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Abstract

Small satellites, such as CubeSats and SmallSats, are seeing increased use in Low Earth Orbit, particularly at

altitudes with measurable aerodynamic effects. It is important to design these spacecraft, which often have

modest control authority, such that the resultant aerodynamic forces and moments do not cause unstable

motion, which may lead to premature loss of mission. Building from free molecular pressure and shear

equations for flat plates, an aerodynamic solver is designed to analyze the aerodynamic forces and moments

on a 3U CubeSat with center of gravity offset, orbiting at altitudes from 80 to 200 km. The motion of

this CubeSat is then simulated for a variety of initial conditions, both with and without active control, to

determine its behavior. Inferences are made as to design rules that will lead to more stable small satellites.
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Chapter 1

Introduction

The Karman line, which is the canonical boundary between Earth’s atmosphere and space, lies 100 km above

sea level[1]. In reality, the atmosphere extends much further. Above 100 km altitude, the atmosphere exists as

an extremely rarefied collection of molecules [2]. Space vehicles interacting with this region of the atmosphere

experience measurable aerodynamic forces and torques. For SmallSat and CubeSat missions which often

have small, if any, ∆v budgets and modest attitude control authority, these aerodynamic affects can cause

issues for mission lifetime and effectiveness. It is desirable to investigate the effects of aerodynamic forces

on these smaller missions to allow mission planners better ability to predict the longevity and performance

of their vehicles in Low Earth Orbit (LEO).

Of particular interest is the aerodynamic stability of CubeSats. As the orbit of a CubeSat degrades

due to atmospheric drag, the aerodynamic torques on the spacecraft may begin to overpower the modest

attitude control system onboard. Thus, the spacecraft may be required to make a switch from active to

passive control: At a certain altitude, the spacecraft must be in a nose-forward orientation with enough

center of gravity (cg) offset to allow it to maintain orientation as the aerodynamic forces grow greater. This

is demonstrated in Figure 1.1.

Within the category of CubeSats, this work is quite useful for low-cost atmospheric probe missions

intending to use CubeSat and SmallSat technology, like the upcoming Student Aerothermal Spectrometer

Satellite of Illinois and Indiana (SASSI2)[3] and Qubesat for Aerothermodynamic Research and Measurement

on AblatioN (QARMAN)[4]. This style of mission depends heavily on the aerodynamic properties of these

small vehicles. In the case of SASSI2, the mission’s duration and quality of data both rely on the pointing

accuracy of the nose-forward orientation [5]. This places a great importance on the pointing capability of

the spacecraft, especially during the portions of the mission with larger-magnitude aerodynamics.

Much of the previous work devoted to aerodynamics at altitudes relevant to orbit has been devoted to

drag models for predicting rates of orbital degradation [6]. Some previous analysis has been performed on

the rigid-body dynamics of slender bodies in free-molecular flow [7] and generic shapes in transition flow

immediately before entry [8], but there has been limited if any inspection of the rigid-body dynamics and
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Figure 1.1: Graphical introduction to the problem: A CubeSat acting as an atmospheric probe should be
designed such that it is aerodynamically stable.

stability of bluff bodies in orbit around Earth.

This work describes the development of a CubeSat aerodynamics solver which uses free-molecular pressure

and shear equations to determine the aerodynamic forces and moments on a 3-U CubeSat. Using the

assumption of hypersonic shadowing, the spacecraft is modeled as three orthogonal flat plates. The torque

of the spacecraft acts around the center of gravity, which is positioned in front of the neutral point. It is

created by the differing areas on which the pressures and shear are acting, compounded by the different

lengths of moment arm.

Further analysis covers the resultant dynamics of the CubeSat as it orbits in the rarefied atmosphere.

A lack of appreciable viscous damping forces causes the CubeSat to oscillate around its trimmed condition

with no signs of stopping. For this reason, controlled damping is considered, which assumes the CubeSat

has a modest control authority, capable of providing a derivative control on the order of 1× 10−5 N-m.

