,·,k, s·,k, g·,k,αi,t,(k)) ∝ p(zi,t,·,k | αi,t,k, s·,k, g·,k)π̃i,t,k

∝ [
Jt∏
j=1

P (zi,t,j,k | αi,t,k, sj,k, gj,k)]π̃i,t,k, (2.16)

where

π̃i,t,k =


P (αi,t = α∗ | π)P (αi,t+1 | αi,t = α∗, τ ), t = 1;

P (αi,t = α∗ | αi,t−1, τ )P (αi,t+1 | αi,t = α∗, τ ), 1 < t < T ;

P (αi,t = α∗ | αi,t−1, τ ), t = T, and

(2.17)

P (zi,t,j,k | αi,t,k, sj,k, gj,k) = [(1− sj,k)αi,t,kg(1−αi,t,k)

j,k ]zi,t,j,k [s
αi,t,k
j,k (1− gj,k)1−αi,t,k ]1−zi,t,j,k .

(2.18)

• For π : Denote the attribute patterns of all subjects at time t = 1 by α·,1, then

π | α·,1 ∼ Dirichlet(δ1 + δ̃), where δ̃ = (
N∑
i=1

I(αi,1 = α1), . . . ,
N∑
i=1

I(αi,1 = αC))′.

(2.19)

• For sk, gk’s: Given an item j, let t∗i denote the time at which item j was administered

to subject i, and let α·,· represent the attribute patterns for all subjects across all time
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points. Then

P (sj,k, gj,k | z·,·,·,·,α·,·) ∝ s
as,j,k−1

j,k (1− sj,k)bs,j,k−1g
ag,j,k−1

j,k (1− gj,k)bg,j,k−1

× I(1 ≤ gj,k < 1− sj,k ≤ 1), (2.20)

where, under the rRUM model,

as,j,k =
N∑
i=1

αi,t∗i ,k(1− zi,t∗i ,j,k)qj,k + as; (2.21)

bs,j,k =
N∑
i=1

αi,t∗i ,kzi,t∗i ,j,kqj,k + bs; (2.22)

ag,j,k =
N∑
i=1

(1− αi,t∗i ,k)zi,t∗i ,j,kqj,k + ag; (2.23)

bg,j,k =
N∑
i=1

(1− αi,t∗i ,k)(1− zi,t∗i ,j,k)qj,k + bg. (2.24)

Under the NIDA model, the sj,k and gj,ks are the same across items, thus as,j,k, bs,j,k, ag,j,k,

and bg,j,k can be simplified to as,k, bs,k, ag,k, and bg,k, where

as,k =
N∑
i=1

Kt∗
i∑

k=1

αi,t∗i ,k(1− zi,t∗i ,j,k)qj,k + as; (2.25)

bs,k =
N∑
i=1

Kt∗
i∑

k=1

αi,t∗i ,kzi,t∗i ,kqj,k + bs; (2.26)

ag,d =
N∑
i=1

Kt∗
i∑

k=1

(1− αi,t∗i ,k)zi,t∗i ,j,kqj,k + ag; (2.27)

bg,d =
N∑
i=1

Kt∗
i∑

k=1

(1− αi,t∗i ,k)(1− zi,t∗i ,j,k)qj,k + bg. (2.28)

• For τ : Let α·,t denote the attribute patterns for all subjects at time t, and let {k̄}
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denote the set of prerequisites to attribute k. Then

P (τ | α·,t,α·,t+1) ∝
K∏
k=1

τ
aτk−1

k (1− τk)bτk−1, with (2.29)

aτk =
T−1∑
t=1

N∑
i=1

{
(1− αi,t,k)αi,t+1,k

∏
k′∈{k̄}

αi,t+1,k′

}
+ a; (2.30)

bτk =
T−1∑
t=1

N∑
i=1

{
(1− αi,t,k)(1− αi,t+1,k)

∏
k′∈{k̄}

αi,t+1,k′

}
+ b. (2.31)

2.3.3 A Gibbs Sampling Algorithm

Because the full conditional distributions of all parameters can be directly sampled from,

we can use a Gibbs sampler to iteratively draw samples of the parameters from the full

conditional distributions. More specifically, the parameters were updated following these

steps:

(1) Assign initial values to all parameters, namely π[0],α[0], s[0], g[0], τ [0], and z[0].

(2) At each iteration r:

(a) For each i, j, t, and k : qj,k = 1, draw z
[r+1]
i,t,j,k based on equation (2.14), given

xi,t,j, z
[r]
i,t,j,(k), α

[r]
i,t,k, s

[r]
j,k, and g

[r]
j,k;

(b) For each i, t, and k, draw α
[r+1]
i,t,k based on equation (2.16), given z

[r+1]
i,t,·,k, s

[r]
·,k, g

[r]
·,k,α

[r+1]
i,t−1,

α
[r]
i,t+1,π

[r], and τ [r];

(c) Draw π[r+1] based on equation (2.19), given α
[r+1]
·,0 ;

(d) For the rRUM model, for each item k and attribute d, draw g
[r+1]
j,k ) based on equa-

tions (2.23) and (2.24), given z
[r+1]
·,·,j,k,α

[r+1]
·,· and s

[r]
j,k, and draw s

[r+1]
j,k based on equa-

tions (2.21) and (2.22) given z
[r+1]
·,·,j,k,α

[r+1]
·· and g

[r+1]
j,k . The corresponding π

∗[r+1]
k and

r
∗[r+1]
k can be obtained via algebraic transformations in equations (2.8) and (2.9).
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For the NIDA model, for each attribute k, draw g
[r+1]
k based on equations (2.27)

and (2.28), given z
[r+1]
·,·,·,k ,α

[r+1]
·,· , and s

[r]
k , and draw s

[r+1]
k based on equations (2.25)

and (2.26), given z
[r+1]
·,·,·,k ,α

[r+1]
·,· , and g

[r+1]
k .

(e) For each k, sample τ
[r+1]
k from the posterior distribution in equation (2.29), given

α
[r+1]
·,· , [τ1, . . . , τk−1]′[r+1], and [τk+1, . . . , τK ]′[r+1].

2.4 Application: A Spacial Reasoning Test with

Learning Interventions

Simulation studies were conducted to evaluated the performance of the Gibbs sampler in

terms of parameter recovery. Results indicated that all parameters were able to be estimated

with small bias when the chains were long enough. We skip the results of the simulations

here and move directly to the real data application.

2.4.1 Spatial Rotation Data

The Spatial Rotation Data has been used by several previous researchers to evaluate the

performance of proposed learning models (e.g., S. Wang et al., 2016; Chen, Culpepper,

Wang, & Douglas, 2017). A computer-based assessment and training software was developed

to conduct a study of learning spatial rotation skills. Subjects were students recruited from

the paid subject pool of the Department of Psychology at the University of Illinois at Urbana-

Champaign. Each subject was asked to complete a series of 50 items on a computer-based

assessment on spatial rotation ability. The assessment items were comprised of an extended

version of the Purdue Spatial Visualization Test (PSVT, Yoon, 2011). The assessment

consisted of 5 test blocks, each containing 10 questions. Following each test block, except

the final one, was a learning intervention. Participants first answered the 10 questions in a

test block, then they proceeded to a learning block with instructions. The instruction were

either an interactive figure, where the 3-D object in the demonstration question could be
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Figure 2.1: Test Block

Figure 2.2: Learning Block: Type 1 Figure 2.3: Learning Block: Type 2

moved freely along both the x-axis and the y-axis (Figure 2.2), or the interactive figure plus

a recorded clip of the rotation of the object from the original position to the correct position

(Figure 2.3).

Each item in an assessment block (Figure 2.1) featured a reference object that had

undergone a rotation. Subjects then considered a new object and attempted to determine

which of the 5 options corresponded to the same rotation as the reference object. All items

included either an x-axis or y-axis rotation, or both, and varied in complexity. Four mental

rotation skills were identified: 1) 90◦ x-axis rotation, 2) 90◦ y-axis rotation, 3)180◦ x-axis

rotation and 4) 180◦ y-axis rotation.

Because we assumed the learning process to be monotonic, the proportion of students

45



mastering a large number of skills are expected to increase as the learning process continues.

In that case, the proportion of students mastering few skills may be small at later time

points. To ensure sufficient sample size for the estimation of the parameters of all items,

the Spatial Rotation study used a block design for item assignment to subjects. Specifically,

the N examinees were randomly assigned to 5 test design groups. For students in group 1,

they were administered items in blocks 1, 2, 3, 4, and 5 at times t = 1, 2, 3, 4, 5, respectively.

For students in group 2, they were administered item blocks 2, 3, 4, 5, 1 at times 1 to 5. And

students in group 3 were administered the item blocks in the order of 3, 4, 5, 1, 2, and so on.

A total of 351 University of Illinois students participated in this experiment.

