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ABSTRACT 

In a predictable natural selection process, herbicides select for adaptive alleles 

that allow weed populations to survive. These resistance alleles may be available 

immediately from the standing genetic variation within the population, as well as, 

may immigrate via pollen or seeds from other populations. Moreover, because all 

natural populations are constantly subject to new mutant genotypes by de novo 

mutations, resistant mutants may arise spontaneously in any herbicide-sensitive 

weed population. Recognizing that the relative contribution of each of these three 

sources deeply affect what strategies should be applied to counteract herbicide 

resistance evolution, we aimed to provide experimental information to the resistance 

evolutionary framework. In this sense, the objective of this experiment was to 

calculate the de novo mutation rate conferring herbicide resistance in a natural plant 

population, and, specifically, test the hypothesis that the mutation rate increases 

when plants are stressed by sub-lethal exposure to herbicides. For this purpose, we 

used a method to discover spontaneous herbicide-resistant mutants by screening 

millions of plants using grain amaranth and resistance to ALS herbicides as a model 

system. After screening 70,000,000 plants, no spontaneous resistant genotypes 

were detected, determining the probability to find a spontaneous ALS-resistant 

mutant in a given sensitive plant population as lower than 2 x 10-8. This is lower than 

expected from theoretical calculations based on previous studies, setting a higher 

limit for the probability of herbicide-resistant mutants to arise spontaneously in 

natural plant populations. In addition, we found no evidence that herbicide stress 
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increased the mutation rate. The results found in this study imply that de novo 

mutations conferring herbicide resistance do not appear to occur at high frequency 

in plant populations.  
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CHAPTER 1: Introduction 

1.1The problem of herbicide-resistant weeds 

After the last ice age, more than 10,000 years ago, human beings began to settle 

in permanent places and rely on growing crops and raising cattle to support a more 

benign, sedentary way of life (Grimberg and Svanström 1967). From that beginning, the 

progress of civilization has increasingly demanded higher and higher food production, 

requiring the addition of more land under agricultural production and the increase of 

productivity per land unit. It has only been in the last 60 years, however, that the 

augmentation of the human population, along with increases per capita, consumption 

level, and life-expectancy, generated a dramatic increase in food demand that only 

could be compensated by the technological advance going on from the ‘’Green 

Revolution’’ until now.  As these variables are expected to exponentially increase in the 

near future, agricultural production systems will be challenged as never before (Lanz et 

al. 2018; Prosekov and Ivanova 2018). 

Since the dawn of agriculture, nature has challenged crop productivity in many 

different ways. One challenge that farmers have always had to face is the presence of 

weeds growing alongside and competing with the crop plants (Powles and Yu 2010). 

Aboveground, crops and weeds compete for light interception, while in the soil, they 

compete for the absorption of water and nutrients. This competition ultimately results in 

yield reduction, decreasing the economical returns of the crop. Approaches to mitigate 

this loss have been historically based on physical perturbations (hand weeding, hoeing, 

tillage, burning) as well as crop management techniques (row spacing, seeding rates, 
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planting date, and cover crops). However, with the development of the chemical 

industry after the Second World War, herbicides began to be mass produced, beginning 

a new era in weed control and imposing themselves as the most effective, easiest, and 

least expensive way to kill weeds (Heap 2014). During the last 65 years, more than 300 

herbicides have been brought to the market, widely replacing any other method of 

control (Busi et al. 2013). 

Although highly successful, herbicides raise concerns in relation to human and 

environmental safety, and now also are facing efficacy challenges. Within this latter 

group, the primary driving force for reduced efficacy on weeds is their evolved 

resistance to these chemicals (Burgos et al. 2013). Weed resistance is defined as ‘’the 

evolved capacity of a previously herbicide-susceptible weed population to survive an 

herbicide and complete its life cycle when the herbicide is used at its normal rate in an 

agricultural situation’’ (Heap 2014). In the same way that bacteria evolve resistance to 

antibiotics and insects evolve resistance to insecticides, weeds evolve resistance to 

herbicides. For natural populations, the continuity of life under changing circumstances 

is maintained by natural selection acting on genetic diversity (Kondrashov 1984). This 

explains how natural populations survive extreme events. In the context of weedy 

populations, herbicide applications are abrupt and extreme disturbances to targeted 

populations. The prior existence of a subset of a population that is genetically capable 

of surviving the perturbation, allows the population to persist in the presence of the 

chemical control (e.g. herbicides select for adaptive alleles).  
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Because herbicides select for adaptive alleles conferring resistance, whenever 

herbicides are applied, resistance evolution responds. That is why the prolonged 

reliance on herbicides for weed control has produced a constant stream of reports of 

resistant weed populations since the first documented case in 1968 (Ryan 1970).  In an 

effort to understand and deal with this phenomenon, all published cases are 

summarized in the International Survey of Herbicide-resistant Weeds website, which is 

located at www.weedscience.com.  As of March 2018, the survey includes 491 resistant 

cases corresponding to 254 weed species—148 dicots and 106 monocots—in 70 

countries. Reports indicate evolved resistance to 23 of the 26 existing site-of-action 

(SoA) groups of herbicides.  

The herbicide-resistance phenomenon has been exacerbated in the last 20 

years. As with any other natural selection event, an increase in selection pressure 

increases the population frequency of the individuals that can survive selection. The 

overreliance on herbicides for weed control and the predominance of only a few 

herbicidal products meant farmers used the same products year after year, increasing 

the selection pressure for resistant genotypes in weed populations. The major reasons 

for this behavior were adoption of no- or low-tillage systems, lack of crop rotation (e.g. 

monocultures), and, perhaps most importantly, the predominance of herbicide-resistant 

crops in which most of the chemical control relies on just one product (e.g. glyphosate-

resistant crops) (Powles 2008; Green 2014). Moreover, the presence of existing 

herbicide-resistant weeds in the fields led to farmers choosing between even fewer 

products for weed management (Beckie and Harker 2017).  This reached the extreme in 

the cases of multiple resistance (i.e. weed populations resistant to herbicides targeting 

http://www.weedscience.com/
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different sites of action). In Illinois, one population of waterhemp (Amaranthus rudis 

Sauer) was shown to have evolved resistance to herbicides from four sites of action 

(Bell et al. 2013).  

From an economical perspective, the reduced number of effective herbicidal 

options has increased the farmer’s overall cost for weed management. This problem is 

magnified by the fact that the chemical industry has only brought a few new products 

with new SoAs to the market in the last quarter century. Previously, the continuous 

emergence of new active ingredients in the market kept the problem of herbicide-

resistant weeds at bay. However, since the 80’s when 4-hydroxyphenylpyruvate 

dioxygenase (HPPD) inhibitors were introduced—no new SoAs have arisen from the 

industry. Part of this can be explained by the devaluation of the herbicide market with 

the launch of glyphosate-resistant crops and the appearance of cheap generic 

herbicides, but the lack of new chemistries may also be attributed to the increased cost 

of bringing new products to the market, and the consolidation of the pesticide industry 

into a few large corporations (Duke 2012; Beckie and Harker 2017). 

As most of these economic factors will not likely be resolved in the short-term, 

growers should not expect to have many new active ingredients available in the near 

future (Duke 2012). However, as the intensive use of herbicides is maintained, 

resistance issues will continue to occur. Therefore, good resistance management 

becomes crucial to preserve the usefulness of available herbicide products for as long 

as possible. 
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1.2 Herbicide-resistant weed management: an evolutionary subject 

  Because herbicides select for adaptive alleles, the design of resistance 

management strategies should be targeting the factors that selection depends on. 

These include characteristics of the weed species (fecundity, breeding system, 

generation time, seed longevity, gene flow by pollen and seed, and seed dormancy), 

genes conferring resistance (frequency, number, dominance, provided resistance-level, 

and fitness in the absence of herbicide), herbicide (site of action, chemical structure, 

residual activity), and operational factors (dose, frequency, operator accuracy, , 

equipment, and environmental conditions during operation) (Powles and Yu 2010, Heap 

2014). A combination of these last factors determines the overall selection pressure 

placed on a population. For a particular herbicide, because the number of individuals 

treated over time can be managed by the frequency of application, and their fecundity 

can be affected by the rate level, the selection pressure is thought to be the factor that 

we can influence the most. In this sense, diminishing herbicide selection pressure is the 

cornerstone of management strategies to counteract resistance evolution. This 

approach should be applied, however, in agricultural production systems that highly 

base weed control on herbicides. 

Along these lines, in addition to cultural and mechanical methods, recommended 

resistance-management strategies usually propose methods that include the effective 

use of herbicides. Rotating herbicides with different sites of action is a common strategy 

to delay the evolution of herbicide resistance provided there is no cross-resistance (i.e. 

alleles that provide resistance to more than one site of action) (Norsworthy et al. 2012). 

However, the mixture of herbicides with different sites of action is considered a better 
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step than rotation to delay resistance (Owen et al 2015). In addition, the introduction of 

crop cultivars with alternative single or stacked herbicide resistance traits appear as one 

of the most promising strategies available to farmers in the near future to delay 

resistance (Meyer et al 2015). It should be considered, however, that these herbicide-

resistant crops will be based on SoA groups which have been extensively used, already 

existing many documented resistant-weed populations to these chemistries, several 

with multiple resistance (Beckie and Harker 2017). Although probably successful in the 

short-term, any of these approaches do not appear to be lasting solutions for mitigation 

of herbicide resistance (Green and Owen 2011).  

In order to devise sustainable resistance management strategies, it is crucial to 

consider the whole ecological dynamic that results in the appearance of resistance 

issues. As its core, herbicide resistance is an evolutionary process, thus management 

strategies should aim to destabilize resistance evolution (Heap 2014). Therefore, it is 

necessary to understand the evolutionary forces underpinning the phenomenon, and 

accordingly, it is increasingly being argued that more evolutionary biology research 

should be incorporated in the design of any strategy for mitigating herbicide resistance 

(Neve 2007). Moreover, herbicide resistance is recognized as a valuable phenomenon 

to address general theories of evolutionary ecology such as rapid adaptive change 

(Busi et al. 2013). In consequence, this project aims to provide experimental information 

to the resistance evolutionary framework. 
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CHAPTER 2: Empirical investigation of the mutation rate conferring herbicide 

resistance 

 

2.1 Introduction  

2.1.1 The mutation rate 

Novel mutation is the ultimate source of genetic variation because it is the only 

process that creates completely new genetic variants (i.e. new genes and alleles) 

(Lynch 2010; Long et al. 2013). Once these primary changes are produced, other 

evolutionary forces such as selection, drift, and migration can act to spread and select 

these variants, generating adaptive traits and increased differentiation (Hollister et al. 

2010; Long et al. 2015). But only mutations are properly considered to be the raw 

material of evolution (Freeman and Herron 2007). 

Basically, mutations are understood to be any type of permanent change in the 

base sequence of the DNA molecule. These can occur de novo through a number of 

mechanisms including single nucleotide substitutions, short insertions or deletions 

(indels), and even larger or more complex changes (chromosomal rearrangements) like 

large deletions, duplications, translocations or inversions (Drake et al. 1998; Hollister et 

al. 2010). Within these, because of its high frequency, single nucleotide substitutions 

(e.g. point mutations) are thought to underlie many of the phenotypic differences within 

and among species.  

A point mutation alters a single point (i.e. one nucleotide) in the base sequence 

of a gene (Freeman and Herron 2007). Several mechanisms have been proposed that 

are capable of producing point mutations (DeRose-Wilson and Gaut 2007; Yang et al. 
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2015). Out of all these mechanisms, the occurrence of errors during DNA replication 

and DNA repair are believed to be the main generators of single nucleotide changes in 

the genome (Freeman and Herron 2007).  Both types of changes result from reactions 

catalyzed by DNA polymerase. When the mistaken substitution was from a purine 

(adenine, A or guanine, G) to another purine or from a pyrimidine (T or C) to another 

pyrimidine, it is called a transition. Conversely, a transversion is when a purine is 

substituted for a pyrimidine or vice-versa (Freeman and Herron 2007). Analyses of the 

mutation rates from a wide range of species indicate that transitions are much more 

common than transversions in nature (Long et al. 2015). The main explanation for this 

phenomenon supposes that transitions are less perturbing to DNA synthesis, 

decreasing the chance to be recognized for correction (Freeman and Herron 2007). 

When a point mutation occurs in the coding region of a gene resulting in amino acid 

change, it may alter protein function, so it is referred to as a nonsynonymous 

substitution. Differently, when a base substitution produces no change in the amino acid 

sequence, it is called a synonymous substitution. Both types create new alleles.  

Furthermore, in relation to fitness, mutations can be categorized as deleterious, 

neutral or beneficial (Baer et al. 2007). In theory, only non-neutral mutations are under 

direct selection. Considering that proteins have been subjected to selection for millions 

of years, random changes in their amino acid sequences would hardly improve their 

function, therefore, most of the mutations occurring in the genome are believed to be 

deleterious or neutral (Sung et al. 2016). Because deleterious mutations lead to a 

decrease in an individual’s overall fitness, natural selection purges out the vast majority 

of new alleles created by mutation in the population. Under this reasoning, natural 
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selection must also screen against mutation rate modifiers (i.e. mutator alleles) that 

increase the frequency of deleterious alleles each generation (Baer et al. 2007). In this 

sense, the mutation rate should evolve toward zero (Freeman and Herron 2007). 

However, the mutation rate is always greater than zero in nature (Kraemer et al. 

2016). From a logical survival standpoint, it is commonly argued that if all loci in a 

population are fixed for the fittest allele in a current environment, in the absence of 

mutation, a population would not be able adapt to any new environment, ultimately 

leading to extinction.  Following this idea, natural selection should have optimized 

mutation rates to guarantee species survival in the evolutionary long-term. Despite this, 

direct empirical or theoretical evidence adding support to this theory has not yet been 

found (Lynch et al. 2016). Alternatively, there are two main explanations that have been 

proposed to understand non-zero mutation rates (Drake et al. 1998; Sung et al. 2016). 

The ‘cost of fidelity’ theory asserts that increasing DNA replication or repair 

accuracy has an energetic or kinetic cost which has a negative impact on fitness, so 

fitness is optimized at a non-zero mutation rate (Drake et al. 1998; Lynch et al. 2016). 

For example, in the well documented trade-off between polymerase accuracy and 

polymerase speed in bacteria, speeding up the replication rate is a means to increase 

fitness, but in doing so, selection for this increased rate would lead indirectly to an 

increase in the mutation rate (Freeman and Herron 2007). Therefore, an optimum for 

fitness is established by the rate between mutator and antimutator alleles.  Supporting 

the ‘cost of fidelity’ is the fact that the DNA replication and repair fidelity in nature is 

lower than the biochemical potential limit as evidenced in many species. In addition, it is 

alleged that there may be a point in the progressive lowering of the mutation rate at 
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which it became so small in terms of fitness that it is randomly eliminated by genetic drift 

(Lynch 2010; Sung et al. 2012; Kraemer et al. 2016; Sung et al. 2016). When this 

‘’selection drift’’ barrier is met also depends on the balance between mutation rate 

modifiers. In an attempt to link both ideas, it has been argued that the mutation rate 

divergence across the tree of life is a result of how well selection successfully optimizes 

replication accuracy within the limit defined by random genetic drift (Lynch et al. 2016).  

 To sum up, the variation of the mutation rate across living beings is determined 

by the interplay of mutation with selection and drift (Sung et al. 2016). Mutation rates 

can be defined as the number of mutations at any genomic scale (from a nucleotide to 

genome level) per cell division, per generation or per unit time. Intuitively, as fitness 

refers to the contribution of one individual to the next generation, natural selection acts 

directly on the mutation rate per genome per generation (Baer et al. 2007). Inversely, 

the mutation rate influences both the speed at which populations respond to natural 

selection and the rate at which fitness may decline due to inbreeding, thus 

comprehending the mutation rate is key to understand the genetic structure of 

populations over time (Ness et al. 2012; Long et al. 2013). In spite of its importance, 

information about the rate of spontaneous mutations is scarce because its empirical 

determination is extremely hard (Lynch et al. 2008; Saxer et al. 2012). 

