
c© 2018 Christopher Kozuch



IMPACT OF MICROSTRUCTURAL PARAMETERS ON TOPOLOGY
OPTIMIZATION OF STRUCTURES MADE OF COMPOSITES WITH

ELLIPTICAL INCLUSIONS

BY

CHRISTOPHER KOZUCH

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Theoretical and Applied Mechanics

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Professor Iwona Jasiuk



ABSTRACT

This thesis seeks to determine the relationship between the parameters that

define microstructures composed of a matrix with periodic elliptical inclu-

sions and the macroscopic shapes obtained using structural topology opti-

mization. Stiffness properties for a range of microstructures were obtained

computationally through homogenization, and these properties were used to

conduct topology optimization on two canonical structural problems. Effec-

tiveness was evaluated on the basis of final total strain energy when compared

to a reference configuration. Local minima were found for the two structural

problems and various microstructure configurations, indicating that the mi-

crostructure of composites with elliptical inclusions can be fine-tuned for

topology optimization. For example, when making a cantilever beam from

a material with soft, horizontal inclusions, ensuring that the aspect ratio of

the inclusions is 2.25 will yield the best result after topology optimization

is applied. Optimality criteria such as this have important implications in

composite component design.
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CHAPTER 1

INTRODUCTION

Composites have long been an area of major interest, and there is widespread

adoption in industry [1]. In addition to notable products such as the Boeing

787 Dreamliner and McLaren 570S, composites are being used in a wide

range of aerospace, marine, energy, and infrastructure applications, to name

a few [2–4]. They are often noted for their superior strength to weight ratios,

corrosion resistance, and in some cases, high durability.

However, the term composites encompasses an enormous range of mate-

rials, from light carbon fiber polymer matrix composites to high strength

metal matrix composites. This thesis focuses on composites that can be rep-

resented in two dimensions (2D) and contain elliptical inclusions. Ellipsoidal

inclusions, which include elliptical inclusions as a limit case, have been widely

used in material science and mechanics of materials, from Eshelby’s seminal

1957 paper [5] and Hill’s 1965 paper [6] to more recent applications with

finite element analysis [7] and nanostructures [8]. This is due, in part, to

the fact that ellipsoidal (or elliptical) inclusions can represent a wide array

of composite materials, including particulate composites and fiber reinforced

composites.

As such, composites that can be represented in this manner are found

in a variety of fields. Bortot et al. investigated composites with ellipsoidal

inclusions as soft electric circuits [9]. Wang demonstrated the relationship

between elliptical fibers and the thermo-electric properties of a composite

[10]. Saadat et al. showed how composites with ellipsoidal inclusions could be

used to form attachments between tendon and bone [11]. Other applications

include magnetics and heat transfer [12–14].

Because there is such a wide field of applications for these materials, de-

signers are often confronted with the challenge of incorporating them into

components. This has driven a need for advanced design tools. As a result,

many product developers have turned to topology optimization [15]. Topol-
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ogy optimization is a mathematical method for determining optimal surfaces

or boundaries for given boundary conditions and optimization criteria. It can

be used to optimize a number of physical aspects, including heat transfer,

fluid flow, and acoustics, but topology optimization is most commonly used

to develop products with optimal structural integrity [16].

Many of the common topology optimization methods have assumed ho-

mogeneous and isotropic material properties [16], and this is sufficient for

many applications that use metals, polymers, or ceramics, but some have

recognized that a more careful consideration of the microstructure is cru-

cial to advanced design. Several methods have been developed to opti-

mize not only the macrostructure of a component, but the microstructure

as well [17, 18]. These approaches depend on inverse homogenization, which

is a mathematical method for obtaining the microstructural design that most

closely achieves a target stiffness [19].

While inverse homogenization can be extremely effective, it produces de-

signs that are often impractical to implement at the desired length scale.

For this reason, the following analysis will focus on the optimization of both

the macrostructure and microstructure of a component, but with the ad-

ditional constraint that the microstructure must be composed of elliptical

inclusions. As stated above, such materials have a range of powerful ap-

plications. Additionally, recent improvements in advanced manufacturing

techniques, specifically additive manufacturing, have allowed manufacturers

to not only create complex macrostructures, but they are now able to also

adjust some of the parameters that define the microstructure, such as the

shape of the inclusions [20–23].