2.4.2 Evaluated Models

Six different models, with two types of measurement models (NIDA or rRUM) and three

types of attribute relationships, were compared in terms of fit to the Spatial Rotation data.

The three different types of attribute relationships were captured by the corresponding reach-

ability matrices. Specifically,

• Relationship 1: No attribute hierarchies exist, thus

R1 =


0 . . . 0

...
. . .

...

0 . . . 0

 . (2.32)

• Relationship 2: 180◦ rotation along the y-axis requires 90◦ rotation along the y-axis as

a prerequisite, and 180◦ rotation along the x-axis requires 90◦ rotation along the x-axis
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as a prerequisite. The reachability matrix is hence

R2 =



0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0


. (2.33)

• Relationship 3: The 180◦ rotations (along x-axis and y-axis) has both the 90◦ rotation

along x-axis and the 90◦ rotation along y-axis as prerequisites. The corresponding

reacheability matrix is

R3 =



0 0 0 0

0 0 0 0

1 1 0 0

1 1 0 0


. (2.34)

The MCMC algorithm described previously was applied to estimate the model parameters.

Uninformative priors were chosen for π, s, g, and τ . The initial value of π was randomly

sampled from Dirichlet(1), the initial values for each τk were sampled from the Uniform(0,1)

distribution, and the initial values for the sj,k, gj,k’s were randomly sampled from U(.1, .3).

Using these random initial values, the initial values for α’s were simulated. Lastly, z
[0]
i,t,j,k

was set to 1 for all i, t, j and k.

2.4.3 Model convergence

To evaluate the model convergence, five separate chains with different starting values were

run with chain lengths of 50, 000 iterations under the rRUM model with no attribute hierar-

chies. The Gelman-Rubin proportional scale reduction factor (PSRF), commonly known as

R̂, was calculated for each parameter at different chain lengths, and the progression of the

maximum R̂ out of all estimated parameters is displayed in Figure 2.4.
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Figure 2.4: Progression of maximum R̂ as chain length increases. Dashed horizontal line
indicates R̂ = 1.2.

An R̂ value of below 1.2 is commonly used in the literature as an indicator of the

convergence of that parameter estimate. We can see that at around 25000 iterations, the

maximum R̂ stabilizes to less than or slightly above (up to .02 above) 1.2, and the R̂ of all

the other estimated parameters stay below 1.2. Thus for subsequent analyses, a chain length

of 40000 was used for each of the 6 models, with 25000 iterations as the burn-in.

2.4.4 Model Comparison

The fit of the 6 models were compared in terms of a few aspects, the Deviance Information

Criterion (DIC), and posterior predictive model checks on the item means (first moments,

M1), item pair-wise odds ratios (second moments, M2), and on the subjects’ total scores

across time points. The procedures for computing each are detailed below.

1. DIC: As described in Spiegelhalter et al. (2002), if we denote the set of unknown model
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parameters by θ, then the DIC can be calculated as

DIC = pD + D̄(θ), (2.35)

where pD = D̄(θ)−D(θ̄), and

D(θ) = −2 log[P (x | θ)]

= −2 log[P (x | π, τ , s, g)]

= −2 log
{ N∏
i=1

[ ∑
∀αl∈AT

P (αl)
T∏
t=1

P (xi,t | αi,t = αl,t, st, gt)
]}
. (2.36)

Here, αl = (αl,1, . . . ,αl,T ) is any learning trajectory from time t = 1 to T , and P (αl)

can be computed as

P (αl) = P (αn,1 = αl,1 | π)
T∏
t=2

P (αi,t = αl,t | αi,t−1 = αl,t−1, τ ). (2.37)

To calculate k̄(θ), at each post-burnin iteration t of the MCMC, we compute the D(θ[t])

based on the parameter samples in the tth iteration, namely θ[t]. The average of D(θ[t])s

across all post-burnin iterations is computed to obtain k̄(θ).

2. Posterior predictive check for the item means (M1): After the burnin, at each iteration

of the MCMC, the model parameter samples were used to simulate responses of the

subjects. For each item, the proportion of people who answered correctly was calculated

based on the simulated responses as well as the observed data. Then the posterior

predictive probability (PPP) of each item’s mean is given by the proportion of simulated

item means that lie below the observed item mean.

3. Posterior predictive check for the item pairwise odds ratios (M2): For any given item

pair, Sinharay (2006) suggested using OR = (n11n00)/(n01n10), where n11 is number

of respondents responding to both items correctly, n01 is number of respondents who
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answered item 1 wrong and item 2 correctly, etc., as a measure of item-pairwise associa-

tions. Similar to that of the item means, the item pair-wise ORs based on the simulated

responses from sampled model parameters and those from the observed responses are

obtained, and the PPP of each item pair’s odds ratio is given by the proportion of

simulated odds ratios for the item pair that lie below the observed.

4. Posterior predictive model check for the subjects’ total scores at each time point: Like

above, simulated and observed responses were used to obtain the number of correct

responses (total score) by each subject at each time point. Then, for each subject and

each time point, the PPP for total score is given by the proportion of simulated total

scores below the observed.

Table 2.4.4 summarizes the DIC statistics and the proportions of posterior predictive

probabilities below .05 or above .95 (which indicates misfit) for item means (M1), item

ORs (M2), and subject total scores for the six models. A smaller DIC value and a smaller

proportion of PPPs outside the 90% interval would indicate better fit.

Table 2.1: Summary of fit statistics of the six different models. M1 misfit represents the
percentage of item means that were outside the 95% posterior prediction interval, M2 misfit
represnets percentage of item pair-wise odds ratios outside the prediction interval, and total
misfit represents the percentage of observed total scores at each time point outside the 95%
posterior prediction interval.

Model DIC M1 misfit M2 misfit total misfit
NIDA R1 16129.61 74% 46.4% 24.1%
NIDA R2 16154.09 70% 47.1% 23.1%
NIDA R3 16233.26 72% 48.2% 23.1%
rRUM R1 14860.91 0% 25.1% 23.5%
rRUM R2 15099.09 0% 26.4% 23.6%
rRUM R3 15188.04 0% 27.3% 23.8%

Table 2.4.4 suggests that out of the six models, the one assuming a rRUM measurement

model and no attribute hierarchies achieved the best fit, indicated by the lowest DIC, the

lowest proportion of extreme PPPs on item means and pair-wise odds ratios, and comparable

proportion of extreme PPPs as the other models.
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Figure 2.5 presents the posterior predictive probabilities of each item’s mean under the

rRUM model without attribute hierarchies. The shaded area in each circle represents the

proportion of simulated item means below the observed item mean. None of the observed

item means were within the extreme range. There is a consistent tendency for the model to

slightly underestimate the item means, as indicated by the PPPs above 50% on all items.

Item

1 5 10 15 20 25

26 30 35 40 45 50

Figure 2.5: Posterior Predictive Probabilities (PPPs) of the item means (i.e., proportion
correct).

Figure 2.6 presents the density of the posterior predictive probability of the item pair-

wise odds ratios. We observe that the distribution of the PPPs is skewed to the left, indicating

a tendency for the model to underestimate the ratio (n11n00)/(n01n10).
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Figure 2.6: Density of the posterior predictive probability for item pair-wise odds ratios.
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Figure 2.7 presents the density curves of the posterior predictive probabilities for total

scores at different time points. For all time points, we observe a tendency for the model to

underestimate the total scores of the subjects, as suggested by the higher densities at higher

PPPs. This pattern seems to be most salient after the learning begins (i.e., for T = 2, . . . , 5)

than for the initial time point, T = 1.
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Figure 2.7: Density of posterior predictive probability for total scores at different time points.

The plots for PPPs of total scores over observed total score at each time point are

shown in Figure 2.8. Across all time points, we observe a consistent trend for the model to

overestimate total scores for subjects with low observed scores and underestimate for those

with high observed scores.

2.4.5 Observed progression of learning

Based on the estimated attribute patterns under the rRUM learning model without attribute

hierarchies, we looked at the progression of skill mastery rate over time, as well as the

frequency for the number of mastered skills at each time point. Table 2.2 summarizes the

distribution of the number of mastered skills at each time point, and Figure 2.9 shows the
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Figure 2.8: Relationship between posterior predictive probability of total score and observed
total score at each time point.

progression of mastery rate of each skill across time. As the learning time increases, the

percentage of students mastering each skill also increases, and a shift towards mastering

more skills over time is observed.
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Figure 2.9: Progression of mastery rate of each skill across time.
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Table 2.2: Frequency (and percentage) of number of skills mastered over time.
Skills mastered T =1 T =2 T =3 T =4 T =5
0 53(15.1%) 40(11.4%) 35(9.97%) 31(8.83%) 27(7.69%)
1 53(15.1%) 57(16.24%) 56(15.95%) 56(15.95%) 56(15.95%)
2 77(21.94%) 76(21.65%) 70(19.94%) 58(16.52%) 45(12.82%)
3 0(0.00%) 6(1.71%) 13(3.7%) 28(7.98%) 38(10.83%)
4 168(47.86%) 172(49%) 177(50.43%) 178(50.71%) 185(52.71%)

2.5 Discussion

In the current chapter, we presented a learning model that combines the rRUM measurement

model with a simple Markov model for learning, in which the transitions of separate skills

were considered independent. The rRUM model without attribute hierarchies provided a

reasonably good but imperfect fit to the spatial rotation data. In particular, posterior

predictive checks found the predicted total scores over time did not advance like observed

scores. This is likely due to the simplicity of the learning model by treating attributes

as independent. On the other hand, the posterior predictive model checks of the item

parameters suggested that the rRUM can provide a relatively good fit for the assessment

items, at least approximating the first moments very well.

