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ABSTRACT 

 

Coccidiosis is an intestinal parasitic disease caused by protozoans of the genus Eimeria and 

substantially impacts the poultry industry economically worldwide by diminishing animal 

growth. The prophylactic use of anticoccidial drugs in order to ameliorate the detrimental effects 

of an Eimeria infection has been the most successful control measure in broilers. However, due 

to an increase in resistance to anticoccidial drugs and a growing public concern for the 

development of resistant microorganisms, dietary intervention as a nutritional alternative to 

antibiotics and anticoccidial drugs have become of specific interest to combat coccidiosis in 

broilers. Because of this, an experiment was conducted to determine if dietary Yucca-derived 

saponin supplementation could mitigate the immune and growth responses of broilers during a 

mixed coccidian challenge. Dietary treatments were corn-soybean meal-based and included: 1) 

control diet + sham-inoculated (Ucon), 2) control diet + Eimeria oocyst challenge (Icon), 3) 

control diet with 250 mg/kg Yucca-derived saponin product + Eimeria oocyst challenge 

(ISap250), and 4) control diet with 500 mg/kg of Yucca-derived saponin product + Eimeria 

oocyst challenge (ISap500). Growth performance, oocyst shedding, histopathological 

morphometrics and lesion scoring, differential blood cell counts, immunophenotyping of cecal-

derived T-cell profiles, and intestinal inflammatory cytokine gene expression were evaluated in 

broilers inoculated with a mixture of E. acervulina, E. maxima, and E. tenella oocysts. The birds 

challenged with Eimeria showed clear signs of a successful infection, as evidenced by oocyst 

counts of excreta samples collected from each pen. The birds challenged orally with the Eimeria 

mixture displayed a reduction in growth compared with birds not challenged with the Eimeria 

mixture, but there was no detectable difference due to dietary treatment when comparing 
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amongst infected birds alone. Histopathological analysis identified a treatment effect for mucosal 

thickness in the jejunum, where infected birds fed an inclusion rate of 250 mg/kg of diet of 

saponin supplementation and the un-infected control diet birds were not significantly different 

from each other. Histopathological lesion scoring exhibited no detectable differences due to 

dietary treatment within the Eimeria-infected groups. Seven days following Eimeria inoculation, 

lymphocytes as a percentage of white blood cells were elevated in all infected treatment groups, 

but birds fed saponin supplementation at 250 mg/kg of diet did not differ from the un-infected 

control diet birds. Saponin supplementation in conjunction with an Eimeria challenge had no 

measureable effect on cecal-derived T-cell profiles. Expression of cecal and duodenal IFN-γ 

increased with infection when compared to the sham-inoculated birds. Inoculation with Eimeria 

also increased expression of IL-1β, but saponin supplementation at 250 mg/kg and 500 mg/kg of 

diet ameliorated IL-1β expression in the cecal tonsils and duodenum to levels not different from 

sham-inoculated birds. Overall, this research demonstrates that dietary intervention in the form 

of saponin supplementation may serve as an effective strategy in mitigating the resulting 

inflammatory response following exposure to Eimeria in broilers as evidenced by lymphocyte 

responses, changes in intestinal structure, and alterations in cecal and duodenal inflammatory 

cytokine mRNA expression. 
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CHAPTER 1: INTRODUCTION 

  

 Coccidiosis is a major parasitic disease affecting the poultry industry and causes severe 

economic loss worldwide of more than $3 billion USD (Dalloul & Lillehoj, 2006; Williams, 

1999). The disease is caused by a protozoan in the genus Eimeria, an intracellular parasite whose 

predilection site is along the gastrointestinal tract (GIT) of broiler chickens (McDougald & Fitz-

Coy, 2008). Coccidiosis is manifested by a destruction of the intestinal epithelia and elicits an 

immune response within the host, thereby leading to increased maintenance costs, decreased 

absorption of nutrients, and ultimately causes diminished animal growth (Turk & Stephens, 

1967). Because of the pathogenicity of Eimeria species and current management practices within 

the poultry industry, a variety of control measures have been developed to mitigate the 

detrimental effects of coccidiosis. The most successful of these measures being prophylactic 

chemotherapeutic agents or anticoccidial drugs (Dalloul & Lillehoj, 2006), in addition to the use 

of vaccination programs (Chapman, 2014). Importantly, a shift in Eimeria susceptibility to 

anticoccidial drugs was noted soon after discovery of the drugs, and evidence of global coccidial 

resistance to chemotherapeutic agents has been demonstrated for almost all anticoccidial drugs 

(Abbas et al., 2011). Public concern regarding the resistance of microorganisms to control 

strategies (Cosby et al., 2015; Endtz et al., 1990) and implications in human health have been 

increasing over the past decade. The affirmation that science and technology will continuously 

create novel, more efficient drugs to counteract microorganismal resistance has dwindled (Gold 

& Moellering, 1996). As the industry heads towards an antibiotic-free era brought on by pressure 

from both consumers and regulatory agencies, dietary intervention and the discovery of 

alternatives for antibiotics and anticoccidial drugs without detriments in growth performance has 
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become of upmost importance to the poultry industry. A plethora of alternatives have been 

introduced to the poultry industry, all of which seek to maintain optimal growth performance 

while promoting overall bird health (Gadde et al., 2017). Phytogenic compounds are non-

antibiotic feed additives of plant origin and are available as solids, extracts, and essential oils 

(Yitbarek, 2015). Saponins are one type of phytogenic compounds that have been suggested as 

an alternative to anticoccidial drugs due to their antiprotozoal activity (Cheeke, 2000). Saponins 

are natural detergents that consist of a lipophilic nucleus, either steroid or triterpenoid in 

structure depending on plant origin, with one or more water-soluble carbohydrate side chains 

(Cheeke, 2000; Francis et al., 2002). Saponins have the ability to bind to membrane cholesterol 

of protozoan cells, thus creating saponin-cholesterol complexes that can modify membrane 

function and structure, leading to eventual cell lysis and cell death (Francis et al., 2002). 

Saponins also have the ability to improve nutrient digestibility (Johnson et al., 1986), growth 

performance (Sahoo et al., 2015; Sun et al., 2017), and odor control (Çabuk et al., 2004). 

Phytogenic compounds, specifically saponins, may prove to be an effective alternative to 

antibiotics and anticoccidial drugs due to their antiprotozoal activity and ability to enhance 

nutrient absorption and growth of broilers. These products offer a natural alternative to 

prophylactic chemotherapeutic agents in addition to staying in the realm of governmental 

regulations while assuaging to the growing public concern for microorganismal resistance. 
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CHAPTER 2: LITERATURE REVIEW 

Coccidiosis in Poultry 

Introduction and Impact 

 Parasitic infections cause severe economic damage to the poultry industry and can be 

attributed to two general groups, coccidia and mastiogophora (McDougald, 1998). Infection from 

the more common coccidia results in coccidiosis, which continuously and substantially affects 

the cost of poultry production. Globally, coccidiosis causes a severe economic impact by costing 

producers up to $3 billion USD in annual losses (Dalloul & Lillehoj, 2006; Williams, 1999). 

 The prevalence of coccidiosis in today’s flocks is not a new problem afflicting the poultry 

industry. Walter T. Johnson first published on avian coccidiosis (Johnson, 1923) over 95 years 

ago. Today, it is rare to find a poultry flock that has not been infected or exposed to coccidia, 

which can be found wherever chickens are raised (Mcdougald et al., 1986; Williams, 1998). Due 

to subclinical exposure and a depletion in traditional rearing space (near 15 birds/m2), birds are 

ingesting and shedding coccidian oocysts in a confined area making it easy for birds raised on 

litter to be continually re-exposed to active coccidia oocysts. Exposure to large quantities of 

oocysts have the potential to overwhelm the avian immune system, and activate an immune 

response within the birds (H.S. Lillehoj & Lillehoj, 2000; Williams, 2001). These exposure 

patterns, coupled with the rise in anticoccidial drug resistance due to extensive use (Sundar et al., 

2017), have lead producers to seek other means of action to control and combat coccidiosis.  

 Coccidiosis is caused by a protozoan parasite that belongs to the genus Eimeria. Within 

the genus Eimeria, seven different species are widely encountered within the poultry industry, all 

of which are intracellular parasites that rely on both external (environment) and internal (host 

animal) developmental stages (H.S. Lillehoj & Lillehoj, 2000). These include E. tenella, E. 
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acervulina, E. maxima, E. brunetti, E. mitis, E. praecox, and E. necatrix (McDougald, 1998). Of 

the seven species, all are pathogenic, but only E. acervulina, E. brunetti, E. maxima, E. necatrix, 

and E. tenella yield quantifiable gross lesions in varying spots along the gastrointestinal tract and 

their severity ranges from moderate-to-severe, respectively (Allen & Fetterer, 2002). Mortality 

due to a coccidian infection is rare, but has been reported during infection with E. tenella at a 

dose of 1 × 104 or more sporulated oocysts, making it the most pathogenic species found in 

chickens (McDougald & Fitz-Coy, 2008). 

 The preferred site of habitation varies by Eimeria species along the gastrointestinal tract 

(GIT) of broiler chickens. Eimeria acervulina targets the duodenum, E. maxima the ileum, and 

E. tenella inhabits the ceca (McDougald & Fitz-Coy, 2008). Subjectively viewing gross lesions 

along the intestines of birds enables producers to identify which species of coccidia may be 

infecting their flock, which can aid in controlling the disease. Coccidiosis is manifested by a 

destruction of the intestinal epithelia, thereby leading to increased maintenance costs for tissue 

repair and decreased absorption of nutrients (Turk & Stephens, 1967). Weight loss and poor feed 

conversion have been attributed to both anorexia and other general factors, such as 

malabsorption (Russell & Ruff, 1978). Anorexia induced by an Eimeria challenge accounted for 

30-70% of the suppression in body weight gain, while the remainder was accredited to a 

disruption in nutrient absorption as determined in pair-wise feeding studies (Preston-Mafham & 

Sykes, 1970). 

Pathogenesis  

Coccidia are unique in that they are self-limiting and must undergo a continual cycling 

both inside and outside of a host (McDougald & Fitz-Coy, 2008). Infection begins with ingestion 

of sporulated oocysts, which can be derived from contaminated litter, feed, or water. An oocyst 
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remains inert until it becomes sporulated in the environment, and sporulation occurs when 

adequate levels of moisture, oxygen, and heat are attained, typically over a 24-48–hour period 

(Austic & Nesheim, 1990). These three characteristics, oxygen, moisture, and heat, are also 

crucial variables regulated in commercialized poultry facilities, making it the ideal environment 

for oocysts to sporulate and thrive. Once sporulated, oocysts remain viable for an extended 

period, with E. acervulina oocysts found to be infective for up to 86 weeks after being extracted 

from excreta and placed on outdoor soil plots (Farr & Wehr, 1949; Fayer, 1980). After ingestion 

of sporulated oocysts, they are degraded in the gizzard to expose sporocysts (McDougald, 1998). 

These sporocysts come in to contact with bile and trypsin found in the small intestine causing a 

release of sporozoites that invade enterocytes along the GIT. Once embedded in the epithelia 

lining of the GIT, sporozoites undergo schizogony, a process of growth and division 

accumulating hundreds of daughter cells called merozoites. After two or three generations of 

schizogony, merozoites have two fates, spreading to invade additional host cells or forming 

either microgametes or macrogametes. Macrogametes are fertilized by the released motile 

microgametes in a sexual fission to form a zygote, which undergo maturation to form a new 

oocyst that is excreted into the environment (Austic & Nesheim, 1990; McDougald, 1998).  

Each Eimeria species undergoes a life cycle similar to that described above, but the 

timing and reproductive potential varies depending on oocyst pathogenicity. For more 

pathogenic species, like E. tenella, the potential to reproduce is lowered, whereas, less 

pathogenic species, like E. acervulina, exhibit higher potentials to reproduce (McDougald, 

1998). The process from initial oocyst infection to final zygote excretion generally takes 4 to 5 

days, with maximum oocyst shedding occurring 6-to-9 days after initial infection (Allen & 

Fetterer, 2002). Considering the cyclic reproductive cycle of Eimeria and scale of the broiler 
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industry, one infected bird can shed thousands of new oocysts and initiate an exponential spread 

of oocysts in a very short time, making avoidance of reinfection nearly impossible.  

Invasion of Eimeria in the host causes an array of metabolic, physiologic, and 

immunologic issues. At the tissue level, Eimeria destroys enterocytes and degrades the protective 

mucosal lining of the GIT, which reduces nutrient absorptive capacity, induces ulceration, 

predisposes birds to pathogenic bacteria, elicits an immune response, and in severe cases, results 

in internal bleeding (Austic & Nesheim, 1990). Ulceration and destruction of mucous 

membranes reduces the primary physical barrier to subsequent infection by bacteria such as 

Clostridium perfringens, a major predisposing factor of necrotic enteritis (Van Immerseel et al., 

2004). In severe cases, a coccidian infection has the ability to invade and destroy enterocytes at 

the tips of villi, thereby leaving a barren GIT with severely reduced absorptive capacity 

(McDougald & Fitz-Coy, 2008). Intestinal lesions can physically be seen along the GIT of a bird 

that has been infected with coccidiosis. Severity of the lesions depends largely on the Eimeria 

species, oocyst load, age of the bird, and the original immune state of the bird. Additionally, 

these lesions can be indicative of other parameters induced by infection, such as reduced weight 

gain. Lesion scoring immediately after euthanasia has been reported using a scale of 0-4 where 

0=normal and 4=most severe in addition to histopathological analysis in order to quantify the 

coccidian state to which a bird has been exposed (Johnson & Reid, 1970; McDougald & Fitz-

Coy, 2008). 

As a result of tissue damage, diarrhea and decreased skin and shank pigmentation are 

among some of the clinical signs of coccidiosis infection in a flock. Michael Ruff and Henry 

Fuller (1975) demonstrated that birds orally inoculated with sporulated E. acervulina and E. 

tenella oocysts, 1,000,000 and 100,000, respectively, had notably reduced plasma carotenoids, 
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thus changing the skin and shank pigmentation of infected birds. The most detrimental effect 

economically of coccidiosis in chickens is reduction in weight gain and feed efficiency due to 

depressed feed intake, malabsorption, and diarrhea as a result of subclinical exposure (Williams, 

1999). A meta-analysis conducted by Kipper et al. (2013) compiled data from 69 publications, 

around 44,000 birds, to quantify the variation in feed intake and weight gain across multiple 

species of Eimeria. Their results showed that a variation in feed intake quadratically influenced 

the impairment of weight gain, and the severity of this effect was dependent on many factors 

including, sex, age, Eimeria species, and environmental conditions (Kipper et al., 2013). 

Mortality due to coccidia is rare, making it difficult for a producer to physically see if their flock 

is infected until it is too late and an outbreak has occurred. Thus, it is imperative that farmers 

take preventive measures to reduce the effects of a coccidian infection.  