2.1.2 Review of mutation rate determination methods 

Direct calculation of the de novo mutation rates is highly challenging due to the 

rarity of the event (e.g. the very low rate of spontaneous mutagenesis) and because 

deleterious mutations are often purged by selection in natural populations (Lynch 2010; 

Ness et al. 2012).  
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Traditionally, most estimates have been indirect phenotypic screens. Phenotypic 

screens aim to estimate mutation rates by studying large populations of organisms and 

counting the number of offspring that had observable mutant phenotypes in each 

generation. In most cases, these observable mutant phenotypes were due to loss-of-

function mutations, i.e. changes in DNA that inactivate a specific gene leading to a 

complete lack of the encoded protein (Drake et al. 1998).  Lambert and Alexander 

(1968) estimated the spontaneous mutation rate of the dominant allele at the opaque-2 

locus in four homozygous inbred corn lines. A frequency of about one mutation in every 

300,000 female gametes was found. More recently, gene-specific estimates were 

performed by using plant transformations at ‘reporter genes’. Kovalchuk et al. (2000) 

modified Arabidopsis thaliana plants by incorporating stop codons at different positions 

of the b-glucuronid-ase (uidA) gene to prevent its translation into the active protein. The 

reversion of the modified stop codons back to the original codons, via spontaneous 

mutations, was detected by quantifying the restoration of uidA activity in following 

generations. Similarly, Filkowski et al. (2003), using a reporter transgenic gene, 

estimated the spontaneous mutation rate per nucleotide in Nicotiana tabacum and 

Arabidopsis thaliana. Moreover, the rate of spontaneous mutation may be estimated by 

measuring mutagen-induced mutation rates, by using mutagens to which the relation 

between the spontaneous and mutagen-induced mutation rates is known (Kondrashov 

and Kondrashov 2010). Also accomplished by measuring observable traits, the rate of 

deleterious mutations is commonly calculated by evaluating the decline in fitness-

related traits in mutation accumulation (MA) lines (explained below). Several 

experiments of this type have been performed in Arabidopsis thaliana (Schultz et al. 
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1999; Shaw et al. 2000; Shaw et al. 2002; Rutter et al. 2010). Schoen (2005) compared 

the deleterious mutation accumulation between two species with distinctive mating 

systems of the Amsinckia genus. Bobiwash et al. (2013) discovered early-acting 

inbreeding depression manifested as a high rate of fruit abortion, by measuring the rate 

of deleterious somatic mutation in lowbush blueberry (Vaccinium angustifolium). 

Although, gene-specific approaches offer experimentally clever and straightforward 

methods for estimating mutation rates, they also have some important deficiencies. 

Collecting data on observable phenotypes results in an underestimate of the actual 

mutation rate because mutations leading to less detectable changes than a complete 

gain or loss-of-function, including silent site mutations, are likely to be missed using 

these approaches. Additionally, because the mutation rate varies across the genome, 

estimations based on specific-loci might lead to erroneous conclusions if extrapolated to 

genome-wide estimates or to different loci. 

Alternatively, more reliable, though also indirect, estimation methods of the 

mutation rate rely on measuring the level of divergence of DNA neutral sites between 

species. DNA sites that are assumed to be neutral (or very nearly) in terms of fitness 

are non-coding sites (intergenic regions) and synonymous positions in a protein-coding 

gene at which a nucleotide substitution has no influence on the protein sequence (‘silent 

sites’) (Bromham et al. 2015). Because natural selection is not likely to affect them, 

these are thought to evolve at the mutation rate, or at least, be largely determined by 

mutation (Lynch 2010; Bromham et al. 2015). Therefore, the mutation rate can be 

estimated from the measurement of molecular divergence at neutral sites between 

species (Keightley et al. 2009; Kucukyildirim et al. 2016). In plants, DeRose-Wilson and 
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Gaut (2007) calculated genetic divergence within and between Arabidiopsis thaliana 

and Arabidopsis lyrata based on intergenic and synonymous coding-region sites. 

Neutral-sites approaches, however, require several assumptions that are difficult to 

validate, including neutrality (Keightley et al. 2009; Kondrashov et al. 2010). For 

example, DNA polymerase is able to more efficiently transcribe certain codons than 

others (codon bias), so even silent sites can be subject to selection (Freeman and 

Herron 2007). 

The drawbacks to the methods described above have led to efforts to directly 

estimate the mutation rate by sequencing the complete genomes of mutation 

accumulation (MA) lines of parents and their offspring (Keightley et al. 2014). Mutation 

accumulation (MA) experiments are a direct way to study mutational variation (Keightley 

et al. 2009) and have been successfully performed in many different organisms 

including complex eukaryotes. Mutation accumulation lines are lines derived from a 

common founder that are maintained for multiple generations. After an adequate 

number of generations, the complete genomes of each evolved lineage are sequenced 

and compared with the founder to identify de novo mutations, thus revealing the per-

generation mutation rate occurring over the course of the experiment (Dillon et al. 2015; 

Lynch et al. 2016). By bottlenecking experimental populations, this method minimizes 

the effectiveness of natural selection (i.e. makes transmission to the next generation 

random with respect to fitness) allowing nearly all mutations to accumulate with the 

exception of the most strongly deleterious that cause complete sterility or lethality 

(Lynch et al. 2008; Kraemer et al. 2016). In the past, this approach was used to 

calculate the deleterious mutation rate by direct measurement of fitness-related traits 
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(as explained above), or to calculate the mutation rate by directly sequencing specific 

loci or genomic regions. Recently, however, with the emergence of new high-throughput 

sequencing technologies, it is possible to perform genome-wide direct estimates of the 

mutation rate (Keightley et al. 2009; Ness et al. 2012; Schrider et al. 2013). This 

approach provides a molecular spectrum of spontaneous mutations which do not suffer 

from the biases affecting indirect estimations of the mutation rate. The first experiment 

using this approach was published by Lynch et al. (2008), reporting the spontaneous 

mutation rate of the yeast Saccharomyces cerevisiae, and since then similar studies in 

many other species have been published. In plants, Ossowski et al. (2010) report the 

mutation rate of Arabidopsis thaliana to be on the order of 6.5 x 10-9 per site per 

genome per generation. Later, Jian et al. (2014) confirmed these numbers. Several 

published studies on the unicellular green algae Chlamydomonas reinhardtii revealed a 

mutation rate at least an order of magnitude lower than in Arabidopsis thaliana (Sung et 

al. 2012; Ness et al. 2012; Kraemer et al. 2016). Although MA experiments provide a 

more accurate estimate of the mutation rate versus indirect methods, they also suffer 

from potential difficulties. For example, a recessive mutator allele might become fixed 

by inbreeding in the MA line generating an over-estimation of the actual mutation rate in 

natural populations.  

Furthermore, the applicability of MA lines experiments is limited because inbred 

lines cannot be produced for most species (Keightley et al. 2015). In this sense, an 

alternative way to directly estimate the mutation rate is by whole-genome sequencing of 

parents and their offspring. Because mutational events can be detected in a few 

generations and in a well-defined framework (pedigree), this is believed to be the most 
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straight-forward approach for mutation rate calculation (Baer et al. 2007; Kraemer et al. 

2016). For this reason, this is the most popular approach to measure the mutation rate 

in hominids including humans (Roach et al. 2010; Kong et al. 2012; Venn et al. 2014). 

This has also been also used in Drosophila melanogaster and in the tropical butterfly 

Heliconius melpomene (Keightley et al. 2014; Keightley et al. 2015). In the plant 

kingdom, the parent-offspring approach has been performed in Arabidopsis thaliana, 

Oryza sativa, and Prunus persica (Yang et al. 2015; Xie et al. 2016).  

2.1.3 Mutation rate variation in nature 

Direct measurements of the mutation rate revealed that mutations per site per 

generation (u) ranges from 10-11 to 10-8 across the tree of life (see Appendix, Table A.1). 

This finding confirmed mutations introduce a great deal of genetic variation into 

populations in every generation. In addition, mutation rates vary between species, within 

species, within an organism, and across the genome (Baer et al. 2007; Lynch et al. 

2016). 

Between-species mutational variation is significant and correlates with species-

specific characteristics. First, there is a strong relationship between the mutation rate 

per nucleotide site per generation (u) and total genome size (Lynch 2010). As proposed 

by Drake (1991), u varies inversely with genome size (G) in microbes (Drake’s rule), 

implying that the mutation rate per genome per generation (uG) is mostly constant 

across all microbial life. Inversely, when analyzing only eukaryotes, mutation rates scale 

positively with genome size (Lynch 2010; Sung et al. 2012; Sung et al. 2016). 

Differences in mutation rates between dicots were attributed to differences in genome 

sizes as a function of their DNA repair machinery efficiency. Studies performed in 
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Arabidopsis thaliana showed that, for a specific gene, it has a lower mutation rate than 

Nicotiana tabacum, for which the genome is 20 times larger than Arabidopsis (Kirik et 

al. 2000). Contrastingly, Bromham et al. (2015), by analyzing sequences from 130 

families of angiosperms corresponding to a specific nuclear gene, found that greater 

family-average genome size is associated with lower mutation rate. Second, as 

spontaneous mutation is mostly caused by DNA polymerase errors, the accumulation of 

mutations per generation directly correlates with the generation time, with a higher 

accumulation of mutations occurring in species that have shorter lengths of time 

between generations as a consequence of more cell-divisions per time unit (Baer et al. 

2007; Jiang et al. 2014). 

With few exceptions, relatively little work has been done to directly estimate the 

spontaneous mutation rate in plants. As stated earlier, Ossowski et al. (2010) estimate 

the mutation rate across the genome of Arabidopsis thaliana to be in the order of 6.5 x 

10-9. In another MA study, Jiang et al. (2014) estimated a similar rate (5.2 x 10-9) for 

Arabidopsis. Performing parent-offspring analysis, Yang et al. (2015) calculated a 

mutation rate of 7.4 x 10-9 and 3.2 x 10-9 for Arabidopsis thaliana and Oryza sativa, 

respectively. The unique experiment conducted in perennials was published by Xie et 

al. (2016) revealing a mutation rate of 7.7 x 10-9 in peach (Prunus persica). These 

numbers place the mutation rate per site per generation of vascular plants (10-9) in the 

middle of the eukaryotes’ range. Additionally, there are some MA studies conducted in 

Chlamydomonas reinhardtii, a single-celled chlorophyte that has been extensively used 

as a model organism in plant physiology, which has a genome as large as Arabidopsis 

thaliana (~120 Mb). Different direct estimations place its mutation rate between 10-11 
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and 10-10, similar to other unicellular organisms such as many bacteria and yeast 

species (Ness et al. 2012; Sung et al. 2012; Kraemer et al. 2016). However, to make a 

fair comparison between unicellular and multicellular organisms, we must divide the per-

generation rate by the number of reproductive cell divisions per generation; in that case 

Arabidopsis thaliana would also have a rate in the order of 10-10 assuming 30-40 cell 

divisions per generation. The strikingly similarity of these reported rates suggests that 

the mutation rate is robust across the plant kingdom and is potentially tightly 

constrained by natural selection (Ness et al. 2012).  

In addition, there is strong evidence indicating that mutation rates may vary 

substantially among individuals within species (Schrider et al. 2013). Within-species 

mutational variations has been attributed to: (1) genetic differences among individuals, 

(2) environmental differences experienced by the individuals, and (3) evolution of the 

mutation rate itself (Kondrashov et al. 2010). Interestingly, Yang et al. (2015) found a 

greater than 3-fold higher mutation rate in hybrids (F1) than in homozygous individuals 

of Arabidopsis thaliana and Oryza sativa. Another group (Jiang et al. 2014) 

demonstrated that stress accelerates the accumulation of mutations and epimutations in 

A. thaliana lineages. Many other stress-induced changes in the mutation rate are 

detailed in Chapter 3.   

Within an individual, mutation rate also varies from one cell to another. In 

animals, somatic mutation rates are notably higher than in germline cells (Kovalchuk et 

al. 2000; Lynch 2010). This has been demonstrated across a wide range of species. In 

humans, the mutation rate in different somatic tissues is on average 17-fold higher than 

germline rates (Lynch 2010). Furthermore, there is ample evidence of mutation variation 
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between nuclear and organellar genomes. In many well-studied organisms, including D. 

melanogaster, C. elegans, and S. cerevisiae, mitochondrial substitution rates are much 

higher than those in nuclear DNA (Denver et al. 2000; Lynch et al. 2008; Haag-Liautard 

et al. 2008). Mitochondria lack some of the DNA-repair enzymes found in the nucleus, 

thus more mutational events would occur in mitochondrial DNA as a result of fewer 

errors being repaired (Freeman and Herron 2007). In plants, however, the few studies 

performed are erratic and non-conclusive around this matter. For example, Bromham et 

al. (2015) identified significant pairwise correlations between substitution rates across 

nuclear, mitochondrial, and chloroplast genomes.  

Moreover, the mutation rate varies across the genome (Kraemer et al. 2016), 

most notably with a difference in the spontaneous mutation rate in coding regions 

compared to non-coding regions. In the previously cited MA experiment in Arabidopsis 

thaliana conducted by Ossowski et al (2010), intergenic mutations were found more 

frequently than mutations in the genic region. This was attributed to a higher mutation 

rate in pericentromeric regions of chromosomes where gene density is lower. In 

addition, a study based on the divergence of orthologous regions between Arabidiopsis 

thaliana and A. lyrata estimated a higher rate in non-coding regions than in synonymous 

coding sites (DeRose-Wilson and Gaut 2007). Previously, Kovalchuk et al. (2000) 

suggested that the mutation frequency calculated by transgene reversions may be a 

function of the chromosomal position of the transgene because that defines accessibility 

for damage and accessibility for repair. If the mutation rate depends on the genome 

position, it can be inferred than the mutation rate also varies between genes. Also, 

Lynch et al. (2016) suggests that a gene-specific mutation rate may be related with the 
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transcriptional activity, so highly expressed genes might have a higher rate than less 

expressed ones. 

At the scale of individual sites, transitions are more common than transversions 

and G:C positions tend to mutate at higher rates than A:T positions, thus transitions 

from G:C to A:T are the most common point mutation in nature (Ness et al. 2012; Kong 

et al. 2012; Schrider et al. 2013). Particularly, in Arabidopsis thaliana, Ossowski et al. 

(2010) found that transitions were 2.4 times more frequent than transversions, and G:C 

 A:T transitions were by far the most frequent type of mutations. As many G:C sites 

are known to be methylated, the high rate of transitions at G:C sites is partially 

explained by the spontaneous deamination of methylated cytosines, which leads to 

thymine substitution (DeRose-Wilson and Gaut 2007; Ossowski et al. 2010). However, 

transitions at G:C sites are also found to be overabundant at un-methylated sites in 

Arabidopsis thaliana, thus factors in addition to methylation may contribute to this bias.  