Future research can combine the rRUM with more complex transition models allow-

ing dependence between skills, such as the hidden Markov Diagnostic Classification Model

(S. Wang et al., 2016) and the first order hidden Markov model with transitions of skill

patterns instead of single skills (Chen, Culpepper, Shiyu, & Douglas, 2017). The application

also considered the notion of attribute hierarchies, which when present could greatly reduce

the number of possible attribute patterns and speed up computations. However, in this

application goodness of fit measures indicated the superior fitness of the unrestricted model.

54



Chapter 3

Mixture Learning Model with
Responses and Response Times

3.1 Introduction

Educational researchers have shown long term interests in understanding the heterogeneity

among online learners. Learners can differ not only in their initial background and general

learning ability, but also in terms of how they learn. For example, learners’ affects can in-

fluence their behaviors in the learning process and hence the learning outcomes. Methods

were proposed by educational data miners to detect student affect based on their interactions

with the online learning systems (e.g., Baker et al., 2012). By identifying the affects of each

student during the learning process, such as boredom, disengagement, confusion, and frustra-

tion, educators can provide targeted interventions accordingly to improve learning outcomes.

Students can also vary in their preferred mode of instructions. Felder and Silverman (1988)

developed the Index of Learning Styles survey, which measured learners’ characteristics on

the Sensing/Intuiting, Visual/Verbal, Active/Reflective, and Sequential/Global dimensions.

A student’s learning style can provide indications of possible strengths and difficulties in the

learning process.

The increased popularity of computer-based testing has enabled researchers to collect

various types of process data, including test takers’ reaction time to assessment items, also

known as response times. In the field of psychometrics, extensive research has been con-

ducted on the joint modeling of response accuracy and response times, which can improve

the estimation accuracy of item parameters and examinees’ latent traits or latent classes,

further our understanding of individuals’ test-taking behavior and the test items’ characteris-
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tics, and help us differentiate examinees using different test-taking strategies. Most recently,

a higher-order hidden Markov CDM (HO-HM CDM) framework, which simultaneously ac-

counts for changes in response accuracy and response times throughout the learning process,

was developed to measure students’ improvements in skill mastery over time.

Response times can also provide a rich source of information for identifying students’

learning styles, especially student engagement. Henrie, Halverson, and Graham (2015) pro-

vided a comprehensive review of methods for measuring student engagement in technology-

based learning environment in the literature, and the time spent on homework, web pages,

readings, et cetera were commonly used as an indicator of student engagement. Response

times were also used by educational data miners to identify disengaged learners (Beck, 2004).

In the current chapter, we incorporate response times information into the modeling of learn-

ing styles under the hidden Markov learning model framework. Based upon the joint mod-

eling framework under the HO-HM CDM, we propose a mixture model for learning with

response times and response accuracy. On top of modeling learning trajectories and item

responses, response time data, along with response data, are additionally used to identify

subpopulations with different learning and test-taking behaviors. Such a model accounts for

the presence of heterogeneities in learning styles among students and may provide instructors

with valuable information, which can be used to design individualized instructions.

This chapter is organized as follows. We first describe the joint modeling framework of

response times and response accuracy under the HO-HM CDM (S. Wang, Zhang, Douglas, &

Culpepper, 2018). Then, we give an incomplete overview of mixture models in psychometrics

research and mixture hidden Markov models. The mixture learning model with response

times and response accuracy is then introduced. A Bayesian parameter estimation framework

is proposed, followed by simulation studies verifying the parameter recovery. Lastly, we

discuss some implications of the proposed model as well as future directions.
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3.1.1 Joint Learning Model with Response Times and Response

Accuracy

S. Wang et al. (2018) extended the original HO-HM CDM in Equation (2.1) to a joint

modeling framework that incorporates both responses and response times on the assessment

items. In addition to the original two components, namely the transition model and the

measurement model for response accuracy, the joint modeling framework introduces a third

component to the hidden Markov learning model, namely the measurement model for re-

sponse times. The reaction times of the learners on each time is treated as another source

of observed data that can be used to measure the latent attribute patterns (αs) and the

latent speeds of learners. Specifically, the probability density of a learner i’s reaction time

(latency) to an item j ∈ {1, . . . , Jt} at time t ∈ {1, . . . , T}, Li,j,t, is given by

f(Li,j,t|τi, γj, aj,αi,t) =
aj

Li,j,t
√

2π
exp(−1

2
[aj(log(Li,j,t)− (γj − τi − φ ∗Gi,j,t]

2). (3.1)

In other words, Li,j,t follows a log-normal distribution,

log(Li,j,t) ∼ N

(
γj − (τi + φ ∗Gi,j,t),

1

a2
j

)
. (3.2)

Here, τi is the initial latent speed of learner i, γj is the time-intensity parameter of item

j, capturing the overall amount of time the item requires, and aj is the time-discrimination

parameter of item j, which captures variance of response times at given τi and γj. Unlike

response time models for static assessments (e.g., van der Linden, 2006), which typically

treated the latent speed as unchanged throughout the test, in the learning context, it is

reasonable to assume that the speed of the learners increases over time. The increase in

speed in responding to the items is captured in equation (3.1) by Gi,j,t. Depending on how

response speed changes over time, G can either be independent or dependent on the latent

trajectory αi. S. Wang et al. (2018) proposed several possible versions of G, including
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• Gi,j,t = ti,j/T , where ti,j is the time point at which item j is assigned to subject i.

This essentially assumes that the learners’ latent speed increases at a constant rate

over time, which is independent of the attribute trajectories αi.

• Gi,j,t =


1, if αi,t � qj,

0, otherwise.

This version of G assumes that the latent speed on an item increases by a constant

when the learner has mastered all requisite skills of the item by the time the item is

assigned. With this version of G, the response times depend on the current attribute

pattern αi,t, but is unaffected by the overall trajectory.

• Gi,j,t = log(
∑

m<t

∑
h η
∗
i,h,m+

∑
q<j η

∗
i,q,t+1), where η∗i,h,m = (

∏K
k=1 α

qh,k
i,m,k) ·I(qThqj > 0)

indicates whether subject i has answered item h as a master at time m and whether

items h and j have overlaps in requisite skills. Intuitively, Gi,j,t counts the total number

of questions relevant to the current item j on which the learner has answered as a

master. It assumes that practices on mastered skills have a cumulative effect on the

increase in latent speed. Using this version of G, it is assumed that the person’s latent

speed on an item depends on the entire trajectory of αi prior to this item.

Lastly, the slope in front of G, φ, captures the rate at which the learner’s latent speed changes

according to the covariate G. We note that, when φ = 0, Wang’s model reduces to the

traditional log-normal response time model (van der Linden, 2006), where the distribution

of response times is governed by the subject’s latent speed and the item’s time-intensity and

time-discrimination.

The paragraphs above described the measurement model for response times. Under the

joint modeling framework proposed by S. Wang et al. (2018), the DINA model in Equation

(1.2) is used as the measurement model for response accuracy. On the structural level, how

the learner’s attribute pattern changes over time (i.e. the transition model, remains the

same as in the HO-HM CDM in Equation (2.1)). The learner’s initial speed, τi, can be
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jointly modeled with his or her latent learning ability, θi, through a multivariate normal

distribution, with

θi
τi

 ∼MVN(µ,Σ). This joint modeling assumes a correlation between

the subjects’ initial latent speed and latent learning ability.

3.1.2 Mixture Models and Mixture Hidden Markov Models

Mixture Models. Mixture models are commonly used in statistics to describe the distribu-

tion of observations with the existence of unobserved subpopulations. Suppose for subjects

i = 1, . . . , n, the corresponding random vectors of observed data are X1, . . . ,Xn, with re-

alizations x1, . . . ,xn. We further suppose that there are C subpopulations in the overall

population, and that each subpopulation is associated with a different distribution for the

observed data, fc(X). Then, under the basic form of the mixture model, the probability

density of subject i’s observed responses Xi is

f(Xi = xi) =
C∑
c=1

πc ∗ fc(Xi = xi), (3.3)

where πc is the probability that subject i is in subpopulation c, also known as the mixing

weight, and
∑

c πc = 1. A comprehensive overview of finite mixture models can be found in

McLachlan and Peel (2004).