From this analysis, inferences are made regarding the design of CubeSats and SmallSats for use as high-

altitude atmospheric probes. In general, a further-fore center of gravity creates larger restoring torques, and

thus a larger static margin, but also requires larger control magnitudes to damp the motion for similar time

scales. Similarly, a more massive spacecraft requires larger control magnitudes than a less massive one of

similar size.
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Chapter 2

Methodology

2.1 Definition of Continuum, Transition, and Free-Molecular

Flows

A flow may be categorized as either continuum, transitional, or free-molecular [9, 10, 11]. These categories

depend on the mean free path, λ, of the gas, which is the mean distance between particle-particle collisions

within the gas. A more useful metric for spacecraft analysis is the Knudsen number, Kn, which is the

ratio of mean free path to the characteristic length of the vehicle. Common ranges for Knudsen numbers

corresponding to different regimes of flight are shown in 2.1 [12].

Table 2.1: Common ranges of Knudsen number corresponding to regimes of flows
Category Kn

Continuum 0.001 — 0.01
Transitional 0.01 — 10
Free-molecular >10

At 150 km altitude, λ is roughly 150 m. For a CubeSat with a characteristic length of 0.1 m, this leads to

a Kn of 1500, well within the range of free-molecular flight. Thus, any investigation into the aerodynamics

of vehicles in low-LEO must use equations which take into account free-molecular assumptions.

2.2 Comparison of Existing Rarefied Aerodynamic Methods

Currently, there are a few aerodynamics analysis methods available to mission planners intending to operate

satellites in low-LEO. Of note among these are low-fidelity models used primarily for drag calculations, and

high-fidelity models which are computationally expensive.

Low-fidelity free-molecular aerodynamics solvers, such as those found in the General Mission Analysis

Tool (GMAT) [13] and the Systems Tool Kit (STK) [14], are primarily used to determine the amount of

atmospheric drag on a spacecraft and how this drag affects the time-evolution orbit of the spacecraft. To
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this end, the most common method is to generate a drag model based on a spherical approximation of the

spacecraft, a corresponding area/mass ratio, and a corresponding drag coefficient. This form of aerodynamic

modeling does not natively support functionality to determine the aerodynamic torques on the spacecraft

resulting in attitude changes.

High-fidelity modeling of rarefied flows often takes the form of direct-simulation Monte Carlo (DSMC)

solvers, which stochastically determine flow properties around a body. Time-accurate solvers such as the

Stochastic PArallel Rarefied-gas Time-accurate Analyzer (SPARTA) [15] are able to determine the pressures

on individual faces of a body, which allows for the calculation of torques around the center of gravity. The

drawbacks to this method of analysis are the large computational cost associated with the simulation, the

difficulty in setting up the problem and validating results, and the large base of knowledge required to

effectively run the simulations.

2.3 Free-molecular Aerodynamics

Analytical expressions have been developed for the flow over various shapes in free-molecular flow, as de-

scribed by Schaaf and Chambre (S&C) [16]. Of particular interest to this work are the equations of pressure,

p, and shear, τ , relating to flat plates, as these can be superimposed to approximate any other shape. These

equations are
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ρU2
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where ρ is the mass density of the flow, U is the flow speed, σ′ and σ are the accomodation coefficients

for the material moving through the flow, S is the speed ratio, R is the gas constant, θ is the impact angle

measured from parallel, and Tw and T are the wall and freestream temperatures, respectively.

This formulation of the pressure and shear follow multiple assumptions. Because this work does not

include the aerothermodynamics of the CubeSat as it is moving through the free-molecular flow, Tw is

assumed to equal T [17]. The accommodation coefficients, σ and σ′, are considered to be 0.9 [18].

These analytical expressions can express the pressure and shear of a flat plate at any angle relative to the

flow. To confirm the accuracy of the equations, their results were compared to experimental work performed

by Koppenwallner [17]. The results from this are shown in Table 2.2, and show strong agreement between

the two bounding cases. The parallel plate case is a flat plate arranged with its long side parallel to the

flow, creating drag solely from shear effects. The perpendicular disk case is a flat plate arranged with its

long side perpendicular to the flow, creating drag solely from normal pressure.