One of these factors include the bases flanking a particular site; regions that are 

referred to as the ‘’sequence context’’ and are known to be a good predictor of mutation 

rate (Kraemer et al. 2016). A common explanation for this phenomenon is that the 

bases flanking a particular nucleotide are thought to play a role in its susceptibility to 

DNA-damaging agents. In nature, mutations are shown frequently to cluster around 

pyrimidine dimer sites creating hotspots for mutation (Kovalchuk et al. 2000). Indeed, 

the vast majority of mutations caused by ultraviolet (UV) light, in both prokaryotes and 

eukaryotes, are G:CA:T transitions at sites where the C is adjacent to another C or T 

(dipyrimidine sites) (Ossowski et al. 2010). The increased rate of transitions at G:C sites 

in plants, therefore, can be also explained in part by the effect of UV-induced 
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mutagenesis. More recently, Kiselev et al. (2018) reported an increase of G:CA:T 

transitions after induced mutagenesis by UV-C treatment in A. thaliana, reinforcing this 

theory. Accordingly, data available on the unicellular algae Chlamydomonas reinhardtii 

mimic the trends found in vascular plants: mutations occurring at C:G sites were more 

frequent than mutations at A:T sites, C:GT:A transitions are over-represented, and the 

surrounding GC content strongly influenced the mutability at a site (Ness et al. 2012; 

Kraemer et al. 2016). The strong correlation between G:C content and SNP 

polymorphisms suggests that GC content is a major determinant of evolutionary rate 

variation across different genome regions (DeRose-Wilson and Gaut 2007). 

2.1.4 Mutations conferring resistance to ALS-herbicides 

Acetolactate synthase (ALS), also referred as acetohydroxyacid synthase 

(AHAS), is the first enzyme in the branched-chain amino acids biosynthesis pathway 

and catalyzes the formation of both aceto-hydroxybutyrate and acetolactate, ultimately 

leading to the production of leucine, isoleucine, and valine (Tranel and Wright 2002; 

Powles and Yu 2010). The ALS enzyme has a catalytic subunit and a regulatory subunit 

that governs the activity of the former. The substrate-binding catalytic site is situated 

deep within a channel on the catalytic subunit. ALS-inhibiting herbicides do not bind to 

the catalytic site, but bind next to the entry of the channel, blocking substrate access to 

the catalytic subunit (Duggleby et al. 2008). This stops synthesis of branched-chain 

amino acids, starving the plant and leading to plant death. Secondarily, ALS inhibition 

may lead to the accumulation of 2-ketobutyrate and the disruption of the photo-

synthetized products transported in the plant (Tranel and Wright 2002). 
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When ALS-inhibiting herbicides were first developed, they signified a great 

advance for agriculture. While other herbicides were typically applied at kilograms per 

hectare, ALS-inhibiting herbicides were applied at grams per hectare. In addition, ALS 

inhibitors control a broad-spectrum of weeds, present selectivity for major world crops, 

have application-time plasticity (PRE and POST-emergence), soil residual activity, and 

low mammalian toxicity (Tranel and Wright 2002). These superb qualities made ALS 

inhibitors one of the most popular classes of herbicides around the world, being used in 

many crops over huge areas for more than 30 years. From 1982, when the first ALS-

inhibiting herbicide (chlorsulfuron) was brought to the market, 54 ALS-inhibitors were 

registered globally, more than in any other SoA group of herbicides (Heap 2014). This 

long list of compounds are composed of five chemical families: sulfonylureas (SUs), 

imidazolinones (IMIs), triazolopyrimidines (TPs), pyrimidinyl-thio(or oxy)benzoates 

(PTBs), and sulfonyl-amino-carbonyl-triazolinones (SCTs).  

In spite of their initial success, the use of ALS-inhibiting herbicides rapidly led to 

the evolution of resistance. Impressively, the first discovered case of resistance dates 

just five years after chlorsulfuron was released, with many reports following this initial 

case (Mallory-Smith et al. 1990). To date, there are 171 reported cases of ALS-inhibitor 

resistance, making it by far the group of herbicides with the most cases reported, 

followed by photosystem II-inhibitors, and ACCase-inhibitors. More importantly, in many 

troublesome weed species, ALS-inhibitor resistance is not confined to a few 

populations; rather, it is widespread across huge regions, reducing the usefulness of 

this group of herbicides. That is the case for waterhemp (Amaranthus rudis Sauer) in 

the Midwest of the United States (Patzoldt and Tranel 2007).  
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Resistance to ALS inhibitors may occur as a result of reduced sensitivity to the 

herbicide at the site of action (target site resistance), or by an increased detoxifying 

metabolism in the plant (non-target site resistance). Among these two, lack of sensitivity 

in the target site is the main cause of ALS-resistance events, with multiple mutations 

conferring resistance particularly likely to evolve in the ALS codifying gene (Powles and 

Yu 2010). Until now, 29 different amino acid substitutions have been reported in plants, 

distributed across eight amino acid sites in the ALS protein (Table 2.1).    

Among the eight amino acid sites, Ala122, Pro197, and Ala205 are situated near 

the amino-terminal end of the ALS protein, Asp376 and Arg377 are in the center, and 

Trp574, Ser653, and Gly654 are located near the carboxy-terminal end (Figure 2.1). 

The residue Pro197 presents the highest number of known amino acid substitutions 

providing resistance (11), with Pro197Ser substitution reported the most (Powles and 

Yu 2010). Substitutions of Pro197, however, usually presents strong resistance to 

sulfonylureas only (Guttieri et al. 1995; Yu et al. 2008, Yu and Powles 2014). Similarly, 

many substitutions at Ala122 and Ser653 sites provide resistance to imidazolinones 

(Trucco et al. 2006; Patzoldt and Tranel 2007; Riar et al. 2013). In this sense, some 

amino acid substitutions may cause resistance to one chemical family of ALS-inhibiting 

herbicides, but not to others. Moreover, a mutation providing resistance to one herbicide 

may not confer resistance to other compounds of the same chemical family (Tranel and 

Wright 2002). That is because ALS-inhibiting herbicides bind to different positions 

across the binding domain, depending on the herbicide’s chemical structure.  

Nevertheless, mutations often provide cross-resistance to more than one ALS-inhibitor-

chemical family as a consequence of the overlapping orientation of different herbicides 
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around the binding site (Yu and Powles 2014). Particularly, Trp574Leu mutation is 

known to provide a broad-spectrum of resistance across different ALS-inhibitor chemical 

families (Kaloumenos et al. 2013; Panozzo et al. 2013; Pandolfo et. al 2016). Beyond 

these considerations, it should be pointed out that ALS-inhibitor resistant weed 

populations often present more than one resistance mutation (Yu et al. 2008).   

The very frequent occurrence of resistance mutations in the ALS gene has been 

a leading factor in ALS-resistance evolution. The rapid resistance evolution to ALS-

inhibiting herbicides may be partially explained by multiple factors—high lethality of 

sensitive biotypes, repeated use/no rotation, infrequent inclusion in mixes, and soil 

residual activity—that imposed a high selection pressure for resistance alleles. 

However, these factors do not completely explain why ALS-inhibitor resistance 

developed faster than resistance to other herbicide groups. In essence, the reasons for 

the more rapid evolution of ALS-inhibitor resistance versus that of other groups of 

herbicides lie within its genetics. Nucleotide substitutions providing ALS-inhibitor 

resistance are dominant over sensitive alleles, thus herbicides select for heterozygous 

as well as homozygous resistant plants. Also, even though the ALS protein functions in 

plastids, the ALS-encoding gene is in the nuclear genome. Therefore, it is not 

disseminated only by seeds, but via pollen as well. Comparatively, in photosystem II-

inhibitors, in which resistance evolved slower, resistant alleles are solely inherited by 

seeds because the encoding gene is located in the chloroplast which is maternally 

inherited in plants (Tranel and Wright 2002).  

Nonetheless, the most remarkable factor responsible for the high incidence of 

ALS-resistant mutations is believed to be the high tolerance for amino acid substitutions 
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in the herbicide-binding site of the ALS protein. Mutations at this site do not produce 

deleterious consequences for its enzymatic activity. This is best explained by the fact 

that the ALS binding site is separated from the catalytic site of the ALS enzyme, thus 

mutations at the binding site can prevent herbicide binding without affecting enzyme 

functionality (Duggleby et al. 2008; Powles and Yu 2010). For further evidence of this, 

several studies tried to determine if resistance mutations in the ALS gene are 

associated with a fitness cost in the absence of herbicide selection. As expected, some 

mutations presented none to insignificant cost on fitness, including substitution 

Pro197Ser, which helps to explain why this mutation is so frequent in nature (Vila-Aiub 

et al. 2009). In respect to very frequent mutation Trp574Leu, different studies showed 

contrasting fitness penalties associated with it, depending on the weed species 

analyzed (Tardif et al. 2006; Yu et al. 2010; Wu et al. 2018). Low-fitness cost means 

that after they have been herbicide-selected, resistance mutants will remain in the 

population regardless of the selective-agent presence. 

Importantly, if ALS-resistance mutations have a fitness cost, it is crucial to 

understand what the frequency of resistant alleles was prior to selection in the 

population. The probability of a given weed population to evolve ALS resistance 

depends on the frequency of ALS-resistance alleles in the standing genetic variation of 

the population. That initial genetic diversity constrains the outcome of herbicide 

selection leading to resistance evolution (Jasieniuk et al. 1996). It is already known that 

although highly conserved, the ALS gene presents different levels of variability within 

specific weed populations (Tranel et al. 2004). Moreover, the selection for different 

resistance-alleles in close populations suggests that they existed at a high frequency in 
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unselected populations (Trucco et al. 2006). In this sense, as genetic variation is 

ultimately generated by spontaneous mutations, an elevated mutation rate in the ALS 

gene might play an important role in the high incidence of ALS-resistant mutants. 

However, the mutation rate leading to mutations conferring ALS-resistance is not 

known.  

2.1.5 The origin of alleles conferring herbicide resistance 

Herbicides act as selective agents that, over time, increase the frequency of 

initially rare resistance alleles (Heap 2014). As in other evolutionary processes, the 

capacity of a population to evolve in response to a novel environment requires previous 

genetic variation (Trucco et al. 2006; Mimura et al. 2013). Consequently, it is not 

surprising that weed populations overcoming changes in agricultural ecosystems often 

have a correlative abundance of genetic polymorphisms (Jasieniuk and Maxwell 2001).  

The origin of these adaptive alleles is a cause of debate in evolutionary theory. 

As it is available immediately, the standing genetic variation within the population is 

thought to be the primary source of resistance alleles, and so the main factor upon 

which adaptation depends (Mimura et al. 2013; Délye et al. 2013a). In addition, a 

sensitive weed population could be contaminated by gene flow, via pollen or seeds from 

a resistant population (i.e. immigration). Furthermore, as any natural plant population is 

constantly loaded with mutant genotypes via de novo mutations, herbicide-resistant 

mutants may arise spontaneously in a given sensitive population (Jasieniuk et al. 1996; 

Délye et al. 2013a). 

The relative importance of each of these three sources deeply affect what 

strategies should be applied to counteract herbicide resistance evolution. If the standing 
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genetic variation was the main source of alleles conferring resistance in a weed 

population, these alleles have been conserved in the population before herbicide 

selection, so their fitness cost must be insignificant. Thus, they are expected to remain 

in the population in the absence of selection. Alternatively, if resistance evolves by new 

mutations, as most mutations are expected to be deleterious, natural selection should 

purge out most of the new resistance alleles in the absence of herbicide selection. 

Moreover, when adaptive alleles are derived from the standing genetic variation, 

adaptive evolution is determined by the amount of variation before selection. Therefore, 

the evolutionary outcome of the current selection process would also depend on how 

previous selection events constrained genetic variants in the population. In this case, 

the application of only one herbicide, by bottlenecking genetic diversity, will reduce the 

probability of the target weed population evolving resistance to another herbicide if 

applied. Contrastingly, if alleles providing resistance are mainly a product of new 

mutations, selection by one herbicide will not reduce the likelihood for herbicide-

resistance to other subsequent herbicides because new genetic variants will arise after 

the onset of selection, reducing its bottlenecking power.  

As an aside, it should be mentioned that there are many cases where a single 

gene provides cross-resistance to more than one herbicide of different site of action 

(Délye et al. 2013a). That is often the case when the resistance is not target-site-based 

but instead resulted from a decrease in herbicide translocation inside the plant, or the 

enhancement of one of the plant herbicide detoxification mechanisms, including 

glutathione S-transferases (GSTs), cytochrome P-450s (P450s), and UDP-dependent 

glucosyl-transferases (UGTs) (Powles and Yu 2010; Yuan et al. 2006; Huffman et al. 
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2015). Additionally, herbicide-target genes may be linked and segregate together 

(Tranel et al. 2017). In that case, selection for one resistance trait will also select for the 

linked trait. Moreover, it has been proposed that herbicide applications may favor 

herbicide-resistance evolution by selecting for mutator genes that increase the mutation 

frequency leading to increased resistance in the population (Gressel 2011). 

The interaction between factors leading to resistance evolution is commonly 

simulated by models with the purpose of providing insights to herbicide-resistance 

management (Renton et al. 2014). However, because estimations of parameters such 

as the standing genetic variation or the mutation rate conferring resistance are 

extremely difficult to calculate empirically, they are often estimated based mostly on 

assumptions, which limits the reliability of the models. For example, Jasieniuk et al. 

(1996) presentated the relationship of the initial frequency of resistant individuals in an 

unselected population to the mutation rate as following:  

𝑞𝑒 = 𝑢/ℎ𝑠  

(𝑞𝑒: the equilibrium frequency of a resistance allele, 𝑢: is the mutation rate, ℎ: is the 

degree of dominance, and 𝑠: is the fitness penalty of the resistance allele in the 

absence of selection).  

However, empirical determinations of these parameters are scarce. Preston and 

Powles (2002) measured the frequency of ALS-inhibitor resistance in unselected 

populations of rigid ryegrass (Lolium rigidum) in Australia to be in the order of 10-4-10-5.  

Délye et al. (2013b) calculated the frequency of one mutation providing resistance to 

ACCase-inhibitors in unselected French populations of the grass weed Alopecurus 
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myosuroides to be in the order of 10-4 by DNA analysis of herbarium specimens 

collected previous to the use of herbicides.   

To our knowledge, there is no peer-reviewed published data on the empirical 

determination of the spontaneous mutation rate providing herbicide-resistance in plants. 

Stannard and Fay (1987), by screening 20 million individuals of alfalfa (Latin binomial), 

selected 15 individuals resistant to chlorsulfuron. This brings a hypothetical resistance 

mutation rate of 7.5 x 10-7, assuming a sensitive genetic background of the parents and 

no contamination during the experiment; however, neither the cause of resistance was 

characterized nor the origin of plant material well-detailed. It has been speculated that 

an elevated mutation rate in weed populations, possibly mediated by mutators, may be 

one of the causes of their rapid evolution to herbicide resistance as well as to their high 

adaptiveness in general (Gressel 2011). 

2.2 Objective 

Taking into account the necessity of adding more evolutionary biology research 

in the design of herbicide-resistance-mitigation strategies, this project aimed to generate 

empirical data on the relative contribution that each source of resistant alleles adds to 

the genetic background of weed populations. In this sense, the purpose of this 

experiment was to calculate the de novo mutation rate conferring herbicide resistance to 

ALS-inhibitors in a plant population. 

To achieve this goal, we performed a method to discover spontaneous herbicide-

resistant mutants by screening millions of plants. We used grain amaranth and 

resistance to ALS-inhibiting herbicides as a model system. Unraveling how resistance 

arises spontaneously in an amaranth population holds special interest because two of 
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the most troublesome weeds in Illinois are amaranths: waterhemp (Amaranthus rudis 

Sauer) and Palmer amaranth (Amaranthus palmeri S Wats.). More importantly, 

determining the mutation rate leading to ALS-inhibitor resistance is crucial, not only to 

unravel the causes of the high occurrence of ALS-inhibitor-resistant mutants in 

particular, but to increase the general understanding of the origin of genetic variants 

leading to herbicide-resistance evolution.   