Control Measures  

 Based on the reproductive cycle of Eimeria species and management practices within the 

poultry industry, a variety of control measures have been developed to mitigate the detrimental 

effects of coccidiosis. The most successful of these measures, by far, is the use of prophylactic 

chemotherapeutic agents, or anticoccidial drugs, which have been deemed as “absolute 

requirements to control the disease” (Dalloul & Lillehoj, 2006). Anticoccidial drugs can be 

classified as chemicals (e.g., amprolium, clopidol decoquinate, halofuginone), which directly 

affect parasite metabolism, or polyether ionophores (e.g., monensin lasalocid, salinomycin, 

narasin), which alter osmotic balance and ion transport of potassium and sodium in the GIT of 

the birds to make the intestinal environment less habitable (Chapman, 2001, 2014; McDougald, 

1998). When an anticoccidial drug is used to directly destroy coccidian populations, they are 

termed coccidiocidal, whereas the prophylactic use of an anticoccidial drug is termed as 
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coccidiostatic (Kant et al., 2013). Determining the criteria to evaluate the efficacy of an 

anticoccidial drug should be based on the objective of the experiment, but most often weight gain 

(global indicator of infection severity), lesion scores (pathology of infection), serum parameters 

(alterations in absorption of infection), and feed intake (anorexic behavior of infection) are 

clinical outcomes taken into consideration (Chapman, 1998).  

Prophylactic use of anticoccidial drugs have proven to be extremely beneficial for 

producers, however, due to the extensive use of these drugs worldwide, coccidia have been able 

to develop a tolerance, thus limiting the effectiveness of anticoccidial drugs (Abbas et al., 2011). 

Grumbles et al. (1948) first reported on the beneficial effects of prophylactic use of an 

anticoccidial drug (sulfaquinonxaline) to control coccidiosis and less than ten years later, 

evidence of resistance was reported by Cuckler et al. (1955). Because of the growing concern for 

the diminishing effectiveness of anticoccidial drugs due to evolved resistance, implementation of 

shuttle or rotation programs have been in heavy use by the broiler industry to prolong the 

benefits of anticoccidial drugs. A shuttle program consists of using two or more drugs, usually 

with different modes of action, whereas a rotation program utilizes different drugs in successive 

flocks (Chapman, 2014). A study of the use of anticoccidial drugs in the U.S. broiler industry 

analyzed data compiled from 1995 to 1999 and concluded that the use of chemical compounds 

may be superior to prophylactic ionophores in reducing resistance to control agents (Chapman, 

2001). 

Anticoccidial drug resistance has forced the industry to seek alternative methods for 

treating coccidiosis, and recent efforts have focused on vaccine development. The use of live 

vaccines takes advantage of the protective immunity a bird develops early on in life, allowing 

vaccinated birds to become immune to species-specific coccidiosis prevalent in the vaccine 
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(Dalloul & Lillehoj, 2006). Coccidian vaccines can either be virulent (non-attenuated), derived 

from laboratory or field strains with their original integrity, or attenuated, with artificially-

reduced virulence, and the difference of these two is reflected in the clinical outcomes of the 

birds. R. B. Williams (2002) compiled literature on broiler growth performance data available for 

commercially-available anticoccidial vaccines (Paracox®, Coccivac®, Immucox®, Livacox®, and 

Nobilis COX ATM®), both attenuated and nonattenuated, in which vaccinated birds did not 

outperform non-vaccinated birds in 32 of the 43 studies . Despite this evidence, there is still a 

push for the use of vaccines over anticoccidial drugs in managing coccidiosis due to other 

benefits, such as animal welfare, absence of drug residuals, and avoidance of toxicity (Williams, 

2002).  

Growth performance loss due to mild Eimeria challenges via a vaccine, may result in a 

decrease in performance. Nevertheless, this may be recovered through compensatory gain, a 

process in which the bird compensates for the loss of growth with a general increase in feed 

consumption and weight gain and is especially apparent in birds taken to a large target weight 

(McDougald & McQuistion, 1980). However, producers cannot always be reliant on 

compensatory gain to ameliorate adverse effects of a coccidiosis vaccination, but it is because of 

this, nutritional intervention during the recovery phase of a transient Eimeria infection has 

become a crucial role in combatting an Eimeria infection in chickens.  

 

The Avian Immune System and Response to Eimeria Infection 

Innate and Adaptive Immune Systems  

 Immunology is a science that defines the way an organism protects and defends itself 

from external and internal danger signals. Protection against pathogens relies on several different 
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levels of defense without exerting unwarranted damage to host cells, while generating 

immunological memory to recognize the same pathogen with higher efficiency in the future. This 

requires recognition, development, regulation, and differentiation processes to act in 

collaboration and ensure a successful immune response to counteract pathogens. These responses 

are coordinated by two major defense mechanisms, the innate and adaptive arms of immunity, 

which work in cooperation to overcome infection (Murphy & Weaver, 2016).  

The innate immune system is comprised of both anatomic barriers, such as the skin, oral 

mucosa, respiratory epithelium, and intestinal lining, and chemical barriers, such as complement 

and secretion of antimicrobial peptides and polymorphonuclear leukocytes. The innate immune 

system is activated immediately following breach of these barriers with a foreign pathogen, 

making its defense mechanisms non-specific, and is mediated by monocyte-derived 

macrophages, granulocytes, natural killer (NK) cells, and serum proteins (Dalloul & Lillehoj, 

2006). Granulocytes include heterophils (i.e., the equivalent of mammalian neutrophils) that 

possess phagocytic capability to engulf and destroy pathogens, in addition to basophils, 

eosinophils, and mast cells, but in smaller proportions compared to heterophils (Schat et al., 

2013). Innate immune cells are outfitted with pattern recognition receptors (PRRs), such as toll-

like receptors, in order to recognize pathogen-associated molecular patterns (PAMPs) or 

damage-associated molecular patterns (DAMPs) (Murphy & Weaver, 2016). Once activated, 

these PRRs then initiate transcription of chemokines and cytokines, small proteins that are 

crucial to an immune response and are triggered for release by bacteria. Chemokines act as 

chemoattractants to stimulate the migration of cells to the site of infection and activate 

phagocytic cells and lymphocytes while cytokines can affect the behavior of other cells (Murphy 

& Weaver, 2016). Detection of a pathogen via PRRs initiates a rapid recruitment of additional 
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innate immune cells that secrete cytokines and chemokines to alter the behavior of surrounding 

cells through signaling, attract additional immune cells to the site of infection, and induce 

inflammation (Murphy & Weaver, 2016). 

Following activation of the innate immune response, development of the adaptive 

antigen-specific memory immune response is reciprocated. This process can be mediated either 

humorally by B-lymphocytes (B-cells) or cellularly by T-lymphocytes (T-cells) (H.S. Lillehoj & 

Lillehoj, 2000). T-cell generation occurs in the thymus where subsets can gain functional identity 

by differentiating into either CD4+CD8- or CD4-CD8+ T-cells, whereas B-cell generation takes 

place in the bursa of Fabricius (Dalloul & Lillehoj, 2006). After differentiation in their respective 

primary lymphoid organ, B and T cells migrate to secondary lymphoid tissues like the spleen, 

lymph nodes, gut-associated lymphoid tissue (GALT), or mucosal-associated lymphoid tissue 

(MALT) (Dalloul & Lillehoj, 2006). Secondary lymphoid tissue acts as a hub for lymphocytes to 

congregate and await activation via antigen presentation cells, which stimulate the lymphocytes 

to differentiate even further into their effector cells.  

Antigen-presenting cells, like macrophages and dendritic cells, form the bridge between 

innate and adaptive immunity because they are able to detect, process, and present an antigen to 

lymphocytes (Murphy & Weaver, 2016). They reside in healthy peripheral tissues and migrate 

from the site of infection after detection of PAMPs or DAMPs to secondary lymphoid tissue via 

lymphatics to activate naïve lymphocytes that are then deployed to the site of infection. Mature 

CD4+CD8- (CD4) are known as helper T-cells and recognize antigens presented by major 

histocompatibility complex (MHC) class II molecules on the cell membranes of macrophages 

and dendritic cells and then signal to the cell to become activated (Murphy & Weaver, 2016). 

Likewise, mature CD4-CD8+ (CD8) are known as cytotoxic T-cells and recognize antigens 
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presented by MHC class I molecules and directly kill the infected cell. For B cell activation, B-

cell receptors on the cell membrane bind to antigens or peptides derived from endocytosed 

antigens presented on the cell membrane in affiliation with MHC class II molecules. Helper T-

cells also recognize these MHC class II molecules, bind to the B-cell, and then aid in binding 

CD40 (on B-cell) to CD40L (on helper T-cell). B-cell receptor bonding to antigens coupled with 

CD40 binding to CD40L activates the naïve B-cell to promote immunological memory, cytokine 

production by macrophages and dendritic cells, and immunoglobulin secretion (Schat et al., 

2013). 

Macrophages possess phagocytic and cytotoxic activity to clear pathogens as well as 

secrete cytokines, such as interleukin-1β (IL-1β) and interleukin-12 (IL-12), in order to initiate an 

immune response (Murphy & Weaver, 2016). The pro-inflammatory cytokine, IL-1β, is 

introduced into peripheral circulation by activated macrophages and elicits systemic metabolic, 

behavioral, and cellular changes (Klasing & Leshchinsky, 1999). Injection of recombinant rat IL-

1β was comparable in strength to administration of lipopolysaccharide when comparing 

reductions in body weight due to sickness-like behaviors (Dantzer et al., 1993). Secreted IL-12, 

or NK-cell stimulatory factor, activates NK cells, which are important in protecting the host from 

pathogens because they have the ability to induce cell lysis and secrete the cytokine interferon-

gamma (IFN-γ) (Murphy & Weaver, 2016). In turn, IFN-γ increases the expression of MHC 

class II antigens and activates lymphocytes and macrophages, thus serving as a mediator of 

acquired immunity (H.S. Lillehoj & Lillehoj, 2000). Interferon- γ is crucial in the control of 

infections induced by intracellular pathogens (Schat et al., 2013), like Eimeria, in addition to 

other parameters that will be detailed below. 
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Immune Response to Eimeria Infection 

 The immunogenicity of Eimeria is dependent on species, making protective immunity, 

once attained for a specific strain, extremely specific and long lasting, but offers little help in 

protection against other species of Eimeria (Yun & Lillehoj, 2000). Although immunity is 

species-specific, the chicken’s immune system exerts three inhibitory effects during three stages 

of the life cycle found in all Eimeria species. First, the avian immune system is able to detect an 

infection of parasites and works to inhibit invasion of intestinal epithelial cells (Jeurissen et al., 

1996). Second, it inhibits the interaction of parasites with intraepithelial lymphocytes embedded 

in the GIT. And lastly, it disassociates penetration of the lamina propria (Jeurissen et al., 1996). 

This suggests that chickens are not able to inhibit an invasion, but rather inhibit development of 

Eimeria. Susceptibility to Eimeria is heightened in young chicks (i.e., less than 14 days post-

hatch) lacking immunocompetence and this is especially pertinent for E. maxima, which is able 

to cause infection with a relatively small number of oocysts compared with other Eimeria species 

(Dalloul & Lillehoj, 2006; Yun & Lillehoj, 2000).  

 Due to its enteric nature, the majority of an Eimeria-induced immune response is 

compartmentalized to the GALT, including the intestinal mucosal layer, bursa of Fabricius, 

aggregates in the urodeum and proctodeum, Peyer’s patches, and cecal tonsils (Befus et al., 

1980). The GALT has three main functions during an enteric infection: process and present 

antigens, produce intestinal antibodies, such as IgA, and activate cell-mediated immunity 

(Dalloul & Lillehoj, 2005). Evidence suggests cell-mediation is the major factor driving an 

adaptive immune response during an Eimeria infection in broilers (Allen & Fetterer, 2002; Yun 

& Lillehoj, 2000). Further evidence solidifies this theory when bursectomized chicks were still 

able to develop protective immunity against coccidiosis, revealing that a cellular-mediated 
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response was likely the driving force for acquired immunity to Eimeria while the humoral 

immune response plays only a minor role (Long & Pierce, 1963). A cell-mediated response is 

characterized by antigen specific and non-specific activation to stimulate diverse cell populations 

including NK cells, macrophages, and T lymphocytes, with the latter two accounting for the 

majority of intestinal leukocytes during an Eimeria infection (Lillehoj & Trout, 1996; Vervelde 

et al., 1996).  

 The cell-mediated response to an Eimeria infection is demonstrated by secretion of 

various cytokines, and T helper cells differentiate based on the profile of cytokines they secrete. 

The dichotomy of helper T cells has not fully been established within chickens, but type I helper 

cells (TH1) govern phagocyte-dependent protective responses, and activate macrophages, in 

addition to secretion of pro-inflammatory cytokines like IFN-γ, interleukin-2 (IL-2), and tumor 

necrosis factor-α (TNF-α) (Romagnani, 1999; Erf, 2004). In contrast, type II helper cells (TH2) 

are responsible for phagocyte-independent protective responses and inhibition of macrophages, 

in addition to secretion of anti-inflammatory cytokines like interleukin-10 (IL-10), and 

interleukin-13 (IL-13), thus acting as a regulator of an immune response (Romagnani, 1999; Erf, 

2004). Evidence suggests that TH1 immune responses are dominant over TH2 immune responses 

during an Eimeria infection. The primary cytokine secreted during a TH1 response is IFN-γ, and 

is one of the immunological parameters that is indispensable for host protection from Eimeria in 

addition to lymphocytes (Chapman et al., 2013). Birds subjected to an E. acervulina challenge 

exhibited local expression of IFN-γ mRNA in the intestine (Choi et al., 1999). Splenic 

lymphocytes isolated from Eimeria-challenged birds also exhibited an elevated concentration of 

IFN-γ protein consequent to ex vivo mitogen stimulation (Martin et al., 1994). When birds were 

infected with E. acervulina and treated with injections of chicken-IFN-γ, birds that received 
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chicken-IFN-γ treatment lost less weight and recovered more quickly (Lowenthal et al., 1997). 

These studies demonstrate the reliance of IFN-γ-producing TH1 cells during Eimeria challenges 

and further attest to cell-mediated immune responses being the driving force for combatting an 

Eimeria infection.  

 Cytokines and chemokines also play a crucial role during the immune response to an 

Eimeria infection. Secretion of TNF-α, a pro-inflammatory cytokine, from splenic macrophages 

was significantly increased 3-6 days after Eimeria inoculation (Byrnes et al., 1993). Expression 

of IL-2, a potent growth factor cytokine for T-cell proliferation, was increased in spleen 

lymphoblasts following primary and secondary infections with E. acervulina. This increase in 

expression of IL-2 coincided with an increase in splenic γδ T-cells, suggesting favorable growth 

of T-cells via increased production of IL-2 following secondary infection with Eimeria (Choi & 

Lillehoj, 2000). Seven days following an E. tenella infection, RNA was isolated from cecal 

tissue and the chemokines K203 and macrophage inflammatory factor 1β were upregulated by 

200-fold and 80-fold, respectively (Laurent et al., 2001).  

An acute phase response (APR) is a non-specific innate immune response and is integral 

in early-defense against pathogens (Cray et al., 2009). An APR causes systemic disturbances in 

homeostasis such as anorexia, fever, and cytokine production, but most importantly, are the 

changes in plasma proteins called acute-phase proteins (APP) (Schat et al., 2013). Any protein 

whose plasma concentration is altered by 25% or more succeeding an inflammatory stimuli is 

classified as an APP and host defense APPs include C-reactive protein, mannan-binding lectin, 

and fibrinogen (Schat et al., 2013). Following an infection with Eimeria, acute-phase proteins in 

the serum were found to be altered using a proteomics approach (Gilbert et al., 2011). Georgieva 

et al. (2010) also saw a significant increase in APPs (fibrinogen and ceruloplasmin) following 
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inoculation with E. tenella. The relevance of APPs during an Eimeria infection may not be well 

understood, but stimulation of increased levels of APPs is evident and further research to 

pinpoint their role during an Eimeria-induced immune response is of importance.  