The overall objective of this thesis is to develop a novel understanding

of the relationship between the parameters that define the microstructure

of composites with elliptical inclusions and the resulting structural shapes

obtained by topology optimization. It is hoped that this new approach will

allow designers to apply topology optimization to such materials and struc-

tures in a more efficient and potent manner.
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CHAPTER 2

PROBLEM DEFINITION

2.1 Microstructure

An evaluation of the impact of microstructural parameters must first begin

with a definition of the microstructural model. Figure 2.1 shows the model

and associated parameters. All analysis was confined to two dimensions

using the plane stress assumption to increase computational efficiency. The

ellipse was embedded in a unit cell matrix, and the geometry of the ellipse

was defined by its semi-major axis, a, semi-minor axis, b, and the angle, θ,

between the semi-major axis and the horizontal. Additionally, the volume

fraction of the inclusion was set to 15% for all scenarios for better comparison

between different trials. The value of 15% was chosen as a compromise

between inclusion contribution and aspect ratio range because initial testing

showed that lower values tended to reduce the contribution of the ellipse

below the observable threshold and higher values caused inclusions with high

aspect ratios to exceed the bounds of the unit cell.

A range of 25 angles and 25 aspect ratios were studied. The angles were

equally spaced between 0 and π, and the aspect ratios were evenly distributed

between 1 and 4.7255. The upper limit for the aspect ratios was chosen

to prevent any interaction between the boundaries of the unit cell and the

inclusion given the aforementioned volume fraction. The semi-major and

semi-minor axis lengths were calculated from the aspect ratio and volume

fraction using Equation (2.1) and Equation (2.2). Here, ζ is the aspect ratio

(i.e. ζ = a/b), and κ is the inclusion volume fraction.

a =

√
κζ

π
(2.1)
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a
b θ

E2, ν2

E1, ν1

Figure 2.1: A unit cell model of a composite with a periodic arrangement of
elliptical holes.

b =

√
κ

πζ
(2.2)

Both the inclusion and the matrix are assumed to be linear elastic, homo-

geneous, and isotropic. As such, the elastic properties of each are defined

by their elastic modulus and Poisson’s ratio. All further references to prop-

erties of the matrix will be marked with a subscript of 1 while properties

of the inclusion will be marked with a subscript of 2. Two scenarios were

considered. In the first, the inclusion is stiffer than the matrix by a factor of

ten (E1/E2 = 0.1). In the second, the inclusion is softer than the matrix by

a factor of ten (E1/E2 = 10). The Poisson’s ratio was set to 0.33 for both

materials in both scenarios.

2.2 Macrostructure

In addition to the microstructural model, the macro-scale boundary condi-

tions used in the finite element analysis for the topology optimization must

be defined. Two canonical topology optimization problems were chosen.

The first, which is shown in Figure 2.2, is the Messerschmitt-Bolkow-Blohm

(MBB) beam. This is composed of a rectangular domain that is pinned at

both bottom corners and subjected to a vertical load at the center of the top

edge [24]. Since the problem is symmetric, the domain size can be reduced

by replacing the left half with rollers at the center, as shown in Figure 2.3.
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F

MBB Beam

Figure 2.2: MBB beam boundary condition definition

F

Half-MBB Beam

Figure 2.3: Half-MBB beam boundary condition definition

The second problem, which is shown in Figure 2.4, is a cantilever beam. This

consists of rectangular domain which is fixed on the left and has a load on the

center of the right. Both of these problems are used widely in the verification

of topology optimization techniques [25–27].

Additionally, both cases have a horizontal length of 200 unit cells and a

vertical height of 100 unit cells. Each cell will be represented by one element

in the finite element model, and each one of those elements will have the

stiffness that corresponds to the microstructure configuration. Finally, both

the half-MBB beam and cantilever beam problems will be subject to a load

with unity magnitude. Ultimately, the load magnitude is irrelevant since the

topology optimization results will be insensitive to it. The reasons for this

will become clear in Section 3.2.