2.3 Materials and methods 

2.3.1 Experiment system 

We used grain amaranth cv. ‘Plainsman’ (Amaranthus hypochondriacus L. x A. 

hybridus L.) and resistance to ALS-inhibiting herbicides as a model system 

(Baltensperger et al. 1992). As in other Amaranthus species, grain amaranth produces 

millions of seeds per mother plant, but has limited seed dormancy and higher genetic 

homogeneity than its weedy counterparts. More importantly, grain amaranth is not 

known to have herbicide resistance in its genetic background, which decreases the 

probability of contamination from the field. In contrast, ALS-inhibitor resistance is 

widespread within the weedy amaranth species. Additionally, grain amaranth also 

produces pale seeds, which can be used as a contamination checkpoint to make sure 

no black-seeded amaranth weed seeds are present.  ALS-inhibitor-resistant mutations 

are functionally dominant, enabling the selection of newly-arisen spontaneous 

mutations, which are expected to be present only in one chromosome during the first 

generation (heterozygous mode). Furthermore, ALS mutations provide a high-level 

resistance, thus high rates can be used to strongly select resistant mutants from a 

sensitive population, diminishing the occurrence of false positives. In addition, the 
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extended soil activity of ALS inhibitors permits the selection of plants at the seedling 

stage, allowing for the screening of millions of individuals in a reduced space.  

The experiment consisted of producing millions of seeds, planting them at a very 

high density, screening them at the seedling stage with a pre-emergence herbicide, and 

looking for surviving resistant individuals (Figure 2.2). Because producing enough seed 

required several independent batches, the cycle was repeated five times. 

2.3.2 Plant material 

The plant population used in this study corresponds to grain amaranth cv. 

‘Plainsman’ (Amaranthus hypochondriacus L. x A. hybridus L.) obtained from the North 

Central Regional Plant Introduction Station (Ames, IA). All plant batches were initiated 

from sibling seeds of the same generation, all of which originated from a unique self-

pollinated plant. That plant was grown during the summer of 2014 in an isolated 

greenhouse room to avoid contamination with ALS-resistant Amaranthus weeds.  

2.3.3 Seed production 

Seeds were produced in independent batches of around 200 grain amaranth 

plants. Five batches were produced in total from the spring of 2015 to the spring of 2017 

(Table 2.2). To initiate a batch, seeds were planted in 12.3 x 12.3 cm inserts filled with a 

medium (WeedMix:LC1) that is 3:1:1:1 (LC1: soil: peat: torpedo sand). Flats were sub-

irrigated overnight prior to sowing. Sowing density was 100 seeds per insert.  Inserts 

were placed into 27.4 x 53.9 cm flat with holes that were then placed into a display flat 

for bottom watering. Germination rate of the seeds was between 90-95%. Plants were 

allowed to grow in the 12.3 x 12.3 cm inserts until each plant had its first true leaf longer 
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than a quarter of an inch. Then, seedlings were transplanted into 10.1 cm diameter pots 

filled with WeedMix:LC1 and pre-watered prior to transplanting. Between 400 and 500 

seedlings were germinated each time to select a uniform group of around 200 plants for 

each batch. When plants reached 12-15 cm in height, they were transplanted into 9.4 L 

pots filled with a medium that is 1:1:1 (soil: peat: perlite) plus 30 grams of 13-13-13 

Osmocote® (ICL Specialty Fertilizers, Dublin, OH) and pre-watered prior to 

transplanting. The pots were placed on benches laying directly on the floor. Plant 

density varied between 4 and 10 plants/m2 depending on the batch. The greenhouse 

room was maintained at 28/22 C day/night. Natural sunlight was supplemented with 

General Electric 208 volt fixtures with metal halide lamps to provide a 16:8 h 

photoperiod during the entire plant cycle. Plants were watered twice daily by an 

automatic irrigation system that deliver water directly via an independent emitter located 

in each pot. Liquid fertilization was provided once a week with a starting dose of 300 

ppm (20-20-20) increasing to 400 ppm after flowering had started. Flowering started 

approximately 45 days after planting in all batches. Plants were harvested at least 10 

days after it was noted that seeds were able to be detached from the plants without 

pushing them. Inflorescences were cut manually and stored in paper bags for a month 

to allow drying. Dry plants were cleaned manually to obtain seed. The seed from each 

parental plant was weighed and stored in separate bottles. Seed bottles were stored in 

a cold room at 4°C. 

2.3.4 Contamination control  

Each parental plant was tested for the presence of both waterhemp DNA and the 

most common mutation providing ALS resistance in weedy amaranths, Trp574Leu. 
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Waterhemp DNA can be detected by the presence of a restriction site recognizable by 

EcoRV endonuclease in the ALS gene region A that is absent in grain amaranth. 

Similarly, the Trp574Leu mutation is detected by MfeI endonuclease in the ALS gene 

region B (Foes et al. 1998). DNA was extracted from young leaf samples according to a 

modified version of the CTAB procedure indicated by Doyle and Doyle (1990). DNA 

content of each sample was measured using NanoDrop ND-1000 Spectrophotometer 

(Thermo Fisher Scientific, Waltham, MA) and diluted to 10 ng/ul. Polymerase chain 

reaction (e.g. PCR) consisted of 12.3 ul H2O, 5 ul 5X GoTaq® green buffer (Promega 

corporation, Madison, WI), 2 ul dNTP (2.5 mM), 2.5 MgCl2 (25 mM), 1 ul (0.4 uM) of 

each primer, 0.2 ul GoTaq® DNA polymerase (5 U/uL; Promega corporation, Madison, 

WI), and 1 ul (10 ng/ul) sample DNA in a total reaction of 25 ul. Primers used for the 

amplification of ALS region A were as follows: alsf1, 5'-AGCTCTTGAACGTGAAGGTG; 

alsr1, 5'-TCAATCAAAAGAGGTCCAGG, and for the ALS region B amplification: alsf2, 

5' TCCCGGTTAAAATCATGCTC; alsr2, 5'-CTAAACGAGAGAACGGCCAG, as 

described by Foes et al. 1998. The thermo-cycling program began with 3 min at 95°C; 

then 35 cycles of 1 min at 95°C, 1 min at 56°C, and 1 min at 72°C; finalizing by 5 min at 

72°C. DNA amplification was checked with a 1% agarose gel. A volume of 10 ul product 

of each PCR reaction was subjected to its respective digestion: 16.5 ul H2O, 3 ul 

CutSmart™ buffer (10x; New England Biolabs, Ipswich, MA), and 0.5 ul ECoRV (20 

U/ul; New England Biolabs); 2.2 ul H2O, 2.5 ul CutSmart™ buffer (10x), and 0.3 ul MfeI 

(20 U/ul; New England Biolabs), and incubated overnight at 37°C. Digested products 

were run on a 2% agarose gel. For both digestions, negative samples produced a band 

at 500 bp, while positive samples produced a band at 400 bp. 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwic9IO87u3VAhXF6IMKHZfnChEQjhwIBQ&url=https%3A%2F%2Fwww.takeitapart.com%2Fguide%2F66&psig=AFQjCNGGpPfMjJH7twbK-3HyhHzbGC7FTQ&ust=1503595087460850
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 Because hybridization between grain amaranth and weedy amaranths is 

common, batches were grown in a greenhouse room to minimize plants contact with the 

outside environment’s air. Neighboring rooms did not have weedy amaranth populations 

growing inside. By managing the planting date, the growing season was set to avoid 

flowering during times of the year when waterhemp pollen is most prevalent in the air in 

central Illinois (from June to September).  

2.3.5 Seed screening 

The seed from each parental plant was planted separately in 12.3 x 12.3 cm 

inserts filled with the same medium described above and covered with a layer of 2 mm 

of the same growth medium. The sowing density had a maximum of 23,000 seeds per 

insert, in order to respect the upper limit of 160 seeds/cm2 previously determined as 

innocuous to germination rate. Heterozygous waterhemp plants with the Trp574Leu 

mutation were included in each screening session to check resistant survivorship. 

Inserts were placed into 27.4 x 53.9 cm flat with holes that were then placed on to a 

display flat for bottom watering. To moisten the growth medium prior to sowing, flats 

were sub-irrigated overnight. Right after sowing, flats received an application of 

imazethapyr (Pursuit®, 240 g a.i. /L; BASF, Florham Park, NJ) at a 10x rate (2.9 L/ha) 

which was previously determined to effectively discriminate between heterozygous 

resistant mutants (carrying the Trp574Leu substitution) and sensitive grain amaranth 

plants. Herbicide was applied using a research spray chamber (De Vries Manufacturing, 

Hollandale, MN) calibrated to deliver 185 L/ha at 276 kPa. The flats were located 60 cm 

below the nozzle (80015 EVS; Teejet Technologies, Wheaton, IL). After spraying, 1 mm 

of water was sprayed over the flats to incorporate the herbicide. Then flats were 
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watered from the top daily. Seeds started to germinate on the same day. Most seedlings 

emerged from the second to the seventh day after treatment (DAT). Sensitive seedlings 

stopped their growth about 10 DAT. At 15 DAT, surviving plants were evident and 

bigger than the rest and were transplanted to 10.1 cm diameter pots filed with 

WeedMix:LC1. 

2.3.6 Germination rate 

Germination rate was calculated in separated 7.7 x 5.5 cm inserts filled with 

WeedMix:LC1 to calculate the germination rate of the seed bulk. From each parental 

plant, 160 seeds were sowed in a cm2 of soil to simulate the real density. This density 

was maintained by sowing the seeds with a tube that had a constant measured 

diameter. These flats were not treated with herbicide, but allowed to grow normally. 

After germination, seedlings were counted manually. 

2.3.7 Resistance confirmation 

Once a surviving seedling was detected, it was firstly examined visually to detect 

obvious waterhemp traits. Any waterhemp-DNA contamination was then checked by 

PCR as described above. Similarly, Palmer amaranth contamination was checked by 

PCR that consisted of the mix described above with the following primers: fwd, 5′-

GCGAACATGTTTATCATACCTGG-3′; rev, 5′ -CTCAATACTGGGTGCATCCAC-3′ 

(Murphy et al. 2017). Thermo-cycling started with 5 min at 95°C; then 27 cycles of 1.5 

min at 95°C, 1 min at 59°C, and 2 min at 72°C; finalizing by 5 min at 72°C. DNA 

amplification was checked on a 1% agarose gel for direct confirmation of any Palmer 

amaranth DNA presence. When a plant was verified to be none of these weed species, 
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a post application of imazethapyr at 1x rate (0.29 L/ha) was sprayed when the plant was 

10 cm tall. If the plant survived, it was allowed to produce seed. DNA was extracted in 

order to sequence the ALS gene to look for the presence of mutations. Sanger 

sequencing was performed by the UIUC Core Sequencing facility (334 ERML, 1201 W. 

Gregory, Urbana, IL). When the plants finished their cycle, the seed was cleaned 

manually and stored in the cold room at 4°C. At least 10 offspring from each resistant 

plant was planted independently and grown up. When offspring plants were 10 cm tall, 

imazethapyr at 1x was applied in order to check for resistance inheritance.   

2.4 Results and Discussion 

The five batches of grain amaranth produced more than 87,000,000 seeds in 

total (Table 2.3). Seed production between batches was mostly homogeneous with the 

exception of one batch that had more than triplicate the yield of the others. The seed 

produced per parental plant was highly variable, ranging from less than 1,000 to more 

than 300,000 seeds with an average of 77,000 seeds per plant. The average seed 

weight remained mostly constant across batches and plants with a mean of 0.06 grams 

per 100 seeds.  

Based on each batch’s germination rate, we determined that at least 70,000,000 

plants were screened (Table 2.4). Our screening procedure was demonstrated to be 

sufficiently robust to identify resistant individuals within a sensitive population, because 

we recovered 25 resistant individuals during this experiment. Following the procedures 

described above (2.3.7 Resistance confirmation), all the recovered individuals were 

determined to be contaminations from ALS-resistant Amaranthus weeds: waterhemp 

and Palmer amaranth. The contamination was produced via either the pollination of 
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grain amaranth flowers with Amaranthus weed pollen (i.e. hybridization) or the direct 

presence of weed seeds in the planted grain amaranth. In this sense, no spontaneous 

resistant genotypes were detected. This gives an estimate of the probability to find a 

spontaneous ALS-resistant mutant in a given sensitive plant population to lower than 2 

x 10-8.   

In a theoretical approach to this matter, we calculated the possibility of the 

nucleotide substitutions known to provide strong resistance (>10 times the label rate) to 

imidazolinones (Table 2.1) to occur in grain amaranth based on its ALS gene sequence 

(GenBank accession EU024568) and the spontaneous mutation frequencies in 

Arabidopsis thaliana reported by Ossowski et al. (2010). Assigning the average 

mutation rate of 6.5 x 10-9 per site per haploid genome per generation observed in 

Arabidopsis thaliana and considering 8 possible sites to be substituted in the ALS gene 

of grain amaranth (Table 2.5), the probability of any given plant spontaneously mutating 

to be resistant is 5.2 x 10-8 (Table 2.7). This signifies that we should have detected at 

least 3 resistant mutants in 70 million screened plants, with the chance of finding at 

least one at 97.37% (SE=1.9). Accounting for the difference in mutation type rate found 

in Arabidopsis thaliana and adjusting based on the C:G bias in the genome, the 

probability of an ALS-resistant mutant discovery ascended to 7.9 x 10-8 per plant (Table 

2.6), so at least 5 resistant individuals should be found in 70 million seedlings, and the 

chance of detecting at least one resistant plant increased to 99.6 % (SE=2.35) (Table 

2.7). It should be considered, though, that part of C:G→T:A mutations found in 

Arabidopsis thaliana were produced in C:T sites that are known to be methylated. 

Spontaneous deamination of methylated cytosine leads to thymine substitution being an 
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important source of mutation (Schmitz et al. 2011). However, we do not know anything 

about the methylation status of C:T sites in the ALS gene of grain amaranth. 

Consequently, by not computing the C:G→T:A mutations at methylated C:G sites in 

Arabidopsis thaliana, the probability diminishes to 5.8 x 10-8 (Table 2.6), i.e. 4 mutants 

screened from 70 million plants (Table 2.7). More importantly, the mutation rate 

between genic and intergenic regions varies substantially in Arabidopsis thaliana. This 

was attributed to a higher mutation rate in pericentromeric regions where gene density 

is lower than further away from the centromere. Although we do not know the exact 

location of the ALS gene in relation to the centromere, we may speculate that it is 

situated far away from the centromere as that is generally the case for most genes. 

Considering the mutation rate within genic regions only and subtracting the mutations 

originating in mobile elements, the probability for selecting an ALS-resistant mutant in a 

sensitive population decrease to 1.38 x 10-8 which is less than 1 individual (0.96) in 70 

million plants. In that case, the chance of getting at least one resistant plant lowers to 

61.93% (SE=0.98). If this estimation is close to reality, we should have screened at 

least 72.5 million plants to find at least 1 resistant individual to ALS-inhibitors (Table 

2.7).  