 

Health-related Feed Additives 

Importance 

 Antibiotics are utilized in a variety of ways in animal agriculture and the possible 

implication this has on human health has become a major concern in the past decade for both 

producers and consumers. The Food and Drug Administration’s Center for Veterinary Medicine 

approves the use of antibiotics in food animals for disease treatment, control, prevention, and 

nutritional efficiency (Institute, 2018). It is the latter of the four uses that has caused 

consternation amongst the food animal industry and has led to the implementation of new 

regulations on the use of antibiotics in food animal production. 

 The use of antibiotics to promote nutritional efficiency was first reported in 1946 when 

Moore and colleagues published evidence on the growth promoting effects of subtherapuetic 

levels (i.e., less than amount required) of sulfasuxidine, streptothricin, and streptomycin in the 

diets of chicks. Since then, antibiotics have been incorporated into the diets of livestock species 

as antibiotic growth promotors (AGPs) and are attributable to the economic effectiveness and 

sustainability of livestock production (Wierup, 2000). In an attempt to quantify the net effect of 

AGPs, Thomke & Elwinger (1998) proposed as much as a 3-4% increase in broiler growth 

performance may result from increased feed efficiency and weight gain when compared with 

broilers fed unsupplemented control diets. However, some of the antibiotics used at sub-

therapeutic levels in food animals as growth promotors are identical to the ones utilized in the 
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human health field, begging the question of whether antibiotic resistance in humans begins with 

animal agriculture (Cosby et al., 2015; Endtz et al., 1990; Gadde et al., 2017). Evidence of the 

transmission of resistance from animal to human was first observed when identical clones of E. 

coli isolates were present in fecal samples from both broilers and broiler farmers (van den 

Bogaard et al., 2001). Although evidence exists, the correlation between antimicrobial resistance 

in food animals and humans has never been clearly defined, leading to an ongoing discussion 

amongst scientists, government officials, and the public. 

Because of this, World Health Organization met in 1997 to determine whether the use of 

AGPs in animal agriculture had any impact on the escalation of antimicrobial resistance in 

humans (World Health Organization, 1997). Shortly thereafter, small groups of antibiotics being 

used as growth promotors in the Europe Union (EU) were banned, inevitably leading to their 

complete demise in January 2006, when AGP sale and marketing was prohibited entirely in the 

EU (Regulation No. 1831/2003) (European Commission, 2003).  

Following suit of the EU, the U.S. Food and Drug Administration took their first official 

regulatory step in December, 2013, by publishing Guidance for Industry #213, a non-binding 

recommendation that strongly encouraged animal drug sponsors to stop marketing antibiotics as 

growth promotors and that the remaining use of AGPs be brought under veterinarian supervision 

by December, 2016 (US Food and Drug Administration, 2013). Drugs that were once over-the-

counter and incorporated into the diets of food animals soon transitioned to requiring a veterinary 

feed directive as of January 1, 2017. Some of these drugs include aureomycin, penicillin, 

erythromycin, and sulfaquinoxaline (Administration, 2016). These changes essentially make it 

more difficult for a producer to incorporate AGPs into the diets of their animals, although they 

have not been officially banned in the U.S..  
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 The poultry industry has relied heavily on the use of anticoccidial drugs when trying to 

alleviate the detrimental effects of coccidiosis. The use of an anticoccidial drug was first 

documented by Levine (1939) when he investigated the drug sulfanilamide and its ability to 

inhibit coccidiosis. Anticoccidial drugs are a kind of antibiotic that specifically counteract 

Eimeria and are quantified based on their efficacy of coccidiostatic activity (Reid et al., 1969). 

Inevitably, after their discovery, a shift in the susceptibility of an anticoccidial drug to mitigate 

coccidiosis was noted and an acquisition of resistance to all anticoccidial drugs has been 

demonstrated globally (Abbas et al., 2011).  

In the past, bacterial resistance to antimicrobial drugs was met with the development of 

novel classes of drugs or chemical alterations to existing drugs to circumvent antimicrobial drug 

resistance. Presently, there is no assurance that the development of novel drugs and chemical 

alterations will be able to keep up with the ability of bacterial pathogens to develop drug 

resistance (Gold & Moellering, 1996). Because of this, and the growing pressure from regulatory 

bodies and public concern, there exists a strong impetus to develop alternatives for antibiotics 

and anticoccidial drugs that do not allow for significant detriments in broiler growth 

performance. 

Alternatives to antibiotics and anticoccidial drugs: Phytogenic compounds 

 The Animal Health Institute in 1998 estimated that the U.S. would require an additional 

452 million chickens, 23 million more cattle, and 12 million more pigs in order to maintain the 

present level of animal production without the use of growth promoting antibiotics (Hughes & 

Heritage, 2004). In addition, the National Chicken Council reported that chicken consumption 

per capita has increased nearly every year since the mid 1960’s, and Americans, in particular, 

purchase more chicken than any other meat source (Council, 2017). These two powerful 
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statistics demonstrate the pressure the poultry industry is under to keep up with the ever-growing 

demands of consumers for poultry, while shifting to an unavoidable antibiotic-free era. Due to an 

increase in resistance to anticoccidial drugs and also because of increased public concern about 

the increase in antibiotic resistance to microorganisms, evidence of nutritional alternatives, 

specifically phytogenic compounds, to combat coccidiosis is becoming more relevant. 

Numerous alternatives have been introduced to the poultry industry that strive to maintain 

optimal growth performance while promoting overall bird health. Some of the class of 

alternatives include probiotics, prebiotics, synbiotics, organic acids, enzymes, hyper immune egg 

yolk antibodies, clays, bacteriophages, and lastly, phytogenic compounds (Gadde et al., 2017). 

Feed International conducted a world-wide nutrition and feed survey to investigate how poultry 

farmers are formulating their poultry diets for antibiotic-free production. Thirty-five percent of 

respondents reported using phytogenic compounds/essential oils as alternatives for AGPs in their 

feed formulations (Roembke, 2016).  

Phytogenic compounds are a group of non-antibiotic feed additives of plant origin that 

are incorporated into animal feed and are available in the form of solids, extracts, or essential oils 

(Yitbarek, 2015). When compared with inorganic chemicals and synthetic antibiotics, it has been 

suggested that phytogenic compounds are natural and less toxic additives that possess 

antimicrobial and antifungal properties (Yitbarek, 2015). The efficacy of a phytogenic compound 

varies greatly depending on plant parts used (e.g., seed, root, flowers, buds, and bark), 

geographical origin of the source plant, and harvest season (Muthusamy & Sankar, 2015). Other 

potential factors can affect the overall bioactivity of a phytogenic compound such as extraction 

method (Handa et al. , 2008), housing conditions (Pirgozliev et al., 2014), and synergistic effects 

when combining compounds (Yang et al., 2015). Classes of phytogenic compounds include 
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alkaloids, glycosides, flavonoids, phenolics, saponins, tannins, terpenes, anthraquinones, 

essential oils, and steroids (Doughari, 2012).  

Plants that possess an array of phytogenic compounds have been utilized as potential 

alternatives to anticoccidial drugs in order to ameliorate the effects of coccidiosis in chickens. 

Coccidiosis was alleviated in chickens when extracts from Sophora flavescnes, Oregeno, and 

Astragulus membranaceus were used (Applegate, 2009). Dried Artemesia annua, a plant that 

contains phytogenic compounds like flavonoids and saponins (Kumar Ashok & Upadhyaya, 

2013), when incorporated into the diet at a 5% inclusion rate over a three week period, reduced 

E. tenella-induced cecal lesions (Allen et al., 1997). An extract derived from the herb U. 

macrocarpa increased survival rate and decreased lesion scores in Eimeria challenged birds 

(Youn & Noh, 2001). Saponins are one class of phytogenic compounds that are of plant origin 

and may prove to be beneficial in terms of mitigating coccidiosis in chickens. 

Saponins 

 Dietary intervention as an alternative to antibiotics and anticoccidial drugs is gaining 

interest, specifically plant extracts that contain powerful secondary metabolites, or 

phytochemicals. One such phytochemical, saponin, has been suggested as an alternative strategy 

for controlling effects of coccidiosis (Galli et al., 2018). Saponins are naturally occurring steroids 

or surface-active triterpenoid glycosides whose name is derived from the ability of a saponin to 

form stable, soap-like foams in aqueous solutions, thus making them strong surfactants (Francis 

et al., 2002). A majority of saponins are produced by plants, but they can also originate from 

lower marine organisms (Riguera, 1996). Desert plants are abundant in saponins; the two most 

common commercial sources are the Mexican desert derived Yucca schidigera and the Chile 

derived Quillaja saponaria (Cheeke, 2000). Saponins are also found in wild plants and have 
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been detected in soybeans, beans, peas, horse chestnut, oats, and ginseng (Francis et al., 2002). 

Structurally, a saponin consists of a lipophilic nucleus, either steroid or triterpenoid in structure 

depending on plant origin, with one or more water-soluble carbohydrate side chains (Cheeke, 

2000). The classification of a saponin is dependent on nucleus structure, thus classifying the 

Yucca schidigera derived saponins as steroidal and the Quillaja saponaria derived saponins as 

triterpenoidal (Francis et al., 2002). Isolation of saponins has proven rather difficult due to their 

particular polar, amphiphilic nature that allows them to occur as complex mixtures with other 

similar surrounding secondary metabolites and the absence of a chromophore imposes further 

hindrance (Marston et al., 2000). Bark and wood from Quillaja saponaria must be subjected to 

boiling, condensation, and evaporation techniques, whereas the trunk of Yucca schidigera must 

be subjected to maceration and evaporation techniques for isolation of saponins (Cheeke, 2000). 

Although isolation of saponins is difficult, recent technologic advancements and modernization 

of techniques have allowed for nearly complete isolation of saponins via chromatographic 

techniques, like high-performance liquid chromatography, within reasonable quantities for an 

overall quality control test of a product (Marston et al., 2000).  

 The unique chemical structure of a saponin enables it to have different biological effects 

on animal health. Saponins extracted from Yucca schidigera have proven to be especially 

beneficial for controlling ammonia and odor emissions in animal rearing facilities. This is 

especially pertinent to poultry rearing facilities because chickens excrete uric acid, a compound 

that can be converted to ammonia, as the principal nitrogenous constituent of their excreta due to 

their lack of complete urea cycling (Stevens, 1996). Birds fed a diet containing 120 mg of Yucca 

schidigera/kg of diet significantly decreased the ammonia concentration measured in broiler 

houses (Çabuk et al., 2004). The exact mode of action by which saponins reduce ammonia 
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emissions is poorly understood, but Makkar et al. (1999) demonstrated that Yucca schidigera 

was more effective than Quillaja saponaria in binding to and therefore reducing concentrations 

of ammonia. Duffy and colleagues (2001) suggested that both the non-butanol-extractable 

fraction (i.e., mainly non-saponin carbohydrates) and the butanol-extractable fraction (i.e., 

saponins) of Yucca extract are attributable for nitrogen-metabolism, indicating that the active 

constituents are present in both fractions and working collectively, rather than one or the other.  

In addition to their odor controlling capability, saponins also possess antiprotozoal and 

antibacterial activities due to their ability to disrupt cellular membranes (Cheeke et al., 2006). 

Saponins exhibit lytic action on protozoal cell membranes, but the exact molecular mechanisms 

for doing so are poorly understood. Probable modes of action for saponins and their ability to 

modify membrane function include the formation of insoluble saponin-cholesterol complexes 

with protozoal cells, formation of phospholipid breakdown products, and alterations in the 

organization of sarcolemma membrane phospholipids, all of which can modify protozoal 

membrane structure and function leading to eventual cell lysis (Francis et al., 2002). Protozoal 

diseases that undergo a large majority of their life cycle in the gastrointestinal tract act in 

response to the antiprotozoal activity of saponins (Cheeke et al., 2006). The target membrane and 

orientation of a saponin can also affect the efficacy of its ability to disrupt the membrane 

interaction (Francis et al., 2002). Steroidal saponins, like the ones found in Yucca schidigera, 

have been shown to exhibit antibacterial and antiprotozoal effects in ruminal microorganisms 

(Wallace et al., 1994). A powdered preparation of Yucca schidigera was effective in killing 

tropozoites from Giardiaintestinalis, a common protozoal intestinal pathogen similar in nature to 

that of Eimeria (McAllister et al., 2001). Addition of Yucca extract at 350 ppm enhanced a 

protective effect against coccidiosis for its ability to decrease the presence of oocysts in excreta 
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(Galli et al., 2018). Guar meal, a high protein by-product of galactomannan gum, is saponin-rich 

(5-13% by weight of dry matter) and when included at a dietary concentration of 5%, reduced 

the number of oocysts per gram in excreta when broilers were challenged with E. tenella (Hassan 

et al., 2008). These results demonstrate the antiprotozoal activity of saponins and their ability to 

inhibit the growth of coccidiosis as seen by a decrease in oocyst shedding following an Eimeria 

challenge.  

Studies indicate that saponins may also improve nutrient digestibility. Johnson et al. 

(1986) established in vitro that saponins, both triterpenoid and steroidal, readily increased 

permeability of the mucosal small intestine cells. This was established by showing inhibition of 

active transport through a carrier-mediated galactose transporter, which in turn impeded uptake 

of nutrients that the small intestine was otherwise impermeable by simultaneously increasing the 

uptake of passively transported L-isomer glucose. An increase in nutrient absorption has the 

potential to improve growth performance through increases in feed efficiency. When 

incorporated in broiler diets at 100 mg/kg, Yucca schidgera extract increased average daily gain 

and feed efficiency in broilers during the finisher phase (d 29 to d 42) (Sun et al., 2017). Sahoo et 

al. (2015) also reported an improvement in the feed conversion ratio of broilers when 

supplemented with 125 mg/kg of diet of a Yucca supplement, in addition to a decrease in 

agonistic behavior like pecking and avoidance of other birds. In contrast, saponins have the 

ability to interact with protein in the diet and decrease digestibility, dependent on protein source. 

When Quillaja-derived saponins were fed to gerbils in conjunction with two different protein 

sources, casein and isolated soy protein, serum cholesterol concentrations were decreased by 

32% in casein-fed gerbils. These results suggest that Quillaja-derived saponins can modify blood 

lipids in the presence of casein by altering digestion of proteins, resulting in a slower release of 
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protein when compared to ingestion of these protein sources alone (Potter et al., 1993). 

Therefore, protein source should be taken into consideration when formulating a diet that 

incorporates saponins. If used to their potential, saponins may prove to be a natural alternative to 

antibiotics and anticoccidial drugs due to their antiprotozoal activity and ability to enhance 

nutrient absorption and growth in broilers.  

Due to limitations of current strategies to control coccidiosis, and because there are 

significant economic losses due to decreased body weight gain and feed efficiency in affected 

animals, identifying immunomodulating compounds to limit coccidiosis and improve 

performance in poultry is of great value. Collectively, the use of dietary saponins may serve as 

an effective strategy in mitigating the resulting inflammatory response following exposure to 

Eimeria in broilers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 
 

Literature Cited 

Abbas, R. Z., Iqbal, Z., Blake, D., Khan, M. N., & Saleemi, M. K. (2011). Anticoccidial drug 

resistance in fowl coccidia: The state of play revisited. World’s Poultry Science Journal, 

67(2), 337–349.  