F
Cantilever Beam

Figure 2.4: Cantilever beam boundary condition definition
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CHAPTER 3

METHODS

The analysis process is composed of three primary steps. First, homogeniza-

tion is used to compute the effective stiffness tensor of the microstructural

unit cell defined by a, b, θ, E1, E2, ν1, and ν2. As stated above, a finite

element model with either half-MBB beam or cantilever beam boundary

conditions is then created with each cell taking on the stiffness tensor pro-

duced in the previous step. Finally, topology optimization is carried out on

the finite element model.

3.1 Homogenization

In order to perform homogenization, the microstructural model first has to

be converted into a binary map. The domain is divided into a grid with 200

nodes along both axes. At each node point, the function for a rotated ellipse,

which is shown in Equation (3.1), is evaluated. Nodes where V is found to

be less than 1 are assigned a value of 2 to indicate that they lie inside the

ellipse, and therefore represent the inclusion. All other nodes are assigned a

value of 1 to indicate that they lie outside the ellipse, and therefore represent

the matrix. The binary map and corresponding material properties are then

input into the homogenization algorithm.

V =

(
x cos θ + y sin θ

a

)2

+

(
x sin θ − y cos θ

b

)2

(3.1)

Methods for homogenization date back to the 1970s [28–30], and a multi-

tude of approaches have been developed since then. The method known as

asymptotic homogenization has emerged as an industry standard, especially

for numerical applications [31–33]. This type of homogenization involves sev-

eral assumptions: (i) the microstructure is periodic, (ii) the materials that
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compose the microstructure are perfectly bonded, and (iii) there is a clear

separation of length scales [34]. Often, there is criticism that accurate homog-

enization requires extreme separations of scale, but the technique has shown

to be effective even when the length scales have reasonable separation [35].

Additionally, homogenization is often used in tandem with topology opti-

mization [36–38].

The homogenization algorithm employed for the following analysis was

adapted from [39], and a summary of the equations that were presented

therein are provided below. The process is relatively straightforward. Pre-

scribed strains, ε
0(ij)
pq , are applied under periodic boundary conditions and the

resulting displacement fields, u(kl), are determined by solving Equation (3.2)

via the finite element method. Here, Cijpq denotes the local stiffness ten-

sor, φ denotes the virtual displacement, and Equation (3.3) gives the strain

definition.

∫
V

Cijpqεij(φ)εpq(u
(kl))dV =

∫
V

Cijpqεij(φ)ε0(kl)pq dV ∀φ ∈ V (3.2)

ε(ij)pq = εpq
(
u(ij)

)
=

1

2

(
u(ij)p,q + u(ij)q,p

)
(3.3)

The homogenized stiffness tensor, CH
ijkl, is then computed using Equa-

tion (3.4). For a 2D system using the assumptions listed in Chapter 2, this

produces a 3x3 tensor.

CH
ijkl =

1

|V |

∫
V

Cpqrs
(
ε0(ij)pq − ε(ij)pq

) (
ε0(kl)rs − ε(kl)rs

)
dV (3.4)

For the 2D case of plane stress, the local stiffness tensor, which we will

now denote as Q to make the distinction between the 2D and 3D cases, can

be computed from the Lamé constants using Equation (3.5). Here, λ is the

first Lamé constant and µ is the second Lamé constant.

Q = λ

1 1 0

1 1 0

0 0 0

+ µ

2 0 0

0 2 0

0 0 1

 (3.5)

Since the elastic properties were defined using the elastic modulus and

Poisson’s ratio, Equations (3.6) and (3.7) give the relationship between these
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and the Lamé constants. Please note that for the plane stress case, the first

Lamé constant must be modified as shown in Equation (3.8).

λ =
νE

(1 + ν)(1− 2ν)
(3.6)

µ =
E

2(1 + ν)
(3.7)

λ̂ =
2µλ

λ+ 2µ
(3.8)

All computations for the generation of the binary map and the execution

of the homogenization method were carried out in Matlab, as in [39].