In addition, it must be pointed out that in most of the published ALS-resistance 

cases, mutations checked to survive a 10x rate (strong resistance) were duplicated in 

their respective genomes (homozygous). Newly-arisen spontaneous mutations are 

expected to be mostly in one chromosome only (heterozygous) during the first 

generation. Therefore, while screening at 10x rate, we might have eliminated individuals 

containing some of the mutations known to confer resistance. We previously confirmed 
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that this herbicide rate effectively selected heterozygous waterhemp plants containing 

the Trp574Leu mutation from sensitive plants. We estimate the probability of one of 

these mutants to arise spontaneously in grain amaranth to be 1.71 x 10-9. Thus, if it 

were true that we had been selecting for that mutation only, we had a chance of 11.28% 

(SE=0.34) to find at least one resistant plant in this study (Table 2.7). However, we also 

confirmed that heterozygous smooth pigweed (Amaranthus hybridus) plants containing 

the Ala122Thr mutation survived a 10x rate of imazethapyr. Moreover, we checked that 

waterhemp plants homozygous for the Ser653Asn mutation survived a 20x rate, so we 

may speculate that a heterozygous plant could survive half of that rate. Supposing that 

we were selecting for these three mutations only, the probability of finding an ALS-

resistant plant with one of these three mutations was 2.51 x 10-8 which is less than 2 

individuals (1.76) in the 70 million plants screened in this study. In that case, the chance 

to find at least one resistant mutant in this experiment was of 82.74% (SE=1.32) (Table 

2.7). The probability to find any of these mutants decrease if adjusted by methylation 

and genic regions as described above (Table 2.7). 

Regardless of these theoretical considerations, an empirically-determined 

probability of 2 x 10-8 per individual is established as a higher limit for the occurrence of 

spontaneous ALS-resistant mutants in an Amaranthus sensitive population. This implies 

that spontaneous mutations conferring herbicide resistance do not appear to arise at 

high frequency in plant populations. In that case, the design of resistance mitigation 

strategies should focus more on the standing genetic variation as the main source of 

resistant alleles in weed populations. Nonetheless, it should be recognized that plant 

populations in the field may have a higher mutation load than in a greenhouse. Different 
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studies demonstrated that natural stresses, like drought, flood, cold, salinity, and UV 

light may cause severe DNA damage in plants (Yao and Kovalchuk 2011; Jiang et al. 

2014). Particularly, UV light may be an important source of spontaneous mutations 

(Filkowski et al. 2003). However, UV rays in this project were partially blocked by 

greenhouse panels potentially decreasing its damaging effect on DNA (Figure 2.3). 

Moreover, recently it has been proposed that non-lethal herbicide applications may 

increase the mutation rate in survival plants, and even lead to the selection of mutator 

genotypes in weed populations (Gressel 2011). All these factors may account for an 

underestimation of the mutation rate impact measured by this study. In this sense, 

future work looking into herbicide-resistance mutation rate determination should 

consider scaling up the total number of screened plants—increasing the chance of 

spontaneous-mutant discovery—and using a more realistic environmental setting. 
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2.5 Tables and figures 

 

 

 

 

 

Figure 2.1. Sites in the ALS protein at which substitutions providing resistance have 

been identified in plants. Numbering of amino acids are based on the precursor ALS 

from Arabidopsis thaliana.  



45 
 

Table 2.1. Amino acid substitutions conferring resistance to ALS inhibitors (Heap 2018). 

Resistance level keys: S = sensitive, r = weak resistance, R = strong resistance (>10 

times the label rate), nd = not determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original site Substitution 
 

Resistance level 
 

SUs                  IMIs 

Weed species 

   

Ala 122 Thr S R 6 

  Val R R 2 

  Tyr R R 1 

  Ser nd nd 1 

  Asn R R 1 
 

    
Pro 197 Thr R S/r 13 

 His R S/r/R 8 

 Arg R S/r 5 

 Leu R S/r/R 12 

 Gln R S/r 7 

 Ser R S/r 26 

 Ala R S/r 11 

 Ile R r 1 

 Asn R nd 1 

 Glu R R 1 

 Tyr R nd 1 

     
Ala 205 Val S/r/R r/R 5 

 Phe R R 1 

     
Asp 376 Glu r/R r/R 12 

     
Arg 377 His R nd 1 

     
Trp 574 Leu R R 36 

 Gly R ND 1 

 Met R ND 1 

 Arg R R 1 

     
Ser 653 Thr S/r R 6 

 Asn S/r R 7 

 Ile r R 1 

     
Gly 654 Glu nd R 1 

 Asp r R 1 
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1-Seed production 

       

         
 

2-Seed harvest and cleaning 

           

         
 

 

 

Figure 2.2. Experiment cycle. 1- A batch of grain amaranth plants is grown in the 

greenhouse for seed production. 2- Inflorescences are harvested manually and seed is 

cleaned. 3- Seed is planted at a high density in flats. 4- Herbicide is applied on flats 

before seedlings emergence. 5- Herbicide-resistant plant screening. 

 

 

 

 

 

 



47 
 

Figure 2.2. (cont.) 

3-Seed planting 

          

          
 

4-Pre-emergence herbicide application 

                             

 
 

5-Herbicide-resistant plants screening  
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Table 2.2. Labor dates per seed production batch. To initiate a batch, seeds were planted in 12.3 x 12.3 cm inserts. 

Plants were allowed to grow in the inserts until each plant had its first true leaf longer than a quarter of an inch. Then, 

seedlings were transplanted into 10.1 cm diameter standard pots. Between 400 and 500 seedlings were germinated each 

time to finally select a uniform group of around 200 plants for each batch. When plants reached 5-6 inches in height, they 

were transplanted into 9.4 L pots. The pots were placed on benches laying directly on the floor. Flowering started 

approximately 45 days after planting in all batches. Plants were harvested at least 10 days after it was noted that seeds 

were able to be detached from the plants without pushing them.  

 

 

Batch  Planting in 
inserts 

Days in 
inserts 

Transplant 
to 10.1 cm 

pots 

Days in 
10.1 cm 

pots 

Transplant 
to 9.4 L 

pots 

Days in  
9.4 L 
pots 

 

Flowering 
date 

Harvest Total 
days 

A 1/24/2015 3 1/27/2015 16 2/12/2015 160 3/9/2015 7/22/2015 179 

B 7/31/2015 10 8/10/2015 14 8/24/2015 136 9/14/2015 1/7/2016 160 

C 1/7/2016 11 1/18/2016 28 2/15/2016 121 2/22/2016 6/15/2016 160 

D 7/19/2016 15 8/3/2016 30 9/2/2016 144 9/3/2016 1/24/2017 189 

E 1/27/2017 12 2/8/2017 40 3/20/2017 117 3/13/2017 7/15/2017 169 
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Table 2.3. Yield information per seed production batch. 

 

Batch  
Number 
of plants 

Seed 
yield (g) 

Seed 
yield/plant (g) 

 Ave. 100 
seeds (g) 

Yield 
(seeds) 

Seeds/Plant 

A 234 6,903 30 0.0612 11,287,902 48,239 

B 214 6,717 31 0.0602 11,154,941 52,126 

C 210 23,927 114 0.0625 38,282,720 182,299 

D 294 6,282 21 0.0545 11,536,084 39,238 

E 237 9,668 41 0.0651 14,844,573 62,635 

Total 1,189 53,497   87,106,221  

Ave./batch 238 10,699 47 0.0607 17,421,244 76,907 
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Table 2.4. Calculated number of screened plants per seed batch based on their 

respective germination rates.  

 

 

 

 

 

 

 

 

 

  

Batch # Yield (seeds) Germination rate (%) Screened plants 

Batch A 11,287,902 0.67 7,562,895 

Batch B 11,154,941 0.63 7,027,613 

Batch C 38,282,720 0.90 34,263,034 

Batch D 11,536,084 0.83 9,574,950 

Batch E 14,844,573 0.84 12,454,597 

Total 87,106,221  70,883,089 

Ave/batch 17,421,244 0.77 14,176,618 
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Figure 2.3. Light transmittance of Turner Hall greenhouse’s glazing (University of 

Illinois). Blue line indicates the percentage of light transmitted per wavelength. Yellow 

dotted lines indicate ultraviolet light wavelength ranges. Ultraviolet types B (280-315 

nm) and C (100-280 nm) are mostly blocked by the ozone layer. UV-A (315 to 400 nm) 

reaches the ground, but is partially reflected (not totally absorbed) by the greenhouse 

glazing. 
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Table 2.5. Possible resistance-conferring nucleotide substitutions in the ALS gene of 

grain amaranth.  Because only one of three possible mutations confers resistance, sites 

are counted as a third of a site. Therefore, to calculate the mutation rate conferring ALS-

inhibitor resistance in grain amaranth using the average mutation rate per site in 

Arabidopsis thaliana, 8 sites should be considered. 

 

Original 
codon  

Amino acid 
substitution 

Nucleotide substitution 

  Original       Substitute 
Probability 

GCA Ala122Thr 1-G A 1/3 

GCA Ala122Val 2-C T 1/3 

CCC Pro197Leu 2-C T 1/3 

GCT Ala205Val 2-C T 1/3 

GAT Asp376Glu 3-T A/G 2/3 

TGG Trp574Leu 2-G T 1/3 

TGG Trp574Arg 1-T C 1/3 

AGC Ser653Asn 2-G A 1/3 

AGC Ser653Thr 2-G C 1/3 

AGC Ser653Ile 2-G T 1/3 

GGT Gly654Asp 2-G A 1/3 

 
Total sites in haploid genome 

 

 4 

  Total sites in diploid genome 
 

 8 
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Table 2.6. Theoretical calculation of the mutation rate conferring ALS-inhibitor 

resistance per plant per generation based on mutation type frequencies found in 

Arabidopsis thaliana. Each base substitution probability per plant per generation was 

determined by assigning the mutation type frequencies of Arabidopsis thaliana to the 

ALS gene base substitutions known to provide resistance. * Same probabilities adjusted 

by the proportion of mutations originated in C:G methylated sites in the Arabidopsis 

thaliana genome. *2 Numbers indicate base position in DNA codon.  

 

Amino acid 
substitution 

Nucleotide substitution 

Original*2     Substitute 

Mutation 
probability 

Mutation 
probability* 

Ala122Thr 1-G A 5.86E-09 4.14E-09 

Ala122Val 2-C T 5.86E-09 4.14E-09 

Pro197Leu 2-C T 5.86E-09 4.14E-09 

Ala205Val 2-C T 5.86E-09 4.14E-09 

Asp376Glu 3-T A/G 6.15E-10 6.15E-10 

Trp574Leu 2-G T 8.57E-10 8.57E-10 

Trp574Arg 1-T C 1.28E-09 1.28E-09 

Ser653Asn 2-G A 5.86E-09 4.14E-09 

Ser653Thr 2-G C 7.14E-10 7.14E-10 

Ser653Ile 2-G T 8.57E-10 8.57E-10 

Gly654Asp 2-G A 5.86E-09 4.14E-09 

Mutation rate in haploid genome 3.94E-08 2.91E-08 

Mutation rate in diploid genome 7.89E-08 5.83E-08 
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Table 2.7. Theoretical calculation approaches for determining the ALS resistance 

mutation rate in grain amaranth. Average genome: average mutation rate per site per 

genome per generation in Arabidopsis thaliana assigned to the 8 possible resistance 

sites in the ALS gene of grain amaranth (Table 2.5). Adjusted per mutation type: 

mutation rate conferring ALS-inhibitor resistance per plant per generation based on 

mutation type frequencies found in Arabidopsis thaliana. Adjusted per methylated sites: 

the adjusted per mutation type calculation further adjusted by the proportion of C:G 

methylated sites. Adjusted per genic regions: the average genome approach adjusted 

by the proportion of mutations in genic regions of Arabidopsis. Trp574Leu: the 

probability of one C:G→A:T mutation in Arabidopsis thaliana in a diploid genome in one 

generation. Trp574Leu, Ala122Thr, and Ser653Asn: the probability of one C:G→A:T, 

and two C:G→T:A mutations in Arabidopsis thaliana in a diploid genome in one plant 

generation.  * Adjusted per methylated sites and genic regions. 

 

Calculation 
approach 

Probability 
of finding  
1 mutant 

Reciprocal (1/ 
probability of 

finding  
1 mutant) 

Number of 
mutants to be 
expected in 

70,000,000 plants 

 Probability of 
finding 1 mutant 

in 70,000,000 
plants 

Average genome 5.20E-08 19,230,769 3.640 0.9737 

Adjusted per 
mutation type 

7.89E-08 12,667,038 5.526 0.9960 

Adjusted per 
methylated sites 

5.84E-08 17,131,024 4.086 0.9832 

Adjusted per      
genic regions 

1.38E-08 72,485,207 0.966 0.6193 

Trp574Leu 1.71E-09 583,333,333 0.120 0.1128 

Trp574Leu, 
Ala122Thr, and 

Ser653Asn 

2.51E-08 39,772,727 1.760 0.8274 

* Trp574Leu 4.55E-10 2,198,717,952 0.032 0.0313 

 
* Trp574Leu, 

Ala122Thr, and 
Ser653Asn 

 

4.88E-09 

 

204,935,797 

 

0.342 

 

0.2893 

 

 



55 
 

2.6 Literature cited 

 

Baer, C. F., M. M. Miyamoto, and D. R. Denver. 2007. Mutation rate variation in 

multicellular eukaryotes: causes and consequences. Nat Rev Genet. 8: 619–631.  

 

Baltensperger, D.D., L.E. Weber, and L.A. Nelson. 1992. Registration of 'Plainsman' 

grain amaranth. Crop Sci. 32: 1510–1511. 

 

Beckie, H.J. and K. N. Harker. 2017. Our top 10 herbicide-resistant weed management 

practices. Pest Manag Sci. 73: 1045–1052. 

 

Bobiwash K., S.T. Schultz, and D.J. Schoen. 2013. Somatic deleterious mutation rate in 

a woody plant: estimation from phenotypic data. Heredity. 111: 338–344. 

 

Bromham, L., X. Hua, R. Lanfear, and P. F. Cowman. 2015. Exploring the relationships 

between mutation rates, life history, genome size, environment, and species richness in 

flowering plants. Am Nat. 185: 508–524.  

 

Délye C., M. Jasieniuk, and V. Le Corre. 2013a. Deciphering the evolution of herbicide 

resistance in weeds. Trends Genet. 29: 649–658. 

 



56 
 

Délye, C., C. Deulvot and B. Chauvel. 2013b. DNA analysis of herbarium specimens of 

the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated 

Herbicides. PLoS ONE. 8: e75117.  

 

Denver, D.R., K. Morris, M. Lynch, L. L. Vassilieva, and W. K. Thomas. 2000. High 

direct estimate of the mutation rate in the mitochondrial genome of C. elegans. Science. 

289: 2342–2344. 

 

DeRose-Wilson, L.J. and B. S. Gaut. 2007. Transcription-related mutations and GC 

content drive variation in nucleotide substitution rates across the genomes of 

Arabidopsis thaliana and Arabidopsis lyrata. BMC Evol Biol. 7: 66. 

 

Dillon, M. M., W. Sung, M. Lynch, and V. S. Cooper. 2015. The rate and molecular 

spectrum of spontaneous mutations in the GC-rich multi chromosome genome of 

Burkholderia cenocepacia. Genetics.  200: 935–946. 

 

Doyle, J. J. and J. L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus. 12: 

13–15. 

 

Drake, J. W. 1991. A constant rate of spontaneous mutation in DNA-based microbes. 

Proc Natl Acad Sci USA. 88: 7160–7164. 

 



57 
 

Drake, J. W., B. Charlesworth, D. Charlesworth, and J. F. Crow. 1998. Rates of 

spontaneous mutation. Genetics. 148: 1667–1686. 

 

Duggleby, R. G., J. A. McCourt, and L. W. Guddat. 2008. Structure and mechanism of 

inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem. 46: 309–324. 

 

Filkowski, j., O. Kovalchuk, and I. Kovalchuk. 2004. Dissimilar mutation and 

recombination rates in Arabidopsis and tobacco. Plant Sci. 166: 265–272. 

 

Foes, M. J., L. Liu, P. J. Tranel, L. M. Wax, and E. W. Stoller. 1998. A biotype of 

waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46: 

514–520. 

 

Freeman, S. and J. C. Herron. 2007. Evolutionary Analysis, 4th Edition. Pearson 

Benjamin Cummings, San Francisco, CA. pp. 141–168. 