Administration, U. S. F. & D. (2016). FDA Reminds Retail Establishments of Upcoming 

Changes to the Use of Antibiotics in Food Animals. Retrieved August 20, 2002, from 

https://www.fda.gov/AnimalVeterinary/NewsEvents/CVMUpdates/ucm507355.htm  

Allen, P. C., & Fetterer, R. H. (2002). Recent Advances in Biology and Immunobiology of 

Eimeria Species and in Diagnosis and Control of Infection with These Coccidian 

Parasites of Poultry. Clinical Microbiology Reviews, 15(1), 58–65.  

Allen, P. C., Lydon, J., & Danforth, H. D. (1997). Effects of Artemisia absinthium on coccidia 

infections in chickens. Poultry Science, 76, 1156–1163.  

Applegate, T. (2009). Influence of phytogenics on the immunity of livestock and poultry. In T. 

Steiner (Ed.), Phytogenics in Animal Nutrition: Natural Concepts to Optimize Gut Health 

and Performance (pp. 39–59). Nottingham University Press.  

Austic, R. E., & Nesheim, M. C. (1990). Diseases and Parasites. In Poultry Production (13th ed., 

pp. 229–258). Lea & Febiger.  

Befus, A. D., Johnston, N., Leslie, G. A., & Bienenstock, J. (1980). Gut-associated lymphoid 

tissue in the chicken. Journal of Immunology, 125(6), 2626–32.  

Byrnes, S., Eaton, R., & Kogut, M. (1993). In vitro interleukin-1 and tumor necrosis factor-alpha 

production by macrophages from chickens infected with either Eimeria maxima or 

Eimeria tenella. International Journal for Parasitology, 23(5), 639–645.  

Çabuk, M., Alçiçek, A., Bozkurt, M., & Akkan, S. (2004). Effect of Yucca schidigera and 

natural zeolite on broiler performance. International Journal of Poultry Science, 3(10), 

651–654.  

Chapman, H. D. (1998). Evaluation of the efficacy of anticoccidial drugs against Eimeria species 

in the fowl. International Journal for Parasitology, 28(7), 1141–1144.  

Chapman, H. D. (2001). Use of anticoccidial drugs in broiler chickens in the USA: Analysis for 

the years 1995 to 1999. Poultry Science, 80(5), 572–580.  

Chapman, H. D. (2014). Milestones in avian coccidiosis research: A review. Poultry Science, 93, 

501–511.  

Chapman, H. D., Barta, J. R., Blake, D., Gruber, A., Jenkins, M., Smith, N. C., Suo, X., Tomley, 

F. M. (2013). A selective review of advances in coccidiosis research. Advances in 

Parasitology, 83, 93–171. 



 

28 
 

Cheeke, P. R. (2000). Actual and Potential Applications of Yucca Schidigera and Quillaja 

Saponaria Saponins in Human and Animal Nutrition. Saponins in Food, Feedstuffs and 

Medicinal Plants.  

Cheeke, P. R., Piacente, S., & Oleszek, W. (2006). Anti-inflammatory and anti-arthritic effects 

of yucca schidigera: A review. Journal of Inflammation, 3, 6.  

Choi, K. D., & Lillehoj, H. S. (2000). Role of chicken IL-2 on γδ T-cells and Eimeria 

acervulina-induced changes in intestinal IL-2 mRNA expression and γδ T-cells. 

Veterinary Immunology and Immunopathology, 73(3–4), 309–321.  

Choi, K. D., Lillehoj, H. S., & Zalenga, D. S. (1999). Changes in local IFN-γ and TGF-β4 

mRNA expression and intraepithelial lymphocytes following Eimeria acervulina 

infection. Veterinary Immunology and Immunopathology.  

Cosby, D. E., Cox, N. A., Harrison, M. A., Wilson, J. L., Buhr, R. J., & Fedorka-Cray, P. J. 

(2015). Salmonella and antimicrobial resistance in broilers: A review. The Journal of 

Applied Poultry Research, 24, 408–426.  

Council, N. C. (2017). Per Capita Consumption of Poultry and Livestock, 1965 to Estimated 

2018, in Pounds. Retrieved from http://www.nationalchickencouncil.org/about-the-

industry/statistics/per-capita-consumption-of-poultry-and-livestock-1965-to-estimated-

2012-in-pounds/  

Cray, C., Zaias, J., & Altman, N. H. (2009). Acute phase response in animals: A review. 

Comparative Medicine, 59(6), 517–526.  

Cuckler, A. C., Malanga, C. M., Basso, A. J., & O’Neill, R. C. (1955). Antiparasitic Activity of 

Substituted Carbanilide Complexes. Science, 122, 244–245.  

Dalloul, R. A., & Lillehoj, H. S. (2005). Recent Advances in Immunomodulation and 

Vaccination Strategies Against Coccidiosis. Avian Diseases, 49(1), 1–8.  

Dalloul, R. A., & Lillehoj, H. S. (2006). Poultry coccidiosis: recent advancements in control 

measures and vaccine development. Expert Rev Vaccines, 5(1), 143–163.  

Dantzer, R., Bluthe, R. M., Kent, S., & Goodall, G. (1993). Behavioral Effects of Cytokines: An 

Insight into Mechanisms of Sickness Behavior. In Methods in Neurosciences (Vol. 17,pp. 

130–150). ACADEMIC PRESS, INC.  

Doughari, J. H. (2012). Phytochemicals: extraction methods, basic structures and mode of action 

as potential chemotherapeutic agents. In Phytochemicals - A Global Perspective of Their 

Role in Nutrition and Health (pp. 1–31). 

Duffy, C. F., Killeen, G. F., Connolly, C. D., & Power, R. F. (2001). Effects of dietary 

supplementation with Yucca schidigera Roezl ex Ortgies and its saponin and non-saponin 

fractions on rat metabolism. Journal of Agricultural and Food Chemistry, 49(7), 3408–

3413.  



 

29 
 

Endtz, H. P., Mouton, R. P., Van Der Reyden, T., Ruijs, G. J., Biever, M., & Van Klingeren, B. 

(1990). Fluoroquinolone resistance in Campylobacter spp isolated from human stools and 

poultry products. The Lancet, 335, 787.  

Erf, G. F. (2004). Cell-mediated immunity in poultry. Poultry Science, 83(4), 580–590.  

 

European Commission. (2003). Regulation (EC) No 1831/2003 of the European Parliament and 

of the council on additives for use in animal nutrition. Official Journal of the European 

Communities, L 269(2000), 1–15.  

Farr, M. M., & Wehr, E. E. (1949). Survival of Eimeria Acervulina, E. Tenella, and E. Maxima 

Oocysts on Soil Under Various Field Conditions. Annals of the New York Academy of 

Sciences, 52(4), 468–472.  

Fayer, R. (1980). Epidemiology of protozoan infections: The coccidia. Veterinary Parasitology.  

Francis, G., Kerem, Z., Makkar, H. P. S., & Becker, K. (2002). The biological action of saponins 

in animal systems: a review. British Journal of Nutrition, 88, 587–605.  

Gadde, U., Kim, W. H., Oh, S. T., & Lillehoj, H. S. (2017). Alternatives to antibiotics for 

maximizing growth performance and feed efficiency in poultry: a review. Animal Health 

Research Reviews, (May), 1–20.  

Galli, G. M., Da Silva, A. S., Bottari, N. B., Biazus, A. H., Petrolli, T., Reis, J. H., Morsch, Vera, 

M., Schetinger, M. R. C., Piva, M. M., Baggio, R. A., Mendes, R. E., Boiago, M. M., 

Stefani, L. M., and Machado, G. (2018). Addition of yucca extract and glutamine in the 

diet of chicks had a protective effect against coccidiosis. Comparative Clinical 

Pathology, 27(1), 205–214.  

 

Georgieva, T. M., Koinarski, V. N., Urumova, V. S., Marutsov, P. D., Christov, T. T., & 

Nikolov, J. (2010). Effects of Escherichia coli infection and Eimeria tenella invasion on 

blood concentrations of some positive acute phase proteins (haptoglobin ( PIT 54 ), 

fibrinogen and ceru-loplasmin ) in chickens. Revue de Medecine Veterinaire, 161(2), 84–

89.  

Gilbert, E. R., Cox, C. M., Williams, P. M., McElroy, A. P., Dalloul, R. A., Keith Ray, W., Barri, 

A., Emmerson, D. A., Wong, E. A., and Webb, K. E. (2011). Eimeria species and genetic 

background influence the serum protein profile of broilers with coccidiosis. PLoS ONE, 

6(1).  

Gold, H. S., & Moellering, R. C. J. (1996). Antimicrobial-drug resistance. The New England 

Journal of Medicine, 335(19), 1445–1453.  

Grumbles, L. C., Delaplane, J. P., & Higgins, T. C. (1948). Continuous Feeding of Low 

Concentrations of Sulfaquinoxaline for the Control of Coccidiosis in Poultry. Poultry 

Science, 27(5), 605–608. 



 

30 
 

Handa, S. S. (2008). An Overview of Extraction Techniques for Medicinal and Aromatic Plants. 

In Extraction Technologies for Medicinal and Aromatic Plants (pp. 21–52).  

Hassan, S. M., El-Gayar, A. K., Cadwell, D. J., Bailey, C. A., & Cartwright, A. L. (2008). Guar 

meal ameliorates Eimeria tenella infection in broiler chicks. Veterinary Parasitology, 

157, 133–138.  

Hughes, P., & Heritage, J. (2004). Antibiotic growth-promoters in food animals. In Assessing 

Quality and Safety of Animal Feeds (pp. 129–152).  

Institute, A. H. (2018). Antibiotics in livestock: frequently asked questions. Retrieved August 20, 

2002, from https://ahi.org/issues-advocacy/animal-antibiotics/antibiotics-in-livestock-

frequently-asked-questions/#01  

Jeurissen, S. H. M., Janse, E. M., Vermeiden, A. N., & Verveide, L. (1996). Eimeria tenella 

infections in chickens: Aspects of host-parasite: Interaction. Veterinary Immunology and 

Immunopathology, 54(1–4), 231–238.  

Johnson, I. T., Gee, J. M., Price, K., Curl, C., & Fenwick, G. R. (1986). Influence of saponins on 

gut permeability and active nutrient transport in vitro. The Journal of Nutrition, 116(11), 

2270–7.  

Johnson, J., & Reid, W. M. (1970). Anticoccidial drugs: Lesion scoring techniques in battery and 

floor-pen experiments with chickens. Experimental Parasitology, 28(1), 30–36.  

Johnson, W. T. (1923). Avian coccidiosis. Poultry Science, 2, 146–163.  

Kant, V., Singh, P., Verma, P. K., Bais, I., Parmar, M. S., Gopal, A., & Gupta, V. (2013). 

Anticoccidial Drugs Used in the Poultry: An Overview. Science International, 1(7), 261–

265.  

Kipper, M., Andretta, I., Lehnen, C. R., Lovatto, P. A., & Monteiro, S. G. (2013). Meta-analysis 

of the performance variation in broilers experimentally challenged by Eimeria spp. 

Veterinary Parasitology, 196, 77–84.  

Klasing, K. C., & Leshchinsky, T. V. (1999). Functions, costs, and benefits of the immune 

system during development and growth. In N. J. Adams & R. H. Slotow (Eds.), Proc. 22 

Int. Ornithol. Congress (pp. 2817–2835). Johannesburg: BirdLife South Africa. 

Kumar Ashok, P., & Upadhyaya, K. (2013). Preliminary Phytochemical Screening and Physico-

Chemical Parameters of Artemisia absinthium and Artemisia annua. Journal of 

Pharmacognosy and Phytochemistry, 1(6), 229–235.  

Laurent, F., Mancassola, R., Lacroix, S., Naciri, M., & Menezes, R. (2001). Analysis of Chicken 

Mucosal Immune Response to Eimeria tenella and Eimeria maxima Infection by 

Quantitative Reverse Transcription-PCR. Infection and Immunity, 69(4), 2527–2534.  



 

31 
 

Levine, P. P. (1939). The effect of sulfanilamide on the course of experimental avian coccidiosis. 

Cornell Vet., 29, 309–320.  

Lillehoj, H. S., & Lillehoj, E. P. (2000). Avian coccidiosis. A review of acquired intestinal 

immunity and vaccination strategies. Avian Diseases, 44(2), 408–425.  

Lillehoj, H. S., & Trout, J. M. (1996). Avian gut-associated lymphoid tissues and intestinal 

immune responses to Eimeria parasites. Clinical Microbiology Reviews, 9(3), 349–360.  

Long, P. L., & Pierce, A. E. (1963). Role of cellular factors in the mediation of immunity to 

avian coccidiosis (Eimeria Tenella). Nature, 200, 426–427.  

Lowenthal, J. W., York, J. J., O’Neil, T. E., Rhodes, S., Prowse, S. J., Strom, D. G., & Digby, M. 

R. (1997). In vivo effects of chicken interferon-gamma during infection with Eimeria. 

Journal of Interferon & Cytokine Research, 17(9), 551–558.  

Makkar, H. P. S., Aregheore, E. M., & Becker, K. (1999). Effect of saponins and plant extracts 

containing saponins on the recovery of ammonia during urea-ammoniation of wheat 

straw and fermentation kinetics of the treated straw. Journal of Agricultural Science, 

132(3), 313–321.  

Marston, A., Wolfender, J.-L., & Hostettmann, K. (2000). Analysis and Isolation of Saponins 

from Plant Material. In Proceedings of the Phytochemical Society of Europe (pp. 1–12).  

Martin, A., Lillehoj, H. S., Kaspers, B., & Bacon, L. D. (1994). Mitogen-induced lymphocyte 

proliferation and interferon production following coccidia infection. Avian Diseases, 

38(2), 262–268.  

McAllister, T. A., Annett, C. B., Cockwill, C. L., Olson, M. E., Wang, Y., & Cheeke, P. R. 

(2001). Studies on the use of Yucca schidigera to control giardiosis. Veterinary 

Parasitology, 97(2), 85–99.  

McDougald, L. R. (1998). Intestinal Protozoa Important to Poultry. Poultry Science, 77(1), 

1156–1158.  

McDougald, L. R., & Fitz-Coy, S. H. (2008). Protozoal Infections. In Diseases of Poultry (pp. 

1067–1084).  

Mcdougald, L. R., Fuller, L., & Solisa, J. (1986). Drug-Sensitivity of 99 Isolates of Coccidia 

from Broiler Farms. Avian Diseases, 30(4), 690–694.   

McDougald, L. R., & McQuistion, T. E. (1980). Compensatory growth in broilers after 

withdrawal of ionophorous anticoccidial drugs. Poultry Science, 59(5), 1001–1005.  

Moore, B. P. R., Evenson, A., Luckey, T. D., McCoy, E., Elvehjem, C. A., & Hart, E. B. (1946). 

Use of sulfasuxidine, streptothricin, and streptomycin in nutritional studies with the 

chick. Journal of Biological Chemistry, 165(2), 437–41.  



 

32 
 

Murphy, K., & Weaver, C. (2016). Janeway’s Immunobiology (9th ed.).  

Muthusamy, N., & Sankar, V. (2015). Phytogenic compounds used as feed additives in poultry 

production. International Journal of Science, Environment and Technology, 4(1), 167–

171.  

Pirgozliev, V., Bravo, D., & Rose, S. P. (2014). Rearing conditions influence nutrient availability 

of plant extracts supplemented diets when fed to broiler chickens. Journal of Animal 

Physiology and Animal Nutrition, 98(4), 667–671.  