3.1.1 Stiffness Tensor Rotation

While it is simple to compute the homogenized stiffness tensor for each value

of θ, it is more computationally efficient to simply rotate the stiffness tensor

obtained from the homogenization where θ = 0 by the desired amount. Let

m = cos θ and n = sin θ. Then the rotated stiffness tensor is given by

Equation (3.9).

Qrot =

m
2 n2 −2mn

n2 m2 2mn

mn −mn m2 − n2

Q

 m2 n2 mn

n2 m2 −mn
−2mn 2mn m2 − n2

 (3.9)

3.2 Topology Optimization

As stated in Chapter 1, topology optimization seeks the surface or boundary

that minimizes a certain quantity, which is structural compliance in our case.

Since compliance is the inverse of stiffness, this should produce a component

with the maximum stiffness. A volume or mass target is also applied to

the optimization process to bound the design space. There is a plethora

of methods for achieving this, many of which are outlined in [40]. Most

methods fall into one of three categories: (i) density based, (ii) discrete, and

(iii) boundary variation.
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Density based methods use the density at nodes or elements of a mesh as

the design variables. Varying the density between 0 and 1 at these points

serves to scale the physical properties at those points. The amount of varia-

tion is usually based on the sensitivity of the physical response of the design.

Filters are also used to remove checker-boarding patterns that can arise [41].

The final design is usually extracted by placing an isosurface at a particular

density value (often 0.5). While these methods are sometimes criticized for

generating fuzzy design boundaries, they can be extremely efficient, both in

implementation and resource use. The most common density based method

is Solid Isotropic Material with Penalization (SIMP) [16].

In contrast, discrete methods (also known as hard kill methods) assign

either 0 or 1 to the design variables to indicate void or material, respec-

tively. However, like density based methods, checker-boarding can arise,

so additional steps must be taken to combat this [42]. A key advantage

of discrete methods is that they do not have fuzzy boundaries like density

based methods, but they are heuristic formulations that do not guarantee

an optimal design and can fail in some cases [43]. Common methods include

Evolutionary Structural Optimization (ESO) and Bidirectional Evolutionary

Structural Optimization (BESO). The primary difference between ESO and

BESO is that ESO only removes material while BESO can both add and

remove material [16].

Boundary variation methods are the most recent major addition to the

topology optimization field. Instead of depending on a mesh of design vari-

ables like the previously discussed methods, boundary variation methods are

based on implicit functions that define the boundary of the design. These

methods are often confused with shape optimization, but they are distinct in

the fact that they allow for the formation and destruction of voids. Boundary

variation methods also have the advantage of producing well defined designs

with crisp boundaries, but they can be resource intensive and highly depen-

dent on the initial design guess [44]. The two most common boundary varia-

tion methods are the Level-Set Method and the Phase-Field Method [45,46].

It is clear that there are advantages and disadvantages to each class of

method. Since the following analysis will demand high computational re-

sources, the resource efficiency of the SIMP method made it the most advan-

tageous method for this application. Similar investigations have also used this

method [37, 47]. To keep the implementation standardized and efficient, the
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authors have adapted the highly optimized algorithm presented in [48], which

assumes isotropic material, to handle anisotropic materials. The method and

equations presented in [48] are summarized below.

Equation (3.10) shows the formal definition for the optimization problem

using a meshed domain. For this application, x are the element density

values, Ψ(x) is the total compliance and f is the target volume fraction. K,

U, and F are the stiffness matrix, displacement vector, and forcing vector,

respectively.

min
x

: Ψ(x) = UTKU

subject to : V (x)/V0 = f

KU = F

0 ≤ x ≤ 1

(3.10)

As stated at the beginning of Chapter 3, the topology optimization method

is applied to a finite element model where the boundary conditions are given

by chosen loading problem and the stiffness of each element is described by

the tensor produced by the homogenization process. In the SIMP method,

an exponential penalization parameter, p, is used to produce a scaling factor,

αe, for each element based on the density of that element, as shown in Equa-

tion (3.12). Here, α0 corresponds to a solid element, and is given a value of

1 while αmin corresponds to a void element, and is given a very small, but

non-zero value to avoid singularities. For this application, αmin was set to

1 × 10−9 and p was set 3. This scaling factor is computed for each element

and then used to update the overall stiffness matrix.