Mixture models have been widely used in psychometrics research. In fact, one of the

most commonly used item response models, the three-parameter logistic model (Birnbaum,

1968),

P (X = 1 | θ) = c+ (1− c) ∗ 1

1 + exp(−a(θ − b)) , (3.4)

can be reformulated into a mixture model,

P (X = 1 | θ) =
1

1 + exp(−a(θ − b)) + c ∗ (1− 1

1 + exp(−a(θ − b))), (3.5)
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where the probability of correct response is 1 with probability 1
1+exp(−a(θ−b)) , and the probabil-

ity of correct response is c (guessing) with probability 1− 1
1+exp(−a(θ−b)) . Mixture models have

also been applied in educational measurement to address some practical issues in testing,

such as identifying rapid-guessing or aberrant behaviors among test-takers (e.g., C. Wang

& Xu, 2015), to identify compromised test items (e.g., McLeod, Lewis, & Thissen, 2003),

and to model test speededness in time-constrained testing scenarios (e.g., Bolt, Cohen, &

Wollack, 2002).

From this general formulation of mixture models, we can quickly see that the restricted

latent class model in Chapter 1 and the hidden Markov learning models discussed in Chapter

2 can be deemed as mixture models. Under the RLCM, the probabilities of responding

correctly on the assessment items depends on the attribute pattern of the subject. The

unobserved latent attribute profiles can be regarded as the subpopulations, associated with

mixing weights π. Under the hidden Markov models for learning, the initial population

membership of the subjects affect their transition probabilities to other attribute patterns

at subsequent time points as well as their responses (and response times if applicable), and

thus, the initial attribute patterns could also be regarded as subpopulations. However, we

note that for the mixture hidden Markov models to be introduced next, the mixture refers

to the subpopulations of the overall HMM instead of just the initial classifications.

Mixture HMMs. Langeheine and Van de Pol (1990) and Van de Pol and Langeheine

(1990) proposed the mixed Markov latent class model, which, in its most general form, is

the mixture of several first order hidden Markov models. Specifically, we index the subpop-

ulations by c = 1, . . . , C, the possible states of the Markov chain by s ∈ {1, . . . , S} = A,

and the time points by t = 1, . . . , T . Let the observed responses at time t by Xt, then un-

der the mixed Markov latent class model, the probability of the observed response sequence

X1, . . . ,XT is given by

P (X1, . . . ,XT ) =
C∑
c=1

πc
∑

∀(s1,...,sT )∈AT

[
δs1|cP (X1 | s1, c)

T∏
t=2

τst|st−1,cP (Xt | st, c)
]
, (3.6)
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where πc is the probability of being in subpopulation c, (s1, . . . , sT ) ∈ AT is any latent

trajectory from time 1 to time T in the state space A, δs1|c is the initial probability of being

in state s1 for someone in subpopulation c, τst|st−1,c is the probability of transitioning from

state st−1 to state st for someone in subgroup c, and lastly, P (Xt | st, c) is the probability

of responding Xt given latent state st, for someone in subpopulation c. Model (3.6) assumes

that different subpopulations different in all three components of the hidden Markov model,

namely initial probabilities (δs), transition probabilities (τs), and response distributions

(P (Xt | ·)).

Vermunt, Tran, and Magidson (2008) further extended the mixed Markov latent class

model in Equation (3.6) to incorporate time-invariant or time-dependent covariates, denoted

zi,t for subject i at time t. Denoting the subpopulation membership of subject i by Wi, which

takes values in 1, . . . , C, the model can be obtained with a slight modification to Equation

(3.6),

P (X1, . . . ,XT | zi) =
C∑
c=1

P (Wi = c | zi) (3.7)

×
∑

∀(s1,...,sT )∈AT

[
δs1|c,zi,1P (X1 | s1, c, zi,1)

T∏
t=2

P (st | st−1, c, zit)P (Xt | st, c, zit)
]
.

This model replaces the constant subgroup probabilities, initial population membership prob-

abilities, transition probabilities, and response probabilities in the mixed Markov latent class

model by more general distributions, with the covariates zi.

3.2 Mixture Learning Model with Response Times

and Response Accuracy

The mixture HMM formulation in (3.7) allows the initial hidden state distributions, tran-

sition model, and response model to differ across people in different subpopulations. It is
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possible that the measurement or transition models among subgroups come from the same

distribution but have group-specific parameters, and it is also possible that these models

take different functional forms across different groups. We adopt a similar framework for

modelling the learners’ behaviors in a learning process. However, instead of assuming sub-

populations of learners, we instead assume that at each time point, a learner can be in

different modes. Below, we provide an example model, under which at each time point, a

learner make take two possible learning modes, namely engaged (Di,t = 0) or disengaged

(Di,t = 1).

For the mixture learning model with engaged and disengaged learning modes, we assume

that under different learning modes, learners employ different solution strategies, and their

probabilities of transitioning from non-mastery to mastery are different. Specifically, we

assume that a learner in the engaged learning mode engages in solution behavior on the

assessment items, by employing relevant skills to respond to the questions as accurately and

quickly as possible. In this case, the learner’s responses and response times can be modelled

using the DINA response model in Equation (1.2) and the log-normal response times model

in Equation (3.1), respectively. Similar to S. Wang et al. (2018), we consider three different

versions of Gi,j,t, namely

• Gi,j,t = ti,j/T ;

• Gi,j,t =


1, if αi,t � qj,

0, otherwise.

; and

• Gi,j,t = log(
∑

m<t(1 −Di,m)
∑

h η
∗
i,h,m +

∑
q<j η

∗
i,q,t + 1), where η∗i,h,m = (

∏K
k=1 α

qh,k
i,m,k) ·

I(qThqj > 0).

The first two versions of Gi,j,t are the same as in S. Wang et al. (2018), for which

the interpretations are provided in the previous section. Note that for the third version of

Gi,j,t, a slight modification is made in the calculation of the amount of practice. Instead of

including all of the items that the subject has answered previously as a master, only the
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ones s/he answered as a master in the engaged learning mode are included. As an example,

we consider a learner who was disengaged at time 2 and answered all questions at that time

point with rapid-guessing. Suppose at time 3, he switches back to the engaged learning mode

and answers each item with a solution strategy. The items he answered at time 2, which he

rapid-guessed, will not contribute to the amount of practice he has done when we model his

response times at time 3.

In terms of the transition probability, we make the assumption that a learner in the

engaged mode also has high engagement level in the learning process and thus may improve

in skill mastery at that time point. In the engaged learning mode, the learner’s transitions of

attribute pattern at that time point is hence modelled using the higher-order hidden Markov

CDM (HO-HM CDM) in Equation (2.1). Similar to the modeling for Gi,j,t, we make a slight

modification to the practice term in the HO-HM CDM:

logit[P (αi,k,t+1 = 1 | αi,k,t = 0,αi,t)] = λ0 + θi + λ1

∑
∀k′ 6=k

αi,k′,t + λ2

t∑
m=1

(1−Di,m)
Jt∑
j=1

qj,m,k,

(3.8)

where the amount of practice,
∑t

m=1(1 − Di,m)
∑Jt

j=1 qj,m,k, only includes previous items

completed under the engaged mode. In addition, we note that the slope in front of θi is

dropped in Equation (3.8). In this case, θi will be treated as a random intercept, whose

variance is freely estimated, and its distribution is modelled together with τi to capture the

population-level relationship between latent speed and latent learning ability.

On the other hand, if at a specific time point, a learner is in the disengaged learning

mode, we assume this learner takes rapid-guessing strategies on assessment items and shows

low engagement in the learning process. We model their rapid guessing strategy using similar

methods as in C. Wang and Xu (2015), where the probability of correctly responding to item

j is equal to some g∗ ∈ (0, 1) across all items, and the distribution of response times under
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the rapid guessing strategy is also assumed to be the same across items, specifically,

log(Li,j,t) | Di,t = 1 ∼ N(µ1, σ
2
1), (3.9)

where µ1 and σ2
1 are the mean and variance of the log-response times in the disengaged mode.

Lastly, the disengagement in the learning process is reflected in the transition probabilities

from the current stage to the next. In other words, if a learner i is in the disengaged mode

at time t, his or her attribute pattern at time t + 1 is assumed to the unchanged from αi,t.

As a summary, Table 3.2 presents the learning, response, and response time models for the

learners under the two different learning modes.

Table 3.1: Components of the mixture learning model with disengaged and engaged test
takers.