Potter, S. M., Jimenez-Flores, R., Pollack, J. A., Lone, T. A., & Berber-Jimenez, M. D. (1993). 

Protein-Saponin Interaction and Its Influence on Blood Lipids. Journal of Agricultural 

and Food Chemistry, 41(8), 1287–1291.  

Preston-Mafham, R. A., & Sykes, A. H. (1970). Changes in body weight and intestinal 

absorption during infections with Eimeria acervulina in the chicken. Parasitology, 61(3), 

417–424.  

Reid, W. M., Taylor, E. M., & Johnson, J. (1969). A technique for demonstration of 

coccidiostatic activity of anticoccidial agents. Transactions of the American 

Microscopical Society, 88(1), 148–159.  

Riguera, R. (1996). Isolating bioactive compounds from marine organisms. Journal of Marine 

Biotechnology, 5, 187–193.  

Roembke, J. (2016). Feed International. 2016 Nutrition & Feed Survey, 4–12.  

Romagnani, S. (1999). Th1/Th2 Cells. Inflammatory Bowel Disease, 5(4), 285–294.  

Ruff, M. D., & Fuller, H. L. (1975). Some mechanisms of reduction of carotenoid levels in 

chickens infected with Eimeria acervulina or E. tenella. The Journal of Nutrition, 

105(11), 1447–1456.  

Russell, J., & Ruff, M. D. (1978). Eimeria Spp.: Influence of coccidia on digestion (amylolytic 

activity) in broiler chickens. Experimental Parasitology, 45(2), 234–240.  

Sahoo, S. P., Kaur, D., Sethi, A. P. S., Sharma, A., & Chandra, M. (2015). Evaluation of Yucca 

schidigera extract as feed additive on performance of broiler chicks in winter season. 

Veterinary World, 8(4), 556–560. 

Schat, K. A., Kaspers, B., & Kaiser, P. (2013). Avian Immunology: Second Edition. Elsevier Ltd.  

Stevens, L. (1996). Protein and amino acid metabolism. In Avian Biochemistry and Molecular 

Biology (pp. 65–81).  

Sun, D., Jin, X., Shi, B., Su, J., Tong, M., & Yan, S. (2017). Dietary Yucca schidigera extract 

improved growth performance and liver antioxidative function in broilers. Italian Journal 

of Animal Science, 16(4), 677–684.  



 

33 
 

Sundar, S. T. B., Harikrishnan, T. J., Latha, B. R., Sarath, G., & Kumar, T. M. A. S. (2017). 

Anticoccidial drug resistance in chicken coccidiosis and promising solutions: A review. 

Journal of Entomology and Zoology Studies, 5(4), 1526–1529.  

Thomke, S., & Elwinger, K. (1998). Growth promotants in feeding pigs and poultry. I. Growth 

and feed efficiency responses to antibiotic growth promotants. Annales de Zootechnie, 

47(2), 85–97.  

Turk, D. E., & Stephens, J. F. (1967). Upper intestinal tract infection produced by E. acervulina 

and absorption of 65Zn and 131I-labeled oleic acid1,2. The Journal of Nutrition, 93(2), 161–

165.  

US Food and Drug Administration. (2013). Guidance for Industry #213 New Animal Drugs and 

New Animal Drug Combination Products Administered in or on Medicated Feed or 

Drinking Water of Food- Producing Animals: Recommendations for Drug Sponsors for 

Voluntarily Aligning Product Use Conditions with GFI #209. Federal Register.  

van den Bogaard, A. E., London, N., Driessen, C., & Stobberingh, E. E. (2001). Antibiotic 

resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. 

Journal of Antimicrobial Chemotherapy, 47(6), 763–771.  

Van Immerseel, F., De Buck, J., Pasmans, F., Huyghebaert, G., Haesebrouck, F., & Ducatelle, R. 

(2004). Clostridium perfringens in poultry: An emerging threat for animal and public 

health. Avian Pathology, 33(6), 537–549.  

Vervelde, L., Vermeulen, A. N., & Jeurissen, S. H. M. (1996). In situ characterization of 

leucocyte subpopulations after infection with Eimeria tenella in chickens. Parasite 

Immunology, 18, 247–256.  

Wallace, R. J., Arthaud, L., & Newbold, C. J. (1994). Influence of Yucca shidigera extract on 

ruminal ammonia concentrations and ruminal microorganisms. Applied and 

Environmental Microbiology, 60(6), 1762–1767.  

Wierup, M. (2000). The control of microbial diseases in animals: Alternatives to the use of 

antibiotics. International Journal of Antimicrobial Agents, 14(4), 315–319. 

Williams, R. B. (1998). Epidemiological aspects of the use of live anticoccidial vaccines for 

chickens. International Journal for Parasitology, 28(7), 1089–1098.  

Williams, R. B. (1999). A compartmentalised model for the estimation of the cost of coccidiosis 

to the world’s chicken production industry. International Journal for Parasitology, 29, 

1209–1229.  

Williams, R. B. (2001). Quantification of the crowding effect during infections with the seven 

Eimeria species of the domesticated fowl: Its importance for experimental designs and 

the production of oocyst stocks. International Journal for Parasitology, 31(10), 1056–

1069.  



 

34 
 

Williams, R. B. (2002). Anticoccidial vaccines for broiler chickens: Pathways to success. Avian 

Pathology, 31(4), 317–353.  

World Health Organization. Division of Emerging and other Communicable Diseases 

Surveillance and Control. (1997). The Medical impact of the use of antimicrobials in 

food animals: report of a WHO meeting, Berlin, Germany, 13-17 October 1997. Geneva: 

World Health Organization, (October).  

Yang, C., Chowdhury, M. A., Huo, Y., & Gong, J. (2015). Phytogenic Compounds as 

Alternatives to In-Feed Antibiotics: Potentials and Challenges in Application. Pathogens, 

4(1), 137–156.  

Yitbarek, M. B. (2015). Phytogenics As Feed Additives In Poultry Production: A Review. 

International J Ext Res, 3, 49–60.  

Youn, H. J., & Noh, J. W. (2001). Screening of the anticoccidial effects of herb extracts against 

Eimeria tenella. Veterinary Parasitology, 96(4), 257–263.  

Yun, C. H., H. S. Lillehoj, and E. P. L. (2000). Intestinal immune responses to coccidiosis. 

Developmental & Comparative Immunology, 24(2), 303–324. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  



 

35 
 

CHAPTER 3: EFFECTS OF YUCCA-DERIVED SAPONIN SUPPLEMENTATION 

DURING A MIXED EIMERIA CHALLENGE IN BROILERS 

Abstract  
 

An experiment was conducted to determine if dietary Yucca-derived saponin 

supplementation could ameliorate the immune and growth responses of broilers during a mixed 

coccidian challenge. A total of 576 two-day-old male Ross 308 broiler chicks were housed in 

galvanized starter batteries and randomly assigned to 1 of 4 dietary treatment groups (12 

replicate cages of 7 birds). Dietary treatments were corn-soybean meal-based and included: 1) 

control diet + sham-inoculated (Ucon), 2) control diet + Eimeria oocyst challenge (Icon), 3) 

control diet with 250 mg/kg Yucca-derived saponin product + Eimeria oocyst challenge 

(ISap250), and 4) control diet with 500 mg/kg of Yucca-derived saponin product + Eimeria 

oocyst challenge (ISap500). On study d 14, birds were orally inoculated with 1.5 ml of tap water 

containing E. acervulina, E. maxima, and E. tenella (100,000, 40,000, and 30,000 oocysts/dose, 

respectively), or sham-inoculated with 1.5 ml of tap water. Eimeria-challenged birds exhibited a 

reduction in growth compared with uninfected birds (P < 0.001); however, there were no 

detectable differences due to dietary treatment among Eimeria-challenged groups. Mucosal 

thickness in the jejunum was increased in all infected groups (P < 0.05), but there were no 

differences among infected groups, however, saponin supplementation included at 250 mg/kg 

was not significantly different from the uninfected birds. Lymphocytes as a percentage of total 

white blood cells were increased (P < 0.05) in all Eimeria-challenged groups at 7 days post 

inoculation compared with uninfected birds, but birds supplemented at 250 mg/kg were not 

different from uninfected birds. Saponin supplementation in conjunction with an Eimeria 

challenge had no effect on cecal-derived T-cell profiles (P > 0.05). Cecal and duodenal IFN-γ 

expression increased with infection when compared with sham-inoculated birds. Cecal and 
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duodenal IL-1β expression increased due to infection and ISap250 and ISap500 treatments 

ameliorated IL-1β expression to levels not different from sham-inoculated birds (P < 0.05). 

Interleukin-12 β expression increased in the duodenum of cocci-infected birds compared to 

uninfected birds (P < 0.05), but dietary treatments had no measureable effects. These results 

suggest that saponin supplementation may provide some immunomodulatory effects during a 

mixed coccidian challenge as evidenced by lymphocyte responses, changes in intestinal 

structure, and alterations in cecal and duodenal inflammatory cytokine mRNA expression. 

 

Introduction 

Avian coccidiosis is a major parasitic disease affecting the poultry industry resulting from 

intestinal parasitic infection by the protozoan species of genus Eimeria and is said to be found 

wherever chickens are raised (Williams, 1998). There are seven different species widely 

encountered within the poultry industry, but only E. acervulina, E. brunetti, E. maxima, E. 

necatrix, and E. tenella yield quantifiable gross lesions in varying spots along the gastrointestinal 

tract (GIT), the preferred site of habitation in broilers (Allen & Fetterer, 2002). Coccidiosis is 

manifested by a destruction of the intestinal epithelia and has the ability to initiate an immune 

response from the host, thereby leading to increased maintenance costs, decreased absorption of 

nutrients, and ultimately diminished animal growth (Preston-Mafham & Sykes, 1970). 

Coccidiosis is one of the most economically significant diseases for poultry producers worldwide 

due to its cost of control measures, prevalence in poultry rearing facilities, and subsequent 

consequences on growth performance parameters (Williams, 1999). 

 Because of the pathogenicity of Eimeria species, reproductive life cycle, and current 

management practices within the poultry industry, a variety of control measures have been 
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developed to mitigate the detrimental effects of coccidiosis. The poultry industry has 

successfully relied on the use of prophylactic chemotherapeutic agents, or anti-coccidial drugs, 

which can directly affect parasite metabolism, osmotic balance, and ion transport in the GIT of 

birds to make the intestinal environment less habitable (Chapman, 2001, 2014; McDougald, 

1998). However, due to an increase in resistance to anti-coccidial drugs (Abbas et al., 2011) and 

also because of increased public concern about the increase in antibiotic resistance 

microorganisms (Cosby et al., 2015), alternatives to combat coccidiosis in order to ameliorate the 

economic losses due to decreased growth performance in affected chickens has become of great 

importance. 

Numerous phytogenic compounds have been introduced to the poultry industry as 

alternatives that strive to maintain optimal growth performance while promoting overall bird 

health (Gadde et al., 2017). One such phytogenic compound, saponins, have been reported to 

improve nutrient digestibility (Johnson et al., 1986), growth performance (Sahoo et al., 2015; 

Sun et al., 2017), and odor control in broilers (Çabuk et al., 2004). Saponins are natural 

detergents that have the ability to bind to membrane cholesterol of protozoan cells leading to 

eventual cell lysis and cell death, giving rise to anti-protozoal properties as well (Francis et al., 

2002). Based on previous literature indicating that saponins have beneficial effects, the objective 

of the current study was to determine if dietary supplementation of Yucca-derived saponins could 

ameliorate the immune and growth responses of broilers during a mixed coccidian challenge. 

 

Materials and Methods 

All animal care and experimental procedures were approved by the University of Illinois 

Institutional Animal Care and Use Committee before initiation of the experiment. 
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Bird Husbandry  

Five hundred and seventy-six male Ross × Ross 308 broiler chicks were obtained 2 d 

post-hatch from a commercial hatchery and placed in thermostatically-controlled batteries with 

raised wire floors in an environmentally-controlled room with continuous lighting. Upon arrival, 

birds were weighed, wing-banded, and assigned randomly to 1 of 4 dietary treatment groups, and 

allotted to pens (99 cm x 34 cm) such that average initial group weights and weight distributions 

were similar across treatments. Each treatment was replicated with 12 battery cages (n=12) each 

containing a total of 12 chicks at study initiation. Birds were provided free access to water and 

experimental diets (Table 1) that met or exceeded requirements for this age of broilers (NRC, 

1994). All diets were corn-soybean meal based and saponin supplementation (Micro-Aid® Feed 

Grade Concentrate; DPI Global, Porterville, CA) was included on top of the formulation (i.e., no 

space reserved in the formulation) as having negligible nutritive contribution to the overall diet. 

The following diet names were assigned to the experimental treatment groups:1) control diet + 

sham-inoculated (Ucon), 2) control diet + Eimeria oocyst challenge (Icon), 3) control diet with 

250 mg/kg of Yucca-derived saponin product + Eimeria oocyst challenge (ISap250), and 4) 

control diet with 500 mg/kg of Yucca-derived saponin product + Eimeria oocyst challenge 

(ISap500). Bird and feeder weights were recorded on the day of arrival, and then bi-weekly until 

study completion for calculation of body weight gain, feed intake, and feed efficiency to assess 

growth performance. At 16 d of age (d 14 of study), birds were weighed and the number of birds 

in each pen was adjusted to leave 7 birds per cage for the inoculation period. The 5 birds that 

were chosen to be removed were chosen such that when the 12 birds were placed in order of 

descending weight, the lightest 3 birds and heaviest 2 birds were culled. One bird was selected 

from each replicate cage on days 14, 21, and 28 of study (0, 7, and 14 days post-inoculation 
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(DPI)) and humanely euthanized for sample collection. The bird chosen for sample collection 

was based on weight such that when the birds were placed in descending order by weight, the 

bird closest to the average weight was chosen. Mortality during the study was less than 8% and 

was unrelated to treatment. Feed efficiency and feed intake were corrected to include weight gain 

of birds that died during the trial. 

Proximate Analysis of Experimental Diets  

 A sample of each experimental diet was used to analyze the nutrient composition of each 

individual diet (Table 2). Diets were analyzed for dry matter (DM) (method 934.01, AOAC 

International, 2002) and organic matter, which was done by first determining percent ash 

(method 942.05, AOAC International, 2002) and subtracting that from 100. Crude fat was 

determined by using the traditional Soxhlet extraction method with diethyl ether (method 920.39, 

AOAC International, 2006) and crude protein was determined by measuring nitrogen using a 

Leco analyzer (TruMac N, Leco Corp., St. Joseph, MI) standardized with EDTA (method 

990.03, AOAC International, 2006). Fiber analysis was determined by quantifying neutral 

detergent fiber and acid detergent fiber (method 2002.04, 973.18, AOAC International, 2002). 

Gross energy was determined using an adiabatic bomb calorimeter (Parr 6200, Parr Instruments, 

Moline, IL) standardized with benzoic acid. 