Q̂e = α(xe)Q (3.11)

αe(xe) = αmin + xpe(α0 − αmin) (3.12)

Since the density, xe, is also the design variable, it requires an update

scheme. The update scheme uses a simple move limiter, m, and numerical

damper, η, as shown in Equation (3.13), but is effectively a function of the

sensitivity. The sensitivity is computed using Equation (3.14), where ξ is the

Lagrange multiplier used to enforce the volume fraction requirement from
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Equation (3.10). For this application, m was chosen to be 0.2 and η was set

to 0.5, as suggested by [48].

xnewe =


max(0, xe −m), xeB

η
e ≤ max(0, xe −m)

min(1, xe +m), xeB
η
e ≥ min(1, xe +m)

xeB
η
e , otherwise

(3.13)

Be =
−∂Ψ/∂xe
ξ(∂V/∂xe)

(3.14)

∂Ψ/∂xe = −px(p−1)e (α0 − αmin)UT
eKeUe (3.15)

∂V/∂xe = 1 (3.16)

To avoid checker-boarding, sensitivity based filtering is also performed on

each element using Equation (3.17) and Equation (3.18). Here, γ is a small

number to prevent division by zero, ∆(e, i) is the center-to-center distance

between elements e and i, Ne is the set of all elements for which Hei is

positive, and rmin is the filter radius. The filter radius controls how much

smoothing takes place. A high filter radius will ensure a smooth result, but

may remove small features from the design while the converse is true for a

low filter radius. It is relatively standard to set the filter radius to 1.5 times

the element size, which is what was done here. Following [48], γ was set to

1× 10−3.

∂̂Ψ

∂xe
=

[
max(γ, xe)

∑
i∈Ne

Hei

]−1 ∑
i∈Ne

Heixi
∂Ψ

∂xi
(3.17)

Hei = rmin −∆(e, i) (3.18)

This whole process is iterated over until one of the following two condi-

tions is met: (i) the cumulative change in successive designs that satisfy the

optimization conditions falls below a threshold or (ii) a maximum number

of iterations is reached. Normally, if the latter condition is met, the process

is considered to have failed. As with [48], all computations for the topology

optimization were carried out in Matlab.
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CHAPTER 4

RESULTS AND DISCUSSION

The overall topology optimization computational process is very efficient.

One execution of the combined inclusion generation, homogenization, and

topology optimization process takes about 100 seconds on a standard desktop

computer with a 3.20 GHz processor and 8 GB of RAM. The set of combined

process executions for the different microstructure and boundary condition

parameters described in Chapter 2 were run in parallel using the built-in

Matlab function parfor.

Given the focus on design, the results have been split into two sections. The

first identifies interesting qualitative results concerning specific features of the

resultant designs, while the second provides detailed quantitative analysis.

4.1 Qualitative Analysis

Figure 4.1 shows the resulting binary maps generated for an example set

of stiff inclusions and their corresponding homogenized stiffness tensors. As

expected, the circular inclusion in Figure 4.1a produces a nearly isotropic

tensor (shown in Figure 4.1b) because the inclusion is uniform in all 2D

orientations and has relatively low volume fraction. The tensor is orthotropic,

and not isotropic, because the unit cell is square [49,50]. Figure 4.1c increases

the aspect ratio to 3, which destroys the near isotropy, as evidenced by

the inequality between elements Q11 and Q22 in Figure 4.1d. However, the

symmetry about the central horizontal and vertical axes can still be seen in

the fact that Q13 = Q23 = 0. Finally, Figure 4.1e simply rotates the map seen

in Figure 4.1c by π/4. Again, we see the expected result where Q11 = Q22

and Q13 = Q23 6= 0 in Figure 4.1f.