Table 2.2: Coefficient of drag for flat plates and disks from theory (S&C) and experiment (Koppenwallner).
Category S&C Koppenwallner

(Equation)
Koppenwallner (Ex-
periment)

Parallel Plate 0.0337 0.0337 0.03
Perpendicular Disk 2.957 2.957 3.0

Table 2.3: Flight conditions for S&C comparison with Koppenwallner

Mach Number Equivalent Altitude Accommodation Coeffi-
cients

20 150 km 1

Gas Ratio of Specific Heats Wall Temperature (Stag-
nation)

Air 1.4 5.7× 104 K

Additional comparisons were made between SPARTA and the S&C expressions, as shown in Table 2.4.

The flight conditions for this comparison are shown in Table 2.5. Overall, there is a strong agreement between

the two methods. The largest percent differences arise from areas with minimal magnitude of pressure and

shear, which therefore have a small net effect on the overall forces experienced by the vehicle.

2.4 CubeSat Aerodynamics

Figure 2.1 shows the side view of the CubeSat analyzed in this work. The normal and shear pressures

integrate over each face to produce forces. These forces then act around the center of gravity, producing a
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Table 2.4: Pressure and Shear values from S&C and DSMC
S&C DSMC % Difference

Normal Pressure (Front, Pa) 0.206 0.207 0.48
Shear Pressure (Front, Pa) 0.0143 0.0106 30
Normal Pressure (Top, Pa) 0.0024 0.00118 68
Shear Pressure (Top, Pa) 0.0143 0.0103 33
Normal Pressure (Side, Pa) 2.79e-04 0.00 N/A
Shear Pressure (Side, Pa) 0.0027 0.002717 0.63
Total drag pressure (Pa) 0.24 0.23 3.5

Table 2.5: Flight conditions for S&C comparison with SPARTA

Velocity Equivalent Altitude Accommodation Co-
efficients

Wall Temperature

8000 m/s 150 km 0.9 300 K

Gas Ratio of Specific
Heats

Angle of Attack Sideslip Angle

Argon 1.66 -5o 0o

torque. The shadowed region in the image is an artifact of the hypersonic assumptions inherent to the analysis

[19]. Because the vehicle is moving so fast through the rarefied atmosphere, the area immediately behind it

is functionally a vacuum, and thus provides no contribution to the pressures acting on the spacecraft.

Figure 2.1: Sideview of CubeSat showing the normal and shear pressures acting on the spacecraft, as well
as the resultant torque about the center of gravity (cg). Not shown: pressures on side face.

This shadowed region allows this CubeSat to be approximated as only three flat plates: A front/back

plate, top/bottom plate, and left/right side plate. In trimmed flight, the front of the CubeSat is exposed to

the flow, while the back plate is completely covered. Additionally for this case, the top/bottom and left/right

side plates are in equilibrium which cancels out any resultant forces or moments arising from them. As the

CubeSat pitches upward from trim it exposes the bottom plate to the flow while shadowing the top, and vice
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versa if it pitches downward from trim. This work has only concerned itself with the 1-dimensional rotation

of the spacecraft about its pitch axis, so the left/right side plates are always in their equilibrium state.

The position of the center of gravity (cg) has great importance on the stability of a vehicle due to the

slope of the pitching-moment curve, as shown in Figure 2.2. In general, a negative slope of pitching moment

coefficient with respect to angle of attack indicates a stable configuration [20]. As the vehicle pitches upward

(positive angle of attack) a negative torque is produced, causing the vehicle to pitch back down. The inverse

is true of a positive slope – an upward pitch creates a positive torque which further pitches the spacecraft

upward.

To create a negative sloping pitching moment curve, the cg must be placed fore of the neutral point,

which is the point on the vehicle around which all aerodynamic moments sum to zero. For the CubeSat

case, the neutral point is located at the geometric center of the spacecraft.