Eimeria Challenge  

Three strains of Eimeria, acervulina, maxima, tenella, were originally obtained from the 

University of Arkansas, Fayetteville, AR (courtesy of Dr. David Chapman) and were maintained 

in our laboratory by periodic passage (every 3 to 5 months) through broiler chickens. Oocysts 

were isolated from excreta and allowed to sporulate in 2.5% K2Cr2O7 at 28°C under forced 

aeration before storage at 4°C. Immediately before inoculation, sporulated oocysts were washed 
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free of K2Cr2O7 and diluted with distilled water to desired concentrations. At 16 d of age (0 

DPI), birds were challenged orally with 1.5 ml of tap water containing a mixture of E. acervulina 

(100,000 oocysts per dose), E. maxima (40,000 oocysts per dose), and E. tenella (30,000 oocysts 

per dose) or sham-inoculated (unchallenged) with 1.5 ml of tap water orally. These inclusion 

levels of Eimeria oocysts were derived from a recent study conducted in the lab and served to 

induce a mild-to-moderate reduction in growth performance of the birds. Birds infected with 

Eimeria were housed in batteries separated from the unchallenged birds. After the coccidial 

challenge, all personnel were required to conduct procedures on unchallenged birds before 

working on the Eimeria-infected birds to maintain biosecurity. Infection was confirmed by 

oocyst counts of excreta samples collected from pans beneath each pen on days 7 and 14 DPI for 

oocysts per gram outcomes. On the day of collection, samples were homogenized, and Eimeria 

oocysts were enriched then diluted based on their infection status, and counted using a McMaster 

counting chamber (Chalex Corporation, Ketchum, ID).  

Histopathological Morphometries & Lesion Scoring 

At 14 DPI, independent sub-samples from the jejunum and the duodenum were collected 

from one bird in each pen. The bird chosen for sample collection was based on weight such that 

when the birds were placed in descending order by weight, the bird closest to the average weight 

was chosen. Immediately following sample collection of fresh tissue from the bird, the 

duodenum and jejunum were immersed in 10% neutral buffered formalin and sent to an external 

histopathology laboratory for morphometrical analysis by a board-certified histopathologist 

(Veterinary Diagnostic Pathology, LLC, Fort Valley, VA). Sections of tissue (2 mm) were 

trimmed from the submitted tissue, placed into cassettes, and prepared for paraffin-embedded 5 

μm sections stained with hematoxylin and eosin (H&E). In order to ensure uniformity of 



 

41 
 

assessment, intestinal sections were kept intact in circular form. The duodenal sub-sample was 

also utilized for histopathological lesion scoring. A lesion scoring system developed for 

commercial poultry production gut assessment and inclusive to the findings of the project were 

used and lesions were semi-quantitatively scored for severity as 0, normal; 1, minimal severity; 

2, mild severity; 3, moderate; 4, marked; and 5, severe (APPENDIX).  

Differential Blood Cell Counts 

On 0, 7 and 14 DPI, one bird per pen was euthanized for collection of blood. The bird 

chosen for sample collection was based on weight such that when the birds were placed in 

descending order by weight, the bird closest to the average weight was chosen. Chicks were bled 

by cardiac puncture into evacuated tubes. A sample (~2 mL) of blood was submitted to the 

Veterinary Clinical Pathology Laboratory at the University of Illinois at Urbana-Champaign for 

measuring the total and differential blood cell counts at each time-point. 

Immunophenotyping 

Immunophenotyping of T-cell populations was conducted at 14 DPI using cecal tonsils 

(same bird used for differential blood cell counts). Cecal tonsils were collected and placed on ice 

until cell isolation was conducted. Briefly, mononuclear cells were isolated by crushing cecal 

tonsils through a cell strainer to allow cells to flow through and onto a density gradient 

(Histopaque; Sigma Aldrich, St. Louis, MO). Following centrifugation (1800 rpm × 20 min.; 

25°C; without a brake), mononuclear cells were separated, washed twice, and their 

concentrations were adjusted to 1 × 106 total cells. Cells were then surface-stained using the 

following antibody clones and conjugated fluorochromes: anti-CD3-FITC (clone: CT-3), anti-

CD4-PE (clone: CT-4), and anti-CD8α-APC (clone: CT-8) (Southern Biotech, Birmingham, 

AL). Once stained with theses surface markers, cells were washed three times and then 
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permanently fixed with 2% paraformaldehyde for 10 minutes at room temperature, and then 

washed an additional three times. Cells were left at 4° C overnight until analysis the following 

day. The relative percentage of different phenotypes of T cells (i.e., single stain for CD4 or CD8 

double positive T-cells) were determined using multi-color flow cytometry (BD LSR II Flow 

cytometry analyzer, Roy J. Carver Biotechnology Center, University of Illinois, Urbana-

Champaign, IL). 

Inflammatory Cytokine mRNA Expression  

Samples of cecal tonsils and duodenum were collected at 7 DPI for quantitative real-time 

polymerase chain reaction (PCR) in order to quantify relative gene expression of the pro-

inflammatory cytokines interferon-γ (IFN-γ), interleukin -1β (IL-1β), and interleukin-12β (IL-

12β). Samples were collected and immediately submerged in RNAlater stabilization solution 

(AM7020; Thermo Fisher Scientific Inc., Waltham, MA) and placed at room temperature 

overnight to allow its penetration into the tissues. Subsequently, 24-h following collection, 

samples + RNAlater were then moved to -80°C freezer pending further analysis. Upon analysis, 

cecal tonsil and duodenum tissue samples, (50 to 100 mg), were placed into a 2 mL 

microcentrifuge tube along with 1 mL of TRIzol reagent (Invitrogen, Carlsbad, CA) and a 5 mm 

steel bead. Samples were homogenized through tissue disruption for 2 minutes at 30 Hz 

(TissueLyser II, Qiagen, Valencia, CA) and RNA was extracted following manufacturer 

instructions. Extracted RNA was quantified using a spectrophotometer, with samples having a 

260:280 absorbance ratio of 1.8 or higher (NanoDrop ND-1000, Nano-Drop Technologies, 

Wilmington, DE). The extracted RNA was transcribed to complementary DNA (cDNA) using a 

high capacity cDNA Reverse Transcription kit (Thermo Fisher Scientific Inc., Waltham, MA). 

The samples were placed in a thermocycler (Bio-Rad, Hercules, CA) set to 25°C for 10 minutes, 
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37°C for 120 minutes, 85°C for 5 minutes, and then cooled at 4°C and held there until the cDNA 

samples were removed and stored at -20°C until plating. The TaqMan Gene Expression Assay 

(Thermo Fisher Scientific Inc., Waltham, MA) was used to perform quantitative real-time PCR 

to quantify relative gene expression of pro-inflammatory cytokines IFN-γ (NM_205149.1), IL-1β 

(NM_204524.1), and IL-12β (NM_213571.1). Amplification was achieved by PCR for both 

target (IFN-γ, IL-1β, IL-12β) and reference (GAP-DH, NM_204305.1; Hong et al. 2006) chicken 

genes. Sample cDNA was amplified using TaqMan (Thermo Fisher Scientific Inc., Waltham, 

MA) oligonucleotide probes containing 5ʹ fluorescent reporter dye (6-FAM) and 3ʹ non-

fluorescent quencher dye, and fluorescence was determined using a QuantStudio™ 7 Flex Real-

Time PCR System (Applied Biosystems, Foster City, CA). Gene expression was normalized 

through parallel amplification of endogenous GAPDH for each sample. Relative gene expression 

was calculated using the comparative threshold cycle (Ct) method (Livak & Schmittgen, 2001) 

and results are expressed as fold-change relative to sham-inoculated broilers fed the control diet. 

Statistical Analyses 

The experimental design was a completely randomized block design. Data were subjected 

to an analyses of variance using a MIXED procedure of SAS (version 9.4). A 1-way ANOVA 

was used to determine whether the model was significant, and when appropriate, means 

separation was conducted. Least-square means and the standard error of the mean estimates were 

derived from this 1-way ANOVA. Replicate pen served as the experimental unit for all 

outcomes, and significance was accepted with a P-value of less than 0.05.  
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Results 

Growth Performance 

All growth performance data are shown in Table 3. Oocysts per gram for treatment Ucon 

yielded positive results, but because of values near that of zero, a high dilution factor, and 

possible cross contamination of just excreta pans, not the birds themselves, from previously-

conducted studies, these positive values were viewed as negligible and an anomaly when 

compared with the other treatment groups and were excluded from the final dataset. Birds 

challenged orally with the Eimeria mixture exhibited a reduction in growth compared with birds 

not challenged with the Eimeria mixture. During the first 14 days of the study, birds in treatment 

ISap500 had increased feed intake compared with birds in all other treatments. Birds assigned to 

ISap500 also had a decrease in gain:feed during the first 14 days of study. 

Histopathological Morphometrics  

For the two parameters crypt depth and the villus height to crypt depth ratio (villus:crypt 

ratio), a difference between Eimeria-infected and non-infected groups was observed (Table 4). 

However, when comparing within infected groups, there were no statistical differences noted for 

crypt depth, though there was a reduction in the villus:crypt ratio for birds assigned to the 

ISap250 treatment when compared with other dietary treatments. A treatment effect was noted 

for mucosal thickness in the jejunum, where ISap250 and UCon yielded similar results, with a 

numeric reduction in mucosal thickness in birds fed ISap250 compared with the other Eimeria-

infected groups. 

Histopathological Lesion Scoring 

From lesion scoring data alone (Table 5), the birds challenged orally with the Eimeria 

mixture exhibited an increase in the following outcomes when compared with sham-inoculated 
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birds: incidence of lamina propria lymphocytes and plasma cells, intraepithelial leukocytes, 

enteritis index, and total enteritis index. However, there were no detectable differences due to 

dietary treatment within the Eimeria-infected groups.  

Differential Blood Cell Counts 

At 0 DPI, total protein for ICon and ISap250 were elevated compared to Ucon and 

ISap500, which did not differ from each other (Table 6). At 7 DPI, hematocrit and heterophils 

showed differences only between uninfected and Eimeria-infected birds, and not between 

treatments within infected groups. Band heterophils and monocytes/azurophilic granules were 

elevated for ISap250 and ISap500 when compared with other treatment groups and basophils 

measurements of ISap250 were significantly higher when in comparison to all other treatment 

groups. Lymphocytes were elevated in all Eimeria-infected treatment groups and did not differ 

from one another when compared with UCon, but ISap250 was not significantly different than 

the Ucon birds. At 14 DPI, there was no detectable difference in differential blood cell counts 

amongst the dietary treatment groups. Taken together, uninfected birds outperformed birds that 

were Eimeria-infected; however, birds fed an inclusion rate of 250 mg/kg of diet of saponin 

supplementation did express similar lymphocyte percentages to that of the uninfected birds at 7 

DPI. 

Immunophenotyping 

All immunophenotyping data are shown in Table 7. There was no significant difference 

between immunophenotyping of different subsets of T-cells derived from mononuclear cells 

from chicken cecal tonsils fed different levels of saponin supplementation during a coccidial 

oocyst challenge. 
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Gene expression 

Gene expression data are shown in Table 8 and are reported as a fold-change relative to 

the sham-inoculated birds fed the control diet. In the cecal tonsils, IFN-γ mRNA expression 

increased in Icon, ISap250, and ISap500 when compared to Ucon (P < 0.001). Expression of 

cecal mRNA IL-1β was increased only for the treatment Icon, but not for the ISap250 and 

ISap500 treatments (P < 0.01). Treatments ISap250 and ISap500 significantly decreased 

expression of IL-1β in comparison to treatment Icon. Duodenal IL-1β mRNA expression 

increased with infection, but remained unchanged with saponin supplementation at both the 250 

and 500 mg/kg inclusion rates. Duodenal IL-12β mRNA expression was increased with infection, 

however, birds fed ISap250 were not different from the Ucon birds (P < 0.05). Duodenal IFN-γ 

mRNA expression was also increased with infection (P < 0.001).  

 

Discussion 

Based on previous literature indicating that saponins have beneficial effects during 

parasitic infections, the objective of the current study was to determine if dietary 

supplementation of saponins via an extract from Yucca schidigera could ameliorate the immune 

and growth responses of broilers during a mixed coccidian challenge. We observed that saponin 

supplementation during a mixed coccidian challenge had no beneficial effects on growth 

performance, however, it may influence the immune response to Eimeria infection as evidenced 

by lymphocyte responses, changes in intestinal structure, and alterations in cecal and duodenal 

inflammatory cytokine mRNA expressions.  

Growth performance responses to saponin supplementation appear to be highly variable. 

Studies by Johnston et al. (1980) and Su et al. (2016) both report saponin supplementation via an 
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extract from Yucca schidigera serves as an effective growth promoter in broilers, while 

Sariozkan et al. (2015) reported Yucca extract had no significant influence on growth 

performance of broilers. Interestingly, Balog and collegues (1994) demonstrated a significant 

decrease in body weights with Yucca feeding. These studies measured performance in 

unchallenged broilers. When saponin supplementation was used in conjunction with an Eimeria 

challenge, Alfaro et al. (2007) recorded broilers had higher BWG, however, this study also used 

a commercial coccidiosis vaccination at the initiation of the study, suggesting that improvements 

in BWG may have been due to a synergistic effect between the supplementation and coccidiosis 

vaccine. Herein, we report that birds challenged orally with the Eimeria mixture exhibited a 

reduction in overall growth compared with birds not challenged with the Eimeria mixture. From 

these results, we concluded that sham-inoculated birds outperformed Eimeria-infected birds, but 

there were no detectable differences due to dietary treatment among Eimeria-infected groups. A 

possible explanation for no detectable differences amongst dietary treatments in growth 

performance may be due to the reduction in bio-efficacy of saponins when used during an 

immune challenge. Recently, antibiotic treatment was shown to alter microbiome-independent 

changes in host metabolites during infection, which in turn inhibited the antibiotic’s efficacy 

(Yang et al., 2017). As a possible alternative to antibiotics, saponins bio-efficacy could have 

been dampened due to infection with Eimeria, thus warranting no outwardly improvements in 

growth performance amongst dietary treatments.  

 Evidence of a successful Eimeria challenge was made possible through quantification of 

oocysts in excreta collected from birds. Birds challenged with Eimeria were shedding oocysts up 

to 622,695 oocysts/g of excreta at d 21 of study, but there was no treatment effect of saponin 

supplementation noted among Eimeria-inoculated treatment groups. This finding is contrary to 
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previous studies in which guar meal, a high protein by-product of galactomannan gum rich in 

saponins, reduced the number of oocysts per gram in excreta when broilers were challenged with 

E. tenella (Hassan et al., 2008). Histopathological lesion scoring of the duodenum further 

solidified evidence of a successful coccidian challenge due to birds being challenged showing 

increased total enteritis indexes (representation of inflammation and repair) in comparison to the 

control birds. Nonetheless, much like our growth performance parameters demonstrated, there 

were no detectable differences due to dietary treatment within the Eimeria-infected groups and 

sham-inoculated birds showed a trend toward a reduction in lesion scoring. It should also be 

noted that lesions identified in the duodenum broadly represent those common to commercial 

poultry production and were of generally minimal to moderate overall severity as reported by the 

histopathologist.  