Figure 4.2 shows the optimized topology for the half-MBB problem when

the microstructure is composed of stiff, thin inclusions. The position of each

12



(a) Binary map for a/b = 1

1.3778 0.4426 0.0000
0.4426 1.3778 0.0000
0.0000 0.0000 0.4510


(b) Stiffness tensor for a/b = 1

(c) Binary map for a/b = 3, θ = 0

1.5882 0.4395 0.0000
0.4395 1.3160 0.0000
0.0000 0.0000 0.4432


(d) Stiffness tensor for a/b = 3,
θ = 0

(e) Binary map for a/b = 3, θ = π/4

1.3869 0.4773 0.0459
0.4773 1.3869 0.0459
0.0459 0.0459 0.4751


(f) Stiffness tensor for a/b = 3,
θ = π/4

Figure 4.1: Stiffness tensor results of the homogenization process for stiff
inclusions
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θ = 0

θ = π /4θ = π /2θ = 3 π /4

E1/E2 = 0.1, a/b = 4.7

θ = π

Figure 4.2: Design results for half-MBB problem

image is arranged to correspond with the angle of the inclusion. As expected,

the designs for θ = 0 and θ = π are identical since they produce identical

inclusion orientations. However, there are clear differences with the other

designs. None of the other designs exhibit the horizontal segment in the

upper left corner (marked by the red circles), but they do form progressively

longer connections with upper edge of the domain as you move from left to

right. This forces the designs in the upper row to have a much steeper right

side than those found in the lower row. A similar effect can be seen in the

results obtained by [51].

Figure 4.3 shows the results for the same microstructures used in Fig-

ure 4.2, but for the cantilever problem. Again, we see that the designs for

θ = 0 and θ = π are identical. What is more interesting is that while all of

the designs share the same basic elements, there are a few points of interest

that move in direct response to the angle of the inclusions. As the dashed

red line indicates, the intersection of the X feature on the left of the designs is

perfectly centered for θ = π/2. However, it is higher for the θ = π/4 design

and lower for the θ = 3π/4 design. In fact, the design for θ = 3π/4 is exactly

equal to design for θ = π/4 if it were reflected about the horizontal center
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line. While one might attribute this simply to the fact that the microstruc-

ture for θ = 3π/4 is a reflection about the horizontal of the microstructure

for θ = π/4, it is important to note that we do not see this result for the half-

MBB problem. It is therefore the confluence of the horizontal symmetry in

both the microstructure and the macrostructure that produces the symmetry

in the final design.

4.2 Quantitative Analysis

Four types of problem spaces were investigated. These are each shown in

Figure 4.4. The top row shows results for the cantilever problem and the

bottom row shows results for the half-MBB problem. Additionally, the left

column corresponds to soft inclusions while the right column corresponds to

stiff inclusions. Since the total strain energy (compliance) was the minimiza-

tion function, it was used as the basis for comparison. Therefore, smaller

resultant values indicate more effective designs. It is also important to note

that all results presented in Figure 4.4 have been normalized against the

result obtained with an inclusion aspect ratio of 1 for the relevant problem

space.

There are a few points of note concerning the surface plots. Probably the

most obvious is that the results obtained with soft inclusions are the inverse

of those obtained with stiff inclusions in several respects. While the most ef-

fective aspect ratio for the soft inclusions appears to be 1, the stiff inclusions

minimize strain energy best at high aspect ratios (if the orientation is hor-

izontal). Additionally, the soft inclusions display relatively constant strain

energy at horizontal orientations while the stiff inclusions do the same at

vertical orientations. Similar results were observed through experimentation

for toughness [52]. Conversely, the disparities between the two boundary

condition scenarios are quite small. The most noticeable difference is that

Figure 4.4c has a small lip in the back corner that is not seen in Figure 4.4a.

Since it is difficult to interpret some relationships from surface plots, sev-

eral line plots have been extracted. Figure 4.5 shows the normalized strain

energy response to rotation angle when the aspect ratio is held at 3. In this

case, the normalizing scenario is that of an inclusion with horizontal orienta-

tion and an aspect ratio of 3. There are three key points of interest in these
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Figure 4.3: Design results for cantilever problem
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plots. First, the cantilever problem demonstrates a clear symmetry about

θ = π/2 while the half-MBB problem is skewed to the left (which explains

the small lip noted in the previous paragraph). Second, the half-MBB prob-

lem has a local minimum just shy of θ = π while the cantilever problem has

no local minima. Points one and two are both most likely due to the vertical

symmetry of the half-MBB problem. Since the rollers were placed on the left

and the load placed on top, inclusions that align between the top left and

the bottom right form a triangular support structure when they are reflected

across the left edge of the domain. This triangle formation can be observed

in some examples presented in [15]. Third, the range of normalized strain

energies achieved by the soft inclusion scenario is almost twice that of the

stiff inclusions. This is to be expected since the rotation of a stiff inclusion

will contribute more than that of a soft inclusion where a majority of the

load is carried by the matrix.