 

Gressel, J. 2011. Low pesticide rates may hasten the evolution of resistance by 

increasing mutation frequencies. Pest Manag Sci. 67: 253–257. 

 

Guttieri, M. J., C. V. Eberlein, and D. C. Thill. 1995. Diverse mutations in the 

acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) 

biotypes. Weed Sci. 43: 175–178. 

 



58 
 

Haag-Liautard, C., N. Coffey, D. Houle, M. Lynch, B. Charlesworth, and P.D. Keightley. 

2008. Direct estimation of the mitochondrial DNA mutation rate in Drosophila 

melanogaster. PLoS Biol. 6: 1706–1714. 

 

Heap, I. 2014. Global perspective of herbicide-resistant Weeds. Pest Manag Sci. 70: 

1306–1315. 

 

Hollister, J.D., J. Ross-Ibarra, and B. S. Gaut. 2010. Indel-associated mutation rate 

varies with mating system in flowering plants. Mol Biol Evol. 27: 409–416.  

 

Huffman, J., N. E. Hausman, A. G. Hager, D. E. Riechers, and P. J.  Tranel. 2015. 

Genetics and inheritance of nontarget-site resistances to atrazine and mesotrione in a 

waterhemp (Amaranthus tuberculatus) population from Illinois. Weed Sci. 63: 799–809. 

 

Jasieniuk, M. and B. D. Maxwell. 2001. Plant diversity: new insights from molecular 

biology and genomics technologies. Weed Sci. 49: 257–265. 

 

Jasieniuk, M., A. L. Brule-babel, I. N. Morrison. 1996. The evolution and genetics of 

herbicide resistance in weeds. Weed Sci. 44: 176–193. 

 

Jiang, C., A. Mithani, E. J. Belfield, R. Mott, L. D. Hurst, and N. P. Harberd. 2014. 

Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana 

mutations and epimutations. Genome Res. 24: 1821–1829.  



59 
 

 

Kaloumenos, N. S., S. L. Chatzilazaridou, P. V. Mylona, A. N. Polidoros, and I. G. 

Eleftherohorinos. 2013. Target-site mutation associated with cross-resistance to ALS-

inhibiting herbicides in late watergrass (Echinochloa oryzicola Vasing.). Pest Manag 

Sci. 69: 865–873. 

 

Keightley, P. D., A. Pinharanda, R. W. Ness, F. Simpson, K. K. Dasmahapatra, J. 

Mallet, J. W. Davey, and C. D. Jiggins. 2015. Estimation of the spontaneous mutation 

rate in Heliconius melpomene. Mol Biol Evol. 32: 239–243. 

 

Keightley, P. D., R. W. Ness, D. L. Halligan, and P. R. Haddrill. 2014. Estimation of the 

spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full-sib 

family. Genetics. 196: 313–320. 

 

Keightley, P. D., U. Trivedi, M. Thomson, F. Oliver, S. Kumar, and M. L. Blaxter. 2009. 

Analysis of the genome sequences of three Drosophila melanogaster spontaneous 

mutation accumulation lines. Genome Res. 19: 1195–1201. 

 

Kirik, A., S. Salomon, and H. Puchta. 2000. Species-specific double-strand break repair 

and genome evolution in plants. EMBO Journal. 19: 5562–5566.  

 



60 
 

Kiselev, K. V., Z. V. Ogneva, A. S. Dubrovina, A. R. Suprun, and A. P. Tyunin. 2018. 

Altered somatic mutation level and DNA repair gene expression in Arabidopsis thaliana 

exposed to ultraviolet C, salt, and cadmium stresses. Acta Physiol Plant. 40:21.  

 

Kondrashov, A. S., I. S. Povolotskaya, D. N. Ivankov, and F. A. Kondrashov. 2010. Rate 

of sequence divergence under constant selection. Biol Direct. 5:5. 

 

Kondrashov, F. A. and A. S. Kondrashov. 2010. Measurements of spontaneous rates of 

mutations in the recent past and the near future. Philos T R Soc B. 365: 1169–1176.  

 

Kong, A., M. L. Frigge, G. Masson, S. Besenbacher, P. Sulem, G. Magnusson, S. A. 

Gudjonsson, A. Sigurdsson, A. Jonasdottir, A. Jonasdottir, W. S. W. Wong, G. 

Sigurdsson, G. Bragi Walters, S. Steinberg, H. Helgason, G. Thorleifsson, D. F. 

Gudbjartsson, A. Helgason, O. T. Magnusson, U. Thorsteinsdottir, and K. Stefansson. 

2012. Rate of de novo mutations and the importance of father’s age to disease risk. 

Nature. 488: 471–475. 

 

Kovalchuk, I., O. Kovalchuk, and B. Hohn. 2000. Genome-wide variation of the somatic 

mutation frequency in transgenic plants. EMBO Journal. 19: 4431–4438. 

 

Kraemer, S. A., A. D. Morgan, R. W. Ness, P. D. Keightley, and N. Colegrave. 2016. 

Fitness effects of new mutations in Chlamydomonas reinhardtii across two stress 

gradients. J Evol Biol. 29: 583–593. 



61 
 

 

Kucukyildirim, S., H. Long, W. Sung, S. F. Miller, T. G. Doak, and M. Lynch. 2016. The 

rate and spectrum of spontaneous mutations in Mycobacterium smegmatis, a bacterium 

naturally devoid of the post replicative mismatch repair pathway. G3-Genes Genom 

Genet. 6: 2157–2163.  

 

Lambert, R. J., and D. E. Alexander. 1968. Spontaneous mutation rate at the opaque-2 

locus in maize. J Hered. 59: 378–379. 

 

Long, H., T. Paixão, R. B. R. Azevedo, and R. A. Zufall. 2013. Accumulation of 

spontaneous mutations in the ciliate Tetrahymena thermophile. Genetics. 195: 527–

540. 

 

Long, H., W. Sung, S. F. Miller, M. S. Ackerman, T. G. Doak, and M. Lynch. 2015. 

Mutation rate, spectrum, topology, and context-dependency in the DNA mismatch repair 

deficient Pseudomonas fluorescens ATCC948. Genome Biol Evol. 7: 262–27. 

 

Lynch, M. 2010. Evolution of the mutation rate. Trends Genet. 26: 345–352. 

 

Lynch, M., M. S. Ackerman, J. F. Gout, H. Long, W. Sung, W. K. Thomas and P. L. 

Foster. 2016. Genetic drift, selection and the evolution of the mutation rate. Nature. 17: 

704–714. 

 



62 
 

Lynch, M., W. Sung, K. Morris, N. Coffey, C. R. Landry, E. B. Dopman, W. J. Dickinson, K. 

Okamoto, S. Kulkarni, D. L. Hartl, and W. K. Thomas. 2008. A genome wide view of the 

spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci USA. 105: 9272–9277. 

Mallory-Smith, C.A., D. C. Thill, and M. J. Dial. 1990. Identification of sulfonylurea 

herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4: 163–168. 

 

Mimura, M., K. Ono, K. Goka, and T. Hara. 2013. Standing variation boosted by multiple 

sources of introduction contributes to the success of the introduced species, Lotus 

corniculatus. Biol Invasions. 15: 2743–2754.  

 

Murphy, B. P.,  D. E. Plewa, E. Phillippi, S. M. Bissonnette, and P. J. Tranel. 2017. A 

quantitative assay for Amaranthus palmeri identification. Pest Manag Sci. 73: 2221–

2224. 

 

Ness, R. W., A. D. Morgan, N. Colegrave, and P. D. Keightley. 2012. Estimate of the 

spontaneous mutation rate in Chlamydomonas reinhardtii. Genetics. 192: 1447–1454. 

 

Ossowski, S., K. Schneeberger, J. I. Lucas-Lledo, N. Warthmann, R. M. Clark, R. G. 

Shaw, D. Weigel, and M. Lynch. 2010. The rate and molecular spectrum of 

spontaneous mutations in Arabidopsis thaliana. Science. 327: 92–94. 

 

Pandolfo, C. E., A. Presotto, F. Moreno, I. Dossou, J. P. Migasso, E. Sakima, and M. 

Cantamutto. 2016. Broad resistance to acetohydroxyacid-synthase-inhibiting herbicides 



63 
 

in feral radish (Raphanus sativus L.) populations from Argentina. Pest Manag Sci. 

Science. 72: 354–361. 

 

Panozzo, S., L. Scarabel, P. J. Tranel, and M. Sattin. 2013. Target-site resistance to 

ALS inhibitors in the polyploid species Echinochloa crus-galli. Pestic Biochem 

Phys. 105: 93–101. 

 

Patzoldt, W. L. and P. J. Tranel. 2007. Multiple ALS mutations confer herbicide 

resistance in waterhemp (Amaranthus tuberculatus). Weed Sci. 55: 421–428. 

 

Powles, S.B. and Q. Yu. 2010. Evolution in action: plants resistant to herbicides. Annu 

Rev Plant Biol. 61: 317–347. 

 

Preston, C. and S. B. Powles. 2002. Evolution of herbicide resistance in weeds: initial 

frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides 

in Lolium rigidum. Heredity. 88: 8–13. 

 

Renton, M., R. Busi, P. Neve, D. Thornby, and M. Vila-Aiub. Herbicide resistance 

modelling: past, present and future. Pest Manag Sci. 70: 1394–1404.  

 

Riar, D. S., J. K. Norsworthy, V. Srivastava, V. Nandula, J. A. Bond, and R. C. 

Scott. 2013. Physiological and molecular basis of acetolactate synthase-inhibiting 



64 
 

herbicide resistance in barnyardgrass (Echinochloa crus-galli). J Agr Food 

Chem. 61: 278–289. 

 

Roach, J.C., G. Glusman, A. F. A. Smit, C. D. Huff, R. Hubley, P. T. Shannon, L. 

Rowen, K. P. Pant, N. Goodman, and M. Bamshad. 2010. Analysis of genetic 

inheritance in a family quartet by whole-genome sequencing. Science. 328: 636–639.  

 

Rutter M. T., A. Roles, J. K. Conner, R. G. Shaw, F. H. Shaw, K. Schneeberger, S. 

Ossowski, D. Weigel, and C. B. Fenster. 2010. Fitness of Arabidopsis thaliana mutation 

accumulation lines whose spontaneous mutations are known. Evolution. 66: 2335–

2339. 

 

Saxer G., P. Havlak, S. A. Fox, M. A. Quance, and S. Gupta. 2012. Whole genome 

sequencing of mutation accumulation lines reveals a low mutation rate in the social 

amoeba Dictyostelium discoideum. PLoS ONE 7: e46759.  

 

Schmitz, R. J., M. D. Schultz, M. G. Lewsey, R. C. O. Malley, M. A. Urich, O. Libiger, N. 

J. Schork, and J. R. Ecker. 2011. Transgenerational epigenetic instability is a source of 

novel methylation variants. Science. 334: 369–373.  

 

Schoen, D. J. 2005. Deleterious mutation in related species of the plant genus 

Amsinckia with contrasting mating systems. Evolution. 59: 2370–2377.  



65 
 

Schrider, D. R., D. Houle, M. Lynch, and M. W. Hahn. 2013. Rates and genomic 

consequences of spontaneous mutational events in Drosophila melanogaster. Genetics. 

194: 937–954. 

 

Schultz, S., M. Lynch, and J. Willis. 1999. Spontaneous deleterious mutation in 

Arabidopsis thaliana. Proc Natl Acad Sci USA. 96: 11393–11398. 

 

Shaw, R. G., D. L. Byers, and E. Darmo. 2000. Spontaneous mutational effects on 

reproductive traits of Arabidopsis thaliana. Genetics. 155: 369–378. 

 

Shaw, F. H., C. J. Geyer, and R. G. Shaw. 2002. Comprehensive model of mutations 

affecting fitness and inferences for Arabidopsis thaliana. Evolution. 56: 453–463. 

 

Stannard, M.E. and P. K. Fay. 1987. Selection of alfalfa seedlings for tolerance to 

chlorsulfuron. WSSA Abstracts. 27: 61.  

 

Sung, W., M. S. Ackerman, M. M. Dillon, T. G. Platt, C. Fuqua, V. S. Cooper, and M. 

Lynch. 2016. Evolution of the insertion-deletion mutation rate across the tree of life. G3-

Genes Genom Genet. 6: 2583–2591.  

 

Sung, W., M. S. Ackerman, S. F. Miller, T. G. Doak, and M. Lynch. 2012. The drift-

barrier hypothesis and mutation-rate evolution. Proc Natl Acad Sci USA. 109: 18488–

18492. 



66 
 

 

Webster, T. M., K. W. Bradley, G. Frisvold, S. B. Powles, N. R. Burgos, W. Tardif, F. J., 

I. Rajcan, and M. Costea. 2006. A mutation in the herbicide target site acetohydroxyacid 

synthase produces morphological and structural alterations and reduces fitness in 

Amarnthus powellii. New Phytol. 169: 1–14. 

 

The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the 

flowering plant Arabidopsis thaliana. Nature. 408: 796–815. 

 

Tranel P. J., W. Jiang, W. L. Patzoldt, and T. R. Wright. Intraspecific variability of the 

acetolactate synthase gene. Weed Sci. 52: 236–241. 

 

Tranel, P. J. and T. R. Wright. 2002. Resistance of weeds to ALS inhibiting herbicides: 

what have we learned? Weed Sci. 50: 700–712. 

 

Tranel, P. J., C. Wu, and A. Sadeque. 2017. Target-site resistances to ALS and PPO 

inhibitors are linked in waterhemp (Amaranthus tuberculatus). Weed Sci. 65: 4–8. 

 

Trucco, F., A. Hager, and P. J. Tranel. 2006. Acetolactate synthase mutation conferring 

imidazolinone-specific herbicide resistance in Amaranthus hybridus. J Plant Physiol. 

163: 475–479. 

 

Venn, O., I. Turner, I. Mathieson, N. de Groot, R. Bontrop, and G. McVean. 2014. Strong 



67 
 

male bias drives germline mutation in chimpanzees. Science. 344: 1272–1275. 

 

Vila-Aiub, M. M., P. Neve, and S. B. Powles. 2009. Fitness costs associated with 

evolved herbicide resistance alleles in plants. New Phytol.184: 751–767. 

 

Wu, C., A. S. Davis, and P. J. Tranel. 2018. Limited fitness costs of herbicide-resistance 

traits in Amaranthus tuberculatus facilitate resistance evolution. Pest Manag Sci. 74: 

293–301. 

 

Xie, Z., L. Wang, L. Wang, Z. Wang, Z. Lu, D. Tian, S. Yang, and L. D. Hurst. 2016. 

Mutation rate analysis via parent–progeny sequencing of the perennial peach. I. A low 

rate in woody perennials and a higher mutagenicity in hybrids. Proc R Soc B. 283: 

20161016. 

 

Yang, S., L. Wang, J. Huang, X. Zhang, Y. Yuan, J. Chen, L. Hurst, and D. Tian. 2015. 

Parent–progeny sequencing indicates higher mutation rates in heterozygotes. Nature. 

523: 463–467. 

 

Yao, Y. and I. Kovalchuk. 2011. Abiotic stress leads to somatic and heritable changes in 

homologous recombination frequency, point mutation frequency and microsatellite 

stability in Arabidopsis plants. Mutat Res. 707: 61–66. 

 



68 
 

Yu, Q., H. Han, and S. B. Powles. 2008. Mutations of the ALS gene endowing 

resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Manag 

Sci. 64: 1229–1236. 

 

Yu, Q., H. P. Han H.P., M. M. Vila-Aiub, and S. B. Powles. 2010. AHAS herbicide 

resistance endowing mutations: effect on AHAS functionality and plant growth. J Exp 

Bot. 61: 3925–3934. 