Learning Mode engaged (Di,t = 0) Disengaged (Di,t = 1)

P (αi,t+1 | αi,t) =

logit[P (αi,k,t+1 = 1 | αi,k,t = 0,αi,t)] =
λ0 + λ1θi + λ2

∑
∀k′ 6=k αi,k′,t+

λ3

∑t
m=1(1−Di,m)

∑Jt
j=1 qj,m,k

I(αi,t+1 = αi,t)

P (Xi,j,t = 1) = (1− sj)
∏K
k=1 α

qj,k
i,t,kg

1−
∏K
k=1 α

qj,k
i,t,k

j g∗

log(Li,j,t) ∼ N
(
γj − (τi + φ0 ∗Gi,j,t),

1
a2j

)
N(µ1, σ

2
1)

3.2.1 Bayesian Model Formulation

We set up our mixture learning model with engaged and disengaged modes under a Bayesian

framework. Let Di,t denote the membership of subject i at time t in terms of whether s/he

is disengaged, where Di,t = 1 if i is disengaged at time t, and Di,t = 0 otherwise. We assume

that

Di,t ∼ Bernoulli(ω), (3.10)

where ω is the probability an arbitrary learner belongs to the disengaged group, and the

prior distribution of ω is

ω ∼ Beta(1, 1). (3.11)
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The initial attribute pattern of learner i is assumed to be a multinomial sample from

all C = 2K possible classes, with

P (αi,1 = αc) =
C∏
c=1

πI(αi,1=αc)
c , (3.12)

where a Dirichlet prior distribution for the initial probabilities of each attribute pattern is

used,

π = [π1, . . . , πC ] ∼ Dirichlet(1, . . . , 1). (3.13)

At time t ∈ {1, . . . , T − 1}, if a learner is in the engaged learning mode with Di,t = 0,

his or her attribute pattern at the next time point, αi,t+1, conditioning on the attribute

pattern at time t is modelled using the higher-order hidden Markov CDM in equation (2.1).

Similar to S. Wang et al. (2018), we used the following prior probabilities for the learning

model parameters:

λ0 ∼ Normal(0, 1), λ2 ∼ Lognormal(−1, 0.6), λ3 ∼ Lognormal(−1, 0.6). (3.14)

And if the learner is disengaged at time t with Di,t = 1, αi,t+1 | Di,t = 1 is equal to αi,t with

probability 1.

The responses of a learner under the engaged mode is assumed to follow the DINA

model in Equation (1.2). A Beta prior was used for the slipping and guessing parameters of

all the items, in other words,

p(sj, gj) ∝ sas−1
j (1− sj)bs−1g

ag−1
j (1− gj)bg−1I(0 ≤ gj < 1− sj ≤ 1). (3.15)

On the other hand, the response to an item j by a learner in the disengaged mode is assumed

to be a Bernoulli sample with success probability g∗, in other words, P (Xi,j,t = 1 | Di,t =

1) = g∗, where g∗ is assumed to have a Beta(1, 1) prior distribution.

At each time point t = 1, . . . , T , if Di,t = 0, subject i’s response times on each item
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follows the log-normal distribution in Equation (3.1). Similar as in S. Wang et al. (2018),

we use the following priors for the response time model parameters:

γj ∼ N(0, 1), φ0 ∼ N(0, 1), and a2
j ∼ Gamma(1, 1). (3.16)

If Di,t = 1, the reaction times to each item by learner i are assumed to follow the log-normal

distribution given in Equation (3.9), with the following priors for the response time model

parameters:

µ1 ∼ N(0, 1), and σ2
1 ∼ Inv-Gamma(1, 1). (3.17)

Lastly, for each learner, his or her latent learning ability θi and initial latent speed

τi in the engaged mode are assumed to follow a multivariate normal distribution, i.e.,

(θi, τi)
′ ∼ MVN(0,Σ), where the prior of the covariance matrix Σ follows the Inverse-Wishart

distribution, in other words,

Σ ∼ Inv-Wishart(3, I2). (3.18)

3.2.2 Bayesian Full Conditional Distribution

Under the Bayesian modelling framework described above, the full likelihood of the subjects’

responses and response times, as well as their speed, learning ability, and attribute patterns

and learning modes at each time point conditioning on the fixed model parameters is given

66



by

P (X,L,α,θ, τ ,D | λ, s,g, g∗, a,γ, φ0, µ1, σ
2
1, ω,π,Σ)

=
N∏
i=1

{
p(θi, τi | Σ)p(αi,t | π)×

T−1∏
t=1

[
P (Di,t | ω)P (Xi,t,Li,t | Di,1, . . . , Di,t, ·)P (αt+1 | Di,1, . . . , Di,t, ·)

]
×

P (Di,T | ω)P (Xi,T ,Li,T | Di,1, . . . , Di,T , ·)
}
, (3.19)

where

P (Xi,t,Li,t | Di,1, . . . , Di,t, ·)

=


∏Jt

j=1 g
∗Xi,j,t(1− g∗)1−Xi,j,tf(Li,j,t | µ1, σ

2
1), if Di,t = 1∏Jt

j=1(1− sj)
∏K
k=1 α

qj,k
i,t,kg

1−
∏K
k=1 α

qj,k
i,t,k

j f(Li,j,t | γj, τi, φ0,αi, aj), if Di,t = 0,

(3.20)

and

P (αi,t+1 | Di,1, . . . , Di,t, ·) =


I(αi,t+1 = αi,t), if Di,t = 1,∏K

k=1 P (αi,t+1,k | αi,t,λ, θi), if Di,t = 0.

(3.21)

Note that whenDi,t = 0, the transition probability and the response time distribution depend

on Di,1, . . . , Di,t−1 through the practice terms. When Di,t = 1, neither the transition prob-

ability nor the response times depend on previous practice, so P (Xi,t,Li,t | Di,1, . . . , Di,t, ·)

and P (αi,t+1 | Di,1, . . . , Di,t, ·) reduce to P (Xi,t,Li,t | Di,t, ·) and P (αi,t+1 | Di,t, ·).

We next present the conditional distribution of each model parameter given the other

parameters and the observed responses and response times, which can be used to obtain

random samples from the posterior distribution with a Gibbs sampling algorithm.
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At each time point t and for each subject i, the conditional distribution of Di,t is

P (Di,t = 1 | ω,Xi,t,Li,t,αi) =
π̃i,t,1∑1
d=0 π̃i,t,d

. (3.22)

When Gi,j,t = ti,j/T or Gi,j,t = I(αi,t � qj),

π̃i,t,d =


P (Di,t = d | ω)

∏T−1
t∗=t P (αi,t∗+1 | Di,1:(t−1), Di,t = d,Di,t+1:t∗·)

× P (Xi,t,Li,t | Di,t = d, ·),
if t < T,

P (Di,t = d | ω)P (Xi,t,Li,t | Di,t = d, ·), if t = T.

(3.23)

When Gi,j,t = log(
∑

m<t(1−Di,m)
∑

h η
∗
i,h,m+

∑
q<j η

∗
i,q,t+1), P (Xi,t,Li,t | Di,t = d, ·) in

both cases of Equation (3.23) is replaced with
∏T

t∗=t P (Xi,t∗ ,Li,t∗ | Di,1:t−1, Di,t = d,Di,t+1:t∗·)

to account for the effect of Di,t on the “practice effect” in the response times at later time

points.

Here, P (Xi,t∗ ,Li,t∗ | Di,1:t−1, Di,t = d,Di,t+1:t∗ , ·) is the probability of observing re-

sponses and latency Xi,t∗ and Li,t∗ at time t∗ given the Dis up to time t∗, with Di,t equal

to d. And similarly, P (αi,t∗+1 | Di,1:t−1, Di,t = d,Di,t+1:t∗·) is the probability that subject i

takes attribute pattern αi,t∗+1 at time t∗ + 1, given Dis up to time t∗ with Di,t = d. These

could be obtained based on Equations (3.20) and (3.21).

The conditional distribution of the mixture weight, ω, is

ω | D ∼ Beta(1 +
N∑
i=1

T∑
t=1

Di,t, 1 +
N∑
i=1

T∑
t=1

(1−Di,t)). (3.24)

For each subject i and each time point t, the conditional probability that the current

attribute pattern αi,t equals αc ∈ {0, 1}K is

P (αi,t = αc) =
π̃ict∑2K

c′=1 π̃ic′t
. (3.25)
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When Gi,j,t = ti,j/T ,

π̃ict =


πcP (αi,t+1 | αi,t, Di,t)P (Xi,t | αi,t, Di,t), if t = 1,

P (αi,t | αi,t−1, Di,t−1)P (αi,t+1 | αi,t, Di,t)P (Xi,t | αi,t, Di,t), if 1 < t < T,

P (αi,t+1 | αi,t, Di,t)P (Xi,t | αi,t, Di,t), if t = T.