Figure 2.2: Pitching moment coefficient vs. angle of attack for various cg positions

An intuitive explanation for the effects of the cg position on the stability of the spacecraft can be made

using a single flat plate. Figure 2.3 shows a flat plate with cg offset toward the front of the spacecraft . The

total force on the fore and aft sections is a function of the pressures, which are the same across the entire

flat plate, and the areas, which are unequal. For this case, the force fore of the cg is smaller than that aft of

the cg. Similarly, the moment arm about which the force produces a torque is different for the fore and aft
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cases. The larger aft force produces a large negative torque, while the smaller fore force produces a smaller

positive torque. The net result is a negative torque for a positive angle of attack. The net torque modeled

on the vehicle is described by

Taero = sgn(α)
[cgx2

2L
pBAB −

(L− cgx)2

2L
pBAB + cgxτFAF − cgyτBAB

]
where Taero is the aerodynamic torque in the pitch axis, sgn(α) is the sign of the angle of attack, cgx is

the distance between the front plate and the center of gravity, cgy is the distance between the bottom plate

and the center of gravity, L is the overall length of the spacecraft, pB is the normal pressure on the bottom

of the spacecraft, τF is the shear pressure on the front of the spacecraft, and τB is the shear pressure on the

bottom of the spacecraft.

Figure 2.3: Demonstration of relative torques arising from cg offset.

2.5 Moment of Inertia & Center of Gravity

The moment of inertia (MOI) of a vehicle describes how resistant it is to rotational accelerations, and is

therefore an important parameter in stablity analysis. The development of the MOI for a physical vehicle

is determined by the position of each component within the vehicle, and is beyond the scope of this work.

A more simple model is instead used in which a point mass of variable mass is modeled in the nose of the

vehicle, which is modeled as a solid rectangular prism. The derivation is as follows

mpt = mtot(1− 2
x

L
)

mrect = mtot −mpt

Ipt = mpt

(L
2

)2
Irect = mrect

(L2 +H2)

12
+mrect

(
L
(1

2
− x

L

))2
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Iyy = Irect + Ipt

where mpt is the mass of the point in the nose of the vehicle, x is the position of the cg measured from

the nose, mtot is the total mass of the vehicle, mrect is the mass of the rectangular prism, L is the length

of the vehicle, H is the height of the vehicle, Ipt is the moment of inertia of the point mass measured from

the cg, Irect is the moment of inertia of the rectangular prism measured from the cg using the parallel axis

theorem, and Iyy is the total moment of inertia of the system.

The mass of the point mass/prism pair is held constant while the relative masses are changed to ac-

commodate different MOIs and cg positions. Figure 2.4 shows the dependence on the MOI on the the cg

position. A cg closer to the neutral point has the effect of decreasing the MOI.

Figure 2.4: Moment of Inertia vs. cg position for a 3U CubeSat

2.6 Atmospheric Models

This work uses the MSIS-E-90 (Mass Spectrometer and Incoherent Scatter Radar - Exosphere) Atmosphere

Model to simulate the conditions of the atmosphere at altitude[21]. This model is able to estimate the

total mass density, neutral temperature, and individual molecule number density as a function of altitude

between 0 and 1,000 km. For this work, the mass density and neutral temperatures were queried for the

date of January 1, 2000, as shown in Figure 2.5
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Figure 2.5: Atmospheric density and neutral temperature vs. altitude based on MSIS-E-90

2.7 Attitude Dynamic Simulation

The CubeSat is modeled as three orthogonal flat plates arranged around a center of gravity, orbiting around

the Earth in an inverse-square gravity field. The simulations are circular orbits between altitudes of 80 km

and 200 km.