Despite the inability for saponin supplementation to improve growth performance, 

diminish oocyst shedding, and alleviate coccidian induced lesions, our results show they modify 

morphological parameters of the jejunum 14 days following Eimeria infection. The 

multifunctional intestinal mucosal layer serves as a barrier between harmful pathogens and the 

underlying epithelial cells and when damaged, can result in inflammation, uncontrolled immune 

responses, and unbalanced organic homeostasis (Kitessa et al., 2014). It is crucial to maintain the 

integrity of the mucosal barrier in order to promote the overall adequacy of the GIT mucus layer 

which aids in protection from external environment, lubrication for gut epithelium, and nutrient 

transport (Montagne et al., 2004). Our study showed treatment effects for mucosal thickness in 

the jejunum with a numeric reduction in mucosal thickness in birds supplemented with saponins 

at 250 mg/kg of diet and no differences compared with the sham-inoculated groups, but there 

was no difference when comparing among infected groups. Saponin supplementation may 
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promote regeneration and reconstitution of the intestinal mucosal layer back to normal levels as 

evidenced by ISap250 birds not being significantly different than the unchallenged birds. This is 

important because an entire turnover of the mucosa could take up to 96 hours, which is equal to 

about 10% of the lifetime of a market-ready broiler (Gottardo et al., 2016). If a dietary 

intervention like saponin supplementation can diminish the time it takes for an immune-

challenged bird to return to homeostatic levels, it may prove beneficial to overall bird health 

during a mixed Eimeria challenge as evidenced by alterations in intestinal structure.  

 Acquired immunity to an Eimeria infection in broilers has already been demonstrated to 

be almost entirely driven by cell-mediation, which is characterized by antigen specific and non-

specific activation to stimulate diverse cell populations including lymphocytes (Allen & Fetterer, 

2002; Lillehoj & Trout, 1996). Although reactive lymphocytes can be detected in small numbers 

in healthy birds, an increase in lymphocytes is often viewed following exposure to infectious 

diseases and is an indicator that antigenic stimulation is occurring (Mitchell & Johns, 2008). Our 

results show an increase in total lymphocytes in all cocci-infected birds 7 DPI when compared to 

the un-infected birds, suggesting evidence of antigenic stimulation and development of 

immunological memory. Lymphocyte-mediated immunological memory is imperative to a bird’s 

livelihood following continual exposure to a reoccurring pathogen, resulting in reduced 

nutritional costs overtime as the bird is able to recognize the same pathogen with higher 

efficiency in the future (Klasing & Leshchinsky, 1999; Schat et al., 2013). Although imperative, 

initial development of immunological memory is complex, has nutritional expense, and even 

when not in use, has high maintenance costs (Klasing & Leshchinsky, 1999). It is crucial to find 

the balance between inducing an immune response in order to generate acquired immunity 

without exerting unwarranted damage to the host. Cocci-infected birds did have elevated 
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lymphocytes levels 7 DPI and did not differ from one another, yet birds supplemented at 250 

mg/kg of diet expressed similar lymphocyte percentages to that of the sham-inoculated birds. 

These findings suggest that saponin supplementation may possess some measureable 

immunomodulatory effects when analyzing lymphocyte responses and may curtail some of the 

undue costs an Eimeria-induced immune response has on a bird.  

 Although evidence of cell-mediation being the driving force behind generating protective 

immunity to Eimeria is well documented (Rose & Hesketh, 1979), we were unable to show 

differences in subsets of T-cell populations derived from mononuclear cells of chicken cecal 

tonsils via immunophenotyping. A possible explanation for this finding could be the timeframe 

in which T-cell populations were isolated from the cecal tonsils. Vervelde and colleagues (1996) 

showed an increase in CD4+ cells just two days after inoculation with E. tenella, whereas we 

quantified T-cell populations fourteen days post inoculation with Eimeria. Peaks in CD4+ T-cell 

populations were seen at three and eleven and CD8+ at four days post inoculation with E. 

maxima (Rothwell et al., 1995). Our quantification of T-cell populations could have been outside 

the window of an acquired immune response mounted by cell-mediation following an Eimeria 

challenge. Total lymphocyte percentages quantified from the blood fourteen days post 

inoculation in our study also showed no difference between the cocci-infected and uninfected 

birds, possibly indicating that antigenic stimulation and lymphocyte-mediated immunological 

memory were longer occurring. An alternative could also be that saponins may not exhibit their 

effects on cell-mediated pathways in non-mammalian species. Saponins have been used in non-

living adjuvants to produce a more robust immune response to generate protective immunity to 

an antigen, but in non-mammalian species this response is not as pronounced (Francis et al., 

2002). 
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 Expression of inflammatory genes, including IL-1β, in cecal tonsils and duodenal tissues  

of broilers at 7 DPI differed due to dietary saponin supplementation. While IL-1β elicits systemic 

metabolic, behavioral, and cellular changes that are crucial in initiating an immune response, this 

cytokine also has the ability to induce sickness-like behavior in animals resulting in retardation 

of growth comparable in strength to administration of lipopolysaccharide (Dantzer et al., 1993; 

Klasing & Leshchinsky, 1999). Expression of IL-1β following immune stimulation is 

unavoidable, but suppressing the amount expressed in a timely fashion in order to mitigate 

reductions in growth often associated with an immune response may prove to be beneficial, thus 

modifying the way in which a bird copes with coccidiosis. Our results suggest that saponins may 

possess some measureable immunomodulatory-anti-inflammatory-like properties. However, anti-

inflammatory polyphenolics like resveratrol and yuccaol C isolated from Yucca schidigera 

extract have been shown to inhibit NFκB activation, suggesting that the nature of our saponin 

supplementation derived from Yucca schidigera may account for the suppression in IL-1β, rather 

than saponin supplementation alone (Cheeke et al., 2006; Marzocco et al., 2004). As for IFN-γ 

production, our findings corroborate with previous reports of increased gene expression of 

intestinal IFN-γ due to Eimeria infection in chickens, although the timing and magnitude of 

response have varied considerably in the literature (Hong et al., 2006; Laurent et al., 2001; 

Rochell et al., 2016; Yun et al., 2000). Interferon-γ is another key pro-inflammatory cytokine 

that has been shown to exert direct inhibitory effects against Eimeria (Lillehoj & Choi, 1998), so 

it was of no surprise when our results showed an increase in IFN-γ 7 DPI in the cecal tonsils and 

duodenum. Because IL-12β can activate NK cells, which are important in protecting the host 

from pathogens and have ability to induce cell lysis and secrete IFN-γ, the significant increase in 
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expression of IL-12β in the duodenum is probably directly related to the increase in IFN-γ 

production (Murphy & Weaver, 2016). 

 In conclusion, these results suggest that saponin supplementation may influence the 

immune response of birds challenged with mixed coccidian oocysts. Eimeria-challenged birds 

exhibited a reduction in growth compared with uninfected birds, but there was no detectable 

differences due to saponin supplementation within Eimeria-challenged groups. Lymphocyte 

counts were increased in all Eimeria-challenged groups at 7 DPI compared with uninfected birds, 

but birds given saponin supplementation at 250 mg/kg were not significantly different from 

uninfected birds. Mucosal thickness in the jejunum was increased in all infected groups and there 

was no difference between infected groups; however, saponin supplementation included at 250 

mg/kg was not significantly different when compared to uninfected birds. Expression of IL-1β in 

the cecal tonsils and duodenum was increased following infection, but saponin supplementation 

at 250 and 500 mg/kg of diet reduced the expression of IL-1β to that of an unchallenged bird. 

These results suggest that saponin supplementation may possess some measurable 

immunomodulatory effects during infection as evidenced by lymphocyte responses, changes in 

intestinal structure, and alterations in cecal and duodenal inflammatory cytokine mRNA 

expressions. Collectively, the use of dietary saponins may serve as an effective strategy in 

mitigating the resulting inflammatory response following exposure to Eimeria in broilers. 
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Tables 

 

Table 1. Ingredient composition of the experimental basal diet1,2 

Ingredient, g/kg  Concentration, g/kg 

  Corn 444.5 

  Soybean meal 420.0 

  Soy Oil 90.0 

  Salt 4.0 

  Limestone 14.0 

  Dicalcium Phosphate 20.0 

  Vitamin Premix3 2.0 

  Mineral Premix4 1.5 

  DL-Methionine 2.0 

  Choline chloride 2.0 

Calculated composition  

  Protein,  g/kg 230.1 

  ME, kcal/kg 3301 

  Ca, g/kg 11.0 

  Total P, g/kg 7.5 

  nPP, g/kg 5.0 

  Ca:tP 1.5 

  Ca:nPP 2.2 

Total AA, g/kg  

   Arg  16.3 

   His  6.4 

   Ile   10.1 

   Leu  20.1 

   Lys   13.8 

   Met  5.6 

   Met + Cys 9.4 

   Phe 11.6 

   Phe + Tyr 20.9 

   Thr 9.1 

   Trp 3.4 

   Val 11.1 
1Abbreviations: nPP = non-phytate phosphorus; tP = total phosphorus; ME = metabolizable energy; DM = dry 

matter. 
2The following diet names have been assigned to a respective experimental treatment group: Ucon: control diet + 

sham-inoculated; Icon: control diet + Eimeria oocyst challenge; ISap250: 250 mg/kg of fed saponin 

supplementation in diet + Eimeria oocyst challenge; ISap500: 500 mg/kg of fed saponin supplementation in diet + 

Eimeria oocyst challenge. Saponin supplementation (Micro-Aid® Feed Grade Concentrate; DPI Global, Porterville, 

CA) was included in ISap250 at 250 mg/kg and ISap500 at 500 mg/kg on top of the diet as having negligible 

nutritive contribution to the overall diet. 
3Provided per kilogram of complete diet: retinyl acetate, 4,400 IU; cholecalciferol, 25 μg; dl-α-tocopheryl acetate, 

11 IU; vitamin B12, 0.01 mg; riboflavin, 4.41 mg; d-Ca-pantothenate, 10 mg; niacin, 22 mg; and menadione sodium 

bisulfite complex, 2.33 mg. 
4Provided per kilogram of complete diet: Mn, 75 mg from MnO; Fe, 75 mg from FeSO4 ·7H2O; Zn, 75 mg from 

ZnO; Cu, 5 mg from CuSO4 ·5H2O; I, 0.75 mg from ethylene diamine dihydroiodid; and Se, 0.1 mg from Na2SeO3. 
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Table 2. Proximate analysis of experimental treatment diets1 

 Dietary Treatment 

Item Ucon Icon ISap250 ISap500 

Dry matter, % 88.08 88.00 87.91 87.90 

Organic matter, % of DM 92.09 92.14 92.35 91.85 

Crude fat, % of DM 11.07 10.39 11.25 11.27 

Crude protein, % of DM  26.32 27.18 26.25 24.12 

Neutral detergent fiber, % of DM  15.60 16.24 16.33 12.48 

Acid detergent fiber, % of DM  3.26 3.70 3.21 3.96 

Gross energy, Kcal/kg of DM  4,870 4,852 4,908 4,909 
1Abbreviations: DM, dry matter. The following diet names have been assigned to a respective experimental 

treatment group: Ucon: control diet + sham-inoculated; Icon: control diet + Eimeria oocyst challenge; ISap250: 

250 mg/kg of fed saponin supplementation in diet + Eimeria oocyst challenge; ISap500: 500 mg/kg of fed 

saponin supplementation in diet + Eimeria oocyst challenge. 
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Table 3. Growth performance and oocyst shedding for broilers fed different levels of saponin 

supplementation and exposed to an Eimeria oocyst challenge1 

 Uninfected  Cocci-infected  Pooled 

SEM 

Model  

P-value  Ucon  Icon ISap250 ISap500  

Body weight, g/bird         

d 14 391  386 393 391  9.7 0.80 

d 21 895a  723b 737b 737b  19.1 < 0.001 

d 28 1,495a  1,305b 1,314b 1,324b  30.1 < 0.001 

Body weight gain, g/bird         

d 1-14 357  352 359 357  9.1 0.79 

d 14-28 1,091a  903b 906b 929b  22.8 < 0.001 

d 1-28 1,460a  1,271b 1,280b 1,290b  29.6 < 0.001 

Feed intake, g/bird         

d 1-14 407b  411b 413b 433a  9.4 0.046 

d 14-28 1,384a  1,256b 1,274b 1,282b  26.7 < 0.001 

d 1-28 1,491a  1,391b 1,403b 1,447ab  26.0 0.008 

Gain:feed, g/kg         

d 1-14 875a  857a 870a 825b  10.8 0.011 

d 14-28 789a  718b 711b 716b  8.4 < 0.001 

d 1-28 980a  902b 912b 892b  11.2 < 0.001 

Oocysts per gram2         

d 21 -  506,253 521,871 622,695  65,853.0 0.41 

d 28 -  13,648 18,294 17,233  3,879.4 0.62 
abMeans without a common superscript letter differ within a row (P < 0.05). 

1Values are least-square means initially derived from 12 replicate pens of 12 birds at 2-d post-hatch (mean initial weight 34 ± 

5 g). The following diet names have been assigned to a respective experimental treatment group: Ucon: control diet + sham-

inoculated; Icon: control diet + Eimeria oocyst challenge; ISap250: 250 mg/kg of fed saponin supplementation in diet + 

Eimeria oocyst challenge; ISap500: 500 mg/kg of fed saponin supplementation in diet + Eimeria oocyst challenge. 
2Oocysts per gram for Ucon treatment was near zero for d 21 and d 28. 
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Table 4. Histopathology of the duodenum and jejunum of broilers fed different levels of saponin 

supplementation fourteen days post Eimeria oocyst challenge1,2 

 Uninfected  Cocci-infected  Pooled 

SEM 

Model  

P-value Item                  Ucon3  Icon3 ISap2503 ISap5003  

Duodenum, µM         
    Villi height 2468  2316 2169 2386  90.4 0.12 
    Crypt depth 259.5b  315.8ab 363.3a 328.5a  21.2 0.012 
    Villus:crypt ratio 10.11a  7.63b 6.37c 7.58b  0.450 < 0.001 
    Mucosal 

thickness 

2727  2631 2533 2714  101 0.48 
Jejunum, µM         
    Villi height 1011  1327 1182 1250  81.1 0.054 

Crypt depth 182.5  229.2 201.8 219.4  16.7 0.18 
Villus:crypt ratio 6.01  6.27 6.11 6.16  0.383 0.97 

     Mucosal 

thickness 

1194b  1556a 1384ab 1469a  91.0 0.042 
abcMeans without a common superscript letter differ within a row (P < 0.05). 

 1The following values were derived at a magnification level of 40x. 

 2Values are least-square means initially derived from 1 bird per pen, 12 replicate pens per treatment. 
3The following diet names have been assigned to a respective experimental treatment group: Ucon: control diet + sham-inoculated; 

Icon: control diet + Eimeria oocyst challenge; ISap250: 250 mg/kg of fed saponin supplementation in diet + Eimeria oocyst challenge; 

ISap500: 500 mg/kg of fed saponin supplementation in diet + Eimeria oocyst challenge. 
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Table 5. Histopathological lesion scoring of the duodenum of broilers fed different levels of saponin supplementation fourteen 

days post coccidial oocyst infection1,2 

Item                                  
Uninfected  Cocci-infected Pooled 

SEM 

Model  

P-value Ucon  Icon ISap250 ISap500 
Coccidia 0  0 0 0 -3 -3 
Villus shortening 0  0 0 0 -3 -3 
Crypt hyperplasia 0  0 0 0 -3 -3 
Lamina propria lymphocytes and plasma 

cells 

0.292a  1.083b 1.500b 1.417b 0.264 0.005 
Bacteria4 1.000  0.500 0.250 0.250 0.266       0.16 
Cystic crypts 0  0.167 0 0.250 0.092       0.11 
Intraepithelial leukocytes 0.956a  1.583b 2.250c 1.750bc 0.267 0.002 
Other5 0  0.250 0.091 0.250 0.108       0.27 
Coccidia index6 0  0 0 0 -3 -3 

Enteritis index7 2.236a  3.583b 4.360b 4.167b 0.495 0.003 
Total enteritis index8 2.232a  3.667b 4.539b 4.167b 0.494 0.002 
abcMeans without common superscript letter do differ within a row (P < 0.05). 
1The duodenum was examined microscopically for lesions and parasites. A lesion panel developed for commercial poultry production gut assessment and 

inclusive to the findings of the project was used and lesions were semi-quantitatively scored for severity as 0, normal; 1, minimal severity; 2, mild 

severity; 3, moderate; 4, marked; and 5, severe.  