Figure 4.6 performs the same function as Figure 4.5, except it varies aspect

ratio instead of orientation angle. As with the surface plots, the results have

been normalized against an aspect ratio of 1. It is immediately apparent

that these plots do not share the same smoothness shown in Figure 4.5,

but important trends can still be observed. A key feature of all four plots

is that the overall trends seem to be almost entirely independent of the

macrostructure problems, which is in direct contrast with the relationship

between normalized strain energy and rotation angle discussed above.

It is also interesting to note that stiff, vertical inclusions and soft, horizon-

tal inclusions behave in the same, but inverse, manner. This can most likely

be explained by the fact that both macrostructure problems have vertical

loading. Therefore, microstructures that have strong vertical support will

behave in a similar manner. In the case of a stiff, vertical inclusions, it is

clear that there will be strong vertical support. However, in the case of soft

horizontal inclusions, it is the absence of the soft inclusion along the vertical

axis (and therefore the presence of stiff matrix) that gives the microstructure

vertical strength. The opposite can be seen in the fact that stiff, horizontal

inclusions behave in the same, but inverse, manner as soft, vertical inclusions.

Additionally, from an optimization viewpoint, the local minima and max-

ima shown in Figure 4.6c and Figure 4.6b, respectively, are even more inter-

esting. While the microstructures with poor vertical support display nearly

linear relationships, those with strong vertical support are parabolic. This
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(a) Stiff inclusion, a/b = 3

(b) Soft inclusion, a/b = 3

Figure 4.5: Normalized strain energy vs. angle
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leads to the conclusion that, for soft, horizontal inclusions, there exists a

”golden aspect ratio” at about 1.5 for the half-MBB problem and around

2.25 for the cantilever problem. The existence of such values could be ex-

tremely useful for designers who need to embed soft inclusions for any range

of reasons but would also like to maintain good stiffness. Conversely, design-

ers who must embed stiff, vertical inclusions must avoid similar values.

The final points that needs to be made for these plots concerns Figure 4.6a.

It shows that higher aspect ratios for stiff, horizontal inclusions increases

the effectiveness of the design. This contradicts most engineering practices

which seek to minimize the stress concentrations formed by inclusions with

high aspect ratios [53, 54]. There are two reasons for this. First is that all

analysis conducted here assumed an entirely elastic response without any

fracture. Second, both macrostructure problems are beam problems with

vertical loads, so extremely flat inclusions prevent bending when the ma-

trix is soft. Future work should repeat the executed process with penalties

for material failure, as described in [55], to determine if this result is more

general.
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CHAPTER 5

CONCLUSIONS

Chapter 4 demonstrates that the various microstructure and macrostructure

design parameters described in Chapter 2 have a large impact on the effec-

tiveness of topology optimization when applied to composites with elliptical

inclusions. The following is a short list of how some of the most critical

parameters interact with optimization process.

• Clearly discernible design feature move in direct relation to changes in

the microstructure.

• Interactions between both the microstructure and macrostructure con-

figurations dictate the symmetry and presence of local minima when

comparing effectiveness and the microstructure orientation (the stiff-

ness ratio plays a minimal role).

• The optimization effectiveness is a smooth function of the orientation

angle, but not the aspect ratio.

• The stiffness ratio plays a major role in determining the relationship

between the effectiveness and the aspect ratio.

• There exist “golden aspect ratios” for some microstructures that are

local minima of the normalized strain energy.
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CHAPTER 6

EXTENSION AND FUTURE WORK

Up to this point, every design that has been presented was composed of

homogenized material with one type of microstructure.. However, one is

not restricted to this case. By modifying the methods presented above, it is

possible to select the optimal microstructure on an element-by-element basis.