The state of the CubeSat is the 13× 1 vector

[Y]T = [rT ,vT , q0, q
T , ωT ]

with the dynamics modeled for the CubeSat described by the 13× 1 vector

[Ẏ] =



ṙ

v̇

q̇0

q̇

ω


=



v

−−µrr3

1
2ω

T q0

1
2 (ωq0 − ω̂q)

I−1τ − I−1ω̂Iω


where r is the radius vector in inertial space, r is the magnitude of the radius vector, v is the velocity

vector in inertial space, µ is the gravitational parameter of Earth, q0 and q form the CubeSat’s rotation

quaternion Q = [q0,q]T , ω is the angular velocity of the CubeSat, and I is the moment of inertia matrix for

the CubeSat. The torque τ is a function of the aerodynamics of the vehicle and any onboard control used

by the vehicle. The hat modifier over ω̂ indicates the cross product matrix
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ω̂ =


0 −ω3 ω2

ω3 0 ω1

−ω2 ω1 0


The aerodynamics of the vehicle depend on the vehicle’s current angle of attack, α, which is itself

dependent on the vehicle’s position, velocity, and attitude in inertial space. Multiple frames of reference are

used to develop the body-fixed orientation of the vehicle [22, 23]. The basis of this analysis is an Earth-

Centered Inertial (ECI) frame. A Local-Vertical-Local-Horizontal (LVLH) frame is then used to provide

a reference for the flight path angle, γ, of the vehicle. The flight path angle is then used to develop a

Wind frame which is rotated around the y-axis of the LVLH frame by γ. The body-fixed frame is found by

sequentially rotating around the x, z, and y axes of the wind frame by the bank angle σ, sideslip β, and

angle of attack α, respectively.

The dynamics are then simulated using the Runge-Kutta 4 method based on initial conditions.

2.8 Anticipated Mission Profile

This work anticipates a mission profile consisting of multiple phases. The CubeSat will be deployed after a

rideshare into a nearly-circular orbit of some altitude above the Earth. The CubeSat cannot be assumed to

be in a nose-forward, trimmed attitude upon deployment. This is expressed in the simulation in 1-D as an

initial angle of attack.
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Chapter 3

Uncontrolled Motion of CubeSat

3.1 Lack of Aerodynamic Damping

Due to the high-speed, rarefied nature of the flow with which the vehicle is interacting, there is limited,

if any, aerodynamic damping that occurs. Figure 3.1 shows the angle of attack versus time for conditions

summarized in Table 3.1.

Figure 3.1: Angle of Attack vs. Fraction of Orbit for a vehicle with cg position of 30% spacecraft length, no
control

Table 3.1: Conditions for simulation
Altitude α0 α̇0 Cg position Control
150 km 45o 0o/s 30% from nose kd = kp = 0

The rarefied nature of the flow causes a lack of dissipative, viscous forces acting against the motion of

the vehicle[7]. Similarly, the immense speed limits the relative angle of attack of the various portions of the

vehicle, as shown in Figure 3.2 [12]. At a freestream velocity of 7.8 km/s, which corresponds to a circular
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orbit of 150 km altitude, a pitch rate of 5o/s corresponds to an angle of attack difference between the nose

and center of mass of roughly 6 × 10−5 o. Pitch rates much above 5o/s are difficult for CubeSat attitude

determination and control (ADCS) systems to effectively manage.

Figure 3.2: The rotation rate of the vehicle induces a relative velocity at the tips of the vehicle. This creates
a miniscule difference in angle of attack.

3.2 Dependence on Altitude

The atmosphere becomes more dense as the vehicle descends, and the magnitude of the aerodynamic effects

increases accordingly. Between 80 and 200 km altitude, the density of the atmosphere varies from 1.5×10−5

kg/m2 to 3.1 × 10−10 kg/m2, or a factor of nearly 46,000. Figure 3.3 shows the resultant frequency of

oscillation for a CubeSat beginning at 45o angle of attack. These cases are considered without the inclusion

of control. As the spacecraft descends in the atmosphere, the density of the atmosphere increases and so

does the magnitude of the restorative torque. This in turn has the effect of increasing the frequency of

oscillation of the CubeSat around its trim point.

A curious artifact appears best in the 150 km and 200 km cases shown in Figure 3.4. At the beginning of

the simulation, the vehicle is at an angle of attack of 45o and a pitch rate of 0o/s relative to inertial space.