 

Yu, Q. and S. B. Powles. 2014. Resistance to AHAS inhibitor herbicides: Current 

understanding. Pest Manag Sci. 70: 1340–1350.  

 

Yuan, J. S., P. J. Tranel, and C. N. Stewart Jr. 2007. Non-target-site herbicide 

resistance: A family business. Trends Plant Sci. 12: 6–13. 

 

Zhu, Y. O., M. L. Siegal, D. W. Hall, and D. A. Petrov. 2014. Precise estimates of 

mutation rate and spectrum in yeast. Proc Natl Acad Sci USA. 111: 2310–2318. 

 

 

 

 

 

 

 

 

 



69 
 

CHAPTER 3: Experimental investigation of low-dose herbicide effect on the 

mutation rate conferring herbicide resistance 

 

3.1 Introduction 

3.1.1 Stress-induced mutagenesis in plants 

Mutations to be passed on to the next generation must be present in gametes. 

However, most of the mutations produced in multicellular organisms occur in somatic 

cells (i.e. somatic mutations), and fewer occur in the germinal cells (i.e. germinal 

mutations) from which gametes rise. In this sense, not all of the mutations that arise 

during the life-span of an organism will potentially generate new genetic variants in the 

population. In animals particularly, genetic information cannot pass from soma to 

germplasm (Weismann's barrier), so the offspring inherit germinal mutations only. 

Conversely, in plants, reproductive structures start from somatic meristems, allowing 

any mutation in the soma to be potentially passed on to the next generation (Bobiwash 

et al. 2013).  For this reason, somatic mutations are believed to have a particular 

significance in the plant kingdom (Kovalchuk et al. 2000). Several studies showed the 

accumulation of somatic mutations in the Arabidopsis thaliana genome during its life 

cycle (Boyko et al. 2006; Golubov et al. 2010; Kiselev et al. 2018). Going a step further, 

it can be inferred that any factor altering the mutation rate in plants may affect the 

occurrence of new genetic variants in the population.  

In that regard, because most of the studies determining the mutation rate in 

plants have been performed in relatively sheltered and artificial laboratory 

environments, they might not reflect the real frequency of the phenomenon in nature 
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(Ossowski et al. 2010). Natural environments are rarely as benign as greenhouse-

based experimental settings, and often expose plants to varying combinations of 

environmental stresses that may alter the mutation rate (Jiang et al. 2014). 

Furthermore, because more pathways are expected to be active in nature, and more 

genes expressed, the mutation rate should have a higher effect on fitness than in less-

changing experimental settings (Rutter et al. 2010). 

What is referred to as the general term “stress” can be translated into a variety of 

physical, chemical, and biological agents capable of affecting the DNA molecule and 

producing mutations, generally referred to as mutagens. Although mutagens can affect 

the DNA molecule in several ways, the direct damage of nucleotides and the break of 

the sugar-phosphate backbone are the most common ones. Damaged nucleotides are 

repaired via one of three mechanisms: base excision repair (BER), nucleotide excision 

repair (NER), or mismatch repair (MMR) (Schröpfer et al. 2014). These may result in 

single base substitutions or indels if mistakes occur during the repairing process. More 

critically, if the sugar-phosphate backbone is damaged, double-strand breaks in the 

DNA molecule are generated, making repair critical for cell viability (Migicovsky and 

Kovalchuk 2012). Double-strand breaks are repaired via non-homologous end joining 

(NHEJ), microhomology-mediated end joining (MMEJ), or homologous recombination 

(HR) (Yao and Kovalchuk 2011; Darracq et al. 2018). NHEJ is not a very precise 

repairing process, commonly generating point mutations, insertions, and deletions. HR, 

on the other hand, is an accurate process that uses the homologous sequence from the 

sister chromatid or the homologous chromosome as a template to fix the break 

(Schröpfer et al. 2014). However, homologous recombination may lead to unequal 

https://en.wikipedia.org/wiki/Mutation
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crossing-over that generates gross chromosomal rearrangements, potentially producing 

gene duplications, gene deletions, or even the formation of new genes (Migicovsky and 

Kovalchuk 2012).  

 In 1928, Lewis Stadler was the first to demonstrate that x-rays induced mutations 

in barley. After that, many agents, including gamma rays, alkylating agents, and 

endonucleases, were identified by their mutagenic effects on plants, even using induced 

mutagenesis in a common technique to generate new genetic variants. From the 1930s 

when the first mutant wheat cultivars came to light, more than 3000 mutant crop 

varieties have been brought to the market (Pacher and Puchta 2017).   

Additionally, many studies performed on plant populations grown in areas 

affected by the Chernobyl accident showed high numbers of DNA alterations. Firstly, 

Abramov et al. (1992) reported an increased frequency of mutant plants grown in plots 

with a high radioactive contamination level in the soil. Kovalchuk et al. (1998) observed 

a strong positive correlation of soil radioactive pollution with the percentage of 

chromosomal abnormalities in Allium cepa and Arabidopsis thaliana. Later, based on 

the analysis of 13 microsatellite loci in a population of wheat plants grown around 

Chernobyl, it was calculated that there was a 6-fold increase in the mutation rate over a 

single generation of exposure to ionizing radiation (Kovalchuk et al. 2003). 

Moreover, different studies have demonstrated that common environmental 

stress factors like heat, cold, UV radiation, drought, flood, and salt stresses can induce 

DNA damage and substantial mutation accumulation in plants (Boyko et al. 2010; Yao 

and Kovalchuk 2011; Willing et al. 2016). Ries et al. (2000) showed that elevated solar 

UVB (ultraviolet B) doses increased the frequency of somatic homologous DNA 
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rearrangements in Arabidopsis thaliana and Nicotiana tabacum plants. Filkowski et al. 

(2003), using a reporter gene, showed an increase of the mutation rate by 6.7-fold in 

Arabidopsis thaliana and by 2.7-fold in Nicotiana tabacum, as a result of induced 

mutagenesis caused by UVC radiation (ultraviolet C). More recently, Yao and 

Kovalchuk (2011), using reporter genes in transgenic Arabidopsis thaliana plants, 

showed that exposure to abiotic stressors such as heat, cold, drought, flood, UVB and 

UVC lead to an increase in the frequency of homologous recombination (HRF) and 

point mutations, deletions, and insertions in somatic cells of exposed plants. Kiselev et 

al. (2018) found that somatic mutations were considerably increased when Arabidopsis 

thaliana plants were grown in soil with elevated cadmium levels, a mutagen that is 

known to inhibit DNA repair processes. Jiang et al. (2014) revealed that 

multigenerational growth of Arabidopsis thaliana in saline soil increases the frequency 

and changes the molecular mutational spectrum (the different frequencies of specific 

transversions and transitions) of accumulated de novo DNA mutations. Interestingly, 

saline growth conditions increased the frequency of methylation of C:G positions (CG-

DMPs).  

With regards to weed science, there are several reported cases of DNA damage 

and increased mutation frequency caused by herbicides. In the past, Plewa (1985) 

developed an atrazine-based system to quantify the mutation rate in maize. The 

frequency of starchy pollen grains was doubled by atrazine treatment on maize plants. 

Kovalchuk et al. (2003), using transgenic Arabidopsis thaliana plants, revealed an 

increase in homologous recombination and the number of point mutations caused by 

2,4-D and dicamba herbicides. Evaluating random genetic regions (RAPD technique), 
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Doganlar (2012) found differences in DNA polymorphisms before and after treatment 

with quizalofop-p-ethyl in Lemna minor and Lemna gibba (duckweeds). Liman et al. 

(2014) observed DNA damage in root meristematic cells of Allium cepa grown in soil 

treated with imazethapyr. Similarly, genetic damage caused by dicamba and atrazine 

was detected in different varieties of South American sweetcorn (Reynoso et al. 2015).  

It is not surprising that different abiotic and biotic stresses have been strongly 

correlated with increased mutation rates in plants. From an evolutionary survival 

standpoint, it seems logical that there might be an advantage if there could be more 

mutations when organisms need to change, e.g. a weed population “needs’’ resistance 

when it is sprayed with an herbicide. When a genotype is unable to cope with its 

environment, an increased mutation rate augments the probability of receiving a 

fortuitous beneficial mutation in the offspring. In other words, organisms need the 

enhanced random variability generated by mutations to overcome stress. Conversely, 

because most mutations are deleterious (or even lethal), high mutation rates have little 

advantage and much disadvantage when an organism is living in a non-stressful 

environment where random genetic variants would not increase adaptation probabilities 

(Gressel and Levy 2009).  

In this sense, a stress condition may increase the mutation rate by directly 

affecting the DNA molecule (i.e. DNA damage leads to more repairing events that 

increase mutation probabilities), but it also may operate indirectly through the balance 

between mutator and anti-mutator alleles in the genome. A ‘mutator gene’ is a mutant of 

a normal gene that increases the mutation rate (e.g. error-prone polymerases) (Gressel 

and Levy 2009). Therefore, a stressful environment may select for more mutator alleles, 
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allowing populations to accumulate mutant varieties in the next generation, as long as a 

non-stressful environment may select for fewer mutator alleles to decrease the mutation 

rate. Moreover, a stressful situation may trigger the expression of mutator genes which 

were silenced during non-stressful conditions.  

The occurrence of stress-induced mutagenesis (SIM) is well studied in bacteria. 

In Escherichia coli, more than 25 genes were recognized to be involved in the elevation 

of mutation rates when cells were poorly adapted to their environment (Horst et al. 

1999; Al Mamun et al. 2012). In eukaryotes, mutants of the mutS and mutL genes were 

identified in yeast and human cancer cells (Modrich and Lahue 1996; Metzgar and Wills 

2000). Furthermore, although error-prone polymerases are the best-documented 

mutators in most organisms, mutator genes may also be related to proteins involved in 

repair pathways (Lynch et al 2016). For example, superoxide dismutases detoxify DNA-

damaging reactive oxygen species (ROS). In addition, mutator mechanisms can be 

related to other non-gene-based mutagenic elements, like transposons or epigenetic 

changes.  

Also, there are well-documented cases of mutators in plants. In Arabidopsis 

thaliana, a nuclear-encoded mutator (chm1) was found to increase the mutation load in 

the plastome and in the mitochondrial DNA (Redei and Plurad 1973). Similarly, the 

AtMSH2 gene was linked to mutator effects in the plastome, and the gene iojap was 

identified as a plastome mutator in maize (Byrne and Taylor 1996). Impressively, a 

transposon was proposed to be an inducible chloroplast mutator in barley (Prina et al. 

1996). More recently, a mutator-like transposon in Arabidopsis thaliana was found to be 

activated by temperature stress (Young et al. 2005). 
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Because weeds seem to be more adaptive than other plant species since they 

can evolve very quickly to different perturbations, it was speculated that they may have 

an enhanced mutation rate driven by mutators (Gressel 2011). For example, the high-

frequency of atrazine-resistant mutants in wild-type populations of lambsquarters 

(Chenopodium album) was attributed to a factor altering random mutation occurrence 

(i.e. mutator) (Darmency and Gasquez 1990). 

3.1.2 Herbicide-resistance evolution driven by low-rate herbicide applications 

Although herbicides—when applied at the rates and plant growth stage 

prescribed in the label— cause high mortality of target weed plants, applications at sub-

lethal doses are common in farming situations. In the first place, applications are not 

uniform across the target population (Gressel 2011). In a field, weeds are not regularly 

distributed, and even one plant can shade another, preventing spray contact. 

Furthermore, if herbicide treatment is applied to plants of bigger size than the 

recommended height, the rate is effectively diminished (Manalil et al. 2011). The spray 

itself may not be evenly applied depending on the equipment and the operator accuracy 

(e.g. spraying during windy weather may increase spray drift). And finally, 

environmental variability may decrease the effective rate received by the target plants 

(e.g. a rain may wash the product off of weed leaves; residual activity may vary upon 

soil conditions). These variables combine to reduce the effective rate applied to target 

weed populations and so labels attempt to compensate for this by recommending rates 

that are several-fold overkill. Unfortunately, the registered labeled rate of a particular 

herbicide compound may have great variation between brands, countries, and even 

regions within countries (Manalil et al. 2011). For example, registered use rates in 
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Australia are lower than in the United States. Moreover, because the optimum economic 

return in some farming situations is reached at low herbicide rates, farmers often apply 

rates lower than the label-recommended level.  

Early models of evolution to pesticides predict that the use of high rates—i.e. 

high selection pressure—would lead to the selection of one or two major genes 

conferring high levels of resistance (most likely target-site resistance), while lower 

doses—i.e. low selection pressure—would delay the evolution of major resistance traits 

(Gressel 2011). Whereas that remains true, it was later reported that the sequential 

application of low doses may select for minor resistance traits, increasing the resistance 

mean of the population in each generation (Neve 2007; Busi et al. 2013). Along these 

lines, some studies have demonstrated that the recurrent selection for survival of low-

dose applications of diclofop in populations of rigid ryegrass (Lolium rigidum) leads to 

the rapid evolution of herbicide resistance under both laboratory and field conditions 

(Neve and Powles 2005, Manalil et al. 2011). Similarly, recurrent selection of a 

susceptible Lolium rigidum population with low rates of glyphosate resulted in the 

evolution of a modest level of glyphosate resistance (Busi and Powles 2009). The 

likeliest explanation is that these low rates selected for low-level resistance polygenes 

which, when accumulated through cross-pollination and recurrent selection, are capable 

of conferring a noticeable resistance level (Gressel 2011). Importantly, this kind of 

polygenic resistance is often metabolic, and thus produces cross-resistance to other 

herbicides beyond the selecting agent. 

 In many cases, low-dose applications of herbicide do not kill all the individuals of 

the target population (i.e. sub-lethality). Although not killed, surviving plants are 
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expected to be highly stressed and prone to the accumulation of mutations. In fact, it 

was recently argued that the exposure of weeds to sub-lethal herbicide treatments could 

elevate mutation rates in a similar way to how bacteria respond to stressful 

environments (Gressel and Levy 2009). For example, atrazine is used for weed control 

in corn because maize naturally detoxifies the herbicide. However, while atrazine is 

metabolized by the maize plant, it consumes glutathione, an antioxidant which plays a 

role in free radical detoxification, and also momentarily blocks photosynthesis, leading 

to free radical accumulation and energy depletion (Gressel 2011). So, atrazine may not 

be lethal to the crop, but it is stressful.  

Going a step further, if low herbicide rates increase the mutation rate, it may be 

inferred that it also increases the probability of generating new genetic variants 

conferring resistance. As stated previously, it is known that herbicides are capable of 

damaging DNA, which may potentially lead to new mutations. Alternatively, it was also 

proposed that herbicide-mediated stress may select for mutators and even induce 

mutator activity within genomes. In that hypothetical case, mutators can be selected 

only when plants under stress survive (e.g. a sub-lethal herbicidal dose). In addition, not 

only mutators can be inherited, but also the rest of the potential changes occurring in 

plants during stressful conditions may be passed on the next generation, leading to 

adaptive evolution (Migicovsky and Kovalchuk 2012). Epigenetic changes can be 

maintained for several generations in the absence of the original stress (Molinier et al. 

2006; Bruce et al. 2007). Also, a high homologous recombination frequency was 

observed in the somatic tissue of non-stressed progeny derived from stress-exposed 

plants (Yao and Kovalchuk 2011). This may imply that the use of herbicides at low 
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doses in one season can affect resistance evolution in the following seasons, 

regardless of rates applied or even the mix of products.  