An example of this is presented in Section 6.1.

6.1 Extension to Optimization of Inclusion Volume

Fraction

For all of the previous analysis, the volume fraction of the inclusion was

held at 15%, as discussed in Section 2.1. Now, consider the case where the

design variable is the inclusion volume fraction, κ, instead of the density.

This means that the element stiffness can no longer be simply scaled using

Equation (3.12). Instead, homogenization is used to compute the material

stiffness for a range of inclusion volume fractions. (For simplicity, the as-

pect ratio was held at unity.) Since the trends for each stiffness component

are simple and smooth, as shown in Figure 6.1, the relationships can be fit

with polynomial curves, fi. Using symmetry, the material stiffness tensor

can therefore be expressed using Equation (6.1). Now the scaling function

presented in Equation (3.12) can be replace with Equation (6.2).

Q(κ) =

f1(κ) f6(κ) f5(κ)

f6(κ) f2(κ) f4(κ)

f5(κ) f4(κ) f3(κ)

 (6.1)
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Q̂(κ) =

f1(κ
p) f6(κ

p) f5(κ
p)

f6(κ
p) f2(κ

p) f4(κ
p)

f5(κ
p) f4(κ

p) f3(κ
p)

 (6.2)

Additionally, the partial derivative shown in Equation (3.15) must be mod-

ified. Since the expression containing the design variable can no longer be

pulled outside the element compliance term, the equation must be rewritten

as shown in Equation (6.3). The partial derivative of the element stiffness

matrix with respect to the inclusion volume fraction is obtained by building

the element stiffness matrix in the normal manner, with the exception that

the material stiffness tensor is replaced with Q̂
′
, which is given in Equa-

tion (6.4). Here, f ′i denotes the derivative of fi with respect to κ.

∂Ψ/∂xe = UT
e

∂Ke

∂κ
Ue (6.3)

Q̂
′
(κ) = −pκ(p−1)

f
′
1(κ

p) f ′6(κ
p) f ′5(κ

p)

f ′6(κ
p) f ′2(κ

p) f ′4(κ
p)

f ′5(κ
p) f ′4(κ

p) f ′3(κ
p)

 (6.4)

Finally, it is useful to note that the filtering discussed in Section 3.2 is

no longer required. This is because the solution now marks the size of the

inclusion in each element, not the presence of material or void, so sharp

discontinuities are not an issue.

Figure 6.2 shows the result of applying the adjustments discussed above

to the MBB-beam problem defined in Section 2.2. The black region denotes

elements with a maximum sized inclusion while the white region denotes

elements with no inclusion (i.e., composed entirely of matrix). The fact

that the lower bound is matrix and not void allows the black regions to be

disconnected. The jagged edges are a result of removing the filter.

It is interesting to note, as evidence by the absence of any gray in the figure,

that even with the filter removed, each element takes on one of the extremes:

either entirely matrix or maximum sized inclusion. This demonstrates that

a maximally stiff element is much more valuable to the overall stiffness than

an element with intermediate stiffness.
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6.2 Future Work

There are several directions in which to take this work. As mentioned in

Chapter 3, one obvious area of future application would be to extend the

current work to outside linear elasticity. While many engineering metals

can be accurately described by linear elasticity, materials commonly found

in composites, such as polymers, require more advanced material models.

Althought such an implementation will require significantly more compu-

tational resources, it could provide more accurate insight. Another logical

extension of this work would be analysis in three dimensions. While 2D anal-

ysis can provide useful information on trends and certain classes of problems,

it is impossible to obtain the full picture without also analyzing 3D cases.

Finally, an additional direction for future work could be an extension of

the process described in Section 6.1 to other microstructural variables, such

as rotation angle and aspect ratio. These pose significant challenges with

uniqueness as the volume fraction requirement outlined in Equation (3.10)

would no longer apply, but such a capability might have powerful impli-

cations. There also remains the possibility of optimizing more than one

microstructural parameter at the same time.
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