As the orbital motion of the vehicle brings it around the Earth, it initially maintains its inertial orientation,

but has a rotation rate relative to the horizon. This causes the effective angle of attack to increase, up to

roughly 60o in the case of the 200 km orbit. As the effect of the aerodynamic torque accelerates the vehicle

into a spin, it effectively reaches a higher maximum angle of attack than it started at, causing it to maintain

a higher amplitude of oscillation than initially assumed.

3.3 Dependence on Cg Position

A secondary inference from Figure 3.4 is the relation between cg position and the frequency of oscillation

of the vehicle about its trim point. For the cases considered, cg position of 10% of the spacecraft length
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Figure 3.3: The effect of reduced altitude is a higher frequency of oscillation. α0 = 45o.

produces the highest-frequency oscillations, while a cg position of 45% produces the lowest-frequency, and

appears to have the same lagging effect as the high-altitude cases mentioned previously.

This work does not include analysis of a vehicle with cg at 50% of spacecraft length. This is due the

difficulties related to modeling such a case. Because the torque calculated by the simulation of the vehicle

is related to the offset of the cg from the neutral point, a case with cg coincident with neutral point leads

to zero torque produced for any angle of attack, and thus a vehicle that maintains its initial state for the

entire simulation. This is a nonphysical result: small disturbances in the flow would produce unpredictable

torques on the spacecraft, causing it to tumble.

Figure 3.5 demonstrates the effect of placing the cg behind the neutral point. For a cg at 55% or 70%

of the spacecraft length, the initial torque is positive, creating a rotational acceleration which pushes the

vehicle further from 0o angle of attack.

3.4 ”Zero-Zero” performance

A simulation is considered in which the vehicle begins at 0o angle of attack and 0o/s angle of attack rate.

Figure 3.6 shows this case. As discussed before, there exists an induced angle of attack due to the orbital

motion of the vehicle. In this case, the magnitude of the oscillations is roughly 12o at 200 km altitude.

An important realization from this particular analysis is the fact that the oscillations produced by the

natural motion of the vehicle may not require any active control to maintain. In the 150 km case, the

amplitude of the oscillations from the zero-zero initial state is roughly 2o, which is within the pointing

14



Figure 3.4: The effect of reduced altitude is a higher frequency of oscillation. α0 = 45o.

requirements for some missions [3]. This implies that a vehicle only need trim itself to a small enough

angle of attack magnitude and rate to maintain pointing requirements during the transit deeper into the

atmosphere. If the vehicle is trimmed, its oscillations will not grow in magnitude beyond what they originate

at.
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Figure 3.5: The effect of a cg placed behind the neutral point is to oscillate around 180o angle of attack.
α0 = 45o, alt = 150 km.

Figure 3.6: A vehicle beginning at α0 = 0o and α̇0 = 0o/s. cg = 30%.
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Chapter 4

Controlled Motion of CubeSat

4.1 Methods of Sensing and Control

Any closed-loop control of a system requires sensing to determine the required control input. For space

vehicles, attitude determination can be performed by a wide variety of possible instruments, including

inertial measurement units (IMUs), magnetometers, and star trackers[24]. For atmospheric probes, it is also

possible to use a collection of pressure ports to determine the angle of attack of the vehicle relative to the

flow [25]. CubeSats often do not have the mass, power, or budget available to use higher-end equipment

such as star trackers. Instead, they are often equipped with IMUs and magnetometers, which are relatively

inexpensive. The drawback of using an IMU is that it senses accelerations and integrates them to determine

velocity and position, which may lead to inaccuracies in the anticipated values [26].

CubeSat attitude control often comes in the form of magnetorquers or reaction wheels. Magnetorquers

are generally less expensive than reaction wheels, but rely on the Earth’s magnetic field to operate, and have

limitations on available torque magnitude and direction based on the CubeSat’s position around the Earth.

Reaction wheels have no such limitations, but are often bulky and expensive.

For this analysis, it was assumed that the CubeSat would be equipped with an IMU to measure body-

fixed rotational rates and a set of pressure ports capable of rapidly determining angle of attack. Additionally,

it was assumed that the CubeSat was equipped with a reaction wheel to perform control. Further analysis

will be required to implement magnetorquing capability.