 2Values are least-square means initially derived from 12 replicates per treatment. The following diet names have been assigned to a respective 

experimental treatment group: Ucon: control diet + sham-inoculated; Icon: control diet + Eimeria oocyst challenge; ISap250: 250 mg/kg of fed saponin 

supplementation in diet + Eimeria oocyst challenge; ISap500: 500 mg/kg of fed saponin supplementation in diet + Eimeria oocyst challenge. 

 

 

3Absense of statistical analysis due to infinite likelihood. 

4Bacteria on tips or sides of villi and dysbacteriosis. 
5Includes increased goblet cells and/or mucus, attenuated enterocytes, misshapen villus tips, heterophils in the lamina propria, or contracted villi. 
6Calculated by summing the coccidian scores for duodenum only, meaning coccidian index is equal to coccidian lesion score. 
7Calculated by summing all lesion scores.  
8Calculated by subtracting the coccidia index from the enteritis index, representing inflammation and repair. 
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Table 6.  Effects of saponin supplementation fed at different levels during a Eimeria oocyst challenge on total and 

differential blood cell counts in broilers1 

 Uninfected  Cocci-infected  Pooled 

SEM 

Model  

P-value Item Ucon2  Icon2 ISap2502 ISap5002  

Hematocrit, %         

0 DPI 28.8  30.7 29.0 28.9  1.22 0.67 

7 DPI 30.7a  23.0b 24.3b 24.9b  1.96 0.027 

14 DPI 31.1  31.1 30.4 31.6  0.877 0.83 

Total protein, g/dL         

0 DPI 2.93b  3.27a 3.28a 2.92b  0.106 0.037 

7 DPI 3.10  3.40 3.32 3.23  0.167   0.52 

14 DPI 3.05  3.33 3.30 3.32  0.148   0.50 

WBC count, ×103/µL         

0 DPI 16.1  17.3 15.5 12.6  2.89    0.70 

7 DPI 12.7  11.6 14.8 15.6  2.16    0.55 

14 DPI 23.3  23.1 24.5 22.1  3.39    0.97 

Heterophils, % of WBC         

0 DPI 18.0  19.3 21.8 19.0  4.76    0.95 

7 DPI 44.8a  27.2b 22.0b 18.0b  3.61 < 0.001 

14 DPI 45.7  39.8 40.0 38.2  4.11    0.58 

Band heterophils, % of WBC         

0 DPI 0.167  0.167 0 0.333  0.158    0.54 

7 DPI 0b  0b 0.833a 0.400ab  0.206 0.021 

14 DPI 0.800  0 0.167 0.667  0.229    0.06 
abMeans without a common superscript letter differ within a row (P < 0.05). 

1Values are least-square means initially derived from 1 bird per pen, 6 replicate pens per treatment. Abbreviations: DPI = days post-inoculation; 

WBC = white blood cell (i.e., leukocytes). 
2The following diet names have been assigned to a respective experimental treatment group: Ucon: control diet + sham-inoculated; Icon: control diet 

+ Eimeria oocyst challenge; ISap250: 250 mg/kg of fed saponin supplementation in diet + Eimeria oocyst challenge; ISap500: 500 mg/kg of fed 

saponin supplementation in diet + Eimeria oocyst challenge. 
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Table 6.  (cont.) 

 Uninfected  Cocci-infected  Pooled 

SEM 

Model  

P-value Item Ucon2  Icon2 ISap2502 ISap5002  

Lymphocytes, % of WBC         

0 DPI 73.3  73.3 69.8 74.3  5.28    0.94 

7 DPI 41.8b  60.8a 51.0ab 57.3a  4.49 0.014 

14 DPI 39.7  49.2 49.0 50.2  4.27    0.22 

Eosinophils, % of WBC         

0 DPI 2.33  1.67 0.83 1.17  0.744 0.53 

7 DPI 5.33  5.00 5.83 7.17  1.91 0.86 

14 DPI 1.17  1.50 0.667 1.67  0.508 0.54 

Basophils, % of WBC         

0 DPI 4.00  3.17 3.20 2.20  0.687 0.33 

7 DPI 7.83b  5.83b 12.7a 8.50b  1.46 0.010 

14 DPI 7.00  4.67 5.83 4.00  1.10 0.22 

Monocytes/azurophilic granules, % of WBC         

0 DPI 2.17  2.33 2.00 1.17  0.447 0.23 

7 DPI 0.17b  1.17b 7.67a 7.50a  1.40 0.001 

14 DPI 5.17  4.83 4.33 2.83  1.08 0.46 
abMeans without a common superscript letter differ within a row (P < 0.05). 

1Values are least-square means initially derived from 1 bird per pen, 6 replicate pens per treatment. Abbreviations: DPI = days post-inoculation; 

WBC = white blood cell (i.e., leukocytes). 
2The following diet names have been assigned to a respective experimental treatment group: Ucon: control diet + sham-inoculated; Icon: control diet 

+ Eimeria oocyst challenge; ISap250: 250 mg/kg of fed saponin supplementation in diet + Eimeria oocyst challenge; ISap500: 500 mg/kg of fed 

saponin supplementation in diet + Eimeria oocyst challenge. 
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Table 7.  Effects of saponin supplementation fed at different levels during a coccidial oocyst challenge on 

immunophenotyping of different subsets of T-cells derived from mononuclear cells from chicken cecal tonsils1 

 Uninfected  Cocci-infected  Pooled 

SEM 

Model  

P-value Item Ucon  lcon ISap250 ISap500  

Total T cells, % of isolated cells 

(CD3+)2 36.59  31.72 34.16 38.71  2.35 0.22 

Helper T cells, % of total T cells  

(CD3+CD4+)3 
38.09  41.49 48.72 43.79  3.13 0.14 

Cytotoxic T cells, % of total T cells 

(CD3+CD8+)3 
41.06  36.94 32.51 38.21  3.10 0.21 

Memory T cells, % of total T cells 

(CD3+CD4+CD8+)3 
2.08  4.21 3.51 5.40  1.41 0.36 

1Values represent least square means of 1 bird per pen, 6 replicate pens per treatment group with collection of cecal tonsils occurring at 14 days post-

inoculation. The following diet names have been assigned to a respective experimental treatment group: Ucon: control diet + sham-inoculated; Icon: 

control diet + Eimeria oocyst challenge; ISap250: 250 mg/kg of fed saponin supplementation in diet + Eimeria oocyst challenge; ISap500: 500 mg/kg 

of fed saponin supplementation in diet + Eimeria oocyst challenge. 
2Percent of total lymphocytes that are positive for cell-surface marker CD3. 
3Percent of CD3-positive lymphocytes that are also positive for cell-surface markers CD4, CD8, or CD4/CD8. 
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Table 8. Gene expression of the cecal tonsils and duodenum of broilers fed different levels of saponin supplementation seven 

days post coccidial oocyst infection1,2 

Item                        
Uninfected  Cocci-infected  Pooled 

SEM 

Model  

P-value Ucon  Icon ISap250 ISap500  
Cecal tonsils         
  IL-1β 1.00a  2.07b 1.48a 1.26a  0.196 0.008 
  IL-12β 1.00  1.67 1.46 1.65  0.265 0.22 
  IFN-γ 1.00a  9.87c 5.12b 5.50b  1.009 < 0.001 
Duodenum          
  IL-1β 1.00a  1.52b 1.00a 1.17ab  0.157 0.039 
  IL-12β 1.00a  2.13b  1.66ab 2.32b  0.221 0.003 
  IFN-γ 1.00a  6.10b 5.31b 4.64b  0.958 < 0.001 
abcMeans without a common superscript letter differ within a row (P < 0.05). 
1Values are least-square means initially derived from 1 bird per pen, 6 replicates pens per treatment. Abbreviations:; IL-1β=interleukin 1 beta; IL-

12β=interleukin 12 beta; IFN-γ=interferon gamma. The following diet names have been assigned to a respective experimental treatment group: Ucon: 

control diet + sham-inoculated; Icon: control diet + Eimeria oocyst challenge; ISap250: 250 mg/kg of fed saponin supplementation in diet + Eimeria 

oocyst challenge; ISap500: 500 mg/kg of fed saponin supplementation in diet + Eimeria oocyst challenge. 
2Values are reported as fold-change. 
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CHAPTER 4: GENERAL CONCLUSIONS 

 

The overall focus of this study was to evaluate if dietary supplementation of Yucca-

derived saponins could ameliorate the immune and growth responses of broilers during a mixed 

coccidian challenge. We concluded that while sham-inoculated birds outperformed Eimeria-

infected birds, there were no detectable differences due to dietary treatment of saponin 

supplementation within the Eimeria-infected groups. Saponin supplementation modified the way 

in which lymphocytes responded to infection. Total lymphocytes as a percentage of white blood 

cells increased in all Eimeria-challenged groups at 7 DPI when compared with uninfected birds, 

but birds fed 250 mg/kg of diet of saponin supplementation were not significantly different than 

uninfected birds. An inclusion rate of 250 mg/kg of diet of saponin supplementation also altered 

intestinal structure of the jejunum. Mucosal thickness in the jejunum was increased in all 

Eimeria-infected groups and there was no difference between infected groups; however, saponin 

supplementation included at 250 mg/kg was not significantly different from the uninfected birds. 

Inflammatory cytokine gene expression within the duodenum and cecal tonsils was impacted by 

saponin supplementation. In the cecal tonsils and duodenum, IFN-γ expression was increased 

with infection compared to unchallenged birds. Expression of cecal IL-1β was increased only in 

the infected birds while saponin supplementation reduced the expression to match that of the 

uninfected birds. Contrarily, duodenal IL-1β expression increased with infection, but remained 

unchanged with saponin supplementation.  

These results revealed that saponin supplementation may influence the immune response 

during infection with Eimeria due to its effects on lymphocyte responses, changes in intestinal 

structure, and alterations in inflammatory cytokine gene expression. Due to limitations of current 
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strategies to control coccidiosis, and because there are significant economic losses due to 

decreased BW gain and feed efficiency in affected animals, identifying compounds to limit 

coccidiosis and improve performance in poultry is of great value. Saponin supplementation 

offers a natural alternative to prophylactic chemotherapeutic agents in addition to staying in the 

realm of governmental regulations while assuaging to the growing public for microorganismal 

resistance. Collectively, the use of dietary Yucca-derived saponins may serve as an effective 

alternative strategy in ameliorating the resulting inflammatory response following exposure to 

Eimeria in broilers. Future research should be directed towards discovering the exact 

mechanistic pathway for which saponins are able to exhibit their effects during a mixed 

coccidian challenge.  
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APPENDIX: MICROSCOPIC LESION SCORING  

 

Standard Operating Procedure Form for Histopathological Lesion Scoring  

Prepared by: Dr. Fred Hoerr, Veterinary Diagnostic Pathology, LLC 

 

0-5 Scoring 12/17/16 

 

Coccidia 

 

Eimeria acervulina 

0, absent; 

1, 1 cluster per section entire gut section; 

2, 2 clusters; 

3, 3 clusters; 

4, 4 clusters; 

5 , 5+ clusters. 

 
Eimeria maxima and E. mivati 

0, no coccidia observed; 

1, 0-20 coccidia/entire gut section; 

2, up to 50; 

3, up to 75; 

4, up to 100; 

5, >100 coccidia/section 

 

Eimeria tenella 

0, absent; 

1, small cluster of infection; 

2, scattered small clusters of coccidia; 

3 scattered large clusters of coccidia; 

4, large clusters of coccidia, some confluence; 

5, multiple confluence to diffuse infection 

 

Small Intestine Lesion Scoring 

Scoring was on a 0-5 scale with 0 being no lesions, 1 = rare or slight 2 = mild, 3 = moderate, 4 = 

marked, 5 = severe. Villus atrophy was scored and checked by see and sort method. 

 

Villus shortening 

0 - tallest in the set, 

1 = 20% loss in height, 

2 = 40% loss in height, 

3 = 60% loss in height, 

4 = 80% loss in height, 

5=80% or more 
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Crypt hyperplasia 

0 = none, 

1 = minimal 

2 = mild 

3 = moderate, 2X normal; 

4 = marked (3X normal) 

5= severe more than 3x normal 

 

GALT hyperplasia 

0 = no increased cell population in the lamina propria; 

1 = sparse population of LP with lymphocytes, plasma cells and small mononuclear cells with up 

to 2 small lymphoplasmacytic cluster; 

2 = multifocal to diffuse mild infiltrates with 3-5 or more small lymphocytic clusters; 

3 = confluent mild diffuse infiltrates of the LP involving crypts and villi; 

4 = moderate diffuse infiltrates in LP of crypts and villi; 

5 = marked, diffuse infiltrates in LP of crypts and villi. 

 

Cystic Crypts 

0 = none; 

1 = 1; 

2 = 2-3; 

3 = 4-6; 

4 = 7-10; 

5 = >10. 

 

Small intestine, other 

1(mild) or 2 points (moderate) for each for any of the following, to a maximum of 5: 

- Heterophils in the lamina propria 

- Increased numbers/prominence of goblet cells 

- Mucus streaming from the sides and tips of villi 

- Misshapen, flattened, irregular, or eroded or micro-ulcerated tips of villi 

- Contracted villi 

- Other 

 

Pancreas 

Extramedullary hematopoiesis/myelopoiesis or LC Pancreatic foci 

0 = none, 

1 = 1- 2 lymphoid foci or few to mild granulocytic infiltrates, 

2 = 3-5 small to medium or mild to moderate; 

3 = more than 6 to coalescing 

4 Confluent 

5 Confluent to diffuse 

Cecum 
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Eimeria tenella 

0, absent; 

1, small cluster of infection; 

2, scattered small clusters of coccidia; 

3, scattered large clusters of coccidia; 

4, large clusters of coccidia, some confluence; 

5, multiple confluence to diffuse infection 

 

Lamina propria lymphoid hyperplasia 

0 = no increased cell population in the lamina propria; 

1 = sparse population of LP with lymphocytes, plasma cells and small mononuclear cells with up 

to 2 small lymphoplasmacytic cluster; 

2 = multifocal to diffuse mild infiltrates with 3-5 or more small lymphocytic clusters; 

3 = confluent mild diffuse infiltrates of the LP involving crypts; 

4 = moderate diffuse infiltrates in LP of crypts; 

5 = marked, diffuse infiltrates in LP of crypts. 

 

Bacterial adherence to mucosa 

0 = non-adherence 

1 = to 20% of mucosa 

2 = to 40% 

3 = to 60% 

4 = to 80% 

5 > 80% 

 

Cecum, other 

 

1 (mild) or 2 points (moderate) for each for any of the following, to a maximum of 5: 

- Lamina propria apoptosis 

- Heterophil inflammation 

- Necrosis, increased apoptosis, or microulceration of dome epithelium 

- Cystic glands (crypts), 

- Increased intraepithelial leukocytes 

- Other 

 