(3.26)

When Gi,j,t = I(αi,t � qj),

π̃ict =



πcP (αi,t+1 | αi,t, Di,t)P (Xi,t | αi,t, Di,t)f(Li,t | αi,t, Di,t), if t = 1,

P (αi,t | αi,t−1, Di,t−1)P (αi,t+1 | αi,t, Di,t)P (Xi,t | αi,t, Di,t)

× f(Li,t | αi,t, Di,t),
if 1 < t < T,

P (αi,t | αi,t−1, Di,t−1)P (Xi,t | αi,t, Di,t)f(Li,t | αi,t, Di,t), if t = T.

(3.27)

And when Gi,j,t = log(
∑

m<t(1−Di,m)
∑

h η
∗
i,h,m+

∑
q<j η

∗
i,q,t+1), we replace f(Li,t | αi,t, Di,t)

in Equation (3.27) with
∏T

t∗=t P (Li,t∗ | αi,1:t−1,αi,t = αc,αi,t+1:t∗ , Di,1:t∗ , ·) to account for

the effect of previous attribute trajectories on the practice term in response times at later

time points.

For the population proportions of the attribute patterns at time 1, π, the conditional

distribution is

π | α1,1 . . . ,αN,1 ∼ Dirichlet(1 + Ñ), (3.28)

where Ñ = [
∑N

i=1 I(αi,1 = α1), . . . ,
∑N

i=1 I(αi,1 = α2K )].

For any learner i, the conditional distribution of (θi, τi) is

P (θi, τi | Σ,αi,Li) ∝ p(θi, τi | Σ)
[ ∏

t<T :
Di,t=0

P (αi,t+1 | αi,t, θi,λ)
][ ∏

t:Di,t=0

f(Li,t | τi,γ, a, φ0,αi)
]
.

(3.29)
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And the conditional distribution of the covariance matrice of (θi, τi), Σ, is

Σ | θ, τ ∼ Inv-Wishart
(
N + 3, I2 +

N∑
i=1

 θ2
i θiτi

θiτi τ 2
i

). (3.30)

For the slopes and intercept of the HO-HM CDM, λ, the conditional distribution is

p(λ)
N∏
i=1

∏
t<T−1:
Di,t=0

P (αi,t+1 | αi,t,λ, θi). (3.31)

The conditional distribution of the DINA model sj, gj for each item j is given by

P (sj, gj | Xj,α,D) ∝ sãs−1
j (1− sj)b̃s−1g

ãg−1
j (1− gj)b̃g−1I(gj < 1− sj), (3.32)

with

ãs = 1 +
∑

i:Di,t=0
&Xi,j=0

ηi,j,t, b̃s = 1 +
∑

i:Di,t=0
&Xi,j=1

ηi,j,t,

ãg = 1 +
∑

i:Di,t=0
&Xi,j=1

(1− ηi,j,t), b̃g = 1 +
∑

i:Di,t=0
&Xi,j=0

(1− ηi,j,t),

where ηi,j,t denotes the ideal response under the DINA model.

The conditional distribution of correct response probability for learners in the disen-

gaged mode, g∗, is

g∗ | X,D ∼ Beta(ãg∗ , b̃g∗), (3.33)

where

ag∗ = 1 +
∑

i,t:Di,t=1

Jt∑
j=1

Xi,j,t, bg∗ = 1 +
∑

i,t:Di,t=1

Jt∑
j=1

(1−Xi,j,t).
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For each item j, the conditional distribution of the time discrimination parameter a2
j is

a2
j ∼ Gamma

(
1 +

∑N
i=1(1−Di,tij)

2
, 1 +

∑N
i=1(1−Di,tij)(logLi,j,tij + τi + φ0Gi,j,tij − γj)2

2

)
,

(3.34)

where tij denotes the time at which item j is given to subject i. And the conditional

distribution of the time intensity parameter, γj, is

γj | Lj,D, aj, φ0, τ ∼ N(µ̃γ, σ̃
2
γ), with (3.35)

σ̃2
γ = 1/

(
1 + a2

j

N∑
i=1

(1−Di,tij)
)
,

µ̃γ = σ̃2
γ ∗
{
a2
j

N∑
i=1

(1−Di,tij)(logLi,j,tij + τi + φ0Gi,j,tij)
}
.

For φ0, the slope for the covariate describing speed increase over time in the engaged

learning mode, the conditional distribution is

φ0 | L,α, τ , a,γ,D ∼ N(µ̃φ, σ̃
2
φ), with (3.36)

σ̃2
φ = 1/

(
1 +

N∑
i=1

T∑
t=1

(1−Di,tij)
Jt∑
j=1

a2
jG

2
i,j,tij

)
,

µ̃φ = σ̃2
φ ∗
{ N∑

i=1

T∑
t=1

(1−Di,tij)
Jt∑
j=1

[
a2
j(γj − τi − logLi,j,tij)Gi,j,tij

]}
.

Lastly, the conditional distributions of the mean and standard deviation of log-response

times under the disengaged learning mode are as the following:

µ1 | L,D, σ2
1 ∼ N(µ̃µ1 , σ̃

2
µ1

), with (3.37)
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σ̃2
µ1

= 1/
(

1 +
1

σ2
1

Jt

N∑
i=1

T∑
t=1

Di,t

)
,

µ̃µ1 = σ̃2
µ1
∗
{ 1

σ2
1

N∑
i=1

T∑
t=1

[
Di,t

Jt∑
j=1

logLi,j,t

]}
. And

σ2
1 | L,D, µ1 ∼ Inv-Gamma

(
1+

Jt ·
∑N

i=1

∑T
t=1 Di,t

2
, 1+

∑N
i=1

∑T
t=1

[
Di,t

∑Jt
j=1(logLi,j,t − µ1)2

]
2

)
.

(3.38)

A Gibbs sampler is developed to iteratively update the parameters above by sampling from

their conditional distributions. For θi and for λ, their conditional distributions do not

resemble any known families of distributions, and thus, Metropolis-Hastings steps are used

to update these parameters. A detailed discription of the MH sampling algorithm for these

parameters can be found in S. Wang et al. (2018). Another thing to note is that when

Di,t, = 1, in other words, when a learner is disengaged, our model assumes that the attribute

pattern at the next time point, αi,t+1, is the same as αi,t. In this case, αi,t and αi,t+1

share the same unique attribute pattern. When we update the αi,ts sequentially for each

learner, instead of sampling each αi,t separately, sets of consecutive αis with no transitions

in between (e.g., αi,t and αi,t+1 if Di,t = 1) are sampled together, conditioning on the

previous attribute pattern (if available), the next unique attribute pattern (if available), and

the observed responses and response times across all the time points sampled together (if

available).

3.3 Simulation Study

We conducted a simulation study to evaluate the recovery of the mixture learning model

parameters using the proposed Gibbs sampling algorithm. Out of the three versions of

Gi,j,t we discussed above, we used Gi,j,t = I(αi,t � qj) in the simulations as an illustration.

However, the results should be generalizable to other types of Gs, because the only difference

among the models using different types of Gs is the actual value of the covariate.
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3.3.1 True Parameters

We simulated the attribute trajectories of N = 500 learners on K = 4 skills across T = 5

time points. The learners’ initial attribute patterns were randomly sampled from the set

of all possible attribute profiles ({0, 1}K) uniformly. And for each learner, their latent

learning ability θi and latent speed τi were randomly generated from a multivariate normal

distribution with mean 0 and covariance Σ =

3.24 .36

.36 .25

 .

At each time point, the learners were first administered Jt = 10 assessment items

measuring their mastery on the 4 skills. And except for the last time point (t = T ), after

each block of assessment items, learners were administered a learning intervention, after

which their attribute mastery status may change. To ensure a balanced sample for the

estimation of the item parameters, an incomplete block design similar as in S. Wang et al.

(2016) was used to counterbalance the order of item assignment to different learners.

At each time point t = 1, . . . , T , the learners were randomly assigned to one of two

possible learning modes, namely the engaged learning mode (Di,t = 0) and the disengaged

learning mode (Di,t = 0). The true probability of Di,t = 1 was set to be ω = .1, in other

words, at any time point, the probability that a learner is disengaged was 10%. Then,

conditioning on the learner’s mode at time t, the attribute mastery changes, responses, and

response times were simulated with from different distributions. More specifically:

(1) Transition. If at time t, learner i is in the engaged learning mode (Di,t = 0), the

probability that the learner transitions from non-mastery to mastery on a skill is given

by the modified HO-HM CDM in Equation (3.8). Similar to S. Wang et al. (2016), we

assumed the monotonicity in the growth of attribute mastery, in other words, a mastered

skill will not be forgotten. The true intercept (λ0) and slopes (λ1, λ2) of the learning

model were set to −1, .3, and .05, respectively. If learner i is disengaged at time t with

Di,t = 1, the learner’s attribute pattern at the next time point, αi,t+1, was set to be the

same as the current one, αi,t.
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(2) Response. When a learner is in the engaged learning mode at time t (Di,t = 0), the

learner is assumed to engage in the solution behavior, and the responses were simulated

under the DINA model in Equation (1.2). For each item in the testing item pool, the

DINA model slipping parameters (sj) were generated from Beta(1, 10), and the guessing

parameters (gj) were generated from Beta(2, 2). These Beta distribution parameters were

selected to imitate the distribution of the estimated slipping and guessing probabilities

from the Spatial Rotation Learning Program data set. On the other hand, if the learner

is disengaged at time t with Di,t = 1, a rapid guessing strategy is assumed and the

learner’s responses are generated from Bernoulli(.2), in other words, the probability of

guessing correctly on any item was g∗ = .2.