4.2 Active Control

While the onboard control of CubeSats and Smallsats is often too weak to affect considerable change at

lower altitudes, it may still be used to provide rate damping to the motion of the vehicle. Figure 4.1 shows

a case with the same initial conditions as Figure 3.1 but with the inclusion of control on the pitch axis of

angular velocity. This effectively acts as a derivative controller on the angle of attack, damping the motion
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over the course of the orbit.

It is important to note that the control used has been neither tuned nor optimized; the challenge of

gain scheduling as a function of altitude is not the focus of this work. Additionally, this control assumes a

maximum control effort of 1× 10−5 N-m of torque acting on the vehicle. This is approximately half of the

maximum magnitude expected from the magnetorquing control system onboard the IlliniSat-2 Bus. The

half-factor is a conservative assumption to account for the lack of useful control authority of the control

system during portions of an inclined orbit.

Figure 4.1: Angle of Attack vs. Fraction of Orbit for a vehicle with cg position of 30% spacecraft length,
controlled damping

Table 4.1: Conditions for simulation
Altitude α0 α̇0 Cg position Control
150 km 45o 0o/s 30% from nose kd = 1e− 4, kp = 0

4.3 Considerations of damping time

It is desirable for a vehicle to dissipate its oscillatory motion as rapidly as possible, to provide the mission

a maximum amount of time in a science-collection attitude. The variables available to mission designers

include the overall pointing requirement, the altitude altitude at which the dissipation occurs, the overall

mass of the CubeSat, and the cg position within the CubeSat.

Figure 4.2 shows the required torque magnitude versus desired time to threshold for various desired
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pointing requirements, for a CubeSat at 150 km with a cg position of 30% of spacecraft length. It is

unsurprising to note that less-stringent pointing requirements are met with less required torque for the

same time to threshold. From this analysis, it appears that the difference between a 10o and a 2o pointing

requirement, for the same torque magnitude, is on the order of 500 seconds. For a 150 km altitude orbit,

the period is approximately 5,300 seconds (87.5 minutes), meaning that at this altitude even the 1 × 10−5

N-m case is able to damp the motion in one orbit.

Figure 4.2: Required torque magnitude vs. desired damping time for various pointing accuracy requirements,
h = 150 km, cg @ 30%.

Figure 4.3 shows the same torque vs. time curve as above for various altitudes, when considering a

CubeSat with 30% cg position and pointing requirement of 5o. It appears there is almost no correlation

between the altitude at which the dissipative action occurs and the time required to perform the maneuver.

Therefore there is no altitude dependence on when the vehicle’s motion is easier to damp, so it should occur

as soon as possible in the mission profile to maximize the time spent in science collection attitude.

Figure 4.4 shows the effect of changing the cg position on the torque vs time curve. A further-aft cg

position appears to ease the torque required for a set time to threshold. This is likely due to the decreased

amplitude of torque on the spacecraft, causing the CubeSat to have a slower oscillation. Similarly, Figure

4.5 shows that a decreased total mass of the system decreases the required torque amplitude. This is likely

due to the decreased moment of inertia of the spacecraft allowing the control system to accelerate the vehicle

more readily. Because CubeSats are already so mass-constrained, this is an unfortunate finding.
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Figure 4.3: Required torque magnitude vs. desired damping time for various altitudes, threshold = 5o, cg
@ 30%.

4.4 Noncircular Orbits

A CubeSat atmospheric probe will not likely be placed on a circular orbit upon jettison from its host.

The effect of a noncircular orbit is a time-varying atmospheric density and velocity, and thus a changing

magnitude of aerodynamic forces. These effects must be analyzed to ensure they will not adversely affect a

mission.