3.2 Objective 

 

In addition to the determination of the mutation rate conferring ALS resistance 

described in Chapter 2, we aimed to check if the mutation rate increases with a low-

dose treatment of herbicide. Specifically, the objective of this experiment was to 

determine the frequency of ALS-resistant mutants in the offspring of a sensitive plant 

population treated with a sub-lethal dose of atrazine. Then, resistant plants would be 

evaluated for mutations in the ALS gene to calculate any change in the mutation 

frequency induced by the herbicide treatment. Such a change should reflect the 

occurrence of mutations resulting from spontaneous replication mistakes, plus those 

generated by the repair of DNA damage.  

3.3 Materials and methods 

3.3.1 Plant material 

Because the results of this experiment were compared with the mutation rate 

determination experiment outlined in Chapter 2, the plant population in this study 

corresponds to a batch of grain amaranth plants with identical characteristics as that of 

the previous study. Therefore, all the cultivation procedures are the same as described 

above. Labor dates are laid out in Table 3.1.  

3.3.2 Sub-lethal herbicide treatment  

The selected herbicide treatment aimed to increase the mutation rate without 

reducing the seed output. In this sense, the application time was determined by the 
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following reasoning. If applied in the early plant stages (prior to flower formation), a 

mutation would likely remain in the vegetative tissue without reaching the reproductive 

structures and may increase plant branching which may affect seed output. If applied 

after embryo formation, because embryo cells are not dividing actively, the scarcity of 

DNA replication events would decrease the mutation rate. As a result, the time window 

to apply the mutagen is from flower initiation to embryo formation. However, if the 

herbicide is applied directly to the panicle, it may sterilize the flowers decreasing seed 

output. The herbicide was applied, therefore, 5 days before floral meristem appearance 

in most plants (Table 3.1). At that time, many meiosis events should have already 

started, thus the mutation rate could be significantly increased, but the reproductive 

tissue is not directly affected as it is still covered by the stem. Plant height at this point 

ranged from 15 to 25 cm between individuals. 

For the herbicide stress, we chose atrazine (AAtrex® Nine-O®, 0.882 gr a.i. /gr; 

Syngenta Crop Protection, Greensboro, NC) for several reasons. By attaching to the Qb 

binding site in the photosystem-ll D1 protein, atrazine blocks photosynthesis and leads 

to the accumulation of free radicals that damage the DNA, thus potentially increasing 

the mutation rate. It is more commonly applied in pre-emergence to the soil but also 

may be applied in a post-application over the plants if needed. Furthermore, unlike most 

other contact burners which are non-systemic, atrazine moves upstream through the 

xylem, ensuring DNA damage in the meristem, however, it does not accumulate in the 

meristem as truly systemic herbicides do (which move by both xylem and phloem) so 

that seed output is not deeply affected. Additionally, with grain amaranth as an 
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indeterminate growth crop, atrazine’s residual activity in the soil prolongs plant exposure 

to the potential mutagen.   

Dose level was determined by selecting a rate that not only was non-lethal, but 

also did not decrease the seed output by more than 10%, compared to a non-treated 

plant. In this batch, plants were divided into two treatments: 110 plants treated at 0.2 

kg/ha and 110 plants treated at 0.1 kg/ha. Also, an untreated group of 20 plants was 

included as a control. Herbicide applications were performed in the research spray 

chamber calibrated with the same parameters as described in Chapter 2. The nozzle 

was maintained approximately 45 cm above the plants. Plants were visually affected as 

proof of the herbicide activity (Figure 3.1). Because atrazine requires high light levels to 

work effectively, natural sunlight was supplemented with 1000 watt metal halide lamps. 

3.3.3 Screening for ALS resistance 

 Seedlings were screened with for ALS-inhibitor resistance following the same 

procedures described in Chapter 2.  

3.4 Results and Discussion 

 Although visually affected, plants recovered well from atrazine treatment, with 

growth and development similar to the non-treated group. The yield per plant did not 

differ significantly between treatments. Moreover, yield parameters of the whole batch of 

plants did not differ from the untreated batches described in Chapter 2. From treated 

plants, more than 14 million seeds were obtained (Table 3.2). According to the 

germination rate (0.84), more than 11,000,000 seedlings were screened for ALS-

inhibitor resistance (Table 3.3). No resistant mutants were found.  
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  Many reasons may account for the non-identification of resistant mutants. First of 

all, we do not know the lower limit of the mutation rate conferring ALS-inhibitor 

resistance, so we do not know exactly how many screened individuals are needed to 

catch a resistant mutant. In this sense, a sub-lethal dose of atrazine may lead to an 

increase in the frequency of ALS-resistant progeny, but we may need to screen a larger 

population to catch it. Furthermore, the treatment may have generated ALS-inhibitor-

resistant mutants that our screening procedure did not select. As discussed in Chapter 

2, a dose of 10 times the labeled rate of imazethapyr may be too high to select for some 

of the mutations known to provide resistance to the herbicide. Moreover, the atrazine 

treatment may have increased the mutation load in the offspring, even in the ALS gene, 

but these mutations do not confer resistance to imazethapyr.  

On the other hand, it may be that the herbicide treatment utilized in this 

experiment is not effective in generating mutant offspring. The utilized atrazine rates 

may be too low to induce mutations, or herbicide activity in the plant could be 

decreased. For example, the intensity of the photosynthetically active radiation 

intercepted by the plants in the greenhouse may be not as high as required by atrazine 

to generate large quantities of ROS. Even though it may be inferred that the applied 

doses of atrazine were harmful to DNA as plants were visually affected, that does not 

necessarily lead to the rise of new mutations. Additionally, mutations, if created in the 

soma, may not have reached the gametes in parental plants, and so would not be 

present in the following generation.  

Additionally, it can be argued that a hypothetical increase in the mutation rate 

under stress that is mediated by mutators, that may not be addressed in this 
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experiment. When theory assigns the rapid evolution towards herbicide resistance to 

the role of mutators, it is implied that the evolutionary history of weeds has strongly 

selected for these mutators. For example, a weed population that evolved resistance to 

an herbicide had to adapt to other perturbations in the past where an elevated mutation 

rate could be advantageous (e.g. other herbicide or tillage). Following this reasoning, a 

potential activation of a mutator during the stress provoked by a sub-lethal dose of 

herbicide can occur only if that mutator was selected before. However, the plant 

population used in the present study is not completely a weed or at least it has not 

evolved as a weed in the recent past. Moreover, in favor of genetic homogeneity, it is 

feasible that many sources of genetic variability have been purged out from the genetic 

background of this cultivar during its domestication process. Therefore, it is expected 

that the utilized plant population is less likely to evolve herbicide resistance as a product 

of mutator-based genetic modulation compared to weeds.  

Although we did not find empirical evidence supporting it, the hypothetical stress-

mediated increase of mutation rates leading to herbicide resistance remains biologically 

logical. In case this theory is eventually corroborated as true, resistance-mitigation 

strategies should be re-thought. 
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3.5 Tables and figures 

 

Table 3.1. Labor dates in atrazine-treated batch. In previous grain amaranth batches (Chapter 2), the first plant to show a 

flowering meristem (flowering date) occurred typically one week before most plants started flowering. Therefore, the date 

of the first flowering plant (3/19/2017) was used as an indicator of the treatment timing (3/20/2017), which was established 

to be 5 days before most plants start flowering (3/26/2017). 

 

Planting 
in inserts 

Days 
inserts 

Transplant to 
10.1 cm pots 

Days in 10.1 
cm pots 

Transplant 
to 9.4 L pots 

Days in  
9.4 L pots 

Atrazine 
treatment 

Flowering 
date 

Harvest Total 
days 

1/27/2017 12 2/8/2017 40 3/20/2017 117 3/20/2017 3/19/2017 7/15/2017 169 

 



84 
 

Figure 3.1. Plants 15 days after atrazine treatment. Treated plants showed clear 

symptoms of herbicide injury. Plants treated at the highest rate (0.2 kg/ha) were more 

affected in average than plants treated at the lowest rate (0.1 kg/ha). Many plants re-

grew from axillar buds. 

Control 
       

 
         

Atrazine 0.1 kg/ha 

       

 
         

Atrazine 0.2 kg/ha 
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Table 3.2. Yield information per atrazine-treatment group. 

 

Atrazine 
treatment  

Number 
of plants 

Yield 
(g) 

Yield/plant 
(g) 

 Ave. 100 
seeds (g) 

Yield 
(seeds) 

Seeds/Plant 

control 19 454 24 0.0651 697060 36687 

0.1 kg/ha 110 5149 47 0.0651 7907034 71882 

0.2 kg/ha 108 4064 38 0.0651 6240479 57782 
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Table 3.3. Calculated number of screened plants per atrazine-treatment group.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Atrazine treatment  Yield (seeds) Germination rate (%) Screened plants 

control 697060 0.84 584833 

0.1 kg/ha 7907034 0.84 6634002 

0.2 kg/ha 6240479 0.84 5235762 
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CHAPTER 4  

4.1 Concluding remarks 

Recognizing herbicide resistance as an evolutionary process makes it necessary 

to understand the evolutionary forces underpinning the phenomenon to design effective 

resistance mitigation strategies (Neve 2007). Herbicides act as selective agents that, 

over time, increase the frequency of initially rare resistance alleles (Heap 2014). These 

alleles may come from the standing genetic variation within the population, from a 

resistant population via pollen or seeds, or arise spontaneously by de novo mutations 

(Jasieniuk et al. 1996; Délye et al. 2013). The relative importance of each of these three 

sources deeply affects what strategies should be applied to counteract herbicide 

resistance evolution, however, empirical determinations of these parameters are scarce.  

Here, we aimed to calculate the de novo mutation rate generating herbicide-

resistant individuals. To achieve this goal, we performed a method to effectively select 

spontaneous herbicide-resistant mutants by screening millions of plants, using grain 

amaranth and resistance to ALS-inhibiting herbicides as a model system. After 

screening 70,000,000 plants, no spontaneous resistant genotypes were detected, 

determining the probability to find a spontaneous ALS-resistant mutant in a given 

sensitive plant population to be lower than 2 x 10-8. Based on theoretical calculations, 

the probability of an ALS-resistant mutant discovery in this experiment should range 

between 1.71 x 10-9 and 7.9 x 10-8. Thus, the population size of this experiment may not 

have been big enough for effective resistant selection. To identify the mutation rate 

conferring spontaneous ALS-resistant variants in a plant population, it is necessary to 

scale up this experiment.   
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In addition, addressing the idea that the exposure of weeds to sub-lethal 

herbicide treatments could elevate mutation rates, we determined the frequency of ALS-

resistant mutants in the offspring of a sensitive plant population treated with a sub-lethal 

dose of atrazine (Gressel and Levy 2009; Gressel 2011). After screening more than 

11,000,000 seedlings, no ALS-inhibitor resistant mutants were found.  

To sum up, this study establishes a higher limit of 2 x 10-8 for the occurrence of 

spontaneous ALS-resistant mutants in an Amaranthus sensitive population, implying 

that spontaneous mutations conferring herbicide resistance do not arise at high 

frequency in plant populations. This contrasts the speculation that weeds are more 

adaptive than other plant species because they have an enhanced mutation rate 

(Gressel 2011). Furthermore, we found no evidence that low doses of herbicides may 

lead to herbicide-resistant mutants’ generation. In this sense, the design of resistance-

mitigation strategies should focus more on herbicide resistance evolving from the 

standing genetic variation of weed populations. However, it should be considered that 

plant populations in field conditions may have a higher mutation rate than in a 

greenhouse, accounting for an underestimation of the mutation rate impact measured 

by this study. Therefore, future work looking into herbicide-resistance mutation rate 

determination should consider using a field setting. 
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APPENDIX: Mutation rates across the three of life  

 

Table A.1. Mutation rates determined by whole-genome sequencing. Direct calculations 

of the mutation rate are performed by sequencing mutation accumulation (MA) lines or 

by sequencing parents and their offspring (PO). *u: mutation rate per site per haploid 

genome per generation.  

 

u* Species Reference Approach 

7.6E-12 Tetrahymena thermophila Long et al. (2016) MA 

1.9E-11 Paramecium tetraurelia Sung et al. (2012) MA 

2.9E-11 Dictyostelium discoideum Saxer et al. (2012) MA 

6.8E-11 Chlamydomonas reinhardtii Sung et al. (2012) MA 

7.9E-11 Pseudomonas aeruginosa Dettman et al. (2016) MA 

1.3E-10 Burkholderia cenocepacia Dillon et al. (2015) MA 

1.4E-10 Ruegeria pomeroyi Sun et al. (2017) MA 

1.7E-10 Saccharomyces cerevisiae Zhu et al. (2014) MA 
1.7E-10 Schizosaccharomyces pombe Behringer and Hall (2016) MA 

1.9E-10 Rhodosporidium toruloides Long et al. (2016) MA 

2.1E-10 Chlamydomonas reinhardtii Ness et al. (2012) MA 

2.1E-10 Schizosaccharomyces pombe Farlow et al. (2015) MA 

2.2E-10 Escherichia coli Lee et al. (2012) MA 

2.9E-10 Saccharomyces cerevisiae Nishant et al. (2010) MA 

3.0E-10 Escherichia coli Foster et al. (2015) MA 

3.3E-10 Saccharomyces cerevisiae Lynch et al. (2008) MA 

5.0E-10 Deinococcus radiodurans Long et al. (2015) MA 

5.3E-10 Mycobacterium smegmatis Kucukyildirim et al. (2015) MA 

6.7E-10 Caenorhabditis elegans Meier et al. (2014) MA 

9.6E-10 Chlamydomonas reinhardtii Kraemer et al. (2016) MA 

1.3E-09 Caenorhabditis briggsae Denver et al. (2012) MA 

1.5E-09 Caenorhabditis elegans Denver et al. (2012) MA 

2.0E-09 Pristionchus pacificus Weller et al. (2014) MA 

2.3E-09 Daphnia pulex Flynn et al. (2016) MA 

2.7E-09 Caenorhabditis elegans Denver et al. (2009) MA 

2.8E-09 Drosophila melanogaster Keightley et al. (2014) P-O 

2.9E-09 Heliconius melpomene Keightley et al. (2015) P-O 

3.2E-09 Oryza sativa Yang et al. (2015) P-O 

3.5E-09 Drosophila melanogaster Keightley et al. (2009) MA 

3.6E-09 Bumbus terrestris Liu et al. (2016) MA 

4.3E-09 Daphnia pulex Keith et al. (2016) MA 

5.2E-09 Arabidopsis thaliana Jiang et al. (2014) MA 

5.4E-09 Mus musculus Uchimura et al. (2015) MA 
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Table A.1. (cont.) 
 

 
5.5E-09 Drosophila melanogaster Schrider et al. (2013) MA 

6.5E-09 Arabidopsis thaliana Ossowski et al. (2010) MA 

6.8E-09 Aphis mellifera Yang et al. (2015) P-O 

7.4E-09 Arabidopsis thaliana Yang et al. (2015) P-O 

7.8E-09 Prunus persica Xie et al. (2016) P-O 

9.8E-09 Mesoplasma florum Sung et al. (2012) MA 

1.0E-08 Daphnia pulex Keith et al. (2016) MA 

1.1E-08 Homo Sapiens Roach et al. (2010) P-O 

1.1E-08 Homo Sapiens Conrad et al. (2010) P-O 

1.2E-08 Homo Sapiens Kong et al. (2012) P-O 

1.2E-08 Homo Sapiens Campbell et al. (2012) P-O 

1.2E-08 Pan troglodytes Venn et al. (2014) P-O 

1.5E-08 Pan troglodytes Tatsumoto et al. (2017) P-O 

1.6E-08 Homo Sapiens Wang and Zhu (2014) P-O 

2.0E-08 Salmonella typhimurium Lind and Andersson (2008) MA 

3.3E-08 Bacillus subtilis Sung et al. (2015) MA 
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