(3) Response Times. We assumed that when a learner is in the engaged learning mode,

the observed response times follow the log-normal model in Equation (3.1), with Gi,j,t =

I(αi,t � qj), which takes the value 1 if learner i has mastered all requisite skills for item

j by time t and 0 otherwise. For each assessment item, the time intensity parameter γj

was generated from N(4, .5), and the time discrimination parameter aj was generated

from U(2, 4). These distributions were selected to resemble the observed response time

distributions in seconds from the Spatial Rotation Learning Program data if we assume

a mean of 0 for the subjects’ latent speeds. And for the slope in front of the covariate

Gi,j,t, a true value of φ0 = .3 was used. In other words, we assumed a .3 increase in

latent speed for any learner who has mastered all required skills of an item. If Di,t = 1,

in other words, learner i is disengaged at time t, the observed reaction times to any item

at that time point was simulated from log-normal(µ1 = 2, σ1 = .5), translating to an

average reaction time of approximately 8 seconds.

3.3.2 Parameter Estimation

To start the MCMC, we first generated initial values of all the model parameters, and each

of them were sequentially updated given the others from the conditional distributions in the
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section above. Specifically, the initial fixed parameters were generated as follows:

λ0 ∼ N(0, 1), λ1 ∼ U(0, 1), λ2 ∼ U(0, 1),

Σ = I2, π ∼ Dirichlet(1), φ0 ∼ U(0, 1),

ω ∼ U(0, .2), g∗ ∼ U(0, .5), sj, gj ∼ U(0, .3),

µ1 ∼ N(2, 1), σ1 ∼ U(0, 1), γj ∼ N(3.45, .52),

aj ∼ U(2, 4).

The random parameters, namely D,α,θ and τ , were then randomly generated based on the

corresponding fixed parameters.

A chain length of 15000 iterations was used for the MCMC, with the first 5000 as the

burn-in that were excluded for the computation of the point estimates of the parameters.

From the post burn-in iterations, we calculated the expected a posteriori (EAP) estimates of

each of the model parameters by taking the average of the parameter samples. For the binary

parameters, α and D, the final point estimates were dichotomized depending on whether

the associated post burn-in average was less than or greater than .5.

3.3.3 Evaluation Criteria

The performance of the proposed algorithm is evaluated in terms of two aspects:

(1) MCMC chain convergence: To evaluate the model convergence, five separate chains with

different starting values were run with chain lengths of 15000 iterations under each con-

dition, based on one randomly simulated data set. The Gelman-Rubin proportional scale

reduction factor (PSRF), commonly known as R̂ (Gelman et al., 2014), was calculated

for each parameter at different chain lengths from 5000 to 15000, with the first 5000

iterations as the burn-in, and the progression of the maximum R̂ out of all estimated

parameters is used to determine an adequate chain length for the MCMC algorithm.
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(2) Parameter recovery: The ability of the proposed algorithm to accurately recover the

true parameters was evaluated in terms of the following aspects. The recovery of at-

tribute patterns of the students at each time point was evaluated using the attribute-

wise agreement rate, AAR =
∑N
i=1

∑K
k=1 I(αikt=α̂ikt)

N×K , and the pattern-wise agreement rate,

PAR =
∑N
i=1 I(αi,t=α̂i,t)

N
, between the true (α) and estimated (α̂) attribute patterns.

We further evaluated the recovery of φ0,Σ,π, λ, ω, µ1,σ1, and g∗ by comparing the

mean and standard deviation of the posterior parameter samples to the true values. The

recovery of the response model item parameters, s and g, were evaluated in terms of

their correlations with the true values and bias (Bias(s) =
∑Jt×T
j=1 (ŝj−sj)
Jt×T , similarly for

the gs). The agreement between true and estimated response time model parameters

(a and γ), learning ability (θ) and latent speed (τ ) were evaluated in terms of the

correlation between true and estimated values, as well as the root mean squared error

(RMSE(τ ) =
∑N
i=1(τi−τ̂i)2

N
, similarly for a,γ,θ, s,and g). Note that for each student, the

data used to update θ are their transitions from non-mastery to either non-mastery or

mastery. Therefore, once a student becomes a master of all skills, the subsequent αs

will not be used to update θ, and no data on the transitions are available for students

who have mastered all skills at the very beginning. For this reason, when computing the

correlation between true and estimated learning abilities, we excluded the students who’s

estimated initial attribute pattern was (1, 1, 1, 1). Finally, we computed the percentage

of agreement between each true Di,t and estimated D̂i,t to evaluate the sensitivity of the

proposed algorithm in detecting whether a learner is engaged or disengaged at a given

time point.

3.3.4 Results

Parameter Convergence. Figure 3.1 presents the change of the maximum univariate R̂

among all model parameters as chain length increases. From the figure, we observe that after

approximately 6000 iterations, the maximum R̂ reduced to below 1.2, indicating parameter

76



convergence.
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Figure 3.1: Maximum Brook-Gelman Proportional Scale Reduction Factor across all pa-
rameters with different chain lengths. The x−axis is the length of the MCMC chain, and
the y−axis is the maximum PRSF. Dashed line represents the commonly used threshold of
R̂ = 1.2 for parameter convergence.

Parameter Recovery. Table 3.2 presents the attribute-wise agreement rates (AARs)

and the pattern-wise agreement rates (PARs) between the true and estimated attribute pat-

terns (α) at each time point. Across all time points, the proposed estimation algorithm

achieved over 88% accuracy in measuring the presence/absence of attributes for each par-

ticipant. The estimation accuracy was the lowest for the initial time point (t = 1), and it

increased as t increased, achieving over 96% agreement at t = 5.

Table 3.3 presents the true values, posterior means, and the posterior standard devi-
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Table 3.2: The attribute-wise and pattern-wise agreement rates (AARs and PARs) between
the true and estimated α.

Time t = 1 t = 2 t = 3 t = 4 t = 5
AAR 0.885 0.942 0.958 0.968 0.968
PAR 0.630 0.800 0.854 0.882 0.894

ations of the fixed parameters in the model, namely the variance of the general learning

ability (σ2
θ), covariance between learning ability and latent speed (σθτ ), variance of latent

speed (σ2
τ ), the transition model’s intercept (λ0) and slopes (λ1, λ2), the probability of dis-

engagement (ω), the coefficient for the increase of latent speed (φ0) for engaged learners, the

correct response probability in the disengaged mode (g∗), and the mean (µ1) and standard

deviation (σ1) of the log response times in the disengaged mode. Most of the EAPs for these

parameters were fairly close to the true values used for data generation, with small standard

deviations. However, we observe that the parameters associated with the transition model

(σ2
θ ,λ) showed larger biases and larger standard deviations. One possible reason is that

with T = 5, each learner could be observed on at most 4 transitions, and considering that

some learners started with mastery of all or most of the skills at the initial time point and

that some learners might be disengaged at a selection of time points, the actual number of

observations for transitions are usually less than 4 per learner. Thus, the amount of data

available for estimating the transition model parameters, as well as the θs and their variance,

is very limited.

The correlation between true and estimated values, as well as the RMSEs of a,γ, s,g, τ ,

and θ are presented in Table 3.4. For the items’ response time model parameters (a,γ),

the DINA model parameters (s,g), and the learners’ initial latent speeds (τ ), there was

a high agreement between the true and estimated values, with correlations over 97% and

RMSEs less than .02. For the latent learning abilities of the learners (θ), the estimate values

demonstrated larger errors with correlation around 75% and RMSE over 1.35. Similar to

the larger errors in the transition model parameter estimates, we think the larger error in

the estimation of θ can potentially be attributed to the paucity of data available to update
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Table 3.3: The true and estimated covariance between θ and τ (Σ), learning model parame-
ters (λ), mixing weight (ω), coefficient for speed growth (φ0) in the engaged learning mode,
correct response probability of learners in the disengaged mode (g∗), and the log-normal
mean (µ1) and standard deviation (σ1) of the response time distribution in the disengaged
mode. “True” stands for the true value of the parameters, “EAP” is the average of the
parameter samples across iterations, and “SD” is the standard deviation of the parameter
samples across iterations.