Figure 4.6 shows the angle of attack and altitude time history for an uncontrolled CubeSat in a 150 x 200

km altitude orbit, initial angle of attack of 45o, and cg position of 30% spacecraft length. The oscillations

begin in the 150 km region, and appear to stay in the initial range for the first half-wavelength of the

oscillation. However, as the CubeSat rises in altitude, and correspondingly the aerodynamic forces decrease,

it experiences a decreased restorative torque as it swings upward past trim. This reduced torque causes it

to overshoot the initial angle of attack, up to nearly 80o. It then begins swinging back down to trim as it

begins lowering in altitude. The descending altitude again increases the magnitude of the aerodynamic forces,

causing the restorative torque to increase as the CubeSat swings below trim again, causing its maximum

angle of attack to reduce back to roughly its initial amplitude. This trend then continues for the next few

orbits, indicating this is a stable oscillation.

Adding control to this noncircular orbit behaves similarly to the circular orbit cases, wherein the os-

cillatory motion is damped within an orbit, as seen in Figure 4.7. However, there is a sensitivity to the

eccentricity of the orbit, as shown in Figure 4.8. The same control gain is used in this case as in Figure
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Figure 4.4: Required torque magnitude vs. desired damping time for various cg positions, threshold = 5o,
h = 150 km.

4.7, however the CubeSat rises to a much higher altitude in this case. The CubeSat enters into a situation

where the local aerodynamics are much less than the available torquing capability, causing it to overpower

the aerodynamics and reach a nearly stationary condition at approximately 25o. It then moves deeper into

the atmosphere again and moves closer to the trim condition, beginning a trend of ringing followed by a

gentle rise, followed by more ringing. This undesirable behavior would be alleviated by gain scheduling.
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Figure 4.5: Required torque magnitude vs. desired damping time for various total masses, threshold = 5o,
h = 150 km, cg @ 30%.

Figure 4.6: Time history of Angle of Attack and altitude for a noncircular orbit without control. α0 = 45o,
cg @ 30%
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Figure 4.7: Time history of Angle of Attack and altitude for a noncircular orbit with control. α0 = 45o, cg
@ 30%, kd = 1× 10−4

Figure 4.8: Time history of Angle of Attack and altitude for a noncircular orbit with control, but with a
higher apoapsis. α0 = 45o, cg @ 30%, kd = 1× 10−4
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Chapter 5

Conclusions

This thesis presents analysis concerning the aerodynamic stability of a 3-U CubeSat in high-speed rarefied

flow. The effects of the atmosphere may begin to overpower the control authority of a CubeSat as it descends

below 200 km altitude. It is important that the vehicle be aerodynamically stable in this regime of flight to

prevent premature mission termination.

A center of gravity of the vehicle that is fore of the neutral point provides a negative pitching moment

coefficient. This leads to a restorative torque being created, causing the vehicle to oscillate around its trim

point. There is a lack of appreciable aerodynamic damping in this high-speed, rarefied flow due to the lack

of viscous forces and the minuscule effect of angular rate on the local angle of attack. A simple derivative

control scheme using the vehicle’s control system can serve to damp out oscillations on timescales less than

a single orbit.

The density of the atmosphere increases as the vehicle descends in altitude, leading to increased aerody-

namic forces and therefore increased resultant angular rates. Similarly, a further-fore cg position creates a

larger torque for a similar state. This larger torque is balanced by the slightly increased moment of inertia,

but the net effect is larger angular rates. Cg positions aft of the neutral point cause the trim condition to

be an angle of attack of 180o, which is an undesirable effect.

A vehicle at zero angle of attack and zero angular rate will have an induced angle of attack which then

causes a small oscillation around the trim point. This induced motion is larger in amplitude at higher

altitudes due to the lower torques produced by the atmosphere. At lower altitudes, this small natural

oscillation is on the order of common pointing requirements, leading to the possibility of switching the

control system off during this condition.

General trends are inferred from the data available. High torque capability mixed with a moderately-

forward cg position leads to a stable vehicle with minimal required time to damp oscillations to a specified

threshold. The altitude at which this control occurs does not affect the time required, so active control

should be performed as soon as possible from a mission design perspective. Higher-mass systems appear

to require more torque capability to damp in similar times. Non-circular orbits complicate the motion and
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required control scheme of the vehicle, but do not appear to adversely affect the motion of the vehicle more

than circular orbits.
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