σ2
θ σθτ σ2

τ λ0 λ1 λ2

True 3.24 0.360 0.250 -1.000 0.300 0.050
EAP 4.748 0.417 0.26 -0.596 0.210 0.106
SD 1.083 0.081 0.018 0.198 0.074 0.027

ω φ0 g∗ µ1 σ1

True 0.100 0.300 0.200 2.000 0.500
EAP 0.092 0.292 0.205 2.005 0.493
SD 0.006 0.006 0.008 0.010 0.007

θi for each subject.

Table 3.4: Root mean square errors (RMSE) and correlations between true and estimated
DINA item parameters (s,g), response time model parameters (a,γ), and latent speed (τ )
and learning ability (θ) of learners.

Parameter a γ s g τ θ
Correlation 0.985 1.000 0.983 0.973 0.995 0.755
RMSE 0.015 0.016 <.001 0.002 0.018 1.351

Finally, across several repetitions of the simulation study, the estimated learning mode

of each subject at each time point, Di,t, showed high agreement with the true values, with

the proportion of correctly estimated entries in D very close to (> 99.9%), if not equal to,

100%. This suggests that under the proposed estimation algorithm, whether a learner is

disengaged or engaged at a given time point could be detected correctly most of the times

based on their response times, responses, and transitions in attribute mastery.

3.4 Discussion

In the current chapter, we proposed a mixture learning model with two possible learning

modes, namely the engaged mode and the disengaged mode. Under different modes, learners
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are assumed to demonstrate different learning and response behaviors, leading to differences

in the distributions of attribute mastery transitions over time, item responses, and response

times. A Bayesian Gibbs sampling algorithm was proposed to estimate the parameters of the

mixture model, and simulation studies showed that the model parameters could be accurately

estimated, the learners’ learning mode could be detected with high accuracy, and the chains

converged with as little as 6000 iterations.

When heterogeneity exists in the learning process, failure to account for different types

of learning modes could lead to inaccurate estimates of many parameters. As a simple il-

lustration we fitted the response and response times data generated in the simulation study

to the joint learning model of responses and response times under the HO-HM CDM frame-

work proposed by S. Wang et al. (2018), which assumes all learners are in the engaged mode

across all time points, with response distribution, response times distribution, and transition

model same as those under the engaged mode in the mixture model. Results suggested a

remarkable decrease in estimation accuracy of the attribute patterns (drop of average AAR

from .944 to .697), latent learning abilities (drop of correlation from .755 to −.020), latent

speeds (drop of correlation from .995 to .649), DINA model item parameters (s : correlation

drop from .983 to .696, g : from .973 to .737), and the items’ time discrimination param-

eters (drop of correlation from .985 to .291). Thus, when the empirical data suggest the

existence of disengaged learning for some learners at some occasions, fitting the proposed

mixture learning model instead of a homogeneous learning model could possibly improve the

accuracy in parameter estimates.

The proposed mixture learning model has the potential to detect student disengagement

in an online learning context. Compared to traditional classroom learning, online learning

programs often provide the students with a significantly more flexible and less controlled

environment. Whereas teachers in traditional classrooms can directly observe the students’

behaviors and their reactions to different interventions, in online learning, the educators do

not interact face to face with the students. The proposed mixture learning model framework
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provides a way for educators to infer the online learners’ learning mode (e.g., engaged or

disengaged) based on the observed responses and reaction times to assessment questions at

different time points. And the learners’ reaction times to assessment questions, in addition

to the responses, provide an extra source of information in the estimation of not only the

learners’ attribute mastery, but also their learning modes at each learning stage. For instance,

a disengaged learner and a engaged learner struggling with the contents may both have low

accuracy on their responses to the assessment items, and by looking merely at a response

vector, it is hard to infer if a learner is putting in efforts yet struggling or not paying attention

at all. If we look at the reaction times to the assessment items together with the response

accuracy, a fast yet incorrect response would be indicative of rapid guessing, which could

be more likely for the disengaged learners compared to struggling engaged learners. If the

educators can detect when a learner is showing low engagement, targeted stimulation can

be provided to the disengaged learner to increase their engagement level, which will in turn

increase their gain from the online learning experience.

The simulation study conducted here is just a first step at evaluating the performance

of the mixture learning model and the estimation algorithm, and it has a lot of limitations.

To name a few, more systematic simulation studies should be conducted with multiple repe-

titions, as well as different conditions of true parameter distribution and model specification,

such as the type of Gi,j,t used to explain reaction time decrease over time. In addition, in

the current simulation study, only one mixing weight (ω) and one type of distribution of

the responses and response times of the disengaged learners were considered. The assumed

distribution of the reaction times of the disengaged learners is also relatively restrictive, with

a small log-mean and a relatively small log-variance. By imposing this distribution of the

response times, we essentially assume that disengaged learners employ the rapid guessing

strategy on their item responses. However, it is possible that in practice, some of the dis-

engaged learners may not be responding rapidly to assessment items, especially when other

distractions are available. In the presence of larger heterogeneity in reaction times under
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the disengaged learning mode, the performance of the proposed mixture model in detect-

ing learner disengagement is worth evaluating. The robustness of the mixture model in the

case of no mixtures should also be examined by evaluating the model parameter recovery

and the estimate for Di,ts when the true generating model does not assume the presence of

disengagement in the learning process.

A lot of follow up research could be done along the lines of mixture learning models.

As an immediate next step, the proposed model will be applied to the data collected from

the Spatial Rotation Learning Program (S. Wang et al., 2016), where the raw reaction times

of the learners suggested that a lot of learners with low response accuracy also responded

the quickest among all participants. The fit of the proposed model, compared to a the joint

learning model of responses and response times (S. Wang et al., 2018), will be evaluated.

The proposed mixture model with engaged and disengaged learners also has a lot of room

for extensions. For example, instead of modeling the learning mode as a Bernoulli random

variable with a fixed probability of disengagement, a higher order model could be used to

describe the probability that a learner is disengaged at a specific time point, given a set of

time dependent or time independent covariates, such as learners’ demographic information

or other characteristics, the mode of instruction (e.g., video, text, interactive exercise), or the

temporal position of the current learning block (e.g., first learning block which may show slow

warm-up of the learners, or later learning blocks on which learners may demonstrate fatigue),

et cetera. The mixture model with two learning modes can also be extended to include three

or more possible learning modes, which could be used to differentiate different types of

disengagement or to capture other learning behaviors other than engaged and disengaged,

such as a warm-up mode, where students have low familiarity with the learning environment

and need some time to adjust before fully engaging.
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Chapter 4

hmcdm: An R Package for Fitting
Learning Models

4.1 Introduction

With the increased prevalence of online learning systems and the recent advocates for inte-

grating assessments with instructions (U.S. Department of Education, 2016), psychometrics

researchers became increasingly interested in adapting the methods in measurement research

to aid learning (e.g., Chang, 2015). With the ability to assess the mastery on fine-grained

skills, cognitive diagnosis models (Rupp et al., 2010) can be readily applied to the longitudi-

nal learning setting, to track students’ acquisition of knowledge or skills over time, identify

the covariates affecting learning outcome, and understand students’ learning behaviors.

hmcdm, which stands for hidden Markov cognitive diagnosis modeling, is an R package

for fitting longitudinal models for learning under the cognitive diagnosis framework, includ-

ing the higher-order hidden Markov model (S. Wang et al., 2016), the first order hidden

Markov model (Chen, Culpepper, Wang, & Douglas, 2017), the reduced-RUM and NIDA

learning models discussed in Chapter 2, and the joint model for learning with responses and

response times (S. Wang et al., 2018). The package allows users to simulate item responses

(and response times if applicable) under several learning models, to fit the models using

Markov Chain Monte Carlo (MCMC) methods, to compute point estimates of parameters

based on the MCMC samples, and to evaluate and compare different models using Deviance

Information Criterion (Celeux, Forbes, Robert, & Titterington, 2006) and posterior predic-

tive probabilities (Sinharay et al., 2006). In addition to the functions for modeling learning,

users can also access the data from the Spatial Rotation Learning Program (S. Wang et al.,
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2016).

4.2 Availability

A free copy of the hmcdm package, including the C++ source codes, the Spatial Rotation

data, a user manual, and an R script of vignettes demonstrating the use of the func-

tions in the package are available to the public on GitHub. Users can access the package

by downloading the binary source from https://github.com/tmsalab/hmcdm/releases

and installing the package in RStudio from package archive files. Alternatively, users can

also install the package by first installing the devtools package in R, and then typing

devtools::install github(’tmsalab/hmcdm’) in the R console. The package can be in-

stalled on Windows, Linux, and macOS operating systems.

4.3 Documentations

A PDF manual with complete documentations of all data objects, callable functions, as well

as examples for each function can be found in the source of the package. Example R code

for response simulation, model estimation, and model fit analyses using each learning model

mentioned above are also available in the hmcdm/R folder in the package source.
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